perf: Fix and clean up initialization of pmu::event_idx
[deliverable/linux.git] / kernel / events / core.c
1 /*
2 * Performance events core code:
3 *
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8 *
9 * For licensing details see kernel-base/COPYING
10 */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/tick.h>
22 #include <linux/sysfs.h>
23 #include <linux/dcache.h>
24 #include <linux/percpu.h>
25 #include <linux/ptrace.h>
26 #include <linux/reboot.h>
27 #include <linux/vmstat.h>
28 #include <linux/device.h>
29 #include <linux/export.h>
30 #include <linux/vmalloc.h>
31 #include <linux/hardirq.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/perf_event.h>
38 #include <linux/ftrace_event.h>
39 #include <linux/hw_breakpoint.h>
40 #include <linux/mm_types.h>
41 #include <linux/cgroup.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45
46 #include "internal.h"
47
48 #include <asm/irq_regs.h>
49
50 static struct workqueue_struct *perf_wq;
51
52 struct remote_function_call {
53 struct task_struct *p;
54 int (*func)(void *info);
55 void *info;
56 int ret;
57 };
58
59 static void remote_function(void *data)
60 {
61 struct remote_function_call *tfc = data;
62 struct task_struct *p = tfc->p;
63
64 if (p) {
65 tfc->ret = -EAGAIN;
66 if (task_cpu(p) != smp_processor_id() || !task_curr(p))
67 return;
68 }
69
70 tfc->ret = tfc->func(tfc->info);
71 }
72
73 /**
74 * task_function_call - call a function on the cpu on which a task runs
75 * @p: the task to evaluate
76 * @func: the function to be called
77 * @info: the function call argument
78 *
79 * Calls the function @func when the task is currently running. This might
80 * be on the current CPU, which just calls the function directly
81 *
82 * returns: @func return value, or
83 * -ESRCH - when the process isn't running
84 * -EAGAIN - when the process moved away
85 */
86 static int
87 task_function_call(struct task_struct *p, int (*func) (void *info), void *info)
88 {
89 struct remote_function_call data = {
90 .p = p,
91 .func = func,
92 .info = info,
93 .ret = -ESRCH, /* No such (running) process */
94 };
95
96 if (task_curr(p))
97 smp_call_function_single(task_cpu(p), remote_function, &data, 1);
98
99 return data.ret;
100 }
101
102 /**
103 * cpu_function_call - call a function on the cpu
104 * @func: the function to be called
105 * @info: the function call argument
106 *
107 * Calls the function @func on the remote cpu.
108 *
109 * returns: @func return value or -ENXIO when the cpu is offline
110 */
111 static int cpu_function_call(int cpu, int (*func) (void *info), void *info)
112 {
113 struct remote_function_call data = {
114 .p = NULL,
115 .func = func,
116 .info = info,
117 .ret = -ENXIO, /* No such CPU */
118 };
119
120 smp_call_function_single(cpu, remote_function, &data, 1);
121
122 return data.ret;
123 }
124
125 #define EVENT_OWNER_KERNEL ((void *) -1)
126
127 static bool is_kernel_event(struct perf_event *event)
128 {
129 return event->owner == EVENT_OWNER_KERNEL;
130 }
131
132 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
133 PERF_FLAG_FD_OUTPUT |\
134 PERF_FLAG_PID_CGROUP |\
135 PERF_FLAG_FD_CLOEXEC)
136
137 /*
138 * branch priv levels that need permission checks
139 */
140 #define PERF_SAMPLE_BRANCH_PERM_PLM \
141 (PERF_SAMPLE_BRANCH_KERNEL |\
142 PERF_SAMPLE_BRANCH_HV)
143
144 enum event_type_t {
145 EVENT_FLEXIBLE = 0x1,
146 EVENT_PINNED = 0x2,
147 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
148 };
149
150 /*
151 * perf_sched_events : >0 events exist
152 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
153 */
154 struct static_key_deferred perf_sched_events __read_mostly;
155 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
156 static DEFINE_PER_CPU(atomic_t, perf_branch_stack_events);
157
158 static atomic_t nr_mmap_events __read_mostly;
159 static atomic_t nr_comm_events __read_mostly;
160 static atomic_t nr_task_events __read_mostly;
161 static atomic_t nr_freq_events __read_mostly;
162
163 static LIST_HEAD(pmus);
164 static DEFINE_MUTEX(pmus_lock);
165 static struct srcu_struct pmus_srcu;
166
167 /*
168 * perf event paranoia level:
169 * -1 - not paranoid at all
170 * 0 - disallow raw tracepoint access for unpriv
171 * 1 - disallow cpu events for unpriv
172 * 2 - disallow kernel profiling for unpriv
173 */
174 int sysctl_perf_event_paranoid __read_mostly = 1;
175
176 /* Minimum for 512 kiB + 1 user control page */
177 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
178
179 /*
180 * max perf event sample rate
181 */
182 #define DEFAULT_MAX_SAMPLE_RATE 100000
183 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
184 #define DEFAULT_CPU_TIME_MAX_PERCENT 25
185
186 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
187
188 static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
189 static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS;
190
191 static int perf_sample_allowed_ns __read_mostly =
192 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
193
194 void update_perf_cpu_limits(void)
195 {
196 u64 tmp = perf_sample_period_ns;
197
198 tmp *= sysctl_perf_cpu_time_max_percent;
199 do_div(tmp, 100);
200 ACCESS_ONCE(perf_sample_allowed_ns) = tmp;
201 }
202
203 static int perf_rotate_context(struct perf_cpu_context *cpuctx);
204
205 int perf_proc_update_handler(struct ctl_table *table, int write,
206 void __user *buffer, size_t *lenp,
207 loff_t *ppos)
208 {
209 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
210
211 if (ret || !write)
212 return ret;
213
214 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
215 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
216 update_perf_cpu_limits();
217
218 return 0;
219 }
220
221 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
222
223 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
224 void __user *buffer, size_t *lenp,
225 loff_t *ppos)
226 {
227 int ret = proc_dointvec(table, write, buffer, lenp, ppos);
228
229 if (ret || !write)
230 return ret;
231
232 update_perf_cpu_limits();
233
234 return 0;
235 }
236
237 /*
238 * perf samples are done in some very critical code paths (NMIs).
239 * If they take too much CPU time, the system can lock up and not
240 * get any real work done. This will drop the sample rate when
241 * we detect that events are taking too long.
242 */
243 #define NR_ACCUMULATED_SAMPLES 128
244 static DEFINE_PER_CPU(u64, running_sample_length);
245
246 static void perf_duration_warn(struct irq_work *w)
247 {
248 u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
249 u64 avg_local_sample_len;
250 u64 local_samples_len;
251
252 local_samples_len = __this_cpu_read(running_sample_length);
253 avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
254
255 printk_ratelimited(KERN_WARNING
256 "perf interrupt took too long (%lld > %lld), lowering "
257 "kernel.perf_event_max_sample_rate to %d\n",
258 avg_local_sample_len, allowed_ns >> 1,
259 sysctl_perf_event_sample_rate);
260 }
261
262 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
263
264 void perf_sample_event_took(u64 sample_len_ns)
265 {
266 u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
267 u64 avg_local_sample_len;
268 u64 local_samples_len;
269
270 if (allowed_ns == 0)
271 return;
272
273 /* decay the counter by 1 average sample */
274 local_samples_len = __this_cpu_read(running_sample_length);
275 local_samples_len -= local_samples_len/NR_ACCUMULATED_SAMPLES;
276 local_samples_len += sample_len_ns;
277 __this_cpu_write(running_sample_length, local_samples_len);
278
279 /*
280 * note: this will be biased artifically low until we have
281 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
282 * from having to maintain a count.
283 */
284 avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
285
286 if (avg_local_sample_len <= allowed_ns)
287 return;
288
289 if (max_samples_per_tick <= 1)
290 return;
291
292 max_samples_per_tick = DIV_ROUND_UP(max_samples_per_tick, 2);
293 sysctl_perf_event_sample_rate = max_samples_per_tick * HZ;
294 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
295
296 update_perf_cpu_limits();
297
298 if (!irq_work_queue(&perf_duration_work)) {
299 early_printk("perf interrupt took too long (%lld > %lld), lowering "
300 "kernel.perf_event_max_sample_rate to %d\n",
301 avg_local_sample_len, allowed_ns >> 1,
302 sysctl_perf_event_sample_rate);
303 }
304 }
305
306 static atomic64_t perf_event_id;
307
308 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
309 enum event_type_t event_type);
310
311 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
312 enum event_type_t event_type,
313 struct task_struct *task);
314
315 static void update_context_time(struct perf_event_context *ctx);
316 static u64 perf_event_time(struct perf_event *event);
317
318 void __weak perf_event_print_debug(void) { }
319
320 extern __weak const char *perf_pmu_name(void)
321 {
322 return "pmu";
323 }
324
325 static inline u64 perf_clock(void)
326 {
327 return local_clock();
328 }
329
330 static inline struct perf_cpu_context *
331 __get_cpu_context(struct perf_event_context *ctx)
332 {
333 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
334 }
335
336 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
337 struct perf_event_context *ctx)
338 {
339 raw_spin_lock(&cpuctx->ctx.lock);
340 if (ctx)
341 raw_spin_lock(&ctx->lock);
342 }
343
344 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
345 struct perf_event_context *ctx)
346 {
347 if (ctx)
348 raw_spin_unlock(&ctx->lock);
349 raw_spin_unlock(&cpuctx->ctx.lock);
350 }
351
352 #ifdef CONFIG_CGROUP_PERF
353
354 /*
355 * perf_cgroup_info keeps track of time_enabled for a cgroup.
356 * This is a per-cpu dynamically allocated data structure.
357 */
358 struct perf_cgroup_info {
359 u64 time;
360 u64 timestamp;
361 };
362
363 struct perf_cgroup {
364 struct cgroup_subsys_state css;
365 struct perf_cgroup_info __percpu *info;
366 };
367
368 /*
369 * Must ensure cgroup is pinned (css_get) before calling
370 * this function. In other words, we cannot call this function
371 * if there is no cgroup event for the current CPU context.
372 */
373 static inline struct perf_cgroup *
374 perf_cgroup_from_task(struct task_struct *task)
375 {
376 return container_of(task_css(task, perf_event_cgrp_id),
377 struct perf_cgroup, css);
378 }
379
380 static inline bool
381 perf_cgroup_match(struct perf_event *event)
382 {
383 struct perf_event_context *ctx = event->ctx;
384 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
385
386 /* @event doesn't care about cgroup */
387 if (!event->cgrp)
388 return true;
389
390 /* wants specific cgroup scope but @cpuctx isn't associated with any */
391 if (!cpuctx->cgrp)
392 return false;
393
394 /*
395 * Cgroup scoping is recursive. An event enabled for a cgroup is
396 * also enabled for all its descendant cgroups. If @cpuctx's
397 * cgroup is a descendant of @event's (the test covers identity
398 * case), it's a match.
399 */
400 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
401 event->cgrp->css.cgroup);
402 }
403
404 static inline void perf_detach_cgroup(struct perf_event *event)
405 {
406 css_put(&event->cgrp->css);
407 event->cgrp = NULL;
408 }
409
410 static inline int is_cgroup_event(struct perf_event *event)
411 {
412 return event->cgrp != NULL;
413 }
414
415 static inline u64 perf_cgroup_event_time(struct perf_event *event)
416 {
417 struct perf_cgroup_info *t;
418
419 t = per_cpu_ptr(event->cgrp->info, event->cpu);
420 return t->time;
421 }
422
423 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
424 {
425 struct perf_cgroup_info *info;
426 u64 now;
427
428 now = perf_clock();
429
430 info = this_cpu_ptr(cgrp->info);
431
432 info->time += now - info->timestamp;
433 info->timestamp = now;
434 }
435
436 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
437 {
438 struct perf_cgroup *cgrp_out = cpuctx->cgrp;
439 if (cgrp_out)
440 __update_cgrp_time(cgrp_out);
441 }
442
443 static inline void update_cgrp_time_from_event(struct perf_event *event)
444 {
445 struct perf_cgroup *cgrp;
446
447 /*
448 * ensure we access cgroup data only when needed and
449 * when we know the cgroup is pinned (css_get)
450 */
451 if (!is_cgroup_event(event))
452 return;
453
454 cgrp = perf_cgroup_from_task(current);
455 /*
456 * Do not update time when cgroup is not active
457 */
458 if (cgrp == event->cgrp)
459 __update_cgrp_time(event->cgrp);
460 }
461
462 static inline void
463 perf_cgroup_set_timestamp(struct task_struct *task,
464 struct perf_event_context *ctx)
465 {
466 struct perf_cgroup *cgrp;
467 struct perf_cgroup_info *info;
468
469 /*
470 * ctx->lock held by caller
471 * ensure we do not access cgroup data
472 * unless we have the cgroup pinned (css_get)
473 */
474 if (!task || !ctx->nr_cgroups)
475 return;
476
477 cgrp = perf_cgroup_from_task(task);
478 info = this_cpu_ptr(cgrp->info);
479 info->timestamp = ctx->timestamp;
480 }
481
482 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
483 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
484
485 /*
486 * reschedule events based on the cgroup constraint of task.
487 *
488 * mode SWOUT : schedule out everything
489 * mode SWIN : schedule in based on cgroup for next
490 */
491 void perf_cgroup_switch(struct task_struct *task, int mode)
492 {
493 struct perf_cpu_context *cpuctx;
494 struct pmu *pmu;
495 unsigned long flags;
496
497 /*
498 * disable interrupts to avoid geting nr_cgroup
499 * changes via __perf_event_disable(). Also
500 * avoids preemption.
501 */
502 local_irq_save(flags);
503
504 /*
505 * we reschedule only in the presence of cgroup
506 * constrained events.
507 */
508 rcu_read_lock();
509
510 list_for_each_entry_rcu(pmu, &pmus, entry) {
511 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
512 if (cpuctx->unique_pmu != pmu)
513 continue; /* ensure we process each cpuctx once */
514
515 /*
516 * perf_cgroup_events says at least one
517 * context on this CPU has cgroup events.
518 *
519 * ctx->nr_cgroups reports the number of cgroup
520 * events for a context.
521 */
522 if (cpuctx->ctx.nr_cgroups > 0) {
523 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
524 perf_pmu_disable(cpuctx->ctx.pmu);
525
526 if (mode & PERF_CGROUP_SWOUT) {
527 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
528 /*
529 * must not be done before ctxswout due
530 * to event_filter_match() in event_sched_out()
531 */
532 cpuctx->cgrp = NULL;
533 }
534
535 if (mode & PERF_CGROUP_SWIN) {
536 WARN_ON_ONCE(cpuctx->cgrp);
537 /*
538 * set cgrp before ctxsw in to allow
539 * event_filter_match() to not have to pass
540 * task around
541 */
542 cpuctx->cgrp = perf_cgroup_from_task(task);
543 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
544 }
545 perf_pmu_enable(cpuctx->ctx.pmu);
546 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
547 }
548 }
549
550 rcu_read_unlock();
551
552 local_irq_restore(flags);
553 }
554
555 static inline void perf_cgroup_sched_out(struct task_struct *task,
556 struct task_struct *next)
557 {
558 struct perf_cgroup *cgrp1;
559 struct perf_cgroup *cgrp2 = NULL;
560
561 /*
562 * we come here when we know perf_cgroup_events > 0
563 */
564 cgrp1 = perf_cgroup_from_task(task);
565
566 /*
567 * next is NULL when called from perf_event_enable_on_exec()
568 * that will systematically cause a cgroup_switch()
569 */
570 if (next)
571 cgrp2 = perf_cgroup_from_task(next);
572
573 /*
574 * only schedule out current cgroup events if we know
575 * that we are switching to a different cgroup. Otherwise,
576 * do no touch the cgroup events.
577 */
578 if (cgrp1 != cgrp2)
579 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
580 }
581
582 static inline void perf_cgroup_sched_in(struct task_struct *prev,
583 struct task_struct *task)
584 {
585 struct perf_cgroup *cgrp1;
586 struct perf_cgroup *cgrp2 = NULL;
587
588 /*
589 * we come here when we know perf_cgroup_events > 0
590 */
591 cgrp1 = perf_cgroup_from_task(task);
592
593 /* prev can never be NULL */
594 cgrp2 = perf_cgroup_from_task(prev);
595
596 /*
597 * only need to schedule in cgroup events if we are changing
598 * cgroup during ctxsw. Cgroup events were not scheduled
599 * out of ctxsw out if that was not the case.
600 */
601 if (cgrp1 != cgrp2)
602 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
603 }
604
605 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
606 struct perf_event_attr *attr,
607 struct perf_event *group_leader)
608 {
609 struct perf_cgroup *cgrp;
610 struct cgroup_subsys_state *css;
611 struct fd f = fdget(fd);
612 int ret = 0;
613
614 if (!f.file)
615 return -EBADF;
616
617 css = css_tryget_online_from_dir(f.file->f_dentry,
618 &perf_event_cgrp_subsys);
619 if (IS_ERR(css)) {
620 ret = PTR_ERR(css);
621 goto out;
622 }
623
624 cgrp = container_of(css, struct perf_cgroup, css);
625 event->cgrp = cgrp;
626
627 /*
628 * all events in a group must monitor
629 * the same cgroup because a task belongs
630 * to only one perf cgroup at a time
631 */
632 if (group_leader && group_leader->cgrp != cgrp) {
633 perf_detach_cgroup(event);
634 ret = -EINVAL;
635 }
636 out:
637 fdput(f);
638 return ret;
639 }
640
641 static inline void
642 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
643 {
644 struct perf_cgroup_info *t;
645 t = per_cpu_ptr(event->cgrp->info, event->cpu);
646 event->shadow_ctx_time = now - t->timestamp;
647 }
648
649 static inline void
650 perf_cgroup_defer_enabled(struct perf_event *event)
651 {
652 /*
653 * when the current task's perf cgroup does not match
654 * the event's, we need to remember to call the
655 * perf_mark_enable() function the first time a task with
656 * a matching perf cgroup is scheduled in.
657 */
658 if (is_cgroup_event(event) && !perf_cgroup_match(event))
659 event->cgrp_defer_enabled = 1;
660 }
661
662 static inline void
663 perf_cgroup_mark_enabled(struct perf_event *event,
664 struct perf_event_context *ctx)
665 {
666 struct perf_event *sub;
667 u64 tstamp = perf_event_time(event);
668
669 if (!event->cgrp_defer_enabled)
670 return;
671
672 event->cgrp_defer_enabled = 0;
673
674 event->tstamp_enabled = tstamp - event->total_time_enabled;
675 list_for_each_entry(sub, &event->sibling_list, group_entry) {
676 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
677 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
678 sub->cgrp_defer_enabled = 0;
679 }
680 }
681 }
682 #else /* !CONFIG_CGROUP_PERF */
683
684 static inline bool
685 perf_cgroup_match(struct perf_event *event)
686 {
687 return true;
688 }
689
690 static inline void perf_detach_cgroup(struct perf_event *event)
691 {}
692
693 static inline int is_cgroup_event(struct perf_event *event)
694 {
695 return 0;
696 }
697
698 static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
699 {
700 return 0;
701 }
702
703 static inline void update_cgrp_time_from_event(struct perf_event *event)
704 {
705 }
706
707 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
708 {
709 }
710
711 static inline void perf_cgroup_sched_out(struct task_struct *task,
712 struct task_struct *next)
713 {
714 }
715
716 static inline void perf_cgroup_sched_in(struct task_struct *prev,
717 struct task_struct *task)
718 {
719 }
720
721 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
722 struct perf_event_attr *attr,
723 struct perf_event *group_leader)
724 {
725 return -EINVAL;
726 }
727
728 static inline void
729 perf_cgroup_set_timestamp(struct task_struct *task,
730 struct perf_event_context *ctx)
731 {
732 }
733
734 void
735 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
736 {
737 }
738
739 static inline void
740 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
741 {
742 }
743
744 static inline u64 perf_cgroup_event_time(struct perf_event *event)
745 {
746 return 0;
747 }
748
749 static inline void
750 perf_cgroup_defer_enabled(struct perf_event *event)
751 {
752 }
753
754 static inline void
755 perf_cgroup_mark_enabled(struct perf_event *event,
756 struct perf_event_context *ctx)
757 {
758 }
759 #endif
760
761 /*
762 * set default to be dependent on timer tick just
763 * like original code
764 */
765 #define PERF_CPU_HRTIMER (1000 / HZ)
766 /*
767 * function must be called with interrupts disbled
768 */
769 static enum hrtimer_restart perf_cpu_hrtimer_handler(struct hrtimer *hr)
770 {
771 struct perf_cpu_context *cpuctx;
772 enum hrtimer_restart ret = HRTIMER_NORESTART;
773 int rotations = 0;
774
775 WARN_ON(!irqs_disabled());
776
777 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
778
779 rotations = perf_rotate_context(cpuctx);
780
781 /*
782 * arm timer if needed
783 */
784 if (rotations) {
785 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
786 ret = HRTIMER_RESTART;
787 }
788
789 return ret;
790 }
791
792 /* CPU is going down */
793 void perf_cpu_hrtimer_cancel(int cpu)
794 {
795 struct perf_cpu_context *cpuctx;
796 struct pmu *pmu;
797 unsigned long flags;
798
799 if (WARN_ON(cpu != smp_processor_id()))
800 return;
801
802 local_irq_save(flags);
803
804 rcu_read_lock();
805
806 list_for_each_entry_rcu(pmu, &pmus, entry) {
807 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
808
809 if (pmu->task_ctx_nr == perf_sw_context)
810 continue;
811
812 hrtimer_cancel(&cpuctx->hrtimer);
813 }
814
815 rcu_read_unlock();
816
817 local_irq_restore(flags);
818 }
819
820 static void __perf_cpu_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
821 {
822 struct hrtimer *hr = &cpuctx->hrtimer;
823 struct pmu *pmu = cpuctx->ctx.pmu;
824 int timer;
825
826 /* no multiplexing needed for SW PMU */
827 if (pmu->task_ctx_nr == perf_sw_context)
828 return;
829
830 /*
831 * check default is sane, if not set then force to
832 * default interval (1/tick)
833 */
834 timer = pmu->hrtimer_interval_ms;
835 if (timer < 1)
836 timer = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
837
838 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
839
840 hrtimer_init(hr, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
841 hr->function = perf_cpu_hrtimer_handler;
842 }
843
844 static void perf_cpu_hrtimer_restart(struct perf_cpu_context *cpuctx)
845 {
846 struct hrtimer *hr = &cpuctx->hrtimer;
847 struct pmu *pmu = cpuctx->ctx.pmu;
848
849 /* not for SW PMU */
850 if (pmu->task_ctx_nr == perf_sw_context)
851 return;
852
853 if (hrtimer_active(hr))
854 return;
855
856 if (!hrtimer_callback_running(hr))
857 __hrtimer_start_range_ns(hr, cpuctx->hrtimer_interval,
858 0, HRTIMER_MODE_REL_PINNED, 0);
859 }
860
861 void perf_pmu_disable(struct pmu *pmu)
862 {
863 int *count = this_cpu_ptr(pmu->pmu_disable_count);
864 if (!(*count)++)
865 pmu->pmu_disable(pmu);
866 }
867
868 void perf_pmu_enable(struct pmu *pmu)
869 {
870 int *count = this_cpu_ptr(pmu->pmu_disable_count);
871 if (!--(*count))
872 pmu->pmu_enable(pmu);
873 }
874
875 static DEFINE_PER_CPU(struct list_head, rotation_list);
876
877 /*
878 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
879 * because they're strictly cpu affine and rotate_start is called with IRQs
880 * disabled, while rotate_context is called from IRQ context.
881 */
882 static void perf_pmu_rotate_start(struct pmu *pmu)
883 {
884 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
885 struct list_head *head = this_cpu_ptr(&rotation_list);
886
887 WARN_ON(!irqs_disabled());
888
889 if (list_empty(&cpuctx->rotation_list))
890 list_add(&cpuctx->rotation_list, head);
891 }
892
893 static void get_ctx(struct perf_event_context *ctx)
894 {
895 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
896 }
897
898 static void put_ctx(struct perf_event_context *ctx)
899 {
900 if (atomic_dec_and_test(&ctx->refcount)) {
901 if (ctx->parent_ctx)
902 put_ctx(ctx->parent_ctx);
903 if (ctx->task)
904 put_task_struct(ctx->task);
905 kfree_rcu(ctx, rcu_head);
906 }
907 }
908
909 /*
910 * This must be done under the ctx->lock, such as to serialize against
911 * context_equiv(), therefore we cannot call put_ctx() since that might end up
912 * calling scheduler related locks and ctx->lock nests inside those.
913 */
914 static __must_check struct perf_event_context *
915 unclone_ctx(struct perf_event_context *ctx)
916 {
917 struct perf_event_context *parent_ctx = ctx->parent_ctx;
918
919 lockdep_assert_held(&ctx->lock);
920
921 if (parent_ctx)
922 ctx->parent_ctx = NULL;
923 ctx->generation++;
924
925 return parent_ctx;
926 }
927
928 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
929 {
930 /*
931 * only top level events have the pid namespace they were created in
932 */
933 if (event->parent)
934 event = event->parent;
935
936 return task_tgid_nr_ns(p, event->ns);
937 }
938
939 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
940 {
941 /*
942 * only top level events have the pid namespace they were created in
943 */
944 if (event->parent)
945 event = event->parent;
946
947 return task_pid_nr_ns(p, event->ns);
948 }
949
950 /*
951 * If we inherit events we want to return the parent event id
952 * to userspace.
953 */
954 static u64 primary_event_id(struct perf_event *event)
955 {
956 u64 id = event->id;
957
958 if (event->parent)
959 id = event->parent->id;
960
961 return id;
962 }
963
964 /*
965 * Get the perf_event_context for a task and lock it.
966 * This has to cope with with the fact that until it is locked,
967 * the context could get moved to another task.
968 */
969 static struct perf_event_context *
970 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
971 {
972 struct perf_event_context *ctx;
973
974 retry:
975 /*
976 * One of the few rules of preemptible RCU is that one cannot do
977 * rcu_read_unlock() while holding a scheduler (or nested) lock when
978 * part of the read side critical section was preemptible -- see
979 * rcu_read_unlock_special().
980 *
981 * Since ctx->lock nests under rq->lock we must ensure the entire read
982 * side critical section is non-preemptible.
983 */
984 preempt_disable();
985 rcu_read_lock();
986 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
987 if (ctx) {
988 /*
989 * If this context is a clone of another, it might
990 * get swapped for another underneath us by
991 * perf_event_task_sched_out, though the
992 * rcu_read_lock() protects us from any context
993 * getting freed. Lock the context and check if it
994 * got swapped before we could get the lock, and retry
995 * if so. If we locked the right context, then it
996 * can't get swapped on us any more.
997 */
998 raw_spin_lock_irqsave(&ctx->lock, *flags);
999 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1000 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
1001 rcu_read_unlock();
1002 preempt_enable();
1003 goto retry;
1004 }
1005
1006 if (!atomic_inc_not_zero(&ctx->refcount)) {
1007 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
1008 ctx = NULL;
1009 }
1010 }
1011 rcu_read_unlock();
1012 preempt_enable();
1013 return ctx;
1014 }
1015
1016 /*
1017 * Get the context for a task and increment its pin_count so it
1018 * can't get swapped to another task. This also increments its
1019 * reference count so that the context can't get freed.
1020 */
1021 static struct perf_event_context *
1022 perf_pin_task_context(struct task_struct *task, int ctxn)
1023 {
1024 struct perf_event_context *ctx;
1025 unsigned long flags;
1026
1027 ctx = perf_lock_task_context(task, ctxn, &flags);
1028 if (ctx) {
1029 ++ctx->pin_count;
1030 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1031 }
1032 return ctx;
1033 }
1034
1035 static void perf_unpin_context(struct perf_event_context *ctx)
1036 {
1037 unsigned long flags;
1038
1039 raw_spin_lock_irqsave(&ctx->lock, flags);
1040 --ctx->pin_count;
1041 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1042 }
1043
1044 /*
1045 * Update the record of the current time in a context.
1046 */
1047 static void update_context_time(struct perf_event_context *ctx)
1048 {
1049 u64 now = perf_clock();
1050
1051 ctx->time += now - ctx->timestamp;
1052 ctx->timestamp = now;
1053 }
1054
1055 static u64 perf_event_time(struct perf_event *event)
1056 {
1057 struct perf_event_context *ctx = event->ctx;
1058
1059 if (is_cgroup_event(event))
1060 return perf_cgroup_event_time(event);
1061
1062 return ctx ? ctx->time : 0;
1063 }
1064
1065 /*
1066 * Update the total_time_enabled and total_time_running fields for a event.
1067 * The caller of this function needs to hold the ctx->lock.
1068 */
1069 static void update_event_times(struct perf_event *event)
1070 {
1071 struct perf_event_context *ctx = event->ctx;
1072 u64 run_end;
1073
1074 if (event->state < PERF_EVENT_STATE_INACTIVE ||
1075 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1076 return;
1077 /*
1078 * in cgroup mode, time_enabled represents
1079 * the time the event was enabled AND active
1080 * tasks were in the monitored cgroup. This is
1081 * independent of the activity of the context as
1082 * there may be a mix of cgroup and non-cgroup events.
1083 *
1084 * That is why we treat cgroup events differently
1085 * here.
1086 */
1087 if (is_cgroup_event(event))
1088 run_end = perf_cgroup_event_time(event);
1089 else if (ctx->is_active)
1090 run_end = ctx->time;
1091 else
1092 run_end = event->tstamp_stopped;
1093
1094 event->total_time_enabled = run_end - event->tstamp_enabled;
1095
1096 if (event->state == PERF_EVENT_STATE_INACTIVE)
1097 run_end = event->tstamp_stopped;
1098 else
1099 run_end = perf_event_time(event);
1100
1101 event->total_time_running = run_end - event->tstamp_running;
1102
1103 }
1104
1105 /*
1106 * Update total_time_enabled and total_time_running for all events in a group.
1107 */
1108 static void update_group_times(struct perf_event *leader)
1109 {
1110 struct perf_event *event;
1111
1112 update_event_times(leader);
1113 list_for_each_entry(event, &leader->sibling_list, group_entry)
1114 update_event_times(event);
1115 }
1116
1117 static struct list_head *
1118 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1119 {
1120 if (event->attr.pinned)
1121 return &ctx->pinned_groups;
1122 else
1123 return &ctx->flexible_groups;
1124 }
1125
1126 /*
1127 * Add a event from the lists for its context.
1128 * Must be called with ctx->mutex and ctx->lock held.
1129 */
1130 static void
1131 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1132 {
1133 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1134 event->attach_state |= PERF_ATTACH_CONTEXT;
1135
1136 /*
1137 * If we're a stand alone event or group leader, we go to the context
1138 * list, group events are kept attached to the group so that
1139 * perf_group_detach can, at all times, locate all siblings.
