perf: Collapse and fix event_function_call() users
[deliverable/linux.git] / kernel / events / core.c
1 /*
2 * Performance events core code:
3 *
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8 *
9 * For licensing details see kernel-base/COPYING
10 */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/tick.h>
22 #include <linux/sysfs.h>
23 #include <linux/dcache.h>
24 #include <linux/percpu.h>
25 #include <linux/ptrace.h>
26 #include <linux/reboot.h>
27 #include <linux/vmstat.h>
28 #include <linux/device.h>
29 #include <linux/export.h>
30 #include <linux/vmalloc.h>
31 #include <linux/hardirq.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47
48 #include "internal.h"
49
50 #include <asm/irq_regs.h>
51
52 static struct workqueue_struct *perf_wq;
53
54 typedef int (*remote_function_f)(void *);
55
56 struct remote_function_call {
57 struct task_struct *p;
58 remote_function_f func;
59 void *info;
60 int ret;
61 };
62
63 static void remote_function(void *data)
64 {
65 struct remote_function_call *tfc = data;
66 struct task_struct *p = tfc->p;
67
68 if (p) {
69 tfc->ret = -EAGAIN;
70 if (task_cpu(p) != smp_processor_id() || !task_curr(p))
71 return;
72 }
73
74 tfc->ret = tfc->func(tfc->info);
75 }
76
77 /**
78 * task_function_call - call a function on the cpu on which a task runs
79 * @p: the task to evaluate
80 * @func: the function to be called
81 * @info: the function call argument
82 *
83 * Calls the function @func when the task is currently running. This might
84 * be on the current CPU, which just calls the function directly
85 *
86 * returns: @func return value, or
87 * -ESRCH - when the process isn't running
88 * -EAGAIN - when the process moved away
89 */
90 static int
91 task_function_call(struct task_struct *p, remote_function_f func, void *info)
92 {
93 struct remote_function_call data = {
94 .p = p,
95 .func = func,
96 .info = info,
97 .ret = -ESRCH, /* No such (running) process */
98 };
99
100 if (task_curr(p))
101 smp_call_function_single(task_cpu(p), remote_function, &data, 1);
102
103 return data.ret;
104 }
105
106 /**
107 * cpu_function_call - call a function on the cpu
108 * @func: the function to be called
109 * @info: the function call argument
110 *
111 * Calls the function @func on the remote cpu.
112 *
113 * returns: @func return value or -ENXIO when the cpu is offline
114 */
115 static int cpu_function_call(int cpu, remote_function_f func, void *info)
116 {
117 struct remote_function_call data = {
118 .p = NULL,
119 .func = func,
120 .info = info,
121 .ret = -ENXIO, /* No such CPU */
122 };
123
124 smp_call_function_single(cpu, remote_function, &data, 1);
125
126 return data.ret;
127 }
128
129 static inline struct perf_cpu_context *
130 __get_cpu_context(struct perf_event_context *ctx)
131 {
132 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
133 }
134
135 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
136 struct perf_event_context *ctx)
137 {
138 raw_spin_lock(&cpuctx->ctx.lock);
139 if (ctx)
140 raw_spin_lock(&ctx->lock);
141 }
142
143 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
144 struct perf_event_context *ctx)
145 {
146 if (ctx)
147 raw_spin_unlock(&ctx->lock);
148 raw_spin_unlock(&cpuctx->ctx.lock);
149 }
150
151 /*
152 * On task ctx scheduling...
153 *
154 * When !ctx->nr_events a task context will not be scheduled. This means
155 * we can disable the scheduler hooks (for performance) without leaving
156 * pending task ctx state.
157 *
158 * This however results in two special cases:
159 *
160 * - removing the last event from a task ctx; this is relatively straight
161 * forward and is done in __perf_remove_from_context.
162 *
163 * - adding the first event to a task ctx; this is tricky because we cannot
164 * rely on ctx->is_active and therefore cannot use event_function_call().
165 * See perf_install_in_context().
166 *
167 * This is because we need a ctx->lock serialized variable (ctx->is_active)
168 * to reliably determine if a particular task/context is scheduled in. The
169 * task_curr() use in task_function_call() is racy in that a remote context
170 * switch is not a single atomic operation.
171 *
172 * As is, the situation is 'safe' because we set rq->curr before we do the
173 * actual context switch. This means that task_curr() will fail early, but
174 * we'll continue spinning on ctx->is_active until we've passed
175 * perf_event_task_sched_out().
176 *
177 * Without this ctx->lock serialized variable we could have race where we find
178 * the task (and hence the context) would not be active while in fact they are.
179 *
180 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
181 */
182
183 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
184 struct perf_event_context *, void *);
185
186 struct event_function_struct {
187 struct perf_event *event;
188 event_f func;
189 void *data;
190 };
191
192 static int event_function(void *info)
193 {
194 struct event_function_struct *efs = info;
195 struct perf_event *event = efs->event;
196 struct perf_event_context *ctx = event->ctx;
197 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
198 struct perf_event_context *task_ctx = cpuctx->task_ctx;
199
200 WARN_ON_ONCE(!irqs_disabled());
201
202 /*
203 * Since we do the IPI call without holding ctx->lock things can have
204 * changed, double check we hit the task we set out to hit.
205 *
206 * If ctx->task == current, we know things must remain valid because
207 * we have IRQs disabled so we cannot schedule.
208 */
209 if (ctx->task) {
210 if (ctx->task != current)
211 return -EAGAIN;
212
213 WARN_ON_ONCE(task_ctx != ctx);
214 } else {
215 WARN_ON_ONCE(&cpuctx->ctx != ctx);
216 }
217
218 perf_ctx_lock(cpuctx, task_ctx);
219 /*
220 * Now that we hold locks, double check state. Paranoia pays.
221 */
222 if (task_ctx) {
223 WARN_ON_ONCE(task_ctx->task != current);
224 /*
225 * We only use event_function_call() on established contexts,
226 * and event_function() is only ever called when active (or
227 * rather, we'll have bailed in task_function_call() or the
228 * above ctx->task != current test), therefore we must have
229 * ctx->is_active here.
230 */
231 WARN_ON_ONCE(!ctx->is_active);
232 /*
233 * And since we have ctx->is_active, cpuctx->task_ctx must
234 * match.
235 */
236 WARN_ON_ONCE(cpuctx->task_ctx != task_ctx);
237 }
238 efs->func(event, cpuctx, ctx, efs->data);
239 perf_ctx_unlock(cpuctx, task_ctx);
240
241 return 0;
242 }
243
244 static void event_function_local(struct perf_event *event, event_f func, void *data)
245 {
246 struct event_function_struct efs = {
247 .event = event,
248 .func = func,
249 .data = data,
250 };
251
252 int ret = event_function(&efs);
253 WARN_ON_ONCE(ret);
254 }
255
256 static void event_function_call(struct perf_event *event, event_f func, void *data)
257 {
258 struct perf_event_context *ctx = event->ctx;
259 struct task_struct *task = ctx->task;
260 struct event_function_struct efs = {
261 .event = event,
262 .func = func,
263 .data = data,
264 };
265
266 if (!task) {
267 cpu_function_call(event->cpu, event_function, &efs);
268 return;
269 }
270
271 again:
272 if (!task_function_call(task, event_function, &efs))
273 return;
274
275 raw_spin_lock_irq(&ctx->lock);
276 if (ctx->is_active) {
277 /*
278 * Reload the task pointer, it might have been changed by
279 * a concurrent perf_event_context_sched_out().
