260bf8cfed51221f901787866a07e909c27828ac
[deliverable/linux.git] / kernel / events / core.c
1 /*
2 * Performance events core code:
3 *
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8 *
9 * For licensing details see kernel-base/COPYING
10 */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/tick.h>
22 #include <linux/sysfs.h>
23 #include <linux/dcache.h>
24 #include <linux/percpu.h>
25 #include <linux/ptrace.h>
26 #include <linux/reboot.h>
27 #include <linux/vmstat.h>
28 #include <linux/device.h>
29 #include <linux/export.h>
30 #include <linux/vmalloc.h>
31 #include <linux/hardirq.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47
48 #include "internal.h"
49
50 #include <asm/irq_regs.h>
51
52 static struct workqueue_struct *perf_wq;
53
54 typedef int (*remote_function_f)(void *);
55
56 struct remote_function_call {
57 struct task_struct *p;
58 remote_function_f func;
59 void *info;
60 int ret;
61 };
62
63 static void remote_function(void *data)
64 {
65 struct remote_function_call *tfc = data;
66 struct task_struct *p = tfc->p;
67
68 if (p) {
69 tfc->ret = -EAGAIN;
70 if (task_cpu(p) != smp_processor_id() || !task_curr(p))
71 return;
72 }
73
74 tfc->ret = tfc->func(tfc->info);
75 }
76
77 /**
78 * task_function_call - call a function on the cpu on which a task runs
79 * @p: the task to evaluate
80 * @func: the function to be called
81 * @info: the function call argument
82 *
83 * Calls the function @func when the task is currently running. This might
84 * be on the current CPU, which just calls the function directly
85 *
86 * returns: @func return value, or
87 * -ESRCH - when the process isn't running
88 * -EAGAIN - when the process moved away
89 */
90 static int
91 task_function_call(struct task_struct *p, remote_function_f func, void *info)
92 {
93 struct remote_function_call data = {
94 .p = p,
95 .func = func,
96 .info = info,
97 .ret = -ESRCH, /* No such (running) process */
98 };
99
100 if (task_curr(p))
101 smp_call_function_single(task_cpu(p), remote_function, &data, 1);
102
103 return data.ret;
104 }
105
106 /**
107 * cpu_function_call - call a function on the cpu
108 * @func: the function to be called
109 * @info: the function call argument
110 *
111 * Calls the function @func on the remote cpu.
112 *
113 * returns: @func return value or -ENXIO when the cpu is offline
114 */
115 static int cpu_function_call(int cpu, remote_function_f func, void *info)
116 {
117 struct remote_function_call data = {
118 .p = NULL,
119 .func = func,
120 .info = info,
121 .ret = -ENXIO, /* No such CPU */
122 };
123
124 smp_call_function_single(cpu, remote_function, &data, 1);
125
126 return data.ret;
127 }
128
129 #define EVENT_OWNER_KERNEL ((void *) -1)
130
131 static bool is_kernel_event(struct perf_event *event)
132 {
133 return event->owner == EVENT_OWNER_KERNEL;
134 }
135
136 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
137 PERF_FLAG_FD_OUTPUT |\
138 PERF_FLAG_PID_CGROUP |\
139 PERF_FLAG_FD_CLOEXEC)
140
141 /*
142 * branch priv levels that need permission checks
143 */
144 #define PERF_SAMPLE_BRANCH_PERM_PLM \
145 (PERF_SAMPLE_BRANCH_KERNEL |\
146 PERF_SAMPLE_BRANCH_HV)
147
148 enum event_type_t {
149 EVENT_FLEXIBLE = 0x1,
150 EVENT_PINNED = 0x2,
151 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
152 };
153
154 /*
155 * perf_sched_events : >0 events exist
156 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
157 */
158 struct static_key_deferred perf_sched_events __read_mostly;
159 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
160 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
161
162 static atomic_t nr_mmap_events __read_mostly;
163 static atomic_t nr_comm_events __read_mostly;
164 static atomic_t nr_task_events __read_mostly;
165 static atomic_t nr_freq_events __read_mostly;
166 static atomic_t nr_switch_events __read_mostly;
167
168 static LIST_HEAD(pmus);
169 static DEFINE_MUTEX(pmus_lock);
170 static struct srcu_struct pmus_srcu;
171
172 /*
173 * perf event paranoia level:
174 * -1 - not paranoid at all
175 * 0 - disallow raw tracepoint access for unpriv
176 * 1 - disallow cpu events for unpriv
177 * 2 - disallow kernel profiling for unpriv
178 */
179 int sysctl_perf_event_paranoid __read_mostly = 1;
180
181 /* Minimum for 512 kiB + 1 user control page */
182 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
183
184 /*
185 * max perf event sample rate
186 */
187 #define DEFAULT_MAX_SAMPLE_RATE 100000
188 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
189 #define DEFAULT_CPU_TIME_MAX_PERCENT 25
190
191 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
192
193 static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
194 static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS;
195
196 static int perf_sample_allowed_ns __read_mostly =
197 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
198
199 void update_perf_cpu_limits(void)
200 {
201 u64 tmp = perf_sample_period_ns;
202
203 tmp *= sysctl_perf_cpu_time_max_percent;
204 do_div(tmp, 100);
205 ACCESS_ONCE(perf_sample_allowed_ns) = tmp;
206 }
207
208 static int perf_rotate_context(struct perf_cpu_context *cpuctx);
209
210 int perf_proc_update_handler(struct ctl_table *table, int write,
211 void __user *buffer, size_t *lenp,
212 loff_t *ppos)
213 {
214 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
215
216 if (ret || !write)
217 return ret;
218
219 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
220 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
221 update_perf_cpu_limits();
222
223 return 0;
224 }
225
226 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
227
228 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
229 void __user *buffer, size_t *lenp,
230 loff_t *ppos)
231 {
232 int ret = proc_dointvec(table, write, buffer, lenp, ppos);
233
234 if (ret || !write)
235 return ret;
236
237 update_perf_cpu_limits();
238
239 return 0;
240 }
241
242 /*
243 * perf samples are done in some very critical code paths (NMIs).
244 * If they take too much CPU time, the system can lock up and not
245 * get any real work done. This will drop the sample rate when
246 * we detect that events are taking too long.
247 */
248 #define NR_ACCUMULATED_SAMPLES 128
249 static DEFINE_PER_CPU(u64, running_sample_length);
250
251 static void perf_duration_warn(struct irq_work *w)
252 {
253 u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
254 u64 avg_local_sample_len;
255 u64 local_samples_len;
256
257 local_samples_len = __this_cpu_read(running_sample_length);
258 avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
259
260 printk_ratelimited(KERN_WARNING
261 "perf interrupt took too long (%lld > %lld), lowering "
262 "kernel.perf_event_max_sample_rate to %d\n",
263 avg_local_sample_len, allowed_ns >> 1,
264 sysctl_perf_event_sample_rate);
265 }
266
267 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
268
269 void perf_sample_event_took(u64 sample_len_ns)
270 {
271 u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
272 u64 avg_local_sample_len;
273 u64 local_samples_len;
274
275 if (allowed_ns == 0)
276 return;
277
278 /* decay the counter by 1 average sample */
279 local_samples_len = __this_cpu_read(running_sample_length);
280 local_samples_len -= local_samples_len/NR_ACCUMULATED_SAMPLES;
281 local_samples_len += sample_len_ns;
282 __this_cpu_write(running_sample_length, local_samples_len);
283
284 /*
285 * note: this will be biased artifically low until we have
286 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
287 * from having to maintain a count.
288 */
289 avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
290
291 if (avg_local_sample_len <= allowed_ns)
292 return;
293
294 if (max_samples_per_tick <= 1)
295 return;
296
297 max_samples_per_tick = DIV_ROUND_UP(max_samples_per_tick, 2);
298 sysctl_perf_event_sample_rate = max_samples_per_tick * HZ;
299 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
300
301 update_perf_cpu_limits();
302
303 if (!irq_work_queue(&perf_duration_work)) {
304 early_printk("perf interrupt took too long (%lld > %lld), lowering "
305 "kernel.perf_event_max_sample_rate to %d\n",
306 avg_local_sample_len, allowed_ns >> 1,
307 sysctl_perf_event_sample_rate);
308 }
309 }
310
311 static atomic64_t perf_event_id;
312
313 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
314 enum event_type_t event_type);
315
316 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
317 enum event_type_t event_type,
318 struct task_struct *task);
319
320 static void update_context_time(struct perf_event_context *ctx);
321 static u64 perf_event_time(struct perf_event *event);
322
323 void __weak perf_event_print_debug(void) { }
324
325 extern __weak const char *perf_pmu_name(void)
326 {
327 return "pmu";
328 }
329
330 static inline u64 perf_clock(void)
331 {
332 return local_clock();
333 }
334
335 static inline u64 perf_event_clock(struct perf_event *event)
336 {
337 return event->clock();
338 }
339
340 static inline struct perf_cpu_context *
341 __get_cpu_context(struct perf_event_context *ctx)
342 {
343 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
344 }
345
346 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
347 struct perf_event_context *ctx)
348 {
349 raw_spin_lock(&cpuctx->ctx.lock);
350 if (ctx)
351 raw_spin_lock(&ctx->lock);
352 }
353
354 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
355 struct perf_event_context *ctx)
356 {
357 if (ctx)
358 raw_spin_unlock(&ctx->lock);
359 raw_spin_unlock(&cpuctx->ctx.lock);
360 }
361
362 #ifdef CONFIG_CGROUP_PERF
363
364 static inline bool
365 perf_cgroup_match(struct perf_event *event)
366 {
367 struct perf_event_context *ctx = event->ctx;
368 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
369
370 /* @event doesn't care about cgroup */
371 if (!event->cgrp)
372 return true;
373
374 /* wants specific cgroup scope but @cpuctx isn't associated with any */
375 if (!cpuctx->cgrp)
376 return false;
377
378 /*
379 * Cgroup scoping is recursive. An event enabled for a cgroup is
380 * also enabled for all its descendant cgroups. If @cpuctx's
381 * cgroup is a descendant of @event's (the test covers identity
382 * case), it's a match.
383 */
384 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
385 event->cgrp->css.cgroup);
386 }
387
388 static inline void perf_detach_cgroup(struct perf_event *event)
389 {
390 css_put(&event->cgrp->css);
391 event->cgrp = NULL;
392 }
393
394 static inline int is_cgroup_event(struct perf_event *event)
395 {
396 return event->cgrp != NULL;
397 }
398
399 static inline u64 perf_cgroup_event_time(struct perf_event *event)
400 {
401 struct perf_cgroup_info *t;
402
403 t = per_cpu_ptr(event->cgrp->info, event->cpu);
404 return t->time;
405 }
406
407 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
408 {
409 struct perf_cgroup_info *info;
410 u64 now;
411
412 now = perf_clock();
413
414 info = this_cpu_ptr(cgrp->info);
415
416 info->time += now - info->timestamp;
417 info->timestamp = now;
418 }
419
420 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
421 {
422 struct perf_cgroup *cgrp_out = cpuctx->cgrp;
423 if (cgrp_out)
424 __update_cgrp_time(cgrp_out);
425 }
426
427 static inline void update_cgrp_time_from_event(struct perf_event *event)
428 {
429 struct perf_cgroup *cgrp;
430
431 /*
432 * ensure we access cgroup data only when needed and
433 * when we know the cgroup is pinned (css_get)
434 */
435 if (!is_cgroup_event(event))
436 return;
437
438 cgrp = perf_cgroup_from_task(current);
439 /*
440 * Do not update time when cgroup is not active
441 */
442 if (cgrp == event->cgrp)
443 __update_cgrp_time(event->cgrp);
444 }
445
446 static inline void
447 perf_cgroup_set_timestamp(struct task_struct *task,
448 struct perf_event_context *ctx)
449 {
450 struct perf_cgroup *cgrp;
451 struct perf_cgroup_info *info;
452
453 /*
454 * ctx->lock held by caller
455 * ensure we do not access cgroup data
456 * unless we have the cgroup pinned (css_get)
457 */
458 if (!task || !ctx->nr_cgroups)
459 return;
460
461 cgrp = perf_cgroup_from_task(task);
462 info = this_cpu_ptr(cgrp->info);
463 info->timestamp = ctx->timestamp;
464 }
465
466 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
467 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
468
469 /*
470 * reschedule events based on the cgroup constraint of task.
471 *
472 * mode SWOUT : schedule out everything
473 * mode SWIN : schedule in based on cgroup for next
474 */
475 void perf_cgroup_switch(struct task_struct *task, int mode)
476 {
477 struct perf_cpu_context *cpuctx;
478 struct pmu *pmu;
479 unsigned long flags;
480
481 /*
482 * disable interrupts to avoid geting nr_cgroup
483 * changes via __perf_event_disable(). Also
484 * avoids preemption.
485 */
486 local_irq_save(flags);
487
488 /*
489 * we reschedule only in the presence of cgroup
490 * constrained events.
491 */
492 rcu_read_lock();
493
494 list_for_each_entry_rcu(pmu, &pmus, entry) {
495 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
496 if (cpuctx->unique_pmu != pmu)
497 continue; /* ensure we process each cpuctx once */
498
499 /*
500 * perf_cgroup_events says at least one
501 * context on this CPU has cgroup events.
502 *
503 * ctx->nr_cgroups reports the number of cgroup
504 * events for a context.
505 */
506 if (cpuctx->ctx.nr_cgroups > 0) {
507 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
508 perf_pmu_disable(cpuctx->ctx.pmu);
509
510 if (mode & PERF_CGROUP_SWOUT) {
511 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
512 /*
513 * must not be done before ctxswout due
514 * to event_filter_match() in event_sched_out()
515 */
516 cpuctx->cgrp = NULL;
517 }
518
519 if (mode & PERF_CGROUP_SWIN) {
520 WARN_ON_ONCE(cpuctx->cgrp);
521 /*
522 * set cgrp before ctxsw in to allow
523 * event_filter_match() to not have to pass
524 * task around
525 */
526 cpuctx->cgrp = perf_cgroup_from_task(task);
527 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
528 }
529 perf_pmu_enable(cpuctx->ctx.pmu);
530 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
531 }
532 }
533
534 rcu_read_unlock();
535
536 local_irq_restore(flags);
537 }
538
539 static inline void perf_cgroup_sched_out(struct task_struct *task,
540 struct task_struct *next)
541 {
542 struct perf_cgroup *cgrp1;
543 struct perf_cgroup *cgrp2 = NULL;
544
545 /*
546 * we come here when we know perf_cgroup_events > 0
547 */
548 cgrp1 = perf_cgroup_from_task(task);
549
550 /*
551 * next is NULL when called from perf_event_enable_on_exec()
552 * that will systematically cause a cgroup_switch()
553 */
554 if (next)
555 cgrp2 = perf_cgroup_from_task(next);
556
557 /*
558 * only schedule out current cgroup events if we know
559 * that we are switching to a different cgroup. Otherwise,
560 * do no touch the cgroup events.
561 */
562 if (cgrp1 != cgrp2)
563 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
564 }
565
566 static inline void perf_cgroup_sched_in(struct task_struct *prev,
567 struct task_struct *task)
568 {
569 struct perf_cgroup *cgrp1;
570 struct perf_cgroup *cgrp2 = NULL;
571
572 /*
573 * we come here when we know perf_cgroup_events > 0
574 */
575 cgrp1 = perf_cgroup_from_task(task);
576
577 /* prev can never be NULL */
578 cgrp2 = perf_cgroup_from_task(prev);
579
580 /*
581 * only need to schedule in cgroup events if we are changing
582 * cgroup during ctxsw. Cgroup events were not scheduled
583 * out of ctxsw out if that was not the case.
584 */
585 if (cgrp1 != cgrp2)
586 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
587 }
588
589 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
590 struct perf_event_attr *attr,
591 struct perf_event *group_leader)
592 {
593 struct perf_cgroup *cgrp;
594 struct cgroup_subsys_state *css;
595 struct fd f = fdget(fd);
596 int ret = 0;
597
598 if (!f.file)
599 return -EBADF;
600
601 css = css_tryget_online_from_dir(f.file->f_path.dentry,
602 &perf_event_cgrp_subsys);
603 if (IS_ERR(css)) {
604 ret = PTR_ERR(css);
605 goto out;
606 }
607
608 cgrp = container_of(css, struct perf_cgroup, css);
609 event->cgrp = cgrp;
610
611 /*
612 * all events in a group must monitor
613 * the same cgroup because a task belongs
614 * to only one perf cgroup at a time
615 */
616 if (group_leader && group_leader->cgrp != cgrp) {
617 perf_detach_cgroup(event);
618 ret = -EINVAL;
619 }
620 out:
621 fdput(f);
622 return ret;
623 }
624
625 static inline void
626 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
627 {
628 struct perf_cgroup_info *t;
629 t = per_cpu_ptr(event->cgrp->info, event->cpu);
630 event->shadow_ctx_time = now - t->timestamp;
631 }
632
633 static inline void
634 perf_cgroup_defer_enabled(struct perf_event *event)
635 {
636 /*
637 * when the current task's perf cgroup does not match
638 * the event's, we need to remember to call the
639 * perf_mark_enable() function the first time a task with
640 * a matching perf cgroup is scheduled in.
641 */
642 if (is_cgroup_event(event) && !perf_cgroup_match(event))
643 event->cgrp_defer_enabled = 1;
644 }
645
646 static inline void
647 perf_cgroup_mark_enabled(struct perf_event *event,
648 struct perf_event_context *ctx)
649 {
650 struct perf_event *sub;
651 u64 tstamp = perf_event_time(event);
652
653 if (!event->cgrp_defer_enabled)
654 return;
655
656 event->cgrp_defer_enabled = 0;
657
658 event->tstamp_enabled = tstamp - event->total_time_enabled;
659 list_for_each_entry(sub, &event->sibling_list, group_entry) {
660 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
661 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
662 sub->cgrp_defer_enabled = 0;
663 }
664 }
665 }
666 #else /* !CONFIG_CGROUP_PERF */
667
668 static inline bool
669 perf_cgroup_match(struct perf_event *event)
670 {
671 return true;
672 }
673
674 static inline void perf_detach_cgroup(struct perf_event *event)
675 {}
676
677 static inline int is_cgroup_event(struct perf_event *event)
678 {
679 return 0;
680 }
681
682 static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
683 {
684 return 0;
685 }
686
687 static inline void update_cgrp_time_from_event(struct perf_event *event)
688 {
689 }
690
691 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
692 {
693 }
694
695 static inline void perf_cgroup_sched_out(struct task_struct *task,
696 struct task_struct *next)
697 {
698 }
699
700 static inline void perf_cgroup_sched_in(struct task_struct *prev,
701 struct task_struct *task)
702 {
703 }
704
705 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
706 struct perf_event_attr *attr,
707 struct perf_event *group_leader)
708 {
709 return -EINVAL;
710 }
711
712 static inline void
713 perf_cgroup_set_timestamp(struct task_struct *task,
714 struct perf_event_context *ctx)
715 {
716 }
717
718 void
719 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
720 {
721 }
722
723 static inline void
724 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
725 {
726 }
727
728 static inline u64 perf_cgroup_event_time(struct perf_event *event)
729 {
730 return 0;
731 }
732
733 static inline void
734 perf_cgroup_defer_enabled(struct perf_event *event)
735 {
736 }
737
738 static inline void
739 perf_cgroup_mark_enabled(struct perf_event *event,
740 struct perf_event_context *ctx)
741 {
742 }
743 #endif
744
745 /*
746 * set default to be dependent on timer tick just
747 * like original code
748 */
749 #define PERF_CPU_HRTIMER (1000 / HZ)
750 /*
751 * function must be called with interrupts disbled
752 */
753 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
754 {
755 struct perf_cpu_context *cpuctx;
756 int rotations = 0;
757
758 WARN_ON(!irqs_disabled());
759
760 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
761 rotations = perf_rotate_context(cpuctx);
762
763 raw_spin_lock(&cpuctx->hrtimer_lock);
764 if (rotations)
765 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
766 else
767 cpuctx->hrtimer_active = 0;
768 raw_spin_unlock(&cpuctx->hrtimer_lock);
769
770 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
771 }
772
773 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
774 {
775 struct hrtimer *timer = &cpuctx->hrtimer;
776 struct pmu *pmu = cpuctx->ctx.pmu;
777 u64 interval;
778
779 /* no multiplexing needed for SW PMU */
780 if (pmu->task_ctx_nr == perf_sw_context)
781 return;
782
783 /*
784 * check default is sane, if not set then force to
785 * default interval (1/tick)
786 */
787 interval = pmu->hrtimer_interval_ms;
788 if (interval < 1)
789 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
790
791 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
792
793 raw_spin_lock_init(&cpuctx->hrtimer_lock);
794 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
795 timer->function = perf_mux_hrtimer_handler;
796 }
797
798 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
799 {
800 struct hrtimer *timer = &cpuctx->hrtimer;
801 struct pmu *pmu = cpuctx->ctx.pmu;
802 unsigned long flags;
803
804 /* not for SW PMU */
805 if (pmu->task_ctx_nr == perf_sw_context)
806 return 0;
807
808 raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
809 if (!cpuctx->hrtimer_active) {
810 cpuctx->hrtimer_active = 1;
811 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
812 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
813 }
814 raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
815
816 return 0;
817 }
818
819 void perf_pmu_disable(struct pmu *pmu)
820 {
821 int *count = this_cpu_ptr(pmu->pmu_disable_count);
822 if (!(*count)++)
823 pmu->pmu_disable(pmu);
824 }
825
826 void perf_pmu_enable(struct pmu *pmu)
827 {
828 int *count = this_cpu_ptr(pmu->pmu_disable_count);
829 if (!--(*count))
830 pmu->pmu_enable(pmu);
831 }
832
833 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
834
835 /*
836 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
837 * perf_event_task_tick() are fully serialized because they're strictly cpu
838 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
839 * disabled, while perf_event_task_tick is called from IRQ context.
840 */
841 static void perf_event_ctx_activate(struct perf_event_context *ctx)
842 {
843 struct list_head *head = this_cpu_ptr(&active_ctx_list);
844
845 WARN_ON(!irqs_disabled());
846
847 WARN_ON(!list_empty(&ctx->active_ctx_list));
848
849 list_add(&ctx->active_ctx_list, head);
850 }
851
852 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
853 {
854 WARN_ON(!irqs_disabled());
855
856 WARN_ON(list_empty(&ctx->active_ctx_list));
857
858 list_del_init(&ctx->active_ctx_list);
859 }
860
861 static void get_ctx(struct perf_event_context *ctx)
862 {
863 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
864 }
865
866 static void free_ctx(struct rcu_head *head)
867 {
868 struct perf_event_context *ctx;
869
870 ctx = container_of(head, struct perf_event_context, rcu_head);
871 kfree(ctx->task_ctx_data);
872 kfree(ctx);
873 }
874
875 static void put_ctx(struct perf_event_context *ctx)
876 {
877 if (atomic_dec_and_test(&ctx->refcount)) {
878 if (ctx->parent_ctx)
879 put_ctx(ctx->parent_ctx);
880 if (ctx->task)
881 put_task_struct(ctx->task);
882 call_rcu(&ctx->rcu_head, free_ctx);
883 }
884 }
885
886 /*
887 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
888 * perf_pmu_migrate_context() we need some magic.
889 *
890 * Those places that change perf_event::ctx will hold both
891 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
892 *
893 * Lock ordering is by mutex address. There are two other sites where
894 * perf_event_context::mutex nests and those are:
895 *
896 * - perf_event_exit_task_context() [ child , 0 ]
897 * __perf_event_exit_task()
898 * sync_child_event()
899 * put_event() [ parent, 1 ]
900 *
901 * - perf_event_init_context() [ parent, 0 ]
902 * inherit_task_group()
903 * inherit_group()
904 * inherit_event()
905 * perf_event_alloc()
906 * perf_init_event()
907 * perf_try_init_event() [ child , 1 ]
908 *
909 * While it appears there is an obvious deadlock here -- the parent and child
910 * nesting levels are inverted between the two. This is in fact safe because
911 * life-time rules separate them. That is an exiting task cannot fork, and a
912 * spawning task cannot (yet) exit.
913 *
914 * But remember that that these are parent<->child context relations, and
915 * migration does not affect children, therefore these two orderings should not
916 * interact.
917 *
918 * The change in perf_event::ctx does not affect children (as claimed above)
919 * because the sys_perf_event_open() case will install a new event and break
920 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
921 * concerned with cpuctx and that doesn't have children.
922 *
923 * The places that change perf_event::ctx will issue:
924 *
925 * perf_remove_from_context();
926 * synchronize_rcu();
927 * perf_install_in_context();
928 *
929 * to affect the change. The remove_from_context() + synchronize_rcu() should
930 * quiesce the event, after which we can install it in the new location. This
931 * means that only external vectors (perf_fops, prctl) can perturb the event
932 * while in transit. Therefore all such accessors should also acquire
933 * perf_event_context::mutex to serialize against this.
934 *
935 * However; because event->ctx can change while we're waiting to acquire
936 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
937 * function.
938 *
939 * Lock order:
940 * task_struct::perf_event_mutex
941 * perf_event_context::mutex
942 * perf_event_context::lock
943 * perf_event::child_mutex;
944 * perf_event::mmap_mutex
945 * mmap_sem
946 */
947 static struct perf_event_context *
948 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
949 {
950 struct perf_event_context *ctx;
951
952 again:
953 rcu_read_lock();
954 ctx = ACCESS_ONCE(event->ctx);
955 if (!atomic_inc_not_zero(&ctx->refcount)) {
956 rcu_read_unlock();
957 goto again;
958 }
959 rcu_read_unlock();
960
961 mutex_lock_nested(&ctx->mutex, nesting);
962 if (event->ctx != ctx) {
963 mutex_unlock(&ctx->mutex);
964 put_ctx(ctx);
965 goto again;
966 }
967
968 return ctx;
969 }
970
971 static inline struct perf_event_context *
972 perf_event_ctx_lock(struct perf_event *event)
973 {
974 return perf_event_ctx_lock_nested(event, 0);
975 }
976
977 static void perf_event_ctx_unlock(struct perf_event *event,
978 struct perf_event_context *ctx)
979 {
980 mutex_unlock(&ctx->mutex);
981 put_ctx(ctx);
982 }
983
984 /*
985 * This must be done under the ctx->lock, such as to serialize against
986 * context_equiv(), therefore we cannot call put_ctx() since that might end up
987 * calling scheduler related locks and ctx->lock nests inside those.
988 */
989 static __must_check struct perf_event_context *
990 unclone_ctx(struct perf_event_context *ctx)
991 {
992 struct perf_event_context *parent_ctx = ctx->parent_ctx;
993
994 lockdep_assert_held(&ctx->lock);
995
996 if (parent_ctx)
997 ctx->parent_ctx = NULL;
998 ctx->generation++;
999
1000 return parent_ctx;
1001 }
1002
1003 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1004 {
1005 /*
1006 * only top level events have the pid namespace they were created in
1007 */
1008 if (event->parent)
1009 event = event->parent;
1010
1011 return task_tgid_nr_ns(p, event->ns);
1012 }
1013
1014 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1015 {
1016 /*
1017 * only top level events have the pid namespace they were created in
1018 */
1019 if (event->parent)
1020 event = event->parent;
1021
1022 return task_pid_nr_ns(p, event->ns);
1023 }
1024
1025 /*
1026 * If we inherit events we want to return the parent event id
1027 * to userspace.
1028 */
1029 static u64 primary_event_id(struct perf_event *event)
1030 {
1031 u64 id = event->id;
1032
1033 if (event->parent)
1034 id = event->parent->id;
1035
1036 return id;
1037 }
1038
1039 /*
1040 * Get the perf_event_context for a task and lock it.
1041 * This has to cope with with the fact that until it is locked,
1042 * the context could get moved to another task.
1043 */
1044 static struct perf_event_context *
1045 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1046 {
1047 struct perf_event_context *ctx;
1048
1049 retry:
1050 /*
1051 * One of the few rules of preemptible RCU is that one cannot do
1052 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1053 * part of the read side critical section was preemptible -- see
1054 * rcu_read_unlock_special().
1055 *
1056 * Since ctx->lock nests under rq->lock we must ensure the entire read
1057 * side critical section is non-preemptible.
1058 */
1059 preempt_disable();
1060 rcu_read_lock();
1061 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1062 if (ctx) {
1063 /*
1064 * If this context is a clone of another, it might
1065 * get swapped for another underneath us by
1066 * perf_event_task_sched_out, though the
1067 * rcu_read_lock() protects us from any context
1068 * getting freed. Lock the context and check if it
1069 * got swapped before we could get the lock, and retry
1070 * if so. If we locked the right context, then it
1071 * can't get swapped on us any more.
1072 */
1073 raw_spin_lock_irqsave(&ctx->lock, *flags);
1074 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1075 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
1076 rcu_read_unlock();
1077 preempt_enable();
1078 goto retry;
1079 }
1080
1081 if (!atomic_inc_not_zero(&ctx->refcount)) {
1082 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
1083 ctx = NULL;
1084 }
1085 }
1086 rcu_read_unlock();
1087 preempt_enable();
1088 return ctx;
1089 }
1090
1091 /*
1092 * Get the context for a task and increment its pin_count so it
1093 * can't get swapped to another task. This also increments its
1094 * reference count so that the context can't get freed.
1095 */
1096 static struct perf_event_context *
1097 perf_pin_task_context(struct task_struct *task, int ctxn)
1098 {
1099 struct perf_event_context *ctx;
1100 unsigned long flags;
1101
1102 ctx = perf_lock_task_context(task, ctxn, &flags);
1103 if (ctx) {
1104 ++ctx->pin_count;
1105 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1106 }
1107 return ctx;
1108 }
1109
1110 static void perf_unpin_context(struct perf_event_context *ctx)
1111 {
1112 unsigned long flags;
1113
1114 raw_spin_lock_irqsave(&ctx->lock, flags);
1115 --ctx->pin_count;
1116 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1117 }
1118
1119 /*
1120 * Update the record of the current time in a context.
1121 */
1122 static void update_context_time(struct perf_event_context *ctx)
1123 {
1124 u64 now = perf_clock();
1125
1126 ctx->time += now - ctx->timestamp;
1127 ctx->timestamp = now;
1128 }
1129
1130 static u64 perf_event_time(struct perf_event *event)
1131 {
1132 struct perf_event_context *ctx = event->ctx;
1133
1134 if (is_cgroup_event(event))
1135 return perf_cgroup_event_time(event);
1136
1137 return ctx ? ctx->time : 0;
1138 }
1139
1140 /*
1141 * Update the total_time_enabled and total_time_running fields for a event.
1142 * The caller of this function needs to hold the ctx->lock.
1143 */
1144 static void update_event_times(struct perf_event *event)
1145 {
1146 struct perf_event_context *ctx = event->ctx;
1147 u64 run_end;
1148
1149 if (event->state < PERF_EVENT_STATE_INACTIVE ||
1150 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1151 return;
1152 /*
1153 * in cgroup mode, time_enabled represents
1154 * the time the event was enabled AND active
1155 * tasks were in the monitored cgroup. This is
1156 * independent of the activity of the context as
1157 * there may be a mix of cgroup and non-cgroup events.
1158 *
1159 * That is why we treat cgroup events differently
1160 * here.
1161 */
1162 if (is_cgroup_event(event))
1163 run_end = perf_cgroup_event_time(event);
1164 else if (ctx->is_active)
1165 run_end = ctx->time;
1166 else
1167 run_end = event->tstamp_stopped;
1168
1169 event->total_time_enabled = run_end - event->tstamp_enabled;
1170
1171 if (event->state == PERF_EVENT_STATE_INACTIVE)
1172 run_end = event->tstamp_stopped;
1173 else
1174 run_end = perf_event_time(event);
1175
1176 event->total_time_running = run_end - event->tstamp_running;
1177
1178 }
1179
1180 /*
1181 * Update total_time_enabled and total_time_running for all events in a group.
1182 */
1183 static void update_group_times(struct perf_event *leader)
1184 {
1185 struct perf_event *event;
1186
1187 update_event_times(leader);
1188 list_for_each_entry(event, &leader->sibling_list, group_entry)
1189 update_event_times(event);
1190 }
1191
1192 static struct list_head *
1193 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1194 {
1195 if (event->attr.pinned)
1196 return &ctx->pinned_groups;
1197 else
1198 return &ctx->flexible_groups;
1199 }
1200
1201 /*
1202 * Add a event from the lists for its context.
1203 * Must be called with ctx->mutex and ctx->lock held.
1204 */
1205 static void
1206 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1207 {
1208 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1209 event->attach_state |= PERF_ATTACH_CONTEXT;
1210
1211 /*
1212 * If we're a stand alone event or group leader, we go to the context
1213 * list, group events are kept attached to the group so that
1214 * perf_group_detach can, at all times, locate all siblings.
1215 */
1216 if (event->group_leader == event) {
1217 struct list_head *list;
1218
1219 if (is_software_event(event))
1220 event->group_flags |= PERF_GROUP_SOFTWARE;
1221
1222 list = ctx_group_list(event, ctx);
1223 list_add_tail(&event->group_entry, list);
1224 }
1225
1226 if (is_cgroup_event(event))
1227 ctx->nr_cgroups++;
1228
1229 list_add_rcu(&event->event_entry, &ctx->event_list);
1230 ctx->nr_events++;
1231 if (event->attr.inherit_stat)
1232 ctx->nr_stat++;
1233
1234 ctx->generation++;
1235 }
1236
1237 /*
1238 * Initialize event state based on the perf_event_attr::disabled.
1239 */
1240 static inline void perf_event__state_init(struct perf_event *event)
1241 {
1242 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1243 PERF_EVENT_STATE_INACTIVE;
1244 }
1245
1246 /*
1247 * Called at perf_event creation and when events are attached/detached from a
1248 * group.