1140 */
1141 if (event->group_leader == event) {
1142 struct list_head *list;
1143
1144 if (is_software_event(event))
1145 event->group_flags |= PERF_GROUP_SOFTWARE;
1146
1147 list = ctx_group_list(event, ctx);
1148 list_add_tail(&event->group_entry, list);
1149 }
1150
1151 if (is_cgroup_event(event))
1152 ctx->nr_cgroups++;
1153
1154 if (has_branch_stack(event))
1155 ctx->nr_branch_stack++;
1156
1157 list_add_rcu(&event->event_entry, &ctx->event_list);
1158 if (!ctx->nr_events)
1159 perf_pmu_rotate_start(ctx->pmu);
1160 ctx->nr_events++;
1161 if (event->attr.inherit_stat)
1162 ctx->nr_stat++;
1163
1164 ctx->generation++;
1165 }
1166
1167 /*
1168 * Initialize event state based on the perf_event_attr::disabled.
1169 */
1170 static inline void perf_event__state_init(struct perf_event *event)
1171 {
1172 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1173 PERF_EVENT_STATE_INACTIVE;
1174 }
1175
1176 /*
1177 * Called at perf_event creation and when events are attached/detached from a
1178 * group.
1179 */
1180 static void perf_event__read_size(struct perf_event *event)
1181 {
1182 int entry = sizeof(u64); /* value */
1183 int size = 0;
1184 int nr = 1;
1185
1186 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1187 size += sizeof(u64);
1188
1189 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1190 size += sizeof(u64);
1191
1192 if (event->attr.read_format & PERF_FORMAT_ID)
1193 entry += sizeof(u64);
1194
1195 if (event->attr.read_format & PERF_FORMAT_GROUP) {
1196 nr += event->group_leader->nr_siblings;
1197 size += sizeof(u64);
1198 }
1199
1200 size += entry * nr;
1201 event->read_size = size;
1202 }
1203
1204 static void perf_event__header_size(struct perf_event *event)
1205 {
1206 struct perf_sample_data *data;
1207 u64 sample_type = event->attr.sample_type;
1208 u16 size = 0;
1209
1210 perf_event__read_size(event);
1211
1212 if (sample_type & PERF_SAMPLE_IP)
1213 size += sizeof(data->ip);
1214
1215 if (sample_type & PERF_SAMPLE_ADDR)
1216 size += sizeof(data->addr);
1217
1218 if (sample_type & PERF_SAMPLE_PERIOD)
1219 size += sizeof(data->period);
1220
1221 if (sample_type & PERF_SAMPLE_WEIGHT)
1222 size += sizeof(data->weight);
1223
1224 if (sample_type & PERF_SAMPLE_READ)
1225 size += event->read_size;
1226
1227 if (sample_type & PERF_SAMPLE_DATA_SRC)
1228 size += sizeof(data->data_src.val);
1229
1230 if (sample_type & PERF_SAMPLE_TRANSACTION)
1231 size += sizeof(data->txn);
1232
1233 event->header_size = size;
1234 }
1235
1236 static void perf_event__id_header_size(struct perf_event *event)
1237 {
1238 struct perf_sample_data *data;
1239 u64 sample_type = event->attr.sample_type;
1240 u16 size = 0;
1241
1242 if (sample_type & PERF_SAMPLE_TID)
1243 size += sizeof(data->tid_entry);
1244
1245 if (sample_type & PERF_SAMPLE_TIME)
1246 size += sizeof(data->time);
1247
1248 if (sample_type & PERF_SAMPLE_IDENTIFIER)
1249 size += sizeof(data->id);
1250
1251 if (sample_type & PERF_SAMPLE_ID)
1252 size += sizeof(data->id);
1253
1254 if (sample_type & PERF_SAMPLE_STREAM_ID)
1255 size += sizeof(data->stream_id);
1256
1257 if (sample_type & PERF_SAMPLE_CPU)
1258 size += sizeof(data->cpu_entry);
1259
1260 event->id_header_size = size;
1261 }
1262
1263 static void perf_group_attach(struct perf_event *event)
1264 {
1265 struct perf_event *group_leader = event->group_leader, *pos;
1266
1267 /*
1268 * We can have double attach due to group movement in perf_event_open.
1269 */
1270 if (event->attach_state & PERF_ATTACH_GROUP)
1271 return;
1272
1273 event->attach_state |= PERF_ATTACH_GROUP;
1274
1275 if (group_leader == event)
1276 return;
1277
1278 if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
1279 !is_software_event(event))
1280 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
1281
1282 list_add_tail(&event->group_entry, &group_leader->sibling_list);
1283 group_leader->nr_siblings++;
1284
1285 perf_event__header_size(group_leader);
1286
1287 list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1288 perf_event__header_size(pos);
1289 }
1290
1291 /*
1292 * Remove a event from the lists for its context.
1293 * Must be called with ctx->mutex and ctx->lock held.
1294 */
1295 static void
1296 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1297 {
1298 struct perf_cpu_context *cpuctx;
1299 /*
1300 * We can have double detach due to exit/hot-unplug + close.
1301 */
1302 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1303 return;
1304
1305 event->attach_state &= ~PERF_ATTACH_CONTEXT;
1306
1307 if (is_cgroup_event(event)) {
1308 ctx->nr_cgroups--;
1309 cpuctx = __get_cpu_context(ctx);
1310 /*
1311 * if there are no more cgroup events
1312 * then cler cgrp to avoid stale pointer
1313 * in update_cgrp_time_from_cpuctx()
1314 */
1315 if (!ctx->nr_cgroups)
1316 cpuctx->cgrp = NULL;
1317 }
1318
1319 if (has_branch_stack(event))
1320 ctx->nr_branch_stack--;
1321
1322 ctx->nr_events--;
1323 if (event->attr.inherit_stat)
1324 ctx->nr_stat--;
1325
1326 list_del_rcu(&event->event_entry);
1327
1328 if (event->group_leader == event)
1329 list_del_init(&event->group_entry);
1330
1331 update_group_times(event);
1332
1333 /*
1334 * If event was in error state, then keep it
1335 * that way, otherwise bogus counts will be
1336 * returned on read(). The only way to get out
1337 * of error state is by explicit re-enabling
1338 * of the event
1339 */
1340 if (event->state > PERF_EVENT_STATE_OFF)
1341 event->state = PERF_EVENT_STATE_OFF;
1342
1343 ctx->generation++;
1344 }
1345
1346 static void perf_group_detach(struct perf_event *event)
1347 {
1348 struct perf_event *sibling, *tmp;
1349 struct list_head *list = NULL;
1350
1351 /*
1352 * We can have double detach due to exit/hot-unplug + close.
1353 */
1354 if (!(event->attach_state & PERF_ATTACH_GROUP))
1355 return;
1356
1357 event->attach_state &= ~PERF_ATTACH_GROUP;
1358
1359 /*
1360 * If this is a sibling, remove it from its group.
1361 */
1362 if (event->group_leader != event) {
1363 list_del_init(&event->group_entry);
1364 event->group_leader->nr_siblings--;
1365 goto out;
1366 }
1367
1368 if (!list_empty(&event->group_entry))
1369 list = &event->group_entry;
1370
1371 /*
1372 * If this was a group event with sibling events then
1373 * upgrade the siblings to singleton events by adding them
1374 * to whatever list we are on.
1375 */
1376 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1377 if (list)
1378 list_move_tail(&sibling->group_entry, list);
1379 sibling->group_leader = sibling;
1380
1381 /* Inherit group flags from the previous leader */
1382 sibling->group_flags = event->group_flags;
1383 }
1384
1385 out:
1386 perf_event__header_size(event->group_leader);
1387
1388 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1389 perf_event__header_size(tmp);
1390 }
1391
1392 /*
1393 * User event without the task.
1394 */
1395 static bool is_orphaned_event(struct perf_event *event)
1396 {
1397 return event && !is_kernel_event(event) && !event->owner;
1398 }
1399
1400 /*
1401 * Event has a parent but parent's task finished and it's
1402 * alive only because of children holding refference.
1403 */
1404 static bool is_orphaned_child(struct perf_event *event)
1405 {
1406 return is_orphaned_event(event->parent);
1407 }
1408
1409 static void orphans_remove_work(struct work_struct *work);
1410
1411 static void schedule_orphans_remove(struct perf_event_context *ctx)
1412 {
1413 if (!ctx->task || ctx->orphans_remove_sched || !perf_wq)
1414 return;
1415
1416 if (queue_delayed_work(perf_wq, &ctx->orphans_remove, 1)) {
1417 get_ctx(ctx);
1418 ctx->orphans_remove_sched = true;
1419 }
1420 }
1421
1422 static int __init perf_workqueue_init(void)
1423 {
1424 perf_wq = create_singlethread_workqueue("perf");
1425 WARN(!perf_wq, "failed to create perf workqueue\n");
1426 return perf_wq ? 0 : -1;
1427 }
1428
1429 core_initcall(perf_workqueue_init);
1430
1431 static inline int
1432 event_filter_match(struct perf_event *event)
1433 {
1434 return (event->cpu == -1 || event->cpu == smp_processor_id())
1435 && perf_cgroup_match(event);
1436 }
1437
1438 static void
1439 event_sched_out(struct perf_event *event,
1440 struct perf_cpu_context *cpuctx,
1441 struct perf_event_context *ctx)
1442 {
1443 u64 tstamp = perf_event_time(event);
1444 u64 delta;
1445 /*
1446 * An event which could not be activated because of
1447 * filter mismatch still needs to have its timings
1448 * maintained, otherwise bogus information is return
1449 * via read() for time_enabled, time_running:
1450 */
1451 if (event->state == PERF_EVENT_STATE_INACTIVE
1452 && !event_filter_match(event)) {
1453 delta = tstamp - event->tstamp_stopped;
1454 event->tstamp_running += delta;
1455 event->tstamp_stopped = tstamp;
1456 }
1457
1458 if (event->state != PERF_EVENT_STATE_ACTIVE)
1459 return;
1460
1461 perf_pmu_disable(event->pmu);
1462
1463 event->state = PERF_EVENT_STATE_INACTIVE;
1464 if (event->pending_disable) {
1465 event->pending_disable = 0;
1466 event->state = PERF_EVENT_STATE_OFF;
1467 }
1468 event->tstamp_stopped = tstamp;
1469 event->pmu->del(event, 0);
1470 event->oncpu = -1;
1471
1472 if (!is_software_event(event))
1473 cpuctx->active_oncpu--;
1474 ctx->nr_active--;
1475 if (event->attr.freq && event->attr.sample_freq)
1476 ctx->nr_freq--;
1477 if (event->attr.exclusive || !cpuctx->active_oncpu)
1478 cpuctx->exclusive = 0;
1479
1480 if (is_orphaned_child(event))
1481 schedule_orphans_remove(ctx);
1482
1483 perf_pmu_enable(event->pmu);
1484 }
1485
1486 static void
1487 group_sched_out(struct perf_event *group_event,
1488 struct perf_cpu_context *cpuctx,
1489 struct perf_event_context *ctx)
1490 {
1491 struct perf_event *event;
1492 int state = group_event->state;
1493
1494 event_sched_out(group_event, cpuctx, ctx);
1495
1496 /*
1497 * Schedule out siblings (if any):
1498 */
1499 list_for_each_entry(event, &group_event->sibling_list, group_entry)
1500 event_sched_out(event, cpuctx, ctx);
1501
1502 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1503 cpuctx->exclusive = 0;
1504 }
1505
1506 struct remove_event {
1507 struct perf_event *event;
1508 bool detach_group;
1509 };
1510
1511 /*
1512 * Cross CPU call to remove a performance event
1513 *
1514 * We disable the event on the hardware level first. After that we
1515 * remove it from the context list.
1516 */
1517 static int __perf_remove_from_context(void *info)
1518 {
1519 struct remove_event *re = info;
1520 struct perf_event *event = re->event;
1521 struct perf_event_context *ctx = event->ctx;
1522 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1523
1524 raw_spin_lock(&ctx->lock);
1525 event_sched_out(event, cpuctx, ctx);
1526 if (re->detach_group)
1527 perf_group_detach(event);
1528 list_del_event(event, ctx);
1529 if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
1530 ctx->is_active = 0;
1531 cpuctx->task_ctx = NULL;
1532 }
1533 raw_spin_unlock(&ctx->lock);
1534
1535 return 0;
1536 }
1537
1538
1539 /*
1540 * Remove the event from a task's (or a CPU's) list of events.
1541 *
1542 * CPU events are removed with a smp call. For task events we only
1543 * call when the task is on a CPU.
1544 *
1545 * If event->ctx is a cloned context, callers must make sure that
1546 * every task struct that event->ctx->task could possibly point to
1547 * remains valid. This is OK when called from perf_release since
1548 * that only calls us on the top-level context, which can't be a clone.
1549 * When called from perf_event_exit_task, it's OK because the
1550 * context has been detached from its task.
1551 */
1552 static void perf_remove_from_context(struct perf_event *event, bool detach_group)
1553 {
1554 struct perf_event_context *ctx = event->ctx;
1555 struct task_struct *task = ctx->task;
1556 struct remove_event re = {
1557 .event = event,
1558 .detach_group = detach_group,
1559 };
1560
1561 lockdep_assert_held(&ctx->mutex);
1562
1563 if (!task) {
1564 /*
1565 * Per cpu events are removed via an smp call and
1566 * the removal is always successful.
1567 */
1568 cpu_function_call(event->cpu, __perf_remove_from_context, &re);
1569 return;
1570 }
1571
1572 retry:
1573 if (!task_function_call(task, __perf_remove_from_context, &re))
1574 return;
1575
1576 raw_spin_lock_irq(&ctx->lock);
1577 /*
1578 * If we failed to find a running task, but find the context active now
1579 * that we've acquired the ctx->lock, retry.
1580 */
1581 if (ctx->is_active) {
1582 raw_spin_unlock_irq(&ctx->lock);
1583 /*
1584 * Reload the task pointer, it might have been changed by
1585 * a concurrent perf_event_context_sched_out().
1586 */
1587 task = ctx->task;
1588 goto retry;
1589 }
1590
1591 /*
1592 * Since the task isn't running, its safe to remove the event, us
1593 * holding the ctx->lock ensures the task won't get scheduled in.
1594 */
1595 if (detach_group)
1596 perf_group_detach(event);
1597 list_del_event(event, ctx);
1598 raw_spin_unlock_irq(&ctx->lock);
1599 }
1600
1601 /*
1602 * Cross CPU call to disable a performance event
1603 */
1604 int __perf_event_disable(void *info)
1605 {
1606 struct perf_event *event = info;
1607 struct perf_event_context *ctx = event->ctx;
1608 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1609
1610 /*
1611 * If this is a per-task event, need to check whether this
1612 * event's task is the current task on this cpu.
1613 *
1614 * Can trigger due to concurrent perf_event_context_sched_out()
1615 * flipping contexts around.
1616 */
1617 if (ctx->task && cpuctx->task_ctx != ctx)
1618 return -EINVAL;
1619
1620 raw_spin_lock(&ctx->lock);
1621
1622 /*
1623 * If the event is on, turn it off.
1624 * If it is in error state, leave it in error state.
1625 */
1626 if (event->state >= PERF_EVENT_STATE_INACTIVE) {
1627 update_context_time(ctx);
1628 update_cgrp_time_from_event(event);
1629 update_group_times(event);
1630 if (event == event->group_leader)
1631 group_sched_out(event, cpuctx, ctx);
1632 else
1633 event_sched_out(event, cpuctx, ctx);
1634 event->state = PERF_EVENT_STATE_OFF;
1635 }
1636
1637 raw_spin_unlock(&ctx->lock);
1638
1639 return 0;
1640 }
1641
1642 /*
1643 * Disable a event.
1644 *
1645 * If event->ctx is a cloned context, callers must make sure that
1646 * every task struct that event->ctx->task could possibly point to
1647 * remains valid. This condition is satisifed when called through
1648 * perf_event_for_each_child or perf_event_for_each because they
1649 * hold the top-level event's child_mutex, so any descendant that
1650 * goes to exit will block in sync_child_event.
1651 * When called from perf_pending_event it's OK because event->ctx
1652 * is the current context on this CPU and preemption is disabled,
1653 * hence we can't get into perf_event_task_sched_out for this context.
1654 */
1655 void perf_event_disable(struct perf_event *event)
1656 {
1657 struct perf_event_context *ctx = event->ctx;
1658 struct task_struct *task = ctx->task;
1659
1660 if (!task) {
1661 /*
1662 * Disable the event on the cpu that it's on
1663 */
1664 cpu_function_call(event->cpu, __perf_event_disable, event);
1665 return;
1666 }
1667
1668 retry:
1669 if (!task_function_call(task, __perf_event_disable, event))
1670 return;
1671
1672 raw_spin_lock_irq(&ctx->lock);
1673 /*
1674 * If the event is still active, we need to retry the cross-call.
1675 */
1676 if (event->state == PERF_EVENT_STATE_ACTIVE) {
1677 raw_spin_unlock_irq(&ctx->lock);
1678 /*
1679 * Reload the task pointer, it might have been changed by
1680 * a concurrent perf_event_context_sched_out().
1681 */
1682 task = ctx->task;
1683 goto retry;
1684 }
1685
1686 /*
1687 * Since we have the lock this context can't be scheduled
1688 * in, so we can change the state safely.
1689 */
1690 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1691 update_group_times(event);
1692 event->state = PERF_EVENT_STATE_OFF;
1693 }
1694 raw_spin_unlock_irq(&ctx->lock);
1695 }
1696 EXPORT_SYMBOL_GPL(perf_event_disable);
1697
1698 static void perf_set_shadow_time(struct perf_event *event,
1699 struct perf_event_context *ctx,
1700 u64 tstamp)
1701 {
1702 /*
1703 * use the correct time source for the time snapshot
1704 *
1705 * We could get by without this by leveraging the
1706 * fact that to get to this function, the caller
1707 * has most likely already called update_context_time()
1708 * and update_cgrp_time_xx() and thus both timestamp
1709 * are identical (or very close). Given that tstamp is,
1710 * already adjusted for cgroup, we could say that:
1711 * tstamp - ctx->timestamp
1712 * is equivalent to
1713 * tstamp - cgrp->timestamp.
1714 *
1715 * Then, in perf_output_read(), the calculation would
1716 * work with no changes because:
1717 * - event is guaranteed scheduled in
1718 * - no scheduled out in between
1719 * - thus the timestamp would be the same
1720 *
1721 * But this is a bit hairy.
1722 *
1723 * So instead, we have an explicit cgroup call to remain
1724 * within the time time source all along. We believe it
1725 * is cleaner and simpler to understand.
1726 */
1727 if (is_cgroup_event(event))
1728 perf_cgroup_set_shadow_time(event, tstamp);
1729 else
1730 event->shadow_ctx_time = tstamp - ctx->timestamp;
1731 }
1732
1733 #define MAX_INTERRUPTS (~0ULL)
1734
1735 static void perf_log_throttle(struct perf_event *event, int enable);
1736
1737 static int
1738 event_sched_in(struct perf_event *event,
1739 struct perf_cpu_context *cpuctx,
1740 struct perf_event_context *ctx)
1741 {
1742 u64 tstamp = perf_event_time(event);
1743 int ret = 0;
1744
1745 lockdep_assert_held(&ctx->lock);
1746
1747 if (event->state <= PERF_EVENT_STATE_OFF)
1748 return 0;
1749
1750 event->state = PERF_EVENT_STATE_ACTIVE;
1751 event->oncpu = smp_processor_id();
1752
1753 /*
1754 * Unthrottle events, since we scheduled we might have missed several
1755 * ticks already, also for a heavily scheduling task there is little
1756 * guarantee it'll get a tick in a timely manner.
1757 */
1758 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
1759 perf_log_throttle(event, 1);
1760 event->hw.interrupts = 0;
1761 }
1762
1763 /*
1764 * The new state must be visible before we turn it on in the hardware:
1765 */
1766 smp_wmb();
1767
1768 perf_pmu_disable(event->pmu);
1769
1770 if (event->pmu->add(event, PERF_EF_START)) {
1771 event->state = PERF_EVENT_STATE_INACTIVE;
1772 event->oncpu = -1;
1773 ret = -EAGAIN;
1774 goto out;
1775 }
1776
1777 event->tstamp_running += tstamp - event->tstamp_stopped;
1778
1779 perf_set_shadow_time(event, ctx, tstamp);
1780
1781 if (!is_software_event(event))
1782 cpuctx->active_oncpu++;
1783 ctx->nr_active++;
1784 if (event->attr.freq && event->attr.sample_freq)
1785 ctx->nr_freq++;
1786
1787 if (event->attr.exclusive)
1788 cpuctx->exclusive = 1;
1789
1790 if (is_orphaned_child(event))
1791 schedule_orphans_remove(ctx);
1792
1793 out:
1794 perf_pmu_enable(event->pmu);
1795
1796 return ret;
1797 }
1798
1799 static int
1800 group_sched_in(struct perf_event *group_event,
1801 struct perf_cpu_context *cpuctx,
1802 struct perf_event_context *ctx)
1803 {
1804 struct perf_event *event, *partial_group = NULL;
1805 struct pmu *pmu = ctx->pmu;
1806 u64 now = ctx->time;
1807 bool simulate = false;
1808
1809 if (group_event->state == PERF_EVENT_STATE_OFF)
1810 return 0;
1811
1812 pmu->start_txn(pmu);
1813
1814 if (event_sched_in(group_event, cpuctx, ctx)) {
1815 pmu->cancel_txn(pmu);
1816 perf_cpu_hrtimer_restart(cpuctx);
1817 return -EAGAIN;
1818 }
1819
1820 /*
1821 * Schedule in siblings as one group (if any):
1822 */
1823 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1824 if (event_sched_in(event, cpuctx, ctx)) {
1825 partial_group = event;
1826 goto group_error;
1827 }
1828 }
1829
1830 if (!pmu->commit_txn(pmu))
1831 return 0;
1832
1833 group_error:
1834 /*
1835 * Groups can be scheduled in as one unit only, so undo any
1836 * partial group before returning:
1837 * The events up to the failed event are scheduled out normally,
1838 * tstamp_stopped will be updated.
1839 *
1840 * The failed events and the remaining siblings need to have
1841 * their timings updated as if they had gone thru event_sched_in()
1842 * and event_sched_out(). This is required to get consistent timings
1843 * across the group. This also takes care of the case where the group
1844 * could never be scheduled by ensuring tstamp_stopped is set to mark
1845 * the time the event was actually stopped, such that time delta
1846 * calculation in update_event_times() is correct.
1847 */
1848 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1849 if (event == partial_group)
1850 simulate = true;
1851
1852 if (simulate) {
1853 event->tstamp_running += now - event->tstamp_stopped;
1854 event->tstamp_stopped = now;
1855 } else {
1856 event_sched_out(event, cpuctx, ctx);
1857 }
1858 }
1859 event_sched_out(group_event, cpuctx, ctx);
1860
1861 pmu->cancel_txn(pmu);
1862
1863 perf_cpu_hrtimer_restart(cpuctx);
1864
1865 return -EAGAIN;
1866 }
1867
1868 /*
1869 * Work out whether we can put this event group on the CPU now.
1870 */
1871 static int group_can_go_on(struct perf_event *event,
1872 struct perf_cpu_context *cpuctx,
1873 int can_add_hw)
1874 {
1875 /*
1876 * Groups consisting entirely of software events can always go on.
1877 */
1878 if (event->group_flags & PERF_GROUP_SOFTWARE)
1879 return 1;
1880 /*
1881 * If an exclusive group is already on, no other hardware
1882 * events can go on.
1883 */
1884 if (cpuctx->exclusive)
1885 return 0;
1886 /*
1887 * If this group is exclusive and there are already
1888 * events on the CPU, it can't go on.
1889 */
1890 if (event->attr.exclusive && cpuctx->active_oncpu)
1891 return 0;
1892 /*
1893 * Otherwise, try to add it if all previous groups were able
1894 * to go on.
1895 */
1896 return can_add_hw;
1897 }
1898
1899 static void add_event_to_ctx(struct perf_event *event,
1900 struct perf_event_context *ctx)
1901 {
1902 u64 tstamp = perf_event_time(event);
1903
1904 list_add_event(event, ctx);
1905 perf_group_attach(event);
1906 event->tstamp_enabled = tstamp;
1907 event->tstamp_running = tstamp;
1908 event->tstamp_stopped = tstamp;
1909 }
1910
1911 static void task_ctx_sched_out(struct perf_event_context *ctx);
1912 static void
1913 ctx_sched_in(struct perf_event_context *ctx,
1914 struct perf_cpu_context *cpuctx,
1915 enum event_type_t event_type,
1916 struct task_struct *task);
1917
1918 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
1919 struct perf_event_context *ctx,
1920 struct task_struct *task)
1921 {
1922 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
1923 if (ctx)
1924 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
1925 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
1926 if (ctx)
1927 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
1928 }
1929
1930 /*
1931 * Cross CPU call to install and enable a performance event
1932 *
1933 * Must be called with ctx->mutex held
1934 */
1935 static int __perf_install_in_context(void *info)
1936 {
1937 struct perf_event *event = info;
1938 struct perf_event_context *ctx = event->ctx;
1939 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1940 struct perf_event_context *task_ctx = cpuctx->task_ctx;
1941 struct task_struct *task = current;
1942
1943 perf_ctx_lock(cpuctx, task_ctx);
1944 perf_pmu_disable(cpuctx->ctx.pmu);
1945
1946 /*
1947 * If there was an active task_ctx schedule it out.
1948 */
1949 if (task_ctx)
1950 task_ctx_sched_out(task_ctx);
1951
1952 /*
1953 * If the context we're installing events in is not the
1954 * active task_ctx, flip them.
1955 */
1956 if (ctx->task && task_ctx != ctx) {
1957 if (task_ctx)
1958 raw_spin_unlock(&task_ctx->lock);
1959 raw_spin_lock(&ctx->lock);
1960 task_ctx = ctx;
1961 }
1962
1963 if (task_ctx) {
1964 cpuctx->task_ctx = task_ctx;
1965 task = task_ctx->task;
1966 }
1967
1968 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
1969
1970 update_context_time(ctx);
1971 /*
1972 * update cgrp time only if current cgrp
1973 * matches event->cgrp. Must be done before
1974 * calling add_event_to_ctx()
1975 */
1976 update_cgrp_time_from_event(event);
1977
1978 add_event_to_ctx(event, ctx);
1979
1980 /*
1981 * Schedule everything back in
1982 */
1983 perf_event_sched_in(cpuctx, task_ctx, task);
1984
1985 perf_pmu_enable(cpuctx->ctx.pmu);
1986 perf_ctx_unlock(cpuctx, task_ctx);
1987
1988 return 0;
1989 }
1990
1991 /*
1992 * Attach a performance event to a context
1993 *
1994 * First we add the event to the list with the hardware enable bit
1995 * in event->hw_config cleared.
1996 *
1997 * If the event is attached to a task which is on a CPU we use a smp
1998 * call to enable it in the task context. The task might have been
1999 * scheduled away, but we check this in the smp call again.
2000 */
2001 static void
2002 perf_install_in_context(struct perf_event_context *ctx,
2003 struct perf_event *event,
2004 int cpu)
2005 {
2006 struct task_struct *task = ctx->task;
2007
2008 lockdep_assert_held(&ctx->mutex);
2009
2010 event->ctx = ctx;
2011 if (event->cpu != -1)
2012 event->cpu = cpu;
2013
2014 if (!task) {
2015 /*
2016 * Per cpu events are installed via an smp call and
2017 * the install is always successful.
2018 */
2019 cpu_function_call(cpu, __perf_install_in_context, event);
2020 return;
2021 }
2022
2023 retry:
2024 if (!task_function_call(task, __perf_install_in_context, event))
2025 return;
2026
2027 raw_spin_lock_irq(&ctx->lock);
2028 /*
2029 * If we failed to find a running task, but find the context active now
2030 * that we've acquired the ctx->lock, retry.
2031 */
2032 if (ctx->is_active) {
2033 raw_spin_unlock_irq(&ctx->lock);
2034 /*
2035 * Reload the task pointer, it might have been changed by
2036 * a concurrent perf_event_context_sched_out().
2037 */
2038 task = ctx->task;
2039 goto retry;
2040 }
2041
2042 /*
2043 * Since the task isn't running, its safe to add the event, us holding
2044 * the ctx->lock ensures the task won't get scheduled in.
2045 */
2046 add_event_to_ctx(event, ctx);
2047 raw_spin_unlock_irq(&ctx->lock);
2048 }
2049
2050 /*
2051 * Put a event into inactive state and update time fields.
2052 * Enabling the leader of a group effectively enables all
2053 * the group members that aren't explicitly disabled, so we
2054 * have to update their ->tstamp_enabled also.
2055 * Note: this works for group members as well as group leaders
2056 * since the non-leader members' sibling_lists will be empty.
2057 */
2058 static void __perf_event_mark_enabled(struct perf_event *event)
2059 {
2060 struct perf_event *sub;
2061 u64 tstamp = perf_event_time(event);
2062
2063 event->state = PERF_EVENT_STATE_INACTIVE;
2064 event->tstamp_enabled = tstamp - event->total_time_enabled;
2065 list_for_each_entry(sub, &event->sibling_list, group_entry) {
2066 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
2067 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
2068 }
2069 }
2070
2071 /*
2072 * Cross CPU call to enable a performance event
2073 */
2074 static int __perf_event_enable(void *info)
2075 {
2076 struct perf_event *event = info;
2077 struct perf_event_context *ctx = event->ctx;
2078 struct perf_event *leader = event->group_leader;
2079 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2080 int err;
2081
2082 /*
2083 * There's a time window between 'ctx->is_active' check
2084 * in perf_event_enable function and this place having:
2085 * - IRQs on
2086 * - ctx->lock unlocked
2087 *
2088 * where the task could be killed and 'ctx' deactivated
2089 * by perf_event_exit_task.
2090 */
2091 if (!ctx->is_active)
2092 return -EINVAL;
2093
2094 raw_spin_lock(&ctx->lock);
2095 update_context_time(ctx);
2096
2097 if (event->state >= PERF_EVENT_STATE_INACTIVE)
2098 goto unlock;
2099
2100 /*
2101 * set current task's cgroup time reference point
2102 */
2103 perf_cgroup_set_timestamp(current, ctx);
2104
2105 __perf_event_mark_enabled(event);
2106
2107 if (!event_filter_match(event)) {
2108 if (is_cgroup_event(event))
2109 perf_cgroup_defer_enabled(event);
2110 goto unlock;
2111 }
2112
2113 /*
2114 * If the event is in a group and isn't the group leader,
2115 * then don't put it on unless the group is on.
2116 */
2117 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
2118 goto unlock;
2119
2120 if (!group_can_go_on(event, cpuctx, 1)) {
2121 err = -EEXIST;
2122 } else {
2123 if (event == leader)
2124 err = group_sched_in(event, cpuctx, ctx);
2125 else
2126 err = event_sched_in(event, cpuctx, ctx);
2127 }
2128
2129 if (err) {
2130 /*
2131 * If this event can't go on and it's part of a
2132 * group, then the whole group has to come off.