280 */
281 task = ctx->task;
282 raw_spin_unlock_irq(&ctx->lock);
283 goto again;
284 }
285 func(event, NULL, ctx, data);
286 raw_spin_unlock_irq(&ctx->lock);
287 }
288
289 #define EVENT_OWNER_KERNEL ((void *) -1)
290
291 static bool is_kernel_event(struct perf_event *event)
292 {
293 return event->owner == EVENT_OWNER_KERNEL;
294 }
295
296 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
297 PERF_FLAG_FD_OUTPUT |\
298 PERF_FLAG_PID_CGROUP |\
299 PERF_FLAG_FD_CLOEXEC)
300
301 /*
302 * branch priv levels that need permission checks
303 */
304 #define PERF_SAMPLE_BRANCH_PERM_PLM \
305 (PERF_SAMPLE_BRANCH_KERNEL |\
306 PERF_SAMPLE_BRANCH_HV)
307
308 enum event_type_t {
309 EVENT_FLEXIBLE = 0x1,
310 EVENT_PINNED = 0x2,
311 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
312 };
313
314 /*
315 * perf_sched_events : >0 events exist
316 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
317 */
318 struct static_key_deferred perf_sched_events __read_mostly;
319 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
320 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
321
322 static atomic_t nr_mmap_events __read_mostly;
323 static atomic_t nr_comm_events __read_mostly;
324 static atomic_t nr_task_events __read_mostly;
325 static atomic_t nr_freq_events __read_mostly;
326 static atomic_t nr_switch_events __read_mostly;
327
328 static LIST_HEAD(pmus);
329 static DEFINE_MUTEX(pmus_lock);
330 static struct srcu_struct pmus_srcu;
331
332 /*
333 * perf event paranoia level:
334 * -1 - not paranoid at all
335 * 0 - disallow raw tracepoint access for unpriv
336 * 1 - disallow cpu events for unpriv
337 * 2 - disallow kernel profiling for unpriv
338 */
339 int sysctl_perf_event_paranoid __read_mostly = 1;
340
341 /* Minimum for 512 kiB + 1 user control page */
342 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
343
344 /*
345 * max perf event sample rate
346 */
347 #define DEFAULT_MAX_SAMPLE_RATE 100000
348 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
349 #define DEFAULT_CPU_TIME_MAX_PERCENT 25
350
351 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
352
353 static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
354 static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS;
355
356 static int perf_sample_allowed_ns __read_mostly =
357 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
358
359 static void update_perf_cpu_limits(void)
360 {
361 u64 tmp = perf_sample_period_ns;
362
363 tmp *= sysctl_perf_cpu_time_max_percent;
364 do_div(tmp, 100);
365 ACCESS_ONCE(perf_sample_allowed_ns) = tmp;
366 }
367
368 static int perf_rotate_context(struct perf_cpu_context *cpuctx);
369
370 int perf_proc_update_handler(struct ctl_table *table, int write,
371 void __user *buffer, size_t *lenp,
372 loff_t *ppos)
373 {
374 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
375
376 if (ret || !write)
377 return ret;
378
379 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
380 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
381 update_perf_cpu_limits();
382
383 return 0;
384 }
385
386 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
387
388 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
389 void __user *buffer, size_t *lenp,
390 loff_t *ppos)
391 {
392 int ret = proc_dointvec(table, write, buffer, lenp, ppos);
393
394 if (ret || !write)
395 return ret;
396
397 update_perf_cpu_limits();
398
399 return 0;
400 }
401
402 /*
403 * perf samples are done in some very critical code paths (NMIs).
404 * If they take too much CPU time, the system can lock up and not
405 * get any real work done. This will drop the sample rate when
406 * we detect that events are taking too long.
407 */
408 #define NR_ACCUMULATED_SAMPLES 128
409 static DEFINE_PER_CPU(u64, running_sample_length);
410
411 static void perf_duration_warn(struct irq_work *w)
412 {
413 u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
414 u64 avg_local_sample_len;
415 u64 local_samples_len;
416
417 local_samples_len = __this_cpu_read(running_sample_length);
418 avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
419
420 printk_ratelimited(KERN_WARNING
421 "perf interrupt took too long (%lld > %lld), lowering "
422 "kernel.perf_event_max_sample_rate to %d\n",
423 avg_local_sample_len, allowed_ns >> 1,
424 sysctl_perf_event_sample_rate);
425 }
426
427 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
428
429 void perf_sample_event_took(u64 sample_len_ns)
430 {
431 u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
432 u64 avg_local_sample_len;
433 u64 local_samples_len;
434
435 if (allowed_ns == 0)
436 return;
437
438 /* decay the counter by 1 average sample */
439 local_samples_len = __this_cpu_read(running_sample_length);
440 local_samples_len -= local_samples_len/NR_ACCUMULATED_SAMPLES;
441 local_samples_len += sample_len_ns;
442 __this_cpu_write(running_sample_length, local_samples_len);
443
444 /*
445 * note: this will be biased artifically low until we have
446 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
447 * from having to maintain a count.
448 */
449 avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
450
451 if (avg_local_sample_len <= allowed_ns)
452 return;
453
454 if (max_samples_per_tick <= 1)
455 return;
456
457 max_samples_per_tick = DIV_ROUND_UP(max_samples_per_tick, 2);
458 sysctl_perf_event_sample_rate = max_samples_per_tick * HZ;
459 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
460
461 update_perf_cpu_limits();
462
463 if (!irq_work_queue(&perf_duration_work)) {
464 early_printk("perf interrupt took too long (%lld > %lld), lowering "
465 "kernel.perf_event_max_sample_rate to %d\n",
466 avg_local_sample_len, allowed_ns >> 1,
467 sysctl_perf_event_sample_rate);
468 }
469 }
470
471 static atomic64_t perf_event_id;
472
473 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
474 enum event_type_t event_type);
475
476 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
477 enum event_type_t event_type,
478 struct task_struct *task);
479
480 static void update_context_time(struct perf_event_context *ctx);
481 static u64 perf_event_time(struct perf_event *event);
482
483 void __weak perf_event_print_debug(void) { }
484
485 extern __weak const char *perf_pmu_name(void)
486 {
487 return "pmu";
488 }
489
490 static inline u64 perf_clock(void)
491 {
492 return local_clock();
493 }
494
495 static inline u64 perf_event_clock(struct perf_event *event)
496 {
497 return event->clock();
498 }
499
500 #ifdef CONFIG_CGROUP_PERF
501
502 static inline bool
503 perf_cgroup_match(struct perf_event *event)
504 {
505 struct perf_event_context *ctx = event->ctx;
506 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
507
508 /* @event doesn't care about cgroup */
509 if (!event->cgrp)
510 return true;
511
512 /* wants specific cgroup scope but @cpuctx isn't associated with any */
513 if (!cpuctx->cgrp)
514 return false;
515
516 /*
517 * Cgroup scoping is recursive. An event enabled for a cgroup is
518 * also enabled for all its descendant cgroups. If @cpuctx's
519 * cgroup is a descendant of @event's (the test covers identity
520 * case), it's a match.
521 */
522 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
523 event->cgrp->css.cgroup);
524 }
525
526 static inline void perf_detach_cgroup(struct perf_event *event)
527 {
528 css_put(&event->cgrp->css);
529 event->cgrp = NULL;
530 }
531
532 static inline int is_cgroup_event(struct perf_event *event)
533 {
534 return event->cgrp != NULL;
535 }
536
537 static inline u64 perf_cgroup_event_time(struct perf_event *event)
538 {
539 struct perf_cgroup_info *t;
540
541 t = per_cpu_ptr(event->cgrp->info, event->cpu);
542 return t->time;
543 }
544
545 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
546 {
547 struct perf_cgroup_info *info;
548 u64 now;
549
550 now = perf_clock();
551
552 info = this_cpu_ptr(cgrp->info);
553
554 info->time += now - info->timestamp;
555 info->timestamp = now;
556 }
557
558 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
559 {
560 struct perf_cgroup *cgrp_out = cpuctx->cgrp;
561 if (cgrp_out)
562 __update_cgrp_time(cgrp_out);
563 }
564
565 static inline void update_cgrp_time_from_event(struct perf_event *event)
566 {
567 struct perf_cgroup *cgrp;
568
569 /*
570 * ensure we access cgroup data only when needed and
571 * when we know the cgroup is pinned (css_get)
572 */
573 if (!is_cgroup_event(event))
574 return;
575
576 cgrp = perf_cgroup_from_task(current, event->ctx);
577 /*
578 * Do not update time when cgroup is not active
579 */
580 if (cgrp == event->cgrp)
581 __update_cgrp_time(event->cgrp);
582 }
583
584 static inline void
585 perf_cgroup_set_timestamp(struct task_struct *task,
586 struct perf_event_context *ctx)
587 {
588 struct perf_cgroup *cgrp;
589 struct perf_cgroup_info *info;
590
591 /*
592 * ctx->lock held by caller
593 * ensure we do not access cgroup data
594 * unless we have the cgroup pinned (css_get)
595 */
596 if (!task || !ctx->nr_cgroups)
597 return;
598
599 cgrp = perf_cgroup_from_task(task, ctx);
600 info = this_cpu_ptr(cgrp->info);
601 info->timestamp = ctx->timestamp;
602 }
603
604 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
605 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
606
607 /*
608 * reschedule events based on the cgroup constraint of task.