1249 */
1250 static void perf_event__read_size(struct perf_event *event)
1251 {
1252 int entry = sizeof(u64); /* value */
1253 int size = 0;
1254 int nr = 1;
1255
1256 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1257 size += sizeof(u64);
1258
1259 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1260 size += sizeof(u64);
1261
1262 if (event->attr.read_format & PERF_FORMAT_ID)
1263 entry += sizeof(u64);
1264
1265 if (event->attr.read_format & PERF_FORMAT_GROUP) {
1266 nr += event->group_leader->nr_siblings;
1267 size += sizeof(u64);
1268 }
1269
1270 size += entry * nr;
1271 event->read_size = size;
1272 }
1273
1274 static void perf_event__header_size(struct perf_event *event)
1275 {
1276 struct perf_sample_data *data;
1277 u64 sample_type = event->attr.sample_type;
1278 u16 size = 0;
1279
1280 perf_event__read_size(event);
1281
1282 if (sample_type & PERF_SAMPLE_IP)
1283 size += sizeof(data->ip);
1284
1285 if (sample_type & PERF_SAMPLE_ADDR)
1286 size += sizeof(data->addr);
1287
1288 if (sample_type & PERF_SAMPLE_PERIOD)
1289 size += sizeof(data->period);
1290
1291 if (sample_type & PERF_SAMPLE_WEIGHT)
1292 size += sizeof(data->weight);
1293
1294 if (sample_type & PERF_SAMPLE_READ)
1295 size += event->read_size;
1296
1297 if (sample_type & PERF_SAMPLE_DATA_SRC)
1298 size += sizeof(data->data_src.val);
1299
1300 if (sample_type & PERF_SAMPLE_TRANSACTION)
1301 size += sizeof(data->txn);
1302
1303 event->header_size = size;
1304 }
1305
1306 static void perf_event__id_header_size(struct perf_event *event)
1307 {
1308 struct perf_sample_data *data;
1309 u64 sample_type = event->attr.sample_type;
1310 u16 size = 0;
1311
1312 if (sample_type & PERF_SAMPLE_TID)
1313 size += sizeof(data->tid_entry);
1314
1315 if (sample_type & PERF_SAMPLE_TIME)
1316 size += sizeof(data->time);
1317
1318 if (sample_type & PERF_SAMPLE_IDENTIFIER)
1319 size += sizeof(data->id);
1320
1321 if (sample_type & PERF_SAMPLE_ID)
1322 size += sizeof(data->id);
1323
1324 if (sample_type & PERF_SAMPLE_STREAM_ID)
1325 size += sizeof(data->stream_id);
1326
1327 if (sample_type & PERF_SAMPLE_CPU)
1328 size += sizeof(data->cpu_entry);
1329
1330 event->id_header_size = size;
1331 }
1332
1333 static void perf_group_attach(struct perf_event *event)
1334 {
1335 struct perf_event *group_leader = event->group_leader, *pos;
1336
1337 /*
1338 * We can have double attach due to group movement in perf_event_open.
1339 */
1340 if (event->attach_state & PERF_ATTACH_GROUP)
1341 return;
1342
1343 event->attach_state |= PERF_ATTACH_GROUP;
1344
1345 if (group_leader == event)
1346 return;
1347
1348 WARN_ON_ONCE(group_leader->ctx != event->ctx);
1349
1350 if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
1351 !is_software_event(event))
1352 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
1353
1354 list_add_tail(&event->group_entry, &group_leader->sibling_list);
1355 group_leader->nr_siblings++;
1356
1357 perf_event__header_size(group_leader);
1358
1359 list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1360 perf_event__header_size(pos);
1361 }
1362
1363 /*
1364 * Remove a event from the lists for its context.
1365 * Must be called with ctx->mutex and ctx->lock held.
1366 */
1367 static void
1368 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1369 {
1370 struct perf_cpu_context *cpuctx;
1371
1372 WARN_ON_ONCE(event->ctx != ctx);
1373 lockdep_assert_held(&ctx->lock);
1374
1375 /*
1376 * We can have double detach due to exit/hot-unplug + close.
1377 */
1378 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1379 return;
1380
1381 event->attach_state &= ~PERF_ATTACH_CONTEXT;
1382
1383 if (is_cgroup_event(event)) {
1384 ctx->nr_cgroups--;
1385 cpuctx = __get_cpu_context(ctx);
1386 /*
1387 * if there are no more cgroup events
1388 * then cler cgrp to avoid stale pointer
1389 * in update_cgrp_time_from_cpuctx()
1390 */
1391 if (!ctx->nr_cgroups)
1392 cpuctx->cgrp = NULL;
1393 }
1394
1395 ctx->nr_events--;
1396 if (event->attr.inherit_stat)
1397 ctx->nr_stat--;
1398
1399 list_del_rcu(&event->event_entry);
1400
1401 if (event->group_leader == event)
1402 list_del_init(&event->group_entry);
1403
1404 update_group_times(event);
1405
1406 /*
1407 * If event was in error state, then keep it
1408 * that way, otherwise bogus counts will be
1409 * returned on read(). The only way to get out
1410 * of error state is by explicit re-enabling
1411 * of the event
1412 */
1413 if (event->state > PERF_EVENT_STATE_OFF)
1414 event->state = PERF_EVENT_STATE_OFF;
1415
1416 ctx->generation++;
1417 }
1418
1419 static void perf_group_detach(struct perf_event *event)
1420 {
1421 struct perf_event *sibling, *tmp;
1422 struct list_head *list = NULL;
1423
1424 /*
1425 * We can have double detach due to exit/hot-unplug + close.
1426 */
1427 if (!(event->attach_state & PERF_ATTACH_GROUP))
1428 return;
1429
1430 event->attach_state &= ~PERF_ATTACH_GROUP;
1431
1432 /*
1433 * If this is a sibling, remove it from its group.
1434 */
1435 if (event->group_leader != event) {
1436 list_del_init(&event->group_entry);
1437 event->group_leader->nr_siblings--;
1438 goto out;
1439 }
1440
1441 if (!list_empty(&event->group_entry))
1442 list = &event->group_entry;
1443
1444 /*
1445 * If this was a group event with sibling events then
1446 * upgrade the siblings to singleton events by adding them
1447 * to whatever list we are on.
1448 */
1449 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1450 if (list)
1451 list_move_tail(&sibling->group_entry, list);
1452 sibling->group_leader = sibling;
1453
1454 /* Inherit group flags from the previous leader */
1455 sibling->group_flags = event->group_flags;
1456
1457 WARN_ON_ONCE(sibling->ctx != event->ctx);
1458 }
1459
1460 out:
1461 perf_event__header_size(event->group_leader);
1462
1463 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1464 perf_event__header_size(tmp);
1465 }
1466
1467 /*
1468 * User event without the task.
1469 */
1470 static bool is_orphaned_event(struct perf_event *event)
1471 {
1472 return event && !is_kernel_event(event) && !event->owner;
1473 }
1474
1475 /*
1476 * Event has a parent but parent's task finished and it's
1477 * alive only because of children holding refference.
1478 */
1479 static bool is_orphaned_child(struct perf_event *event)
1480 {
1481 return is_orphaned_event(event->parent);
1482 }
1483
1484 static void orphans_remove_work(struct work_struct *work);
1485
1486 static void schedule_orphans_remove(struct perf_event_context *ctx)
1487 {
1488 if (!ctx->task || ctx->orphans_remove_sched || !perf_wq)
1489 return;
1490
1491 if (queue_delayed_work(perf_wq, &ctx->orphans_remove, 1)) {
1492 get_ctx(ctx);
1493 ctx->orphans_remove_sched = true;
1494 }
1495 }
1496
1497 static int __init perf_workqueue_init(void)
1498 {
1499 perf_wq = create_singlethread_workqueue("perf");
1500 WARN(!perf_wq, "failed to create perf workqueue\n");
1501 return perf_wq ? 0 : -1;
1502 }
1503
1504 core_initcall(perf_workqueue_init);
1505
1506 static inline int pmu_filter_match(struct perf_event *event)
1507 {
1508 struct pmu *pmu = event->pmu;
1509 return pmu->filter_match ? pmu->filter_match(event) : 1;
1510 }
1511
1512 static inline int
1513 event_filter_match(struct perf_event *event)
1514 {
1515 return (event->cpu == -1 || event->cpu == smp_processor_id())
1516 && perf_cgroup_match(event) && pmu_filter_match(event);
1517 }
1518
1519 static void
1520 event_sched_out(struct perf_event *event,
1521 struct perf_cpu_context *cpuctx,
1522 struct perf_event_context *ctx)
1523 {
1524 u64 tstamp = perf_event_time(event);
1525 u64 delta;
1526
1527 WARN_ON_ONCE(event->ctx != ctx);
1528 lockdep_assert_held(&ctx->lock);
1529
1530 /*
1531 * An event which could not be activated because of
1532 * filter mismatch still needs to have its timings
1533 * maintained, otherwise bogus information is return
1534 * via read() for time_enabled, time_running:
1535 */
1536 if (event->state == PERF_EVENT_STATE_INACTIVE
1537 && !event_filter_match(event)) {
1538 delta = tstamp - event->tstamp_stopped;
1539 event->tstamp_running += delta;
1540 event->tstamp_stopped = tstamp;
1541 }
1542
1543 if (event->state != PERF_EVENT_STATE_ACTIVE)
1544 return;
1545
1546 perf_pmu_disable(event->pmu);
1547
1548 event->state = PERF_EVENT_STATE_INACTIVE;
1549 if (event->pending_disable) {
1550 event->pending_disable = 0;
1551 event->state = PERF_EVENT_STATE_OFF;
1552 }
1553 event->tstamp_stopped = tstamp;
1554 event->pmu->del(event, 0);
1555 event->oncpu = -1;
1556
1557 if (!is_software_event(event))
1558 cpuctx->active_oncpu--;
1559 if (!--ctx->nr_active)
1560 perf_event_ctx_deactivate(ctx);
1561 if (event->attr.freq && event->attr.sample_freq)
1562 ctx->nr_freq--;
1563 if (event->attr.exclusive || !cpuctx->active_oncpu)
1564 cpuctx->exclusive = 0;
1565
1566 if (is_orphaned_child(event))
1567 schedule_orphans_remove(ctx);
1568
1569 perf_pmu_enable(event->pmu);
1570 }
1571
1572 static void
1573 group_sched_out(struct perf_event *group_event,
1574 struct perf_cpu_context *cpuctx,
1575 struct perf_event_context *ctx)
1576 {
1577 struct perf_event *event;
1578 int state = group_event->state;
1579
1580 event_sched_out(group_event, cpuctx, ctx);
1581
1582 /*
1583 * Schedule out siblings (if any):
1584 */
1585 list_for_each_entry(event, &group_event->sibling_list, group_entry)
1586 event_sched_out(event, cpuctx, ctx);
1587
1588 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1589 cpuctx->exclusive = 0;
1590 }
1591
1592 struct remove_event {
1593 struct perf_event *event;
1594 bool detach_group;
1595 };
1596
1597 /*
1598 * Cross CPU call to remove a performance event
1599 *
1600 * We disable the event on the hardware level first. After that we
1601 * remove it from the context list.
1602 */
1603 static int __perf_remove_from_context(void *info)
1604 {
1605 struct remove_event *re = info;
1606 struct perf_event *event = re->event;
1607 struct perf_event_context *ctx = event->ctx;
1608 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1609
1610 raw_spin_lock(&ctx->lock);
1611 event_sched_out(event, cpuctx, ctx);
1612 if (re->detach_group)
1613 perf_group_detach(event);
1614 list_del_event(event, ctx);
1615 if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
1616 ctx->is_active = 0;
1617 cpuctx->task_ctx = NULL;
1618 }
1619 raw_spin_unlock(&ctx->lock);
1620
1621 return 0;
1622 }
1623
1624
1625 /*
1626 * Remove the event from a task's (or a CPU's) list of events.
1627 *
1628 * CPU events are removed with a smp call. For task events we only
1629 * call when the task is on a CPU.
1630 *
1631 * If event->ctx is a cloned context, callers must make sure that
1632 * every task struct that event->ctx->task could possibly point to
1633 * remains valid. This is OK when called from perf_release since
1634 * that only calls us on the top-level context, which can't be a clone.
1635 * When called from perf_event_exit_task, it's OK because the
1636 * context has been detached from its task.
1637 */
1638 static void perf_remove_from_context(struct perf_event *event, bool detach_group)
1639 {
1640 struct perf_event_context *ctx = event->ctx;
1641 struct task_struct *task = ctx->task;
1642 struct remove_event re = {
1643 .event = event,
1644 .detach_group = detach_group,
1645 };
1646
1647 lockdep_assert_held(&ctx->mutex);
1648
1649 if (!task) {
1650 /*
1651 * Per cpu events are removed via an smp call. The removal can
1652 * fail if the CPU is currently offline, but in that case we
1653 * already called __perf_remove_from_context from
1654 * perf_event_exit_cpu.
1655 */
1656 cpu_function_call(event->cpu, __perf_remove_from_context, &re);
1657 return;
1658 }
1659
1660 retry:
1661 if (!task_function_call(task, __perf_remove_from_context, &re))
1662 return;
1663
1664 raw_spin_lock_irq(&ctx->lock);
1665 /*
1666 * If we failed to find a running task, but find the context active now
1667 * that we've acquired the ctx->lock, retry.
1668 */
1669 if (ctx->is_active) {
1670 raw_spin_unlock_irq(&ctx->lock);
1671 /*
1672 * Reload the task pointer, it might have been changed by
1673 * a concurrent perf_event_context_sched_out().
1674 */
1675 task = ctx->task;
1676 goto retry;
1677 }
1678
1679 /*
1680 * Since the task isn't running, its safe to remove the event, us
1681 * holding the ctx->lock ensures the task won't get scheduled in.
1682 */
1683 if (detach_group)
1684 perf_group_detach(event);
1685 list_del_event(event, ctx);
1686 raw_spin_unlock_irq(&ctx->lock);
1687 }
1688
1689 /*
1690 * Cross CPU call to disable a performance event
1691 */
1692 int __perf_event_disable(void *info)
1693 {
1694 struct perf_event *event = info;
1695 struct perf_event_context *ctx = event->ctx;
1696 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1697
1698 /*
1699 * If this is a per-task event, need to check whether this
1700 * event's task is the current task on this cpu.
1701 *
1702 * Can trigger due to concurrent perf_event_context_sched_out()
1703 * flipping contexts around.
1704 */
1705 if (ctx->task && cpuctx->task_ctx != ctx)
1706 return -EINVAL;
1707
1708 raw_spin_lock(&ctx->lock);
1709
1710 /*
1711 * If the event is on, turn it off.
1712 * If it is in error state, leave it in error state.
1713 */
1714 if (event->state >= PERF_EVENT_STATE_INACTIVE) {
1715 update_context_time(ctx);
1716 update_cgrp_time_from_event(event);
1717 update_group_times(event);
1718 if (event == event->group_leader)
1719 group_sched_out(event, cpuctx, ctx);
1720 else
1721 event_sched_out(event, cpuctx, ctx);
1722 event->state = PERF_EVENT_STATE_OFF;
1723 }
1724
1725 raw_spin_unlock(&ctx->lock);
1726
1727 return 0;
1728 }
1729
1730 /*
1731 * Disable a event.
1732 *
1733 * If event->ctx is a cloned context, callers must make sure that
1734 * every task struct that event->ctx->task could possibly point to
1735 * remains valid. This condition is satisifed when called through
1736 * perf_event_for_each_child or perf_event_for_each because they
1737 * hold the top-level event's child_mutex, so any descendant that
1738 * goes to exit will block in sync_child_event.
1739 * When called from perf_pending_event it's OK because event->ctx
1740 * is the current context on this CPU and preemption is disabled,
1741 * hence we can't get into perf_event_task_sched_out for this context.
1742 */
1743 static void _perf_event_disable(struct perf_event *event)
1744 {
1745 struct perf_event_context *ctx = event->ctx;
1746 struct task_struct *task = ctx->task;
1747
1748 if (!task) {
1749 /*
1750 * Disable the event on the cpu that it's on
1751 */
1752 cpu_function_call(event->cpu, __perf_event_disable, event);
1753 return;
1754 }
1755
1756 retry:
1757 if (!task_function_call(task, __perf_event_disable, event))
1758 return;
1759
1760 raw_spin_lock_irq(&ctx->lock);
1761 /*
1762 * If the event is still active, we need to retry the cross-call.
1763 */
1764 if (event->state == PERF_EVENT_STATE_ACTIVE) {
1765 raw_spin_unlock_irq(&ctx->lock);
1766 /*
1767 * Reload the task pointer, it might have been changed by
1768 * a concurrent perf_event_context_sched_out().
1769 */
1770 task = ctx->task;
1771 goto retry;
1772 }
1773
1774 /*
1775 * Since we have the lock this context can't be scheduled
1776 * in, so we can change the state safely.
1777 */
1778 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1779 update_group_times(event);
1780 event->state = PERF_EVENT_STATE_OFF;
1781 }
1782 raw_spin_unlock_irq(&ctx->lock);
1783 }
1784
1785 /*
1786 * Strictly speaking kernel users cannot create groups and therefore this
1787 * interface does not need the perf_event_ctx_lock() magic.
1788 */
1789 void perf_event_disable(struct perf_event *event)
1790 {
1791 struct perf_event_context *ctx;
1792
1793 ctx = perf_event_ctx_lock(event);
1794 _perf_event_disable(event);
1795 perf_event_ctx_unlock(event, ctx);
1796 }
1797 EXPORT_SYMBOL_GPL(perf_event_disable);
1798
1799 static void perf_set_shadow_time(struct perf_event *event,
1800 struct perf_event_context *ctx,
1801 u64 tstamp)
1802 {
1803 /*
1804 * use the correct time source for the time snapshot
1805 *
1806 * We could get by without this by leveraging the
1807 * fact that to get to this function, the caller
1808 * has most likely already called update_context_time()
1809 * and update_cgrp_time_xx() and thus both timestamp
1810 * are identical (or very close). Given that tstamp is,
1811 * already adjusted for cgroup, we could say that:
1812 * tstamp - ctx->timestamp
1813 * is equivalent to
1814 * tstamp - cgrp->timestamp.
1815 *
1816 * Then, in perf_output_read(), the calculation would
1817 * work with no changes because:
1818 * - event is guaranteed scheduled in
1819 * - no scheduled out in between
1820 * - thus the timestamp would be the same
1821 *
1822 * But this is a bit hairy.
1823 *
1824 * So instead, we have an explicit cgroup call to remain
1825 * within the time time source all along. We believe it
1826 * is cleaner and simpler to understand.
1827 */
1828 if (is_cgroup_event(event))
1829 perf_cgroup_set_shadow_time(event, tstamp);
1830 else
1831 event->shadow_ctx_time = tstamp - ctx->timestamp;
1832 }
1833
1834 #define MAX_INTERRUPTS (~0ULL)
1835
1836 static void perf_log_throttle(struct perf_event *event, int enable);
1837 static void perf_log_itrace_start(struct perf_event *event);
1838
1839 static int
1840 event_sched_in(struct perf_event *event,
1841 struct perf_cpu_context *cpuctx,
1842 struct perf_event_context *ctx)
1843 {
1844 u64 tstamp = perf_event_time(event);
1845 int ret = 0;
1846
1847 lockdep_assert_held(&ctx->lock);
1848
1849 if (event->state <= PERF_EVENT_STATE_OFF)
1850 return 0;
1851
1852 event->state = PERF_EVENT_STATE_ACTIVE;
1853 event->oncpu = smp_processor_id();
1854
1855 /*
1856 * Unthrottle events, since we scheduled we might have missed several
1857 * ticks already, also for a heavily scheduling task there is little
1858 * guarantee it'll get a tick in a timely manner.
1859 */
1860 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
1861 perf_log_throttle(event, 1);
1862 event->hw.interrupts = 0;
1863 }
1864
1865 /*
1866 * The new state must be visible before we turn it on in the hardware:
1867 */
1868 smp_wmb();
1869
1870 perf_pmu_disable(event->pmu);
1871
1872 perf_set_shadow_time(event, ctx, tstamp);
1873
1874 perf_log_itrace_start(event);
1875
1876 if (event->pmu->add(event, PERF_EF_START)) {
1877 event->state = PERF_EVENT_STATE_INACTIVE;
1878 event->oncpu = -1;
1879 ret = -EAGAIN;
1880 goto out;
1881 }
1882
1883 event->tstamp_running += tstamp - event->tstamp_stopped;
1884
1885 if (!is_software_event(event))
1886 cpuctx->active_oncpu++;
1887 if (!ctx->nr_active++)
1888 perf_event_ctx_activate(ctx);
1889 if (event->attr.freq && event->attr.sample_freq)
1890 ctx->nr_freq++;
1891
1892 if (event->attr.exclusive)
1893 cpuctx->exclusive = 1;
1894
1895 if (is_orphaned_child(event))
1896 schedule_orphans_remove(ctx);
1897
1898 out:
1899 perf_pmu_enable(event->pmu);
1900
1901 return ret;
1902 }
1903
1904 static int
1905 group_sched_in(struct perf_event *group_event,
1906 struct perf_cpu_context *cpuctx,
1907 struct perf_event_context *ctx)
1908 {
1909 struct perf_event *event, *partial_group = NULL;
1910 struct pmu *pmu = ctx->pmu;
1911 u64 now = ctx->time;
1912 bool simulate = false;
1913
1914 if (group_event->state == PERF_EVENT_STATE_OFF)
1915 return 0;
1916
1917 pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
1918
1919 if (event_sched_in(group_event, cpuctx, ctx)) {
1920 pmu->cancel_txn(pmu);
1921 perf_mux_hrtimer_restart(cpuctx);
1922 return -EAGAIN;
1923 }
1924
1925 /*
1926 * Schedule in siblings as one group (if any):
1927 */
1928 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1929 if (event_sched_in(event, cpuctx, ctx)) {
1930 partial_group = event;
1931 goto group_error;
1932 }
1933 }
1934
1935 if (!pmu->commit_txn(pmu))
1936 return 0;
1937
1938 group_error:
1939 /*
1940 * Groups can be scheduled in as one unit only, so undo any
1941 * partial group before returning:
1942 * The events up to the failed event are scheduled out normally,
1943 * tstamp_stopped will be updated.
1944 *
1945 * The failed events and the remaining siblings need to have
1946 * their timings updated as if they had gone thru event_sched_in()
1947 * and event_sched_out(). This is required to get consistent timings
1948 * across the group. This also takes care of the case where the group
1949 * could never be scheduled by ensuring tstamp_stopped is set to mark
1950 * the time the event was actually stopped, such that time delta
1951 * calculation in update_event_times() is correct.
1952 */
1953 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1954 if (event == partial_group)
1955 simulate = true;
1956
1957 if (simulate) {
1958 event->tstamp_running += now - event->tstamp_stopped;
1959 event->tstamp_stopped = now;
1960 } else {
1961 event_sched_out(event, cpuctx, ctx);
1962 }
1963 }
1964 event_sched_out(group_event, cpuctx, ctx);
1965
1966 pmu->cancel_txn(pmu);
1967
1968 perf_mux_hrtimer_restart(cpuctx);
1969
1970 return -EAGAIN;
1971 }
1972
1973 /*
1974 * Work out whether we can put this event group on the CPU now.
1975 */
1976 static int group_can_go_on(struct perf_event *event,
1977 struct perf_cpu_context *cpuctx,
1978 int can_add_hw)
1979 {
1980 /*
1981 * Groups consisting entirely of software events can always go on.
1982 */
1983 if (event->group_flags & PERF_GROUP_SOFTWARE)
1984 return 1;
1985 /*
1986 * If an exclusive group is already on, no other hardware
1987 * events can go on.
1988 */
1989 if (cpuctx->exclusive)
1990 return 0;
1991 /*
1992 * If this group is exclusive and there are already
1993 * events on the CPU, it can't go on.
1994 */
1995 if (event->attr.exclusive && cpuctx->active_oncpu)
1996 return 0;
1997 /*
1998 * Otherwise, try to add it if all previous groups were able
1999 * to go on.
2000 */
2001 return can_add_hw;
2002 }
2003
2004 static void add_event_to_ctx(struct perf_event *event,
2005 struct perf_event_context *ctx)
2006 {
2007 u64 tstamp = perf_event_time(event);
2008
2009 list_add_event(event, ctx);
2010 perf_group_attach(event);
2011 event->tstamp_enabled = tstamp;
2012 event->tstamp_running = tstamp;
2013 event->tstamp_stopped = tstamp;
2014 }
2015
2016 static void task_ctx_sched_out(struct perf_event_context *ctx);
2017 static void
2018 ctx_sched_in(struct perf_event_context *ctx,
2019 struct perf_cpu_context *cpuctx,
2020 enum event_type_t event_type,
2021 struct task_struct *task);
2022
2023 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2024 struct perf_event_context *ctx,
2025 struct task_struct *task)
2026 {
2027 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2028 if (ctx)
2029 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2030 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2031 if (ctx)
2032 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2033 }
2034
2035 /*
2036 * Cross CPU call to install and enable a performance event
2037 *
2038 * Must be called with ctx->mutex held
2039 */
2040 static int __perf_install_in_context(void *info)
2041 {
2042 struct perf_event *event = info;
2043 struct perf_event_context *ctx = event->ctx;
2044 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2045 struct perf_event_context *task_ctx = cpuctx->task_ctx;
2046 struct task_struct *task = current;
2047
2048 perf_ctx_lock(cpuctx, task_ctx);
2049 perf_pmu_disable(cpuctx->ctx.pmu);
2050
2051 /*
2052 * If there was an active task_ctx schedule it out.
2053 */
2054 if (task_ctx)
2055 task_ctx_sched_out(task_ctx);
2056
2057 /*
2058 * If the context we're installing events in is not the
2059 * active task_ctx, flip them.
2060 */
2061 if (ctx->task && task_ctx != ctx) {
2062 if (task_ctx)
2063 raw_spin_unlock(&task_ctx->lock);
2064 raw_spin_lock(&ctx->lock);
2065 task_ctx = ctx;
2066 }
2067
2068 if (task_ctx) {
2069 cpuctx->task_ctx = task_ctx;
2070 task = task_ctx->task;
2071 }
2072
2073 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
2074
2075 update_context_time(ctx);
2076 /*
2077 * update cgrp time only if current cgrp
2078 * matches event->cgrp. Must be done before
2079 * calling add_event_to_ctx()
2080 */
2081 update_cgrp_time_from_event(event);
2082
2083 add_event_to_ctx(event, ctx);
2084
2085 /*
2086 * Schedule everything back in
2087 */
2088 perf_event_sched_in(cpuctx, task_ctx, task);
2089
2090 perf_pmu_enable(cpuctx->ctx.pmu);
2091 perf_ctx_unlock(cpuctx, task_ctx);
2092
2093 return 0;
2094 }
2095
2096 /*
2097 * Attach a performance event to a context
2098 *
2099 * First we add the event to the list with the hardware enable bit
2100 * in event->hw_config cleared.
2101 *
2102 * If the event is attached to a task which is on a CPU we use a smp
2103 * call to enable it in the task context. The task might have been
2104 * scheduled away, but we check this in the smp call again.
2105 */
2106 static void
2107 perf_install_in_context(struct perf_event_context *ctx,
2108 struct perf_event *event,
2109 int cpu)
2110 {
2111 struct task_struct *task = ctx->task;
2112
2113 lockdep_assert_held(&ctx->mutex);
2114
2115 event->ctx = ctx;
2116 if (event->cpu != -1)
2117 event->cpu = cpu;
2118
2119 if (!task) {
2120 /*
2121 * Per cpu events are installed via an smp call and
2122 * the install is always successful.
2123 */
2124 cpu_function_call(cpu, __perf_install_in_context, event);
2125 return;
2126 }
2127
2128 retry:
2129 if (!task_function_call(task, __perf_install_in_context, event))
2130 return;
2131
2132 raw_spin_lock_irq(&ctx->lock);
2133 /*
2134 * If we failed to find a running task, but find the context active now
2135 * that we've acquired the ctx->lock, retry.
2136 */
2137 if (ctx->is_active) {
2138 raw_spin_unlock_irq(&ctx->lock);
2139 /*
2140 * Reload the task pointer, it might have been changed by
2141 * a concurrent perf_event_context_sched_out().
2142 */
2143 task = ctx->task;
2144 goto retry;
2145 }
2146
2147 /*
2148 * Since the task isn't running, its safe to add the event, us holding
2149 * the ctx->lock ensures the task won't get scheduled in.
2150 */
2151 add_event_to_ctx(event, ctx);
2152 raw_spin_unlock_irq(&ctx->lock);
2153 }
2154
2155 /*
2156 * Put a event into inactive state and update time fields.
2157 * Enabling the leader of a group effectively enables all
2158 * the group members that aren't explicitly disabled, so we
2159 * have to update their ->tstamp_enabled also.
2160 * Note: this works for group members as well as group leaders
2161 * since the non-leader members' sibling_lists will be empty.
2162 */
2163 static void __perf_event_mark_enabled(struct perf_event *event)
2164 {
2165 struct perf_event *sub;
2166 u64 tstamp = perf_event_time(event);
2167
2168 event->state = PERF_EVENT_STATE_INACTIVE;
2169 event->tstamp_enabled = tstamp - event->total_time_enabled;
2170 list_for_each_entry(sub, &event->sibling_list, group_entry) {
2171 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
2172 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
2173 }
2174 }
2175
2176 /*
2177 * Cross CPU call to enable a performance event
2178 */
2179 static int __perf_event_enable(void *info)
2180 {
2181 struct perf_event *event = info;
2182 struct perf_event_context *ctx = event->ctx;
2183 struct perf_event *leader = event->group_leader;
2184 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2185 int err;
2186
2187 /*
2188 * There's a time window between 'ctx->is_active' check
2189 * in perf_event_enable function and this place having:
2190 * - IRQs on
2191 * - ctx->lock unlocked
2192 *
2193 * where the task could be killed and 'ctx' deactivated
2194 * by perf_event_exit_task.
2195 */
2196 if (!ctx->is_active)
2197 return -EINVAL;
2198
2199 raw_spin_lock(&ctx->lock);
2200 update_context_time(ctx);
2201
2202 if (event->state >= PERF_EVENT_STATE_INACTIVE)
2203 goto unlock;
2204
2205 /*
2206 * set current task's cgroup time reference point
2207 */
2208 perf_cgroup_set_timestamp(current, ctx);
2209
2210 __perf_event_mark_enabled(event);
2211
2212 if (!event_filter_match(event)) {
2213 if (is_cgroup_event(event))
2214 perf_cgroup_defer_enabled(event);
2215 goto unlock;
2216 }
2217
2218 /*
2219 * If the event is in a group and isn't the group leader,
2220 * then don't put it on unless the group is on.
2221 */
2222 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
2223 goto unlock;
2224
2225 if (!group_can_go_on(event, cpuctx, 1)) {
2226 err = -EEXIST;
2227 } else {
2228 if (event == leader)
2229 err = group_sched_in(event, cpuctx, ctx);
2230 else
2231 err = event_sched_in(event, cpuctx, ctx);
2232 }
2233
2234 if (err) {
2235 /*
2236 * If this event can't go on and it's part of a
2237 * group, then the whole group has to come off.
2238 */
2239 if (leader != event) {
2240 group_sched_out(leader, cpuctx, ctx);
2241 perf_mux_hrtimer_restart(cpuctx);
2242 }
2243 if (leader->attr.pinned) {
2244 update_group_times(leader);
2245 leader->state = PERF_EVENT_STATE_ERROR;
2246 }
2247 }
2248
2249 unlock:
2250 raw_spin_unlock(&ctx->lock);
2251
2252 return 0;
2253 }
2254
2255 /*
2256 * Enable a event.
2257 *
2258 * If event->ctx is a cloned context, callers must make sure that
2259 * every task struct that event->ctx->task could possibly point to
2260 * remains valid. This condition is satisfied when called through
2261 * perf_event_for_each_child or perf_event_for_each as described
2262 * for perf_event_disable.
2263 */
2264 static void _perf_event_enable(struct perf_event *event)
2265 {
2266 struct perf_event_context *ctx = event->ctx;
2267 struct task_struct *task = ctx->task;
2268
2269 if (!task) {
2270 /*
2271 * Enable the event on the cpu that it's on
2272 */
2273 cpu_function_call(event->cpu, __perf_event_enable, event);
2274 return;
2275 }
2276
2277 raw_spin_lock_irq(&ctx->lock);
2278 if (event->state >= PERF_EVENT_STATE_INACTIVE)
2279 goto out;
2280
2281 /*
2282 * If the event is in error state, clear that first.
2283 * That way, if we see the event in error state below, we
2284 * know that it has gone back into error state, as distinct
2285 * from the task having been scheduled away before the
2286 * cross-call arrived.
2287 */
2288 if (event->state == PERF_EVENT_STATE_ERROR)
2289 event->state = PERF_EVENT_STATE_OFF;
2290
2291 retry:
2292 if (!ctx->is_active) {
2293 __perf_event_mark_enabled(event);
2294 goto out;
2295 }
2296
2297 raw_spin_unlock_irq(&ctx->lock);
2298
2299 if (!task_function_call(task, __perf_event_enable, event))
2300 return;
2301
2302 raw_spin_lock_irq(&ctx->lock);
2303
2304 /*
2305 * If the context is active and the event is still off,
2306 * we need to retry the cross-call.
2307 */
2308 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
2309 /*
2310 * task could have been flipped by a concurrent
2311 * perf_event_context_sched_out()
2312 */
2313 task = ctx->task;
2314 goto retry;
2315 }
2316
2317 out:
2318 raw_spin_unlock_irq(&ctx->lock);
2319 }
2320
2321 /*
2322 * See perf_event_disable();
2323 */
2324 void perf_event_enable(struct perf_event *event)
2325 {
2326 struct perf_event_context *ctx;
2327
2328 ctx = perf_event_ctx_lock(event);
2329 _perf_event_enable(event);
2330 perf_event_ctx_unlock(event, ctx);
2331 }
2332 EXPORT_SYMBOL_GPL(perf_event_enable);
2333
2334 static int _perf_event_refresh(struct perf_event *event, int refresh)
2335 {
2336 /*
2337 * not supported on inherited events
2338 */
2339 if (event->attr.inherit || !is_sampling_event(event))
2340 return -EINVAL;
2341
2342 atomic_add(refresh, &event->event_limit);
2343 _perf_event_enable(event);
2344
2345 return 0;
2346 }
2347
2348 /*
2349 * See perf_event_disable()
2350 */
2351 int perf_event_refresh(struct perf_event *event, int refresh)
2352 {
2353 struct perf_event_context *ctx;
2354 int ret;
2355
2356 ctx = perf_event_ctx_lock(event);
2357 ret = _perf_event_refresh(event, refresh);
2358 perf_event_ctx_unlock(event, ctx);
2359
2360 return ret;
2361 }
2362 EXPORT_SYMBOL_GPL(perf_event_refresh);
2363
2364 static void ctx_sched_out(struct perf_event_context *ctx,
2365 struct perf_cpu_context *cpuctx,
2366 enum event_type_t event_type)
2367 {
2368 struct perf_event *event;
2369 int is_active = ctx->is_active;
2370
2371 ctx->is_active &= ~event_type;
2372 if (likely(!ctx->nr_events))
2373 return;
2374
2375 update_context_time(ctx);
2376 update_cgrp_time_from_cpuctx(cpuctx);
2377 if (!ctx->nr_active)
2378 return;
2379
2380 perf_pmu_disable(ctx->pmu);
2381 if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
2382 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2383 group_sched_out(event, cpuctx, ctx);
2384 }
2385
2386 if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
2387 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2388 group_sched_out(event, cpuctx, ctx);
2389 }
2390 perf_pmu_enable(ctx->pmu);
2391 }
2392
2393 /*
2394 * Test whether two contexts are equivalent, i.e. whether they have both been
2395 * cloned from the same version of the same context.