2133 */
2134 if (leader != event) {
2135 group_sched_out(leader, cpuctx, ctx);
2136 perf_cpu_hrtimer_restart(cpuctx);
2137 }
2138 if (leader->attr.pinned) {
2139 update_group_times(leader);
2140 leader->state = PERF_EVENT_STATE_ERROR;
2141 }
2142 }
2143
2144 unlock:
2145 raw_spin_unlock(&ctx->lock);
2146
2147 return 0;
2148 }
2149
2150 /*
2151 * Enable a event.
2152 *
2153 * If event->ctx is a cloned context, callers must make sure that
2154 * every task struct that event->ctx->task could possibly point to
2155 * remains valid. This condition is satisfied when called through
2156 * perf_event_for_each_child or perf_event_for_each as described
2157 * for perf_event_disable.
2158 */
2159 void perf_event_enable(struct perf_event *event)
2160 {
2161 struct perf_event_context *ctx = event->ctx;
2162 struct task_struct *task = ctx->task;
2163
2164 if (!task) {
2165 /*
2166 * Enable the event on the cpu that it's on
2167 */
2168 cpu_function_call(event->cpu, __perf_event_enable, event);
2169 return;
2170 }
2171
2172 raw_spin_lock_irq(&ctx->lock);
2173 if (event->state >= PERF_EVENT_STATE_INACTIVE)
2174 goto out;
2175
2176 /*
2177 * If the event is in error state, clear that first.
2178 * That way, if we see the event in error state below, we
2179 * know that it has gone back into error state, as distinct
2180 * from the task having been scheduled away before the
2181 * cross-call arrived.
2182 */
2183 if (event->state == PERF_EVENT_STATE_ERROR)
2184 event->state = PERF_EVENT_STATE_OFF;
2185
2186 retry:
2187 if (!ctx->is_active) {
2188 __perf_event_mark_enabled(event);
2189 goto out;
2190 }
2191
2192 raw_spin_unlock_irq(&ctx->lock);
2193
2194 if (!task_function_call(task, __perf_event_enable, event))
2195 return;
2196
2197 raw_spin_lock_irq(&ctx->lock);
2198
2199 /*
2200 * If the context is active and the event is still off,
2201 * we need to retry the cross-call.
2202 */
2203 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
2204 /*
2205 * task could have been flipped by a concurrent
2206 * perf_event_context_sched_out()
2207 */
2208 task = ctx->task;
2209 goto retry;
2210 }
2211
2212 out:
2213 raw_spin_unlock_irq(&ctx->lock);
2214 }
2215 EXPORT_SYMBOL_GPL(perf_event_enable);
2216
2217 int perf_event_refresh(struct perf_event *event, int refresh)
2218 {
2219 /*
2220 * not supported on inherited events
2221 */
2222 if (event->attr.inherit || !is_sampling_event(event))
2223 return -EINVAL;
2224
2225 atomic_add(refresh, &event->event_limit);
2226 perf_event_enable(event);
2227
2228 return 0;
2229 }
2230 EXPORT_SYMBOL_GPL(perf_event_refresh);
2231
2232 static void ctx_sched_out(struct perf_event_context *ctx,
2233 struct perf_cpu_context *cpuctx,
2234 enum event_type_t event_type)
2235 {
2236 struct perf_event *event;
2237 int is_active = ctx->is_active;
2238
2239 ctx->is_active &= ~event_type;
2240 if (likely(!ctx->nr_events))
2241 return;
2242
2243 update_context_time(ctx);
2244 update_cgrp_time_from_cpuctx(cpuctx);
2245 if (!ctx->nr_active)
2246 return;
2247
2248 perf_pmu_disable(ctx->pmu);
2249 if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
2250 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2251 group_sched_out(event, cpuctx, ctx);
2252 }
2253
2254 if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
2255 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2256 group_sched_out(event, cpuctx, ctx);
2257 }
2258 perf_pmu_enable(ctx->pmu);
2259 }
2260
2261 /*
2262 * Test whether two contexts are equivalent, i.e. whether they have both been
2263 * cloned from the same version of the same context.
2264 *
2265 * Equivalence is measured using a generation number in the context that is
2266 * incremented on each modification to it; see unclone_ctx(), list_add_event()
2267 * and list_del_event().
2268 */
2269 static int context_equiv(struct perf_event_context *ctx1,
2270 struct perf_event_context *ctx2)
2271 {
2272 lockdep_assert_held(&ctx1->lock);
2273 lockdep_assert_held(&ctx2->lock);
2274
2275 /* Pinning disables the swap optimization */
2276 if (ctx1->pin_count || ctx2->pin_count)
2277 return 0;
2278
2279 /* If ctx1 is the parent of ctx2 */
2280 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2281 return 1;
2282
2283 /* If ctx2 is the parent of ctx1 */
2284 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2285 return 1;
2286
2287 /*
2288 * If ctx1 and ctx2 have the same parent; we flatten the parent
2289 * hierarchy, see perf_event_init_context().
2290 */
2291 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2292 ctx1->parent_gen == ctx2->parent_gen)
2293 return 1;
2294
2295 /* Unmatched */
2296 return 0;
2297 }
2298
2299 static void __perf_event_sync_stat(struct perf_event *event,
2300 struct perf_event *next_event)
2301 {
2302 u64 value;
2303
2304 if (!event->attr.inherit_stat)
2305 return;
2306
2307 /*
2308 * Update the event value, we cannot use perf_event_read()
2309 * because we're in the middle of a context switch and have IRQs
2310 * disabled, which upsets smp_call_function_single(), however
2311 * we know the event must be on the current CPU, therefore we
2312 * don't need to use it.
2313 */
2314 switch (event->state) {
2315 case PERF_EVENT_STATE_ACTIVE:
2316 event->pmu->read(event);
2317 /* fall-through */
2318
2319 case PERF_EVENT_STATE_INACTIVE:
2320 update_event_times(event);
2321 break;
2322
2323 default:
2324 break;
2325 }
2326
2327 /*
2328 * In order to keep per-task stats reliable we need to flip the event
2329 * values when we flip the contexts.
2330 */
2331 value = local64_read(&next_event->count);
2332 value = local64_xchg(&event->count, value);
2333 local64_set(&next_event->count, value);
2334
2335 swap(event->total_time_enabled, next_event->total_time_enabled);
2336 swap(event->total_time_running, next_event->total_time_running);
2337
2338 /*
2339 * Since we swizzled the values, update the user visible data too.
2340 */
2341 perf_event_update_userpage(event);
2342 perf_event_update_userpage(next_event);
2343 }
2344
2345 static void perf_event_sync_stat(struct perf_event_context *ctx,
2346 struct perf_event_context *next_ctx)
2347 {
2348 struct perf_event *event, *next_event;
2349
2350 if (!ctx->nr_stat)
2351 return;
2352
2353 update_context_time(ctx);
2354
2355 event = list_first_entry(&ctx->event_list,
2356 struct perf_event, event_entry);
2357
2358 next_event = list_first_entry(&next_ctx->event_list,
2359 struct perf_event, event_entry);
2360
2361 while (&event->event_entry != &ctx->event_list &&
2362 &next_event->event_entry != &next_ctx->event_list) {
2363
2364 __perf_event_sync_stat(event, next_event);
2365
2366 event = list_next_entry(event, event_entry);
2367 next_event = list_next_entry(next_event, event_entry);
2368 }
2369 }
2370
2371 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2372 struct task_struct *next)
2373 {
2374 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2375 struct perf_event_context *next_ctx;
2376 struct perf_event_context *parent, *next_parent;
2377 struct perf_cpu_context *cpuctx;
2378 int do_switch = 1;
2379
2380 if (likely(!ctx))
2381 return;
2382
2383 cpuctx = __get_cpu_context(ctx);
2384 if (!cpuctx->task_ctx)
2385 return;
2386
2387 rcu_read_lock();
2388 next_ctx = next->perf_event_ctxp[ctxn];
2389 if (!next_ctx)
2390 goto unlock;
2391
2392 parent = rcu_dereference(ctx->parent_ctx);
2393 next_parent = rcu_dereference(next_ctx->parent_ctx);
2394
2395 /* If neither context have a parent context; they cannot be clones. */
2396 if (!parent && !next_parent)
2397 goto unlock;
2398
2399 if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2400 /*
2401 * Looks like the two contexts are clones, so we might be
2402 * able to optimize the context switch. We lock both
2403 * contexts and check that they are clones under the
2404 * lock (including re-checking that neither has been
2405 * uncloned in the meantime). It doesn't matter which
2406 * order we take the locks because no other cpu could
2407 * be trying to lock both of these tasks.
2408 */
2409 raw_spin_lock(&ctx->lock);
2410 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2411 if (context_equiv(ctx, next_ctx)) {
2412 /*
2413 * XXX do we need a memory barrier of sorts
2414 * wrt to rcu_dereference() of perf_event_ctxp
2415 */
2416 task->perf_event_ctxp[ctxn] = next_ctx;
2417 next->perf_event_ctxp[ctxn] = ctx;
2418 ctx->task = next;
2419 next_ctx->task = task;
2420 do_switch = 0;
2421
2422 perf_event_sync_stat(ctx, next_ctx);
2423 }
2424 raw_spin_unlock(&next_ctx->lock);
2425 raw_spin_unlock(&ctx->lock);
2426 }
2427 unlock:
2428 rcu_read_unlock();
2429
2430 if (do_switch) {
2431 raw_spin_lock(&ctx->lock);
2432 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2433 cpuctx->task_ctx = NULL;
2434 raw_spin_unlock(&ctx->lock);
2435 }
2436 }
2437
2438 #define for_each_task_context_nr(ctxn) \
2439 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2440
2441 /*
2442 * Called from scheduler to remove the events of the current task,
2443 * with interrupts disabled.
2444 *
2445 * We stop each event and update the event value in event->count.
2446 *
2447 * This does not protect us against NMI, but disable()
2448 * sets the disabled bit in the control field of event _before_
2449 * accessing the event control register. If a NMI hits, then it will
2450 * not restart the event.
2451 */
2452 void __perf_event_task_sched_out(struct task_struct *task,
2453 struct task_struct *next)
2454 {
2455 int ctxn;
2456
2457 for_each_task_context_nr(ctxn)
2458 perf_event_context_sched_out(task, ctxn, next);
2459
2460 /*
2461 * if cgroup events exist on this CPU, then we need
2462 * to check if we have to switch out PMU state.
2463 * cgroup event are system-wide mode only
2464 */
2465 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2466 perf_cgroup_sched_out(task, next);
2467 }
2468
2469 static void task_ctx_sched_out(struct perf_event_context *ctx)
2470 {
2471 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2472
2473 if (!cpuctx->task_ctx)
2474 return;
2475
2476 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2477 return;
2478
2479 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2480 cpuctx->task_ctx = NULL;
2481 }
2482
2483 /*
2484 * Called with IRQs disabled
2485 */
2486 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2487 enum event_type_t event_type)
2488 {
2489 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2490 }
2491
2492 static void
2493 ctx_pinned_sched_in(struct perf_event_context *ctx,
2494 struct perf_cpu_context *cpuctx)
2495 {
2496 struct perf_event *event;
2497
2498 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2499 if (event->state <= PERF_EVENT_STATE_OFF)
2500 continue;
2501 if (!event_filter_match(event))
2502 continue;
2503
2504 /* may need to reset tstamp_enabled */
2505 if (is_cgroup_event(event))
2506 perf_cgroup_mark_enabled(event, ctx);
2507
2508 if (group_can_go_on(event, cpuctx, 1))
2509 group_sched_in(event, cpuctx, ctx);
2510
2511 /*
2512 * If this pinned group hasn't been scheduled,
2513 * put it in error state.
2514 */
2515 if (event->state == PERF_EVENT_STATE_INACTIVE) {
2516 update_group_times(event);
2517 event->state = PERF_EVENT_STATE_ERROR;
2518 }
2519 }
2520 }
2521
2522 static void
2523 ctx_flexible_sched_in(struct perf_event_context *ctx,
2524 struct perf_cpu_context *cpuctx)
2525 {
2526 struct perf_event *event;
2527 int can_add_hw = 1;
2528
2529 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2530 /* Ignore events in OFF or ERROR state */
2531 if (event->state <= PERF_EVENT_STATE_OFF)
2532 continue;
2533 /*
2534 * Listen to the 'cpu' scheduling filter constraint
2535 * of events:
2536 */
2537 if (!event_filter_match(event))
2538 continue;
2539
2540 /* may need to reset tstamp_enabled */
2541 if (is_cgroup_event(event))
2542 perf_cgroup_mark_enabled(event, ctx);
2543
2544 if (group_can_go_on(event, cpuctx, can_add_hw)) {
2545 if (group_sched_in(event, cpuctx, ctx))
2546 can_add_hw = 0;
2547 }
2548 }
2549 }
2550
2551 static void
2552 ctx_sched_in(struct perf_event_context *ctx,
2553 struct perf_cpu_context *cpuctx,
2554 enum event_type_t event_type,
2555 struct task_struct *task)
2556 {
2557 u64 now;
2558 int is_active = ctx->is_active;
2559
2560 ctx->is_active |= event_type;
2561 if (likely(!ctx->nr_events))
2562 return;
2563
2564 now = perf_clock();
2565 ctx->timestamp = now;
2566 perf_cgroup_set_timestamp(task, ctx);
2567 /*
2568 * First go through the list and put on any pinned groups
2569 * in order to give them the best chance of going on.
2570 */
2571 if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
2572 ctx_pinned_sched_in(ctx, cpuctx);
2573
2574 /* Then walk through the lower prio flexible groups */
2575 if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
2576 ctx_flexible_sched_in(ctx, cpuctx);
2577 }
2578
2579 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
2580 enum event_type_t event_type,
2581 struct task_struct *task)
2582 {
2583 struct perf_event_context *ctx = &cpuctx->ctx;
2584
2585 ctx_sched_in(ctx, cpuctx, event_type, task);
2586 }
2587
2588 static void perf_event_context_sched_in(struct perf_event_context *ctx,
2589 struct task_struct *task)
2590 {
2591 struct perf_cpu_context *cpuctx;
2592
2593 cpuctx = __get_cpu_context(ctx);
2594 if (cpuctx->task_ctx == ctx)
2595 return;
2596
2597 perf_ctx_lock(cpuctx, ctx);
2598 perf_pmu_disable(ctx->pmu);
2599 /*
2600 * We want to keep the following priority order:
2601 * cpu pinned (that don't need to move), task pinned,
2602 * cpu flexible, task flexible.
2603 */
2604 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2605
2606 if (ctx->nr_events)
2607 cpuctx->task_ctx = ctx;
2608
2609 perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);
2610
2611 perf_pmu_enable(ctx->pmu);
2612 perf_ctx_unlock(cpuctx, ctx);
2613
2614 /*
2615 * Since these rotations are per-cpu, we need to ensure the
2616 * cpu-context we got scheduled on is actually rotating.
2617 */
2618 perf_pmu_rotate_start(ctx->pmu);
2619 }
2620
2621 /*
2622 * When sampling the branck stack in system-wide, it may be necessary
2623 * to flush the stack on context switch. This happens when the branch
2624 * stack does not tag its entries with the pid of the current task.
2625 * Otherwise it becomes impossible to associate a branch entry with a
2626 * task. This ambiguity is more likely to appear when the branch stack
2627 * supports priv level filtering and the user sets it to monitor only
2628 * at the user level (which could be a useful measurement in system-wide
2629 * mode). In that case, the risk is high of having a branch stack with
2630 * branch from multiple tasks. Flushing may mean dropping the existing
2631 * entries or stashing them somewhere in the PMU specific code layer.
2632 *
2633 * This function provides the context switch callback to the lower code
2634 * layer. It is invoked ONLY when there is at least one system-wide context
2635 * with at least one active event using taken branch sampling.
2636 */
2637 static void perf_branch_stack_sched_in(struct task_struct *prev,
2638 struct task_struct *task)
2639 {
2640 struct perf_cpu_context *cpuctx;
2641 struct pmu *pmu;
2642 unsigned long flags;
2643
2644 /* no need to flush branch stack if not changing task */
2645 if (prev == task)
2646 return;
2647
2648 local_irq_save(flags);
2649
2650 rcu_read_lock();
2651
2652 list_for_each_entry_rcu(pmu, &pmus, entry) {
2653 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2654
2655 /*
2656 * check if the context has at least one
2657 * event using PERF_SAMPLE_BRANCH_STACK
2658 */
2659 if (cpuctx->ctx.nr_branch_stack > 0
2660 && pmu->flush_branch_stack) {
2661
2662 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2663
2664 perf_pmu_disable(pmu);
2665
2666 pmu->flush_branch_stack();
2667
2668 perf_pmu_enable(pmu);
2669
2670 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2671 }
2672 }
2673
2674 rcu_read_unlock();
2675
2676 local_irq_restore(flags);
2677 }
2678
2679 /*
2680 * Called from scheduler to add the events of the current task
2681 * with interrupts disabled.
2682 *
2683 * We restore the event value and then enable it.
2684 *
2685 * This does not protect us against NMI, but enable()
2686 * sets the enabled bit in the control field of event _before_
2687 * accessing the event control register. If a NMI hits, then it will
2688 * keep the event running.
2689 */
2690 void __perf_event_task_sched_in(struct task_struct *prev,
2691 struct task_struct *task)
2692 {
2693 struct perf_event_context *ctx;
2694 int ctxn;
2695
2696 for_each_task_context_nr(ctxn) {
2697 ctx = task->perf_event_ctxp[ctxn];
2698 if (likely(!ctx))
2699 continue;
2700
2701 perf_event_context_sched_in(ctx, task);
2702 }
2703 /*
2704 * if cgroup events exist on this CPU, then we need
2705 * to check if we have to switch in PMU state.
2706 * cgroup event are system-wide mode only
2707 */
2708 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2709 perf_cgroup_sched_in(prev, task);
2710
2711 /* check for system-wide branch_stack events */
2712 if (atomic_read(this_cpu_ptr(&perf_branch_stack_events)))
2713 perf_branch_stack_sched_in(prev, task);
2714 }
2715
2716 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
2717 {
2718 u64 frequency = event->attr.sample_freq;
2719 u64 sec = NSEC_PER_SEC;
2720 u64 divisor, dividend;
2721
2722 int count_fls, nsec_fls, frequency_fls, sec_fls;
2723
2724 count_fls = fls64(count);
2725 nsec_fls = fls64(nsec);
2726 frequency_fls = fls64(frequency);
2727 sec_fls = 30;
2728
2729 /*
2730 * We got @count in @nsec, with a target of sample_freq HZ
2731 * the target period becomes:
2732 *
2733 * @count * 10^9
2734 * period = -------------------
2735 * @nsec * sample_freq
2736 *
2737 */
2738
2739 /*
2740 * Reduce accuracy by one bit such that @a and @b converge
2741 * to a similar magnitude.
2742 */
2743 #define REDUCE_FLS(a, b) \
2744 do { \
2745 if (a##_fls > b##_fls) { \
2746 a >>= 1; \
2747 a##_fls--; \
2748 } else { \
2749 b >>= 1; \
2750 b##_fls--; \
2751 } \
2752 } while (0)
2753
2754 /*
2755 * Reduce accuracy until either term fits in a u64, then proceed with
2756 * the other, so that finally we can do a u64/u64 division.
2757 */
2758 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
2759 REDUCE_FLS(nsec, frequency);
2760 REDUCE_FLS(sec, count);
2761 }
2762
2763 if (count_fls + sec_fls > 64) {
2764 divisor = nsec * frequency;
2765
2766 while (count_fls + sec_fls > 64) {
2767 REDUCE_FLS(count, sec);
2768 divisor >>= 1;
2769 }
2770
2771 dividend = count * sec;
2772 } else {
2773 dividend = count * sec;
2774
2775 while (nsec_fls + frequency_fls > 64) {
2776 REDUCE_FLS(nsec, frequency);
2777 dividend >>= 1;
2778 }
2779
2780 divisor = nsec * frequency;
2781 }
2782
2783 if (!divisor)
2784 return dividend;
2785
2786 return div64_u64(dividend, divisor);
2787 }
2788
2789 static DEFINE_PER_CPU(int, perf_throttled_count);
2790 static DEFINE_PER_CPU(u64, perf_throttled_seq);
2791
2792 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
2793 {
2794 struct hw_perf_event *hwc = &event->hw;
2795 s64 period, sample_period;
2796 s64 delta;
2797
2798 period = perf_calculate_period(event, nsec, count);
2799
2800 delta = (s64)(period - hwc->sample_period);
2801 delta = (delta + 7) / 8; /* low pass filter */
2802
2803 sample_period = hwc->sample_period + delta;
2804
2805 if (!sample_period)
2806 sample_period = 1;
2807
2808 hwc->sample_period = sample_period;
2809
2810 if (local64_read(&hwc->period_left) > 8*sample_period) {
2811 if (disable)
2812 event->pmu->stop(event, PERF_EF_UPDATE);
2813
2814 local64_set(&hwc->period_left, 0);
2815
2816 if (disable)
2817 event->pmu->start(event, PERF_EF_RELOAD);
2818 }
2819 }
2820
2821 /*
2822 * combine freq adjustment with unthrottling to avoid two passes over the
2823 * events. At the same time, make sure, having freq events does not change
2824 * the rate of unthrottling as that would introduce bias.
2825 */
2826 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
2827 int needs_unthr)
2828 {
2829 struct perf_event *event;
2830 struct hw_perf_event *hwc;
2831 u64 now, period = TICK_NSEC;
2832 s64 delta;
2833
2834 /*
2835 * only need to iterate over all events iff:
2836 * - context have events in frequency mode (needs freq adjust)
2837 * - there are events to unthrottle on this cpu
2838 */
2839 if (!(ctx->nr_freq || needs_unthr))
2840 return;
2841
2842 raw_spin_lock(&ctx->lock);
2843 perf_pmu_disable(ctx->pmu);
2844
2845 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
2846 if (event->state != PERF_EVENT_STATE_ACTIVE)
2847 continue;
2848
2849 if (!event_filter_match(event))
2850 continue;
2851
2852 perf_pmu_disable(event->pmu);
2853
2854 hwc = &event->hw;
2855
2856 if (hwc->interrupts == MAX_INTERRUPTS) {
2857 hwc->interrupts = 0;
2858 perf_log_throttle(event, 1);
2859 event->pmu->start(event, 0);
2860 }
2861
2862 if (!event->attr.freq || !event->attr.sample_freq)
2863 goto next;
2864
2865 /*
2866 * stop the event and update event->count
2867 */
2868 event->pmu->stop(event, PERF_EF_UPDATE);
2869
2870 now = local64_read(&event->count);
2871 delta = now - hwc->freq_count_stamp;
2872 hwc->freq_count_stamp = now;
2873
2874 /*
2875 * restart the event
2876 * reload only if value has changed
2877 * we have stopped the event so tell that
2878 * to perf_adjust_period() to avoid stopping it
2879 * twice.
2880 */
2881 if (delta > 0)
2882 perf_adjust_period(event, period, delta, false);
2883
2884 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
2885 next:
2886 perf_pmu_enable(event->pmu);
2887 }
2888
2889 perf_pmu_enable(ctx->pmu);
2890 raw_spin_unlock(&ctx->lock);
2891 }
2892
2893 /*
2894 * Round-robin a context's events:
2895 */
2896 static void rotate_ctx(struct perf_event_context *ctx)
2897 {
2898 /*
2899 * Rotate the first entry last of non-pinned groups. Rotation might be
2900 * disabled by the inheritance code.
2901 */
2902 if (!ctx->rotate_disable)
2903 list_rotate_left(&ctx->flexible_groups);
2904 }
2905
2906 /*
2907 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
2908 * because they're strictly cpu affine and rotate_start is called with IRQs
2909 * disabled, while rotate_context is called from IRQ context.
2910 */
2911 static int perf_rotate_context(struct perf_cpu_context *cpuctx)
2912 {
2913 struct perf_event_context *ctx = NULL;
2914 int rotate = 0, remove = 1;
2915
2916 if (cpuctx->ctx.nr_events) {
2917 remove = 0;
2918 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
2919 rotate = 1;
2920 }
2921
2922 ctx = cpuctx->task_ctx;
2923 if (ctx && ctx->nr_events) {
2924 remove = 0;
2925 if (ctx->nr_events != ctx->nr_active)
2926 rotate = 1;
2927 }
2928
2929 if (!rotate)
2930 goto done;
2931
2932 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2933 perf_pmu_disable(cpuctx->ctx.pmu);
2934
2935 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2936 if (ctx)
2937 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
2938
2939 rotate_ctx(&cpuctx->ctx);
2940 if (ctx)
2941 rotate_ctx(ctx);
2942
2943 perf_event_sched_in(cpuctx, ctx, current);
2944
2945 perf_pmu_enable(cpuctx->ctx.pmu);
2946 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2947 done:
2948 if (remove)
2949 list_del_init(&cpuctx->rotation_list);
2950
2951 return rotate;
2952 }
2953
2954 #ifdef CONFIG_NO_HZ_FULL
2955 bool perf_event_can_stop_tick(void)
2956 {
2957 if (atomic_read(&nr_freq_events) ||
2958 __this_cpu_read(perf_throttled_count))
2959 return false;
2960 else
2961 return true;
2962 }
2963 #endif
2964
2965 void perf_event_task_tick(void)
2966 {
2967 struct list_head *head = this_cpu_ptr(&rotation_list);
2968 struct perf_cpu_context *cpuctx, *tmp;
2969 struct perf_event_context *ctx;
2970 int throttled;
2971
2972 WARN_ON(!irqs_disabled());
2973
2974 __this_cpu_inc(perf_throttled_seq);
2975 throttled = __this_cpu_xchg(perf_throttled_count, 0);
2976
2977 list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
2978 ctx = &cpuctx->ctx;
2979 perf_adjust_freq_unthr_context(ctx, throttled);
2980
2981 ctx = cpuctx->task_ctx;
2982 if (ctx)
2983 perf_adjust_freq_unthr_context(ctx, throttled);
2984 }
2985 }
2986
2987 static int event_enable_on_exec(struct perf_event *event,
2988 struct perf_event_context *ctx)
2989 {
2990 if (!event->attr.enable_on_exec)
2991 return 0;
2992
2993 event->attr.enable_on_exec = 0;
2994 if (event->state >= PERF_EVENT_STATE_INACTIVE)
2995 return 0;
2996
2997 __perf_event_mark_enabled(event);
2998
2999 return 1;
3000 }
3001
3002 /*
3003 * Enable all of a task's events that have been marked enable-on-exec.
3004 * This expects task == current.
3005 */
3006 static void perf_event_enable_on_exec(struct perf_event_context *ctx)
3007 {
3008 struct perf_event_context *clone_ctx = NULL;
3009 struct perf_event *event;
3010 unsigned long flags;
3011 int enabled = 0;
3012 int ret;
3013
3014 local_irq_save(flags);
3015 if (!ctx || !ctx->nr_events)
3016 goto out;
3017
3018 /*
3019 * We must ctxsw out cgroup events to avoid conflict
3020 * when invoking perf_task_event_sched_in() later on
3021 * in this function. Otherwise we end up trying to
3022 * ctxswin cgroup events which are already scheduled
3023 * in.
3024 */
3025 perf_cgroup_sched_out(current, NULL);
3026
3027 raw_spin_lock(&ctx->lock);
3028 task_ctx_sched_out(ctx);
3029
3030 list_for_each_entry(event, &ctx->event_list, event_entry) {
3031 ret = event_enable_on_exec(event, ctx);
3032 if (ret)
3033 enabled = 1;
3034 }
3035
3036 /*
3037 * Unclone this context if we enabled any event.
3038 */
3039 if (enabled)
3040 clone_ctx = unclone_ctx(ctx);
3041
3042 raw_spin_unlock(&ctx->lock);
3043
3044 /*
3045 * Also calls ctxswin for cgroup events, if any:
3046 */
3047 perf_event_context_sched_in(ctx, ctx->task);
3048 out:
3049 local_irq_restore(flags);
3050
3051 if (clone_ctx)
3052 put_ctx(clone_ctx);
3053 }
3054
3055 void perf_event_exec(void)
3056 {
3057 struct perf_event_context *ctx;
3058 int ctxn;
3059
3060 rcu_read_lock();
3061 for_each_task_context_nr(ctxn) {
3062 ctx = current->perf_event_ctxp[ctxn];
3063 if (!ctx)
3064 continue;
3065
3066 perf_event_enable_on_exec(ctx);
3067 }
3068 rcu_read_unlock();
3069 }
3070
3071 /*
3072 * Cross CPU call to read the hardware event
3073 */
3074 static void __perf_event_read(void *info)
3075 {
3076 struct perf_event *event = info;
3077 struct perf_event_context *ctx = event->ctx;
3078 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3079
3080 /*
3081 * If this is a task context, we need to check whether it is
3082 * the current task context of this cpu. If not it has been
3083 * scheduled out before the smp call arrived. In that case
3084 * event->count would have been updated to a recent sample
3085 * when the event was scheduled out.
3086 */
3087 if (ctx->task && cpuctx->task_ctx != ctx)
3088 return;
3089
3090 raw_spin_lock(&ctx->lock);
3091 if (ctx->is_active) {
3092 update_context_time(ctx);
3093 update_cgrp_time_from_event(event);
3094 }
3095 update_event_times(event);
3096 if (event->state == PERF_EVENT_STATE_ACTIVE)
3097 event->pmu->read(event);
3098 raw_spin_unlock(&ctx->lock);
3099 }
3100
3101 static inline u64 perf_event_count(struct perf_event *event)
3102 {
3103 return local64_read(&event->count) + atomic64_read(&event->child_count);
3104 }
3105
3106 static u64 perf_event_read(struct perf_event *event)
3107 {
3108 /*
3109 * If event is enabled and currently active on a CPU, update the
3110 * value in the event structure:
3111 */
3112 if (event->state == PERF_EVENT_STATE_ACTIVE) {
3113 smp_call_function_single(event->oncpu,
3114 __perf_event_read, event, 1);
3115 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
3116 struct perf_event_context *ctx = event->ctx;
3117 unsigned long flags;
3118
3119 raw_spin_lock_irqsave(&ctx->lock, flags);
3120 /*
3121 * may read while context is not active
3122 * (e.g., thread is blocked), in that case
3123 * we cannot update context time
3124 */
3125 if (ctx->is_active) {
3126 update_context_time(ctx);
3127 update_cgrp_time_from_event(event);
3128 }
3129 update_event_times(event);
3130 raw_spin_unlock_irqrestore(&ctx->lock, flags);
3131 }
3132
3133 return perf_event_count(event);
3134 }
3135
3136 /*
3137 * Initialize the perf_event context in a task_struct:
3138 */
3139 static void __perf_event_init_context(struct perf_event_context *ctx)
3140 {
3141 raw_spin_lock_init(&ctx->lock);
3142 mutex_init(&ctx->mutex);
3143 INIT_LIST_HEAD(&ctx->pinned_groups);
3144 INIT_LIST_HEAD(&ctx->flexible_groups);
3145 INIT_LIST_HEAD(&ctx->event_list);
3146 atomic_set(&ctx->refcount, 1);
3147 INIT_DELAYED_WORK(&ctx->orphans_remove, orphans_remove_work);
3148 }
3149
3150 static struct perf_event_context *
3151 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3152 {
3153 struct perf_event_context *ctx;
3154
3155 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3156 if (!ctx)
3157 return NULL;
3158
3159 __perf_event_init_context(ctx);
3160 if (task) {
3161 ctx->task = task;
3162 get_task_struct(task);
3163 }
3164 ctx->pmu = pmu;
3165
3166 return ctx;
3167 }
3168
3169 static struct task_struct *
3170 find_lively_task_by_vpid(pid_t vpid)
3171 {
3172 struct task_struct *task;
3173 int err;
3174
3175 rcu_read_lock();
3176 if (!vpid)
3177 task = current;
3178 else
3179 task = find_task_by_vpid(vpid);
3180 if (task)
3181 get_task_struct(task);
3182 rcu_read_unlock();
3183
3184 if (!task)
3185 return ERR_PTR(-ESRCH);
3186
3187 /* Reuse ptrace permission checks for now. */
3188 err = -EACCES;
3189 if (!ptrace_may_access(task, PTRACE_MODE_READ))
3190 goto errout;
3191
3192 return task;
3193 errout:
3194 put_task_struct(task);
3195 return ERR_PTR(err);
3196
3197 }
3198
3199 /*
3200 * Returns a matching context with refcount and pincount.