609 *
610 * mode SWOUT : schedule out everything
611 * mode SWIN : schedule in based on cgroup for next
612 */
613 static void perf_cgroup_switch(struct task_struct *task, int mode)
614 {
615 struct perf_cpu_context *cpuctx;
616 struct pmu *pmu;
617 unsigned long flags;
618
619 /*
620 * disable interrupts to avoid geting nr_cgroup
621 * changes via __perf_event_disable(). Also
622 * avoids preemption.
623 */
624 local_irq_save(flags);
625
626 /*
627 * we reschedule only in the presence of cgroup
628 * constrained events.
629 */
630
631 list_for_each_entry_rcu(pmu, &pmus, entry) {
632 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
633 if (cpuctx->unique_pmu != pmu)
634 continue; /* ensure we process each cpuctx once */
635
636 /*
637 * perf_cgroup_events says at least one
638 * context on this CPU has cgroup events.
639 *
640 * ctx->nr_cgroups reports the number of cgroup
641 * events for a context.
642 */
643 if (cpuctx->ctx.nr_cgroups > 0) {
644 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
645 perf_pmu_disable(cpuctx->ctx.pmu);
646
647 if (mode & PERF_CGROUP_SWOUT) {
648 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
649 /*
650 * must not be done before ctxswout due
651 * to event_filter_match() in event_sched_out()
652 */
653 cpuctx->cgrp = NULL;
654 }
655
656 if (mode & PERF_CGROUP_SWIN) {
657 WARN_ON_ONCE(cpuctx->cgrp);
658 /*
659 * set cgrp before ctxsw in to allow
660 * event_filter_match() to not have to pass
661 * task around
662 * we pass the cpuctx->ctx to perf_cgroup_from_task()
663 * because cgorup events are only per-cpu
664 */
665 cpuctx->cgrp = perf_cgroup_from_task(task, &cpuctx->ctx);
666 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
667 }
668 perf_pmu_enable(cpuctx->ctx.pmu);
669 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
670 }
671 }
672
673 local_irq_restore(flags);
674 }
675
676 static inline void perf_cgroup_sched_out(struct task_struct *task,
677 struct task_struct *next)
678 {
679 struct perf_cgroup *cgrp1;
680 struct perf_cgroup *cgrp2 = NULL;
681
682 rcu_read_lock();
683 /*
684 * we come here when we know perf_cgroup_events > 0
685 * we do not need to pass the ctx here because we know
686 * we are holding the rcu lock
687 */
688 cgrp1 = perf_cgroup_from_task(task, NULL);
689 cgrp2 = perf_cgroup_from_task(next, NULL);
690
691 /*
692 * only schedule out current cgroup events if we know
693 * that we are switching to a different cgroup. Otherwise,
694 * do no touch the cgroup events.
695 */
696 if (cgrp1 != cgrp2)
697 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
698
699 rcu_read_unlock();
700 }
701
702 static inline void perf_cgroup_sched_in(struct task_struct *prev,
703 struct task_struct *task)
704 {
705 struct perf_cgroup *cgrp1;
706 struct perf_cgroup *cgrp2 = NULL;
707
708 rcu_read_lock();
709 /*
710 * we come here when we know perf_cgroup_events > 0
711 * we do not need to pass the ctx here because we know
712 * we are holding the rcu lock
713 */
714 cgrp1 = perf_cgroup_from_task(task, NULL);
715 cgrp2 = perf_cgroup_from_task(prev, NULL);
716
717 /*
718 * only need to schedule in cgroup events if we are changing
719 * cgroup during ctxsw. Cgroup events were not scheduled
720 * out of ctxsw out if that was not the case.
721 */
722 if (cgrp1 != cgrp2)
723 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
724
725 rcu_read_unlock();
726 }
727
728 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
729 struct perf_event_attr *attr,
730 struct perf_event *group_leader)
731 {
732 struct perf_cgroup *cgrp;
733 struct cgroup_subsys_state *css;
734 struct fd f = fdget(fd);
735 int ret = 0;
736
737 if (!f.file)
738 return -EBADF;
739
740 css = css_tryget_online_from_dir(f.file->f_path.dentry,
741 &perf_event_cgrp_subsys);
742 if (IS_ERR(css)) {
743 ret = PTR_ERR(css);
744 goto out;
745 }
746
747 cgrp = container_of(css, struct perf_cgroup, css);
748 event->cgrp = cgrp;
749
750 /*
751 * all events in a group must monitor
752 * the same cgroup because a task belongs
753 * to only one perf cgroup at a time
754 */
755 if (group_leader && group_leader->cgrp != cgrp) {
756 perf_detach_cgroup(event);
757 ret = -EINVAL;
758 }
759 out:
760 fdput(f);
761 return ret;
762 }
763
764 static inline void
765 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
766 {
767 struct perf_cgroup_info *t;
768 t = per_cpu_ptr(event->cgrp->info, event->cpu);
769 event->shadow_ctx_time = now - t->timestamp;
770 }
771
772 static inline void
773 perf_cgroup_defer_enabled(struct perf_event *event)
774 {
775 /*
776 * when the current task's perf cgroup does not match
777 * the event's, we need to remember to call the
778 * perf_mark_enable() function the first time a task with
779 * a matching perf cgroup is scheduled in.
780 */
781 if (is_cgroup_event(event) && !perf_cgroup_match(event))
782 event->cgrp_defer_enabled = 1;
783 }
784
785 static inline void
786 perf_cgroup_mark_enabled(struct perf_event *event,
787 struct perf_event_context *ctx)
788 {
789 struct perf_event *sub;
790 u64 tstamp = perf_event_time(event);
791
792 if (!event->cgrp_defer_enabled)
793 return;
794
795 event->cgrp_defer_enabled = 0;
796
797 event->tstamp_enabled = tstamp - event->total_time_enabled;
798 list_for_each_entry(sub, &event->sibling_list, group_entry) {
799 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
800 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
801 sub->cgrp_defer_enabled = 0;
802 }
803 }
804 }
805 #else /* !CONFIG_CGROUP_PERF */
806
807 static inline bool
808 perf_cgroup_match(struct perf_event *event)
809 {
810 return true;
811 }
812
813 static inline void perf_detach_cgroup(struct perf_event *event)
814 {}
815
816 static inline int is_cgroup_event(struct perf_event *event)
817 {
818 return 0;
819 }
820
821 static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
822 {
823 return 0;
824 }
825
826 static inline void update_cgrp_time_from_event(struct perf_event *event)
827 {
828 }
829
830 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
831 {
832 }
833
834 static inline void perf_cgroup_sched_out(struct task_struct *task,
835 struct task_struct *next)
836 {
837 }
838
839 static inline void perf_cgroup_sched_in(struct task_struct *prev,
840 struct task_struct *task)
841 {
842 }
843
844 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
845 struct perf_event_attr *attr,
846 struct perf_event *group_leader)
847 {
848 return -EINVAL;
849 }
850
851 static inline void
852 perf_cgroup_set_timestamp(struct task_struct *task,
853 struct perf_event_context *ctx)
854 {
855 }
856
857 void
858 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
859 {
860 }
861
862 static inline void
863 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
864 {
865 }
866
867 static inline u64 perf_cgroup_event_time(struct perf_event *event)
868 {
869 return 0;
870 }
871
872 static inline void
873 perf_cgroup_defer_enabled(struct perf_event *event)
874 {
875 }
876
877 static inline void
878 perf_cgroup_mark_enabled(struct perf_event *event,
879 struct perf_event_context *ctx)
880 {
881 }
882 #endif
883
884 /*
885 * set default to be dependent on timer tick just
886 * like original code
887 */
888 #define PERF_CPU_HRTIMER (1000 / HZ)
889 /*
890 * function must be called with interrupts disbled
891 */
892 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
893 {
894 struct perf_cpu_context *cpuctx;
895 int rotations = 0;
896
897 WARN_ON(!irqs_disabled());
898
899 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
900 rotations = perf_rotate_context(cpuctx);
901
902 raw_spin_lock(&cpuctx->hrtimer_lock);
903 if (rotations)
904 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
905 else
906 cpuctx->hrtimer_active = 0;
907 raw_spin_unlock(&cpuctx->hrtimer_lock);
908
909 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
910 }
911
912 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
913 {
914 struct hrtimer *timer = &cpuctx->hrtimer;
915 struct pmu *pmu = cpuctx->ctx.pmu;
916 u64 interval;
917
918 /* no multiplexing needed for SW PMU */
919 if (pmu->task_ctx_nr == perf_sw_context)
920 return;
921
922 /*
923 * check default is sane, if not set then force to
924 * default interval (1/tick)
925 */
926 interval = pmu->hrtimer_interval_ms;
927 if (interval < 1)
928 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
929
930 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
931
932 raw_spin_lock_init(&cpuctx->hrtimer_lock);
933 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
934 timer->function = perf_mux_hrtimer_handler;
935 }
936
937 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
938 {
939 struct hrtimer *timer = &cpuctx->hrtimer;
940 struct pmu *pmu = cpuctx->ctx.pmu;
941 unsigned long flags;
942
943 /* not for SW PMU */
944 if (pmu->task_ctx_nr == perf_sw_context)
945 return 0;
946
947 raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
948 if (!cpuctx->hrtimer_active) {
949 cpuctx->hrtimer_active = 1;
950 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
951 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
952 }
953 raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
954
955 return 0;
956 }
957
958 void perf_pmu_disable(struct pmu *pmu)
959 {
960 int *count = this_cpu_ptr(pmu->pmu_disable_count);
961 if (!(*count)++)
962 pmu->pmu_disable(pmu);
963 }
964
965 void perf_pmu_enable(struct pmu *pmu)
966 {
967 int *count = this_cpu_ptr(pmu->pmu_disable_count);
968 if (!--(*count))
969 pmu->pmu_enable(pmu);
970 }
971
972 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
973
974 /*
975 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
976 * perf_event_task_tick() are fully serialized because they're strictly cpu
977 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
978 * disabled, while perf_event_task_tick is called from IRQ context.