2396 *
2397 * Equivalence is measured using a generation number in the context that is
2398 * incremented on each modification to it; see unclone_ctx(), list_add_event()
2399 * and list_del_event().
2400 */
2401 static int context_equiv(struct perf_event_context *ctx1,
2402 struct perf_event_context *ctx2)
2403 {
2404 lockdep_assert_held(&ctx1->lock);
2405 lockdep_assert_held(&ctx2->lock);
2406
2407 /* Pinning disables the swap optimization */
2408 if (ctx1->pin_count || ctx2->pin_count)
2409 return 0;
2410
2411 /* If ctx1 is the parent of ctx2 */
2412 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2413 return 1;
2414
2415 /* If ctx2 is the parent of ctx1 */
2416 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2417 return 1;
2418
2419 /*
2420 * If ctx1 and ctx2 have the same parent; we flatten the parent
2421 * hierarchy, see perf_event_init_context().
2422 */
2423 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2424 ctx1->parent_gen == ctx2->parent_gen)
2425 return 1;
2426
2427 /* Unmatched */
2428 return 0;
2429 }
2430
2431 static void __perf_event_sync_stat(struct perf_event *event,
2432 struct perf_event *next_event)
2433 {
2434 u64 value;
2435
2436 if (!event->attr.inherit_stat)
2437 return;
2438
2439 /*
2440 * Update the event value, we cannot use perf_event_read()
2441 * because we're in the middle of a context switch and have IRQs
2442 * disabled, which upsets smp_call_function_single(), however
2443 * we know the event must be on the current CPU, therefore we
2444 * don't need to use it.
2445 */
2446 switch (event->state) {
2447 case PERF_EVENT_STATE_ACTIVE:
2448 event->pmu->read(event);
2449 /* fall-through */
2450
2451 case PERF_EVENT_STATE_INACTIVE:
2452 update_event_times(event);
2453 break;
2454
2455 default:
2456 break;
2457 }
2458
2459 /*
2460 * In order to keep per-task stats reliable we need to flip the event
2461 * values when we flip the contexts.
2462 */
2463 value = local64_read(&next_event->count);
2464 value = local64_xchg(&event->count, value);
2465 local64_set(&next_event->count, value);
2466
2467 swap(event->total_time_enabled, next_event->total_time_enabled);
2468 swap(event->total_time_running, next_event->total_time_running);
2469
2470 /*
2471 * Since we swizzled the values, update the user visible data too.
2472 */
2473 perf_event_update_userpage(event);
2474 perf_event_update_userpage(next_event);
2475 }
2476
2477 static void perf_event_sync_stat(struct perf_event_context *ctx,
2478 struct perf_event_context *next_ctx)
2479 {
2480 struct perf_event *event, *next_event;
2481
2482 if (!ctx->nr_stat)
2483 return;
2484
2485 update_context_time(ctx);
2486
2487 event = list_first_entry(&ctx->event_list,
2488 struct perf_event, event_entry);
2489
2490 next_event = list_first_entry(&next_ctx->event_list,
2491 struct perf_event, event_entry);
2492
2493 while (&event->event_entry != &ctx->event_list &&
2494 &next_event->event_entry != &next_ctx->event_list) {
2495
2496 __perf_event_sync_stat(event, next_event);
2497
2498 event = list_next_entry(event, event_entry);
2499 next_event = list_next_entry(next_event, event_entry);
2500 }
2501 }
2502
2503 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2504 struct task_struct *next)
2505 {
2506 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2507 struct perf_event_context *next_ctx;
2508 struct perf_event_context *parent, *next_parent;
2509 struct perf_cpu_context *cpuctx;
2510 int do_switch = 1;
2511
2512 if (likely(!ctx))
2513 return;
2514
2515 cpuctx = __get_cpu_context(ctx);
2516 if (!cpuctx->task_ctx)
2517 return;
2518
2519 rcu_read_lock();
2520 next_ctx = next->perf_event_ctxp[ctxn];
2521 if (!next_ctx)
2522 goto unlock;
2523
2524 parent = rcu_dereference(ctx->parent_ctx);
2525 next_parent = rcu_dereference(next_ctx->parent_ctx);
2526
2527 /* If neither context have a parent context; they cannot be clones. */
2528 if (!parent && !next_parent)
2529 goto unlock;
2530
2531 if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2532 /*
2533 * Looks like the two contexts are clones, so we might be
2534 * able to optimize the context switch. We lock both
2535 * contexts and check that they are clones under the
2536 * lock (including re-checking that neither has been
2537 * uncloned in the meantime). It doesn't matter which
2538 * order we take the locks because no other cpu could
2539 * be trying to lock both of these tasks.
2540 */
2541 raw_spin_lock(&ctx->lock);
2542 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2543 if (context_equiv(ctx, next_ctx)) {
2544 /*
2545 * XXX do we need a memory barrier of sorts
2546 * wrt to rcu_dereference() of perf_event_ctxp
2547 */
2548 task->perf_event_ctxp[ctxn] = next_ctx;
2549 next->perf_event_ctxp[ctxn] = ctx;
2550 ctx->task = next;
2551 next_ctx->task = task;
2552
2553 swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
2554
2555 do_switch = 0;
2556
2557 perf_event_sync_stat(ctx, next_ctx);
2558 }
2559 raw_spin_unlock(&next_ctx->lock);
2560 raw_spin_unlock(&ctx->lock);
2561 }
2562 unlock:
2563 rcu_read_unlock();
2564
2565 if (do_switch) {
2566 raw_spin_lock(&ctx->lock);
2567 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2568 cpuctx->task_ctx = NULL;
2569 raw_spin_unlock(&ctx->lock);
2570 }
2571 }
2572
2573 void perf_sched_cb_dec(struct pmu *pmu)
2574 {
2575 this_cpu_dec(perf_sched_cb_usages);
2576 }
2577
2578 void perf_sched_cb_inc(struct pmu *pmu)
2579 {
2580 this_cpu_inc(perf_sched_cb_usages);
2581 }
2582
2583 /*
2584 * This function provides the context switch callback to the lower code
2585 * layer. It is invoked ONLY when the context switch callback is enabled.
2586 */
2587 static void perf_pmu_sched_task(struct task_struct *prev,
2588 struct task_struct *next,
2589 bool sched_in)
2590 {
2591 struct perf_cpu_context *cpuctx;
2592 struct pmu *pmu;
2593 unsigned long flags;
2594
2595 if (prev == next)
2596 return;
2597
2598 local_irq_save(flags);
2599
2600 rcu_read_lock();
2601
2602 list_for_each_entry_rcu(pmu, &pmus, entry) {
2603 if (pmu->sched_task) {
2604 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2605
2606 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2607
2608 perf_pmu_disable(pmu);
2609
2610 pmu->sched_task(cpuctx->task_ctx, sched_in);
2611
2612 perf_pmu_enable(pmu);
2613
2614 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2615 }
2616 }
2617
2618 rcu_read_unlock();
2619
2620 local_irq_restore(flags);
2621 }
2622
2623 static void perf_event_switch(struct task_struct *task,
2624 struct task_struct *next_prev, bool sched_in);
2625
2626 #define for_each_task_context_nr(ctxn) \
2627 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2628
2629 /*
2630 * Called from scheduler to remove the events of the current task,
2631 * with interrupts disabled.
2632 *
2633 * We stop each event and update the event value in event->count.
2634 *
2635 * This does not protect us against NMI, but disable()
2636 * sets the disabled bit in the control field of event _before_
2637 * accessing the event control register. If a NMI hits, then it will
2638 * not restart the event.
2639 */
2640 void __perf_event_task_sched_out(struct task_struct *task,
2641 struct task_struct *next)
2642 {
2643 int ctxn;
2644
2645 if (__this_cpu_read(perf_sched_cb_usages))
2646 perf_pmu_sched_task(task, next, false);
2647
2648 if (atomic_read(&nr_switch_events))
2649 perf_event_switch(task, next, false);
2650
2651 for_each_task_context_nr(ctxn)
2652 perf_event_context_sched_out(task, ctxn, next);
2653
2654 /*
2655 * if cgroup events exist on this CPU, then we need
2656 * to check if we have to switch out PMU state.
2657 * cgroup event are system-wide mode only
2658 */
2659 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2660 perf_cgroup_sched_out(task, next);
2661 }
2662
2663 static void task_ctx_sched_out(struct perf_event_context *ctx)
2664 {
2665 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2666
2667 if (!cpuctx->task_ctx)
2668 return;
2669
2670 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2671 return;
2672
2673 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2674 cpuctx->task_ctx = NULL;
2675 }
2676
2677 /*
2678 * Called with IRQs disabled
2679 */
2680 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2681 enum event_type_t event_type)
2682 {
2683 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2684 }
2685
2686 static void
2687 ctx_pinned_sched_in(struct perf_event_context *ctx,
2688 struct perf_cpu_context *cpuctx)
2689 {
2690 struct perf_event *event;
2691
2692 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2693 if (event->state <= PERF_EVENT_STATE_OFF)
2694 continue;
2695 if (!event_filter_match(event))
2696 continue;
2697
2698 /* may need to reset tstamp_enabled */
2699 if (is_cgroup_event(event))
2700 perf_cgroup_mark_enabled(event, ctx);
2701
2702 if (group_can_go_on(event, cpuctx, 1))
2703 group_sched_in(event, cpuctx, ctx);
2704
2705 /*
2706 * If this pinned group hasn't been scheduled,
2707 * put it in error state.
2708 */
2709 if (event->state == PERF_EVENT_STATE_INACTIVE) {
2710 update_group_times(event);
2711 event->state = PERF_EVENT_STATE_ERROR;
2712 }
2713 }
2714 }
2715
2716 static void
2717 ctx_flexible_sched_in(struct perf_event_context *ctx,
2718 struct perf_cpu_context *cpuctx)
2719 {
2720 struct perf_event *event;
2721 int can_add_hw = 1;
2722
2723 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2724 /* Ignore events in OFF or ERROR state */
2725 if (event->state <= PERF_EVENT_STATE_OFF)
2726 continue;
2727 /*
2728 * Listen to the 'cpu' scheduling filter constraint
2729 * of events:
2730 */
2731 if (!event_filter_match(event))
2732 continue;
2733
2734 /* may need to reset tstamp_enabled */
2735 if (is_cgroup_event(event))
2736 perf_cgroup_mark_enabled(event, ctx);
2737
2738 if (group_can_go_on(event, cpuctx, can_add_hw)) {
2739 if (group_sched_in(event, cpuctx, ctx))
2740 can_add_hw = 0;
2741 }
2742 }
2743 }
2744
2745 static void
2746 ctx_sched_in(struct perf_event_context *ctx,
2747 struct perf_cpu_context *cpuctx,
2748 enum event_type_t event_type,
2749 struct task_struct *task)
2750 {
2751 u64 now;
2752 int is_active = ctx->is_active;
2753
2754 ctx->is_active |= event_type;
2755 if (likely(!ctx->nr_events))
2756 return;
2757
2758 now = perf_clock();
2759 ctx->timestamp = now;
2760 perf_cgroup_set_timestamp(task, ctx);
2761 /*
2762 * First go through the list and put on any pinned groups
2763 * in order to give them the best chance of going on.
2764 */
2765 if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
2766 ctx_pinned_sched_in(ctx, cpuctx);
2767
2768 /* Then walk through the lower prio flexible groups */
2769 if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
2770 ctx_flexible_sched_in(ctx, cpuctx);
2771 }
2772
2773 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
2774 enum event_type_t event_type,
2775 struct task_struct *task)
2776 {
2777 struct perf_event_context *ctx = &cpuctx->ctx;
2778
2779 ctx_sched_in(ctx, cpuctx, event_type, task);
2780 }
2781
2782 static void perf_event_context_sched_in(struct perf_event_context *ctx,
2783 struct task_struct *task)
2784 {
2785 struct perf_cpu_context *cpuctx;
2786
2787 cpuctx = __get_cpu_context(ctx);
2788 if (cpuctx->task_ctx == ctx)
2789 return;
2790
2791 perf_ctx_lock(cpuctx, ctx);
2792 perf_pmu_disable(ctx->pmu);
2793 /*
2794 * We want to keep the following priority order:
2795 * cpu pinned (that don't need to move), task pinned,
2796 * cpu flexible, task flexible.
2797 */
2798 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2799
2800 if (ctx->nr_events)
2801 cpuctx->task_ctx = ctx;
2802
2803 perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);
2804
2805 perf_pmu_enable(ctx->pmu);
2806 perf_ctx_unlock(cpuctx, ctx);
2807 }
2808
2809 /*
2810 * Called from scheduler to add the events of the current task
2811 * with interrupts disabled.
2812 *
2813 * We restore the event value and then enable it.
2814 *
2815 * This does not protect us against NMI, but enable()
2816 * sets the enabled bit in the control field of event _before_
2817 * accessing the event control register. If a NMI hits, then it will
2818 * keep the event running.
2819 */
2820 void __perf_event_task_sched_in(struct task_struct *prev,
2821 struct task_struct *task)
2822 {
2823 struct perf_event_context *ctx;
2824 int ctxn;
2825
2826 for_each_task_context_nr(ctxn) {
2827 ctx = task->perf_event_ctxp[ctxn];
2828 if (likely(!ctx))
2829 continue;
2830
2831 perf_event_context_sched_in(ctx, task);
2832 }
2833 /*
2834 * if cgroup events exist on this CPU, then we need
2835 * to check if we have to switch in PMU state.
2836 * cgroup event are system-wide mode only
2837 */
2838 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2839 perf_cgroup_sched_in(prev, task);
2840
2841 if (atomic_read(&nr_switch_events))
2842 perf_event_switch(task, prev, true);
2843
2844 if (__this_cpu_read(perf_sched_cb_usages))
2845 perf_pmu_sched_task(prev, task, true);
2846 }
2847
2848 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
2849 {
2850 u64 frequency = event->attr.sample_freq;
2851 u64 sec = NSEC_PER_SEC;
2852 u64 divisor, dividend;
2853
2854 int count_fls, nsec_fls, frequency_fls, sec_fls;
2855
2856 count_fls = fls64(count);
2857 nsec_fls = fls64(nsec);
2858 frequency_fls = fls64(frequency);
2859 sec_fls = 30;
2860
2861 /*
2862 * We got @count in @nsec, with a target of sample_freq HZ
2863 * the target period becomes:
2864 *
2865 * @count * 10^9
2866 * period = -------------------
2867 * @nsec * sample_freq
2868 *
2869 */
2870
2871 /*
2872 * Reduce accuracy by one bit such that @a and @b converge
2873 * to a similar magnitude.
2874 */
2875 #define REDUCE_FLS(a, b) \
2876 do { \
2877 if (a##_fls > b##_fls) { \
2878 a >>= 1; \
2879 a##_fls--; \
2880 } else { \
2881 b >>= 1; \
2882 b##_fls--; \
2883 } \
2884 } while (0)
2885
2886 /*
2887 * Reduce accuracy until either term fits in a u64, then proceed with
2888 * the other, so that finally we can do a u64/u64 division.
2889 */
2890 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
2891 REDUCE_FLS(nsec, frequency);
2892 REDUCE_FLS(sec, count);
2893 }
2894
2895 if (count_fls + sec_fls > 64) {
2896 divisor = nsec * frequency;
2897
2898 while (count_fls + sec_fls > 64) {
2899 REDUCE_FLS(count, sec);
2900 divisor >>= 1;
2901 }
2902
2903 dividend = count * sec;
2904 } else {
2905 dividend = count * sec;
2906
2907 while (nsec_fls + frequency_fls > 64) {
2908 REDUCE_FLS(nsec, frequency);
2909 dividend >>= 1;
2910 }
2911
2912 divisor = nsec * frequency;
2913 }
2914
2915 if (!divisor)
2916 return dividend;
2917
2918 return div64_u64(dividend, divisor);
2919 }
2920
2921 static DEFINE_PER_CPU(int, perf_throttled_count);
2922 static DEFINE_PER_CPU(u64, perf_throttled_seq);
2923
2924 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
2925 {
2926 struct hw_perf_event *hwc = &event->hw;
2927 s64 period, sample_period;
2928 s64 delta;
2929
2930 period = perf_calculate_period(event, nsec, count);
2931
2932 delta = (s64)(period - hwc->sample_period);
2933 delta = (delta + 7) / 8; /* low pass filter */
2934
2935 sample_period = hwc->sample_period + delta;
2936
2937 if (!sample_period)
2938 sample_period = 1;
2939
2940 hwc->sample_period = sample_period;
2941
2942 if (local64_read(&hwc->period_left) > 8*sample_period) {
2943 if (disable)
2944 event->pmu->stop(event, PERF_EF_UPDATE);
2945
2946 local64_set(&hwc->period_left, 0);
2947
2948 if (disable)
2949 event->pmu->start(event, PERF_EF_RELOAD);
2950 }
2951 }
2952
2953 /*
2954 * combine freq adjustment with unthrottling to avoid two passes over the
2955 * events. At the same time, make sure, having freq events does not change
2956 * the rate of unthrottling as that would introduce bias.
2957 */
2958 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
2959 int needs_unthr)
2960 {
2961 struct perf_event *event;
2962 struct hw_perf_event *hwc;
2963 u64 now, period = TICK_NSEC;
2964 s64 delta;
2965
2966 /*
2967 * only need to iterate over all events iff:
2968 * - context have events in frequency mode (needs freq adjust)
2969 * - there are events to unthrottle on this cpu
2970 */
2971 if (!(ctx->nr_freq || needs_unthr))
2972 return;
2973
2974 raw_spin_lock(&ctx->lock);
2975 perf_pmu_disable(ctx->pmu);
2976
2977 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
2978 if (event->state != PERF_EVENT_STATE_ACTIVE)
2979 continue;
2980
2981 if (!event_filter_match(event))
2982 continue;
2983
2984 perf_pmu_disable(event->pmu);
2985
2986 hwc = &event->hw;
2987
2988 if (hwc->interrupts == MAX_INTERRUPTS) {
2989 hwc->interrupts = 0;
2990 perf_log_throttle(event, 1);
2991 event->pmu->start(event, 0);
2992 }
2993
2994 if (!event->attr.freq || !event->attr.sample_freq)
2995 goto next;
2996
2997 /*
2998 * stop the event and update event->count
2999 */
3000 event->pmu->stop(event, PERF_EF_UPDATE);
3001
3002 now = local64_read(&event->count);
3003 delta = now - hwc->freq_count_stamp;
3004 hwc->freq_count_stamp = now;
3005
3006 /*
3007 * restart the event
3008 * reload only if value has changed
3009 * we have stopped the event so tell that
3010 * to perf_adjust_period() to avoid stopping it
3011 * twice.
3012 */
3013 if (delta > 0)
3014 perf_adjust_period(event, period, delta, false);
3015
3016 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3017 next:
3018 perf_pmu_enable(event->pmu);
3019 }
3020
3021 perf_pmu_enable(ctx->pmu);
3022 raw_spin_unlock(&ctx->lock);
3023 }
3024
3025 /*
3026 * Round-robin a context's events:
3027 */
3028 static void rotate_ctx(struct perf_event_context *ctx)
3029 {
3030 /*
3031 * Rotate the first entry last of non-pinned groups. Rotation might be
3032 * disabled by the inheritance code.
3033 */
3034 if (!ctx->rotate_disable)
3035 list_rotate_left(&ctx->flexible_groups);
3036 }
3037
3038 static int perf_rotate_context(struct perf_cpu_context *cpuctx)
3039 {
3040 struct perf_event_context *ctx = NULL;
3041 int rotate = 0;
3042
3043 if (cpuctx->ctx.nr_events) {
3044 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3045 rotate = 1;
3046 }
3047
3048 ctx = cpuctx->task_ctx;
3049 if (ctx && ctx->nr_events) {
3050 if (ctx->nr_events != ctx->nr_active)
3051 rotate = 1;
3052 }
3053
3054 if (!rotate)
3055 goto done;
3056
3057 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3058 perf_pmu_disable(cpuctx->ctx.pmu);
3059
3060 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3061 if (ctx)
3062 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
3063
3064 rotate_ctx(&cpuctx->ctx);
3065 if (ctx)
3066 rotate_ctx(ctx);
3067
3068 perf_event_sched_in(cpuctx, ctx, current);
3069
3070 perf_pmu_enable(cpuctx->ctx.pmu);
3071 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3072 done:
3073
3074 return rotate;
3075 }
3076
3077 #ifdef CONFIG_NO_HZ_FULL
3078 bool perf_event_can_stop_tick(void)
3079 {
3080 if (atomic_read(&nr_freq_events) ||
3081 __this_cpu_read(perf_throttled_count))
3082 return false;
3083 else
3084 return true;
3085 }
3086 #endif
3087
3088 void perf_event_task_tick(void)
3089 {
3090 struct list_head *head = this_cpu_ptr(&active_ctx_list);
3091 struct perf_event_context *ctx, *tmp;
3092 int throttled;
3093
3094 WARN_ON(!irqs_disabled());
3095
3096 __this_cpu_inc(perf_throttled_seq);
3097 throttled = __this_cpu_xchg(perf_throttled_count, 0);
3098
3099 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3100 perf_adjust_freq_unthr_context(ctx, throttled);
3101 }
3102
3103 static int event_enable_on_exec(struct perf_event *event,
3104 struct perf_event_context *ctx)
3105 {
3106 if (!event->attr.enable_on_exec)
3107 return 0;
3108
3109 event->attr.enable_on_exec = 0;
3110 if (event->state >= PERF_EVENT_STATE_INACTIVE)
3111 return 0;
3112
3113 __perf_event_mark_enabled(event);
3114
3115 return 1;
3116 }
3117
3118 /*
3119 * Enable all of a task's events that have been marked enable-on-exec.
3120 * This expects task == current.
3121 */
3122 static void perf_event_enable_on_exec(struct perf_event_context *ctx)
3123 {
3124 struct perf_event_context *clone_ctx = NULL;
3125 struct perf_event *event;
3126 unsigned long flags;
3127 int enabled = 0;
3128 int ret;
3129
3130 local_irq_save(flags);
3131 if (!ctx || !ctx->nr_events)
3132 goto out;
3133
3134 /*
3135 * We must ctxsw out cgroup events to avoid conflict
3136 * when invoking perf_task_event_sched_in() later on
3137 * in this function. Otherwise we end up trying to
3138 * ctxswin cgroup events which are already scheduled
3139 * in.
3140 */
3141 perf_cgroup_sched_out(current, NULL);
3142
3143 raw_spin_lock(&ctx->lock);
3144 task_ctx_sched_out(ctx);
3145
3146 list_for_each_entry(event, &ctx->event_list, event_entry) {
3147 ret = event_enable_on_exec(event, ctx);
3148 if (ret)
3149 enabled = 1;
3150 }
3151
3152 /*
3153 * Unclone this context if we enabled any event.
3154 */
3155 if (enabled)
3156 clone_ctx = unclone_ctx(ctx);
3157
3158 raw_spin_unlock(&ctx->lock);
3159
3160 /*
3161 * Also calls ctxswin for cgroup events, if any:
3162 */
3163 perf_event_context_sched_in(ctx, ctx->task);
3164 out:
3165 local_irq_restore(flags);
3166
3167 if (clone_ctx)
3168 put_ctx(clone_ctx);
3169 }
3170
3171 void perf_event_exec(void)
3172 {
3173 struct perf_event_context *ctx;
3174 int ctxn;
3175
3176 rcu_read_lock();
3177 for_each_task_context_nr(ctxn) {
3178 ctx = current->perf_event_ctxp[ctxn];
3179 if (!ctx)
3180 continue;
3181
3182 perf_event_enable_on_exec(ctx);
3183 }
3184 rcu_read_unlock();
3185 }
3186
3187 /*
3188 * Cross CPU call to read the hardware event
3189 */
3190 static void __perf_event_read(void *info)
3191 {
3192 struct perf_event *event = info;
3193 struct perf_event_context *ctx = event->ctx;
3194 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3195
3196 /*
3197 * If this is a task context, we need to check whether it is
3198 * the current task context of this cpu. If not it has been
3199 * scheduled out before the smp call arrived. In that case
3200 * event->count would have been updated to a recent sample
3201 * when the event was scheduled out.
3202 */
3203 if (ctx->task && cpuctx->task_ctx != ctx)
3204 return;
3205
3206 raw_spin_lock(&ctx->lock);
3207 if (ctx->is_active) {
3208 update_context_time(ctx);
3209 update_cgrp_time_from_event(event);
3210 }
3211 update_event_times(event);
3212 if (event->state == PERF_EVENT_STATE_ACTIVE)
3213 event->pmu->read(event);
3214 raw_spin_unlock(&ctx->lock);
3215 }
3216
3217 static inline u64 perf_event_count(struct perf_event *event)
3218 {
3219 if (event->pmu->count)
3220 return event->pmu->count(event);
3221
3222 return __perf_event_count(event);
3223 }
3224
3225 /*
3226 * NMI-safe method to read a local event, that is an event that
3227 * is:
3228 * - either for the current task, or for this CPU
3229 * - does not have inherit set, for inherited task events
3230 * will not be local and we cannot read them atomically
3231 * - must not have a pmu::count method
3232 */
3233 u64 perf_event_read_local(struct perf_event *event)
3234 {
3235 unsigned long flags;
3236 u64 val;
3237
3238 /*
3239 * Disabling interrupts avoids all counter scheduling (context
3240 * switches, timer based rotation and IPIs).
3241 */
3242 local_irq_save(flags);
3243
3244 /* If this is a per-task event, it must be for current */
3245 WARN_ON_ONCE((event->attach_state & PERF_ATTACH_TASK) &&
3246 event->hw.target != current);
3247
3248 /* If this is a per-CPU event, it must be for this CPU */
3249 WARN_ON_ONCE(!(event->attach_state & PERF_ATTACH_TASK) &&
3250 event->cpu != smp_processor_id());
3251
3252 /*
3253 * It must not be an event with inherit set, we cannot read
3254 * all child counters from atomic context.
3255 */
3256 WARN_ON_ONCE(event->attr.inherit);
3257
3258 /*
3259 * It must not have a pmu::count method, those are not
3260 * NMI safe.
3261 */
3262 WARN_ON_ONCE(event->pmu->count);
3263
3264 /*
3265 * If the event is currently on this CPU, its either a per-task event,
3266 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3267 * oncpu == -1).
3268 */
3269 if (event->oncpu == smp_processor_id())
3270 event->pmu->read(event);
3271
3272 val = local64_read(&event->count);
3273 local_irq_restore(flags);
3274
3275 return val;
3276 }
3277
3278 static void perf_event_read(struct perf_event *event)
3279 {
3280 /*
3281 * If event is enabled and currently active on a CPU, update the
3282 * value in the event structure:
3283 */
3284 if (event->state == PERF_EVENT_STATE_ACTIVE) {
3285 smp_call_function_single(event->oncpu,
3286 __perf_event_read, event, 1);
3287 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
3288 struct perf_event_context *ctx = event->ctx;
3289 unsigned long flags;
3290
3291 raw_spin_lock_irqsave(&ctx->lock, flags);
3292 /*
3293 * may read while context is not active
3294 * (e.g., thread is blocked), in that case
3295 * we cannot update context time
3296 */
3297 if (ctx->is_active) {
3298 update_context_time(ctx);
3299 update_cgrp_time_from_event(event);
3300 }
3301 update_event_times(event);
3302 raw_spin_unlock_irqrestore(&ctx->lock, flags);
3303 }
3304 }
3305
3306 /*
3307 * Initialize the perf_event context in a task_struct:
3308 */
3309 static void __perf_event_init_context(struct perf_event_context *ctx)
3310 {
3311 raw_spin_lock_init(&ctx->lock);
3312 mutex_init(&ctx->mutex);
3313 INIT_LIST_HEAD(&ctx->active_ctx_list);
3314 INIT_LIST_HEAD(&ctx->pinned_groups);
3315 INIT_LIST_HEAD(&ctx->flexible_groups);
3316 INIT_LIST_HEAD(&ctx->event_list);
3317 atomic_set(&ctx->refcount, 1);
3318 INIT_DELAYED_WORK(&ctx->orphans_remove, orphans_remove_work);
3319 }
3320
3321 static struct perf_event_context *
3322 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3323 {
3324 struct perf_event_context *ctx;
3325
3326 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3327 if (!ctx)
3328 return NULL;
3329
3330 __perf_event_init_context(ctx);
3331 if (task) {
3332 ctx->task = task;
3333 get_task_struct(task);
3334 }
3335 ctx->pmu = pmu;
3336
3337 return ctx;
3338 }
3339
3340 static struct task_struct *
3341 find_lively_task_by_vpid(pid_t vpid)
3342 {
3343 struct task_struct *task;
3344 int err;
3345
3346 rcu_read_lock();
3347 if (!vpid)
3348 task = current;
3349 else
3350 task = find_task_by_vpid(vpid);
3351 if (task)
3352 get_task_struct(task);
3353 rcu_read_unlock();
3354
3355 if (!task)
3356 return ERR_PTR(-ESRCH);
3357
3358 /* Reuse ptrace permission checks for now. */
3359 err = -EACCES;
3360 if (!ptrace_may_access(task, PTRACE_MODE_READ))
3361 goto errout;
3362
3363 return task;
3364 errout:
3365 put_task_struct(task);
3366 return ERR_PTR(err);
3367
3368 }
3369
3370 /*
3371 * Returns a matching context with refcount and pincount.
3372 */
3373 static struct perf_event_context *
3374 find_get_context(struct pmu *pmu, struct task_struct *task,
3375 struct perf_event *event)
3376 {
3377 struct perf_event_context *ctx, *clone_ctx = NULL;
3378 struct perf_cpu_context *cpuctx;
3379 void *task_ctx_data = NULL;
3380 unsigned long flags;
3381 int ctxn, err;
3382 int cpu = event->cpu;
3383
3384 if (!task) {
3385 /* Must be root to operate on a CPU event: */
3386 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
3387 return ERR_PTR(-EACCES);
3388
3389 /*
3390 * We could be clever and allow to attach a event to an
3391 * offline CPU and activate it when the CPU comes up, but
3392 * that's for later.
3393 */
3394 if (!cpu_online(cpu))
3395 return ERR_PTR(-ENODEV);
3396
3397 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
3398 ctx = &cpuctx->ctx;
3399 get_ctx(ctx);
3400 ++ctx->pin_count;
3401
3402 return ctx;
3403 }
3404
3405 err = -EINVAL;
3406 ctxn = pmu->task_ctx_nr;
3407 if (ctxn < 0)
3408 goto errout;
3409
3410 if (event->attach_state & PERF_ATTACH_TASK_DATA) {
3411 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
3412 if (!task_ctx_data) {
3413 err = -ENOMEM;
3414 goto errout;
3415 }
3416 }
3417
3418 retry:
3419 ctx = perf_lock_task_context(task, ctxn, &flags);
3420 if (ctx) {
3421 clone_ctx = unclone_ctx(ctx);
3422 ++ctx->pin_count;
3423
3424 if (task_ctx_data && !ctx->task_ctx_data) {
3425 ctx->task_ctx_data = task_ctx_data;
3426 task_ctx_data = NULL;
3427 }
3428 raw_spin_unlock_irqrestore(&ctx->lock, flags);
3429
3430 if (clone_ctx)
3431 put_ctx(clone_ctx);
3432 } else {
3433 ctx = alloc_perf_context(pmu, task);
3434 err = -ENOMEM;
3435 if (!ctx)
3436 goto errout;
3437
3438 if (task_ctx_data) {
3439 ctx->task_ctx_data = task_ctx_data;
3440 task_ctx_data = NULL;
3441 }
3442
3443 err = 0;
3444 mutex_lock(&task->perf_event_mutex);
3445 /*
3446 * If it has already passed perf_event_exit_task().
3447 * we must see PF_EXITING, it takes this mutex too.
3448 */
3449 if (task->flags & PF_EXITING)
3450 err = -ESRCH;
3451 else if (task->perf_event_ctxp[ctxn])
3452 err = -EAGAIN;
3453 else {
3454 get_ctx(ctx);
3455 ++ctx->pin_count;
3456 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3457 }
3458 mutex_unlock(&task->perf_event_mutex);
3459
3460 if (unlikely(err)) {
3461 put_ctx(ctx);
3462
3463 if (err == -EAGAIN)
3464 goto retry;
3465 goto errout;
3466 }
3467 }
3468
3469 kfree(task_ctx_data);
3470 return ctx;
3471
3472 errout:
3473 kfree(task_ctx_data);
3474 return ERR_PTR(err);
3475 }
3476
3477 static void perf_event_free_filter(struct perf_event *event);
3478 static void perf_event_free_bpf_prog(struct perf_event *event);
3479
3480 static void free_event_rcu(struct rcu_head *head)
3481 {
3482 struct perf_event *event;
3483
3484 event = container_of(head, struct perf_event, rcu_head);
3485 if (event->ns)
3486 put_pid_ns(event->ns);
3487 perf_event_free_filter(event);
3488 kfree(event);
3489 }
3490
3491 static void ring_buffer_attach(struct perf_event *event,
3492 struct ring_buffer *rb);
3493
3494 static void unaccount_event_cpu(struct perf_event *event, int cpu)
3495 {
3496 if (event->parent)
3497 return;
3498
3499 if (is_cgroup_event(event))
3500 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3501 }
3502
3503 static void unaccount_event(struct perf_event *event)
3504 {
3505 if (event->parent)
3506 return;
3507
3508 if (event->attach_state & PERF_ATTACH_TASK)
3509 static_key_slow_dec_deferred(&perf_sched_events);
3510 if (event->attr.mmap || event->attr.mmap_data)
3511 atomic_dec(&nr_mmap_events);
3512 if (event->attr.comm)
3513 atomic_dec(&nr_comm_events);
3514 if (event->attr.task)
3515 atomic_dec(&nr_task_events);
3516 if (event->attr.freq)
3517 atomic_dec(&nr_freq_events);
3518 if (event->attr.context_switch) {
3519 static_key_slow_dec_deferred(&perf_sched_events);
3520 atomic_dec(&nr_switch_events);
3521 }
3522 if (is_cgroup_event(event))
3523 static_key_slow_dec_deferred(&perf_sched_events);
3524 if (has_branch_stack(event))
3525 static_key_slow_dec_deferred(&perf_sched_events);
3526
3527 unaccount_event_cpu(event, event->cpu);
3528 }
3529
3530 /*
3531 * The following implement mutual exclusion of events on "exclusive" pmus
3532 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
3533 * at a time, so we disallow creating events that might conflict, namely:
3534 *
3535 * 1) cpu-wide events in the presence of per-task events,
3536 * 2) per-task events in the presence of cpu-wide events,
3537 * 3) two matching events on the same context.