3201 */
3202 static struct perf_event_context *
3203 find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
3204 {
3205 struct perf_event_context *ctx, *clone_ctx = NULL;
3206 struct perf_cpu_context *cpuctx;
3207 unsigned long flags;
3208 int ctxn, err;
3209
3210 if (!task) {
3211 /* Must be root to operate on a CPU event: */
3212 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
3213 return ERR_PTR(-EACCES);
3214
3215 /*
3216 * We could be clever and allow to attach a event to an
3217 * offline CPU and activate it when the CPU comes up, but
3218 * that's for later.
3219 */
3220 if (!cpu_online(cpu))
3221 return ERR_PTR(-ENODEV);
3222
3223 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
3224 ctx = &cpuctx->ctx;
3225 get_ctx(ctx);
3226 ++ctx->pin_count;
3227
3228 return ctx;
3229 }
3230
3231 err = -EINVAL;
3232 ctxn = pmu->task_ctx_nr;
3233 if (ctxn < 0)
3234 goto errout;
3235
3236 retry:
3237 ctx = perf_lock_task_context(task, ctxn, &flags);
3238 if (ctx) {
3239 clone_ctx = unclone_ctx(ctx);
3240 ++ctx->pin_count;
3241 raw_spin_unlock_irqrestore(&ctx->lock, flags);
3242
3243 if (clone_ctx)
3244 put_ctx(clone_ctx);
3245 } else {
3246 ctx = alloc_perf_context(pmu, task);
3247 err = -ENOMEM;
3248 if (!ctx)
3249 goto errout;
3250
3251 err = 0;
3252 mutex_lock(&task->perf_event_mutex);
3253 /*
3254 * If it has already passed perf_event_exit_task().
3255 * we must see PF_EXITING, it takes this mutex too.
3256 */
3257 if (task->flags & PF_EXITING)
3258 err = -ESRCH;
3259 else if (task->perf_event_ctxp[ctxn])
3260 err = -EAGAIN;
3261 else {
3262 get_ctx(ctx);
3263 ++ctx->pin_count;
3264 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3265 }
3266 mutex_unlock(&task->perf_event_mutex);
3267
3268 if (unlikely(err)) {
3269 put_ctx(ctx);
3270
3271 if (err == -EAGAIN)
3272 goto retry;
3273 goto errout;
3274 }
3275 }
3276
3277 return ctx;
3278
3279 errout:
3280 return ERR_PTR(err);
3281 }
3282
3283 static void perf_event_free_filter(struct perf_event *event);
3284
3285 static void free_event_rcu(struct rcu_head *head)
3286 {
3287 struct perf_event *event;
3288
3289 event = container_of(head, struct perf_event, rcu_head);
3290 if (event->ns)
3291 put_pid_ns(event->ns);
3292 perf_event_free_filter(event);
3293 kfree(event);
3294 }
3295
3296 static void ring_buffer_put(struct ring_buffer *rb);
3297 static void ring_buffer_attach(struct perf_event *event,
3298 struct ring_buffer *rb);
3299
3300 static void unaccount_event_cpu(struct perf_event *event, int cpu)
3301 {
3302 if (event->parent)
3303 return;
3304
3305 if (has_branch_stack(event)) {
3306 if (!(event->attach_state & PERF_ATTACH_TASK))
3307 atomic_dec(&per_cpu(perf_branch_stack_events, cpu));
3308 }
3309 if (is_cgroup_event(event))
3310 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3311 }
3312
3313 static void unaccount_event(struct perf_event *event)
3314 {
3315 if (event->parent)
3316 return;
3317
3318 if (event->attach_state & PERF_ATTACH_TASK)
3319 static_key_slow_dec_deferred(&perf_sched_events);
3320 if (event->attr.mmap || event->attr.mmap_data)
3321 atomic_dec(&nr_mmap_events);
3322 if (event->attr.comm)
3323 atomic_dec(&nr_comm_events);
3324 if (event->attr.task)
3325 atomic_dec(&nr_task_events);
3326 if (event->attr.freq)
3327 atomic_dec(&nr_freq_events);
3328 if (is_cgroup_event(event))
3329 static_key_slow_dec_deferred(&perf_sched_events);
3330 if (has_branch_stack(event))
3331 static_key_slow_dec_deferred(&perf_sched_events);
3332
3333 unaccount_event_cpu(event, event->cpu);
3334 }
3335
3336 static void __free_event(struct perf_event *event)
3337 {
3338 if (!event->parent) {
3339 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
3340 put_callchain_buffers();
3341 }
3342
3343 if (event->destroy)
3344 event->destroy(event);
3345
3346 if (event->ctx)
3347 put_ctx(event->ctx);
3348
3349 if (event->pmu)
3350 module_put(event->pmu->module);
3351
3352 call_rcu(&event->rcu_head, free_event_rcu);
3353 }
3354
3355 static void _free_event(struct perf_event *event)
3356 {
3357 irq_work_sync(&event->pending);
3358
3359 unaccount_event(event);
3360
3361 if (event->rb) {
3362 /*
3363 * Can happen when we close an event with re-directed output.
3364 *
3365 * Since we have a 0 refcount, perf_mmap_close() will skip
3366 * over us; possibly making our ring_buffer_put() the last.
3367 */
3368 mutex_lock(&event->mmap_mutex);
3369 ring_buffer_attach(event, NULL);
3370 mutex_unlock(&event->mmap_mutex);
3371 }
3372
3373 if (is_cgroup_event(event))
3374 perf_detach_cgroup(event);
3375
3376 __free_event(event);
3377 }
3378
3379 /*
3380 * Used to free events which have a known refcount of 1, such as in error paths
3381 * where the event isn't exposed yet and inherited events.
3382 */
3383 static void free_event(struct perf_event *event)
3384 {
3385 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
3386 "unexpected event refcount: %ld; ptr=%p\n",
3387 atomic_long_read(&event->refcount), event)) {
3388 /* leak to avoid use-after-free */
3389 return;
3390 }
3391
3392 _free_event(event);
3393 }
3394
3395 /*
3396 * Remove user event from the owner task.
3397 */
3398 static void perf_remove_from_owner(struct perf_event *event)
3399 {
3400 struct task_struct *owner;
3401
3402 rcu_read_lock();
3403 owner = ACCESS_ONCE(event->owner);
3404 /*
3405 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
3406 * !owner it means the list deletion is complete and we can indeed
3407 * free this event, otherwise we need to serialize on
3408 * owner->perf_event_mutex.
3409 */
3410 smp_read_barrier_depends();
3411 if (owner) {
3412 /*
3413 * Since delayed_put_task_struct() also drops the last
3414 * task reference we can safely take a new reference
3415 * while holding the rcu_read_lock().
3416 */
3417 get_task_struct(owner);
3418 }
3419 rcu_read_unlock();
3420
3421 if (owner) {
3422 mutex_lock(&owner->perf_event_mutex);
3423 /*
3424 * We have to re-check the event->owner field, if it is cleared
3425 * we raced with perf_event_exit_task(), acquiring the mutex
3426 * ensured they're done, and we can proceed with freeing the
3427 * event.
3428 */
3429 if (event->owner)
3430 list_del_init(&event->owner_entry);
3431 mutex_unlock(&owner->perf_event_mutex);
3432 put_task_struct(owner);
3433 }
3434 }
3435
3436 /*
3437 * Called when the last reference to the file is gone.
3438 */
3439 static void put_event(struct perf_event *event)
3440 {
3441 struct perf_event_context *ctx = event->ctx;
3442
3443 if (!atomic_long_dec_and_test(&event->refcount))
3444 return;
3445
3446 if (!is_kernel_event(event))
3447 perf_remove_from_owner(event);
3448
3449 WARN_ON_ONCE(ctx->parent_ctx);
3450 /*
3451 * There are two ways this annotation is useful:
3452 *
3453 * 1) there is a lock recursion from perf_event_exit_task
3454 * see the comment there.
3455 *
3456 * 2) there is a lock-inversion with mmap_sem through
3457 * perf_event_read_group(), which takes faults while
3458 * holding ctx->mutex, however this is called after
3459 * the last filedesc died, so there is no possibility
3460 * to trigger the AB-BA case.
3461 */
3462 mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
3463 perf_remove_from_context(event, true);
3464 mutex_unlock(&ctx->mutex);
3465
3466 _free_event(event);
3467 }
3468
3469 int perf_event_release_kernel(struct perf_event *event)
3470 {
3471 put_event(event);
3472 return 0;
3473 }
3474 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
3475
3476 static int perf_release(struct inode *inode, struct file *file)
3477 {
3478 put_event(file->private_data);
3479 return 0;
3480 }
3481
3482 /*
3483 * Remove all orphanes events from the context.
3484 */
3485 static void orphans_remove_work(struct work_struct *work)
3486 {
3487 struct perf_event_context *ctx;
3488 struct perf_event *event, *tmp;
3489
3490 ctx = container_of(work, struct perf_event_context,
3491 orphans_remove.work);
3492
3493 mutex_lock(&ctx->mutex);
3494 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry) {
3495 struct perf_event *parent_event = event->parent;
3496
3497 if (!is_orphaned_child(event))
3498 continue;
3499
3500 perf_remove_from_context(event, true);
3501
3502 mutex_lock(&parent_event->child_mutex);
3503 list_del_init(&event->child_list);
3504 mutex_unlock(&parent_event->child_mutex);
3505
3506 free_event(event);
3507 put_event(parent_event);
3508 }
3509
3510 raw_spin_lock_irq(&ctx->lock);
3511 ctx->orphans_remove_sched = false;
3512 raw_spin_unlock_irq(&ctx->lock);
3513 mutex_unlock(&ctx->mutex);
3514
3515 put_ctx(ctx);
3516 }
3517
3518 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
3519 {
3520 struct perf_event *child;
3521 u64 total = 0;
3522
3523 *enabled = 0;
3524 *running = 0;
3525
3526 mutex_lock(&event->child_mutex);
3527 total += perf_event_read(event);
3528 *enabled += event->total_time_enabled +
3529 atomic64_read(&event->child_total_time_enabled);
3530 *running += event->total_time_running +
3531 atomic64_read(&event->child_total_time_running);
3532
3533 list_for_each_entry(child, &event->child_list, child_list) {
3534 total += perf_event_read(child);
3535 *enabled += child->total_time_enabled;
3536 *running += child->total_time_running;
3537 }
3538 mutex_unlock(&event->child_mutex);
3539
3540 return total;
3541 }
3542 EXPORT_SYMBOL_GPL(perf_event_read_value);
3543
3544 static int perf_event_read_group(struct perf_event *event,
3545 u64 read_format, char __user *buf)
3546 {
3547 struct perf_event *leader = event->group_leader, *sub;
3548 int n = 0, size = 0, ret = -EFAULT;
3549 struct perf_event_context *ctx = leader->ctx;
3550 u64 values[5];
3551 u64 count, enabled, running;
3552
3553 mutex_lock(&ctx->mutex);
3554 count = perf_event_read_value(leader, &enabled, &running);
3555
3556 values[n++] = 1 + leader->nr_siblings;
3557 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3558 values[n++] = enabled;
3559 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3560 values[n++] = running;
3561 values[n++] = count;
3562 if (read_format & PERF_FORMAT_ID)
3563 values[n++] = primary_event_id(leader);
3564
3565 size = n * sizeof(u64);
3566
3567 if (copy_to_user(buf, values, size))
3568 goto unlock;
3569
3570 ret = size;
3571
3572 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3573 n = 0;
3574
3575 values[n++] = perf_event_read_value(sub, &enabled, &running);
3576 if (read_format & PERF_FORMAT_ID)
3577 values[n++] = primary_event_id(sub);
3578
3579 size = n * sizeof(u64);
3580
3581 if (copy_to_user(buf + ret, values, size)) {
3582 ret = -EFAULT;
3583 goto unlock;
3584 }
3585
3586 ret += size;
3587 }
3588 unlock:
3589 mutex_unlock(&ctx->mutex);
3590
3591 return ret;
3592 }
3593
3594 static int perf_event_read_one(struct perf_event *event,
3595 u64 read_format, char __user *buf)
3596 {
3597 u64 enabled, running;
3598 u64 values[4];
3599 int n = 0;
3600
3601 values[n++] = perf_event_read_value(event, &enabled, &running);
3602 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3603 values[n++] = enabled;
3604 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3605 values[n++] = running;
3606 if (read_format & PERF_FORMAT_ID)
3607 values[n++] = primary_event_id(event);
3608
3609 if (copy_to_user(buf, values, n * sizeof(u64)))
3610 return -EFAULT;
3611
3612 return n * sizeof(u64);
3613 }
3614
3615 static bool is_event_hup(struct perf_event *event)
3616 {
3617 bool no_children;
3618
3619 if (event->state != PERF_EVENT_STATE_EXIT)
3620 return false;
3621
3622 mutex_lock(&event->child_mutex);
3623 no_children = list_empty(&event->child_list);
3624 mutex_unlock(&event->child_mutex);
3625 return no_children;
3626 }
3627
3628 /*
3629 * Read the performance event - simple non blocking version for now
3630 */
3631 static ssize_t
3632 perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
3633 {
3634 u64 read_format = event->attr.read_format;
3635 int ret;
3636
3637 /*
3638 * Return end-of-file for a read on a event that is in
3639 * error state (i.e. because it was pinned but it couldn't be
3640 * scheduled on to the CPU at some point).
3641 */
3642 if (event->state == PERF_EVENT_STATE_ERROR)
3643 return 0;
3644
3645 if (count < event->read_size)
3646 return -ENOSPC;
3647
3648 WARN_ON_ONCE(event->ctx->parent_ctx);
3649 if (read_format & PERF_FORMAT_GROUP)
3650 ret = perf_event_read_group(event, read_format, buf);
3651 else
3652 ret = perf_event_read_one(event, read_format, buf);
3653
3654 return ret;
3655 }
3656
3657 static ssize_t
3658 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
3659 {
3660 struct perf_event *event = file->private_data;
3661
3662 return perf_read_hw(event, buf, count);
3663 }
3664
3665 static unsigned int perf_poll(struct file *file, poll_table *wait)
3666 {
3667 struct perf_event *event = file->private_data;
3668 struct ring_buffer *rb;
3669 unsigned int events = POLLHUP;
3670
3671 poll_wait(file, &event->waitq, wait);
3672
3673 if (is_event_hup(event))
3674 return events;
3675
3676 /*
3677 * Pin the event->rb by taking event->mmap_mutex; otherwise
3678 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
3679 */
3680 mutex_lock(&event->mmap_mutex);
3681 rb = event->rb;
3682 if (rb)
3683 events = atomic_xchg(&rb->poll, 0);
3684 mutex_unlock(&event->mmap_mutex);
3685 return events;
3686 }
3687
3688 static void perf_event_reset(struct perf_event *event)
3689 {
3690 (void)perf_event_read(event);
3691 local64_set(&event->count, 0);
3692 perf_event_update_userpage(event);
3693 }
3694
3695 /*
3696 * Holding the top-level event's child_mutex means that any
3697 * descendant process that has inherited this event will block
3698 * in sync_child_event if it goes to exit, thus satisfying the
3699 * task existence requirements of perf_event_enable/disable.
3700 */
3701 static void perf_event_for_each_child(struct perf_event *event,
3702 void (*func)(struct perf_event *))
3703 {
3704 struct perf_event *child;
3705
3706 WARN_ON_ONCE(event->ctx->parent_ctx);
3707 mutex_lock(&event->child_mutex);
3708 func(event);
3709 list_for_each_entry(child, &event->child_list, child_list)
3710 func(child);
3711 mutex_unlock(&event->child_mutex);
3712 }
3713
3714 static void perf_event_for_each(struct perf_event *event,
3715 void (*func)(struct perf_event *))
3716 {
3717 struct perf_event_context *ctx = event->ctx;
3718 struct perf_event *sibling;
3719
3720 WARN_ON_ONCE(ctx->parent_ctx);
3721 mutex_lock(&ctx->mutex);
3722 event = event->group_leader;
3723
3724 perf_event_for_each_child(event, func);
3725 list_for_each_entry(sibling, &event->sibling_list, group_entry)
3726 perf_event_for_each_child(sibling, func);
3727 mutex_unlock(&ctx->mutex);
3728 }
3729
3730 static int perf_event_period(struct perf_event *event, u64 __user *arg)
3731 {
3732 struct perf_event_context *ctx = event->ctx;
3733 int ret = 0, active;
3734 u64 value;
3735
3736 if (!is_sampling_event(event))
3737 return -EINVAL;
3738
3739 if (copy_from_user(&value, arg, sizeof(value)))
3740 return -EFAULT;
3741
3742 if (!value)
3743 return -EINVAL;
3744
3745 raw_spin_lock_irq(&ctx->lock);
3746 if (event->attr.freq) {
3747 if (value > sysctl_perf_event_sample_rate) {
3748 ret = -EINVAL;
3749 goto unlock;
3750 }
3751
3752 event->attr.sample_freq = value;
3753 } else {
3754 event->attr.sample_period = value;
3755 event->hw.sample_period = value;
3756 }
3757
3758 active = (event->state == PERF_EVENT_STATE_ACTIVE);
3759 if (active) {
3760 perf_pmu_disable(ctx->pmu);
3761 event->pmu->stop(event, PERF_EF_UPDATE);
3762 }
3763
3764 local64_set(&event->hw.period_left, 0);
3765
3766 if (active) {
3767 event->pmu->start(event, PERF_EF_RELOAD);
3768 perf_pmu_enable(ctx->pmu);
3769 }
3770
3771 unlock:
3772 raw_spin_unlock_irq(&ctx->lock);
3773
3774 return ret;
3775 }
3776
3777 static const struct file_operations perf_fops;
3778
3779 static inline int perf_fget_light(int fd, struct fd *p)
3780 {
3781 struct fd f = fdget(fd);
3782 if (!f.file)
3783 return -EBADF;
3784
3785 if (f.file->f_op != &perf_fops) {
3786 fdput(f);
3787 return -EBADF;
3788 }
3789 *p = f;
3790 return 0;
3791 }
3792
3793 static int perf_event_set_output(struct perf_event *event,
3794 struct perf_event *output_event);
3795 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
3796
3797 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
3798 {
3799 struct perf_event *event = file->private_data;
3800 void (*func)(struct perf_event *);
3801 u32 flags = arg;
3802
3803 switch (cmd) {
3804 case PERF_EVENT_IOC_ENABLE:
3805 func = perf_event_enable;
3806 break;
3807 case PERF_EVENT_IOC_DISABLE:
3808 func = perf_event_disable;
3809 break;
3810 case PERF_EVENT_IOC_RESET:
3811 func = perf_event_reset;
3812 break;
3813
3814 case PERF_EVENT_IOC_REFRESH:
3815 return perf_event_refresh(event, arg);
3816
3817 case PERF_EVENT_IOC_PERIOD:
3818 return perf_event_period(event, (u64 __user *)arg);
3819
3820 case PERF_EVENT_IOC_ID:
3821 {
3822 u64 id = primary_event_id(event);
3823
3824 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
3825 return -EFAULT;
3826 return 0;
3827 }
3828
3829 case PERF_EVENT_IOC_SET_OUTPUT:
3830 {
3831 int ret;
3832 if (arg != -1) {
3833 struct perf_event *output_event;
3834 struct fd output;
3835 ret = perf_fget_light(arg, &output);
3836 if (ret)
3837 return ret;
3838 output_event = output.file->private_data;
3839 ret = perf_event_set_output(event, output_event);
3840 fdput(output);
3841 } else {
3842 ret = perf_event_set_output(event, NULL);
3843 }
3844 return ret;
3845 }
3846
3847 case PERF_EVENT_IOC_SET_FILTER:
3848 return perf_event_set_filter(event, (void __user *)arg);
3849
3850 default:
3851 return -ENOTTY;
3852 }
3853
3854 if (flags & PERF_IOC_FLAG_GROUP)
3855 perf_event_for_each(event, func);
3856 else
3857 perf_event_for_each_child(event, func);
3858
3859 return 0;
3860 }
3861
3862 #ifdef CONFIG_COMPAT
3863 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
3864 unsigned long arg)
3865 {
3866 switch (_IOC_NR(cmd)) {
3867 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
3868 case _IOC_NR(PERF_EVENT_IOC_ID):
3869 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
3870 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
3871 cmd &= ~IOCSIZE_MASK;
3872 cmd |= sizeof(void *) << IOCSIZE_SHIFT;
3873 }
3874 break;
3875 }
3876 return perf_ioctl(file, cmd, arg);
3877 }
3878 #else
3879 # define perf_compat_ioctl NULL
3880 #endif
3881
3882 int perf_event_task_enable(void)
3883 {
3884 struct perf_event *event;
3885
3886 mutex_lock(&current->perf_event_mutex);
3887 list_for_each_entry(event, &current->perf_event_list, owner_entry)
3888 perf_event_for_each_child(event, perf_event_enable);
3889 mutex_unlock(&current->perf_event_mutex);
3890
3891 return 0;
3892 }
3893
3894 int perf_event_task_disable(void)
3895 {
3896 struct perf_event *event;
3897
3898 mutex_lock(&current->perf_event_mutex);
3899 list_for_each_entry(event, &current->perf_event_list, owner_entry)
3900 perf_event_for_each_child(event, perf_event_disable);
3901 mutex_unlock(&current->perf_event_mutex);
3902
3903 return 0;
3904 }
3905
3906 static int perf_event_index(struct perf_event *event)
3907 {
3908 if (event->hw.state & PERF_HES_STOPPED)
3909 return 0;
3910
3911 if (event->state != PERF_EVENT_STATE_ACTIVE)
3912 return 0;
3913
3914 return event->pmu->event_idx(event);
3915 }
3916
3917 static void calc_timer_values(struct perf_event *event,
3918 u64 *now,
3919 u64 *enabled,
3920 u64 *running)
3921 {
3922 u64 ctx_time;
3923
3924 *now = perf_clock();
3925 ctx_time = event->shadow_ctx_time + *now;
3926 *enabled = ctx_time - event->tstamp_enabled;
3927 *running = ctx_time - event->tstamp_running;
3928 }
3929
3930 static void perf_event_init_userpage(struct perf_event *event)
3931 {
3932 struct perf_event_mmap_page *userpg;
3933 struct ring_buffer *rb;
3934
3935 rcu_read_lock();
3936 rb = rcu_dereference(event->rb);
3937 if (!rb)
3938 goto unlock;
3939
3940 userpg = rb->user_page;
3941
3942 /* Allow new userspace to detect that bit 0 is deprecated */
3943 userpg->cap_bit0_is_deprecated = 1;
3944 userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
3945
3946 unlock:
3947 rcu_read_unlock();
3948 }
3949
3950 void __weak arch_perf_update_userpage(struct perf_event_mmap_page *userpg, u64 now)
3951 {
3952 }
3953
3954 /*
3955 * Callers need to ensure there can be no nesting of this function, otherwise
3956 * the seqlock logic goes bad. We can not serialize this because the arch
3957 * code calls this from NMI context.
3958 */
3959 void perf_event_update_userpage(struct perf_event *event)
3960 {
3961 struct perf_event_mmap_page *userpg;
3962 struct ring_buffer *rb;
3963 u64 enabled, running, now;
3964
3965 rcu_read_lock();
3966 rb = rcu_dereference(event->rb);
3967 if (!rb)
3968 goto unlock;
3969
3970 /*
3971 * compute total_time_enabled, total_time_running
3972 * based on snapshot values taken when the event
3973 * was last scheduled in.
3974 *
3975 * we cannot simply called update_context_time()
3976 * because of locking issue as we can be called in
3977 * NMI context
3978 */
3979 calc_timer_values(event, &now, &enabled, &running);
3980
3981 userpg = rb->user_page;
3982 /*
3983 * Disable preemption so as to not let the corresponding user-space
3984 * spin too long if we get preempted.
3985 */
3986 preempt_disable();
3987 ++userpg->lock;
3988 barrier();
3989 userpg->index = perf_event_index(event);
3990 userpg->offset = perf_event_count(event);
3991 if (userpg->index)
3992 userpg->offset -= local64_read(&event->hw.prev_count);
3993
3994 userpg->time_enabled = enabled +
3995 atomic64_read(&event->child_total_time_enabled);
3996
3997 userpg->time_running = running +
3998 atomic64_read(&event->child_total_time_running);
3999
4000 arch_perf_update_userpage(userpg, now);
4001
4002 barrier();
4003 ++userpg->lock;
4004 preempt_enable();
4005 unlock:
4006 rcu_read_unlock();
4007 }
4008
4009 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
4010 {
4011 struct perf_event *event = vma->vm_file->private_data;
4012 struct ring_buffer *rb;
4013 int ret = VM_FAULT_SIGBUS;
4014
4015 if (vmf->flags & FAULT_FLAG_MKWRITE) {
4016 if (vmf->pgoff == 0)
4017 ret = 0;
4018 return ret;
4019 }
4020
4021 rcu_read_lock();
4022 rb = rcu_dereference(event->rb);
4023 if (!rb)
4024 goto unlock;
4025
4026 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
4027 goto unlock;
4028
4029 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
4030 if (!vmf->page)
4031 goto unlock;
4032
4033 get_page(vmf->page);
4034 vmf->page->mapping = vma->vm_file->f_mapping;
4035 vmf->page->index = vmf->pgoff;
4036
4037 ret = 0;
4038 unlock:
4039 rcu_read_unlock();
4040
4041 return ret;
4042 }
4043
4044 static void ring_buffer_attach(struct perf_event *event,
4045 struct ring_buffer *rb)
4046 {
4047 struct ring_buffer *old_rb = NULL;
4048 unsigned long flags;
4049
4050 if (event->rb) {
4051 /*
4052 * Should be impossible, we set this when removing
4053 * event->rb_entry and wait/clear when adding event->rb_entry.
4054 */
4055 WARN_ON_ONCE(event->rcu_pending);
4056
4057 old_rb = event->rb;
4058 event->rcu_batches = get_state_synchronize_rcu();
4059 event->rcu_pending = 1;
4060
4061 spin_lock_irqsave(&old_rb->event_lock, flags);
4062 list_del_rcu(&event->rb_entry);
4063 spin_unlock_irqrestore(&old_rb->event_lock, flags);
4064 }
4065
4066 if (event->rcu_pending && rb) {
4067 cond_synchronize_rcu(event->rcu_batches);
4068 event->rcu_pending = 0;
4069 }
4070
4071 if (rb) {
4072 spin_lock_irqsave(&rb->event_lock, flags);
4073 list_add_rcu(&event->rb_entry, &rb->event_list);
4074 spin_unlock_irqrestore(&rb->event_lock, flags);
4075 }
4076
4077 rcu_assign_pointer(event->rb, rb);
4078
4079 if (old_rb) {
4080 ring_buffer_put(old_rb);
4081 /*
4082 * Since we detached before setting the new rb, so that we
4083 * could attach the new rb, we could have missed a wakeup.
4084 * Provide it now.
4085 */
4086 wake_up_all(&event->waitq);
4087 }
4088 }
4089
4090 static void ring_buffer_wakeup(struct perf_event *event)
4091 {
4092 struct ring_buffer *rb;
4093
4094 rcu_read_lock();
4095 rb = rcu_dereference(event->rb);
4096 if (rb) {
4097 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
4098 wake_up_all(&event->waitq);
4099 }
4100 rcu_read_unlock();
4101 }
4102
4103 static void rb_free_rcu(struct rcu_head *rcu_head)
4104 {
4105 struct ring_buffer *rb;
4106
4107 rb = container_of(rcu_head, struct ring_buffer, rcu_head);
4108 rb_free(rb);
4109 }
4110
4111 static struct ring_buffer *ring_buffer_get(struct perf_event *event)
4112 {
4113 struct ring_buffer *rb;
4114
4115 rcu_read_lock();
4116 rb = rcu_dereference(event->rb);
4117 if (rb) {
4118 if (!atomic_inc_not_zero(&rb->refcount))
4119 rb = NULL;
4120 }
4121 rcu_read_unlock();
4122
4123 return rb;
4124 }
4125
4126 static void ring_buffer_put(struct ring_buffer *rb)
4127 {
4128 if (!atomic_dec_and_test(&rb->refcount))
4129 return;
4130
4131 WARN_ON_ONCE(!list_empty(&rb->event_list));
4132
4133 call_rcu(&rb->rcu_head, rb_free_rcu);
4134 }
4135
4136 static void perf_mmap_open(struct vm_area_struct *vma)
4137 {
4138 struct perf_event *event = vma->vm_file->private_data;
4139
4140 atomic_inc(&event->mmap_count);
4141 atomic_inc(&event->rb->mmap_count);
4142 }
4143
4144 /*
4145 * A buffer can be mmap()ed multiple times; either directly through the same
4146 * event, or through other events by use of perf_event_set_output().
4147 *
4148 * In order to undo the VM accounting done by perf_mmap() we need to destroy
4149 * the buffer here, where we still have a VM context. This means we need
4150 * to detach all events redirecting to us.