979 */
980 static void perf_event_ctx_activate(struct perf_event_context *ctx)
981 {
982 struct list_head *head = this_cpu_ptr(&active_ctx_list);
983
984 WARN_ON(!irqs_disabled());
985
986 WARN_ON(!list_empty(&ctx->active_ctx_list));
987
988 list_add(&ctx->active_ctx_list, head);
989 }
990
991 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
992 {
993 WARN_ON(!irqs_disabled());
994
995 WARN_ON(list_empty(&ctx->active_ctx_list));
996
997 list_del_init(&ctx->active_ctx_list);
998 }
999
1000 static void get_ctx(struct perf_event_context *ctx)
1001 {
1002 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
1003 }
1004
1005 static void free_ctx(struct rcu_head *head)
1006 {
1007 struct perf_event_context *ctx;
1008
1009 ctx = container_of(head, struct perf_event_context, rcu_head);
1010 kfree(ctx->task_ctx_data);
1011 kfree(ctx);
1012 }
1013
1014 static void put_ctx(struct perf_event_context *ctx)
1015 {
1016 if (atomic_dec_and_test(&ctx->refcount)) {
1017 if (ctx->parent_ctx)
1018 put_ctx(ctx->parent_ctx);
1019 if (ctx->task)
1020 put_task_struct(ctx->task);
1021 call_rcu(&ctx->rcu_head, free_ctx);
1022 }
1023 }
1024
1025 /*
1026 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1027 * perf_pmu_migrate_context() we need some magic.
1028 *
1029 * Those places that change perf_event::ctx will hold both
1030 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1031 *
1032 * Lock ordering is by mutex address. There are two other sites where
1033 * perf_event_context::mutex nests and those are:
1034 *
1035 * - perf_event_exit_task_context() [ child , 0 ]
1036 * __perf_event_exit_task()
1037 * sync_child_event()
1038 * put_event() [ parent, 1 ]
1039 *
1040 * - perf_event_init_context() [ parent, 0 ]
1041 * inherit_task_group()
1042 * inherit_group()
1043 * inherit_event()
1044 * perf_event_alloc()
1045 * perf_init_event()
1046 * perf_try_init_event() [ child , 1 ]
1047 *
1048 * While it appears there is an obvious deadlock here -- the parent and child
1049 * nesting levels are inverted between the two. This is in fact safe because
1050 * life-time rules separate them. That is an exiting task cannot fork, and a
1051 * spawning task cannot (yet) exit.
1052 *
1053 * But remember that that these are parent<->child context relations, and
1054 * migration does not affect children, therefore these two orderings should not
1055 * interact.
1056 *
1057 * The change in perf_event::ctx does not affect children (as claimed above)
1058 * because the sys_perf_event_open() case will install a new event and break
1059 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1060 * concerned with cpuctx and that doesn't have children.
1061 *
1062 * The places that change perf_event::ctx will issue:
1063 *
1064 * perf_remove_from_context();
1065 * synchronize_rcu();
1066 * perf_install_in_context();
1067 *
1068 * to affect the change. The remove_from_context() + synchronize_rcu() should
1069 * quiesce the event, after which we can install it in the new location. This
1070 * means that only external vectors (perf_fops, prctl) can perturb the event
1071 * while in transit. Therefore all such accessors should also acquire
1072 * perf_event_context::mutex to serialize against this.
1073 *
1074 * However; because event->ctx can change while we're waiting to acquire
1075 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1076 * function.
1077 *
1078 * Lock order:
1079 * task_struct::perf_event_mutex
1080 * perf_event_context::mutex
1081 * perf_event_context::lock
1082 * perf_event::child_mutex;
1083 * perf_event::mmap_mutex
1084 * mmap_sem
1085 */
1086 static struct perf_event_context *
1087 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1088 {
1089 struct perf_event_context *ctx;
1090
1091 again:
1092 rcu_read_lock();
1093 ctx = ACCESS_ONCE(event->ctx);
1094 if (!atomic_inc_not_zero(&ctx->refcount)) {
1095 rcu_read_unlock();
1096 goto again;
1097 }
1098 rcu_read_unlock();
1099
1100 mutex_lock_nested(&ctx->mutex, nesting);
1101 if (event->ctx != ctx) {
1102 mutex_unlock(&ctx->mutex);
1103 put_ctx(ctx);
1104 goto again;
1105 }
1106
1107 return ctx;
1108 }
1109
1110 static inline struct perf_event_context *
1111 perf_event_ctx_lock(struct perf_event *event)
1112 {
1113 return perf_event_ctx_lock_nested(event, 0);
1114 }
1115
1116 static void perf_event_ctx_unlock(struct perf_event *event,
1117 struct perf_event_context *ctx)
1118 {
1119 mutex_unlock(&ctx->mutex);
1120 put_ctx(ctx);
1121 }
1122
1123 /*
1124 * This must be done under the ctx->lock, such as to serialize against
1125 * context_equiv(), therefore we cannot call put_ctx() since that might end up
1126 * calling scheduler related locks and ctx->lock nests inside those.
1127 */
1128 static __must_check struct perf_event_context *
1129 unclone_ctx(struct perf_event_context *ctx)
1130 {
1131 struct perf_event_context *parent_ctx = ctx->parent_ctx;
1132
1133 lockdep_assert_held(&ctx->lock);
1134
1135 if (parent_ctx)
1136 ctx->parent_ctx = NULL;
1137 ctx->generation++;
1138
1139 return parent_ctx;
1140 }
1141
1142 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1143 {
1144 /*
1145 * only top level events have the pid namespace they were created in
1146 */
1147 if (event->parent)
1148 event = event->parent;
1149
1150 return task_tgid_nr_ns(p, event->ns);
1151 }
1152
1153 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1154 {
1155 /*
1156 * only top level events have the pid namespace they were created in
1157 */
1158 if (event->parent)
1159 event = event->parent;
1160
1161 return task_pid_nr_ns(p, event->ns);
1162 }
1163
1164 /*
1165 * If we inherit events we want to return the parent event id
1166 * to userspace.
1167 */
1168 static u64 primary_event_id(struct perf_event *event)
1169 {
1170 u64 id = event->id;
1171
1172 if (event->parent)
1173 id = event->parent->id;
1174
1175 return id;
1176 }
1177
1178 /*
1179 * Get the perf_event_context for a task and lock it.
1180 * This has to cope with with the fact that until it is locked,
1181 * the context could get moved to another task.
1182 */
1183 static struct perf_event_context *
1184 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1185 {
1186 struct perf_event_context *ctx;
1187
1188 retry:
1189 /*
1190 * One of the few rules of preemptible RCU is that one cannot do
1191 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1192 * part of the read side critical section was irqs-enabled -- see
1193 * rcu_read_unlock_special().
1194 *
1195 * Since ctx->lock nests under rq->lock we must ensure the entire read
1196 * side critical section has interrupts disabled.
1197 */
1198 local_irq_save(*flags);
1199 rcu_read_lock();
1200 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1201 if (ctx) {
1202 /*
1203 * If this context is a clone of another, it might
1204 * get swapped for another underneath us by
1205 * perf_event_task_sched_out, though the
1206 * rcu_read_lock() protects us from any context
1207 * getting freed. Lock the context and check if it
1208 * got swapped before we could get the lock, and retry
1209 * if so. If we locked the right context, then it
1210 * can't get swapped on us any more.