3538 *
3539 * The former two cases are handled in the allocation path (perf_event_alloc(),
3540 * __free_event()), the latter -- before the first perf_install_in_context().
3541 */
3542 static int exclusive_event_init(struct perf_event *event)
3543 {
3544 struct pmu *pmu = event->pmu;
3545
3546 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3547 return 0;
3548
3549 /*
3550 * Prevent co-existence of per-task and cpu-wide events on the
3551 * same exclusive pmu.
3552 *
3553 * Negative pmu::exclusive_cnt means there are cpu-wide
3554 * events on this "exclusive" pmu, positive means there are
3555 * per-task events.
3556 *
3557 * Since this is called in perf_event_alloc() path, event::ctx
3558 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
3559 * to mean "per-task event", because unlike other attach states it
3560 * never gets cleared.
3561 */
3562 if (event->attach_state & PERF_ATTACH_TASK) {
3563 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
3564 return -EBUSY;
3565 } else {
3566 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
3567 return -EBUSY;
3568 }
3569
3570 return 0;
3571 }
3572
3573 static void exclusive_event_destroy(struct perf_event *event)
3574 {
3575 struct pmu *pmu = event->pmu;
3576
3577 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3578 return;
3579
3580 /* see comment in exclusive_event_init() */
3581 if (event->attach_state & PERF_ATTACH_TASK)
3582 atomic_dec(&pmu->exclusive_cnt);
3583 else
3584 atomic_inc(&pmu->exclusive_cnt);
3585 }
3586
3587 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
3588 {
3589 if ((e1->pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) &&
3590 (e1->cpu == e2->cpu ||
3591 e1->cpu == -1 ||
3592 e2->cpu == -1))
3593 return true;
3594 return false;
3595 }
3596
3597 /* Called under the same ctx::mutex as perf_install_in_context() */
3598 static bool exclusive_event_installable(struct perf_event *event,
3599 struct perf_event_context *ctx)
3600 {
3601 struct perf_event *iter_event;
3602 struct pmu *pmu = event->pmu;
3603
3604 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3605 return true;
3606
3607 list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
3608 if (exclusive_event_match(iter_event, event))
3609 return false;
3610 }
3611
3612 return true;
3613 }
3614
3615 static void __free_event(struct perf_event *event)
3616 {
3617 if (!event->parent) {
3618 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
3619 put_callchain_buffers();
3620 }
3621
3622 perf_event_free_bpf_prog(event);
3623
3624 if (event->destroy)
3625 event->destroy(event);
3626
3627 if (event->ctx)
3628 put_ctx(event->ctx);
3629
3630 if (event->pmu) {
3631 exclusive_event_destroy(event);
3632 module_put(event->pmu->module);
3633 }
3634
3635 call_rcu(&event->rcu_head, free_event_rcu);
3636 }
3637
3638 static void _free_event(struct perf_event *event)
3639 {
3640 irq_work_sync(&event->pending);
3641
3642 unaccount_event(event);
3643
3644 if (event->rb) {
3645 /*
3646 * Can happen when we close an event with re-directed output.
3647 *
3648 * Since we have a 0 refcount, perf_mmap_close() will skip
3649 * over us; possibly making our ring_buffer_put() the last.
3650 */
3651 mutex_lock(&event->mmap_mutex);
3652 ring_buffer_attach(event, NULL);
3653 mutex_unlock(&event->mmap_mutex);
3654 }
3655
3656 if (is_cgroup_event(event))
3657 perf_detach_cgroup(event);
3658
3659 __free_event(event);
3660 }
3661
3662 /*
3663 * Used to free events which have a known refcount of 1, such as in error paths
3664 * where the event isn't exposed yet and inherited events.
3665 */
3666 static void free_event(struct perf_event *event)
3667 {
3668 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
3669 "unexpected event refcount: %ld; ptr=%p\n",
3670 atomic_long_read(&event->refcount), event)) {
3671 /* leak to avoid use-after-free */
3672 return;
3673 }
3674
3675 _free_event(event);
3676 }
3677
3678 /*
3679 * Remove user event from the owner task.
3680 */
3681 static void perf_remove_from_owner(struct perf_event *event)
3682 {
3683 struct task_struct *owner;
3684
3685 rcu_read_lock();
3686 owner = ACCESS_ONCE(event->owner);
3687 /*
3688 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
3689 * !owner it means the list deletion is complete and we can indeed
3690 * free this event, otherwise we need to serialize on
3691 * owner->perf_event_mutex.
3692 */
3693 smp_read_barrier_depends();
3694 if (owner) {
3695 /*
3696 * Since delayed_put_task_struct() also drops the last
3697 * task reference we can safely take a new reference
3698 * while holding the rcu_read_lock().
3699 */
3700 get_task_struct(owner);
3701 }
3702 rcu_read_unlock();
3703
3704 if (owner) {
3705 /*
3706 * If we're here through perf_event_exit_task() we're already
3707 * holding ctx->mutex which would be an inversion wrt. the
3708 * normal lock order.
3709 *
3710 * However we can safely take this lock because its the child
3711 * ctx->mutex.
3712 */
3713 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
3714
3715 /*
3716 * We have to re-check the event->owner field, if it is cleared
3717 * we raced with perf_event_exit_task(), acquiring the mutex
3718 * ensured they're done, and we can proceed with freeing the
3719 * event.
3720 */
3721 if (event->owner)
3722 list_del_init(&event->owner_entry);
3723 mutex_unlock(&owner->perf_event_mutex);
3724 put_task_struct(owner);
3725 }
3726 }
3727
3728 static void put_event(struct perf_event *event)
3729 {
3730 struct perf_event_context *ctx;
3731
3732 if (!atomic_long_dec_and_test(&event->refcount))
3733 return;
3734
3735 if (!is_kernel_event(event))
3736 perf_remove_from_owner(event);
3737
3738 /*
3739 * There are two ways this annotation is useful:
3740 *
3741 * 1) there is a lock recursion from perf_event_exit_task
3742 * see the comment there.
3743 *
3744 * 2) there is a lock-inversion with mmap_sem through
3745 * perf_event_read_group(), which takes faults while
3746 * holding ctx->mutex, however this is called after
3747 * the last filedesc died, so there is no possibility
3748 * to trigger the AB-BA case.
3749 */
3750 ctx = perf_event_ctx_lock_nested(event, SINGLE_DEPTH_NESTING);
3751 WARN_ON_ONCE(ctx->parent_ctx);
3752 perf_remove_from_context(event, true);
3753 perf_event_ctx_unlock(event, ctx);
3754
3755 _free_event(event);
3756 }
3757
3758 int perf_event_release_kernel(struct perf_event *event)
3759 {
3760 put_event(event);
3761 return 0;
3762 }
3763 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
3764
3765 /*
3766 * Called when the last reference to the file is gone.
3767 */
3768 static int perf_release(struct inode *inode, struct file *file)
3769 {
3770 put_event(file->private_data);
3771 return 0;
3772 }
3773
3774 /*
3775 * Remove all orphanes events from the context.
3776 */
3777 static void orphans_remove_work(struct work_struct *work)
3778 {
3779 struct perf_event_context *ctx;
3780 struct perf_event *event, *tmp;
3781
3782 ctx = container_of(work, struct perf_event_context,
3783 orphans_remove.work);
3784
3785 mutex_lock(&ctx->mutex);
3786 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry) {
3787 struct perf_event *parent_event = event->parent;
3788
3789 if (!is_orphaned_child(event))
3790 continue;
3791
3792 perf_remove_from_context(event, true);
3793
3794 mutex_lock(&parent_event->child_mutex);
3795 list_del_init(&event->child_list);
3796 mutex_unlock(&parent_event->child_mutex);
3797
3798 free_event(event);
3799 put_event(parent_event);
3800 }
3801
3802 raw_spin_lock_irq(&ctx->lock);
3803 ctx->orphans_remove_sched = false;
3804 raw_spin_unlock_irq(&ctx->lock);
3805 mutex_unlock(&ctx->mutex);
3806
3807 put_ctx(ctx);
3808 }
3809
3810 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
3811 {
3812 struct perf_event *child;
3813 u64 total = 0;
3814
3815 *enabled = 0;
3816 *running = 0;
3817
3818 mutex_lock(&event->child_mutex);
3819
3820 perf_event_read(event);
3821 total += perf_event_count(event);
3822
3823 *enabled += event->total_time_enabled +
3824 atomic64_read(&event->child_total_time_enabled);
3825 *running += event->total_time_running +
3826 atomic64_read(&event->child_total_time_running);
3827
3828 list_for_each_entry(child, &event->child_list, child_list) {
3829 perf_event_read(child);
3830 total += perf_event_count(child);
3831 *enabled += child->total_time_enabled;
3832 *running += child->total_time_running;
3833 }
3834 mutex_unlock(&event->child_mutex);
3835
3836 return total;
3837 }
3838 EXPORT_SYMBOL_GPL(perf_event_read_value);
3839
3840 static int perf_event_read_group(struct perf_event *event,
3841 u64 read_format, char __user *buf)
3842 {
3843 struct perf_event *leader = event->group_leader, *sub;
3844 struct perf_event_context *ctx = leader->ctx;
3845 int n = 0, size = 0, ret;
3846 u64 count, enabled, running;
3847 u64 values[5];
3848
3849 lockdep_assert_held(&ctx->mutex);
3850
3851 count = perf_event_read_value(leader, &enabled, &running);
3852
3853 values[n++] = 1 + leader->nr_siblings;
3854 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3855 values[n++] = enabled;
3856 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3857 values[n++] = running;
3858 values[n++] = count;
3859 if (read_format & PERF_FORMAT_ID)
3860 values[n++] = primary_event_id(leader);
3861
3862 size = n * sizeof(u64);
3863
3864 if (copy_to_user(buf, values, size))
3865 return -EFAULT;
3866
3867 ret = size;
3868
3869 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3870 n = 0;
3871
3872 values[n++] = perf_event_read_value(sub, &enabled, &running);
3873 if (read_format & PERF_FORMAT_ID)
3874 values[n++] = primary_event_id(sub);
3875
3876 size = n * sizeof(u64);
3877
3878 if (copy_to_user(buf + ret, values, size)) {
3879 return -EFAULT;
3880 }
3881
3882 ret += size;
3883 }
3884
3885 return ret;
3886 }
3887
3888 static int perf_event_read_one(struct perf_event *event,
3889 u64 read_format, char __user *buf)
3890 {
3891 u64 enabled, running;
3892 u64 values[4];
3893 int n = 0;
3894
3895 values[n++] = perf_event_read_value(event, &enabled, &running);
3896 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3897 values[n++] = enabled;
3898 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3899 values[n++] = running;
3900 if (read_format & PERF_FORMAT_ID)
3901 values[n++] = primary_event_id(event);
3902
3903 if (copy_to_user(buf, values, n * sizeof(u64)))
3904 return -EFAULT;
3905
3906 return n * sizeof(u64);
3907 }
3908
3909 static bool is_event_hup(struct perf_event *event)
3910 {
3911 bool no_children;
3912
3913 if (event->state != PERF_EVENT_STATE_EXIT)
3914 return false;
3915
3916 mutex_lock(&event->child_mutex);
3917 no_children = list_empty(&event->child_list);
3918 mutex_unlock(&event->child_mutex);
3919 return no_children;
3920 }
3921
3922 /*
3923 * Read the performance event - simple non blocking version for now
3924 */
3925 static ssize_t
3926 perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
3927 {
3928 u64 read_format = event->attr.read_format;
3929 int ret;
3930
3931 /*
3932 * Return end-of-file for a read on a event that is in
3933 * error state (i.e. because it was pinned but it couldn't be
3934 * scheduled on to the CPU at some point).
3935 */
3936 if (event->state == PERF_EVENT_STATE_ERROR)
3937 return 0;
3938
3939 if (count < event->read_size)
3940 return -ENOSPC;
3941
3942 WARN_ON_ONCE(event->ctx->parent_ctx);
3943 if (read_format & PERF_FORMAT_GROUP)
3944 ret = perf_event_read_group(event, read_format, buf);
3945 else
3946 ret = perf_event_read_one(event, read_format, buf);
3947
3948 return ret;
3949 }
3950
3951 static ssize_t
3952 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
3953 {
3954 struct perf_event *event = file->private_data;
3955 struct perf_event_context *ctx;
3956 int ret;
3957
3958 ctx = perf_event_ctx_lock(event);
3959 ret = perf_read_hw(event, buf, count);
3960 perf_event_ctx_unlock(event, ctx);
3961
3962 return ret;
3963 }
3964
3965 static unsigned int perf_poll(struct file *file, poll_table *wait)
3966 {
3967 struct perf_event *event = file->private_data;
3968 struct ring_buffer *rb;
3969 unsigned int events = POLLHUP;
3970
3971 poll_wait(file, &event->waitq, wait);
3972
3973 if (is_event_hup(event))
3974 return events;
3975
3976 /*
3977 * Pin the event->rb by taking event->mmap_mutex; otherwise
3978 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
3979 */
3980 mutex_lock(&event->mmap_mutex);
3981 rb = event->rb;
3982 if (rb)
3983 events = atomic_xchg(&rb->poll, 0);
3984 mutex_unlock(&event->mmap_mutex);
3985 return events;
3986 }
3987
3988 static void _perf_event_reset(struct perf_event *event)
3989 {
3990 perf_event_read(event);
3991 local64_set(&event->count, 0);
3992 perf_event_update_userpage(event);
3993 }
3994
3995 /*
3996 * Holding the top-level event's child_mutex means that any
3997 * descendant process that has inherited this event will block
3998 * in sync_child_event if it goes to exit, thus satisfying the
3999 * task existence requirements of perf_event_enable/disable.
4000 */
4001 static void perf_event_for_each_child(struct perf_event *event,
4002 void (*func)(struct perf_event *))
4003 {
4004 struct perf_event *child;
4005
4006 WARN_ON_ONCE(event->ctx->parent_ctx);
4007
4008 mutex_lock(&event->child_mutex);
4009 func(event);
4010 list_for_each_entry(child, &event->child_list, child_list)
4011 func(child);
4012 mutex_unlock(&event->child_mutex);
4013 }
4014
4015 static void perf_event_for_each(struct perf_event *event,
4016 void (*func)(struct perf_event *))
4017 {
4018 struct perf_event_context *ctx = event->ctx;
4019 struct perf_event *sibling;
4020
4021 lockdep_assert_held(&ctx->mutex);
4022
4023 event = event->group_leader;
4024
4025 perf_event_for_each_child(event, func);
4026 list_for_each_entry(sibling, &event->sibling_list, group_entry)
4027 perf_event_for_each_child(sibling, func);
4028 }
4029
4030 struct period_event {
4031 struct perf_event *event;
4032 u64 value;
4033 };
4034
4035 static int __perf_event_period(void *info)
4036 {
4037 struct period_event *pe = info;
4038 struct perf_event *event = pe->event;
4039 struct perf_event_context *ctx = event->ctx;
4040 u64 value = pe->value;
4041 bool active;
4042
4043 raw_spin_lock(&ctx->lock);
4044 if (event->attr.freq) {
4045 event->attr.sample_freq = value;
4046 } else {
4047 event->attr.sample_period = value;
4048 event->hw.sample_period = value;
4049 }
4050
4051 active = (event->state == PERF_EVENT_STATE_ACTIVE);
4052 if (active) {
4053 perf_pmu_disable(ctx->pmu);
4054 event->pmu->stop(event, PERF_EF_UPDATE);
4055 }
4056
4057 local64_set(&event->hw.period_left, 0);
4058
4059 if (active) {
4060 event->pmu->start(event, PERF_EF_RELOAD);
4061 perf_pmu_enable(ctx->pmu);
4062 }
4063 raw_spin_unlock(&ctx->lock);
4064
4065 return 0;
4066 }
4067
4068 static int perf_event_period(struct perf_event *event, u64 __user *arg)
4069 {
4070 struct period_event pe = { .event = event, };
4071 struct perf_event_context *ctx = event->ctx;
4072 struct task_struct *task;
4073 u64 value;
4074
4075 if (!is_sampling_event(event))
4076 return -EINVAL;
4077
4078 if (copy_from_user(&value, arg, sizeof(value)))
4079 return -EFAULT;
4080
4081 if (!value)
4082 return -EINVAL;
4083
4084 if (event->attr.freq && value > sysctl_perf_event_sample_rate)
4085 return -EINVAL;
4086
4087 task = ctx->task;
4088 pe.value = value;
4089
4090 if (!task) {
4091 cpu_function_call(event->cpu, __perf_event_period, &pe);
4092 return 0;
4093 }
4094
4095 retry:
4096 if (!task_function_call(task, __perf_event_period, &pe))
4097 return 0;
4098
4099 raw_spin_lock_irq(&ctx->lock);
4100 if (ctx->is_active) {
4101 raw_spin_unlock_irq(&ctx->lock);
4102 task = ctx->task;
4103 goto retry;
4104 }
4105
4106 __perf_event_period(&pe);
4107 raw_spin_unlock_irq(&ctx->lock);
4108
4109 return 0;
4110 }
4111
4112 static const struct file_operations perf_fops;
4113
4114 static inline int perf_fget_light(int fd, struct fd *p)
4115 {
4116 struct fd f = fdget(fd);
4117 if (!f.file)
4118 return -EBADF;
4119
4120 if (f.file->f_op != &perf_fops) {
4121 fdput(f);
4122 return -EBADF;
4123 }
4124 *p = f;
4125 return 0;
4126 }
4127
4128 static int perf_event_set_output(struct perf_event *event,
4129 struct perf_event *output_event);
4130 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
4131 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
4132
4133 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
4134 {
4135 void (*func)(struct perf_event *);
4136 u32 flags = arg;
4137
4138 switch (cmd) {
4139 case PERF_EVENT_IOC_ENABLE:
4140 func = _perf_event_enable;
4141 break;
4142 case PERF_EVENT_IOC_DISABLE:
4143 func = _perf_event_disable;
4144 break;
4145 case PERF_EVENT_IOC_RESET:
4146 func = _perf_event_reset;
4147 break;
4148
4149 case PERF_EVENT_IOC_REFRESH:
4150 return _perf_event_refresh(event, arg);
4151
4152 case PERF_EVENT_IOC_PERIOD:
4153 return perf_event_period(event, (u64 __user *)arg);
4154
4155 case PERF_EVENT_IOC_ID:
4156 {
4157 u64 id = primary_event_id(event);
4158
4159 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
4160 return -EFAULT;
4161 return 0;
4162 }
4163
4164 case PERF_EVENT_IOC_SET_OUTPUT:
4165 {
4166 int ret;
4167 if (arg != -1) {
4168 struct perf_event *output_event;
4169 struct fd output;
4170 ret = perf_fget_light(arg, &output);
4171 if (ret)
4172 return ret;
4173 output_event = output.file->private_data;
4174 ret = perf_event_set_output(event, output_event);
4175 fdput(output);
4176 } else {
4177 ret = perf_event_set_output(event, NULL);
4178 }
4179 return ret;
4180 }
4181
4182 case PERF_EVENT_IOC_SET_FILTER:
4183 return perf_event_set_filter(event, (void __user *)arg);
4184
4185 case PERF_EVENT_IOC_SET_BPF:
4186 return perf_event_set_bpf_prog(event, arg);
4187
4188 default:
4189 return -ENOTTY;
4190 }
4191
4192 if (flags & PERF_IOC_FLAG_GROUP)
4193 perf_event_for_each(event, func);
4194 else
4195 perf_event_for_each_child(event, func);
4196
4197 return 0;
4198 }
4199
4200 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4201 {
4202 struct perf_event *event = file->private_data;
4203 struct perf_event_context *ctx;
4204 long ret;
4205
4206 ctx = perf_event_ctx_lock(event);
4207 ret = _perf_ioctl(event, cmd, arg);
4208 perf_event_ctx_unlock(event, ctx);
4209
4210 return ret;
4211 }
4212
4213 #ifdef CONFIG_COMPAT
4214 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
4215 unsigned long arg)
4216 {
4217 switch (_IOC_NR(cmd)) {
4218 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
4219 case _IOC_NR(PERF_EVENT_IOC_ID):
4220 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
4221 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
4222 cmd &= ~IOCSIZE_MASK;
4223 cmd |= sizeof(void *) << IOCSIZE_SHIFT;
4224 }
4225 break;
4226 }
4227 return perf_ioctl(file, cmd, arg);
4228 }
4229 #else
4230 # define perf_compat_ioctl NULL
4231 #endif
4232
4233 int perf_event_task_enable(void)
4234 {
4235 struct perf_event_context *ctx;
4236 struct perf_event *event;
4237
4238 mutex_lock(&current->perf_event_mutex);
4239 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4240 ctx = perf_event_ctx_lock(event);
4241 perf_event_for_each_child(event, _perf_event_enable);
4242 perf_event_ctx_unlock(event, ctx);
4243 }
4244 mutex_unlock(&current->perf_event_mutex);
4245
4246 return 0;
4247 }
4248
4249 int perf_event_task_disable(void)
4250 {
4251 struct perf_event_context *ctx;
4252 struct perf_event *event;
4253
4254 mutex_lock(&current->perf_event_mutex);
4255 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4256 ctx = perf_event_ctx_lock(event);
4257 perf_event_for_each_child(event, _perf_event_disable);
4258 perf_event_ctx_unlock(event, ctx);
4259 }
4260 mutex_unlock(&current->perf_event_mutex);
4261
4262 return 0;
4263 }
4264
4265 static int perf_event_index(struct perf_event *event)
4266 {
4267 if (event->hw.state & PERF_HES_STOPPED)
4268 return 0;
4269
4270 if (event->state != PERF_EVENT_STATE_ACTIVE)
4271 return 0;
4272
4273 return event->pmu->event_idx(event);
4274 }
4275
4276 static void calc_timer_values(struct perf_event *event,
4277 u64 *now,
4278 u64 *enabled,
4279 u64 *running)
4280 {
4281 u64 ctx_time;
4282
4283 *now = perf_clock();
4284 ctx_time = event->shadow_ctx_time + *now;
4285 *enabled = ctx_time - event->tstamp_enabled;
4286 *running = ctx_time - event->tstamp_running;
4287 }
4288
4289 static void perf_event_init_userpage(struct perf_event *event)
4290 {
4291 struct perf_event_mmap_page *userpg;
4292 struct ring_buffer *rb;
4293
4294 rcu_read_lock();
4295 rb = rcu_dereference(event->rb);
4296 if (!rb)
4297 goto unlock;
4298
4299 userpg = rb->user_page;
4300
4301 /* Allow new userspace to detect that bit 0 is deprecated */
4302 userpg->cap_bit0_is_deprecated = 1;
4303 userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
4304 userpg->data_offset = PAGE_SIZE;
4305 userpg->data_size = perf_data_size(rb);
4306
4307 unlock:
4308 rcu_read_unlock();
4309 }
4310
4311 void __weak arch_perf_update_userpage(
4312 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
4313 {
4314 }
4315
4316 /*
4317 * Callers need to ensure there can be no nesting of this function, otherwise
4318 * the seqlock logic goes bad. We can not serialize this because the arch
4319 * code calls this from NMI context.
4320 */
4321 void perf_event_update_userpage(struct perf_event *event)
4322 {
4323 struct perf_event_mmap_page *userpg;
4324 struct ring_buffer *rb;
4325 u64 enabled, running, now;
4326
4327 rcu_read_lock();
4328 rb = rcu_dereference(event->rb);
4329 if (!rb)
4330 goto unlock;
4331
4332 /*
4333 * compute total_time_enabled, total_time_running
4334 * based on snapshot values taken when the event
4335 * was last scheduled in.
4336 *
4337 * we cannot simply called update_context_time()
4338 * because of locking issue as we can be called in
4339 * NMI context
4340 */
4341 calc_timer_values(event, &now, &enabled, &running);
4342
4343 userpg = rb->user_page;
4344 /*
4345 * Disable preemption so as to not let the corresponding user-space
4346 * spin too long if we get preempted.
4347 */
4348 preempt_disable();
4349 ++userpg->lock;
4350 barrier();
4351 userpg->index = perf_event_index(event);
4352 userpg->offset = perf_event_count(event);
4353 if (userpg->index)
4354 userpg->offset -= local64_read(&event->hw.prev_count);
4355
4356 userpg->time_enabled = enabled +
4357 atomic64_read(&event->child_total_time_enabled);
4358
4359 userpg->time_running = running +
4360 atomic64_read(&event->child_total_time_running);
4361
4362 arch_perf_update_userpage(event, userpg, now);
4363
4364 barrier();
4365 ++userpg->lock;
4366 preempt_enable();
4367 unlock:
4368 rcu_read_unlock();
4369 }
4370
4371 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
4372 {
4373 struct perf_event *event = vma->vm_file->private_data;
4374 struct ring_buffer *rb;
4375 int ret = VM_FAULT_SIGBUS;
4376
4377 if (vmf->flags & FAULT_FLAG_MKWRITE) {
4378 if (vmf->pgoff == 0)
4379 ret = 0;
4380 return ret;
4381 }
4382
4383 rcu_read_lock();
4384 rb = rcu_dereference(event->rb);
4385 if (!rb)
4386 goto unlock;
4387
4388 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
4389 goto unlock;
4390
4391 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
4392 if (!vmf->page)
4393 goto unlock;
4394
4395 get_page(vmf->page);
4396 vmf->page->mapping = vma->vm_file->f_mapping;
4397 vmf->page->index = vmf->pgoff;
4398
4399 ret = 0;
4400 unlock:
4401 rcu_read_unlock();
4402
4403 return ret;
4404 }
4405
4406 static void ring_buffer_attach(struct perf_event *event,
4407 struct ring_buffer *rb)
4408 {
4409 struct ring_buffer *old_rb = NULL;
4410 unsigned long flags;
4411
4412 if (event->rb) {
4413 /*
4414 * Should be impossible, we set this when removing
4415 * event->rb_entry and wait/clear when adding event->rb_entry.
4416 */
4417 WARN_ON_ONCE(event->rcu_pending);
4418
4419 old_rb = event->rb;
4420 spin_lock_irqsave(&old_rb->event_lock, flags);
4421 list_del_rcu(&event->rb_entry);
4422 spin_unlock_irqrestore(&old_rb->event_lock, flags);
4423
4424 event->rcu_batches = get_state_synchronize_rcu();
4425 event->rcu_pending = 1;
4426 }
4427
4428 if (rb) {
4429 if (event->rcu_pending) {
4430 cond_synchronize_rcu(event->rcu_batches);
4431 event->rcu_pending = 0;
4432 }
4433
4434 spin_lock_irqsave(&rb->event_lock, flags);
4435 list_add_rcu(&event->rb_entry, &rb->event_list);
4436 spin_unlock_irqrestore(&rb->event_lock, flags);
4437 }
4438
4439 rcu_assign_pointer(event->rb, rb);
4440
4441 if (old_rb) {
4442 ring_buffer_put(old_rb);
4443 /*
4444 * Since we detached before setting the new rb, so that we
4445 * could attach the new rb, we could have missed a wakeup.
4446 * Provide it now.
4447 */
4448 wake_up_all(&event->waitq);
4449 }
4450 }
4451
4452 static void ring_buffer_wakeup(struct perf_event *event)
4453 {
4454 struct ring_buffer *rb;
4455
4456 rcu_read_lock();
4457 rb = rcu_dereference(event->rb);
4458 if (rb) {
4459 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
4460 wake_up_all(&event->waitq);
4461 }
4462 rcu_read_unlock();
4463 }
4464
4465 struct ring_buffer *ring_buffer_get(struct perf_event *event)
4466 {
4467 struct ring_buffer *rb;
4468
4469 rcu_read_lock();
4470 rb = rcu_dereference(event->rb);
4471 if (rb) {
4472 if (!atomic_inc_not_zero(&rb->refcount))
4473 rb = NULL;
4474 }
4475 rcu_read_unlock();
4476
4477 return rb;
4478 }
4479
4480 void ring_buffer_put(struct ring_buffer *rb)
4481 {
4482 if (!atomic_dec_and_test(&rb->refcount))
4483 return;
4484
4485 WARN_ON_ONCE(!list_empty(&rb->event_list));
4486
4487 call_rcu(&rb->rcu_head, rb_free_rcu);
4488 }
4489
4490 static void perf_mmap_open(struct vm_area_struct *vma)
4491 {
4492 struct perf_event *event = vma->vm_file->private_data;
4493
4494 atomic_inc(&event->mmap_count);
4495 atomic_inc(&event->rb->mmap_count);
4496
4497 if (vma->vm_pgoff)
4498 atomic_inc(&event->rb->aux_mmap_count);
4499
4500 if (event->pmu->event_mapped)
4501 event->pmu->event_mapped(event);
4502 }
4503
4504 /*
4505 * A buffer can be mmap()ed multiple times; either directly through the same
4506 * event, or through other events by use of perf_event_set_output().
4507 *
4508 * In order to undo the VM accounting done by perf_mmap() we need to destroy
4509 * the buffer here, where we still have a VM context. This means we need
4510 * to detach all events redirecting to us.
4511 */
4512 static void perf_mmap_close(struct vm_area_struct *vma)
4513 {
4514 struct perf_event *event = vma->vm_file->private_data;
4515
4516 struct ring_buffer *rb = ring_buffer_get(event);
4517 struct user_struct *mmap_user = rb->mmap_user;
4518 int mmap_locked = rb->mmap_locked;
4519 unsigned long size = perf_data_size(rb);
4520
4521 if (event->pmu->event_unmapped)
4522 event->pmu->event_unmapped(event);
4523
4524 /*
4525 * rb->aux_mmap_count will always drop before rb->mmap_count and
4526 * event->mmap_count, so it is ok to use event->mmap_mutex to
4527 * serialize with perf_mmap here.
4528 */
4529 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
4530 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
4531 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
4532 vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
4533
4534 rb_free_aux(rb);
4535 mutex_unlock(&event->mmap_mutex);
4536 }
4537
4538 atomic_dec(&rb->mmap_count);
4539
4540 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
4541 goto out_put;
4542
4543 ring_buffer_attach(event, NULL);
4544 mutex_unlock(&event->mmap_mutex);
4545
4546 /* If there's still other mmap()s of this buffer, we're done. */
4547 if (atomic_read(&rb->mmap_count))
4548 goto out_put;
4549
4550 /*
4551 * No other mmap()s, detach from all other events that might redirect
4552 * into the now unreachable buffer. Somewhat complicated by the
4553 * fact that rb::event_lock otherwise nests inside mmap_mutex.
4554 */
4555 again:
4556 rcu_read_lock();
4557 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
4558 if (!atomic_long_inc_not_zero(&event->refcount)) {
4559 /*
4560 * This event is en-route to free_event() which will
4561 * detach it and remove it from the list.
4562 */
4563 continue;
4564 }
4565 rcu_read_unlock();
4566
4567 mutex_lock(&event->mmap_mutex);
4568 /*
4569 * Check we didn't race with perf_event_set_output() which can
4570 * swizzle the rb from under us while we were waiting to
4571 * acquire mmap_mutex.
4572 *
4573 * If we find a different rb; ignore this event, a next
4574 * iteration will no longer find it on the list. We have to
4575 * still restart the iteration to make sure we're not now
4576 * iterating the wrong list.
4577 */
4578 if (event->rb == rb)
4579 ring_buffer_attach(event, NULL);
4580
4581 mutex_unlock(&event->mmap_mutex);
4582 put_event(event);
4583
4584 /*
4585 * Restart the iteration; either we're on the wrong list or
4586 * destroyed its integrity by doing a deletion.
4587 */
4588 goto again;
4589 }
4590 rcu_read_unlock();
4591
4592 /*
4593 * It could be there's still a few 0-ref events on the list; they'll
4594 * get cleaned up by free_event() -- they'll also still have their
4595 * ref on the rb and will free it whenever they are done with it.
4596 *
4597 * Aside from that, this buffer is 'fully' detached and unmapped,
4598 * undo the VM accounting.
4599 */
4600
4601 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
4602 vma->vm_mm->pinned_vm -= mmap_locked;
4603 free_uid(mmap_user);
4604
4605 out_put:
4606 ring_buffer_put(rb); /* could be last */
4607 }
4608
4609 static const struct vm_operations_struct perf_mmap_vmops = {
4610 .open = perf_mmap_open,
4611 .close = perf_mmap_close, /* non mergable */
4612 .fault = perf_mmap_fault,
4613 .page_mkwrite = perf_mmap_fault,
4614 };
4615
4616 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
4617 {
4618 struct perf_event *event = file->private_data;
4619 unsigned long user_locked, user_lock_limit;
4620 struct user_struct *user = current_user();
4621 unsigned long locked, lock_limit;
4622 struct ring_buffer *rb = NULL;
4623 unsigned long vma_size;
4624 unsigned long nr_pages;
4625 long user_extra = 0, extra = 0;
4626 int ret = 0, flags = 0;
4627
4628 /*
4629 * Don't allow mmap() of inherited per-task counters. This would
4630 * create a performance issue due to all children writing to the
4631 * same rb.