4151 */
4152 static void perf_mmap_close(struct vm_area_struct *vma)
4153 {
4154 struct perf_event *event = vma->vm_file->private_data;
4155
4156 struct ring_buffer *rb = ring_buffer_get(event);
4157 struct user_struct *mmap_user = rb->mmap_user;
4158 int mmap_locked = rb->mmap_locked;
4159 unsigned long size = perf_data_size(rb);
4160
4161 atomic_dec(&rb->mmap_count);
4162
4163 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
4164 goto out_put;
4165
4166 ring_buffer_attach(event, NULL);
4167 mutex_unlock(&event->mmap_mutex);
4168
4169 /* If there's still other mmap()s of this buffer, we're done. */
4170 if (atomic_read(&rb->mmap_count))
4171 goto out_put;
4172
4173 /*
4174 * No other mmap()s, detach from all other events that might redirect
4175 * into the now unreachable buffer. Somewhat complicated by the
4176 * fact that rb::event_lock otherwise nests inside mmap_mutex.
4177 */
4178 again:
4179 rcu_read_lock();
4180 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
4181 if (!atomic_long_inc_not_zero(&event->refcount)) {
4182 /*
4183 * This event is en-route to free_event() which will
4184 * detach it and remove it from the list.
4185 */
4186 continue;
4187 }
4188 rcu_read_unlock();
4189
4190 mutex_lock(&event->mmap_mutex);
4191 /*
4192 * Check we didn't race with perf_event_set_output() which can
4193 * swizzle the rb from under us while we were waiting to
4194 * acquire mmap_mutex.
4195 *
4196 * If we find a different rb; ignore this event, a next
4197 * iteration will no longer find it on the list. We have to
4198 * still restart the iteration to make sure we're not now
4199 * iterating the wrong list.
4200 */
4201 if (event->rb == rb)
4202 ring_buffer_attach(event, NULL);
4203
4204 mutex_unlock(&event->mmap_mutex);
4205 put_event(event);
4206
4207 /*
4208 * Restart the iteration; either we're on the wrong list or
4209 * destroyed its integrity by doing a deletion.
4210 */
4211 goto again;
4212 }
4213 rcu_read_unlock();
4214
4215 /*
4216 * It could be there's still a few 0-ref events on the list; they'll
4217 * get cleaned up by free_event() -- they'll also still have their
4218 * ref on the rb and will free it whenever they are done with it.
4219 *
4220 * Aside from that, this buffer is 'fully' detached and unmapped,
4221 * undo the VM accounting.
4222 */
4223
4224 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
4225 vma->vm_mm->pinned_vm -= mmap_locked;
4226 free_uid(mmap_user);
4227
4228 out_put:
4229 ring_buffer_put(rb); /* could be last */
4230 }
4231
4232 static const struct vm_operations_struct perf_mmap_vmops = {
4233 .open = perf_mmap_open,
4234 .close = perf_mmap_close,
4235 .fault = perf_mmap_fault,
4236 .page_mkwrite = perf_mmap_fault,
4237 };
4238
4239 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
4240 {
4241 struct perf_event *event = file->private_data;
4242 unsigned long user_locked, user_lock_limit;
4243 struct user_struct *user = current_user();
4244 unsigned long locked, lock_limit;
4245 struct ring_buffer *rb;
4246 unsigned long vma_size;
4247 unsigned long nr_pages;
4248 long user_extra, extra;
4249 int ret = 0, flags = 0;
4250
4251 /*
4252 * Don't allow mmap() of inherited per-task counters. This would
4253 * create a performance issue due to all children writing to the
4254 * same rb.
4255 */
4256 if (event->cpu == -1 && event->attr.inherit)
4257 return -EINVAL;
4258
4259 if (!(vma->vm_flags & VM_SHARED))
4260 return -EINVAL;
4261
4262 vma_size = vma->vm_end - vma->vm_start;
4263 nr_pages = (vma_size / PAGE_SIZE) - 1;
4264
4265 /*
4266 * If we have rb pages ensure they're a power-of-two number, so we
4267 * can do bitmasks instead of modulo.
4268 */
4269 if (nr_pages != 0 && !is_power_of_2(nr_pages))
4270 return -EINVAL;
4271
4272 if (vma_size != PAGE_SIZE * (1 + nr_pages))
4273 return -EINVAL;
4274
4275 if (vma->vm_pgoff != 0)
4276 return -EINVAL;
4277
4278 WARN_ON_ONCE(event->ctx->parent_ctx);
4279 again:
4280 mutex_lock(&event->mmap_mutex);
4281 if (event->rb) {
4282 if (event->rb->nr_pages != nr_pages) {
4283 ret = -EINVAL;
4284 goto unlock;
4285 }
4286
4287 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
4288 /*
4289 * Raced against perf_mmap_close() through
4290 * perf_event_set_output(). Try again, hope for better
4291 * luck.
4292 */
4293 mutex_unlock(&event->mmap_mutex);
4294 goto again;
4295 }
4296
4297 goto unlock;
4298 }
4299
4300 user_extra = nr_pages + 1;
4301 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
4302
4303 /*
4304 * Increase the limit linearly with more CPUs:
4305 */
4306 user_lock_limit *= num_online_cpus();
4307
4308 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
4309
4310 extra = 0;
4311 if (user_locked > user_lock_limit)
4312 extra = user_locked - user_lock_limit;
4313
4314 lock_limit = rlimit(RLIMIT_MEMLOCK);
4315 lock_limit >>= PAGE_SHIFT;
4316 locked = vma->vm_mm->pinned_vm + extra;
4317
4318 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
4319 !capable(CAP_IPC_LOCK)) {
4320 ret = -EPERM;
4321 goto unlock;
4322 }
4323
4324 WARN_ON(event->rb);
4325
4326 if (vma->vm_flags & VM_WRITE)
4327 flags |= RING_BUFFER_WRITABLE;
4328
4329 rb = rb_alloc(nr_pages,
4330 event->attr.watermark ? event->attr.wakeup_watermark : 0,
4331 event->cpu, flags);
4332
4333 if (!rb) {
4334 ret = -ENOMEM;
4335 goto unlock;
4336 }
4337
4338 atomic_set(&rb->mmap_count, 1);
4339 rb->mmap_locked = extra;
4340 rb->mmap_user = get_current_user();
4341
4342 atomic_long_add(user_extra, &user->locked_vm);
4343 vma->vm_mm->pinned_vm += extra;
4344
4345 ring_buffer_attach(event, rb);
4346
4347 perf_event_init_userpage(event);
4348 perf_event_update_userpage(event);
4349
4350 unlock:
4351 if (!ret)
4352 atomic_inc(&event->mmap_count);
4353 mutex_unlock(&event->mmap_mutex);
4354
4355 /*
4356 * Since pinned accounting is per vm we cannot allow fork() to copy our
4357 * vma.
4358 */
4359 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
4360 vma->vm_ops = &perf_mmap_vmops;
4361
4362 return ret;
4363 }
4364
4365 static int perf_fasync(int fd, struct file *filp, int on)
4366 {
4367 struct inode *inode = file_inode(filp);
4368 struct perf_event *event = filp->private_data;
4369 int retval;
4370
4371 mutex_lock(&inode->i_mutex);
4372 retval = fasync_helper(fd, filp, on, &event->fasync);
4373 mutex_unlock(&inode->i_mutex);
4374
4375 if (retval < 0)
4376 return retval;
4377
4378 return 0;
4379 }
4380
4381 static const struct file_operations perf_fops = {
4382 .llseek = no_llseek,
4383 .release = perf_release,
4384 .read = perf_read,
4385 .poll = perf_poll,
4386 .unlocked_ioctl = perf_ioctl,
4387 .compat_ioctl = perf_compat_ioctl,
4388 .mmap = perf_mmap,
4389 .fasync = perf_fasync,
4390 };
4391
4392 /*
4393 * Perf event wakeup
4394 *
4395 * If there's data, ensure we set the poll() state and publish everything
4396 * to user-space before waking everybody up.
4397 */
4398
4399 void perf_event_wakeup(struct perf_event *event)
4400 {
4401 ring_buffer_wakeup(event);
4402
4403 if (event->pending_kill) {
4404 kill_fasync(&event->fasync, SIGIO, event->pending_kill);
4405 event->pending_kill = 0;
4406 }
4407 }
4408
4409 static void perf_pending_event(struct irq_work *entry)
4410 {
4411 struct perf_event *event = container_of(entry,
4412 struct perf_event, pending);
4413
4414 if (event->pending_disable) {
4415 event->pending_disable = 0;
4416 __perf_event_disable(event);
4417 }
4418
4419 if (event->pending_wakeup) {
4420 event->pending_wakeup = 0;
4421 perf_event_wakeup(event);
4422 }
4423 }
4424
4425 /*
4426 * We assume there is only KVM supporting the callbacks.
4427 * Later on, we might change it to a list if there is
4428 * another virtualization implementation supporting the callbacks.
4429 */
4430 struct perf_guest_info_callbacks *perf_guest_cbs;
4431
4432 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4433 {
4434 perf_guest_cbs = cbs;
4435 return 0;
4436 }
4437 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
4438
4439 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4440 {
4441 perf_guest_cbs = NULL;
4442 return 0;
4443 }
4444 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
4445
4446 static void
4447 perf_output_sample_regs(struct perf_output_handle *handle,
4448 struct pt_regs *regs, u64 mask)
4449 {
4450 int bit;
4451
4452 for_each_set_bit(bit, (const unsigned long *) &mask,
4453 sizeof(mask) * BITS_PER_BYTE) {
4454 u64 val;
4455
4456 val = perf_reg_value(regs, bit);
4457 perf_output_put(handle, val);
4458 }
4459 }
4460
4461 static void perf_sample_regs_user(struct perf_regs_user *regs_user,
4462 struct pt_regs *regs)
4463 {
4464 if (!user_mode(regs)) {
4465 if (current->mm)
4466 regs = task_pt_regs(current);
4467 else
4468 regs = NULL;
4469 }
4470
4471 if (regs) {
4472 regs_user->regs = regs;
4473 regs_user->abi = perf_reg_abi(current);
4474 }
4475 }
4476
4477 /*
4478 * Get remaining task size from user stack pointer.
4479 *
4480 * It'd be better to take stack vma map and limit this more
4481 * precisly, but there's no way to get it safely under interrupt,
4482 * so using TASK_SIZE as limit.
4483 */
4484 static u64 perf_ustack_task_size(struct pt_regs *regs)
4485 {
4486 unsigned long addr = perf_user_stack_pointer(regs);
4487
4488 if (!addr || addr >= TASK_SIZE)
4489 return 0;
4490
4491 return TASK_SIZE - addr;
4492 }
4493
4494 static u16
4495 perf_sample_ustack_size(u16 stack_size, u16 header_size,
4496 struct pt_regs *regs)
4497 {
4498 u64 task_size;
4499
4500 /* No regs, no stack pointer, no dump. */
4501 if (!regs)
4502 return 0;
4503
4504 /*
4505 * Check if we fit in with the requested stack size into the:
4506 * - TASK_SIZE
4507 * If we don't, we limit the size to the TASK_SIZE.
4508 *
4509 * - remaining sample size
4510 * If we don't, we customize the stack size to
4511 * fit in to the remaining sample size.
4512 */
4513
4514 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
4515 stack_size = min(stack_size, (u16) task_size);
4516
4517 /* Current header size plus static size and dynamic size. */
4518 header_size += 2 * sizeof(u64);
4519
4520 /* Do we fit in with the current stack dump size? */
4521 if ((u16) (header_size + stack_size) < header_size) {
4522 /*
4523 * If we overflow the maximum size for the sample,
4524 * we customize the stack dump size to fit in.
4525 */
4526 stack_size = USHRT_MAX - header_size - sizeof(u64);
4527 stack_size = round_up(stack_size, sizeof(u64));
4528 }
4529
4530 return stack_size;
4531 }
4532
4533 static void
4534 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
4535 struct pt_regs *regs)
4536 {
4537 /* Case of a kernel thread, nothing to dump */
4538 if (!regs) {
4539 u64 size = 0;
4540 perf_output_put(handle, size);
4541 } else {
4542 unsigned long sp;
4543 unsigned int rem;
4544 u64 dyn_size;
4545
4546 /*
4547 * We dump:
4548 * static size
4549 * - the size requested by user or the best one we can fit
4550 * in to the sample max size
4551 * data
4552 * - user stack dump data
4553 * dynamic size
4554 * - the actual dumped size
4555 */
4556
4557 /* Static size. */
4558 perf_output_put(handle, dump_size);
4559
4560 /* Data. */
4561 sp = perf_user_stack_pointer(regs);
4562 rem = __output_copy_user(handle, (void *) sp, dump_size);
4563 dyn_size = dump_size - rem;
4564
4565 perf_output_skip(handle, rem);
4566
4567 /* Dynamic size. */
4568 perf_output_put(handle, dyn_size);
4569 }
4570 }
4571
4572 static void __perf_event_header__init_id(struct perf_event_header *header,
4573 struct perf_sample_data *data,
4574 struct perf_event *event)
4575 {
4576 u64 sample_type = event->attr.sample_type;
4577
4578 data->type = sample_type;
4579 header->size += event->id_header_size;
4580
4581 if (sample_type & PERF_SAMPLE_TID) {
4582 /* namespace issues */
4583 data->tid_entry.pid = perf_event_pid(event, current);
4584 data->tid_entry.tid = perf_event_tid(event, current);
4585 }
4586
4587 if (sample_type & PERF_SAMPLE_TIME)
4588 data->time = perf_clock();
4589
4590 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
4591 data->id = primary_event_id(event);
4592
4593 if (sample_type & PERF_SAMPLE_STREAM_ID)
4594 data->stream_id = event->id;
4595
4596 if (sample_type & PERF_SAMPLE_CPU) {
4597 data->cpu_entry.cpu = raw_smp_processor_id();
4598 data->cpu_entry.reserved = 0;
4599 }
4600 }
4601
4602 void perf_event_header__init_id(struct perf_event_header *header,
4603 struct perf_sample_data *data,
4604 struct perf_event *event)
4605 {
4606 if (event->attr.sample_id_all)
4607 __perf_event_header__init_id(header, data, event);
4608 }
4609
4610 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
4611 struct perf_sample_data *data)
4612 {
4613 u64 sample_type = data->type;
4614
4615 if (sample_type & PERF_SAMPLE_TID)
4616 perf_output_put(handle, data->tid_entry);
4617
4618 if (sample_type & PERF_SAMPLE_TIME)
4619 perf_output_put(handle, data->time);
4620
4621 if (sample_type & PERF_SAMPLE_ID)
4622 perf_output_put(handle, data->id);
4623
4624 if (sample_type & PERF_SAMPLE_STREAM_ID)
4625 perf_output_put(handle, data->stream_id);
4626
4627 if (sample_type & PERF_SAMPLE_CPU)
4628 perf_output_put(handle, data->cpu_entry);
4629
4630 if (sample_type & PERF_SAMPLE_IDENTIFIER)
4631 perf_output_put(handle, data->id);
4632 }
4633
4634 void perf_event__output_id_sample(struct perf_event *event,
4635 struct perf_output_handle *handle,
4636 struct perf_sample_data *sample)
4637 {
4638 if (event->attr.sample_id_all)
4639 __perf_event__output_id_sample(handle, sample);
4640 }
4641
4642 static void perf_output_read_one(struct perf_output_handle *handle,
4643 struct perf_event *event,
4644 u64 enabled, u64 running)
4645 {
4646 u64 read_format = event->attr.read_format;
4647 u64 values[4];
4648 int n = 0;
4649
4650 values[n++] = perf_event_count(event);
4651 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4652 values[n++] = enabled +
4653 atomic64_read(&event->child_total_time_enabled);
4654 }
4655 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4656 values[n++] = running +
4657 atomic64_read(&event->child_total_time_running);
4658 }
4659 if (read_format & PERF_FORMAT_ID)
4660 values[n++] = primary_event_id(event);
4661
4662 __output_copy(handle, values, n * sizeof(u64));
4663 }
4664
4665 /*
4666 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
4667 */
4668 static void perf_output_read_group(struct perf_output_handle *handle,
4669 struct perf_event *event,
4670 u64 enabled, u64 running)
4671 {
4672 struct perf_event *leader = event->group_leader, *sub;
4673 u64 read_format = event->attr.read_format;
4674 u64 values[5];
4675 int n = 0;
4676
4677 values[n++] = 1 + leader->nr_siblings;
4678
4679 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4680 values[n++] = enabled;
4681
4682 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4683 values[n++] = running;
4684
4685 if (leader != event)
4686 leader->pmu->read(leader);
4687
4688 values[n++] = perf_event_count(leader);
4689 if (read_format & PERF_FORMAT_ID)
4690 values[n++] = primary_event_id(leader);
4691
4692 __output_copy(handle, values, n * sizeof(u64));
4693
4694 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4695 n = 0;
4696
4697 if ((sub != event) &&
4698 (sub->state == PERF_EVENT_STATE_ACTIVE))
4699 sub->pmu->read(sub);
4700
4701 values[n++] = perf_event_count(sub);
4702 if (read_format & PERF_FORMAT_ID)
4703 values[n++] = primary_event_id(sub);
4704
4705 __output_copy(handle, values, n * sizeof(u64));
4706 }
4707 }
4708
4709 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
4710 PERF_FORMAT_TOTAL_TIME_RUNNING)
4711
4712 static void perf_output_read(struct perf_output_handle *handle,
4713 struct perf_event *event)
4714 {
4715 u64 enabled = 0, running = 0, now;
4716 u64 read_format = event->attr.read_format;
4717
4718 /*
4719 * compute total_time_enabled, total_time_running
4720 * based on snapshot values taken when the event
4721 * was last scheduled in.
4722 *
4723 * we cannot simply called update_context_time()
4724 * because of locking issue as we are called in
4725 * NMI context
4726 */
4727 if (read_format & PERF_FORMAT_TOTAL_TIMES)
4728 calc_timer_values(event, &now, &enabled, &running);
4729
4730 if (event->attr.read_format & PERF_FORMAT_GROUP)
4731 perf_output_read_group(handle, event, enabled, running);
4732 else
4733 perf_output_read_one(handle, event, enabled, running);
4734 }
4735
4736 void perf_output_sample(struct perf_output_handle *handle,
4737 struct perf_event_header *header,
4738 struct perf_sample_data *data,
4739 struct perf_event *event)
4740 {
4741 u64 sample_type = data->type;
4742
4743 perf_output_put(handle, *header);
4744
4745 if (sample_type & PERF_SAMPLE_IDENTIFIER)
4746 perf_output_put(handle, data->id);
4747
4748 if (sample_type & PERF_SAMPLE_IP)
4749 perf_output_put(handle, data->ip);
4750
4751 if (sample_type & PERF_SAMPLE_TID)
4752 perf_output_put(handle, data->tid_entry);
4753
4754 if (sample_type & PERF_SAMPLE_TIME)
4755 perf_output_put(handle, data->time);
4756
4757 if (sample_type & PERF_SAMPLE_ADDR)
4758 perf_output_put(handle, data->addr);
4759
4760 if (sample_type & PERF_SAMPLE_ID)
4761 perf_output_put(handle, data->id);
4762
4763 if (sample_type & PERF_SAMPLE_STREAM_ID)
4764 perf_output_put(handle, data->stream_id);
4765
4766 if (sample_type & PERF_SAMPLE_CPU)
4767 perf_output_put(handle, data->cpu_entry);
4768
4769 if (sample_type & PERF_SAMPLE_PERIOD)
4770 perf_output_put(handle, data->period);
4771
4772 if (sample_type & PERF_SAMPLE_READ)
4773 perf_output_read(handle, event);
4774
4775 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
4776 if (data->callchain) {
4777 int size = 1;
4778
4779 if (data->callchain)
4780 size += data->callchain->nr;
4781
4782 size *= sizeof(u64);
4783
4784 __output_copy(handle, data->callchain, size);
4785 } else {
4786 u64 nr = 0;
4787 perf_output_put(handle, nr);
4788 }
4789 }
4790
4791 if (sample_type & PERF_SAMPLE_RAW) {
4792 if (data->raw) {
4793 perf_output_put(handle, data->raw->size);
4794 __output_copy(handle, data->raw->data,
4795 data->raw->size);
4796 } else {
4797 struct {
4798 u32 size;
4799 u32 data;
4800 } raw = {
4801 .size = sizeof(u32),
4802 .data = 0,
4803 };
4804 perf_output_put(handle, raw);
4805 }
4806 }
4807
4808 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
4809 if (data->br_stack) {
4810 size_t size;
4811
4812 size = data->br_stack->nr
4813 * sizeof(struct perf_branch_entry);
4814
4815 perf_output_put(handle, data->br_stack->nr);
4816 perf_output_copy(handle, data->br_stack->entries, size);
4817 } else {
4818 /*
4819 * we always store at least the value of nr
4820 */
4821 u64 nr = 0;
4822 perf_output_put(handle, nr);
4823 }
4824 }
4825
4826 if (sample_type & PERF_SAMPLE_REGS_USER) {
4827 u64 abi = data->regs_user.abi;
4828
4829 /*
4830 * If there are no regs to dump, notice it through
4831 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
4832 */
4833 perf_output_put(handle, abi);
4834
4835 if (abi) {
4836 u64 mask = event->attr.sample_regs_user;
4837 perf_output_sample_regs(handle,
4838 data->regs_user.regs,
4839 mask);
4840 }
4841 }
4842
4843 if (sample_type & PERF_SAMPLE_STACK_USER) {
4844 perf_output_sample_ustack(handle,
4845 data->stack_user_size,
4846 data->regs_user.regs);
4847 }
4848
4849 if (sample_type & PERF_SAMPLE_WEIGHT)
4850 perf_output_put(handle, data->weight);
4851
4852 if (sample_type & PERF_SAMPLE_DATA_SRC)
4853 perf_output_put(handle, data->data_src.val);
4854
4855 if (sample_type & PERF_SAMPLE_TRANSACTION)
4856 perf_output_put(handle, data->txn);
4857
4858 if (!event->attr.watermark) {
4859 int wakeup_events = event->attr.wakeup_events;
4860
4861 if (wakeup_events) {
4862 struct ring_buffer *rb = handle->rb;
4863 int events = local_inc_return(&rb->events);
4864
4865 if (events >= wakeup_events) {
4866 local_sub(wakeup_events, &rb->events);
4867 local_inc(&rb->wakeup);
4868 }
4869 }
4870 }
4871 }
4872
4873 void perf_prepare_sample(struct perf_event_header *header,
4874 struct perf_sample_data *data,
4875 struct perf_event *event,
4876 struct pt_regs *regs)
4877 {
4878 u64 sample_type = event->attr.sample_type;
4879
4880 header->type = PERF_RECORD_SAMPLE;
4881 header->size = sizeof(*header) + event->header_size;
4882
4883 header->misc = 0;
4884 header->misc |= perf_misc_flags(regs);
4885
4886 __perf_event_header__init_id(header, data, event);
4887
4888 if (sample_type & PERF_SAMPLE_IP)
4889 data->ip = perf_instruction_pointer(regs);
4890
4891 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
4892 int size = 1;
4893
4894 data->callchain = perf_callchain(event, regs);
4895
4896 if (data->callchain)
4897 size += data->callchain->nr;
4898
4899 header->size += size * sizeof(u64);
4900 }
4901
4902 if (sample_type & PERF_SAMPLE_RAW) {
4903 int size = sizeof(u32);
4904
4905 if (data->raw)
4906 size += data->raw->size;
4907 else
4908 size += sizeof(u32);
4909
4910 WARN_ON_ONCE(size & (sizeof(u64)-1));
4911 header->size += size;
4912 }
4913
4914 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
4915 int size = sizeof(u64); /* nr */
4916 if (data->br_stack) {
4917 size += data->br_stack->nr
4918 * sizeof(struct perf_branch_entry);
4919 }
4920 header->size += size;
4921 }
4922
4923 if (sample_type & PERF_SAMPLE_REGS_USER) {
4924 /* regs dump ABI info */
4925 int size = sizeof(u64);
4926
4927 perf_sample_regs_user(&data->regs_user, regs);
4928
4929 if (data->regs_user.regs) {
4930 u64 mask = event->attr.sample_regs_user;
4931 size += hweight64(mask) * sizeof(u64);
4932 }
4933
4934 header->size += size;
4935 }
4936
4937 if (sample_type & PERF_SAMPLE_STACK_USER) {
4938 /*
4939 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
4940 * processed as the last one or have additional check added
4941 * in case new sample type is added, because we could eat
4942 * up the rest of the sample size.
4943 */
4944 struct perf_regs_user *uregs = &data->regs_user;
4945 u16 stack_size = event->attr.sample_stack_user;
4946 u16 size = sizeof(u64);
4947
4948 if (!uregs->abi)
4949 perf_sample_regs_user(uregs, regs);
4950
4951 stack_size = perf_sample_ustack_size(stack_size, header->size,
4952 uregs->regs);
4953
4954 /*
4955 * If there is something to dump, add space for the dump
4956 * itself and for the field that tells the dynamic size,
4957 * which is how many have been actually dumped.
4958 */
4959 if (stack_size)
4960 size += sizeof(u64) + stack_size;
4961
4962 data->stack_user_size = stack_size;
4963 header->size += size;
4964 }
4965 }
4966
4967 static void perf_event_output(struct perf_event *event,
4968 struct perf_sample_data *data,
4969 struct pt_regs *regs)
4970 {
4971 struct perf_output_handle handle;
4972 struct perf_event_header header;
4973
4974 /* protect the callchain buffers */
4975 rcu_read_lock();
4976
4977 perf_prepare_sample(&header, data, event, regs);
4978
4979 if (perf_output_begin(&handle, event, header.size))
4980 goto exit;
4981
4982 perf_output_sample(&handle, &header, data, event);
4983
4984 perf_output_end(&handle);
4985
4986 exit:
4987 rcu_read_unlock();
4988 }
4989
4990 /*
4991 * read event_id
4992 */
4993
4994 struct perf_read_event {
4995 struct perf_event_header header;
4996
4997 u32 pid;
4998 u32 tid;
4999 };
5000
5001 static void
5002 perf_event_read_event(struct perf_event *event,
5003 struct task_struct *task)
5004 {
5005 struct perf_output_handle handle;
5006 struct perf_sample_data sample;
5007 struct perf_read_event read_event = {
5008 .header = {
5009 .type = PERF_RECORD_READ,
5010 .misc = 0,
5011 .size = sizeof(read_event) + event->read_size,
5012 },
5013 .pid = perf_event_pid(event, task),
5014 .tid = perf_event_tid(event, task),
5015 };
5016 int ret;
5017
5018 perf_event_header__init_id(&read_event.header, &sample, event);
5019 ret = perf_output_begin(&handle, event, read_event.header.size);
5020 if (ret)
5021 return;
5022
5023 perf_output_put(&handle, read_event);
5024 perf_output_read(&handle, event);
5025 perf_event__output_id_sample(event, &handle, &sample);
5026
5027 perf_output_end(&handle);
5028 }
5029
5030 typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);
5031
5032 static void
5033 perf_event_aux_ctx(struct perf_event_context *ctx,
5034 perf_event_aux_output_cb output,
5035 void *data)
5036 {
5037 struct perf_event *event;
5038
5039 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
5040 if (event->state < PERF_EVENT_STATE_INACTIVE)
5041 continue;
5042 if (!event_filter_match(event))
5043 continue;
5044 output(event, data);
5045 }
5046 }
5047
5048 static void
5049 perf_event_aux(perf_event_aux_output_cb output, void *data,
5050 struct perf_event_context *task_ctx)
5051 {
5052 struct perf_cpu_context *cpuctx;
5053 struct perf_event_context *ctx;
5054 struct pmu *pmu;
5055 int ctxn;
5056
5057 rcu_read_lock();
5058 list_for_each_entry_rcu(pmu, &pmus, entry) {
5059 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
5060 if (cpuctx->unique_pmu != pmu)
5061 goto next;
5062 perf_event_aux_ctx(&cpuctx->ctx, output, data);
5063 if (task_ctx)
5064 goto next;
5065 ctxn = pmu->task_ctx_nr;
5066 if (ctxn < 0)
5067 goto next;
5068 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
5069 if (ctx)
5070 perf_event_aux_ctx(ctx, output, data);
5071 next:
5072 put_cpu_ptr(pmu->pmu_cpu_context);
5073 }
5074
5075 if (task_ctx) {
5076 preempt_disable();
5077 perf_event_aux_ctx(task_ctx, output, data);
5078 preempt_enable();
5079 }
5080 rcu_read_unlock();
5081 }
5082
5083 /*
5084 * task tracking -- fork/exit
5085 *
5086 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
5087 */
5088
5089 struct perf_task_event {
5090 struct task_struct *task;
5091 struct perf_event_context *task_ctx;
5092
5093 struct {
5094 struct perf_event_header header;
5095
5096 u32 pid;
5097 u32 ppid;
5098 u32 tid;
5099 u32 ptid;
5100 u64 time;
5101 } event_id;
5102 };
5103
5104 static int perf_event_task_match(struct perf_event *event)
5105 {
5106 return event->attr.comm || event->attr.mmap ||
5107 event->attr.mmap2 || event->attr.mmap_data ||
5108 event->attr.task;
5109 }
5110
5111 static void perf_event_task_output(struct perf_event *event,
5112 void *data)
5113 {
5114 struct perf_task_event *task_event = data;
5115 struct perf_output_handle handle;
5116 struct perf_sample_data sample;
5117 struct task_struct *task = task_event->task;
5118 int ret, size = task_event->event_id.header.size;
5119
5120 if (!perf_event_task_match(event))
5121 return;
5122
5123 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
5124
5125 ret = perf_output_begin(&handle, event,
5126 task_event->event_id.header.size);
5127 if (ret)
5128 goto out;
5129
5130 task_event->event_id.pid = perf_event_pid(event, task);
5131 task_event->event_id.ppid = perf_event_pid(event, current);
5132
5133 task_event->event_id.tid = perf_event_tid(event, task);
5134 task_event->event_id.ptid = perf_event_tid(event, current);
5135
5136 perf_output_put(&handle, task_event->event_id);
5137
5138 perf_event__output_id_sample(event, &handle, &sample);
5139
5140 perf_output_end(&handle);
5141 out:
5142 task_event->event_id.header.size = size;
5143 }
5144
5145 static void perf_event_task(struct task_struct *task,
5146 struct perf_event_context *task_ctx,
5147 int new)
5148 {
5149 struct perf_task_event task_event;
5150
5151 if (!atomic_read(&nr_comm_events) &&
5152 !atomic_read(&nr_mmap_events) &&
5153 !atomic_read(&nr_task_events))
5154 return;
5155
5156 task_event = (struct perf_task_event){
5157 .task = task,
5158 .task_ctx = task_ctx,
5159 .event_id = {
5160 .header = {
5161 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
5162 .misc = 0,
5163 .size = sizeof(task_event.event_id),
5164 },
5165 /* .pid */
5166 /* .ppid */
5167 /* .tid */
5168 /* .ptid */
5169 .time = perf_clock(),
5170 },
5171 };
5172
5173 perf_event_aux(perf_event_task_output,
5174 &task_event,
5175 task_ctx);
5176 }
5177
5178 void perf_event_fork(struct task_struct *task)
5179 {
5180 perf_event_task(task, NULL, 1);
5181 }
5182
5183 /*
5184 * comm tracking
5185 */
5186
5187 struct perf_comm_event {
5188 struct task_struct *task;
5189 char *comm;
5190 int comm_size;
5191
5192 struct {
5193 struct perf_event_header header;
5194
5195 u32 pid;
5196 u32 tid;
5197 } event_id;
5198 };
5199
5200 static int perf_event_comm_match(struct perf_event *event)
5201 {
5202 return event->attr.comm;
5203 }
5204
5205 static void perf_event_comm_output(struct perf_event *event,
5206 void *data)
5207 {
5208 struct perf_comm_event *comm_event = data;
5209 struct perf_output_handle handle;
5210 struct perf_sample_data sample;
5211 int size = comm_event->event_id.header.size;
5212 int ret;
5213
5214 if (!perf_event_comm_match(event))
5215 return;
5216
5217 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
5218 ret = perf_output_begin(&handle, event,
5219 comm_event->event_id.header.size);
5220
5221 if (ret)
5222 goto out;
5223
5224 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
5225 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
5226
5227 perf_output_put(&handle, comm_event->event_id);
5228 __output_copy(&handle, comm_event->comm,
5229 comm_event->comm_size);
5230
5231 perf_event__output_id_sample(event, &handle, &sample);
5232
5233 perf_output_end(&handle);
5234 out:
5235 comm_event->event_id.header.size = size;
5236 }
5237
5238 static void perf_event_comm_event(struct perf_comm_event *comm_event)
5239 {
5240 char comm[TASK_COMM_LEN];
5241 unsigned int size;
5242
5243 memset(comm, 0, sizeof(comm));
5244 strlcpy(comm, comm_event->task->comm, sizeof(comm));
5245 size = ALIGN(strlen(comm)+1, sizeof(u64));
5246
5247 comm_event->comm = comm;
5248 comm_event->comm_size = size;
5249
5250 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
5251
5252 perf_event_aux(perf_event_comm_output,
5253 comm_event,
5254 NULL);
5255 }
5256
5257 void perf_event_comm(struct task_struct *task, bool exec)
5258 {
5259 struct perf_comm_event comm_event;
5260
5261 if (!atomic_read(&nr_comm_events))
5262 return;
5263
5264 comm_event = (struct perf_comm_event){
5265 .task = task,
5266 /* .comm */
5267 /* .comm_size */
5268 .event_id = {
5269 .header = {
5270 .type = PERF_RECORD_COMM,
5271 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
5272 /* .size */
5273 },
5274 /* .pid */
5275 /* .tid */
5276 },
5277 };
5278
5279 perf_event_comm_event(&comm_event);
5280 }
5281
5282 /*
5283 * mmap tracking
5284 */
5285
5286 struct perf_mmap_event {
5287 struct vm_area_struct *vma;
5288
5289 const char *file_name;
5290 int file_size;
5291 int maj, min;
5292 u64 ino;
5293 u64 ino_generation;
5294 u32 prot, flags;
5295
5296 struct {
5297 struct perf_event_header header;
5298
5299 u32 pid;
5300 u32 tid;
5301 u64 start;
5302 u64 len;
5303 u64 pgoff;
5304 } event_id;
5305 };
5306
5307 static int perf_event_mmap_match(struct perf_event *event,
5308 void *data)
5309 {
5310 struct perf_mmap_event *mmap_event = data;
5311 struct vm_area_struct *vma = mmap_event->vma;
5312 int executable = vma->vm_flags & VM_EXEC;
5313
5314 return (!executable && event->attr.mmap_data) ||
5315 (executable && (event->attr.mmap || event->attr.mmap2));
5316 }
5317
5318 static void perf_event_mmap_output(struct perf_event *event,
5319 void *data)
5320 {
5321 struct perf_mmap_event *mmap_event = data;
5322 struct perf_output_handle handle;
5323 struct perf_sample_data sample;
5324 int size = mmap_event->event_id.header.size;
5325 int ret;
5326
5327 if (!perf_event_mmap_match(event, data))
5328 return;
5329
5330 if (event->attr.mmap2) {
5331 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
5332 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
5333 mmap_event->event_id.header.size += sizeof(mmap_event->min);
5334 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
5335 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
5336 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
5337 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
5338 }
5339
5340 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
5341 ret = perf_output_begin(&handle, event,
5342 mmap_event->event_id.header.size);
5343 if (ret)
5344 goto out;
5345
5346 mmap_event->event_id.pid = perf_event_pid(event, current);
5347 mmap_event->event_id.tid = perf_event_tid(event, current);
5348
5349 perf_output_put(&handle, mmap_event->event_id);
5350
5351 if (event->attr.mmap2) {
5352 perf_output_put(&handle, mmap_event->maj);
5353 perf_output_put(&handle, mmap_event->min);
5354 perf_output_put(&handle, mmap_event->ino);
5355 perf_output_put(&handle, mmap_event->ino_generation);
5356 perf_output_put(&handle, mmap_event->prot);
5357 perf_output_put(&handle, mmap_event->flags);
5358 }
5359
5360 __output_copy(&handle, mmap_event->file_name,
5361 mmap_event->file_size);
5362
5363 perf_event__output_id_sample(event, &handle, &sample);
5364
5365 perf_output_end(&handle);
5366 out:
5367 mmap_event->event_id.header.size = size;
5368 }
5369
5370 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
5371 {
5372 struct vm_area_struct *vma = mmap_event->vma;
5373 struct file *file = vma->vm_file;
5374 int maj = 0, min = 0;
5375 u64 ino = 0, gen = 0;
5376 u32 prot = 0, flags = 0;
5377 unsigned int size;
5378 char tmp[16];
5379 char *buf = NULL;
5380 char *name;
5381
5382 if (file) {
5383 struct inode *inode;
5384 dev_t dev;
5385
5386 buf = kmalloc(PATH_MAX, GFP_KERNEL);
5387 if (!buf) {
5388 name = "//enomem";
5389 goto cpy_name;
5390 }
5391 /*
5392 * d_path() works from the end of the rb backwards, so we
5393 * need to add enough zero bytes after the string to handle
5394 * the 64bit alignment we do later.