1211 */
1212 raw_spin_lock(&ctx->lock);
1213 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1214 raw_spin_unlock(&ctx->lock);
1215 rcu_read_unlock();
1216 local_irq_restore(*flags);
1217 goto retry;
1218 }
1219
1220 if (!atomic_inc_not_zero(&ctx->refcount)) {
1221 raw_spin_unlock(&ctx->lock);
1222 ctx = NULL;
1223 }
1224 }
1225 rcu_read_unlock();
1226 if (!ctx)
1227 local_irq_restore(*flags);
1228 return ctx;
1229 }
1230
1231 /*
1232 * Get the context for a task and increment its pin_count so it
1233 * can't get swapped to another task. This also increments its
1234 * reference count so that the context can't get freed.
1235 */
1236 static struct perf_event_context *
1237 perf_pin_task_context(struct task_struct *task, int ctxn)
1238 {
1239 struct perf_event_context *ctx;
1240 unsigned long flags;
1241
1242 ctx = perf_lock_task_context(task, ctxn, &flags);
1243 if (ctx) {
1244 ++ctx->pin_count;
1245 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1246 }
1247 return ctx;
1248 }
1249
1250 static void perf_unpin_context(struct perf_event_context *ctx)
1251 {
1252 unsigned long flags;
1253
1254 raw_spin_lock_irqsave(&ctx->lock, flags);
1255 --ctx->pin_count;
1256 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1257 }
1258
1259 /*
1260 * Update the record of the current time in a context.
1261 */
1262 static void update_context_time(struct perf_event_context *ctx)
1263 {
1264 u64 now = perf_clock();
1265
1266 ctx->time += now - ctx->timestamp;
1267 ctx->timestamp = now;
1268 }
1269
1270 static u64 perf_event_time(struct perf_event *event)
1271 {
1272 struct perf_event_context *ctx = event->ctx;
1273
1274 if (is_cgroup_event(event))
1275 return perf_cgroup_event_time(event);
1276
1277 return ctx ? ctx->time : 0;
1278 }
1279
1280 /*
1281 * Update the total_time_enabled and total_time_running fields for a event.
1282 * The caller of this function needs to hold the ctx->lock.
1283 */
1284 static void update_event_times(struct perf_event *event)
1285 {
1286 struct perf_event_context *ctx = event->ctx;
1287 u64 run_end;
1288
1289 if (event->state < PERF_EVENT_STATE_INACTIVE ||
1290 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1291 return;
1292 /*
1293 * in cgroup mode, time_enabled represents
1294 * the time the event was enabled AND active
1295 * tasks were in the monitored cgroup. This is
1296 * independent of the activity of the context as
1297 * there may be a mix of cgroup and non-cgroup events.
1298 *
1299 * That is why we treat cgroup events differently
1300 * here.
1301 */
1302 if (is_cgroup_event(event))
1303 run_end = perf_cgroup_event_time(event);
1304 else if (ctx->is_active)
1305 run_end = ctx->time;
1306 else
1307 run_end = event->tstamp_stopped;
1308
1309 event->total_time_enabled = run_end - event->tstamp_enabled;
1310
1311 if (event->state == PERF_EVENT_STATE_INACTIVE)
1312 run_end = event->tstamp_stopped;
1313 else
1314 run_end = perf_event_time(event);
1315
1316 event->total_time_running = run_end - event->tstamp_running;
1317
1318 }
1319
1320 /*
1321 * Update total_time_enabled and total_time_running for all events in a group.
1322 */
1323 static void update_group_times(struct perf_event *leader)
1324 {
1325 struct perf_event *event;
1326
1327 update_event_times(leader);
1328 list_for_each_entry(event, &leader->sibling_list, group_entry)
1329 update_event_times(event);
1330 }
1331
1332 static struct list_head *
1333 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1334 {
1335 if (event->attr.pinned)
1336 return &ctx->pinned_groups;
1337 else
1338 return &ctx->flexible_groups;
1339 }
1340
1341 /*
1342 * Add a event from the lists for its context.
1343 * Must be called with ctx->mutex and ctx->lock held.
1344 */
1345 static void
1346 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1347 {
1348 lockdep_assert_held(&ctx->lock);
1349
1350 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1351 event->attach_state |= PERF_ATTACH_CONTEXT;
1352
1353 /*
1354 * If we're a stand alone event or group leader, we go to the context
1355 * list, group events are kept attached to the group so that
1356 * perf_group_detach can, at all times, locate all siblings.
1357 */
1358 if (event->group_leader == event) {
1359 struct list_head *list;
1360
1361 if (is_software_event(event))
1362 event->group_flags |= PERF_GROUP_SOFTWARE;
1363
1364 list = ctx_group_list(event, ctx);
1365 list_add_tail(&event->group_entry, list);
1366 }
1367
1368 if (is_cgroup_event(event))
1369 ctx->nr_cgroups++;
1370
1371 list_add_rcu(&event->event_entry, &ctx->event_list);
1372 ctx->nr_events++;
1373 if (event->attr.inherit_stat)
1374 ctx->nr_stat++;
1375
1376 ctx->generation++;
1377 }
1378
1379 /*
1380 * Initialize event state based on the perf_event_attr::disabled.
1381 */
1382 static inline void perf_event__state_init(struct perf_event *event)
1383 {
1384 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1385 PERF_EVENT_STATE_INACTIVE;
1386 }
1387
1388 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1389 {
1390 int entry = sizeof(u64); /* value */
1391 int size = 0;
1392 int nr = 1;
1393
1394 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1395 size += sizeof(u64);
1396
1397 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1398 size += sizeof(u64);
1399
1400 if (event->attr.read_format & PERF_FORMAT_ID)
1401 entry += sizeof(u64);
1402
1403 if (event->attr.read_format & PERF_FORMAT_GROUP) {
1404 nr += nr_siblings;
1405 size += sizeof(u64);
1406 }
1407
1408 size += entry * nr;
1409 event->read_size = size;
1410 }
1411
1412 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1413 {
1414 struct perf_sample_data *data;
1415 u16 size = 0;
1416
1417 if (sample_type & PERF_SAMPLE_IP)
1418 size += sizeof(data->ip);
1419
1420 if (sample_type & PERF_SAMPLE_ADDR)
1421 size += sizeof(data->addr);
1422
1423 if (sample_type & PERF_SAMPLE_PERIOD)
1424 size += sizeof(data->period);
1425
1426 if (sample_type & PERF_SAMPLE_WEIGHT)
1427 size += sizeof(data->weight);
1428
1429 if (sample_type & PERF_SAMPLE_READ)
1430 size += event->read_size;
1431
1432 if (sample_type & PERF_SAMPLE_DATA_SRC)
1433 size += sizeof(data->data_src.val);
1434
1435 if (sample_type & PERF_SAMPLE_TRANSACTION)
1436 size += sizeof(data->txn);
1437
1438 event->header_size = size;
1439 }
1440
1441 /*
1442 * Called at perf_event creation and when events are attached/detached from a
1443 * group.
1444 */
1445 static void perf_event__header_size(struct perf_event *event)
1446 {
1447 __perf_event_read_size(event,
1448 event->group_leader->nr_siblings);
1449 __perf_event_header_size(event, event->attr.sample_type);
1450 }
1451
1452 static void perf_event__id_header_size(struct perf_event *event)
1453 {
1454 struct perf_sample_data *data;
1455 u64 sample_type = event->attr.sample_type;
1456 u16 size = 0;
1457
1458 if (sample_type & PERF_SAMPLE_TID)
1459 size += sizeof(data->tid_entry);
1460
1461 if (sample_type & PERF_SAMPLE_TIME)
1462 size += sizeof(data->time);
1463
1464 if (sample_type & PERF_SAMPLE_IDENTIFIER)
1465 size += sizeof(data->id);
1466
1467 if (sample_type & PERF_SAMPLE_ID)
1468 size += sizeof(data->id);
1469
1470 if (sample_type & PERF_SAMPLE_STREAM_ID)
1471 size += sizeof(data->stream_id);
1472
1473 if (sample_type & PERF_SAMPLE_CPU)
1474 size += sizeof(data->cpu_entry);
1475
1476 event->id_header_size = size;
1477 }
1478
1479 static bool perf_event_validate_size(struct perf_event *event)
1480 {
1481 /*
1482 * The values computed here will be over-written when we actually
1483 * attach the event.