4632 */
4633 if (event->cpu == -1 && event->attr.inherit)
4634 return -EINVAL;
4635
4636 if (!(vma->vm_flags & VM_SHARED))
4637 return -EINVAL;
4638
4639 vma_size = vma->vm_end - vma->vm_start;
4640
4641 if (vma->vm_pgoff == 0) {
4642 nr_pages = (vma_size / PAGE_SIZE) - 1;
4643 } else {
4644 /*
4645 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
4646 * mapped, all subsequent mappings should have the same size
4647 * and offset. Must be above the normal perf buffer.
4648 */
4649 u64 aux_offset, aux_size;
4650
4651 if (!event->rb)
4652 return -EINVAL;
4653
4654 nr_pages = vma_size / PAGE_SIZE;
4655
4656 mutex_lock(&event->mmap_mutex);
4657 ret = -EINVAL;
4658
4659 rb = event->rb;
4660 if (!rb)
4661 goto aux_unlock;
4662
4663 aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
4664 aux_size = ACCESS_ONCE(rb->user_page->aux_size);
4665
4666 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
4667 goto aux_unlock;
4668
4669 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
4670 goto aux_unlock;
4671
4672 /* already mapped with a different offset */
4673 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
4674 goto aux_unlock;
4675
4676 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
4677 goto aux_unlock;
4678
4679 /* already mapped with a different size */
4680 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
4681 goto aux_unlock;
4682
4683 if (!is_power_of_2(nr_pages))
4684 goto aux_unlock;
4685
4686 if (!atomic_inc_not_zero(&rb->mmap_count))
4687 goto aux_unlock;
4688
4689 if (rb_has_aux(rb)) {
4690 atomic_inc(&rb->aux_mmap_count);
4691 ret = 0;
4692 goto unlock;
4693 }
4694
4695 atomic_set(&rb->aux_mmap_count, 1);
4696 user_extra = nr_pages;
4697
4698 goto accounting;
4699 }
4700
4701 /*
4702 * If we have rb pages ensure they're a power-of-two number, so we
4703 * can do bitmasks instead of modulo.
4704 */
4705 if (nr_pages != 0 && !is_power_of_2(nr_pages))
4706 return -EINVAL;
4707
4708 if (vma_size != PAGE_SIZE * (1 + nr_pages))
4709 return -EINVAL;
4710
4711 WARN_ON_ONCE(event->ctx->parent_ctx);
4712 again:
4713 mutex_lock(&event->mmap_mutex);
4714 if (event->rb) {
4715 if (event->rb->nr_pages != nr_pages) {
4716 ret = -EINVAL;
4717 goto unlock;
4718 }
4719
4720 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
4721 /*
4722 * Raced against perf_mmap_close() through
4723 * perf_event_set_output(). Try again, hope for better
4724 * luck.
4725 */
4726 mutex_unlock(&event->mmap_mutex);
4727 goto again;
4728 }
4729
4730 goto unlock;
4731 }
4732
4733 user_extra = nr_pages + 1;
4734
4735 accounting:
4736 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
4737
4738 /*
4739 * Increase the limit linearly with more CPUs:
4740 */
4741 user_lock_limit *= num_online_cpus();
4742
4743 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
4744
4745 if (user_locked > user_lock_limit)
4746 extra = user_locked - user_lock_limit;
4747
4748 lock_limit = rlimit(RLIMIT_MEMLOCK);
4749 lock_limit >>= PAGE_SHIFT;
4750 locked = vma->vm_mm->pinned_vm + extra;
4751
4752 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
4753 !capable(CAP_IPC_LOCK)) {
4754 ret = -EPERM;
4755 goto unlock;
4756 }
4757
4758 WARN_ON(!rb && event->rb);
4759
4760 if (vma->vm_flags & VM_WRITE)
4761 flags |= RING_BUFFER_WRITABLE;
4762
4763 if (!rb) {
4764 rb = rb_alloc(nr_pages,
4765 event->attr.watermark ? event->attr.wakeup_watermark : 0,
4766 event->cpu, flags);
4767
4768 if (!rb) {
4769 ret = -ENOMEM;
4770 goto unlock;
4771 }
4772
4773 atomic_set(&rb->mmap_count, 1);
4774 rb->mmap_user = get_current_user();
4775 rb->mmap_locked = extra;
4776
4777 ring_buffer_attach(event, rb);
4778
4779 perf_event_init_userpage(event);
4780 perf_event_update_userpage(event);
4781 } else {
4782 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
4783 event->attr.aux_watermark, flags);
4784 if (!ret)
4785 rb->aux_mmap_locked = extra;
4786 }
4787
4788 unlock:
4789 if (!ret) {
4790 atomic_long_add(user_extra, &user->locked_vm);
4791 vma->vm_mm->pinned_vm += extra;
4792
4793 atomic_inc(&event->mmap_count);
4794 } else if (rb) {
4795 atomic_dec(&rb->mmap_count);
4796 }
4797 aux_unlock:
4798 mutex_unlock(&event->mmap_mutex);
4799
4800 /*
4801 * Since pinned accounting is per vm we cannot allow fork() to copy our
4802 * vma.
4803 */
4804 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
4805 vma->vm_ops = &perf_mmap_vmops;
4806
4807 if (event->pmu->event_mapped)
4808 event->pmu->event_mapped(event);
4809
4810 return ret;
4811 }
4812
4813 static int perf_fasync(int fd, struct file *filp, int on)
4814 {
4815 struct inode *inode = file_inode(filp);
4816 struct perf_event *event = filp->private_data;
4817 int retval;
4818
4819 mutex_lock(&inode->i_mutex);
4820 retval = fasync_helper(fd, filp, on, &event->fasync);
4821 mutex_unlock(&inode->i_mutex);
4822
4823 if (retval < 0)
4824 return retval;
4825
4826 return 0;
4827 }
4828
4829 static const struct file_operations perf_fops = {
4830 .llseek = no_llseek,
4831 .release = perf_release,
4832 .read = perf_read,
4833 .poll = perf_poll,
4834 .unlocked_ioctl = perf_ioctl,
4835 .compat_ioctl = perf_compat_ioctl,
4836 .mmap = perf_mmap,
4837 .fasync = perf_fasync,
4838 };
4839
4840 /*
4841 * Perf event wakeup
4842 *
4843 * If there's data, ensure we set the poll() state and publish everything
4844 * to user-space before waking everybody up.
4845 */
4846
4847 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
4848 {
4849 /* only the parent has fasync state */
4850 if (event->parent)
4851 event = event->parent;
4852 return &event->fasync;
4853 }
4854
4855 void perf_event_wakeup(struct perf_event *event)
4856 {
4857 ring_buffer_wakeup(event);
4858
4859 if (event->pending_kill) {
4860 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
4861 event->pending_kill = 0;
4862 }
4863 }
4864
4865 static void perf_pending_event(struct irq_work *entry)
4866 {
4867 struct perf_event *event = container_of(entry,
4868 struct perf_event, pending);
4869 int rctx;
4870
4871 rctx = perf_swevent_get_recursion_context();
4872 /*
4873 * If we 'fail' here, that's OK, it means recursion is already disabled
4874 * and we won't recurse 'further'.
4875 */
4876
4877 if (event->pending_disable) {
4878 event->pending_disable = 0;
4879 __perf_event_disable(event);
4880 }
4881
4882 if (event->pending_wakeup) {
4883 event->pending_wakeup = 0;
4884 perf_event_wakeup(event);
4885 }
4886
4887 if (rctx >= 0)
4888 perf_swevent_put_recursion_context(rctx);
4889 }
4890
4891 /*
4892 * We assume there is only KVM supporting the callbacks.
4893 * Later on, we might change it to a list if there is
4894 * another virtualization implementation supporting the callbacks.
4895 */
4896 struct perf_guest_info_callbacks *perf_guest_cbs;
4897
4898 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4899 {
4900 perf_guest_cbs = cbs;
4901 return 0;
4902 }
4903 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
4904
4905 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4906 {
4907 perf_guest_cbs = NULL;
4908 return 0;
4909 }
4910 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
4911
4912 static void
4913 perf_output_sample_regs(struct perf_output_handle *handle,
4914 struct pt_regs *regs, u64 mask)
4915 {
4916 int bit;
4917
4918 for_each_set_bit(bit, (const unsigned long *) &mask,
4919 sizeof(mask) * BITS_PER_BYTE) {
4920 u64 val;
4921
4922 val = perf_reg_value(regs, bit);
4923 perf_output_put(handle, val);
4924 }
4925 }
4926
4927 static void perf_sample_regs_user(struct perf_regs *regs_user,
4928 struct pt_regs *regs,
4929 struct pt_regs *regs_user_copy)
4930 {
4931 if (user_mode(regs)) {
4932 regs_user->abi = perf_reg_abi(current);
4933 regs_user->regs = regs;
4934 } else if (current->mm) {
4935 perf_get_regs_user(regs_user, regs, regs_user_copy);
4936 } else {
4937 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
4938 regs_user->regs = NULL;
4939 }
4940 }
4941
4942 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
4943 struct pt_regs *regs)
4944 {
4945 regs_intr->regs = regs;
4946 regs_intr->abi = perf_reg_abi(current);
4947 }
4948
4949
4950 /*
4951 * Get remaining task size from user stack pointer.
4952 *
4953 * It'd be better to take stack vma map and limit this more
4954 * precisly, but there's no way to get it safely under interrupt,
4955 * so using TASK_SIZE as limit.
4956 */
4957 static u64 perf_ustack_task_size(struct pt_regs *regs)
4958 {
4959 unsigned long addr = perf_user_stack_pointer(regs);
4960
4961 if (!addr || addr >= TASK_SIZE)
4962 return 0;
4963
4964 return TASK_SIZE - addr;
4965 }
4966
4967 static u16
4968 perf_sample_ustack_size(u16 stack_size, u16 header_size,
4969 struct pt_regs *regs)
4970 {
4971 u64 task_size;
4972
4973 /* No regs, no stack pointer, no dump. */
4974 if (!regs)
4975 return 0;
4976
4977 /*
4978 * Check if we fit in with the requested stack size into the:
4979 * - TASK_SIZE
4980 * If we don't, we limit the size to the TASK_SIZE.
4981 *
4982 * - remaining sample size
4983 * If we don't, we customize the stack size to
4984 * fit in to the remaining sample size.
4985 */
4986
4987 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
4988 stack_size = min(stack_size, (u16) task_size);
4989
4990 /* Current header size plus static size and dynamic size. */
4991 header_size += 2 * sizeof(u64);
4992
4993 /* Do we fit in with the current stack dump size? */
4994 if ((u16) (header_size + stack_size) < header_size) {
4995 /*
4996 * If we overflow the maximum size for the sample,
4997 * we customize the stack dump size to fit in.
4998 */
4999 stack_size = USHRT_MAX - header_size - sizeof(u64);
5000 stack_size = round_up(stack_size, sizeof(u64));
5001 }
5002
5003 return stack_size;
5004 }
5005
5006 static void
5007 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
5008 struct pt_regs *regs)
5009 {
5010 /* Case of a kernel thread, nothing to dump */
5011 if (!regs) {
5012 u64 size = 0;
5013 perf_output_put(handle, size);
5014 } else {
5015 unsigned long sp;
5016 unsigned int rem;
5017 u64 dyn_size;
5018
5019 /*
5020 * We dump:
5021 * static size
5022 * - the size requested by user or the best one we can fit
5023 * in to the sample max size
5024 * data
5025 * - user stack dump data
5026 * dynamic size
5027 * - the actual dumped size
5028 */
5029
5030 /* Static size. */
5031 perf_output_put(handle, dump_size);
5032
5033 /* Data. */
5034 sp = perf_user_stack_pointer(regs);
5035 rem = __output_copy_user(handle, (void *) sp, dump_size);
5036 dyn_size = dump_size - rem;
5037
5038 perf_output_skip(handle, rem);
5039
5040 /* Dynamic size. */
5041 perf_output_put(handle, dyn_size);
5042 }
5043 }
5044
5045 static void __perf_event_header__init_id(struct perf_event_header *header,
5046 struct perf_sample_data *data,
5047 struct perf_event *event)
5048 {
5049 u64 sample_type = event->attr.sample_type;
5050
5051 data->type = sample_type;
5052 header->size += event->id_header_size;
5053
5054 if (sample_type & PERF_SAMPLE_TID) {
5055 /* namespace issues */
5056 data->tid_entry.pid = perf_event_pid(event, current);
5057 data->tid_entry.tid = perf_event_tid(event, current);
5058 }
5059
5060 if (sample_type & PERF_SAMPLE_TIME)
5061 data->time = perf_event_clock(event);
5062
5063 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
5064 data->id = primary_event_id(event);
5065
5066 if (sample_type & PERF_SAMPLE_STREAM_ID)
5067 data->stream_id = event->id;
5068
5069 if (sample_type & PERF_SAMPLE_CPU) {
5070 data->cpu_entry.cpu = raw_smp_processor_id();
5071 data->cpu_entry.reserved = 0;
5072 }
5073 }
5074
5075 void perf_event_header__init_id(struct perf_event_header *header,
5076 struct perf_sample_data *data,
5077 struct perf_event *event)
5078 {
5079 if (event->attr.sample_id_all)
5080 __perf_event_header__init_id(header, data, event);
5081 }
5082
5083 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
5084 struct perf_sample_data *data)
5085 {
5086 u64 sample_type = data->type;
5087
5088 if (sample_type & PERF_SAMPLE_TID)
5089 perf_output_put(handle, data->tid_entry);
5090
5091 if (sample_type & PERF_SAMPLE_TIME)
5092 perf_output_put(handle, data->time);
5093
5094 if (sample_type & PERF_SAMPLE_ID)
5095 perf_output_put(handle, data->id);
5096
5097 if (sample_type & PERF_SAMPLE_STREAM_ID)
5098 perf_output_put(handle, data->stream_id);
5099
5100 if (sample_type & PERF_SAMPLE_CPU)
5101 perf_output_put(handle, data->cpu_entry);
5102
5103 if (sample_type & PERF_SAMPLE_IDENTIFIER)
5104 perf_output_put(handle, data->id);
5105 }
5106
5107 void perf_event__output_id_sample(struct perf_event *event,
5108 struct perf_output_handle *handle,
5109 struct perf_sample_data *sample)
5110 {
5111 if (event->attr.sample_id_all)
5112 __perf_event__output_id_sample(handle, sample);
5113 }
5114
5115 static void perf_output_read_one(struct perf_output_handle *handle,
5116 struct perf_event *event,
5117 u64 enabled, u64 running)
5118 {
5119 u64 read_format = event->attr.read_format;
5120 u64 values[4];
5121 int n = 0;
5122
5123 values[n++] = perf_event_count(event);
5124 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5125 values[n++] = enabled +
5126 atomic64_read(&event->child_total_time_enabled);
5127 }
5128 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5129 values[n++] = running +
5130 atomic64_read(&event->child_total_time_running);
5131 }
5132 if (read_format & PERF_FORMAT_ID)
5133 values[n++] = primary_event_id(event);
5134
5135 __output_copy(handle, values, n * sizeof(u64));
5136 }
5137
5138 /*
5139 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
5140 */
5141 static void perf_output_read_group(struct perf_output_handle *handle,
5142 struct perf_event *event,
5143 u64 enabled, u64 running)
5144 {
5145 struct perf_event *leader = event->group_leader, *sub;
5146 u64 read_format = event->attr.read_format;
5147 u64 values[5];
5148 int n = 0;
5149
5150 values[n++] = 1 + leader->nr_siblings;
5151
5152 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5153 values[n++] = enabled;
5154
5155 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5156 values[n++] = running;
5157
5158 if (leader != event)
5159 leader->pmu->read(leader);
5160
5161 values[n++] = perf_event_count(leader);
5162 if (read_format & PERF_FORMAT_ID)
5163 values[n++] = primary_event_id(leader);
5164
5165 __output_copy(handle, values, n * sizeof(u64));
5166
5167 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
5168 n = 0;
5169
5170 if ((sub != event) &&
5171 (sub->state == PERF_EVENT_STATE_ACTIVE))
5172 sub->pmu->read(sub);
5173
5174 values[n++] = perf_event_count(sub);
5175 if (read_format & PERF_FORMAT_ID)
5176 values[n++] = primary_event_id(sub);
5177
5178 __output_copy(handle, values, n * sizeof(u64));
5179 }
5180 }
5181
5182 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
5183 PERF_FORMAT_TOTAL_TIME_RUNNING)
5184
5185 static void perf_output_read(struct perf_output_handle *handle,
5186 struct perf_event *event)
5187 {
5188 u64 enabled = 0, running = 0, now;
5189 u64 read_format = event->attr.read_format;
5190
5191 /*
5192 * compute total_time_enabled, total_time_running
5193 * based on snapshot values taken when the event
5194 * was last scheduled in.
5195 *
5196 * we cannot simply called update_context_time()
5197 * because of locking issue as we are called in
5198 * NMI context
5199 */
5200 if (read_format & PERF_FORMAT_TOTAL_TIMES)
5201 calc_timer_values(event, &now, &enabled, &running);
5202
5203 if (event->attr.read_format & PERF_FORMAT_GROUP)
5204 perf_output_read_group(handle, event, enabled, running);
5205 else
5206 perf_output_read_one(handle, event, enabled, running);
5207 }
5208
5209 void perf_output_sample(struct perf_output_handle *handle,
5210 struct perf_event_header *header,
5211 struct perf_sample_data *data,
5212 struct perf_event *event)
5213 {
5214 u64 sample_type = data->type;
5215
5216 perf_output_put(handle, *header);
5217
5218 if (sample_type & PERF_SAMPLE_IDENTIFIER)
5219 perf_output_put(handle, data->id);
5220
5221 if (sample_type & PERF_SAMPLE_IP)
5222 perf_output_put(handle, data->ip);
5223
5224 if (sample_type & PERF_SAMPLE_TID)
5225 perf_output_put(handle, data->tid_entry);
5226
5227 if (sample_type & PERF_SAMPLE_TIME)
5228 perf_output_put(handle, data->time);
5229
5230 if (sample_type & PERF_SAMPLE_ADDR)
5231 perf_output_put(handle, data->addr);
5232
5233 if (sample_type & PERF_SAMPLE_ID)
5234 perf_output_put(handle, data->id);
5235
5236 if (sample_type & PERF_SAMPLE_STREAM_ID)
5237 perf_output_put(handle, data->stream_id);
5238
5239 if (sample_type & PERF_SAMPLE_CPU)
5240 perf_output_put(handle, data->cpu_entry);
5241
5242 if (sample_type & PERF_SAMPLE_PERIOD)
5243 perf_output_put(handle, data->period);
5244
5245 if (sample_type & PERF_SAMPLE_READ)
5246 perf_output_read(handle, event);
5247
5248 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5249 if (data->callchain) {
5250 int size = 1;
5251
5252 if (data->callchain)
5253 size += data->callchain->nr;
5254
5255 size *= sizeof(u64);
5256
5257 __output_copy(handle, data->callchain, size);
5258 } else {
5259 u64 nr = 0;
5260 perf_output_put(handle, nr);
5261 }
5262 }
5263
5264 if (sample_type & PERF_SAMPLE_RAW) {
5265 if (data->raw) {
5266 perf_output_put(handle, data->raw->size);
5267 __output_copy(handle, data->raw->data,
5268 data->raw->size);
5269 } else {
5270 struct {
5271 u32 size;
5272 u32 data;
5273 } raw = {
5274 .size = sizeof(u32),
5275 .data = 0,
5276 };
5277 perf_output_put(handle, raw);
5278 }
5279 }
5280
5281 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5282 if (data->br_stack) {
5283 size_t size;
5284
5285 size = data->br_stack->nr
5286 * sizeof(struct perf_branch_entry);
5287
5288 perf_output_put(handle, data->br_stack->nr);
5289 perf_output_copy(handle, data->br_stack->entries, size);
5290 } else {
5291 /*
5292 * we always store at least the value of nr
5293 */
5294 u64 nr = 0;
5295 perf_output_put(handle, nr);
5296 }
5297 }
5298
5299 if (sample_type & PERF_SAMPLE_REGS_USER) {
5300 u64 abi = data->regs_user.abi;
5301
5302 /*
5303 * If there are no regs to dump, notice it through
5304 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5305 */
5306 perf_output_put(handle, abi);
5307
5308 if (abi) {
5309 u64 mask = event->attr.sample_regs_user;
5310 perf_output_sample_regs(handle,
5311 data->regs_user.regs,
5312 mask);
5313 }
5314 }
5315
5316 if (sample_type & PERF_SAMPLE_STACK_USER) {
5317 perf_output_sample_ustack(handle,
5318 data->stack_user_size,
5319 data->regs_user.regs);
5320 }
5321
5322 if (sample_type & PERF_SAMPLE_WEIGHT)
5323 perf_output_put(handle, data->weight);
5324
5325 if (sample_type & PERF_SAMPLE_DATA_SRC)
5326 perf_output_put(handle, data->data_src.val);
5327
5328 if (sample_type & PERF_SAMPLE_TRANSACTION)
5329 perf_output_put(handle, data->txn);
5330
5331 if (sample_type & PERF_SAMPLE_REGS_INTR) {
5332 u64 abi = data->regs_intr.abi;
5333 /*
5334 * If there are no regs to dump, notice it through
5335 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5336 */
5337 perf_output_put(handle, abi);
5338
5339 if (abi) {
5340 u64 mask = event->attr.sample_regs_intr;
5341
5342 perf_output_sample_regs(handle,
5343 data->regs_intr.regs,
5344 mask);
5345 }
5346 }
5347
5348 if (!event->attr.watermark) {
5349 int wakeup_events = event->attr.wakeup_events;
5350
5351 if (wakeup_events) {
5352 struct ring_buffer *rb = handle->rb;
5353 int events = local_inc_return(&rb->events);
5354
5355 if (events >= wakeup_events) {
5356 local_sub(wakeup_events, &rb->events);
5357 local_inc(&rb->wakeup);
5358 }
5359 }
5360 }
5361 }
5362
5363 void perf_prepare_sample(struct perf_event_header *header,
5364 struct perf_sample_data *data,
5365 struct perf_event *event,
5366 struct pt_regs *regs)
5367 {
5368 u64 sample_type = event->attr.sample_type;
5369
5370 header->type = PERF_RECORD_SAMPLE;
5371 header->size = sizeof(*header) + event->header_size;
5372
5373 header->misc = 0;
5374 header->misc |= perf_misc_flags(regs);
5375
5376 __perf_event_header__init_id(header, data, event);
5377
5378 if (sample_type & PERF_SAMPLE_IP)
5379 data->ip = perf_instruction_pointer(regs);
5380
5381 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5382 int size = 1;
5383
5384 data->callchain = perf_callchain(event, regs);
5385
5386 if (data->callchain)
5387 size += data->callchain->nr;
5388
5389 header->size += size * sizeof(u64);
5390 }
5391
5392 if (sample_type & PERF_SAMPLE_RAW) {
5393 int size = sizeof(u32);
5394
5395 if (data->raw)
5396 size += data->raw->size;
5397 else
5398 size += sizeof(u32);
5399
5400 WARN_ON_ONCE(size & (sizeof(u64)-1));
5401 header->size += size;
5402 }
5403
5404 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5405 int size = sizeof(u64); /* nr */
5406 if (data->br_stack) {
5407 size += data->br_stack->nr
5408 * sizeof(struct perf_branch_entry);
5409 }
5410 header->size += size;
5411 }
5412
5413 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
5414 perf_sample_regs_user(&data->regs_user, regs,
5415 &data->regs_user_copy);
5416
5417 if (sample_type & PERF_SAMPLE_REGS_USER) {
5418 /* regs dump ABI info */
5419 int size = sizeof(u64);
5420
5421 if (data->regs_user.regs) {
5422 u64 mask = event->attr.sample_regs_user;
5423 size += hweight64(mask) * sizeof(u64);
5424 }
5425
5426 header->size += size;
5427 }
5428
5429 if (sample_type & PERF_SAMPLE_STACK_USER) {
5430 /*
5431 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
5432 * processed as the last one or have additional check added
5433 * in case new sample type is added, because we could eat
5434 * up the rest of the sample size.
5435 */
5436 u16 stack_size = event->attr.sample_stack_user;
5437 u16 size = sizeof(u64);
5438
5439 stack_size = perf_sample_ustack_size(stack_size, header->size,
5440 data->regs_user.regs);
5441
5442 /*
5443 * If there is something to dump, add space for the dump
5444 * itself and for the field that tells the dynamic size,
5445 * which is how many have been actually dumped.
5446 */
5447 if (stack_size)
5448 size += sizeof(u64) + stack_size;
5449
5450 data->stack_user_size = stack_size;
5451 header->size += size;
5452 }
5453
5454 if (sample_type & PERF_SAMPLE_REGS_INTR) {
5455 /* regs dump ABI info */
5456 int size = sizeof(u64);
5457
5458 perf_sample_regs_intr(&data->regs_intr, regs);
5459
5460 if (data->regs_intr.regs) {
5461 u64 mask = event->attr.sample_regs_intr;
5462
5463 size += hweight64(mask) * sizeof(u64);
5464 }
5465
5466 header->size += size;
5467 }
5468 }
5469
5470 void perf_event_output(struct perf_event *event,
5471 struct perf_sample_data *data,
5472 struct pt_regs *regs)
5473 {
5474 struct perf_output_handle handle;
5475 struct perf_event_header header;
5476
5477 /* protect the callchain buffers */
5478 rcu_read_lock();
5479
5480 perf_prepare_sample(&header, data, event, regs);
5481
5482 if (perf_output_begin(&handle, event, header.size))
5483 goto exit;
5484
5485 perf_output_sample(&handle, &header, data, event);
5486
5487 perf_output_end(&handle);
5488
5489 exit:
5490 rcu_read_unlock();
5491 }
5492
5493 /*
5494 * read event_id
5495 */
5496
5497 struct perf_read_event {
5498 struct perf_event_header header;
5499
5500 u32 pid;
5501 u32 tid;
5502 };
5503
5504 static void
5505 perf_event_read_event(struct perf_event *event,
5506 struct task_struct *task)
5507 {
5508 struct perf_output_handle handle;
5509 struct perf_sample_data sample;
5510 struct perf_read_event read_event = {
5511 .header = {
5512 .type = PERF_RECORD_READ,
5513 .misc = 0,
5514 .size = sizeof(read_event) + event->read_size,
5515 },
5516 .pid = perf_event_pid(event, task),
5517 .tid = perf_event_tid(event, task),
5518 };
5519 int ret;
5520
5521 perf_event_header__init_id(&read_event.header, &sample, event);
5522 ret = perf_output_begin(&handle, event, read_event.header.size);
5523 if (ret)
5524 return;
5525
5526 perf_output_put(&handle, read_event);
5527 perf_output_read(&handle, event);
5528 perf_event__output_id_sample(event, &handle, &sample);
5529
5530 perf_output_end(&handle);
5531 }
5532
5533 typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);
5534
5535 static void
5536 perf_event_aux_ctx(struct perf_event_context *ctx,
5537 perf_event_aux_output_cb output,
5538 void *data)
5539 {
5540 struct perf_event *event;
5541
5542 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
5543 if (event->state < PERF_EVENT_STATE_INACTIVE)
5544 continue;
5545 if (!event_filter_match(event))
5546 continue;
5547 output(event, data);
5548 }
5549 }
5550
5551 static void
5552 perf_event_aux(perf_event_aux_output_cb output, void *data,
5553 struct perf_event_context *task_ctx)
5554 {
5555 struct perf_cpu_context *cpuctx;
5556 struct perf_event_context *ctx;
5557 struct pmu *pmu;
5558 int ctxn;
5559
5560 rcu_read_lock();
5561 list_for_each_entry_rcu(pmu, &pmus, entry) {
5562 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
5563 if (cpuctx->unique_pmu != pmu)
5564 goto next;
5565 perf_event_aux_ctx(&cpuctx->ctx, output, data);
5566 if (task_ctx)
5567 goto next;
5568 ctxn = pmu->task_ctx_nr;
5569 if (ctxn < 0)
5570 goto next;
5571 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
5572 if (ctx)
5573 perf_event_aux_ctx(ctx, output, data);
5574 next:
5575 put_cpu_ptr(pmu->pmu_cpu_context);
5576 }
5577
5578 if (task_ctx) {
5579 preempt_disable();
5580 perf_event_aux_ctx(task_ctx, output, data);
5581 preempt_enable();
5582 }
5583 rcu_read_unlock();
5584 }
5585
5586 /*
5587 * task tracking -- fork/exit
5588 *
5589 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
5590 */
5591
5592 struct perf_task_event {
5593 struct task_struct *task;
5594 struct perf_event_context *task_ctx;
5595
5596 struct {
5597 struct perf_event_header header;
5598
5599 u32 pid;
5600 u32 ppid;
5601 u32 tid;
5602 u32 ptid;
5603 u64 time;
5604 } event_id;
5605 };
5606
5607 static int perf_event_task_match(struct perf_event *event)
5608 {
5609 return event->attr.comm || event->attr.mmap ||
5610 event->attr.mmap2 || event->attr.mmap_data ||
5611 event->attr.task;
5612 }
5613
5614 static void perf_event_task_output(struct perf_event *event,
5615 void *data)
5616 {
5617 struct perf_task_event *task_event = data;
5618 struct perf_output_handle handle;
5619 struct perf_sample_data sample;
5620 struct task_struct *task = task_event->task;
5621 int ret, size = task_event->event_id.header.size;
5622
5623 if (!perf_event_task_match(event))
5624 return;
5625
5626 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
5627
5628 ret = perf_output_begin(&handle, event,
5629 task_event->event_id.header.size);
5630 if (ret)
5631 goto out;
5632
5633 task_event->event_id.pid = perf_event_pid(event, task);
5634 task_event->event_id.ppid = perf_event_pid(event, current);
5635
5636 task_event->event_id.tid = perf_event_tid(event, task);
5637 task_event->event_id.ptid = perf_event_tid(event, current);
5638
5639 task_event->event_id.time = perf_event_clock(event);
5640
5641 perf_output_put(&handle, task_event->event_id);
5642
5643 perf_event__output_id_sample(event, &handle, &sample);
5644
5645 perf_output_end(&handle);
5646 out:
5647 task_event->event_id.header.size = size;
5648 }
5649
5650 static void perf_event_task(struct task_struct *task,
5651 struct perf_event_context *task_ctx,
5652 int new)
5653 {
5654 struct perf_task_event task_event;
5655
5656 if (!atomic_read(&nr_comm_events) &&
5657 !atomic_read(&nr_mmap_events) &&
5658 !atomic_read(&nr_task_events))
5659 return;
5660
5661 task_event = (struct perf_task_event){
5662 .task = task,
5663 .task_ctx = task_ctx,
5664 .event_id = {
5665 .header = {
5666 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
5667 .misc = 0,
5668 .size = sizeof(task_event.event_id),
5669 },
5670 /* .pid */
5671 /* .ppid */
5672 /* .tid */
5673 /* .ptid */
5674 /* .time */
5675 },
5676 };
5677
5678 perf_event_aux(perf_event_task_output,
5679 &task_event,
5680 task_ctx);
5681 }
5682
5683 void perf_event_fork(struct task_struct *task)
5684 {
5685 perf_event_task(task, NULL, 1);
5686 }
5687
5688 /*
5689 * comm tracking
5690 */
5691
5692 struct perf_comm_event {
5693 struct task_struct *task;
5694 char *comm;
5695 int comm_size;
5696
5697 struct {
5698 struct perf_event_header header;
5699
5700 u32 pid;
5701 u32 tid;
5702 } event_id;
5703 };
5704
5705 static int perf_event_comm_match(struct perf_event *event)
5706 {
5707 return event->attr.comm;
5708 }
5709
5710 static void perf_event_comm_output(struct perf_event *event,
5711 void *data)
5712 {
5713 struct perf_comm_event *comm_event = data;
5714 struct perf_output_handle handle;
5715 struct perf_sample_data sample;
5716 int size = comm_event->event_id.header.size;
5717 int ret;
5718
5719 if (!perf_event_comm_match(event))
5720 return;
5721
5722 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
5723 ret = perf_output_begin(&handle, event,
5724 comm_event->event_id.header.size);
5725
5726 if (ret)
5727 goto out;
5728
5729 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
5730 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
5731
5732 perf_output_put(&handle, comm_event->event_id);
5733 __output_copy(&handle, comm_event->comm,
5734 comm_event->comm_size);
5735
5736 perf_event__output_id_sample(event, &handle, &sample);
5737
5738 perf_output_end(&handle);
5739 out:
5740 comm_event->event_id.header.size = size;
5741 }
5742
5743 static void perf_event_comm_event(struct perf_comm_event *comm_event)
5744 {
5745 char comm[TASK_COMM_LEN];
5746 unsigned int size;
5747
5748 memset(comm, 0, sizeof(comm));
5749 strlcpy(comm, comm_event->task->comm, sizeof(comm));
5750 size = ALIGN(strlen(comm)+1, sizeof(u64));
5751
5752 comm_event->comm = comm;
5753 comm_event->comm_size = size;
5754
5755 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
5756
5757 perf_event_aux(perf_event_comm_output,
5758 comm_event,
5759 NULL);
5760 }
5761
5762 void perf_event_comm(struct task_struct *task, bool exec)
5763 {
5764 struct perf_comm_event comm_event;
5765
5766 if (!atomic_read(&nr_comm_events))
5767 return;
5768
5769 comm_event = (struct perf_comm_event){
5770 .task = task,
5771 /* .comm */
5772 /* .comm_size */
5773 .event_id = {
5774 .header = {
5775 .type = PERF_RECORD_COMM,
5776 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
5777 /* .size */
5778 },
5779 /* .pid */
5780 /* .tid */
5781 },
5782 };
5783
5784 perf_event_comm_event(&comm_event);
5785 }
5786
5787 /*
5788 * mmap tracking
5789 */
5790
5791 struct perf_mmap_event {
5792 struct vm_area_struct *vma;
5793
5794 const char *file_name;
5795 int file_size;
5796 int maj, min;
5797 u64 ino;
5798 u64 ino_generation;
5799 u32 prot, flags;
5800
5801 struct {
5802 struct perf_event_header header;
5803
5804 u32 pid;
5805 u32 tid;
5806 u64 start;
5807 u64 len;
5808 u64 pgoff;
5809 } event_id;
5810 };
5811
5812 static int perf_event_mmap_match(struct perf_event *event,
5813 void *data)
5814 {
5815 struct perf_mmap_event *mmap_event = data;
5816 struct vm_area_struct *vma = mmap_event->vma;
5817 int executable = vma->vm_flags & VM_EXEC;
5818
5819 return (!executable && event->attr.mmap_data) ||
5820 (executable && (event->attr.mmap || event->attr.mmap2));
5821 }
5822
5823 static void perf_event_mmap_output(struct perf_event *event,
5824 void *data)
5825 {
5826 struct perf_mmap_event *mmap_event = data;
5827 struct perf_output_handle handle;
5828 struct perf_sample_data sample;
5829 int size = mmap_event->event_id.header.size;
5830 int ret;
5831
5832 if (!perf_event_mmap_match(event, data))
5833 return;
5834
5835 if (event->attr.mmap2) {
5836 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
5837 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
5838 mmap_event->event_id.header.size += sizeof(mmap_event->min);
5839 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
5840 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
5841 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
5842 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
5843 }
5844
5845 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
5846 ret = perf_output_begin(&handle, event,
5847 mmap_event->event_id.header.size);
5848 if (ret)
5849 goto out;
5850
5851 mmap_event->event_id.pid = perf_event_pid(event, current);
5852 mmap_event->event_id.tid = perf_event_tid(event, current);
5853
5854 perf_output_put(&handle, mmap_event->event_id);
5855
5856 if (event->attr.mmap2) {
5857 perf_output_put(&handle, mmap_event->maj);
5858 perf_output_put(&handle, mmap_event->min);
5859 perf_output_put(&handle, mmap_event->ino);
5860 perf_output_put(&handle, mmap_event->ino_generation);
5861 perf_output_put(&handle, mmap_event->prot);
5862 perf_output_put(&handle, mmap_event->flags);
5863 }
5864
5865 __output_copy(&handle, mmap_event->file_name,
5866 mmap_event->file_size);
5867
5868 perf_event__output_id_sample(event, &handle, &sample);
5869
5870 perf_output_end(&handle);
5871 out:
5872 mmap_event->event_id.header.size = size;
5873 }
5874
5875 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
5876 {
5877 struct vm_area_struct *vma = mmap_event->vma;
5878 struct file *file = vma->vm_file;
5879 int maj = 0, min = 0;
5880 u64 ino = 0, gen = 0;
5881 u32 prot = 0, flags = 0;
5882 unsigned int size;
5883 char tmp[16];
5884 char *buf = NULL;
5885 char *name;
5886
5887 if (file) {
5888 struct inode *inode;
5889 dev_t dev;
5890
5891 buf = kmalloc(PATH_MAX, GFP_KERNEL);
5892 if (!buf) {
5893 name = "//enomem";
5894 goto cpy_name;
5895 }
5896 /*
5897 * d_path() works from the end of the rb backwards, so we
5898 * need to add enough zero bytes after the string to handle
5899 * the 64bit alignment we do later.