5395 */
5396 name = d_path(&file->f_path, buf, PATH_MAX - sizeof(u64));
5397 if (IS_ERR(name)) {
5398 name = "//toolong";
5399 goto cpy_name;
5400 }
5401 inode = file_inode(vma->vm_file);
5402 dev = inode->i_sb->s_dev;
5403 ino = inode->i_ino;
5404 gen = inode->i_generation;
5405 maj = MAJOR(dev);
5406 min = MINOR(dev);
5407
5408 if (vma->vm_flags & VM_READ)
5409 prot |= PROT_READ;
5410 if (vma->vm_flags & VM_WRITE)
5411 prot |= PROT_WRITE;
5412 if (vma->vm_flags & VM_EXEC)
5413 prot |= PROT_EXEC;
5414
5415 if (vma->vm_flags & VM_MAYSHARE)
5416 flags = MAP_SHARED;
5417 else
5418 flags = MAP_PRIVATE;
5419
5420 if (vma->vm_flags & VM_DENYWRITE)
5421 flags |= MAP_DENYWRITE;
5422 if (vma->vm_flags & VM_MAYEXEC)
5423 flags |= MAP_EXECUTABLE;
5424 if (vma->vm_flags & VM_LOCKED)
5425 flags |= MAP_LOCKED;
5426 if (vma->vm_flags & VM_HUGETLB)
5427 flags |= MAP_HUGETLB;
5428
5429 goto got_name;
5430 } else {
5431 if (vma->vm_ops && vma->vm_ops->name) {
5432 name = (char *) vma->vm_ops->name(vma);
5433 if (name)
5434 goto cpy_name;
5435 }
5436
5437 name = (char *)arch_vma_name(vma);
5438 if (name)
5439 goto cpy_name;
5440
5441 if (vma->vm_start <= vma->vm_mm->start_brk &&
5442 vma->vm_end >= vma->vm_mm->brk) {
5443 name = "[heap]";
5444 goto cpy_name;
5445 }
5446 if (vma->vm_start <= vma->vm_mm->start_stack &&
5447 vma->vm_end >= vma->vm_mm->start_stack) {
5448 name = "[stack]";
5449 goto cpy_name;
5450 }
5451
5452 name = "//anon";
5453 goto cpy_name;
5454 }
5455
5456 cpy_name:
5457 strlcpy(tmp, name, sizeof(tmp));
5458 name = tmp;
5459 got_name:
5460 /*
5461 * Since our buffer works in 8 byte units we need to align our string
5462 * size to a multiple of 8. However, we must guarantee the tail end is
5463 * zero'd out to avoid leaking random bits to userspace.
5464 */
5465 size = strlen(name)+1;
5466 while (!IS_ALIGNED(size, sizeof(u64)))
5467 name[size++] = '\0';
5468
5469 mmap_event->file_name = name;
5470 mmap_event->file_size = size;
5471 mmap_event->maj = maj;
5472 mmap_event->min = min;
5473 mmap_event->ino = ino;
5474 mmap_event->ino_generation = gen;
5475 mmap_event->prot = prot;
5476 mmap_event->flags = flags;
5477
5478 if (!(vma->vm_flags & VM_EXEC))
5479 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
5480
5481 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
5482
5483 perf_event_aux(perf_event_mmap_output,
5484 mmap_event,
5485 NULL);
5486
5487 kfree(buf);
5488 }
5489
5490 void perf_event_mmap(struct vm_area_struct *vma)
5491 {
5492 struct perf_mmap_event mmap_event;
5493
5494 if (!atomic_read(&nr_mmap_events))
5495 return;
5496
5497 mmap_event = (struct perf_mmap_event){
5498 .vma = vma,
5499 /* .file_name */
5500 /* .file_size */
5501 .event_id = {
5502 .header = {
5503 .type = PERF_RECORD_MMAP,
5504 .misc = PERF_RECORD_MISC_USER,
5505 /* .size */
5506 },
5507 /* .pid */
5508 /* .tid */
5509 .start = vma->vm_start,
5510 .len = vma->vm_end - vma->vm_start,
5511 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
5512 },
5513 /* .maj (attr_mmap2 only) */
5514 /* .min (attr_mmap2 only) */
5515 /* .ino (attr_mmap2 only) */
5516 /* .ino_generation (attr_mmap2 only) */
5517 /* .prot (attr_mmap2 only) */
5518 /* .flags (attr_mmap2 only) */
5519 };
5520
5521 perf_event_mmap_event(&mmap_event);
5522 }
5523
5524 /*
5525 * IRQ throttle logging
5526 */
5527
5528 static void perf_log_throttle(struct perf_event *event, int enable)
5529 {
5530 struct perf_output_handle handle;
5531 struct perf_sample_data sample;
5532 int ret;
5533
5534 struct {
5535 struct perf_event_header header;
5536 u64 time;
5537 u64 id;
5538 u64 stream_id;
5539 } throttle_event = {
5540 .header = {
5541 .type = PERF_RECORD_THROTTLE,
5542 .misc = 0,
5543 .size = sizeof(throttle_event),
5544 },
5545 .time = perf_clock(),
5546 .id = primary_event_id(event),
5547 .stream_id = event->id,
5548 };
5549
5550 if (enable)
5551 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
5552
5553 perf_event_header__init_id(&throttle_event.header, &sample, event);
5554
5555 ret = perf_output_begin(&handle, event,
5556 throttle_event.header.size);
5557 if (ret)
5558 return;
5559
5560 perf_output_put(&handle, throttle_event);
5561 perf_event__output_id_sample(event, &handle, &sample);
5562 perf_output_end(&handle);
5563 }
5564
5565 /*
5566 * Generic event overflow handling, sampling.
5567 */
5568
5569 static int __perf_event_overflow(struct perf_event *event,
5570 int throttle, struct perf_sample_data *data,
5571 struct pt_regs *regs)
5572 {
5573 int events = atomic_read(&event->event_limit);
5574 struct hw_perf_event *hwc = &event->hw;
5575 u64 seq;
5576 int ret = 0;
5577
5578 /*
5579 * Non-sampling counters might still use the PMI to fold short
5580 * hardware counters, ignore those.
5581 */
5582 if (unlikely(!is_sampling_event(event)))
5583 return 0;
5584
5585 seq = __this_cpu_read(perf_throttled_seq);
5586 if (seq != hwc->interrupts_seq) {
5587 hwc->interrupts_seq = seq;
5588 hwc->interrupts = 1;
5589 } else {
5590 hwc->interrupts++;
5591 if (unlikely(throttle
5592 && hwc->interrupts >= max_samples_per_tick)) {
5593 __this_cpu_inc(perf_throttled_count);
5594 hwc->interrupts = MAX_INTERRUPTS;
5595 perf_log_throttle(event, 0);
5596 tick_nohz_full_kick();
5597 ret = 1;
5598 }
5599 }
5600
5601 if (event->attr.freq) {
5602 u64 now = perf_clock();
5603 s64 delta = now - hwc->freq_time_stamp;
5604
5605 hwc->freq_time_stamp = now;
5606
5607 if (delta > 0 && delta < 2*TICK_NSEC)
5608 perf_adjust_period(event, delta, hwc->last_period, true);
5609 }
5610
5611 /*
5612 * XXX event_limit might not quite work as expected on inherited
5613 * events
5614 */
5615
5616 event->pending_kill = POLL_IN;
5617 if (events && atomic_dec_and_test(&event->event_limit)) {
5618 ret = 1;
5619 event->pending_kill = POLL_HUP;
5620 event->pending_disable = 1;
5621 irq_work_queue(&event->pending);
5622 }
5623
5624 if (event->overflow_handler)
5625 event->overflow_handler(event, data, regs);
5626 else
5627 perf_event_output(event, data, regs);
5628
5629 if (event->fasync && event->pending_kill) {
5630 event->pending_wakeup = 1;
5631 irq_work_queue(&event->pending);
5632 }
5633
5634 return ret;
5635 }
5636
5637 int perf_event_overflow(struct perf_event *event,
5638 struct perf_sample_data *data,
5639 struct pt_regs *regs)
5640 {
5641 return __perf_event_overflow(event, 1, data, regs);
5642 }
5643
5644 /*
5645 * Generic software event infrastructure
5646 */
5647
5648 struct swevent_htable {
5649 struct swevent_hlist *swevent_hlist;
5650 struct mutex hlist_mutex;
5651 int hlist_refcount;
5652
5653 /* Recursion avoidance in each contexts */
5654 int recursion[PERF_NR_CONTEXTS];
5655
5656 /* Keeps track of cpu being initialized/exited */
5657 bool online;
5658 };
5659
5660 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
5661
5662 /*
5663 * We directly increment event->count and keep a second value in
5664 * event->hw.period_left to count intervals. This period event
5665 * is kept in the range [-sample_period, 0] so that we can use the
5666 * sign as trigger.
5667 */
5668
5669 u64 perf_swevent_set_period(struct perf_event *event)
5670 {
5671 struct hw_perf_event *hwc = &event->hw;
5672 u64 period = hwc->last_period;
5673 u64 nr, offset;
5674 s64 old, val;
5675
5676 hwc->last_period = hwc->sample_period;
5677
5678 again:
5679 old = val = local64_read(&hwc->period_left);
5680 if (val < 0)
5681 return 0;
5682
5683 nr = div64_u64(period + val, period);
5684 offset = nr * period;
5685 val -= offset;
5686 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
5687 goto again;
5688
5689 return nr;
5690 }
5691
5692 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
5693 struct perf_sample_data *data,
5694 struct pt_regs *regs)
5695 {
5696 struct hw_perf_event *hwc = &event->hw;
5697 int throttle = 0;
5698
5699 if (!overflow)
5700 overflow = perf_swevent_set_period(event);
5701
5702 if (hwc->interrupts == MAX_INTERRUPTS)
5703 return;
5704
5705 for (; overflow; overflow--) {
5706 if (__perf_event_overflow(event, throttle,
5707 data, regs)) {
5708 /*
5709 * We inhibit the overflow from happening when
5710 * hwc->interrupts == MAX_INTERRUPTS.
5711 */
5712 break;
5713 }
5714 throttle = 1;
5715 }
5716 }
5717
5718 static void perf_swevent_event(struct perf_event *event, u64 nr,
5719 struct perf_sample_data *data,
5720 struct pt_regs *regs)
5721 {
5722 struct hw_perf_event *hwc = &event->hw;
5723
5724 local64_add(nr, &event->count);
5725
5726 if (!regs)
5727 return;
5728
5729 if (!is_sampling_event(event))
5730 return;
5731
5732 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
5733 data->period = nr;
5734 return perf_swevent_overflow(event, 1, data, regs);
5735 } else
5736 data->period = event->hw.last_period;
5737
5738 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
5739 return perf_swevent_overflow(event, 1, data, regs);
5740
5741 if (local64_add_negative(nr, &hwc->period_left))
5742 return;
5743
5744 perf_swevent_overflow(event, 0, data, regs);
5745 }
5746
5747 static int perf_exclude_event(struct perf_event *event,
5748 struct pt_regs *regs)
5749 {
5750 if (event->hw.state & PERF_HES_STOPPED)
5751 return 1;
5752
5753 if (regs) {
5754 if (event->attr.exclude_user && user_mode(regs))
5755 return 1;
5756
5757 if (event->attr.exclude_kernel && !user_mode(regs))
5758 return 1;
5759 }
5760
5761 return 0;
5762 }
5763
5764 static int perf_swevent_match(struct perf_event *event,
5765 enum perf_type_id type,
5766 u32 event_id,
5767 struct perf_sample_data *data,
5768 struct pt_regs *regs)
5769 {
5770 if (event->attr.type != type)
5771 return 0;
5772
5773 if (event->attr.config != event_id)
5774 return 0;
5775
5776 if (perf_exclude_event(event, regs))
5777 return 0;
5778
5779 return 1;
5780 }
5781
5782 static inline u64 swevent_hash(u64 type, u32 event_id)
5783 {
5784 u64 val = event_id | (type << 32);
5785
5786 return hash_64(val, SWEVENT_HLIST_BITS);
5787 }
5788
5789 static inline struct hlist_head *
5790 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
5791 {
5792 u64 hash = swevent_hash(type, event_id);
5793
5794 return &hlist->heads[hash];
5795 }
5796
5797 /* For the read side: events when they trigger */
5798 static inline struct hlist_head *
5799 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
5800 {
5801 struct swevent_hlist *hlist;
5802
5803 hlist = rcu_dereference(swhash->swevent_hlist);
5804 if (!hlist)
5805 return NULL;
5806
5807 return __find_swevent_head(hlist, type, event_id);
5808 }
5809
5810 /* For the event head insertion and removal in the hlist */
5811 static inline struct hlist_head *
5812 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
5813 {
5814 struct swevent_hlist *hlist;
5815 u32 event_id = event->attr.config;
5816 u64 type = event->attr.type;
5817
5818 /*
5819 * Event scheduling is always serialized against hlist allocation
5820 * and release. Which makes the protected version suitable here.
5821 * The context lock guarantees that.
5822 */
5823 hlist = rcu_dereference_protected(swhash->swevent_hlist,
5824 lockdep_is_held(&event->ctx->lock));
5825 if (!hlist)
5826 return NULL;
5827
5828 return __find_swevent_head(hlist, type, event_id);
5829 }
5830
5831 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
5832 u64 nr,
5833 struct perf_sample_data *data,
5834 struct pt_regs *regs)
5835 {
5836 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
5837 struct perf_event *event;
5838 struct hlist_head *head;
5839
5840 rcu_read_lock();
5841 head = find_swevent_head_rcu(swhash, type, event_id);
5842 if (!head)
5843 goto end;
5844
5845 hlist_for_each_entry_rcu(event, head, hlist_entry) {
5846 if (perf_swevent_match(event, type, event_id, data, regs))
5847 perf_swevent_event(event, nr, data, regs);
5848 }
5849 end:
5850 rcu_read_unlock();
5851 }
5852
5853 int perf_swevent_get_recursion_context(void)
5854 {
5855 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
5856
5857 return get_recursion_context(swhash->recursion);
5858 }
5859 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
5860
5861 inline void perf_swevent_put_recursion_context(int rctx)
5862 {
5863 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
5864
5865 put_recursion_context(swhash->recursion, rctx);
5866 }
5867
5868 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
5869 {
5870 struct perf_sample_data data;
5871 int rctx;
5872
5873 preempt_disable_notrace();
5874 rctx = perf_swevent_get_recursion_context();
5875 if (rctx < 0)
5876 return;
5877
5878 perf_sample_data_init(&data, addr, 0);
5879
5880 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
5881
5882 perf_swevent_put_recursion_context(rctx);
5883 preempt_enable_notrace();
5884 }
5885
5886 static void perf_swevent_read(struct perf_event *event)
5887 {
5888 }
5889
5890 static int perf_swevent_add(struct perf_event *event, int flags)
5891 {
5892 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
5893 struct hw_perf_event *hwc = &event->hw;
5894 struct hlist_head *head;
5895
5896 if (is_sampling_event(event)) {
5897 hwc->last_period = hwc->sample_period;
5898 perf_swevent_set_period(event);
5899 }
5900
5901 hwc->state = !(flags & PERF_EF_START);
5902
5903 head = find_swevent_head(swhash, event);
5904 if (!head) {
5905 /*
5906 * We can race with cpu hotplug code. Do not
5907 * WARN if the cpu just got unplugged.
5908 */
5909 WARN_ON_ONCE(swhash->online);
5910 return -EINVAL;
5911 }
5912
5913 hlist_add_head_rcu(&event->hlist_entry, head);
5914
5915 return 0;
5916 }
5917
5918 static void perf_swevent_del(struct perf_event *event, int flags)
5919 {
5920 hlist_del_rcu(&event->hlist_entry);
5921 }
5922
5923 static void perf_swevent_start(struct perf_event *event, int flags)
5924 {
5925 event->hw.state = 0;
5926 }
5927
5928 static void perf_swevent_stop(struct perf_event *event, int flags)
5929 {
5930 event->hw.state = PERF_HES_STOPPED;
5931 }
5932
5933 /* Deref the hlist from the update side */
5934 static inline struct swevent_hlist *
5935 swevent_hlist_deref(struct swevent_htable *swhash)
5936 {
5937 return rcu_dereference_protected(swhash->swevent_hlist,
5938 lockdep_is_held(&swhash->hlist_mutex));
5939 }
5940
5941 static void swevent_hlist_release(struct swevent_htable *swhash)
5942 {
5943 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
5944
5945 if (!hlist)
5946 return;
5947
5948 RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
5949 kfree_rcu(hlist, rcu_head);
5950 }
5951
5952 static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
5953 {
5954 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5955
5956 mutex_lock(&swhash->hlist_mutex);
5957
5958 if (!--swhash->hlist_refcount)
5959 swevent_hlist_release(swhash);
5960
5961 mutex_unlock(&swhash->hlist_mutex);
5962 }
5963
5964 static void swevent_hlist_put(struct perf_event *event)
5965 {
5966 int cpu;
5967
5968 for_each_possible_cpu(cpu)
5969 swevent_hlist_put_cpu(event, cpu);
5970 }
5971
5972 static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
5973 {
5974 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5975 int err = 0;
5976
5977 mutex_lock(&swhash->hlist_mutex);
5978
5979 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
5980 struct swevent_hlist *hlist;
5981
5982 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
5983 if (!hlist) {
5984 err = -ENOMEM;
5985 goto exit;
5986 }
5987 rcu_assign_pointer(swhash->swevent_hlist, hlist);
5988 }
5989 swhash->hlist_refcount++;
5990 exit:
5991 mutex_unlock(&swhash->hlist_mutex);
5992
5993 return err;
5994 }
5995
5996 static int swevent_hlist_get(struct perf_event *event)
5997 {
5998 int err;
5999 int cpu, failed_cpu;
6000
6001 get_online_cpus();
6002 for_each_possible_cpu(cpu) {
6003 err = swevent_hlist_get_cpu(event, cpu);
6004 if (err) {
6005 failed_cpu = cpu;
6006 goto fail;
6007 }
6008 }
6009 put_online_cpus();
6010
6011 return 0;
6012 fail:
6013 for_each_possible_cpu(cpu) {
6014 if (cpu == failed_cpu)
6015 break;
6016 swevent_hlist_put_cpu(event, cpu);
6017 }
6018
6019 put_online_cpus();
6020 return err;
6021 }
6022
6023 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
6024
6025 static void sw_perf_event_destroy(struct perf_event *event)
6026 {
6027 u64 event_id = event->attr.config;
6028
6029 WARN_ON(event->parent);
6030
6031 static_key_slow_dec(&perf_swevent_enabled[event_id]);
6032 swevent_hlist_put(event);
6033 }
6034
6035 static int perf_swevent_init(struct perf_event *event)
6036 {
6037 u64 event_id = event->attr.config;
6038
6039 if (event->attr.type != PERF_TYPE_SOFTWARE)
6040 return -ENOENT;
6041
6042 /*
6043 * no branch sampling for software events
6044 */
6045 if (has_branch_stack(event))
6046 return -EOPNOTSUPP;
6047
6048 switch (event_id) {
6049 case PERF_COUNT_SW_CPU_CLOCK:
6050 case PERF_COUNT_SW_TASK_CLOCK:
6051 return -ENOENT;
6052
6053 default:
6054 break;
6055 }
6056
6057 if (event_id >= PERF_COUNT_SW_MAX)
6058 return -ENOENT;
6059
6060 if (!event->parent) {
6061 int err;
6062
6063 err = swevent_hlist_get(event);
6064 if (err)
6065 return err;
6066
6067 static_key_slow_inc(&perf_swevent_enabled[event_id]);
6068 event->destroy = sw_perf_event_destroy;
6069 }
6070
6071 return 0;
6072 }
6073
6074 static struct pmu perf_swevent = {
6075 .task_ctx_nr = perf_sw_context,
6076
6077 .event_init = perf_swevent_init,
6078 .add = perf_swevent_add,
6079 .del = perf_swevent_del,
6080 .start = perf_swevent_start,
6081 .stop = perf_swevent_stop,
6082 .read = perf_swevent_read,
6083 };
6084
6085 #ifdef CONFIG_EVENT_TRACING
6086
6087 static int perf_tp_filter_match(struct perf_event *event,
6088 struct perf_sample_data *data)
6089 {
6090 void *record = data->raw->data;
6091
6092 if (likely(!event->filter) || filter_match_preds(event->filter, record))
6093 return 1;
6094 return 0;
6095 }
6096
6097 static int perf_tp_event_match(struct perf_event *event,
6098 struct perf_sample_data *data,
6099 struct pt_regs *regs)
6100 {
6101 if (event->hw.state & PERF_HES_STOPPED)
6102 return 0;
6103 /*
6104 * All tracepoints are from kernel-space.
6105 */
6106 if (event->attr.exclude_kernel)
6107 return 0;
6108
6109 if (!perf_tp_filter_match(event, data))
6110 return 0;
6111
6112 return 1;
6113 }
6114
6115 void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
6116 struct pt_regs *regs, struct hlist_head *head, int rctx,
6117 struct task_struct *task)
6118 {
6119 struct perf_sample_data data;
6120 struct perf_event *event;
6121
6122 struct perf_raw_record raw = {
6123 .size = entry_size,
6124 .data = record,
6125 };
6126
6127 perf_sample_data_init(&data, addr, 0);
6128 data.raw = &raw;
6129
6130 hlist_for_each_entry_rcu(event, head, hlist_entry) {
6131 if (perf_tp_event_match(event, &data, regs))
6132 perf_swevent_event(event, count, &data, regs);
6133 }
6134
6135 /*
6136 * If we got specified a target task, also iterate its context and
6137 * deliver this event there too.
6138 */
6139 if (task && task != current) {
6140 struct perf_event_context *ctx;
6141 struct trace_entry *entry = record;
6142
6143 rcu_read_lock();
6144 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
6145 if (!ctx)
6146 goto unlock;
6147
6148 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
6149 if (event->attr.type != PERF_TYPE_TRACEPOINT)
6150 continue;
6151 if (event->attr.config != entry->type)
6152 continue;
6153 if (perf_tp_event_match(event, &data, regs))
6154 perf_swevent_event(event, count, &data, regs);
6155 }
6156 unlock:
6157 rcu_read_unlock();
6158 }
6159
6160 perf_swevent_put_recursion_context(rctx);
6161 }
6162 EXPORT_SYMBOL_GPL(perf_tp_event);
6163
6164 static void tp_perf_event_destroy(struct perf_event *event)
6165 {
6166 perf_trace_destroy(event);
6167 }
6168
6169 static int perf_tp_event_init(struct perf_event *event)
6170 {
6171 int err;
6172
6173 if (event->attr.type != PERF_TYPE_TRACEPOINT)
6174 return -ENOENT;
6175
6176 /*
6177 * no branch sampling for tracepoint events
6178 */
6179 if (has_branch_stack(event))
6180 return -EOPNOTSUPP;
6181
6182 err = perf_trace_init(event);
6183 if (err)
6184 return err;
6185
6186 event->destroy = tp_perf_event_destroy;
6187
6188 return 0;
6189 }
6190
6191 static struct pmu perf_tracepoint = {
6192 .task_ctx_nr = perf_sw_context,
6193
6194 .event_init = perf_tp_event_init,
6195 .add = perf_trace_add,
6196 .del = perf_trace_del,
6197 .start = perf_swevent_start,
6198 .stop = perf_swevent_stop,
6199 .read = perf_swevent_read,
6200 };
6201
6202 static inline void perf_tp_register(void)
6203 {
6204 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
6205 }
6206
6207 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
6208 {
6209 char *filter_str;
6210 int ret;
6211
6212 if (event->attr.type != PERF_TYPE_TRACEPOINT)
6213 return -EINVAL;
6214
6215 filter_str = strndup_user(arg, PAGE_SIZE);
6216 if (IS_ERR(filter_str))
6217 return PTR_ERR(filter_str);
6218
6219 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
6220
6221 kfree(filter_str);
6222 return ret;
6223 }
6224
6225 static void perf_event_free_filter(struct perf_event *event)
6226 {
6227 ftrace_profile_free_filter(event);
6228 }
6229
6230 #else
6231
6232 static inline void perf_tp_register(void)
6233 {
6234 }
6235
6236 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
6237 {
6238 return -ENOENT;
6239 }
6240
6241 static void perf_event_free_filter(struct perf_event *event)
6242 {
6243 }
6244
6245 #endif /* CONFIG_EVENT_TRACING */
6246
6247 #ifdef CONFIG_HAVE_HW_BREAKPOINT
6248 void perf_bp_event(struct perf_event *bp, void *data)
6249 {
6250 struct perf_sample_data sample;
6251 struct pt_regs *regs = data;
6252
6253 perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
6254
6255 if (!bp->hw.state && !perf_exclude_event(bp, regs))
6256 perf_swevent_event(bp, 1, &sample, regs);
6257 }
6258 #endif
6259
6260 /*
6261 * hrtimer based swevent callback
6262 */
6263
6264 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
6265 {
6266 enum hrtimer_restart ret = HRTIMER_RESTART;
6267 struct perf_sample_data data;
6268 struct pt_regs *regs;
6269 struct perf_event *event;
6270 u64 period;
6271
6272 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
6273
6274 if (event->state != PERF_EVENT_STATE_ACTIVE)
6275 return HRTIMER_NORESTART;
6276
6277 event->pmu->read(event);
6278
6279 perf_sample_data_init(&data, 0, event->hw.last_period);
6280 regs = get_irq_regs();
6281
6282 if (regs && !perf_exclude_event(event, regs)) {
6283 if (!(event->attr.exclude_idle && is_idle_task(current)))
6284 if (__perf_event_overflow(event, 1, &data, regs))
6285 ret = HRTIMER_NORESTART;
6286 }
6287
6288 period = max_t(u64, 10000, event->hw.sample_period);
6289 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
6290
6291 return ret;
6292 }
6293
6294 static void perf_swevent_start_hrtimer(struct perf_event *event)
6295 {
6296 struct hw_perf_event *hwc = &event->hw;
6297 s64 period;
6298
6299 if (!is_sampling_event(event))
6300 return;
6301
6302 period = local64_read(&hwc->period_left);
6303 if (period) {
6304 if (period < 0)
6305 period = 10000;
6306
6307 local64_set(&hwc->period_left, 0);
6308 } else {
6309 period = max_t(u64, 10000, hwc->sample_period);
6310 }
6311 __hrtimer_start_range_ns(&hwc->hrtimer,
6312 ns_to_ktime(period), 0,
6313 HRTIMER_MODE_REL_PINNED, 0);
6314 }
6315
6316 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
6317 {
6318 struct hw_perf_event *hwc = &event->hw;
6319
6320 if (is_sampling_event(event)) {
6321 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
6322 local64_set(&hwc->period_left, ktime_to_ns(remaining));
6323
6324 hrtimer_cancel(&hwc->hrtimer);
6325 }
6326 }
6327
6328 static void perf_swevent_init_hrtimer(struct perf_event *event)
6329 {
6330 struct hw_perf_event *hwc = &event->hw;
6331
6332 if (!is_sampling_event(event))
6333 return;
6334
6335 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
6336 hwc->hrtimer.function = perf_swevent_hrtimer;
6337
6338 /*
6339 * Since hrtimers have a fixed rate, we can do a static freq->period
6340 * mapping and avoid the whole period adjust feedback stuff.