1484 */
1485 __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1486 __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1487 perf_event__id_header_size(event);
1488
1489 /*
1490 * Sum the lot; should not exceed the 64k limit we have on records.
1491 * Conservative limit to allow for callchains and other variable fields.
1492 */
1493 if (event->read_size + event->header_size +
1494 event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1495 return false;
1496
1497 return true;
1498 }
1499
1500 static void perf_group_attach(struct perf_event *event)
1501 {
1502 struct perf_event *group_leader = event->group_leader, *pos;
1503
1504 /*
1505 * We can have double attach due to group movement in perf_event_open.
1506 */
1507 if (event->attach_state & PERF_ATTACH_GROUP)
1508 return;
1509
1510 event->attach_state |= PERF_ATTACH_GROUP;
1511
1512 if (group_leader == event)
1513 return;
1514
1515 WARN_ON_ONCE(group_leader->ctx != event->ctx);
1516
1517 if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
1518 !is_software_event(event))
1519 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
1520
1521 list_add_tail(&event->group_entry, &group_leader->sibling_list);
1522 group_leader->nr_siblings++;
1523
1524 perf_event__header_size(group_leader);
1525
1526 list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1527 perf_event__header_size(pos);
1528 }
1529
1530 /*
1531 * Remove a event from the lists for its context.
1532 * Must be called with ctx->mutex and ctx->lock held.
1533 */
1534 static void
1535 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1536 {
1537 struct perf_cpu_context *cpuctx;
1538
1539 WARN_ON_ONCE(event->ctx != ctx);
1540 lockdep_assert_held(&ctx->lock);
1541
1542 /*
1543 * We can have double detach due to exit/hot-unplug + close.
1544 */
1545 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1546 return;
1547
1548 event->attach_state &= ~PERF_ATTACH_CONTEXT;
1549
1550 if (is_cgroup_event(event)) {
1551 ctx->nr_cgroups--;
1552 /*
1553 * Because cgroup events are always per-cpu events, this will
1554 * always be called from the right CPU.
1555 */
1556 cpuctx = __get_cpu_context(ctx);
1557 /*
1558 * If there are no more cgroup events then clear cgrp to avoid
1559 * stale pointer in update_cgrp_time_from_cpuctx().
1560 */
1561 if (!ctx->nr_cgroups)
1562 cpuctx->cgrp = NULL;
1563 }
1564
1565 ctx->nr_events--;
1566 if (event->attr.inherit_stat)
1567 ctx->nr_stat--;
1568
1569 list_del_rcu(&event->event_entry);
1570
1571 if (event->group_leader == event)
1572 list_del_init(&event->group_entry);
1573
1574 update_group_times(event);
1575
1576 /*
1577 * If event was in error state, then keep it
1578 * that way, otherwise bogus counts will be
1579 * returned on read(). The only way to get out
1580 * of error state is by explicit re-enabling
1581 * of the event
1582 */
1583 if (event->state > PERF_EVENT_STATE_OFF)
1584 event->state = PERF_EVENT_STATE_OFF;
1585
1586 ctx->generation++;
1587 }
1588
1589 static void perf_group_detach(struct perf_event *event)
1590 {
1591 struct perf_event *sibling, *tmp;
1592 struct list_head *list = NULL;
1593
1594 /*
1595 * We can have double detach due to exit/hot-unplug + close.
1596 */
1597 if (!(event->attach_state & PERF_ATTACH_GROUP))
1598 return;
1599
1600 event->attach_state &= ~PERF_ATTACH_GROUP;
1601
1602 /*
1603 * If this is a sibling, remove it from its group.
1604 */
1605 if (event->group_leader != event) {
1606 list_del_init(&event->group_entry);
1607 event->group_leader->nr_siblings--;
1608 goto out;
1609 }
1610
1611 if (!list_empty(&event->group_entry))
1612 list = &event->group_entry;
1613
1614 /*
1615 * If this was a group event with sibling events then
1616 * upgrade the siblings to singleton events by adding them
1617 * to whatever list we are on.
1618 */
1619 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1620 if (list)
1621 list_move_tail(&sibling->group_entry, list);
1622 sibling->group_leader = sibling;
1623
1624 /* Inherit group flags from the previous leader */
1625 sibling->group_flags = event->group_flags;
1626
1627 WARN_ON_ONCE(sibling->ctx != event->ctx);
1628 }
1629
1630 out:
1631 perf_event__header_size(event->group_leader);
1632
1633 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1634 perf_event__header_size(tmp);
1635 }
1636
1637 /*
1638 * User event without the task.
1639 */
1640 static bool is_orphaned_event(struct perf_event *event)
1641 {
1642 return event && !is_kernel_event(event) && !event->owner;
1643 }
1644
1645 /*
1646 * Event has a parent but parent's task finished and it's
1647 * alive only because of children holding refference.
1648 */
1649 static bool is_orphaned_child(struct perf_event *event)
1650 {
1651 return is_orphaned_event(event->parent);
1652 }
1653
1654 static void orphans_remove_work(struct work_struct *work);
1655
1656 static void schedule_orphans_remove(struct perf_event_context *ctx)
1657 {
1658 if (!ctx->task || ctx->orphans_remove_sched || !perf_wq)
1659 return;
1660
1661 if (queue_delayed_work(perf_wq, &ctx->orphans_remove, 1)) {
1662 get_ctx(ctx);
1663 ctx->orphans_remove_sched = true;
1664 }
1665 }
1666
1667 static int __init perf_workqueue_init(void)
1668 {
1669 perf_wq = create_singlethread_workqueue("perf");
1670 WARN(!perf_wq, "failed to create perf workqueue\n");
1671 return perf_wq ? 0 : -1;
1672 }
1673
1674 core_initcall(perf_workqueue_init);
1675
1676 static inline int pmu_filter_match(struct perf_event *event)
1677 {
1678 struct pmu *pmu = event->pmu;
1679 return pmu->filter_match ? pmu->filter_match(event) : 1;
1680 }
1681
1682 static inline int
1683 event_filter_match(struct perf_event *event)
1684 {
1685 return (event->cpu == -1 || event->cpu == smp_processor_id())
1686 && perf_cgroup_match(event) && pmu_filter_match(event);
1687 }
1688
1689 static void
1690 event_sched_out(struct perf_event *event,
1691 struct perf_cpu_context *cpuctx,
1692 struct perf_event_context *ctx)
1693 {
1694 u64 tstamp = perf_event_time(event);
1695 u64 delta;
1696
1697 WARN_ON_ONCE(event->ctx != ctx);
1698 lockdep_assert_held(&ctx->lock);
1699
1700 /*
1701 * An event which could not be activated because of
1702 * filter mismatch still needs to have its timings
1703 * maintained, otherwise bogus information is return
1704 * via read() for time_enabled, time_running:
1705 */
1706 if (event->state == PERF_EVENT_STATE_INACTIVE
1707 && !event_filter_match(event)) {
1708 delta = tstamp - event->tstamp_stopped;
1709 event->tstamp_running += delta;
1710 event->tstamp_stopped = tstamp;
1711 }
1712
1713 if (event->state != PERF_EVENT_STATE_ACTIVE)
1714 return;
1715
1716 perf_pmu_disable(event->pmu);
1717
1718 event->state = PERF_EVENT_STATE_INACTIVE;
1719 if (event->pending_disable) {
1720 event->pending_disable = 0;
1721 event->state = PERF_EVENT_STATE_OFF;
1722 }
1723 event->tstamp_stopped = tstamp;
1724 event->pmu->del(event, 0);
1725 event->oncpu = -1;
1726
1727 if (!is_software_event(event))
1728 cpuctx->active_oncpu--;
1729 if (!--ctx->nr_active)
1730 perf_event_ctx_deactivate(ctx);
1731 if (event->attr.freq && event->attr.sample_freq)
1732 ctx->nr_freq--;
1733 if (event->attr.exclusive || !cpuctx->active_oncpu)
1734 cpuctx->exclusive = 0;
1735
1736 if (is_orphaned_child(event))
1737 schedule_orphans_remove(ctx);
1738
1739 perf_pmu_enable(event->pmu);
1740 }
1741
1742 static void
1743 group_sched_out(struct perf_event *group_event,
1744 struct perf_cpu_context *cpuctx,
1745 struct perf_event_context *ctx)
1746 {
1747 struct perf_event *event;
1748 int state = group_event->state;
1749
1750 event_sched_out(group_event, cpuctx, ctx);
1751
1752 /*
1753 * Schedule out siblings (if any):
1754 */
1755 list_for_each_entry(event, &group_event->sibling_list, group_entry)
1756 event_sched_out(event, cpuctx, ctx);
1757
1758 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1759 cpuctx->exclusive = 0;
1760 }
1761
1762 /*
1763 * Cross CPU call to remove a performance event
1764 *
1765 * We disable the event on the hardware level first. After that we
1766 * remove it from the context list.