5900 */
5901 name = file_path(file, buf, PATH_MAX - sizeof(u64));
5902 if (IS_ERR(name)) {
5903 name = "//toolong";
5904 goto cpy_name;
5905 }
5906 inode = file_inode(vma->vm_file);
5907 dev = inode->i_sb->s_dev;
5908 ino = inode->i_ino;
5909 gen = inode->i_generation;
5910 maj = MAJOR(dev);
5911 min = MINOR(dev);
5912
5913 if (vma->vm_flags & VM_READ)
5914 prot |= PROT_READ;
5915 if (vma->vm_flags & VM_WRITE)
5916 prot |= PROT_WRITE;
5917 if (vma->vm_flags & VM_EXEC)
5918 prot |= PROT_EXEC;
5919
5920 if (vma->vm_flags & VM_MAYSHARE)
5921 flags = MAP_SHARED;
5922 else
5923 flags = MAP_PRIVATE;
5924
5925 if (vma->vm_flags & VM_DENYWRITE)
5926 flags |= MAP_DENYWRITE;
5927 if (vma->vm_flags & VM_MAYEXEC)
5928 flags |= MAP_EXECUTABLE;
5929 if (vma->vm_flags & VM_LOCKED)
5930 flags |= MAP_LOCKED;
5931 if (vma->vm_flags & VM_HUGETLB)
5932 flags |= MAP_HUGETLB;
5933
5934 goto got_name;
5935 } else {
5936 if (vma->vm_ops && vma->vm_ops->name) {
5937 name = (char *) vma->vm_ops->name(vma);
5938 if (name)
5939 goto cpy_name;
5940 }
5941
5942 name = (char *)arch_vma_name(vma);
5943 if (name)
5944 goto cpy_name;
5945
5946 if (vma->vm_start <= vma->vm_mm->start_brk &&
5947 vma->vm_end >= vma->vm_mm->brk) {
5948 name = "[heap]";
5949 goto cpy_name;
5950 }
5951 if (vma->vm_start <= vma->vm_mm->start_stack &&
5952 vma->vm_end >= vma->vm_mm->start_stack) {
5953 name = "[stack]";
5954 goto cpy_name;
5955 }
5956
5957 name = "//anon";
5958 goto cpy_name;
5959 }
5960
5961 cpy_name:
5962 strlcpy(tmp, name, sizeof(tmp));
5963 name = tmp;
5964 got_name:
5965 /*
5966 * Since our buffer works in 8 byte units we need to align our string
5967 * size to a multiple of 8. However, we must guarantee the tail end is
5968 * zero'd out to avoid leaking random bits to userspace.
5969 */
5970 size = strlen(name)+1;
5971 while (!IS_ALIGNED(size, sizeof(u64)))
5972 name[size++] = '\0';
5973
5974 mmap_event->file_name = name;
5975 mmap_event->file_size = size;
5976 mmap_event->maj = maj;
5977 mmap_event->min = min;
5978 mmap_event->ino = ino;
5979 mmap_event->ino_generation = gen;
5980 mmap_event->prot = prot;
5981 mmap_event->flags = flags;
5982
5983 if (!(vma->vm_flags & VM_EXEC))
5984 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
5985
5986 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
5987
5988 perf_event_aux(perf_event_mmap_output,
5989 mmap_event,
5990 NULL);
5991
5992 kfree(buf);
5993 }
5994
5995 void perf_event_mmap(struct vm_area_struct *vma)
5996 {
5997 struct perf_mmap_event mmap_event;
5998
5999 if (!atomic_read(&nr_mmap_events))
6000 return;
6001
6002 mmap_event = (struct perf_mmap_event){
6003 .vma = vma,
6004 /* .file_name */
6005 /* .file_size */
6006 .event_id = {
6007 .header = {
6008 .type = PERF_RECORD_MMAP,
6009 .misc = PERF_RECORD_MISC_USER,
6010 /* .size */
6011 },
6012 /* .pid */
6013 /* .tid */
6014 .start = vma->vm_start,
6015 .len = vma->vm_end - vma->vm_start,
6016 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
6017 },
6018 /* .maj (attr_mmap2 only) */
6019 /* .min (attr_mmap2 only) */
6020 /* .ino (attr_mmap2 only) */
6021 /* .ino_generation (attr_mmap2 only) */
6022 /* .prot (attr_mmap2 only) */
6023 /* .flags (attr_mmap2 only) */
6024 };
6025
6026 perf_event_mmap_event(&mmap_event);
6027 }
6028
6029 void perf_event_aux_event(struct perf_event *event, unsigned long head,
6030 unsigned long size, u64 flags)
6031 {
6032 struct perf_output_handle handle;
6033 struct perf_sample_data sample;
6034 struct perf_aux_event {
6035 struct perf_event_header header;
6036 u64 offset;
6037 u64 size;
6038 u64 flags;
6039 } rec = {
6040 .header = {
6041 .type = PERF_RECORD_AUX,
6042 .misc = 0,
6043 .size = sizeof(rec),
6044 },
6045 .offset = head,
6046 .size = size,
6047 .flags = flags,
6048 };
6049 int ret;
6050
6051 perf_event_header__init_id(&rec.header, &sample, event);
6052 ret = perf_output_begin(&handle, event, rec.header.size);
6053
6054 if (ret)
6055 return;
6056
6057 perf_output_put(&handle, rec);
6058 perf_event__output_id_sample(event, &handle, &sample);
6059
6060 perf_output_end(&handle);
6061 }
6062
6063 /*
6064 * Lost/dropped samples logging
6065 */
6066 void perf_log_lost_samples(struct perf_event *event, u64 lost)
6067 {
6068 struct perf_output_handle handle;
6069 struct perf_sample_data sample;
6070 int ret;
6071
6072 struct {
6073 struct perf_event_header header;
6074 u64 lost;
6075 } lost_samples_event = {
6076 .header = {
6077 .type = PERF_RECORD_LOST_SAMPLES,
6078 .misc = 0,
6079 .size = sizeof(lost_samples_event),
6080 },
6081 .lost = lost,
6082 };
6083
6084 perf_event_header__init_id(&lost_samples_event.header, &sample, event);
6085
6086 ret = perf_output_begin(&handle, event,
6087 lost_samples_event.header.size);
6088 if (ret)
6089 return;
6090
6091 perf_output_put(&handle, lost_samples_event);
6092 perf_event__output_id_sample(event, &handle, &sample);
6093 perf_output_end(&handle);
6094 }
6095
6096 /*
6097 * context_switch tracking
6098 */
6099
6100 struct perf_switch_event {
6101 struct task_struct *task;
6102 struct task_struct *next_prev;
6103
6104 struct {
6105 struct perf_event_header header;
6106 u32 next_prev_pid;
6107 u32 next_prev_tid;
6108 } event_id;
6109 };
6110
6111 static int perf_event_switch_match(struct perf_event *event)
6112 {
6113 return event->attr.context_switch;
6114 }
6115
6116 static void perf_event_switch_output(struct perf_event *event, void *data)
6117 {
6118 struct perf_switch_event *se = data;
6119 struct perf_output_handle handle;
6120 struct perf_sample_data sample;
6121 int ret;
6122
6123 if (!perf_event_switch_match(event))
6124 return;
6125
6126 /* Only CPU-wide events are allowed to see next/prev pid/tid */
6127 if (event->ctx->task) {
6128 se->event_id.header.type = PERF_RECORD_SWITCH;
6129 se->event_id.header.size = sizeof(se->event_id.header);
6130 } else {
6131 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
6132 se->event_id.header.size = sizeof(se->event_id);
6133 se->event_id.next_prev_pid =
6134 perf_event_pid(event, se->next_prev);
6135 se->event_id.next_prev_tid =
6136 perf_event_tid(event, se->next_prev);
6137 }
6138
6139 perf_event_header__init_id(&se->event_id.header, &sample, event);
6140
6141 ret = perf_output_begin(&handle, event, se->event_id.header.size);
6142 if (ret)
6143 return;
6144
6145 if (event->ctx->task)
6146 perf_output_put(&handle, se->event_id.header);
6147 else
6148 perf_output_put(&handle, se->event_id);
6149
6150 perf_event__output_id_sample(event, &handle, &sample);
6151
6152 perf_output_end(&handle);
6153 }
6154
6155 static void perf_event_switch(struct task_struct *task,
6156 struct task_struct *next_prev, bool sched_in)
6157 {
6158 struct perf_switch_event switch_event;
6159
6160 /* N.B. caller checks nr_switch_events != 0 */
6161
6162 switch_event = (struct perf_switch_event){
6163 .task = task,
6164 .next_prev = next_prev,
6165 .event_id = {
6166 .header = {
6167 /* .type */
6168 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
6169 /* .size */
6170 },
6171 /* .next_prev_pid */
6172 /* .next_prev_tid */
6173 },
6174 };
6175
6176 perf_event_aux(perf_event_switch_output,
6177 &switch_event,
6178 NULL);
6179 }
6180
6181 /*
6182 * IRQ throttle logging
6183 */
6184
6185 static void perf_log_throttle(struct perf_event *event, int enable)
6186 {
6187 struct perf_output_handle handle;
6188 struct perf_sample_data sample;
6189 int ret;
6190
6191 struct {
6192 struct perf_event_header header;
6193 u64 time;
6194 u64 id;
6195 u64 stream_id;
6196 } throttle_event = {
6197 .header = {
6198 .type = PERF_RECORD_THROTTLE,
6199 .misc = 0,
6200 .size = sizeof(throttle_event),
6201 },
6202 .time = perf_event_clock(event),
6203 .id = primary_event_id(event),
6204 .stream_id = event->id,
6205 };
6206
6207 if (enable)
6208 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
6209
6210 perf_event_header__init_id(&throttle_event.header, &sample, event);
6211
6212 ret = perf_output_begin(&handle, event,
6213 throttle_event.header.size);
6214 if (ret)
6215 return;
6216
6217 perf_output_put(&handle, throttle_event);
6218 perf_event__output_id_sample(event, &handle, &sample);
6219 perf_output_end(&handle);
6220 }
6221
6222 static void perf_log_itrace_start(struct perf_event *event)
6223 {
6224 struct perf_output_handle handle;
6225 struct perf_sample_data sample;
6226 struct perf_aux_event {
6227 struct perf_event_header header;
6228 u32 pid;
6229 u32 tid;
6230 } rec;
6231 int ret;
6232
6233 if (event->parent)
6234 event = event->parent;
6235
6236 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
6237 event->hw.itrace_started)
6238 return;
6239
6240 rec.header.type = PERF_RECORD_ITRACE_START;
6241 rec.header.misc = 0;
6242 rec.header.size = sizeof(rec);
6243 rec.pid = perf_event_pid(event, current);
6244 rec.tid = perf_event_tid(event, current);
6245
6246 perf_event_header__init_id(&rec.header, &sample, event);
6247 ret = perf_output_begin(&handle, event, rec.header.size);
6248
6249 if (ret)
6250 return;
6251
6252 perf_output_put(&handle, rec);
6253 perf_event__output_id_sample(event, &handle, &sample);
6254
6255 perf_output_end(&handle);
6256 }
6257
6258 /*
6259 * Generic event overflow handling, sampling.
6260 */
6261
6262 static int __perf_event_overflow(struct perf_event *event,
6263 int throttle, struct perf_sample_data *data,
6264 struct pt_regs *regs)
6265 {
6266 int events = atomic_read(&event->event_limit);
6267 struct hw_perf_event *hwc = &event->hw;
6268 u64 seq;
6269 int ret = 0;
6270
6271 /*
6272 * Non-sampling counters might still use the PMI to fold short
6273 * hardware counters, ignore those.
6274 */
6275 if (unlikely(!is_sampling_event(event)))
6276 return 0;
6277
6278 seq = __this_cpu_read(perf_throttled_seq);
6279 if (seq != hwc->interrupts_seq) {
6280 hwc->interrupts_seq = seq;
6281 hwc->interrupts = 1;
6282 } else {
6283 hwc->interrupts++;
6284 if (unlikely(throttle
6285 && hwc->interrupts >= max_samples_per_tick)) {
6286 __this_cpu_inc(perf_throttled_count);
6287 hwc->interrupts = MAX_INTERRUPTS;
6288 perf_log_throttle(event, 0);
6289 tick_nohz_full_kick();
6290 ret = 1;
6291 }
6292 }
6293
6294 if (event->attr.freq) {
6295 u64 now = perf_clock();
6296 s64 delta = now - hwc->freq_time_stamp;
6297
6298 hwc->freq_time_stamp = now;
6299
6300 if (delta > 0 && delta < 2*TICK_NSEC)
6301 perf_adjust_period(event, delta, hwc->last_period, true);
6302 }
6303
6304 /*
6305 * XXX event_limit might not quite work as expected on inherited
6306 * events
6307 */
6308
6309 event->pending_kill = POLL_IN;
6310 if (events && atomic_dec_and_test(&event->event_limit)) {
6311 ret = 1;
6312 event->pending_kill = POLL_HUP;
6313 event->pending_disable = 1;
6314 irq_work_queue(&event->pending);
6315 }
6316
6317 if (event->overflow_handler)
6318 event->overflow_handler(event, data, regs);
6319 else
6320 perf_event_output(event, data, regs);
6321
6322 if (*perf_event_fasync(event) && event->pending_kill) {
6323 event->pending_wakeup = 1;
6324 irq_work_queue(&event->pending);
6325 }
6326
6327 return ret;
6328 }
6329
6330 int perf_event_overflow(struct perf_event *event,
6331 struct perf_sample_data *data,
6332 struct pt_regs *regs)
6333 {
6334 return __perf_event_overflow(event, 1, data, regs);
6335 }
6336
6337 /*
6338 * Generic software event infrastructure
6339 */
6340
6341 struct swevent_htable {
6342 struct swevent_hlist *swevent_hlist;
6343 struct mutex hlist_mutex;
6344 int hlist_refcount;
6345
6346 /* Recursion avoidance in each contexts */
6347 int recursion[PERF_NR_CONTEXTS];
6348
6349 /* Keeps track of cpu being initialized/exited */
6350 bool online;
6351 };
6352
6353 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
6354
6355 /*
6356 * We directly increment event->count and keep a second value in
6357 * event->hw.period_left to count intervals. This period event
6358 * is kept in the range [-sample_period, 0] so that we can use the
6359 * sign as trigger.
6360 */
6361
6362 u64 perf_swevent_set_period(struct perf_event *event)
6363 {
6364 struct hw_perf_event *hwc = &event->hw;
6365 u64 period = hwc->last_period;
6366 u64 nr, offset;
6367 s64 old, val;
6368
6369 hwc->last_period = hwc->sample_period;
6370
6371 again:
6372 old = val = local64_read(&hwc->period_left);
6373 if (val < 0)
6374 return 0;
6375
6376 nr = div64_u64(period + val, period);
6377 offset = nr * period;
6378 val -= offset;
6379 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
6380 goto again;
6381
6382 return nr;
6383 }
6384
6385 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
6386 struct perf_sample_data *data,
6387 struct pt_regs *regs)
6388 {
6389 struct hw_perf_event *hwc = &event->hw;
6390 int throttle = 0;
6391
6392 if (!overflow)
6393 overflow = perf_swevent_set_period(event);
6394
6395 if (hwc->interrupts == MAX_INTERRUPTS)
6396 return;
6397
6398 for (; overflow; overflow--) {
6399 if (__perf_event_overflow(event, throttle,
6400 data, regs)) {
6401 /*
6402 * We inhibit the overflow from happening when
6403 * hwc->interrupts == MAX_INTERRUPTS.
6404 */
6405 break;
6406 }
6407 throttle = 1;
6408 }
6409 }
6410
6411 static void perf_swevent_event(struct perf_event *event, u64 nr,
6412 struct perf_sample_data *data,
6413 struct pt_regs *regs)
6414 {
6415 struct hw_perf_event *hwc = &event->hw;
6416
6417 local64_add(nr, &event->count);
6418
6419 if (!regs)
6420 return;
6421
6422 if (!is_sampling_event(event))
6423 return;
6424
6425 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
6426 data->period = nr;
6427 return perf_swevent_overflow(event, 1, data, regs);
6428 } else
6429 data->period = event->hw.last_period;
6430
6431 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
6432 return perf_swevent_overflow(event, 1, data, regs);
6433
6434 if (local64_add_negative(nr, &hwc->period_left))
6435 return;
6436
6437 perf_swevent_overflow(event, 0, data, regs);
6438 }
6439
6440 static int perf_exclude_event(struct perf_event *event,
6441 struct pt_regs *regs)
6442 {
6443 if (event->hw.state & PERF_HES_STOPPED)
6444 return 1;
6445
6446 if (regs) {
6447 if (event->attr.exclude_user && user_mode(regs))
6448 return 1;
6449
6450 if (event->attr.exclude_kernel && !user_mode(regs))
6451 return 1;
6452 }
6453
6454 return 0;
6455 }
6456
6457 static int perf_swevent_match(struct perf_event *event,
6458 enum perf_type_id type,
6459 u32 event_id,
6460 struct perf_sample_data *data,
6461 struct pt_regs *regs)
6462 {
6463 if (event->attr.type != type)
6464 return 0;
6465
6466 if (event->attr.config != event_id)
6467 return 0;
6468
6469 if (perf_exclude_event(event, regs))
6470 return 0;
6471
6472 return 1;
6473 }
6474
6475 static inline u64 swevent_hash(u64 type, u32 event_id)
6476 {
6477 u64 val = event_id | (type << 32);
6478
6479 return hash_64(val, SWEVENT_HLIST_BITS);
6480 }
6481
6482 static inline struct hlist_head *
6483 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
6484 {
6485 u64 hash = swevent_hash(type, event_id);
6486
6487 return &hlist->heads[hash];
6488 }
6489
6490 /* For the read side: events when they trigger */
6491 static inline struct hlist_head *
6492 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
6493 {
6494 struct swevent_hlist *hlist;
6495
6496 hlist = rcu_dereference(swhash->swevent_hlist);
6497 if (!hlist)
6498 return NULL;
6499
6500 return __find_swevent_head(hlist, type, event_id);
6501 }
6502
6503 /* For the event head insertion and removal in the hlist */
6504 static inline struct hlist_head *
6505 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
6506 {
6507 struct swevent_hlist *hlist;
6508 u32 event_id = event->attr.config;
6509 u64 type = event->attr.type;
6510
6511 /*
6512 * Event scheduling is always serialized against hlist allocation
6513 * and release. Which makes the protected version suitable here.
6514 * The context lock guarantees that.
6515 */
6516 hlist = rcu_dereference_protected(swhash->swevent_hlist,
6517 lockdep_is_held(&event->ctx->lock));
6518 if (!hlist)
6519 return NULL;
6520
6521 return __find_swevent_head(hlist, type, event_id);
6522 }
6523
6524 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
6525 u64 nr,
6526 struct perf_sample_data *data,
6527 struct pt_regs *regs)
6528 {
6529 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6530 struct perf_event *event;
6531 struct hlist_head *head;
6532
6533 rcu_read_lock();
6534 head = find_swevent_head_rcu(swhash, type, event_id);
6535 if (!head)
6536 goto end;
6537
6538 hlist_for_each_entry_rcu(event, head, hlist_entry) {
6539 if (perf_swevent_match(event, type, event_id, data, regs))
6540 perf_swevent_event(event, nr, data, regs);
6541 }
6542 end:
6543 rcu_read_unlock();
6544 }
6545
6546 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
6547
6548 int perf_swevent_get_recursion_context(void)
6549 {
6550 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6551
6552 return get_recursion_context(swhash->recursion);
6553 }
6554 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
6555
6556 inline void perf_swevent_put_recursion_context(int rctx)
6557 {
6558 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6559
6560 put_recursion_context(swhash->recursion, rctx);
6561 }
6562
6563 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
6564 {
6565 struct perf_sample_data data;
6566
6567 if (WARN_ON_ONCE(!regs))
6568 return;
6569
6570 perf_sample_data_init(&data, addr, 0);
6571 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
6572 }
6573
6574 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
6575 {
6576 int rctx;
6577
6578 preempt_disable_notrace();
6579 rctx = perf_swevent_get_recursion_context();
6580 if (unlikely(rctx < 0))
6581 goto fail;
6582
6583 ___perf_sw_event(event_id, nr, regs, addr);
6584
6585 perf_swevent_put_recursion_context(rctx);
6586 fail:
6587 preempt_enable_notrace();
6588 }
6589
6590 static void perf_swevent_read(struct perf_event *event)
6591 {
6592 }
6593
6594 static int perf_swevent_add(struct perf_event *event, int flags)
6595 {
6596 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6597 struct hw_perf_event *hwc = &event->hw;
6598 struct hlist_head *head;
6599
6600 if (is_sampling_event(event)) {
6601 hwc->last_period = hwc->sample_period;
6602 perf_swevent_set_period(event);
6603 }
6604
6605 hwc->state = !(flags & PERF_EF_START);
6606
6607 head = find_swevent_head(swhash, event);
6608 if (!head) {
6609 /*
6610 * We can race with cpu hotplug code. Do not
6611 * WARN if the cpu just got unplugged.
6612 */
6613 WARN_ON_ONCE(swhash->online);
6614 return -EINVAL;
6615 }
6616
6617 hlist_add_head_rcu(&event->hlist_entry, head);
6618 perf_event_update_userpage(event);
6619
6620 return 0;
6621 }
6622
6623 static void perf_swevent_del(struct perf_event *event, int flags)
6624 {
6625 hlist_del_rcu(&event->hlist_entry);
6626 }
6627
6628 static void perf_swevent_start(struct perf_event *event, int flags)
6629 {
6630 event->hw.state = 0;
6631 }
6632
6633 static void perf_swevent_stop(struct perf_event *event, int flags)
6634 {
6635 event->hw.state = PERF_HES_STOPPED;
6636 }
6637
6638 /* Deref the hlist from the update side */
6639 static inline struct swevent_hlist *
6640 swevent_hlist_deref(struct swevent_htable *swhash)
6641 {
6642 return rcu_dereference_protected(swhash->swevent_hlist,
6643 lockdep_is_held(&swhash->hlist_mutex));
6644 }
6645
6646 static void swevent_hlist_release(struct swevent_htable *swhash)
6647 {
6648 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
6649
6650 if (!hlist)
6651 return;
6652
6653 RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
6654 kfree_rcu(hlist, rcu_head);
6655 }
6656
6657 static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
6658 {
6659 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6660
6661 mutex_lock(&swhash->hlist_mutex);
6662
6663 if (!--swhash->hlist_refcount)
6664 swevent_hlist_release(swhash);
6665
6666 mutex_unlock(&swhash->hlist_mutex);
6667 }
6668
6669 static void swevent_hlist_put(struct perf_event *event)
6670 {
6671 int cpu;
6672
6673 for_each_possible_cpu(cpu)
6674 swevent_hlist_put_cpu(event, cpu);
6675 }
6676
6677 static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
6678 {
6679 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6680 int err = 0;
6681
6682 mutex_lock(&swhash->hlist_mutex);
6683
6684 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
6685 struct swevent_hlist *hlist;
6686
6687 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
6688 if (!hlist) {
6689 err = -ENOMEM;
6690 goto exit;
6691 }
6692 rcu_assign_pointer(swhash->swevent_hlist, hlist);
6693 }
6694 swhash->hlist_refcount++;
6695 exit:
6696 mutex_unlock(&swhash->hlist_mutex);
6697
6698 return err;
6699 }
6700
6701 static int swevent_hlist_get(struct perf_event *event)
6702 {
6703 int err;
6704 int cpu, failed_cpu;
6705
6706 get_online_cpus();
6707 for_each_possible_cpu(cpu) {
6708 err = swevent_hlist_get_cpu(event, cpu);
6709 if (err) {
6710 failed_cpu = cpu;
6711 goto fail;
6712 }
6713 }
6714 put_online_cpus();
6715
6716 return 0;
6717 fail:
6718 for_each_possible_cpu(cpu) {
6719 if (cpu == failed_cpu)
6720 break;
6721 swevent_hlist_put_cpu(event, cpu);
6722 }
6723
6724 put_online_cpus();
6725 return err;
6726 }
6727
6728 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
6729
6730 static void sw_perf_event_destroy(struct perf_event *event)
6731 {
6732 u64 event_id = event->attr.config;
6733
6734 WARN_ON(event->parent);
6735
6736 static_key_slow_dec(&perf_swevent_enabled[event_id]);
6737 swevent_hlist_put(event);
6738 }
6739
6740 static int perf_swevent_init(struct perf_event *event)
6741 {
6742 u64 event_id = event->attr.config;
6743
6744 if (event->attr.type != PERF_TYPE_SOFTWARE)
6745 return -ENOENT;
6746
6747 /*
6748 * no branch sampling for software events
6749 */
6750 if (has_branch_stack(event))
6751 return -EOPNOTSUPP;
6752
6753 switch (event_id) {
6754 case PERF_COUNT_SW_CPU_CLOCK:
6755 case PERF_COUNT_SW_TASK_CLOCK:
6756 return -ENOENT;
6757
6758 default:
6759 break;
6760 }
6761
6762 if (event_id >= PERF_COUNT_SW_MAX)
6763 return -ENOENT;
6764
6765 if (!event->parent) {
6766 int err;
6767
6768 err = swevent_hlist_get(event);
6769 if (err)
6770 return err;
6771
6772 static_key_slow_inc(&perf_swevent_enabled[event_id]);
6773 event->destroy = sw_perf_event_destroy;
6774 }
6775
6776 return 0;
6777 }
6778
6779 static struct pmu perf_swevent = {
6780 .task_ctx_nr = perf_sw_context,
6781
6782 .capabilities = PERF_PMU_CAP_NO_NMI,
6783
6784 .event_init = perf_swevent_init,
6785 .add = perf_swevent_add,
6786 .del = perf_swevent_del,
6787 .start = perf_swevent_start,
6788 .stop = perf_swevent_stop,
6789 .read = perf_swevent_read,
6790 };
6791
6792 #ifdef CONFIG_EVENT_TRACING
6793
6794 static int perf_tp_filter_match(struct perf_event *event,
6795 struct perf_sample_data *data)
6796 {
6797 void *record = data->raw->data;
6798
6799 if (likely(!event->filter) || filter_match_preds(event->filter, record))
6800 return 1;
6801 return 0;
6802 }
6803
6804 static int perf_tp_event_match(struct perf_event *event,
6805 struct perf_sample_data *data,
6806 struct pt_regs *regs)
6807 {
6808 if (event->hw.state & PERF_HES_STOPPED)
6809 return 0;
6810 /*
6811 * All tracepoints are from kernel-space.
6812 */
6813 if (event->attr.exclude_kernel)
6814 return 0;
6815
6816 if (!perf_tp_filter_match(event, data))
6817 return 0;
6818
6819 return 1;
6820 }
6821
6822 void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
6823 struct pt_regs *regs, struct hlist_head *head, int rctx,
6824 struct task_struct *task)
6825 {
6826 struct perf_sample_data data;
6827 struct perf_event *event;
6828
6829 struct perf_raw_record raw = {
6830 .size = entry_size,
6831 .data = record,
6832 };
6833
6834 perf_sample_data_init(&data, addr, 0);
6835 data.raw = &raw;
6836
6837 hlist_for_each_entry_rcu(event, head, hlist_entry) {
6838 if (perf_tp_event_match(event, &data, regs))
6839 perf_swevent_event(event, count, &data, regs);
6840 }
6841
6842 /*
6843 * If we got specified a target task, also iterate its context and
6844 * deliver this event there too.
6845 */
6846 if (task && task != current) {
6847 struct perf_event_context *ctx;
6848 struct trace_entry *entry = record;
6849
6850 rcu_read_lock();
6851 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
6852 if (!ctx)
6853 goto unlock;
6854
6855 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
6856 if (event->attr.type != PERF_TYPE_TRACEPOINT)
6857 continue;
6858 if (event->attr.config != entry->type)
6859 continue;
6860 if (perf_tp_event_match(event, &data, regs))
6861 perf_swevent_event(event, count, &data, regs);
6862 }
6863 unlock:
6864 rcu_read_unlock();
6865 }
6866
6867 perf_swevent_put_recursion_context(rctx);
6868 }
6869 EXPORT_SYMBOL_GPL(perf_tp_event);
6870
6871 static void tp_perf_event_destroy(struct perf_event *event)
6872 {
6873 perf_trace_destroy(event);
6874 }
6875
6876 static int perf_tp_event_init(struct perf_event *event)
6877 {
6878 int err;
6879
6880 if (event->attr.type != PERF_TYPE_TRACEPOINT)
6881 return -ENOENT;
6882
6883 /*
6884 * no branch sampling for tracepoint events
6885 */
6886 if (has_branch_stack(event))
6887 return -EOPNOTSUPP;
6888
6889 err = perf_trace_init(event);
6890 if (err)
6891 return err;
6892
6893 event->destroy = tp_perf_event_destroy;
6894
6895 return 0;
6896 }
6897
6898 static struct pmu perf_tracepoint = {
6899 .task_ctx_nr = perf_sw_context,
6900
6901 .event_init = perf_tp_event_init,
6902 .add = perf_trace_add,
6903 .del = perf_trace_del,
6904 .start = perf_swevent_start,
6905 .stop = perf_swevent_stop,
6906 .read = perf_swevent_read,
6907 };
6908
6909 static inline void perf_tp_register(void)
6910 {
6911 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
6912 }
6913
6914 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
6915 {
6916 char *filter_str;
6917 int ret;
6918
6919 if (event->attr.type != PERF_TYPE_TRACEPOINT)
6920 return -EINVAL;
6921
6922 filter_str = strndup_user(arg, PAGE_SIZE);
6923 if (IS_ERR(filter_str))
6924 return PTR_ERR(filter_str);
6925
6926 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
6927
6928 kfree(filter_str);
6929 return ret;
6930 }
6931
6932 static void perf_event_free_filter(struct perf_event *event)
6933 {
6934 ftrace_profile_free_filter(event);
6935 }
6936
6937 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
6938 {
6939 struct bpf_prog *prog;
6940
6941 if (event->attr.type != PERF_TYPE_TRACEPOINT)
6942 return -EINVAL;
6943
6944 if (event->tp_event->prog)
6945 return -EEXIST;
6946
6947 if (!(event->tp_event->flags & TRACE_EVENT_FL_UKPROBE))
6948 /* bpf programs can only be attached to u/kprobes */
6949 return -EINVAL;
6950
6951 prog = bpf_prog_get(prog_fd);
6952 if (IS_ERR(prog))
6953 return PTR_ERR(prog);
6954
6955 if (prog->type != BPF_PROG_TYPE_KPROBE) {
6956 /* valid fd, but invalid bpf program type */
6957 bpf_prog_put(prog);
6958 return -EINVAL;
6959 }
6960
6961 event->tp_event->prog = prog;
6962
6963 return 0;
6964 }
6965
6966 static void perf_event_free_bpf_prog(struct perf_event *event)
6967 {
6968 struct bpf_prog *prog;
6969
6970 if (!event->tp_event)
6971 return;
6972
6973 prog = event->tp_event->prog;
6974 if (prog) {
6975 event->tp_event->prog = NULL;
6976 bpf_prog_put(prog);
6977 }
6978 }
6979
6980 #else
6981
6982 static inline void perf_tp_register(void)
6983 {
6984 }
6985
6986 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
6987 {
6988 return -ENOENT;
6989 }
6990
6991 static void perf_event_free_filter(struct perf_event *event)
6992 {
6993 }
6994
6995 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
6996 {
6997 return -ENOENT;
6998 }
6999
7000 static void perf_event_free_bpf_prog(struct perf_event *event)
7001 {
7002 }
7003 #endif /* CONFIG_EVENT_TRACING */
7004
7005 #ifdef CONFIG_HAVE_HW_BREAKPOINT
7006 void perf_bp_event(struct perf_event *bp, void *data)
7007 {
7008 struct perf_sample_data sample;
7009 struct pt_regs *regs = data;
7010
7011 perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
7012
7013 if (!bp->hw.state && !perf_exclude_event(bp, regs))
7014 perf_swevent_event(bp, 1, &sample, regs);
7015 }
7016 #endif
7017
7018 /*
7019 * hrtimer based swevent callback
7020 */
7021
7022 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
7023 {
7024 enum hrtimer_restart ret = HRTIMER_RESTART;
7025 struct perf_sample_data data;
7026 struct pt_regs *regs;
7027 struct perf_event *event;
7028 u64 period;
7029
7030 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
7031
7032 if (event->state != PERF_EVENT_STATE_ACTIVE)
7033 return HRTIMER_NORESTART;
7034
7035 event->pmu->read(event);
7036
7037 perf_sample_data_init(&data, 0, event->hw.last_period);
7038 regs = get_irq_regs();
7039
7040 if (regs && !perf_exclude_event(event, regs)) {
7041 if (!(event->attr.exclude_idle && is_idle_task(current)))
7042 if (__perf_event_overflow(event, 1, &data, regs))
7043 ret = HRTIMER_NORESTART;
7044 }
7045
7046 period = max_t(u64, 10000, event->hw.sample_period);
7047 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
7048
7049 return ret;
7050 }
7051
7052 static void perf_swevent_start_hrtimer(struct perf_event *event)
7053 {
7054 struct hw_perf_event *hwc = &event->hw;
7055 s64 period;
7056
7057 if (!is_sampling_event(event))
7058 return;
7059
7060 period = local64_read(&hwc->period_left);
7061 if (period) {
7062 if (period < 0)
7063 period = 10000;
7064
7065 local64_set(&hwc->period_left, 0);
7066 } else {
7067 period = max_t(u64, 10000, hwc->sample_period);
7068 }
7069 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
7070 HRTIMER_MODE_REL_PINNED);
7071 }
7072
7073 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
7074 {
7075 struct hw_perf_event *hwc = &event->hw;
7076
7077 if (is_sampling_event(event)) {
7078 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
7079 local64_set(&hwc->period_left, ktime_to_ns(remaining));
7080
7081 hrtimer_cancel(&hwc->hrtimer);
7082 }
7083 }
7084
7085 static void perf_swevent_init_hrtimer(struct perf_event *event)
7086 {
7087 struct hw_perf_event *hwc = &event->hw;
7088
7089 if (!is_sampling_event(event))
7090 return;
7091
7092 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
7093 hwc->hrtimer.function = perf_swevent_hrtimer;
7094
7095 /*
7096 * Since hrtimers have a fixed rate, we can do a static freq->period
7097 * mapping and avoid the whole period adjust feedback stuff.