6341 */
6342 if (event->attr.freq) {
6343 long freq = event->attr.sample_freq;
6344
6345 event->attr.sample_period = NSEC_PER_SEC / freq;
6346 hwc->sample_period = event->attr.sample_period;
6347 local64_set(&hwc->period_left, hwc->sample_period);
6348 hwc->last_period = hwc->sample_period;
6349 event->attr.freq = 0;
6350 }
6351 }
6352
6353 /*
6354 * Software event: cpu wall time clock
6355 */
6356
6357 static void cpu_clock_event_update(struct perf_event *event)
6358 {
6359 s64 prev;
6360 u64 now;
6361
6362 now = local_clock();
6363 prev = local64_xchg(&event->hw.prev_count, now);
6364 local64_add(now - prev, &event->count);
6365 }
6366
6367 static void cpu_clock_event_start(struct perf_event *event, int flags)
6368 {
6369 local64_set(&event->hw.prev_count, local_clock());
6370 perf_swevent_start_hrtimer(event);
6371 }
6372
6373 static void cpu_clock_event_stop(struct perf_event *event, int flags)
6374 {
6375 perf_swevent_cancel_hrtimer(event);
6376 cpu_clock_event_update(event);
6377 }
6378
6379 static int cpu_clock_event_add(struct perf_event *event, int flags)
6380 {
6381 if (flags & PERF_EF_START)
6382 cpu_clock_event_start(event, flags);
6383
6384 return 0;
6385 }
6386
6387 static void cpu_clock_event_del(struct perf_event *event, int flags)
6388 {
6389 cpu_clock_event_stop(event, flags);
6390 }
6391
6392 static void cpu_clock_event_read(struct perf_event *event)
6393 {
6394 cpu_clock_event_update(event);
6395 }
6396
6397 static int cpu_clock_event_init(struct perf_event *event)
6398 {
6399 if (event->attr.type != PERF_TYPE_SOFTWARE)
6400 return -ENOENT;
6401
6402 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
6403 return -ENOENT;
6404
6405 /*
6406 * no branch sampling for software events
6407 */
6408 if (has_branch_stack(event))
6409 return -EOPNOTSUPP;
6410
6411 perf_swevent_init_hrtimer(event);
6412
6413 return 0;
6414 }
6415
6416 static struct pmu perf_cpu_clock = {
6417 .task_ctx_nr = perf_sw_context,
6418
6419 .event_init = cpu_clock_event_init,
6420 .add = cpu_clock_event_add,
6421 .del = cpu_clock_event_del,
6422 .start = cpu_clock_event_start,
6423 .stop = cpu_clock_event_stop,
6424 .read = cpu_clock_event_read,
6425 };
6426
6427 /*
6428 * Software event: task time clock
6429 */
6430
6431 static void task_clock_event_update(struct perf_event *event, u64 now)
6432 {
6433 u64 prev;
6434 s64 delta;
6435
6436 prev = local64_xchg(&event->hw.prev_count, now);
6437 delta = now - prev;
6438 local64_add(delta, &event->count);
6439 }
6440
6441 static void task_clock_event_start(struct perf_event *event, int flags)
6442 {
6443 local64_set(&event->hw.prev_count, event->ctx->time);
6444 perf_swevent_start_hrtimer(event);
6445 }
6446
6447 static void task_clock_event_stop(struct perf_event *event, int flags)
6448 {
6449 perf_swevent_cancel_hrtimer(event);
6450 task_clock_event_update(event, event->ctx->time);
6451 }
6452
6453 static int task_clock_event_add(struct perf_event *event, int flags)
6454 {
6455 if (flags & PERF_EF_START)
6456 task_clock_event_start(event, flags);
6457
6458 return 0;
6459 }
6460
6461 static void task_clock_event_del(struct perf_event *event, int flags)
6462 {
6463 task_clock_event_stop(event, PERF_EF_UPDATE);
6464 }
6465
6466 static void task_clock_event_read(struct perf_event *event)
6467 {
6468 u64 now = perf_clock();
6469 u64 delta = now - event->ctx->timestamp;
6470 u64 time = event->ctx->time + delta;
6471
6472 task_clock_event_update(event, time);
6473 }
6474
6475 static int task_clock_event_init(struct perf_event *event)
6476 {
6477 if (event->attr.type != PERF_TYPE_SOFTWARE)
6478 return -ENOENT;
6479
6480 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
6481 return -ENOENT;
6482
6483 /*
6484 * no branch sampling for software events
6485 */
6486 if (has_branch_stack(event))
6487 return -EOPNOTSUPP;
6488
6489 perf_swevent_init_hrtimer(event);
6490
6491 return 0;
6492 }
6493
6494 static struct pmu perf_task_clock = {
6495 .task_ctx_nr = perf_sw_context,
6496
6497 .event_init = task_clock_event_init,
6498 .add = task_clock_event_add,
6499 .del = task_clock_event_del,
6500 .start = task_clock_event_start,
6501 .stop = task_clock_event_stop,
6502 .read = task_clock_event_read,
6503 };
6504
6505 static void perf_pmu_nop_void(struct pmu *pmu)
6506 {
6507 }
6508
6509 static int perf_pmu_nop_int(struct pmu *pmu)
6510 {
6511 return 0;
6512 }
6513
6514 static void perf_pmu_start_txn(struct pmu *pmu)
6515 {
6516 perf_pmu_disable(pmu);
6517 }
6518
6519 static int perf_pmu_commit_txn(struct pmu *pmu)
6520 {
6521 perf_pmu_enable(pmu);
6522 return 0;
6523 }
6524
6525 static void perf_pmu_cancel_txn(struct pmu *pmu)
6526 {
6527 perf_pmu_enable(pmu);
6528 }
6529
6530 static int perf_event_idx_default(struct perf_event *event)
6531 {
6532 return 0;
6533 }
6534
6535 /*
6536 * Ensures all contexts with the same task_ctx_nr have the same
6537 * pmu_cpu_context too.
6538 */
6539 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
6540 {
6541 struct pmu *pmu;
6542
6543 if (ctxn < 0)
6544 return NULL;
6545
6546 list_for_each_entry(pmu, &pmus, entry) {
6547 if (pmu->task_ctx_nr == ctxn)
6548 return pmu->pmu_cpu_context;
6549 }
6550
6551 return NULL;
6552 }
6553
6554 static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
6555 {
6556 int cpu;
6557
6558 for_each_possible_cpu(cpu) {
6559 struct perf_cpu_context *cpuctx;
6560
6561 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6562
6563 if (cpuctx->unique_pmu == old_pmu)
6564 cpuctx->unique_pmu = pmu;
6565 }
6566 }
6567
6568 static void free_pmu_context(struct pmu *pmu)
6569 {
6570 struct pmu *i;
6571
6572 mutex_lock(&pmus_lock);
6573 /*
6574 * Like a real lame refcount.
6575 */
6576 list_for_each_entry(i, &pmus, entry) {
6577 if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
6578 update_pmu_context(i, pmu);
6579 goto out;
6580 }
6581 }
6582
6583 free_percpu(pmu->pmu_cpu_context);
6584 out:
6585 mutex_unlock(&pmus_lock);
6586 }
6587 static struct idr pmu_idr;
6588
6589 static ssize_t
6590 type_show(struct device *dev, struct device_attribute *attr, char *page)
6591 {
6592 struct pmu *pmu = dev_get_drvdata(dev);
6593
6594 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
6595 }
6596 static DEVICE_ATTR_RO(type);
6597
6598 static ssize_t
6599 perf_event_mux_interval_ms_show(struct device *dev,
6600 struct device_attribute *attr,
6601 char *page)
6602 {
6603 struct pmu *pmu = dev_get_drvdata(dev);
6604
6605 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
6606 }
6607
6608 static ssize_t
6609 perf_event_mux_interval_ms_store(struct device *dev,
6610 struct device_attribute *attr,
6611 const char *buf, size_t count)
6612 {
6613 struct pmu *pmu = dev_get_drvdata(dev);
6614 int timer, cpu, ret;
6615
6616 ret = kstrtoint(buf, 0, &timer);
6617 if (ret)
6618 return ret;
6619
6620 if (timer < 1)
6621 return -EINVAL;
6622
6623 /* same value, noting to do */
6624 if (timer == pmu->hrtimer_interval_ms)
6625 return count;
6626
6627 pmu->hrtimer_interval_ms = timer;
6628
6629 /* update all cpuctx for this PMU */
6630 for_each_possible_cpu(cpu) {
6631 struct perf_cpu_context *cpuctx;
6632 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6633 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
6634
6635 if (hrtimer_active(&cpuctx->hrtimer))
6636 hrtimer_forward_now(&cpuctx->hrtimer, cpuctx->hrtimer_interval);
6637 }
6638
6639 return count;
6640 }
6641 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
6642
6643 static struct attribute *pmu_dev_attrs[] = {
6644 &dev_attr_type.attr,
6645 &dev_attr_perf_event_mux_interval_ms.attr,
6646 NULL,
6647 };
6648 ATTRIBUTE_GROUPS(pmu_dev);
6649
6650 static int pmu_bus_running;
6651 static struct bus_type pmu_bus = {
6652 .name = "event_source",
6653 .dev_groups = pmu_dev_groups,
6654 };
6655
6656 static void pmu_dev_release(struct device *dev)
6657 {
6658 kfree(dev);
6659 }
6660
6661 static int pmu_dev_alloc(struct pmu *pmu)
6662 {
6663 int ret = -ENOMEM;
6664
6665 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
6666 if (!pmu->dev)
6667 goto out;
6668
6669 pmu->dev->groups = pmu->attr_groups;
6670 device_initialize(pmu->dev);
6671 ret = dev_set_name(pmu->dev, "%s", pmu->name);
6672 if (ret)
6673 goto free_dev;
6674
6675 dev_set_drvdata(pmu->dev, pmu);
6676 pmu->dev->bus = &pmu_bus;
6677 pmu->dev->release = pmu_dev_release;
6678 ret = device_add(pmu->dev);
6679 if (ret)
6680 goto free_dev;
6681
6682 out:
6683 return ret;
6684
6685 free_dev:
6686 put_device(pmu->dev);
6687 goto out;
6688 }
6689
6690 static struct lock_class_key cpuctx_mutex;
6691 static struct lock_class_key cpuctx_lock;
6692
6693 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
6694 {
6695 int cpu, ret;
6696
6697 mutex_lock(&pmus_lock);
6698 ret = -ENOMEM;
6699 pmu->pmu_disable_count = alloc_percpu(int);
6700 if (!pmu->pmu_disable_count)
6701 goto unlock;
6702
6703 pmu->type = -1;
6704 if (!name)
6705 goto skip_type;
6706 pmu->name = name;
6707
6708 if (type < 0) {
6709 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
6710 if (type < 0) {
6711 ret = type;
6712 goto free_pdc;
6713 }
6714 }
6715 pmu->type = type;
6716
6717 if (pmu_bus_running) {
6718 ret = pmu_dev_alloc(pmu);
6719 if (ret)
6720 goto free_idr;
6721 }
6722
6723 skip_type:
6724 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
6725 if (pmu->pmu_cpu_context)
6726 goto got_cpu_context;
6727
6728 ret = -ENOMEM;
6729 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
6730 if (!pmu->pmu_cpu_context)
6731 goto free_dev;
6732
6733 for_each_possible_cpu(cpu) {
6734 struct perf_cpu_context *cpuctx;
6735
6736 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6737 __perf_event_init_context(&cpuctx->ctx);
6738 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
6739 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
6740 cpuctx->ctx.type = cpu_context;
6741 cpuctx->ctx.pmu = pmu;
6742
6743 __perf_cpu_hrtimer_init(cpuctx, cpu);
6744
6745 INIT_LIST_HEAD(&cpuctx->rotation_list);
6746 cpuctx->unique_pmu = pmu;
6747 }
6748
6749 got_cpu_context:
6750 if (!pmu->start_txn) {
6751 if (pmu->pmu_enable) {
6752 /*
6753 * If we have pmu_enable/pmu_disable calls, install
6754 * transaction stubs that use that to try and batch
6755 * hardware accesses.
6756 */
6757 pmu->start_txn = perf_pmu_start_txn;
6758 pmu->commit_txn = perf_pmu_commit_txn;
6759 pmu->cancel_txn = perf_pmu_cancel_txn;
6760 } else {
6761 pmu->start_txn = perf_pmu_nop_void;
6762 pmu->commit_txn = perf_pmu_nop_int;
6763 pmu->cancel_txn = perf_pmu_nop_void;
6764 }
6765 }
6766
6767 if (!pmu->pmu_enable) {
6768 pmu->pmu_enable = perf_pmu_nop_void;
6769 pmu->pmu_disable = perf_pmu_nop_void;
6770 }
6771
6772 if (!pmu->event_idx)
6773 pmu->event_idx = perf_event_idx_default;
6774
6775 list_add_rcu(&pmu->entry, &pmus);
6776 ret = 0;
6777 unlock:
6778 mutex_unlock(&pmus_lock);
6779
6780 return ret;
6781
6782 free_dev:
6783 device_del(pmu->dev);
6784 put_device(pmu->dev);
6785
6786 free_idr:
6787 if (pmu->type >= PERF_TYPE_MAX)
6788 idr_remove(&pmu_idr, pmu->type);
6789
6790 free_pdc:
6791 free_percpu(pmu->pmu_disable_count);
6792 goto unlock;
6793 }
6794 EXPORT_SYMBOL_GPL(perf_pmu_register);
6795
6796 void perf_pmu_unregister(struct pmu *pmu)
6797 {
6798 mutex_lock(&pmus_lock);
6799 list_del_rcu(&pmu->entry);
6800 mutex_unlock(&pmus_lock);
6801
6802 /*
6803 * We dereference the pmu list under both SRCU and regular RCU, so
6804 * synchronize against both of those.
6805 */
6806 synchronize_srcu(&pmus_srcu);
6807 synchronize_rcu();
6808
6809 free_percpu(pmu->pmu_disable_count);
6810 if (pmu->type >= PERF_TYPE_MAX)
6811 idr_remove(&pmu_idr, pmu->type);
6812 device_del(pmu->dev);
6813 put_device(pmu->dev);
6814 free_pmu_context(pmu);
6815 }
6816 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
6817
6818 struct pmu *perf_init_event(struct perf_event *event)
6819 {
6820 struct pmu *pmu = NULL;
6821 int idx;
6822 int ret;
6823
6824 idx = srcu_read_lock(&pmus_srcu);
6825
6826 rcu_read_lock();
6827 pmu = idr_find(&pmu_idr, event->attr.type);
6828 rcu_read_unlock();
6829 if (pmu) {
6830 if (!try_module_get(pmu->module)) {
6831 pmu = ERR_PTR(-ENODEV);
6832 goto unlock;
6833 }
6834 event->pmu = pmu;
6835 ret = pmu->event_init(event);
6836 if (ret)
6837 pmu = ERR_PTR(ret);
6838 goto unlock;
6839 }
6840
6841 list_for_each_entry_rcu(pmu, &pmus, entry) {
6842 if (!try_module_get(pmu->module)) {
6843 pmu = ERR_PTR(-ENODEV);
6844 goto unlock;
6845 }
6846 event->pmu = pmu;
6847 ret = pmu->event_init(event);
6848 if (!ret)
6849 goto unlock;
6850
6851 if (ret != -ENOENT) {
6852 pmu = ERR_PTR(ret);
6853 goto unlock;
6854 }
6855 }
6856 pmu = ERR_PTR(-ENOENT);
6857 unlock:
6858 srcu_read_unlock(&pmus_srcu, idx);
6859
6860 return pmu;
6861 }
6862
6863 static void account_event_cpu(struct perf_event *event, int cpu)
6864 {
6865 if (event->parent)
6866 return;
6867
6868 if (has_branch_stack(event)) {
6869 if (!(event->attach_state & PERF_ATTACH_TASK))
6870 atomic_inc(&per_cpu(perf_branch_stack_events, cpu));
6871 }
6872 if (is_cgroup_event(event))
6873 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
6874 }
6875
6876 static void account_event(struct perf_event *event)
6877 {
6878 if (event->parent)
6879 return;
6880
6881 if (event->attach_state & PERF_ATTACH_TASK)
6882 static_key_slow_inc(&perf_sched_events.key);
6883 if (event->attr.mmap || event->attr.mmap_data)
6884 atomic_inc(&nr_mmap_events);
6885 if (event->attr.comm)
6886 atomic_inc(&nr_comm_events);
6887 if (event->attr.task)
6888 atomic_inc(&nr_task_events);
6889 if (event->attr.freq) {
6890 if (atomic_inc_return(&nr_freq_events) == 1)
6891 tick_nohz_full_kick_all();
6892 }
6893 if (has_branch_stack(event))
6894 static_key_slow_inc(&perf_sched_events.key);
6895 if (is_cgroup_event(event))
6896 static_key_slow_inc(&perf_sched_events.key);
6897
6898 account_event_cpu(event, event->cpu);
6899 }
6900
6901 /*
6902 * Allocate and initialize a event structure
6903 */
6904 static struct perf_event *
6905 perf_event_alloc(struct perf_event_attr *attr, int cpu,
6906 struct task_struct *task,
6907 struct perf_event *group_leader,
6908 struct perf_event *parent_event,
6909 perf_overflow_handler_t overflow_handler,
6910 void *context)
6911 {
6912 struct pmu *pmu;
6913 struct perf_event *event;
6914 struct hw_perf_event *hwc;
6915 long err = -EINVAL;
6916
6917 if ((unsigned)cpu >= nr_cpu_ids) {
6918 if (!task || cpu != -1)
6919 return ERR_PTR(-EINVAL);
6920 }
6921
6922 event = kzalloc(sizeof(*event), GFP_KERNEL);
6923 if (!event)
6924 return ERR_PTR(-ENOMEM);
6925
6926 /*
6927 * Single events are their own group leaders, with an
6928 * empty sibling list:
6929 */
6930 if (!group_leader)
6931 group_leader = event;
6932
6933 mutex_init(&event->child_mutex);
6934 INIT_LIST_HEAD(&event->child_list);
6935
6936 INIT_LIST_HEAD(&event->group_entry);
6937 INIT_LIST_HEAD(&event->event_entry);
6938 INIT_LIST_HEAD(&event->sibling_list);
6939 INIT_LIST_HEAD(&event->rb_entry);
6940 INIT_LIST_HEAD(&event->active_entry);
6941 INIT_HLIST_NODE(&event->hlist_entry);
6942
6943
6944 init_waitqueue_head(&event->waitq);
6945 init_irq_work(&event->pending, perf_pending_event);
6946
6947 mutex_init(&event->mmap_mutex);
6948
6949 atomic_long_set(&event->refcount, 1);
6950 event->cpu = cpu;
6951 event->attr = *attr;
6952 event->group_leader = group_leader;
6953 event->pmu = NULL;
6954 event->oncpu = -1;
6955
6956 event->parent = parent_event;
6957
6958 event->ns = get_pid_ns(task_active_pid_ns(current));
6959 event->id = atomic64_inc_return(&perf_event_id);
6960
6961 event->state = PERF_EVENT_STATE_INACTIVE;
6962
6963 if (task) {
6964 event->attach_state = PERF_ATTACH_TASK;
6965
6966 if (attr->type == PERF_TYPE_TRACEPOINT)
6967 event->hw.tp_target = task;
6968 #ifdef CONFIG_HAVE_HW_BREAKPOINT
6969 /*
6970 * hw_breakpoint is a bit difficult here..
6971 */
6972 else if (attr->type == PERF_TYPE_BREAKPOINT)
6973 event->hw.bp_target = task;
6974 #endif
6975 }
6976
6977 if (!overflow_handler && parent_event) {
6978 overflow_handler = parent_event->overflow_handler;
6979 context = parent_event->overflow_handler_context;
6980 }
6981
6982 event->overflow_handler = overflow_handler;
6983 event->overflow_handler_context = context;
6984
6985 perf_event__state_init(event);
6986
6987 pmu = NULL;
6988
6989 hwc = &event->hw;
6990 hwc->sample_period = attr->sample_period;
6991 if (attr->freq && attr->sample_freq)
6992 hwc->sample_period = 1;
6993 hwc->last_period = hwc->sample_period;
6994
6995 local64_set(&hwc->period_left, hwc->sample_period);
6996
6997 /*
6998 * we currently do not support PERF_FORMAT_GROUP on inherited events
6999 */
7000 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
7001 goto err_ns;
7002
7003 pmu = perf_init_event(event);
7004 if (!pmu)
7005 goto err_ns;
7006 else if (IS_ERR(pmu)) {
7007 err = PTR_ERR(pmu);
7008 goto err_ns;
7009 }
7010
7011 if (!event->parent) {
7012 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
7013 err = get_callchain_buffers();
7014 if (err)
7015 goto err_pmu;
7016 }
7017 }
7018
7019 return event;
7020
7021 err_pmu:
7022 if (event->destroy)
7023 event->destroy(event);
7024 module_put(pmu->module);
7025 err_ns:
7026 if (event->ns)
7027 put_pid_ns(event->ns);
7028 kfree(event);
7029
7030 return ERR_PTR(err);
7031 }
7032
7033 static int perf_copy_attr(struct perf_event_attr __user *uattr,
7034 struct perf_event_attr *attr)
7035 {
7036 u32 size;
7037 int ret;
7038
7039 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
7040 return -EFAULT;
7041
7042 /*
7043 * zero the full structure, so that a short copy will be nice.
7044 */
7045 memset(attr, 0, sizeof(*attr));
7046
7047 ret = get_user(size, &uattr->size);
7048 if (ret)
7049 return ret;
7050
7051 if (size > PAGE_SIZE) /* silly large */
7052 goto err_size;
7053
7054 if (!size) /* abi compat */
7055 size = PERF_ATTR_SIZE_VER0;
7056
7057 if (size < PERF_ATTR_SIZE_VER0)
7058 goto err_size;
7059
7060 /*
7061 * If we're handed a bigger struct than we know of,
7062 * ensure all the unknown bits are 0 - i.e. new
7063 * user-space does not rely on any kernel feature
7064 * extensions we dont know about yet.
7065 */
7066 if (size > sizeof(*attr)) {
7067 unsigned char __user *addr;
7068 unsigned char __user *end;
7069 unsigned char val;
7070
7071 addr = (void __user *)uattr + sizeof(*attr);
7072 end = (void __user *)uattr + size;
7073
7074 for (; addr < end; addr++) {
7075 ret = get_user(val, addr);
7076 if (ret)
7077 return ret;
7078 if (val)
7079 goto err_size;
7080 }
7081 size = sizeof(*attr);
7082 }
7083
7084 ret = copy_from_user(attr, uattr, size);
7085 if (ret)
7086 return -EFAULT;
7087
7088 if (attr->__reserved_1)
7089 return -EINVAL;
7090
7091 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
7092 return -EINVAL;
7093
7094 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
7095 return -EINVAL;
7096
7097 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
7098 u64 mask = attr->branch_sample_type;
7099
7100 /* only using defined bits */
7101 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
7102 return -EINVAL;
7103
7104 /* at least one branch bit must be set */
7105 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
7106 return -EINVAL;
7107
7108 /* propagate priv level, when not set for branch */
7109 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
7110
7111 /* exclude_kernel checked on syscall entry */
7112 if (!attr->exclude_kernel)
7113 mask |= PERF_SAMPLE_BRANCH_KERNEL;
7114
7115 if (!attr->exclude_user)
7116 mask |= PERF_SAMPLE_BRANCH_USER;
7117
7118 if (!attr->exclude_hv)
7119 mask |= PERF_SAMPLE_BRANCH_HV;
7120 /*
7121 * adjust user setting (for HW filter setup)
7122 */
7123 attr->branch_sample_type = mask;
7124 }
7125 /* privileged levels capture (kernel, hv): check permissions */
7126 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
7127 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
7128 return -EACCES;
7129 }
7130
7131 if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
7132 ret = perf_reg_validate(attr->sample_regs_user);
7133 if (ret)
7134 return ret;
7135 }
7136
7137 if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
7138 if (!arch_perf_have_user_stack_dump())
7139 return -ENOSYS;
7140
7141 /*
7142 * We have __u32 type for the size, but so far
7143 * we can only use __u16 as maximum due to the
7144 * __u16 sample size limit.
7145 */
7146 if (attr->sample_stack_user >= USHRT_MAX)
7147 ret = -EINVAL;
7148 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
7149 ret = -EINVAL;
7150 }
7151
7152 out:
7153 return ret;
7154
7155 err_size:
7156 put_user(sizeof(*attr), &uattr->size);
7157 ret = -E2BIG;
7158 goto out;
7159 }
7160
7161 static int
7162 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
7163 {
7164 struct ring_buffer *rb = NULL;
7165 int ret = -EINVAL;
7166
7167 if (!output_event)
7168 goto set;
7169
7170 /* don't allow circular references */
7171 if (event == output_event)
7172 goto out;
7173
7174 /*
7175 * Don't allow cross-cpu buffers
7176 */
7177 if (output_event->cpu != event->cpu)
7178 goto out;
7179
7180 /*
7181 * If its not a per-cpu rb, it must be the same task.
7182 */
7183 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
7184 goto out;
7185
7186 set:
7187 mutex_lock(&event->mmap_mutex);
7188 /* Can't redirect output if we've got an active mmap() */
7189 if (atomic_read(&event->mmap_count))
7190 goto unlock;
7191
7192 if (output_event) {
7193 /* get the rb we want to redirect to */
7194 rb = ring_buffer_get(output_event);
7195 if (!rb)
7196 goto unlock;
7197 }
7198
7199 ring_buffer_attach(event, rb);
7200
7201 ret = 0;
7202 unlock:
7203 mutex_unlock(&event->mmap_mutex);
7204
7205 out:
7206 return ret;
7207 }
7208
7209 /**
7210 * sys_perf_event_open - open a performance event, associate it to a task/cpu
7211 *
7212 * @attr_uptr: event_id type attributes for monitoring/sampling
7213 * @pid: target pid
7214 * @cpu: target cpu
7215 * @group_fd: group leader event fd
7216 */
7217 SYSCALL_DEFINE5(perf_event_open,
7218 struct perf_event_attr __user *, attr_uptr,
7219 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
7220 {
7221 struct perf_event *group_leader = NULL, *output_event = NULL;
7222 struct perf_event *event, *sibling;
7223 struct perf_event_attr attr;
7224 struct perf_event_context *ctx;
7225 struct file *event_file = NULL;
7226 struct fd group = {NULL, 0};
7227 struct task_struct *task = NULL;
7228 struct pmu *pmu;
7229 int event_fd;
7230 int move_group = 0;
7231 int err;
7232 int f_flags = O_RDWR;
7233
7234 /* for future expandability... */
7235 if (flags & ~PERF_FLAG_ALL)
7236 return -EINVAL;
7237
7238 err = perf_copy_attr(attr_uptr, &attr);
7239 if (err)
7240 return err;
7241
7242 if (!attr.exclude_kernel) {
7243 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
7244 return -EACCES;
7245 }
7246
7247 if (attr.freq) {
7248 if (attr.sample_freq > sysctl_perf_event_sample_rate)
7249 return -EINVAL;
7250 } else {
7251 if (attr.sample_period & (1ULL << 63))
7252 return -EINVAL;
7253 }
7254
7255 /*
7256 * In cgroup mode, the pid argument is used to pass the fd
7257 * opened to the cgroup directory in cgroupfs. The cpu argument
7258 * designates the cpu on which to monitor threads from that
7259 * cgroup.
7260 */
7261 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
7262 return -EINVAL;
7263
7264 if (flags & PERF_FLAG_FD_CLOEXEC)
7265 f_flags |= O_CLOEXEC;
7266
7267 event_fd = get_unused_fd_flags(f_flags);
7268 if (event_fd < 0)
7269 return event_fd;
7270
7271 if (group_fd != -1) {
7272 err = perf_fget_light(group_fd, &group);
7273 if (err)
7274 goto err_fd;
7275 group_leader = group.file->private_data;
7276 if (flags & PERF_FLAG_FD_OUTPUT)
7277 output_event = group_leader;
7278 if (flags & PERF_FLAG_FD_NO_GROUP)
7279 group_leader = NULL;
7280 }
7281
7282 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
7283 task = find_lively_task_by_vpid(pid);
7284 if (IS_ERR(task)) {
7285 err = PTR_ERR(task);
7286 goto err_group_fd;
7287 }
7288 }
7289
7290 if (task && group_leader &&
7291 group_leader->attr.inherit != attr.inherit) {
7292 err = -EINVAL;
7293 goto err_task;
7294 }
7295
7296 get_online_cpus();
7297
7298 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
7299 NULL, NULL);
7300 if (IS_ERR(event)) {
7301 err = PTR_ERR(event);
7302 goto err_cpus;
7303 }
7304
7305 if (flags & PERF_FLAG_PID_CGROUP) {
7306 err = perf_cgroup_connect(pid, event, &attr, group_leader);
7307 if (err) {
7308 __free_event(event);
7309 goto err_cpus;
7310 }
7311 }
7312
7313 if (is_sampling_event(event)) {
7314 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
7315 err = -ENOTSUPP;
7316 goto err_alloc;
7317 }
7318 }
7319
7320 account_event(event);
7321
7322 /*
7323 * Special case software events and allow them to be part of
7324 * any hardware group.