1767 */
1768 static void
1769 __perf_remove_from_context(struct perf_event *event,
1770 struct perf_cpu_context *cpuctx,
1771 struct perf_event_context *ctx,
1772 void *info)
1773 {
1774 bool detach_group = (unsigned long)info;
1775
1776 event_sched_out(event, cpuctx, ctx);
1777 if (detach_group)
1778 perf_group_detach(event);
1779 list_del_event(event, ctx);
1780
1781 if (!ctx->nr_events && ctx->is_active) {
1782 ctx->is_active = 0;
1783 if (ctx->task) {
1784 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
1785 cpuctx->task_ctx = NULL;
1786 }
1787 }
1788 }
1789
1790 /*
1791 * Remove the event from a task's (or a CPU's) list of events.
1792 *
1793 * If event->ctx is a cloned context, callers must make sure that
1794 * every task struct that event->ctx->task could possibly point to
1795 * remains valid. This is OK when called from perf_release since
1796 * that only calls us on the top-level context, which can't be a clone.
1797 * When called from perf_event_exit_task, it's OK because the
1798 * context has been detached from its task.
1799 */
1800 static void perf_remove_from_context(struct perf_event *event, bool detach_group)
1801 {
1802 lockdep_assert_held(&event->ctx->mutex);
1803
1804 event_function_call(event, __perf_remove_from_context,
1805 (void *)(unsigned long)detach_group);
1806 }
1807
1808 /*
1809 * Cross CPU call to disable a performance event
1810 */
1811 static void __perf_event_disable(struct perf_event *event,
1812 struct perf_cpu_context *cpuctx,
1813 struct perf_event_context *ctx,
1814 void *info)
1815 {
1816 if (event->state < PERF_EVENT_STATE_INACTIVE)
1817 return;
1818
1819 update_context_time(ctx);
1820 update_cgrp_time_from_event(event);
1821 update_group_times(event);
1822 if (event == event->group_leader)
1823 group_sched_out(event, cpuctx, ctx);
1824 else
1825 event_sched_out(event, cpuctx, ctx);
1826 event->state = PERF_EVENT_STATE_OFF;
1827 }
1828
1829 /*
1830 * Disable a event.
1831 *
1832 * If event->ctx is a cloned context, callers must make sure that
1833 * every task struct that event->ctx->task could possibly point to
1834 * remains valid. This condition is satisifed when called through
1835 * perf_event_for_each_child or perf_event_for_each because they
1836 * hold the top-level event's child_mutex, so any descendant that
1837 * goes to exit will block in sync_child_event.
1838 * When called from perf_pending_event it's OK because event->ctx
1839 * is the current context on this CPU and preemption is disabled,
1840 * hence we can't get into perf_event_task_sched_out for this context.
1841 */
1842 static void _perf_event_disable(struct perf_event *event)
1843 {
1844 struct perf_event_context *ctx = event->ctx;
1845
1846 raw_spin_lock_irq(&ctx->lock);
1847 if (event->state <= PERF_EVENT_STATE_OFF) {
1848 raw_spin_unlock_irq(&ctx->lock);
1849 return;
1850 }
1851 raw_spin_unlock_irq(&ctx->lock);
1852
1853 event_function_call(event, __perf_event_disable, NULL);
1854 }
1855
1856 void perf_event_disable_local(struct perf_event *event)
1857 {
1858 event_function_local(event, __perf_event_disable, NULL);
1859 }
1860
1861 /*
1862 * Strictly speaking kernel users cannot create groups and therefore this
1863 * interface does not need the perf_event_ctx_lock() magic.
1864 */
1865 void perf_event_disable(struct perf_event *event)
1866 {
1867 struct perf_event_context *ctx;
1868
1869 ctx = perf_event_ctx_lock(event);
1870 _perf_event_disable(event);
1871 perf_event_ctx_unlock(event, ctx);
1872 }
1873 EXPORT_SYMBOL_GPL(perf_event_disable);
1874
1875 static void perf_set_shadow_time(struct perf_event *event,
1876 struct perf_event_context *ctx,
1877 u64 tstamp)
1878 {
1879 /*
1880 * use the correct time source for the time snapshot
1881 *
1882 * We could get by without this by leveraging the
1883 * fact that to get to this function, the caller
1884 * has most likely already called update_context_time()
1885 * and update_cgrp_time_xx() and thus both timestamp
1886 * are identical (or very close). Given that tstamp is,
1887 * already adjusted for cgroup, we could say that:
1888 * tstamp - ctx->timestamp
1889 * is equivalent to
1890 * tstamp - cgrp->timestamp.
1891 *
1892 * Then, in perf_output_read(), the calculation would
1893 * work with no changes because:
1894 * - event is guaranteed scheduled in
1895 * - no scheduled out in between
1896 * - thus the timestamp would be the same
1897 *
1898 * But this is a bit hairy.
1899 *
1900 * So instead, we have an explicit cgroup call to remain
1901 * within the time time source all along. We believe it
1902 * is cleaner and simpler to understand.
1903 */
1904 if (is_cgroup_event(event))
1905 perf_cgroup_set_shadow_time(event, tstamp);
1906 else
1907 event->shadow_ctx_time = tstamp - ctx->timestamp;
1908 }
1909
1910 #define MAX_INTERRUPTS (~0ULL)
1911
1912 static void perf_log_throttle(struct perf_event *event, int enable);
1913 static void perf_log_itrace_start(struct perf_event *event);
1914
1915 static int
1916 event_sched_in(struct perf_event *event,
1917 struct perf_cpu_context *cpuctx,
1918 struct perf_event_context *ctx)
1919 {
1920 u64 tstamp = perf_event_time(event);
1921 int ret = 0;
1922
1923 lockdep_assert_held(&ctx->lock);
1924
1925 if (event->state <= PERF_EVENT_STATE_OFF)
1926 return 0;
1927
1928 event->state = PERF_EVENT_STATE_ACTIVE;
1929 event->oncpu = smp_processor_id();
1930
1931 /*
1932 * Unthrottle events, since we scheduled we might have missed several
1933 * ticks already, also for a heavily scheduling task there is little
1934 * guarantee it'll get a tick in a timely manner.
1935 */
1936 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
1937 perf_log_throttle(event, 1);
1938 event->hw.interrupts = 0;
1939 }
1940
1941 /*
1942 * The new state must be visible before we turn it on in the hardware:
1943 */
1944 smp_wmb();
1945
1946 perf_pmu_disable(event->pmu);
1947
1948 perf_set_shadow_time(event, ctx, tstamp);
1949
1950 perf_log_itrace_start(event);
1951
1952 if (event->pmu->add(event, PERF_EF_START)) {
1953 event->state = PERF_EVENT_STATE_INACTIVE;
1954 event->oncpu = -1;
1955 ret = -EAGAIN;
1956 goto out;
1957 }
1958
1959 event->tstamp_running += tstamp - event->tstamp_stopped;
1960
1961 if (!is_software_event(event))
1962 cpuctx->active_oncpu++;
1963 if (!ctx->nr_active++)
1964 perf_event_ctx_activate(ctx);
1965 if (event->attr.freq && event->attr.sample_freq)
1966 ctx->nr_freq++;
1967
1968 if (event->attr.exclusive)
1969 cpuctx->exclusive = 1;
1970
1971 if (is_orphaned_child(event))
1972 schedule_orphans_remove(ctx);
1973
1974 out:
1975 perf_pmu_enable(event->pmu);
1976
1977 return ret;
1978 }
1979
1980 static int
1981 group_sched_in(struct perf_event *group_event,
1982 struct perf_cpu_context *cpuctx,
1983 struct perf_event_context *ctx)
1984 {
1985 struct perf_event *event, *partial_group = NULL;
1986 struct pmu *pmu = ctx->pmu;
1987 u64 now = ctx->time;
1988 bool simulate = false;
1989
1990 if (group_event->state == PERF_EVENT_STATE_OFF)
1991 return 0;
1992
1993 pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
1994
1995 if (event_sched_in(group_event, cpuctx, ctx)) {
1996 pmu->cancel_txn(pmu);
1997 perf_mux_hrtimer_restart(cpuctx);
1998 return -EAGAIN;
1999 }
2000
2001 /*
2002 * Schedule in siblings as one group (if any):
2003 */
2004 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2005 if (event_sched_in(event, cpuctx, ctx)) {
2006 partial_group = event;
2007 goto group_error;
2008 }
2009 }
2010
2011 if (!pmu->commit_txn(pmu))
2012 return 0;
2013
2014 group_error:
2015 /*
2016 * Groups can be scheduled in as one unit only, so undo any
2017 * partial group before returning:
2018 * The events up to the failed event are scheduled out normally,
2019 * tstamp_stopped will be updated.