7098 */
7099 if (event->attr.freq) {
7100 long freq = event->attr.sample_freq;
7101
7102 event->attr.sample_period = NSEC_PER_SEC / freq;
7103 hwc->sample_period = event->attr.sample_period;
7104 local64_set(&hwc->period_left, hwc->sample_period);
7105 hwc->last_period = hwc->sample_period;
7106 event->attr.freq = 0;
7107 }
7108 }
7109
7110 /*
7111 * Software event: cpu wall time clock
7112 */
7113
7114 static void cpu_clock_event_update(struct perf_event *event)
7115 {
7116 s64 prev;
7117 u64 now;
7118
7119 now = local_clock();
7120 prev = local64_xchg(&event->hw.prev_count, now);
7121 local64_add(now - prev, &event->count);
7122 }
7123
7124 static void cpu_clock_event_start(struct perf_event *event, int flags)
7125 {
7126 local64_set(&event->hw.prev_count, local_clock());
7127 perf_swevent_start_hrtimer(event);
7128 }
7129
7130 static void cpu_clock_event_stop(struct perf_event *event, int flags)
7131 {
7132 perf_swevent_cancel_hrtimer(event);
7133 cpu_clock_event_update(event);
7134 }
7135
7136 static int cpu_clock_event_add(struct perf_event *event, int flags)
7137 {
7138 if (flags & PERF_EF_START)
7139 cpu_clock_event_start(event, flags);
7140 perf_event_update_userpage(event);
7141
7142 return 0;
7143 }
7144
7145 static void cpu_clock_event_del(struct perf_event *event, int flags)
7146 {
7147 cpu_clock_event_stop(event, flags);
7148 }
7149
7150 static void cpu_clock_event_read(struct perf_event *event)
7151 {
7152 cpu_clock_event_update(event);
7153 }
7154
7155 static int cpu_clock_event_init(struct perf_event *event)
7156 {
7157 if (event->attr.type != PERF_TYPE_SOFTWARE)
7158 return -ENOENT;
7159
7160 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
7161 return -ENOENT;
7162
7163 /*
7164 * no branch sampling for software events
7165 */
7166 if (has_branch_stack(event))
7167 return -EOPNOTSUPP;
7168
7169 perf_swevent_init_hrtimer(event);
7170
7171 return 0;
7172 }
7173
7174 static struct pmu perf_cpu_clock = {
7175 .task_ctx_nr = perf_sw_context,
7176
7177 .capabilities = PERF_PMU_CAP_NO_NMI,
7178
7179 .event_init = cpu_clock_event_init,
7180 .add = cpu_clock_event_add,
7181 .del = cpu_clock_event_del,
7182 .start = cpu_clock_event_start,
7183 .stop = cpu_clock_event_stop,
7184 .read = cpu_clock_event_read,
7185 };
7186
7187 /*
7188 * Software event: task time clock
7189 */
7190
7191 static void task_clock_event_update(struct perf_event *event, u64 now)
7192 {
7193 u64 prev;
7194 s64 delta;
7195
7196 prev = local64_xchg(&event->hw.prev_count, now);
7197 delta = now - prev;
7198 local64_add(delta, &event->count);
7199 }
7200
7201 static void task_clock_event_start(struct perf_event *event, int flags)
7202 {
7203 local64_set(&event->hw.prev_count, event->ctx->time);
7204 perf_swevent_start_hrtimer(event);
7205 }
7206
7207 static void task_clock_event_stop(struct perf_event *event, int flags)
7208 {
7209 perf_swevent_cancel_hrtimer(event);
7210 task_clock_event_update(event, event->ctx->time);
7211 }
7212
7213 static int task_clock_event_add(struct perf_event *event, int flags)
7214 {
7215 if (flags & PERF_EF_START)
7216 task_clock_event_start(event, flags);
7217 perf_event_update_userpage(event);
7218
7219 return 0;
7220 }
7221
7222 static void task_clock_event_del(struct perf_event *event, int flags)
7223 {
7224 task_clock_event_stop(event, PERF_EF_UPDATE);
7225 }
7226
7227 static void task_clock_event_read(struct perf_event *event)
7228 {
7229 u64 now = perf_clock();
7230 u64 delta = now - event->ctx->timestamp;
7231 u64 time = event->ctx->time + delta;
7232
7233 task_clock_event_update(event, time);
7234 }
7235
7236 static int task_clock_event_init(struct perf_event *event)
7237 {
7238 if (event->attr.type != PERF_TYPE_SOFTWARE)
7239 return -ENOENT;
7240
7241 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
7242 return -ENOENT;
7243
7244 /*
7245 * no branch sampling for software events
7246 */
7247 if (has_branch_stack(event))
7248 return -EOPNOTSUPP;
7249
7250 perf_swevent_init_hrtimer(event);
7251
7252 return 0;
7253 }
7254
7255 static struct pmu perf_task_clock = {
7256 .task_ctx_nr = perf_sw_context,
7257
7258 .capabilities = PERF_PMU_CAP_NO_NMI,
7259
7260 .event_init = task_clock_event_init,
7261 .add = task_clock_event_add,
7262 .del = task_clock_event_del,
7263 .start = task_clock_event_start,
7264 .stop = task_clock_event_stop,
7265 .read = task_clock_event_read,
7266 };
7267
7268 static void perf_pmu_nop_void(struct pmu *pmu)
7269 {
7270 }
7271
7272 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
7273 {
7274 }
7275
7276 static int perf_pmu_nop_int(struct pmu *pmu)
7277 {
7278 return 0;
7279 }
7280
7281 DEFINE_PER_CPU(unsigned int, nop_txn_flags);
7282
7283 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
7284 {
7285 __this_cpu_write(nop_txn_flags, flags);
7286
7287 if (flags & ~PERF_PMU_TXN_ADD)
7288 return;
7289
7290 perf_pmu_disable(pmu);
7291 }
7292
7293 static int perf_pmu_commit_txn(struct pmu *pmu)
7294 {
7295 unsigned int flags = __this_cpu_read(nop_txn_flags);
7296
7297 __this_cpu_write(nop_txn_flags, 0);
7298
7299 if (flags & ~PERF_PMU_TXN_ADD)
7300 return 0;
7301
7302 perf_pmu_enable(pmu);
7303 return 0;
7304 }
7305
7306 static void perf_pmu_cancel_txn(struct pmu *pmu)
7307 {
7308 unsigned int flags = __this_cpu_read(nop_txn_flags);
7309
7310 __this_cpu_write(nop_txn_flags, 0);
7311
7312 if (flags & ~PERF_PMU_TXN_ADD)
7313 return;
7314
7315 perf_pmu_enable(pmu);
7316 }
7317
7318 static int perf_event_idx_default(struct perf_event *event)
7319 {
7320 return 0;
7321 }
7322
7323 /*
7324 * Ensures all contexts with the same task_ctx_nr have the same
7325 * pmu_cpu_context too.
7326 */
7327 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
7328 {
7329 struct pmu *pmu;
7330
7331 if (ctxn < 0)
7332 return NULL;
7333
7334 list_for_each_entry(pmu, &pmus, entry) {
7335 if (pmu->task_ctx_nr == ctxn)
7336 return pmu->pmu_cpu_context;
7337 }
7338
7339 return NULL;
7340 }
7341
7342 static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
7343 {
7344 int cpu;
7345
7346 for_each_possible_cpu(cpu) {
7347 struct perf_cpu_context *cpuctx;
7348
7349 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7350
7351 if (cpuctx->unique_pmu == old_pmu)
7352 cpuctx->unique_pmu = pmu;
7353 }
7354 }
7355
7356 static void free_pmu_context(struct pmu *pmu)
7357 {
7358 struct pmu *i;
7359
7360 mutex_lock(&pmus_lock);
7361 /*
7362 * Like a real lame refcount.
7363 */
7364 list_for_each_entry(i, &pmus, entry) {
7365 if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
7366 update_pmu_context(i, pmu);
7367 goto out;
7368 }
7369 }
7370
7371 free_percpu(pmu->pmu_cpu_context);
7372 out:
7373 mutex_unlock(&pmus_lock);
7374 }
7375 static struct idr pmu_idr;
7376
7377 static ssize_t
7378 type_show(struct device *dev, struct device_attribute *attr, char *page)
7379 {
7380 struct pmu *pmu = dev_get_drvdata(dev);
7381
7382 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
7383 }
7384 static DEVICE_ATTR_RO(type);
7385
7386 static ssize_t
7387 perf_event_mux_interval_ms_show(struct device *dev,
7388 struct device_attribute *attr,
7389 char *page)
7390 {
7391 struct pmu *pmu = dev_get_drvdata(dev);
7392
7393 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
7394 }
7395
7396 static DEFINE_MUTEX(mux_interval_mutex);
7397
7398 static ssize_t
7399 perf_event_mux_interval_ms_store(struct device *dev,
7400 struct device_attribute *attr,
7401 const char *buf, size_t count)
7402 {
7403 struct pmu *pmu = dev_get_drvdata(dev);
7404 int timer, cpu, ret;
7405
7406 ret = kstrtoint(buf, 0, &timer);
7407 if (ret)
7408 return ret;
7409
7410 if (timer < 1)
7411 return -EINVAL;
7412
7413 /* same value, noting to do */
7414 if (timer == pmu->hrtimer_interval_ms)
7415 return count;
7416
7417 mutex_lock(&mux_interval_mutex);
7418 pmu->hrtimer_interval_ms = timer;
7419
7420 /* update all cpuctx for this PMU */
7421 get_online_cpus();
7422 for_each_online_cpu(cpu) {
7423 struct perf_cpu_context *cpuctx;
7424 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7425 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
7426
7427 cpu_function_call(cpu,
7428 (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
7429 }
7430 put_online_cpus();
7431 mutex_unlock(&mux_interval_mutex);
7432
7433 return count;
7434 }
7435 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
7436
7437 static struct attribute *pmu_dev_attrs[] = {
7438 &dev_attr_type.attr,
7439 &dev_attr_perf_event_mux_interval_ms.attr,
7440 NULL,
7441 };
7442 ATTRIBUTE_GROUPS(pmu_dev);
7443
7444 static int pmu_bus_running;
7445 static struct bus_type pmu_bus = {
7446 .name = "event_source",
7447 .dev_groups = pmu_dev_groups,
7448 };
7449
7450 static void pmu_dev_release(struct device *dev)
7451 {
7452 kfree(dev);
7453 }
7454
7455 static int pmu_dev_alloc(struct pmu *pmu)
7456 {
7457 int ret = -ENOMEM;
7458
7459 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
7460 if (!pmu->dev)
7461 goto out;
7462
7463 pmu->dev->groups = pmu->attr_groups;
7464 device_initialize(pmu->dev);
7465 ret = dev_set_name(pmu->dev, "%s", pmu->name);
7466 if (ret)
7467 goto free_dev;
7468
7469 dev_set_drvdata(pmu->dev, pmu);
7470 pmu->dev->bus = &pmu_bus;
7471 pmu->dev->release = pmu_dev_release;
7472 ret = device_add(pmu->dev);
7473 if (ret)
7474 goto free_dev;
7475
7476 out:
7477 return ret;
7478
7479 free_dev:
7480 put_device(pmu->dev);
7481 goto out;
7482 }
7483
7484 static struct lock_class_key cpuctx_mutex;
7485 static struct lock_class_key cpuctx_lock;
7486
7487 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
7488 {
7489 int cpu, ret;
7490
7491 mutex_lock(&pmus_lock);
7492 ret = -ENOMEM;
7493 pmu->pmu_disable_count = alloc_percpu(int);
7494 if (!pmu->pmu_disable_count)
7495 goto unlock;
7496
7497 pmu->type = -1;
7498 if (!name)
7499 goto skip_type;
7500 pmu->name = name;
7501
7502 if (type < 0) {
7503 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
7504 if (type < 0) {
7505 ret = type;
7506 goto free_pdc;
7507 }
7508 }
7509 pmu->type = type;
7510
7511 if (pmu_bus_running) {
7512 ret = pmu_dev_alloc(pmu);
7513 if (ret)
7514 goto free_idr;
7515 }
7516
7517 skip_type:
7518 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
7519 if (pmu->pmu_cpu_context)
7520 goto got_cpu_context;
7521
7522 ret = -ENOMEM;
7523 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
7524 if (!pmu->pmu_cpu_context)
7525 goto free_dev;
7526
7527 for_each_possible_cpu(cpu) {
7528 struct perf_cpu_context *cpuctx;
7529
7530 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7531 __perf_event_init_context(&cpuctx->ctx);
7532 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
7533 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
7534 cpuctx->ctx.pmu = pmu;
7535
7536 __perf_mux_hrtimer_init(cpuctx, cpu);
7537
7538 cpuctx->unique_pmu = pmu;
7539 }
7540
7541 got_cpu_context:
7542 if (!pmu->start_txn) {
7543 if (pmu->pmu_enable) {
7544 /*
7545 * If we have pmu_enable/pmu_disable calls, install
7546 * transaction stubs that use that to try and batch
7547 * hardware accesses.
7548 */
7549 pmu->start_txn = perf_pmu_start_txn;
7550 pmu->commit_txn = perf_pmu_commit_txn;
7551 pmu->cancel_txn = perf_pmu_cancel_txn;
7552 } else {
7553 pmu->start_txn = perf_pmu_nop_txn;
7554 pmu->commit_txn = perf_pmu_nop_int;
7555 pmu->cancel_txn = perf_pmu_nop_void;
7556 }
7557 }
7558
7559 if (!pmu->pmu_enable) {
7560 pmu->pmu_enable = perf_pmu_nop_void;
7561 pmu->pmu_disable = perf_pmu_nop_void;
7562 }
7563
7564 if (!pmu->event_idx)
7565 pmu->event_idx = perf_event_idx_default;
7566
7567 list_add_rcu(&pmu->entry, &pmus);
7568 atomic_set(&pmu->exclusive_cnt, 0);
7569 ret = 0;
7570 unlock:
7571 mutex_unlock(&pmus_lock);
7572
7573 return ret;
7574
7575 free_dev:
7576 device_del(pmu->dev);
7577 put_device(pmu->dev);
7578
7579 free_idr:
7580 if (pmu->type >= PERF_TYPE_MAX)
7581 idr_remove(&pmu_idr, pmu->type);
7582
7583 free_pdc:
7584 free_percpu(pmu->pmu_disable_count);
7585 goto unlock;
7586 }
7587 EXPORT_SYMBOL_GPL(perf_pmu_register);
7588
7589 void perf_pmu_unregister(struct pmu *pmu)
7590 {
7591 mutex_lock(&pmus_lock);
7592 list_del_rcu(&pmu->entry);
7593 mutex_unlock(&pmus_lock);
7594
7595 /*
7596 * We dereference the pmu list under both SRCU and regular RCU, so
7597 * synchronize against both of those.
7598 */
7599 synchronize_srcu(&pmus_srcu);
7600 synchronize_rcu();
7601
7602 free_percpu(pmu->pmu_disable_count);
7603 if (pmu->type >= PERF_TYPE_MAX)
7604 idr_remove(&pmu_idr, pmu->type);
7605 device_del(pmu->dev);
7606 put_device(pmu->dev);
7607 free_pmu_context(pmu);
7608 }
7609 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
7610
7611 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
7612 {
7613 struct perf_event_context *ctx = NULL;
7614 int ret;
7615
7616 if (!try_module_get(pmu->module))
7617 return -ENODEV;
7618
7619 if (event->group_leader != event) {
7620 /*
7621 * This ctx->mutex can nest when we're called through
7622 * inheritance. See the perf_event_ctx_lock_nested() comment.
7623 */
7624 ctx = perf_event_ctx_lock_nested(event->group_leader,
7625 SINGLE_DEPTH_NESTING);
7626 BUG_ON(!ctx);
7627 }
7628
7629 event->pmu = pmu;
7630 ret = pmu->event_init(event);
7631
7632 if (ctx)
7633 perf_event_ctx_unlock(event->group_leader, ctx);
7634
7635 if (ret)
7636 module_put(pmu->module);
7637
7638 return ret;
7639 }
7640
7641 struct pmu *perf_init_event(struct perf_event *event)
7642 {
7643 struct pmu *pmu = NULL;
7644 int idx;
7645 int ret;
7646
7647 idx = srcu_read_lock(&pmus_srcu);
7648
7649 rcu_read_lock();
7650 pmu = idr_find(&pmu_idr, event->attr.type);
7651 rcu_read_unlock();
7652 if (pmu) {
7653 ret = perf_try_init_event(pmu, event);
7654 if (ret)
7655 pmu = ERR_PTR(ret);
7656 goto unlock;
7657 }
7658
7659 list_for_each_entry_rcu(pmu, &pmus, entry) {
7660 ret = perf_try_init_event(pmu, event);
7661 if (!ret)
7662 goto unlock;
7663
7664 if (ret != -ENOENT) {
7665 pmu = ERR_PTR(ret);
7666 goto unlock;
7667 }
7668 }
7669 pmu = ERR_PTR(-ENOENT);
7670 unlock:
7671 srcu_read_unlock(&pmus_srcu, idx);
7672
7673 return pmu;
7674 }
7675
7676 static void account_event_cpu(struct perf_event *event, int cpu)
7677 {
7678 if (event->parent)
7679 return;
7680
7681 if (is_cgroup_event(event))
7682 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
7683 }
7684
7685 static void account_event(struct perf_event *event)
7686 {
7687 if (event->parent)
7688 return;
7689
7690 if (event->attach_state & PERF_ATTACH_TASK)
7691 static_key_slow_inc(&perf_sched_events.key);
7692 if (event->attr.mmap || event->attr.mmap_data)
7693 atomic_inc(&nr_mmap_events);
7694 if (event->attr.comm)
7695 atomic_inc(&nr_comm_events);
7696 if (event->attr.task)
7697 atomic_inc(&nr_task_events);
7698 if (event->attr.freq) {
7699 if (atomic_inc_return(&nr_freq_events) == 1)
7700 tick_nohz_full_kick_all();
7701 }
7702 if (event->attr.context_switch) {
7703 atomic_inc(&nr_switch_events);
7704 static_key_slow_inc(&perf_sched_events.key);
7705 }
7706 if (has_branch_stack(event))
7707 static_key_slow_inc(&perf_sched_events.key);
7708 if (is_cgroup_event(event))
7709 static_key_slow_inc(&perf_sched_events.key);
7710
7711 account_event_cpu(event, event->cpu);
7712 }
7713
7714 /*
7715 * Allocate and initialize a event structure
7716 */
7717 static struct perf_event *
7718 perf_event_alloc(struct perf_event_attr *attr, int cpu,
7719 struct task_struct *task,
7720 struct perf_event *group_leader,
7721 struct perf_event *parent_event,
7722 perf_overflow_handler_t overflow_handler,
7723 void *context, int cgroup_fd)
7724 {
7725 struct pmu *pmu;
7726 struct perf_event *event;
7727 struct hw_perf_event *hwc;
7728 long err = -EINVAL;
7729
7730 if ((unsigned)cpu >= nr_cpu_ids) {
7731 if (!task || cpu != -1)
7732 return ERR_PTR(-EINVAL);
7733 }
7734
7735 event = kzalloc(sizeof(*event), GFP_KERNEL);
7736 if (!event)
7737 return ERR_PTR(-ENOMEM);
7738
7739 /*
7740 * Single events are their own group leaders, with an
7741 * empty sibling list:
7742 */
7743 if (!group_leader)
7744 group_leader = event;
7745
7746 mutex_init(&event->child_mutex);
7747 INIT_LIST_HEAD(&event->child_list);
7748
7749 INIT_LIST_HEAD(&event->group_entry);
7750 INIT_LIST_HEAD(&event->event_entry);
7751 INIT_LIST_HEAD(&event->sibling_list);
7752 INIT_LIST_HEAD(&event->rb_entry);
7753 INIT_LIST_HEAD(&event->active_entry);
7754 INIT_HLIST_NODE(&event->hlist_entry);
7755
7756
7757 init_waitqueue_head(&event->waitq);
7758 init_irq_work(&event->pending, perf_pending_event);
7759
7760 mutex_init(&event->mmap_mutex);
7761
7762 atomic_long_set(&event->refcount, 1);
7763 event->cpu = cpu;
7764 event->attr = *attr;
7765 event->group_leader = group_leader;
7766 event->pmu = NULL;
7767 event->oncpu = -1;
7768
7769 event->parent = parent_event;
7770
7771 event->ns = get_pid_ns(task_active_pid_ns(current));
7772 event->id = atomic64_inc_return(&perf_event_id);
7773
7774 event->state = PERF_EVENT_STATE_INACTIVE;
7775
7776 if (task) {
7777 event->attach_state = PERF_ATTACH_TASK;
7778 /*
7779 * XXX pmu::event_init needs to know what task to account to
7780 * and we cannot use the ctx information because we need the
7781 * pmu before we get a ctx.
7782 */
7783 event->hw.target = task;
7784 }
7785
7786 event->clock = &local_clock;
7787 if (parent_event)
7788 event->clock = parent_event->clock;
7789
7790 if (!overflow_handler && parent_event) {
7791 overflow_handler = parent_event->overflow_handler;
7792 context = parent_event->overflow_handler_context;
7793 }
7794
7795 event->overflow_handler = overflow_handler;
7796 event->overflow_handler_context = context;
7797
7798 perf_event__state_init(event);
7799
7800 pmu = NULL;
7801
7802 hwc = &event->hw;
7803 hwc->sample_period = attr->sample_period;
7804 if (attr->freq && attr->sample_freq)
7805 hwc->sample_period = 1;
7806 hwc->last_period = hwc->sample_period;
7807
7808 local64_set(&hwc->period_left, hwc->sample_period);
7809
7810 /*
7811 * we currently do not support PERF_FORMAT_GROUP on inherited events
7812 */
7813 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
7814 goto err_ns;
7815
7816 if (!has_branch_stack(event))
7817 event->attr.branch_sample_type = 0;
7818
7819 if (cgroup_fd != -1) {
7820 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
7821 if (err)
7822 goto err_ns;
7823 }
7824
7825 pmu = perf_init_event(event);
7826 if (!pmu)
7827 goto err_ns;
7828 else if (IS_ERR(pmu)) {
7829 err = PTR_ERR(pmu);
7830 goto err_ns;
7831 }
7832
7833 err = exclusive_event_init(event);
7834 if (err)
7835 goto err_pmu;
7836
7837 if (!event->parent) {
7838 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
7839 err = get_callchain_buffers();
7840 if (err)
7841 goto err_per_task;
7842 }
7843 }
7844
7845 return event;
7846
7847 err_per_task:
7848 exclusive_event_destroy(event);
7849
7850 err_pmu:
7851 if (event->destroy)
7852 event->destroy(event);
7853 module_put(pmu->module);
7854 err_ns:
7855 if (is_cgroup_event(event))
7856 perf_detach_cgroup(event);
7857 if (event->ns)
7858 put_pid_ns(event->ns);
7859 kfree(event);
7860
7861 return ERR_PTR(err);
7862 }
7863
7864 static int perf_copy_attr(struct perf_event_attr __user *uattr,
7865 struct perf_event_attr *attr)
7866 {
7867 u32 size;
7868 int ret;
7869
7870 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
7871 return -EFAULT;
7872
7873 /*
7874 * zero the full structure, so that a short copy will be nice.
7875 */
7876 memset(attr, 0, sizeof(*attr));
7877
7878 ret = get_user(size, &uattr->size);
7879 if (ret)
7880 return ret;
7881
7882 if (size > PAGE_SIZE) /* silly large */
7883 goto err_size;
7884
7885 if (!size) /* abi compat */
7886 size = PERF_ATTR_SIZE_VER0;
7887
7888 if (size < PERF_ATTR_SIZE_VER0)
7889 goto err_size;
7890
7891 /*
7892 * If we're handed a bigger struct than we know of,
7893 * ensure all the unknown bits are 0 - i.e. new
7894 * user-space does not rely on any kernel feature
7895 * extensions we dont know about yet.
7896 */
7897 if (size > sizeof(*attr)) {
7898 unsigned char __user *addr;
7899 unsigned char __user *end;
7900 unsigned char val;
7901
7902 addr = (void __user *)uattr + sizeof(*attr);
7903 end = (void __user *)uattr + size;
7904
7905 for (; addr < end; addr++) {
7906 ret = get_user(val, addr);
7907 if (ret)
7908 return ret;
7909 if (val)
7910 goto err_size;
7911 }
7912 size = sizeof(*attr);
7913 }
7914
7915 ret = copy_from_user(attr, uattr, size);
7916 if (ret)
7917 return -EFAULT;
7918
7919 if (attr->__reserved_1)
7920 return -EINVAL;
7921
7922 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
7923 return -EINVAL;
7924
7925 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
7926 return -EINVAL;
7927
7928 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
7929 u64 mask = attr->branch_sample_type;
7930
7931 /* only using defined bits */
7932 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
7933 return -EINVAL;
7934
7935 /* at least one branch bit must be set */
7936 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
7937 return -EINVAL;
7938
7939 /* propagate priv level, when not set for branch */
7940 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
7941
7942 /* exclude_kernel checked on syscall entry */
7943 if (!attr->exclude_kernel)
7944 mask |= PERF_SAMPLE_BRANCH_KERNEL;
7945
7946 if (!attr->exclude_user)
7947 mask |= PERF_SAMPLE_BRANCH_USER;
7948
7949 if (!attr->exclude_hv)
7950 mask |= PERF_SAMPLE_BRANCH_HV;
7951 /*
7952 * adjust user setting (for HW filter setup)
7953 */
7954 attr->branch_sample_type = mask;
7955 }
7956 /* privileged levels capture (kernel, hv): check permissions */
7957 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
7958 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
7959 return -EACCES;
7960 }
7961
7962 if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
7963 ret = perf_reg_validate(attr->sample_regs_user);
7964 if (ret)
7965 return ret;
7966 }
7967
7968 if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
7969 if (!arch_perf_have_user_stack_dump())
7970 return -ENOSYS;
7971
7972 /*
7973 * We have __u32 type for the size, but so far
7974 * we can only use __u16 as maximum due to the
7975 * __u16 sample size limit.
7976 */
7977 if (attr->sample_stack_user >= USHRT_MAX)
7978 ret = -EINVAL;
7979 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
7980 ret = -EINVAL;
7981 }
7982
7983 if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
7984 ret = perf_reg_validate(attr->sample_regs_intr);
7985 out:
7986 return ret;
7987
7988 err_size:
7989 put_user(sizeof(*attr), &uattr->size);
7990 ret = -E2BIG;
7991 goto out;
7992 }
7993
7994 static int
7995 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
7996 {
7997 struct ring_buffer *rb = NULL;
7998 int ret = -EINVAL;
7999
8000 if (!output_event)
8001 goto set;
8002
8003 /* don't allow circular references */
8004 if (event == output_event)
8005 goto out;
8006
8007 /*
8008 * Don't allow cross-cpu buffers
8009 */
8010 if (output_event->cpu != event->cpu)
8011 goto out;
8012
8013 /*
8014 * If its not a per-cpu rb, it must be the same task.
8015 */
8016 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
8017 goto out;
8018
8019 /*
8020 * Mixing clocks in the same buffer is trouble you don't need.
8021 */
8022 if (output_event->clock != event->clock)
8023 goto out;
8024
8025 /*
8026 * If both events generate aux data, they must be on the same PMU
8027 */
8028 if (has_aux(event) && has_aux(output_event) &&
8029 event->pmu != output_event->pmu)
8030 goto out;
8031
8032 set:
8033 mutex_lock(&event->mmap_mutex);
8034 /* Can't redirect output if we've got an active mmap() */
8035 if (atomic_read(&event->mmap_count))
8036 goto unlock;
8037
8038 if (output_event) {
8039 /* get the rb we want to redirect to */
8040 rb = ring_buffer_get(output_event);
8041 if (!rb)
8042 goto unlock;
8043 }
8044
8045 ring_buffer_attach(event, rb);
8046
8047 ret = 0;
8048 unlock:
8049 mutex_unlock(&event->mmap_mutex);
8050
8051 out:
8052 return ret;
8053 }
8054
8055 static void mutex_lock_double(struct mutex *a, struct mutex *b)
8056 {
8057 if (b < a)
8058 swap(a, b);
8059
8060 mutex_lock(a);
8061 mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
8062 }
8063
8064 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
8065 {
8066 bool nmi_safe = false;
8067
8068 switch (clk_id) {
8069 case CLOCK_MONOTONIC:
8070 event->clock = &ktime_get_mono_fast_ns;
8071 nmi_safe = true;
8072 break;
8073
8074 case CLOCK_MONOTONIC_RAW:
8075 event->clock = &ktime_get_raw_fast_ns;
8076 nmi_safe = true;
8077 break;
8078
8079 case CLOCK_REALTIME:
8080 event->clock = &ktime_get_real_ns;
8081 break;
8082
8083 case CLOCK_BOOTTIME:
8084 event->clock = &ktime_get_boot_ns;
8085 break;
8086
8087 case CLOCK_TAI:
8088 event->clock = &ktime_get_tai_ns;
8089 break;
8090
8091 default:
8092 return -EINVAL;
8093 }
8094
8095 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
8096 return -EINVAL;
8097
8098 return 0;
8099 }
8100
8101 /**
8102 * sys_perf_event_open - open a performance event, associate it to a task/cpu
8103 *
8104 * @attr_uptr: event_id type attributes for monitoring/sampling
8105 * @pid: target pid
8106 * @cpu: target cpu
8107 * @group_fd: group leader event fd
8108 */
8109 SYSCALL_DEFINE5(perf_event_open,
8110 struct perf_event_attr __user *, attr_uptr,
8111 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
8112 {
8113 struct perf_event *group_leader = NULL, *output_event = NULL;
8114 struct perf_event *event, *sibling;
8115 struct perf_event_attr attr;
8116 struct perf_event_context *ctx, *uninitialized_var(gctx);
8117 struct file *event_file = NULL;
8118 struct fd group = {NULL, 0};
8119 struct task_struct *task = NULL;
8120 struct pmu *pmu;
8121 int event_fd;
8122 int move_group = 0;
8123 int err;
8124 int f_flags = O_RDWR;
8125 int cgroup_fd = -1;
8126
8127 /* for future expandability... */
8128 if (flags & ~PERF_FLAG_ALL)
8129 return -EINVAL;
8130
8131 err = perf_copy_attr(attr_uptr, &attr);
8132 if (err)
8133 return err;
8134
8135 if (!attr.exclude_kernel) {
8136 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
8137 return -EACCES;
8138 }
8139
8140 if (attr.freq) {
8141 if (attr.sample_freq > sysctl_perf_event_sample_rate)
8142 return -EINVAL;
8143 } else {
8144 if (attr.sample_period & (1ULL << 63))
8145 return -EINVAL;
8146 }
8147
8148 /*
8149 * In cgroup mode, the pid argument is used to pass the fd
8150 * opened to the cgroup directory in cgroupfs. The cpu argument
8151 * designates the cpu on which to monitor threads from that
8152 * cgroup.
8153 */
8154 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
8155 return -EINVAL;
8156
8157 if (flags & PERF_FLAG_FD_CLOEXEC)
8158 f_flags |= O_CLOEXEC;
8159
8160 event_fd = get_unused_fd_flags(f_flags);
8161 if (event_fd < 0)
8162 return event_fd;
8163
8164 if (group_fd != -1) {
8165 err = perf_fget_light(group_fd, &group);
8166 if (err)
8167 goto err_fd;
8168 group_leader = group.file->private_data;
8169 if (flags & PERF_FLAG_FD_OUTPUT)
8170 output_event = group_leader;
8171 if (flags & PERF_FLAG_FD_NO_GROUP)
8172 group_leader = NULL;
8173 }
8174
8175 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
8176 task = find_lively_task_by_vpid(pid);
8177 if (IS_ERR(task)) {
8178 err = PTR_ERR(task);
8179 goto err_group_fd;
8180 }
8181 }
8182
8183 if (task && group_leader &&
8184 group_leader->attr.inherit != attr.inherit) {
8185 err = -EINVAL;
8186 goto err_task;
8187 }
8188
8189 get_online_cpus();
8190
8191 if (flags & PERF_FLAG_PID_CGROUP)
8192 cgroup_fd = pid;
8193
8194 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
8195 NULL, NULL, cgroup_fd);
8196 if (IS_ERR(event)) {
8197 err = PTR_ERR(event);
8198 goto err_cpus;
8199 }
8200
8201 if (is_sampling_event(event)) {
8202 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
8203 err = -ENOTSUPP;
8204 goto err_alloc;
8205 }
8206 }
8207
8208 account_event(event);
8209
8210 /*
8211 * Special case software events and allow them to be part of
8212 * any hardware group.