7325 */
7326 pmu = event->pmu;
7327
7328 if (group_leader &&
7329 (is_software_event(event) != is_software_event(group_leader))) {
7330 if (is_software_event(event)) {
7331 /*
7332 * If event and group_leader are not both a software
7333 * event, and event is, then group leader is not.
7334 *
7335 * Allow the addition of software events to !software
7336 * groups, this is safe because software events never
7337 * fail to schedule.
7338 */
7339 pmu = group_leader->pmu;
7340 } else if (is_software_event(group_leader) &&
7341 (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
7342 /*
7343 * In case the group is a pure software group, and we
7344 * try to add a hardware event, move the whole group to
7345 * the hardware context.
7346 */
7347 move_group = 1;
7348 }
7349 }
7350
7351 /*
7352 * Get the target context (task or percpu):
7353 */
7354 ctx = find_get_context(pmu, task, event->cpu);
7355 if (IS_ERR(ctx)) {
7356 err = PTR_ERR(ctx);
7357 goto err_alloc;
7358 }
7359
7360 if (task) {
7361 put_task_struct(task);
7362 task = NULL;
7363 }
7364
7365 /*
7366 * Look up the group leader (we will attach this event to it):
7367 */
7368 if (group_leader) {
7369 err = -EINVAL;
7370
7371 /*
7372 * Do not allow a recursive hierarchy (this new sibling
7373 * becoming part of another group-sibling):
7374 */
7375 if (group_leader->group_leader != group_leader)
7376 goto err_context;
7377 /*
7378 * Do not allow to attach to a group in a different
7379 * task or CPU context:
7380 */
7381 if (move_group) {
7382 if (group_leader->ctx->type != ctx->type)
7383 goto err_context;
7384 } else {
7385 if (group_leader->ctx != ctx)
7386 goto err_context;
7387 }
7388
7389 /*
7390 * Only a group leader can be exclusive or pinned
7391 */
7392 if (attr.exclusive || attr.pinned)
7393 goto err_context;
7394 }
7395
7396 if (output_event) {
7397 err = perf_event_set_output(event, output_event);
7398 if (err)
7399 goto err_context;
7400 }
7401
7402 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
7403 f_flags);
7404 if (IS_ERR(event_file)) {
7405 err = PTR_ERR(event_file);
7406 goto err_context;
7407 }
7408
7409 if (move_group) {
7410 struct perf_event_context *gctx = group_leader->ctx;
7411
7412 mutex_lock(&gctx->mutex);
7413 perf_remove_from_context(group_leader, false);
7414
7415 /*
7416 * Removing from the context ends up with disabled
7417 * event. What we want here is event in the initial
7418 * startup state, ready to be add into new context.
7419 */
7420 perf_event__state_init(group_leader);
7421 list_for_each_entry(sibling, &group_leader->sibling_list,
7422 group_entry) {
7423 perf_remove_from_context(sibling, false);
7424 perf_event__state_init(sibling);
7425 put_ctx(gctx);
7426 }
7427 mutex_unlock(&gctx->mutex);
7428 put_ctx(gctx);
7429 }
7430
7431 WARN_ON_ONCE(ctx->parent_ctx);
7432 mutex_lock(&ctx->mutex);
7433
7434 if (move_group) {
7435 synchronize_rcu();
7436 perf_install_in_context(ctx, group_leader, event->cpu);
7437 get_ctx(ctx);
7438 list_for_each_entry(sibling, &group_leader->sibling_list,
7439 group_entry) {
7440 perf_install_in_context(ctx, sibling, event->cpu);
7441 get_ctx(ctx);
7442 }
7443 }
7444
7445 perf_install_in_context(ctx, event, event->cpu);
7446 perf_unpin_context(ctx);
7447 mutex_unlock(&ctx->mutex);
7448
7449 put_online_cpus();
7450
7451 event->owner = current;
7452
7453 mutex_lock(&current->perf_event_mutex);
7454 list_add_tail(&event->owner_entry, &current->perf_event_list);
7455 mutex_unlock(&current->perf_event_mutex);
7456
7457 /*
7458 * Precalculate sample_data sizes
7459 */
7460 perf_event__header_size(event);
7461 perf_event__id_header_size(event);
7462
7463 /*
7464 * Drop the reference on the group_event after placing the
7465 * new event on the sibling_list. This ensures destruction
7466 * of the group leader will find the pointer to itself in
7467 * perf_group_detach().
7468 */
7469 fdput(group);
7470 fd_install(event_fd, event_file);
7471 return event_fd;
7472
7473 err_context:
7474 perf_unpin_context(ctx);
7475 put_ctx(ctx);
7476 err_alloc:
7477 free_event(event);
7478 err_cpus:
7479 put_online_cpus();
7480 err_task:
7481 if (task)
7482 put_task_struct(task);
7483 err_group_fd:
7484 fdput(group);
7485 err_fd:
7486 put_unused_fd(event_fd);
7487 return err;
7488 }
7489
7490 /**
7491 * perf_event_create_kernel_counter
7492 *
7493 * @attr: attributes of the counter to create
7494 * @cpu: cpu in which the counter is bound
7495 * @task: task to profile (NULL for percpu)
7496 */
7497 struct perf_event *
7498 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
7499 struct task_struct *task,
7500 perf_overflow_handler_t overflow_handler,
7501 void *context)
7502 {
7503 struct perf_event_context *ctx;
7504 struct perf_event *event;
7505 int err;
7506
7507 /*
7508 * Get the target context (task or percpu):
7509 */
7510
7511 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
7512 overflow_handler, context);
7513 if (IS_ERR(event)) {
7514 err = PTR_ERR(event);
7515 goto err;
7516 }
7517
7518 /* Mark owner so we could distinguish it from user events. */
7519 event->owner = EVENT_OWNER_KERNEL;
7520
7521 account_event(event);
7522
7523 ctx = find_get_context(event->pmu, task, cpu);
7524 if (IS_ERR(ctx)) {
7525 err = PTR_ERR(ctx);
7526 goto err_free;
7527 }
7528
7529 WARN_ON_ONCE(ctx->parent_ctx);
7530 mutex_lock(&ctx->mutex);
7531 perf_install_in_context(ctx, event, cpu);
7532 perf_unpin_context(ctx);
7533 mutex_unlock(&ctx->mutex);
7534
7535 return event;
7536
7537 err_free:
7538 free_event(event);
7539 err:
7540 return ERR_PTR(err);
7541 }
7542 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
7543
7544 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
7545 {
7546 struct perf_event_context *src_ctx;
7547 struct perf_event_context *dst_ctx;
7548 struct perf_event *event, *tmp;
7549 LIST_HEAD(events);
7550
7551 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
7552 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
7553
7554 mutex_lock(&src_ctx->mutex);
7555 list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
7556 event_entry) {
7557 perf_remove_from_context(event, false);
7558 unaccount_event_cpu(event, src_cpu);
7559 put_ctx(src_ctx);
7560 list_add(&event->migrate_entry, &events);
7561 }
7562 mutex_unlock(&src_ctx->mutex);
7563
7564 synchronize_rcu();
7565
7566 mutex_lock(&dst_ctx->mutex);
7567 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
7568 list_del(&event->migrate_entry);
7569 if (event->state >= PERF_EVENT_STATE_OFF)
7570 event->state = PERF_EVENT_STATE_INACTIVE;
7571 account_event_cpu(event, dst_cpu);
7572 perf_install_in_context(dst_ctx, event, dst_cpu);
7573 get_ctx(dst_ctx);
7574 }
7575 mutex_unlock(&dst_ctx->mutex);
7576 }
7577 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
7578
7579 static void sync_child_event(struct perf_event *child_event,
7580 struct task_struct *child)
7581 {
7582 struct perf_event *parent_event = child_event->parent;
7583 u64 child_val;
7584
7585 if (child_event->attr.inherit_stat)
7586 perf_event_read_event(child_event, child);
7587
7588 child_val = perf_event_count(child_event);
7589
7590 /*
7591 * Add back the child's count to the parent's count:
7592 */
7593 atomic64_add(child_val, &parent_event->child_count);
7594 atomic64_add(child_event->total_time_enabled,
7595 &parent_event->child_total_time_enabled);
7596 atomic64_add(child_event->total_time_running,
7597 &parent_event->child_total_time_running);
7598
7599 /*
7600 * Remove this event from the parent's list
7601 */
7602 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
7603 mutex_lock(&parent_event->child_mutex);
7604 list_del_init(&child_event->child_list);
7605 mutex_unlock(&parent_event->child_mutex);
7606
7607 /*
7608 * Make sure user/parent get notified, that we just
7609 * lost one event.
7610 */
7611 perf_event_wakeup(parent_event);
7612
7613 /*
7614 * Release the parent event, if this was the last
7615 * reference to it.
7616 */
7617 put_event(parent_event);
7618 }
7619
7620 static void
7621 __perf_event_exit_task(struct perf_event *child_event,
7622 struct perf_event_context *child_ctx,
7623 struct task_struct *child)
7624 {
7625 /*
7626 * Do not destroy the 'original' grouping; because of the context
7627 * switch optimization the original events could've ended up in a
7628 * random child task.
7629 *
7630 * If we were to destroy the original group, all group related
7631 * operations would cease to function properly after this random
7632 * child dies.
7633 *
7634 * Do destroy all inherited groups, we don't care about those
7635 * and being thorough is better.
7636 */
7637 perf_remove_from_context(child_event, !!child_event->parent);
7638
7639 /*
7640 * It can happen that the parent exits first, and has events
7641 * that are still around due to the child reference. These
7642 * events need to be zapped.
7643 */
7644 if (child_event->parent) {
7645 sync_child_event(child_event, child);
7646 free_event(child_event);
7647 } else {
7648 child_event->state = PERF_EVENT_STATE_EXIT;
7649 perf_event_wakeup(child_event);
7650 }
7651 }
7652
7653 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
7654 {
7655 struct perf_event *child_event, *next;
7656 struct perf_event_context *child_ctx, *clone_ctx = NULL;
7657 unsigned long flags;
7658
7659 if (likely(!child->perf_event_ctxp[ctxn])) {
7660 perf_event_task(child, NULL, 0);
7661 return;
7662 }
7663
7664 local_irq_save(flags);
7665 /*
7666 * We can't reschedule here because interrupts are disabled,
7667 * and either child is current or it is a task that can't be
7668 * scheduled, so we are now safe from rescheduling changing
7669 * our context.
7670 */
7671 child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
7672
7673 /*
7674 * Take the context lock here so that if find_get_context is
7675 * reading child->perf_event_ctxp, we wait until it has
7676 * incremented the context's refcount before we do put_ctx below.
7677 */
7678 raw_spin_lock(&child_ctx->lock);
7679 task_ctx_sched_out(child_ctx);
7680 child->perf_event_ctxp[ctxn] = NULL;
7681
7682 /*
7683 * If this context is a clone; unclone it so it can't get
7684 * swapped to another process while we're removing all
7685 * the events from it.
7686 */
7687 clone_ctx = unclone_ctx(child_ctx);
7688 update_context_time(child_ctx);
7689 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
7690
7691 if (clone_ctx)
7692 put_ctx(clone_ctx);
7693
7694 /*
7695 * Report the task dead after unscheduling the events so that we
7696 * won't get any samples after PERF_RECORD_EXIT. We can however still
7697 * get a few PERF_RECORD_READ events.
7698 */
7699 perf_event_task(child, child_ctx, 0);
7700
7701 /*
7702 * We can recurse on the same lock type through:
7703 *
7704 * __perf_event_exit_task()
7705 * sync_child_event()
7706 * put_event()
7707 * mutex_lock(&ctx->mutex)
7708 *
7709 * But since its the parent context it won't be the same instance.
7710 */
7711 mutex_lock(&child_ctx->mutex);
7712
7713 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
7714 __perf_event_exit_task(child_event, child_ctx, child);
7715
7716 mutex_unlock(&child_ctx->mutex);
7717
7718 put_ctx(child_ctx);
7719 }
7720
7721 /*
7722 * When a child task exits, feed back event values to parent events.
7723 */
7724 void perf_event_exit_task(struct task_struct *child)
7725 {
7726 struct perf_event *event, *tmp;
7727 int ctxn;
7728
7729 mutex_lock(&child->perf_event_mutex);
7730 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
7731 owner_entry) {
7732 list_del_init(&event->owner_entry);
7733
7734 /*
7735 * Ensure the list deletion is visible before we clear
7736 * the owner, closes a race against perf_release() where
7737 * we need to serialize on the owner->perf_event_mutex.
7738 */
7739 smp_wmb();
7740 event->owner = NULL;
7741 }
7742 mutex_unlock(&child->perf_event_mutex);
7743
7744 for_each_task_context_nr(ctxn)
7745 perf_event_exit_task_context(child, ctxn);
7746 }
7747
7748 static void perf_free_event(struct perf_event *event,
7749 struct perf_event_context *ctx)
7750 {
7751 struct perf_event *parent = event->parent;
7752
7753 if (WARN_ON_ONCE(!parent))
7754 return;
7755
7756 mutex_lock(&parent->child_mutex);
7757 list_del_init(&event->child_list);
7758 mutex_unlock(&parent->child_mutex);
7759
7760 put_event(parent);
7761
7762 perf_group_detach(event);
7763 list_del_event(event, ctx);
7764 free_event(event);
7765 }
7766
7767 /*
7768 * free an unexposed, unused context as created by inheritance by
7769 * perf_event_init_task below, used by fork() in case of fail.
7770 */
7771 void perf_event_free_task(struct task_struct *task)
7772 {
7773 struct perf_event_context *ctx;
7774 struct perf_event *event, *tmp;
7775 int ctxn;
7776
7777 for_each_task_context_nr(ctxn) {
7778 ctx = task->perf_event_ctxp[ctxn];
7779 if (!ctx)
7780 continue;
7781
7782 mutex_lock(&ctx->mutex);
7783 again:
7784 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
7785 group_entry)
7786 perf_free_event(event, ctx);
7787
7788 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
7789 group_entry)
7790 perf_free_event(event, ctx);
7791
7792 if (!list_empty(&ctx->pinned_groups) ||
7793 !list_empty(&ctx->flexible_groups))
7794 goto again;
7795
7796 mutex_unlock(&ctx->mutex);
7797
7798 put_ctx(ctx);
7799 }
7800 }
7801
7802 void perf_event_delayed_put(struct task_struct *task)
7803 {
7804 int ctxn;
7805
7806 for_each_task_context_nr(ctxn)
7807 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
7808 }
7809
7810 /*
7811 * inherit a event from parent task to child task:
7812 */
7813 static struct perf_event *
7814 inherit_event(struct perf_event *parent_event,
7815 struct task_struct *parent,
7816 struct perf_event_context *parent_ctx,
7817 struct task_struct *child,
7818 struct perf_event *group_leader,
7819 struct perf_event_context *child_ctx)
7820 {
7821 enum perf_event_active_state parent_state = parent_event->state;
7822 struct perf_event *child_event;
7823 unsigned long flags;
7824
7825 /*
7826 * Instead of creating recursive hierarchies of events,
7827 * we link inherited events back to the original parent,
7828 * which has a filp for sure, which we use as the reference
7829 * count:
7830 */
7831 if (parent_event->parent)
7832 parent_event = parent_event->parent;
7833
7834 child_event = perf_event_alloc(&parent_event->attr,
7835 parent_event->cpu,
7836 child,
7837 group_leader, parent_event,
7838 NULL, NULL);
7839 if (IS_ERR(child_event))
7840 return child_event;
7841
7842 if (is_orphaned_event(parent_event) ||
7843 !atomic_long_inc_not_zero(&parent_event->refcount)) {
7844 free_event(child_event);
7845 return NULL;
7846 }
7847
7848 get_ctx(child_ctx);
7849
7850 /*
7851 * Make the child state follow the state of the parent event,
7852 * not its attr.disabled bit. We hold the parent's mutex,
7853 * so we won't race with perf_event_{en, dis}able_family.
7854 */
7855 if (parent_state >= PERF_EVENT_STATE_INACTIVE)
7856 child_event->state = PERF_EVENT_STATE_INACTIVE;
7857 else
7858 child_event->state = PERF_EVENT_STATE_OFF;
7859
7860 if (parent_event->attr.freq) {
7861 u64 sample_period = parent_event->hw.sample_period;
7862 struct hw_perf_event *hwc = &child_event->hw;
7863
7864 hwc->sample_period = sample_period;
7865 hwc->last_period = sample_period;
7866
7867 local64_set(&hwc->period_left, sample_period);
7868 }
7869
7870 child_event->ctx = child_ctx;
7871 child_event->overflow_handler = parent_event->overflow_handler;
7872 child_event->overflow_handler_context
7873 = parent_event->overflow_handler_context;
7874
7875 /*
7876 * Precalculate sample_data sizes
7877 */
7878 perf_event__header_size(child_event);
7879 perf_event__id_header_size(child_event);
7880
7881 /*
7882 * Link it up in the child's context:
7883 */
7884 raw_spin_lock_irqsave(&child_ctx->lock, flags);
7885 add_event_to_ctx(child_event, child_ctx);
7886 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
7887
7888 /*
7889 * Link this into the parent event's child list
7890 */
7891 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
7892 mutex_lock(&parent_event->child_mutex);
7893 list_add_tail(&child_event->child_list, &parent_event->child_list);
7894 mutex_unlock(&parent_event->child_mutex);
7895
7896 return child_event;
7897 }
7898
7899 static int inherit_group(struct perf_event *parent_event,
7900 struct task_struct *parent,
7901 struct perf_event_context *parent_ctx,
7902 struct task_struct *child,
7903 struct perf_event_context *child_ctx)
7904 {
7905 struct perf_event *leader;
7906 struct perf_event *sub;
7907 struct perf_event *child_ctr;
7908
7909 leader = inherit_event(parent_event, parent, parent_ctx,
7910 child, NULL, child_ctx);
7911 if (IS_ERR(leader))
7912 return PTR_ERR(leader);
7913 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
7914 child_ctr = inherit_event(sub, parent, parent_ctx,
7915 child, leader, child_ctx);
7916 if (IS_ERR(child_ctr))
7917 return PTR_ERR(child_ctr);
7918 }
7919 return 0;
7920 }
7921
7922 static int
7923 inherit_task_group(struct perf_event *event, struct task_struct *parent,
7924 struct perf_event_context *parent_ctx,
7925 struct task_struct *child, int ctxn,
7926 int *inherited_all)
7927 {
7928 int ret;
7929 struct perf_event_context *child_ctx;
7930
7931 if (!event->attr.inherit) {
7932 *inherited_all = 0;
7933 return 0;
7934 }
7935
7936 child_ctx = child->perf_event_ctxp[ctxn];
7937 if (!child_ctx) {
7938 /*
7939 * This is executed from the parent task context, so
7940 * inherit events that have been marked for cloning.
7941 * First allocate and initialize a context for the
7942 * child.
7943 */
7944
7945 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
7946 if (!child_ctx)
7947 return -ENOMEM;
7948
7949 child->perf_event_ctxp[ctxn] = child_ctx;
7950 }
7951
7952 ret = inherit_group(event, parent, parent_ctx,
7953 child, child_ctx);
7954
7955 if (ret)
7956 *inherited_all = 0;
7957
7958 return ret;
7959 }
7960
7961 /*
7962 * Initialize the perf_event context in task_struct
7963 */
7964 static int perf_event_init_context(struct task_struct *child, int ctxn)
7965 {
7966 struct perf_event_context *child_ctx, *parent_ctx;
7967 struct perf_event_context *cloned_ctx;
7968 struct perf_event *event;
7969 struct task_struct *parent = current;
7970 int inherited_all = 1;
7971 unsigned long flags;
7972 int ret = 0;
7973
7974 if (likely(!parent->perf_event_ctxp[ctxn]))
7975 return 0;
7976
7977 /*
7978 * If the parent's context is a clone, pin it so it won't get
7979 * swapped under us.
7980 */
7981 parent_ctx = perf_pin_task_context(parent, ctxn);
7982 if (!parent_ctx)
7983 return 0;
7984
7985 /*
7986 * No need to check if parent_ctx != NULL here; since we saw
7987 * it non-NULL earlier, the only reason for it to become NULL
7988 * is if we exit, and since we're currently in the middle of
7989 * a fork we can't be exiting at the same time.
7990 */
7991
7992 /*
7993 * Lock the parent list. No need to lock the child - not PID
7994 * hashed yet and not running, so nobody can access it.
7995 */
7996 mutex_lock(&parent_ctx->mutex);
7997
7998 /*
7999 * We dont have to disable NMIs - we are only looking at
8000 * the list, not manipulating it:
8001 */
8002 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
8003 ret = inherit_task_group(event, parent, parent_ctx,
8004 child, ctxn, &inherited_all);
8005 if (ret)
8006 break;
8007 }
8008
8009 /*
8010 * We can't hold ctx->lock when iterating the ->flexible_group list due
8011 * to allocations, but we need to prevent rotation because
8012 * rotate_ctx() will change the list from interrupt context.
8013 */
8014 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
8015 parent_ctx->rotate_disable = 1;
8016 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
8017
8018 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
8019 ret = inherit_task_group(event, parent, parent_ctx,
8020 child, ctxn, &inherited_all);
8021 if (ret)
8022 break;
8023 }
8024
8025 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
8026 parent_ctx->rotate_disable = 0;
8027
8028 child_ctx = child->perf_event_ctxp[ctxn];
8029
8030 if (child_ctx && inherited_all) {
8031 /*
8032 * Mark the child context as a clone of the parent
8033 * context, or of whatever the parent is a clone of.
8034 *
8035 * Note that if the parent is a clone, the holding of
8036 * parent_ctx->lock avoids it from being uncloned.
8037 */
8038 cloned_ctx = parent_ctx->parent_ctx;
8039 if (cloned_ctx) {
8040 child_ctx->parent_ctx = cloned_ctx;
8041 child_ctx->parent_gen = parent_ctx->parent_gen;
8042 } else {
8043 child_ctx->parent_ctx = parent_ctx;
8044 child_ctx->parent_gen = parent_ctx->generation;
8045 }
8046 get_ctx(child_ctx->parent_ctx);
8047 }
8048
8049 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
8050 mutex_unlock(&parent_ctx->mutex);
8051
8052 perf_unpin_context(parent_ctx);
8053 put_ctx(parent_ctx);
8054
8055 return ret;
8056 }
8057
8058 /*
8059 * Initialize the perf_event context in task_struct
8060 */
8061 int perf_event_init_task(struct task_struct *child)
8062 {
8063 int ctxn, ret;
8064
8065 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
8066 mutex_init(&child->perf_event_mutex);
8067 INIT_LIST_HEAD(&child->perf_event_list);
8068
8069 for_each_task_context_nr(ctxn) {
8070 ret = perf_event_init_context(child, ctxn);
8071 if (ret) {
8072 perf_event_free_task(child);
8073 return ret;
8074 }
8075 }
8076
8077 return 0;
8078 }
8079
8080 static void __init perf_event_init_all_cpus(void)
8081 {
8082 struct swevent_htable *swhash;
8083 int cpu;
8084
8085 for_each_possible_cpu(cpu) {
8086 swhash = &per_cpu(swevent_htable, cpu);
8087 mutex_init(&swhash->hlist_mutex);
8088 INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
8089 }
8090 }
8091
8092 static void perf_event_init_cpu(int cpu)
8093 {
8094 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
8095
8096 mutex_lock(&swhash->hlist_mutex);
8097 swhash->online = true;
8098 if (swhash->hlist_refcount > 0) {
8099 struct swevent_hlist *hlist;
8100
8101 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
8102 WARN_ON(!hlist);
8103 rcu_assign_pointer(swhash->swevent_hlist, hlist);
8104 }
8105 mutex_unlock(&swhash->hlist_mutex);
8106 }
8107
8108 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
8109 static void perf_pmu_rotate_stop(struct pmu *pmu)
8110 {
8111 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
8112
8113 WARN_ON(!irqs_disabled());
8114
8115 list_del_init(&cpuctx->rotation_list);
8116 }
8117
8118 static void __perf_event_exit_context(void *__info)
8119 {
8120 struct remove_event re = { .detach_group = false };
8121 struct perf_event_context *ctx = __info;
8122
8123 perf_pmu_rotate_stop(ctx->pmu);
8124
8125 rcu_read_lock();
8126 list_for_each_entry_rcu(re.event, &ctx->event_list, event_entry)
8127 __perf_remove_from_context(&re);
8128 rcu_read_unlock();
8129 }
8130
8131 static void perf_event_exit_cpu_context(int cpu)
8132 {
8133 struct perf_event_context *ctx;
8134 struct pmu *pmu;
8135 int idx;
8136
8137 idx = srcu_read_lock(&pmus_srcu);
8138 list_for_each_entry_rcu(pmu, &pmus, entry) {
8139 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
8140
8141 mutex_lock(&ctx->mutex);
8142 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
8143 mutex_unlock(&ctx->mutex);
8144 }
8145 srcu_read_unlock(&pmus_srcu, idx);
8146 }
8147
8148 static void perf_event_exit_cpu(int cpu)
8149 {
8150 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
8151
8152 perf_event_exit_cpu_context(cpu);
8153
8154 mutex_lock(&swhash->hlist_mutex);
8155 swhash->online = false;
8156 swevent_hlist_release(swhash);
8157 mutex_unlock(&swhash->hlist_mutex);
8158 }
8159 #else
8160 static inline void perf_event_exit_cpu(int cpu) { }
8161 #endif
8162
8163 static int
8164 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
8165 {
8166 int cpu;
8167
8168 for_each_online_cpu(cpu)
8169 perf_event_exit_cpu(cpu);
8170
8171 return NOTIFY_OK;
8172 }
8173
8174 /*
8175 * Run the perf reboot notifier at the very last possible moment so that
8176 * the generic watchdog code runs as long as possible.
8177 */
8178 static struct notifier_block perf_reboot_notifier = {
8179 .notifier_call = perf_reboot,
8180 .priority = INT_MIN,
8181 };
8182
8183 static int
8184 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
8185 {
8186 unsigned int cpu = (long)hcpu;
8187
8188 switch (action & ~CPU_TASKS_FROZEN) {
8189
8190 case CPU_UP_PREPARE:
8191 case CPU_DOWN_FAILED:
8192 perf_event_init_cpu(cpu);
8193 break;
8194
8195 case CPU_UP_CANCELED:
8196 case CPU_DOWN_PREPARE:
8197 perf_event_exit_cpu(cpu);
8198 break;
8199 default:
8200 break;
8201 }
8202
8203 return NOTIFY_OK;
8204 }
8205
8206 void __init perf_event_init(void)
8207 {
8208 int ret;
8209
8210 idr_init(&pmu_idr);
8211
8212 perf_event_init_all_cpus();
8213 init_srcu_struct(&pmus_srcu);
8214 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
8215 perf_pmu_register(&perf_cpu_clock, NULL, -1);
8216 perf_pmu_register(&perf_task_clock, NULL, -1);
8217 perf_tp_register();
8218 perf_cpu_notifier(perf_cpu_notify);
8219 register_reboot_notifier(&perf_reboot_notifier);
8220
8221 ret = init_hw_breakpoint();
8222 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
8223
8224 /* do not patch jump label more than once per second */
8225 jump_label_rate_limit(&perf_sched_events, HZ);
8226
8227 /*
8228 * Build time assertion that we keep the data_head at the intended
8229 * location. IOW, validation we got the __reserved[] size right.
8230 */
8231 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
8232 != 1024);
8233 }
8234
8235 static int __init perf_event_sysfs_init(void)
8236 {
8237 struct pmu *pmu;
8238 int ret;
8239
8240 mutex_lock(&pmus_lock);
8241
8242 ret = bus_register(&pmu_bus);
8243 if (ret)
8244 goto unlock;
8245
8246 list_for_each_entry(pmu, &pmus, entry) {
8247 if (!pmu->name || pmu->type < 0)
8248 continue;
8249
8250 ret = pmu_dev_alloc(pmu);
8251 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
8252 }
8253 pmu_bus_running = 1;
8254 ret = 0;
8255
8256 unlock:
8257 mutex_unlock(&pmus_lock);
8258
8259 return ret;
8260 }
8261 device_initcall(perf_event_sysfs_init);
8262
8263 #ifdef CONFIG_CGROUP_PERF
8264 static struct cgroup_subsys_state *
8265 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
8266 {
8267 struct perf_cgroup *jc;
8268
8269 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
8270 if (!jc)
8271 return ERR_PTR(-ENOMEM);
8272
8273 jc->info = alloc_percpu(struct perf_cgroup_info);
8274 if (!jc->info) {
8275 kfree(jc);
8276 return ERR_PTR(-ENOMEM);
8277 }
8278
8279 return &jc->css;
8280 }
8281
8282 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
8283 {
8284 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
8285
8286 free_percpu(jc->info);
8287 kfree(jc);
8288 }
8289
8290 static int __perf_cgroup_move(void *info)
8291 {
8292 struct task_struct *task = info;
8293 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
8294 return 0;
8295 }
8296
8297 static void perf_cgroup_attach(struct cgroup_subsys_state *css,
8298 struct cgroup_taskset *tset)
8299 {
8300 struct task_struct *task;
8301
8302 cgroup_taskset_for_each(task, tset)
8303 task_function_call(task, __perf_cgroup_move, task);
8304 }
8305
8306 static void perf_cgroup_exit(struct cgroup_subsys_state *css,
8307 struct cgroup_subsys_state *old_css,
8308 struct task_struct *task)
8309 {
8310 /*
8311 * cgroup_exit() is called in the copy_process() failure path.
8312 * Ignore this case since the task hasn't ran yet, this avoids
8313 * trying to poke a half freed task state from generic code.
8314 */
8315 if (!(task->flags & PF_EXITING))
8316 return;
8317
8318 task_function_call(task, __perf_cgroup_move, task);
8319 }
8320
8321 struct cgroup_subsys perf_event_cgrp_subsys = {
8322 .css_alloc = perf_cgroup_css_alloc,
8323 .css_free = perf_cgroup_css_free,
8324 .exit = perf_cgroup_exit,
8325 .attach = perf_cgroup_attach,
8326 };
8327 #endif /* CONFIG_CGROUP_PERF */
This page took 0.230736 seconds and 5 git commands to generate.