8213 */
8214 pmu = event->pmu;
8215
8216 if (attr.use_clockid) {
8217 err = perf_event_set_clock(event, attr.clockid);
8218 if (err)
8219 goto err_alloc;
8220 }
8221
8222 if (group_leader &&
8223 (is_software_event(event) != is_software_event(group_leader))) {
8224 if (is_software_event(event)) {
8225 /*
8226 * If event and group_leader are not both a software
8227 * event, and event is, then group leader is not.
8228 *
8229 * Allow the addition of software events to !software
8230 * groups, this is safe because software events never
8231 * fail to schedule.
8232 */
8233 pmu = group_leader->pmu;
8234 } else if (is_software_event(group_leader) &&
8235 (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
8236 /*
8237 * In case the group is a pure software group, and we
8238 * try to add a hardware event, move the whole group to
8239 * the hardware context.
8240 */
8241 move_group = 1;
8242 }
8243 }
8244
8245 /*
8246 * Get the target context (task or percpu):
8247 */
8248 ctx = find_get_context(pmu, task, event);
8249 if (IS_ERR(ctx)) {
8250 err = PTR_ERR(ctx);
8251 goto err_alloc;
8252 }
8253
8254 if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
8255 err = -EBUSY;
8256 goto err_context;
8257 }
8258
8259 if (task) {
8260 put_task_struct(task);
8261 task = NULL;
8262 }
8263
8264 /*
8265 * Look up the group leader (we will attach this event to it):
8266 */
8267 if (group_leader) {
8268 err = -EINVAL;
8269
8270 /*
8271 * Do not allow a recursive hierarchy (this new sibling
8272 * becoming part of another group-sibling):
8273 */
8274 if (group_leader->group_leader != group_leader)
8275 goto err_context;
8276
8277 /* All events in a group should have the same clock */
8278 if (group_leader->clock != event->clock)
8279 goto err_context;
8280
8281 /*
8282 * Do not allow to attach to a group in a different
8283 * task or CPU context:
8284 */
8285 if (move_group) {
8286 /*
8287 * Make sure we're both on the same task, or both
8288 * per-cpu events.
8289 */
8290 if (group_leader->ctx->task != ctx->task)
8291 goto err_context;
8292
8293 /*
8294 * Make sure we're both events for the same CPU;
8295 * grouping events for different CPUs is broken; since
8296 * you can never concurrently schedule them anyhow.
8297 */
8298 if (group_leader->cpu != event->cpu)
8299 goto err_context;
8300 } else {
8301 if (group_leader->ctx != ctx)
8302 goto err_context;
8303 }
8304
8305 /*
8306 * Only a group leader can be exclusive or pinned
8307 */
8308 if (attr.exclusive || attr.pinned)
8309 goto err_context;
8310 }
8311
8312 if (output_event) {
8313 err = perf_event_set_output(event, output_event);
8314 if (err)
8315 goto err_context;
8316 }
8317
8318 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
8319 f_flags);
8320 if (IS_ERR(event_file)) {
8321 err = PTR_ERR(event_file);
8322 goto err_context;
8323 }
8324
8325 if (move_group) {
8326 gctx = group_leader->ctx;
8327
8328 /*
8329 * See perf_event_ctx_lock() for comments on the details
8330 * of swizzling perf_event::ctx.
8331 */
8332 mutex_lock_double(&gctx->mutex, &ctx->mutex);
8333
8334 perf_remove_from_context(group_leader, false);
8335
8336 list_for_each_entry(sibling, &group_leader->sibling_list,
8337 group_entry) {
8338 perf_remove_from_context(sibling, false);
8339 put_ctx(gctx);
8340 }
8341 } else {
8342 mutex_lock(&ctx->mutex);
8343 }
8344
8345 WARN_ON_ONCE(ctx->parent_ctx);
8346
8347 if (move_group) {
8348 /*
8349 * Wait for everybody to stop referencing the events through
8350 * the old lists, before installing it on new lists.
8351 */
8352 synchronize_rcu();
8353
8354 /*
8355 * Install the group siblings before the group leader.
8356 *
8357 * Because a group leader will try and install the entire group
8358 * (through the sibling list, which is still in-tact), we can
8359 * end up with siblings installed in the wrong context.
8360 *
8361 * By installing siblings first we NO-OP because they're not
8362 * reachable through the group lists.
8363 */
8364 list_for_each_entry(sibling, &group_leader->sibling_list,
8365 group_entry) {
8366 perf_event__state_init(sibling);
8367 perf_install_in_context(ctx, sibling, sibling->cpu);
8368 get_ctx(ctx);
8369 }
8370
8371 /*
8372 * Removing from the context ends up with disabled
8373 * event. What we want here is event in the initial
8374 * startup state, ready to be add into new context.
8375 */
8376 perf_event__state_init(group_leader);
8377 perf_install_in_context(ctx, group_leader, group_leader->cpu);
8378 get_ctx(ctx);
8379 }
8380
8381 if (!exclusive_event_installable(event, ctx)) {
8382 err = -EBUSY;
8383 mutex_unlock(&ctx->mutex);
8384 fput(event_file);
8385 goto err_context;
8386 }
8387
8388 perf_install_in_context(ctx, event, event->cpu);
8389 perf_unpin_context(ctx);
8390
8391 if (move_group) {
8392 mutex_unlock(&gctx->mutex);
8393 put_ctx(gctx);
8394 }
8395 mutex_unlock(&ctx->mutex);
8396
8397 put_online_cpus();
8398
8399 event->owner = current;
8400
8401 mutex_lock(&current->perf_event_mutex);
8402 list_add_tail(&event->owner_entry, &current->perf_event_list);
8403 mutex_unlock(&current->perf_event_mutex);
8404
8405 /*
8406 * Precalculate sample_data sizes
8407 */
8408 perf_event__header_size(event);
8409 perf_event__id_header_size(event);
8410
8411 /*
8412 * Drop the reference on the group_event after placing the
8413 * new event on the sibling_list. This ensures destruction
8414 * of the group leader will find the pointer to itself in
8415 * perf_group_detach().
8416 */
8417 fdput(group);
8418 fd_install(event_fd, event_file);
8419 return event_fd;
8420
8421 err_context:
8422 perf_unpin_context(ctx);
8423 put_ctx(ctx);
8424 err_alloc:
8425 free_event(event);
8426 err_cpus:
8427 put_online_cpus();
8428 err_task:
8429 if (task)
8430 put_task_struct(task);
8431 err_group_fd:
8432 fdput(group);
8433 err_fd:
8434 put_unused_fd(event_fd);
8435 return err;
8436 }
8437
8438 /**
8439 * perf_event_create_kernel_counter
8440 *
8441 * @attr: attributes of the counter to create
8442 * @cpu: cpu in which the counter is bound
8443 * @task: task to profile (NULL for percpu)
8444 */
8445 struct perf_event *
8446 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
8447 struct task_struct *task,
8448 perf_overflow_handler_t overflow_handler,
8449 void *context)
8450 {
8451 struct perf_event_context *ctx;
8452 struct perf_event *event;
8453 int err;
8454
8455 /*
8456 * Get the target context (task or percpu):
8457 */
8458
8459 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
8460 overflow_handler, context, -1);
8461 if (IS_ERR(event)) {
8462 err = PTR_ERR(event);
8463 goto err;
8464 }
8465
8466 /* Mark owner so we could distinguish it from user events. */
8467 event->owner = EVENT_OWNER_KERNEL;
8468
8469 account_event(event);
8470
8471 ctx = find_get_context(event->pmu, task, event);
8472 if (IS_ERR(ctx)) {
8473 err = PTR_ERR(ctx);
8474 goto err_free;
8475 }
8476
8477 WARN_ON_ONCE(ctx->parent_ctx);
8478 mutex_lock(&ctx->mutex);
8479 if (!exclusive_event_installable(event, ctx)) {
8480 mutex_unlock(&ctx->mutex);
8481 perf_unpin_context(ctx);
8482 put_ctx(ctx);
8483 err = -EBUSY;
8484 goto err_free;
8485 }
8486
8487 perf_install_in_context(ctx, event, cpu);
8488 perf_unpin_context(ctx);
8489 mutex_unlock(&ctx->mutex);
8490
8491 return event;
8492
8493 err_free:
8494 free_event(event);
8495 err:
8496 return ERR_PTR(err);
8497 }
8498 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
8499
8500 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
8501 {
8502 struct perf_event_context *src_ctx;
8503 struct perf_event_context *dst_ctx;
8504 struct perf_event *event, *tmp;
8505 LIST_HEAD(events);
8506
8507 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
8508 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
8509
8510 /*
8511 * See perf_event_ctx_lock() for comments on the details
8512 * of swizzling perf_event::ctx.
8513 */
8514 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
8515 list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
8516 event_entry) {
8517 perf_remove_from_context(event, false);
8518 unaccount_event_cpu(event, src_cpu);
8519 put_ctx(src_ctx);
8520 list_add(&event->migrate_entry, &events);
8521 }
8522
8523 /*
8524 * Wait for the events to quiesce before re-instating them.
8525 */
8526 synchronize_rcu();
8527
8528 /*
8529 * Re-instate events in 2 passes.
8530 *
8531 * Skip over group leaders and only install siblings on this first
8532 * pass, siblings will not get enabled without a leader, however a
8533 * leader will enable its siblings, even if those are still on the old
8534 * context.
8535 */
8536 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
8537 if (event->group_leader == event)
8538 continue;
8539
8540 list_del(&event->migrate_entry);
8541 if (event->state >= PERF_EVENT_STATE_OFF)
8542 event->state = PERF_EVENT_STATE_INACTIVE;
8543 account_event_cpu(event, dst_cpu);
8544 perf_install_in_context(dst_ctx, event, dst_cpu);
8545 get_ctx(dst_ctx);
8546 }
8547
8548 /*
8549 * Once all the siblings are setup properly, install the group leaders
8550 * to make it go.
8551 */
8552 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
8553 list_del(&event->migrate_entry);
8554 if (event->state >= PERF_EVENT_STATE_OFF)
8555 event->state = PERF_EVENT_STATE_INACTIVE;
8556 account_event_cpu(event, dst_cpu);
8557 perf_install_in_context(dst_ctx, event, dst_cpu);
8558 get_ctx(dst_ctx);
8559 }
8560 mutex_unlock(&dst_ctx->mutex);
8561 mutex_unlock(&src_ctx->mutex);
8562 }
8563 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
8564
8565 static void sync_child_event(struct perf_event *child_event,
8566 struct task_struct *child)
8567 {
8568 struct perf_event *parent_event = child_event->parent;
8569 u64 child_val;
8570
8571 if (child_event->attr.inherit_stat)
8572 perf_event_read_event(child_event, child);
8573
8574 child_val = perf_event_count(child_event);
8575
8576 /*
8577 * Add back the child's count to the parent's count:
8578 */
8579 atomic64_add(child_val, &parent_event->child_count);
8580 atomic64_add(child_event->total_time_enabled,
8581 &parent_event->child_total_time_enabled);
8582 atomic64_add(child_event->total_time_running,
8583 &parent_event->child_total_time_running);
8584
8585 /*
8586 * Remove this event from the parent's list
8587 */
8588 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
8589 mutex_lock(&parent_event->child_mutex);
8590 list_del_init(&child_event->child_list);
8591 mutex_unlock(&parent_event->child_mutex);
8592
8593 /*
8594 * Make sure user/parent get notified, that we just
8595 * lost one event.
8596 */
8597 perf_event_wakeup(parent_event);
8598
8599 /*
8600 * Release the parent event, if this was the last
8601 * reference to it.
8602 */
8603 put_event(parent_event);
8604 }
8605
8606 static void
8607 __perf_event_exit_task(struct perf_event *child_event,
8608 struct perf_event_context *child_ctx,
8609 struct task_struct *child)
8610 {
8611 /*
8612 * Do not destroy the 'original' grouping; because of the context
8613 * switch optimization the original events could've ended up in a
8614 * random child task.
8615 *
8616 * If we were to destroy the original group, all group related
8617 * operations would cease to function properly after this random
8618 * child dies.
8619 *
8620 * Do destroy all inherited groups, we don't care about those
8621 * and being thorough is better.
8622 */
8623 perf_remove_from_context(child_event, !!child_event->parent);
8624
8625 /*
8626 * It can happen that the parent exits first, and has events
8627 * that are still around due to the child reference. These
8628 * events need to be zapped.
8629 */
8630 if (child_event->parent) {
8631 sync_child_event(child_event, child);
8632 free_event(child_event);
8633 } else {
8634 child_event->state = PERF_EVENT_STATE_EXIT;
8635 perf_event_wakeup(child_event);
8636 }
8637 }
8638
8639 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
8640 {
8641 struct perf_event *child_event, *next;
8642 struct perf_event_context *child_ctx, *clone_ctx = NULL;
8643 unsigned long flags;
8644
8645 if (likely(!child->perf_event_ctxp[ctxn])) {
8646 perf_event_task(child, NULL, 0);
8647 return;
8648 }
8649
8650 local_irq_save(flags);
8651 /*
8652 * We can't reschedule here because interrupts are disabled,
8653 * and either child is current or it is a task that can't be
8654 * scheduled, so we are now safe from rescheduling changing
8655 * our context.
8656 */
8657 child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
8658
8659 /*
8660 * Take the context lock here so that if find_get_context is
8661 * reading child->perf_event_ctxp, we wait until it has
8662 * incremented the context's refcount before we do put_ctx below.
8663 */
8664 raw_spin_lock(&child_ctx->lock);
8665 task_ctx_sched_out(child_ctx);
8666 child->perf_event_ctxp[ctxn] = NULL;
8667
8668 /*
8669 * If this context is a clone; unclone it so it can't get
8670 * swapped to another process while we're removing all
8671 * the events from it.
8672 */
8673 clone_ctx = unclone_ctx(child_ctx);
8674 update_context_time(child_ctx);
8675 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
8676
8677 if (clone_ctx)
8678 put_ctx(clone_ctx);
8679
8680 /*
8681 * Report the task dead after unscheduling the events so that we
8682 * won't get any samples after PERF_RECORD_EXIT. We can however still
8683 * get a few PERF_RECORD_READ events.
8684 */
8685 perf_event_task(child, child_ctx, 0);
8686
8687 /*
8688 * We can recurse on the same lock type through:
8689 *
8690 * __perf_event_exit_task()
8691 * sync_child_event()
8692 * put_event()
8693 * mutex_lock(&ctx->mutex)
8694 *
8695 * But since its the parent context it won't be the same instance.
8696 */
8697 mutex_lock(&child_ctx->mutex);
8698
8699 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
8700 __perf_event_exit_task(child_event, child_ctx, child);
8701
8702 mutex_unlock(&child_ctx->mutex);
8703
8704 put_ctx(child_ctx);
8705 }
8706
8707 /*
8708 * When a child task exits, feed back event values to parent events.
8709 */
8710 void perf_event_exit_task(struct task_struct *child)
8711 {
8712 struct perf_event *event, *tmp;
8713 int ctxn;
8714
8715 mutex_lock(&child->perf_event_mutex);
8716 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
8717 owner_entry) {
8718 list_del_init(&event->owner_entry);
8719
8720 /*
8721 * Ensure the list deletion is visible before we clear
8722 * the owner, closes a race against perf_release() where
8723 * we need to serialize on the owner->perf_event_mutex.
8724 */
8725 smp_wmb();
8726 event->owner = NULL;
8727 }
8728 mutex_unlock(&child->perf_event_mutex);
8729
8730 for_each_task_context_nr(ctxn)
8731 perf_event_exit_task_context(child, ctxn);
8732 }
8733
8734 static void perf_free_event(struct perf_event *event,
8735 struct perf_event_context *ctx)
8736 {
8737 struct perf_event *parent = event->parent;
8738
8739 if (WARN_ON_ONCE(!parent))
8740 return;
8741
8742 mutex_lock(&parent->child_mutex);
8743 list_del_init(&event->child_list);
8744 mutex_unlock(&parent->child_mutex);
8745
8746 put_event(parent);
8747
8748 raw_spin_lock_irq(&ctx->lock);
8749 perf_group_detach(event);
8750 list_del_event(event, ctx);
8751 raw_spin_unlock_irq(&ctx->lock);
8752 free_event(event);
8753 }
8754
8755 /*
8756 * Free an unexposed, unused context as created by inheritance by
8757 * perf_event_init_task below, used by fork() in case of fail.
8758 *
8759 * Not all locks are strictly required, but take them anyway to be nice and
8760 * help out with the lockdep assertions.
8761 */
8762 void perf_event_free_task(struct task_struct *task)
8763 {
8764 struct perf_event_context *ctx;
8765 struct perf_event *event, *tmp;
8766 int ctxn;
8767
8768 for_each_task_context_nr(ctxn) {
8769 ctx = task->perf_event_ctxp[ctxn];
8770 if (!ctx)
8771 continue;
8772
8773 mutex_lock(&ctx->mutex);
8774 again:
8775 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
8776 group_entry)
8777 perf_free_event(event, ctx);
8778
8779 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
8780 group_entry)
8781 perf_free_event(event, ctx);
8782
8783 if (!list_empty(&ctx->pinned_groups) ||
8784 !list_empty(&ctx->flexible_groups))
8785 goto again;
8786
8787 mutex_unlock(&ctx->mutex);
8788
8789 put_ctx(ctx);
8790 }
8791 }
8792
8793 void perf_event_delayed_put(struct task_struct *task)
8794 {
8795 int ctxn;
8796
8797 for_each_task_context_nr(ctxn)
8798 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
8799 }
8800
8801 struct perf_event *perf_event_get(unsigned int fd)
8802 {
8803 int err;
8804 struct fd f;
8805 struct perf_event *event;
8806
8807 err = perf_fget_light(fd, &f);
8808 if (err)
8809 return ERR_PTR(err);
8810
8811 event = f.file->private_data;
8812 atomic_long_inc(&event->refcount);
8813 fdput(f);
8814
8815 return event;
8816 }
8817
8818 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
8819 {
8820 if (!event)
8821 return ERR_PTR(-EINVAL);
8822
8823 return &event->attr;
8824 }
8825
8826 /*
8827 * inherit a event from parent task to child task:
8828 */
8829 static struct perf_event *
8830 inherit_event(struct perf_event *parent_event,
8831 struct task_struct *parent,
8832 struct perf_event_context *parent_ctx,
8833 struct task_struct *child,
8834 struct perf_event *group_leader,
8835 struct perf_event_context *child_ctx)
8836 {
8837 enum perf_event_active_state parent_state = parent_event->state;
8838 struct perf_event *child_event;
8839 unsigned long flags;
8840
8841 /*
8842 * Instead of creating recursive hierarchies of events,
8843 * we link inherited events back to the original parent,
8844 * which has a filp for sure, which we use as the reference
8845 * count:
8846 */
8847 if (parent_event->parent)
8848 parent_event = parent_event->parent;
8849
8850 child_event = perf_event_alloc(&parent_event->attr,
8851 parent_event->cpu,
8852 child,
8853 group_leader, parent_event,
8854 NULL, NULL, -1);
8855 if (IS_ERR(child_event))
8856 return child_event;
8857
8858 if (is_orphaned_event(parent_event) ||
8859 !atomic_long_inc_not_zero(&parent_event->refcount)) {
8860 free_event(child_event);
8861 return NULL;
8862 }
8863
8864 get_ctx(child_ctx);
8865
8866 /*
8867 * Make the child state follow the state of the parent event,
8868 * not its attr.disabled bit. We hold the parent's mutex,
8869 * so we won't race with perf_event_{en, dis}able_family.
8870 */
8871 if (parent_state >= PERF_EVENT_STATE_INACTIVE)
8872 child_event->state = PERF_EVENT_STATE_INACTIVE;
8873 else
8874 child_event->state = PERF_EVENT_STATE_OFF;
8875
8876 if (parent_event->attr.freq) {
8877 u64 sample_period = parent_event->hw.sample_period;
8878 struct hw_perf_event *hwc = &child_event->hw;
8879
8880 hwc->sample_period = sample_period;
8881 hwc->last_period = sample_period;
8882
8883 local64_set(&hwc->period_left, sample_period);
8884 }
8885
8886 child_event->ctx = child_ctx;
8887 child_event->overflow_handler = parent_event->overflow_handler;
8888 child_event->overflow_handler_context
8889 = parent_event->overflow_handler_context;
8890
8891 /*
8892 * Precalculate sample_data sizes
8893 */
8894 perf_event__header_size(child_event);
8895 perf_event__id_header_size(child_event);
8896
8897 /*
8898 * Link it up in the child's context:
8899 */
8900 raw_spin_lock_irqsave(&child_ctx->lock, flags);
8901 add_event_to_ctx(child_event, child_ctx);
8902 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
8903
8904 /*
8905 * Link this into the parent event's child list
8906 */
8907 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
8908 mutex_lock(&parent_event->child_mutex);
8909 list_add_tail(&child_event->child_list, &parent_event->child_list);
8910 mutex_unlock(&parent_event->child_mutex);
8911
8912 return child_event;
8913 }
8914
8915 static int inherit_group(struct perf_event *parent_event,
8916 struct task_struct *parent,
8917 struct perf_event_context *parent_ctx,
8918 struct task_struct *child,
8919 struct perf_event_context *child_ctx)
8920 {
8921 struct perf_event *leader;
8922 struct perf_event *sub;
8923 struct perf_event *child_ctr;
8924
8925 leader = inherit_event(parent_event, parent, parent_ctx,
8926 child, NULL, child_ctx);
8927 if (IS_ERR(leader))
8928 return PTR_ERR(leader);
8929 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
8930 child_ctr = inherit_event(sub, parent, parent_ctx,
8931 child, leader, child_ctx);
8932 if (IS_ERR(child_ctr))
8933 return PTR_ERR(child_ctr);
8934 }
8935 return 0;
8936 }
8937
8938 static int
8939 inherit_task_group(struct perf_event *event, struct task_struct *parent,
8940 struct perf_event_context *parent_ctx,
8941 struct task_struct *child, int ctxn,
8942 int *inherited_all)
8943 {
8944 int ret;
8945 struct perf_event_context *child_ctx;
8946
8947 if (!event->attr.inherit) {
8948 *inherited_all = 0;
8949 return 0;
8950 }
8951
8952 child_ctx = child->perf_event_ctxp[ctxn];
8953 if (!child_ctx) {
8954 /*
8955 * This is executed from the parent task context, so
8956 * inherit events that have been marked for cloning.
8957 * First allocate and initialize a context for the
8958 * child.
8959 */
8960
8961 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
8962 if (!child_ctx)
8963 return -ENOMEM;
8964
8965 child->perf_event_ctxp[ctxn] = child_ctx;
8966 }
8967
8968 ret = inherit_group(event, parent, parent_ctx,
8969 child, child_ctx);
8970
8971 if (ret)
8972 *inherited_all = 0;
8973
8974 return ret;
8975 }
8976
8977 /*
8978 * Initialize the perf_event context in task_struct
8979 */
8980 static int perf_event_init_context(struct task_struct *child, int ctxn)
8981 {
8982 struct perf_event_context *child_ctx, *parent_ctx;
8983 struct perf_event_context *cloned_ctx;
8984 struct perf_event *event;
8985 struct task_struct *parent = current;
8986 int inherited_all = 1;
8987 unsigned long flags;
8988 int ret = 0;
8989
8990 if (likely(!parent->perf_event_ctxp[ctxn]))
8991 return 0;
8992
8993 /*
8994 * If the parent's context is a clone, pin it so it won't get
8995 * swapped under us.
8996 */
8997 parent_ctx = perf_pin_task_context(parent, ctxn);
8998 if (!parent_ctx)
8999 return 0;
9000
9001 /*
9002 * No need to check if parent_ctx != NULL here; since we saw
9003 * it non-NULL earlier, the only reason for it to become NULL
9004 * is if we exit, and since we're currently in the middle of
9005 * a fork we can't be exiting at the same time.
9006 */
9007
9008 /*
9009 * Lock the parent list. No need to lock the child - not PID
9010 * hashed yet and not running, so nobody can access it.
9011 */
9012 mutex_lock(&parent_ctx->mutex);
9013
9014 /*
9015 * We dont have to disable NMIs - we are only looking at
9016 * the list, not manipulating it:
9017 */
9018 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
9019 ret = inherit_task_group(event, parent, parent_ctx,
9020 child, ctxn, &inherited_all);
9021 if (ret)
9022 break;
9023 }
9024
9025 /*
9026 * We can't hold ctx->lock when iterating the ->flexible_group list due
9027 * to allocations, but we need to prevent rotation because
9028 * rotate_ctx() will change the list from interrupt context.
9029 */
9030 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
9031 parent_ctx->rotate_disable = 1;
9032 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
9033
9034 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
9035 ret = inherit_task_group(event, parent, parent_ctx,
9036 child, ctxn, &inherited_all);
9037 if (ret)
9038 break;
9039 }
9040
9041 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
9042 parent_ctx->rotate_disable = 0;
9043
9044 child_ctx = child->perf_event_ctxp[ctxn];
9045
9046 if (child_ctx && inherited_all) {
9047 /*
9048 * Mark the child context as a clone of the parent
9049 * context, or of whatever the parent is a clone of.
9050 *
9051 * Note that if the parent is a clone, the holding of
9052 * parent_ctx->lock avoids it from being uncloned.
9053 */
9054 cloned_ctx = parent_ctx->parent_ctx;
9055 if (cloned_ctx) {
9056 child_ctx->parent_ctx = cloned_ctx;
9057 child_ctx->parent_gen = parent_ctx->parent_gen;
9058 } else {
9059 child_ctx->parent_ctx = parent_ctx;
9060 child_ctx->parent_gen = parent_ctx->generation;
9061 }
9062 get_ctx(child_ctx->parent_ctx);
9063 }
9064
9065 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
9066 mutex_unlock(&parent_ctx->mutex);
9067
9068 perf_unpin_context(parent_ctx);
9069 put_ctx(parent_ctx);
9070
9071 return ret;
9072 }
9073
9074 /*
9075 * Initialize the perf_event context in task_struct
9076 */
9077 int perf_event_init_task(struct task_struct *child)
9078 {
9079 int ctxn, ret;
9080
9081 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
9082 mutex_init(&child->perf_event_mutex);
9083 INIT_LIST_HEAD(&child->perf_event_list);
9084
9085 for_each_task_context_nr(ctxn) {
9086 ret = perf_event_init_context(child, ctxn);
9087 if (ret) {
9088 perf_event_free_task(child);
9089 return ret;
9090 }
9091 }
9092
9093 return 0;
9094 }
9095
9096 static void __init perf_event_init_all_cpus(void)
9097 {
9098 struct swevent_htable *swhash;
9099 int cpu;
9100
9101 for_each_possible_cpu(cpu) {
9102 swhash = &per_cpu(swevent_htable, cpu);
9103 mutex_init(&swhash->hlist_mutex);
9104 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
9105 }
9106 }
9107
9108 static void perf_event_init_cpu(int cpu)
9109 {
9110 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
9111
9112 mutex_lock(&swhash->hlist_mutex);
9113 swhash->online = true;
9114 if (swhash->hlist_refcount > 0) {
9115 struct swevent_hlist *hlist;
9116
9117 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
9118 WARN_ON(!hlist);
9119 rcu_assign_pointer(swhash->swevent_hlist, hlist);
9120 }
9121 mutex_unlock(&swhash->hlist_mutex);
9122 }
9123
9124 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
9125 static void __perf_event_exit_context(void *__info)
9126 {
9127 struct remove_event re = { .detach_group = true };
9128 struct perf_event_context *ctx = __info;
9129
9130 rcu_read_lock();
9131 list_for_each_entry_rcu(re.event, &ctx->event_list, event_entry)
9132 __perf_remove_from_context(&re);
9133 rcu_read_unlock();
9134 }
9135
9136 static void perf_event_exit_cpu_context(int cpu)
9137 {
9138 struct perf_event_context *ctx;
9139 struct pmu *pmu;
9140 int idx;
9141
9142 idx = srcu_read_lock(&pmus_srcu);
9143 list_for_each_entry_rcu(pmu, &pmus, entry) {
9144 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
9145
9146 mutex_lock(&ctx->mutex);
9147 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
9148 mutex_unlock(&ctx->mutex);
9149 }
9150 srcu_read_unlock(&pmus_srcu, idx);
9151 }
9152
9153 static void perf_event_exit_cpu(int cpu)
9154 {
9155 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
9156
9157 perf_event_exit_cpu_context(cpu);
9158
9159 mutex_lock(&swhash->hlist_mutex);
9160 swhash->online = false;
9161 swevent_hlist_release(swhash);
9162 mutex_unlock(&swhash->hlist_mutex);
9163 }
9164 #else
9165 static inline void perf_event_exit_cpu(int cpu) { }
9166 #endif
9167
9168 static int
9169 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
9170 {
9171 int cpu;
9172
9173 for_each_online_cpu(cpu)
9174 perf_event_exit_cpu(cpu);
9175
9176 return NOTIFY_OK;
9177 }
9178
9179 /*
9180 * Run the perf reboot notifier at the very last possible moment so that
9181 * the generic watchdog code runs as long as possible.
9182 */
9183 static struct notifier_block perf_reboot_notifier = {
9184 .notifier_call = perf_reboot,
9185 .priority = INT_MIN,
9186 };
9187
9188 static int
9189 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
9190 {
9191 unsigned int cpu = (long)hcpu;
9192
9193 switch (action & ~CPU_TASKS_FROZEN) {
9194
9195 case CPU_UP_PREPARE:
9196 case CPU_DOWN_FAILED:
9197 perf_event_init_cpu(cpu);
9198 break;
9199
9200 case CPU_UP_CANCELED:
9201 case CPU_DOWN_PREPARE:
9202 perf_event_exit_cpu(cpu);
9203 break;
9204 default:
9205 break;
9206 }
9207
9208 return NOTIFY_OK;
9209 }
9210
9211 void __init perf_event_init(void)
9212 {
9213 int ret;
9214
9215 idr_init(&pmu_idr);
9216
9217 perf_event_init_all_cpus();
9218 init_srcu_struct(&pmus_srcu);
9219 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
9220 perf_pmu_register(&perf_cpu_clock, NULL, -1);
9221 perf_pmu_register(&perf_task_clock, NULL, -1);
9222 perf_tp_register();
9223 perf_cpu_notifier(perf_cpu_notify);
9224 register_reboot_notifier(&perf_reboot_notifier);
9225
9226 ret = init_hw_breakpoint();
9227 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
9228
9229 /* do not patch jump label more than once per second */
9230 jump_label_rate_limit(&perf_sched_events, HZ);
9231
9232 /*
9233 * Build time assertion that we keep the data_head at the intended
9234 * location. IOW, validation we got the __reserved[] size right.
9235 */
9236 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
9237 != 1024);
9238 }
9239
9240 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
9241 char *page)
9242 {
9243 struct perf_pmu_events_attr *pmu_attr =
9244 container_of(attr, struct perf_pmu_events_attr, attr);
9245
9246 if (pmu_attr->event_str)
9247 return sprintf(page, "%s\n", pmu_attr->event_str);
9248
9249 return 0;
9250 }
9251
9252 static int __init perf_event_sysfs_init(void)
9253 {
9254 struct pmu *pmu;
9255 int ret;
9256
9257 mutex_lock(&pmus_lock);
9258
9259 ret = bus_register(&pmu_bus);
9260 if (ret)
9261 goto unlock;
9262
9263 list_for_each_entry(pmu, &pmus, entry) {
9264 if (!pmu->name || pmu->type < 0)
9265 continue;
9266
9267 ret = pmu_dev_alloc(pmu);
9268 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
9269 }
9270 pmu_bus_running = 1;
9271 ret = 0;
9272
9273 unlock:
9274 mutex_unlock(&pmus_lock);
9275
9276 return ret;
9277 }
9278 device_initcall(perf_event_sysfs_init);
9279
9280 #ifdef CONFIG_CGROUP_PERF
9281 static struct cgroup_subsys_state *
9282 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
9283 {
9284 struct perf_cgroup *jc;
9285
9286 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
9287 if (!jc)
9288 return ERR_PTR(-ENOMEM);
9289
9290 jc->info = alloc_percpu(struct perf_cgroup_info);
9291 if (!jc->info) {
9292 kfree(jc);
9293 return ERR_PTR(-ENOMEM);
9294 }
9295
9296 return &jc->css;
9297 }
9298
9299 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
9300 {
9301 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
9302
9303 free_percpu(jc->info);
9304 kfree(jc);
9305 }
9306
9307 static int __perf_cgroup_move(void *info)
9308 {
9309 struct task_struct *task = info;
9310 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
9311 return 0;
9312 }
9313
9314 static void perf_cgroup_attach(struct cgroup_subsys_state *css,
9315 struct cgroup_taskset *tset)
9316 {
9317 struct task_struct *task;
9318
9319 cgroup_taskset_for_each(task, tset)
9320 task_function_call(task, __perf_cgroup_move, task);
9321 }
9322
9323 static void perf_cgroup_exit(struct cgroup_subsys_state *css,
9324 struct cgroup_subsys_state *old_css,
9325 struct task_struct *task)
9326 {
9327 task_function_call(task, __perf_cgroup_move, task);
9328 }
9329
9330 struct cgroup_subsys perf_event_cgrp_subsys = {
9331 .css_alloc = perf_cgroup_css_alloc,
9332 .css_free = perf_cgroup_css_free,
9333 .exit = perf_cgroup_exit,
9334 .attach = perf_cgroup_attach,
9335 };
9336 #endif /* CONFIG_CGROUP_PERF */
This page took 0.211684 seconds and 4 git commands to generate.