2020 *
2021 * The failed events and the remaining siblings need to have
2022 * their timings updated as if they had gone thru event_sched_in()
2023 * and event_sched_out(). This is required to get consistent timings
2024 * across the group. This also takes care of the case where the group
2025 * could never be scheduled by ensuring tstamp_stopped is set to mark
2026 * the time the event was actually stopped, such that time delta
2027 * calculation in update_event_times() is correct.
2028 */
2029 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2030 if (event == partial_group)
2031 simulate = true;
2032
2033 if (simulate) {
2034 event->tstamp_running += now - event->tstamp_stopped;
2035 event->tstamp_stopped = now;
2036 } else {
2037 event_sched_out(event, cpuctx, ctx);
2038 }
2039 }
2040 event_sched_out(group_event, cpuctx, ctx);
2041
2042 pmu->cancel_txn(pmu);
2043
2044 perf_mux_hrtimer_restart(cpuctx);
2045
2046 return -EAGAIN;
2047 }
2048
2049 /*
2050 * Work out whether we can put this event group on the CPU now.
2051 */
2052 static int group_can_go_on(struct perf_event *event,
2053 struct perf_cpu_context *cpuctx,
2054 int can_add_hw)
2055 {
2056 /*
2057 * Groups consisting entirely of software events can always go on.
2058 */
2059 if (event->group_flags & PERF_GROUP_SOFTWARE)
2060 return 1;
2061 /*
2062 * If an exclusive group is already on, no other hardware
2063 * events can go on.
2064 */
2065 if (cpuctx->exclusive)
2066 return 0;
2067 /*
2068 * If this group is exclusive and there are already
2069 * events on the CPU, it can't go on.
2070 */
2071 if (event->attr.exclusive && cpuctx->active_oncpu)
2072 return 0;
2073 /*
2074 * Otherwise, try to add it if all previous groups were able
2075 * to go on.
2076 */
2077 return can_add_hw;
2078 }
2079
2080 static void add_event_to_ctx(struct perf_event *event,
2081 struct perf_event_context *ctx)
2082 {
2083 u64 tstamp = perf_event_time(event);
2084
2085 list_add_event(event, ctx);
2086 perf_group_attach(event);
2087 event->tstamp_enabled = tstamp;
2088 event->tstamp_running = tstamp;
2089 event->tstamp_stopped = tstamp;
2090 }
2091
2092 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2093 struct perf_event_context *ctx);
2094 static void
2095 ctx_sched_in(struct perf_event_context *ctx,
2096 struct perf_cpu_context *cpuctx,
2097 enum event_type_t event_type,
2098 struct task_struct *task);
2099
2100 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2101 struct perf_event_context *ctx,
2102 struct task_struct *task)
2103 {
2104 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2105 if (ctx)
2106 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2107 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2108 if (ctx)
2109 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2110 }
2111
2112 static void ctx_resched(struct perf_cpu_context *cpuctx,
2113 struct perf_event_context *task_ctx)
2114 {
2115 perf_pmu_disable(cpuctx->ctx.pmu);
2116 if (task_ctx)
2117 task_ctx_sched_out(cpuctx, task_ctx);
2118 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
2119 perf_event_sched_in(cpuctx, task_ctx, current);
2120 perf_pmu_enable(cpuctx->ctx.pmu);
2121 }
2122
2123 /*
2124 * Cross CPU call to install and enable a performance event
2125 *
2126 * Must be called with ctx->mutex held
2127 */
2128 static int __perf_install_in_context(void *info)
2129 {
2130 struct perf_event_context *ctx = info;
2131 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2132 struct perf_event_context *task_ctx = cpuctx->task_ctx;
2133
2134 if (ctx->task) {
2135 /*
2136 * If we hit the 'wrong' task, we've since scheduled and
2137 * everything should be sorted, nothing to do!
2138 */
2139 if (ctx->task != current)
2140 return 0;
2141
2142 /*
2143 * If task_ctx is set, it had better be to us.
2144 */
2145 WARN_ON_ONCE(cpuctx->task_ctx != ctx && cpuctx->task_ctx);
2146 task_ctx = ctx;
2147 }
2148
2149 perf_ctx_lock(cpuctx, task_ctx);
2150 ctx_resched(cpuctx, task_ctx);
2151 perf_ctx_unlock(cpuctx, task_ctx);
2152
2153 return 0;
2154 }
2155
2156 /*
2157 * Attach a performance event to a context
2158 */
2159 static void
2160 perf_install_in_context(struct perf_event_context *ctx,
2161 struct perf_event *event,
2162 int cpu)
2163 {
2164 struct task_struct *task = NULL;
2165
2166 lockdep_assert_held(&ctx->mutex);
2167
2168 event->ctx = ctx;
2169 if (event->cpu != -1)
2170 event->cpu = cpu;
2171
2172 /*
2173 * Installing events is tricky because we cannot rely on ctx->is_active
2174 * to be set in case this is the nr_events 0 -> 1 transition.
2175 *
2176 * So what we do is we add the event to the list here, which will allow
2177 * a future context switch to DTRT and then send a racy IPI. If the IPI
2178 * fails to hit the right task, this means a context switch must have
2179 * happened and that will have taken care of business.
2180 */
2181 raw_spin_lock_irq(&ctx->lock);
2182 update_context_time(ctx);
2183 /*
2184 * Update cgrp time only if current cgrp matches event->cgrp.
2185 * Must be done before calling add_event_to_ctx().
2186 */
2187 update_cgrp_time_from_event(event);
2188 add_event_to_ctx(event, ctx);
2189 task = ctx->task;
2190 raw_spin_unlock_irq(&ctx->lock);
2191
2192 if (task)
2193 task_function_call(task, __perf_install_in_context, ctx);
2194 else
2195 cpu_function_call(cpu, __perf_install_in_context, ctx);
2196 }
2197
2198 /*
2199 * Put a event into inactive state and update time fields.
2200 * Enabling the leader of a group effectively enables all
2201 * the group members that aren't explicitly disabled, so we
2202 * have to update their ->tstamp_enabled also.
2203 * Note: this works for group members as well as group leaders
2204 * since the non-leader members' sibling_lists will be empty.
2205 */
2206 static void __perf_event_mark_enabled(struct perf_event *event)
2207 {
2208 struct perf_event *sub;
2209 u64 tstamp = perf_event_time(event);
2210
2211 event->state = PERF_EVENT_STATE_INACTIVE;
2212 event->tstamp_enabled = tstamp - event->total_time_enabled;
2213 list_for_each_entry(sub, &event->sibling_list, group_entry) {
2214 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
2215 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
2216 }
2217 }
2218
2219 /*
2220 * Cross CPU call to enable a performance event
2221 */
2222 static void __perf_event_enable(struct perf_event *event,
2223 struct perf_cpu_context *cpuctx,
2224 struct perf_event_context *ctx,
2225 void *info)
2226 {
2227 struct perf_event *leader = event->group_leader;
2228 struct perf_event_context *task_ctx;
2229
2230 if (event->state >= PERF_EVENT_STATE_INACTIVE)
2231 return;
2232
2233 update_context_time(ctx);
2234 __perf_event_mark_enabled(event);
2235
2236 if (!ctx->is_active)
2237 return;
2238
2239 if (!event_filter_match(event)) {
2240 if (is_cgroup_event(event)) {
2241 perf_cgroup_set_timestamp(current, ctx); // XXX ?
2242 perf_cgroup_defer_enabled(event);
2243 }
2244 return;
2245 }
2246
2247 /*
2248 * If the event is in a group and isn't the group leader,
2249 * then don't put it on unless the group is on.
2250 */
2251 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
2252 return;
2253
2254 task_ctx = cpuctx->task_ctx;
2255 if (ctx->task)
2256 WARN_ON_ONCE(task_ctx != ctx);
2257
2258 ctx_resched(cpuctx, task_ctx);
2259 }
2260
2261 /*
2262 * Enable a event.
2263 *
2264 * If event->ctx is a cloned context, callers must make sure that
2265 * every task struct that event->ctx->task could possibly point to
2266 * remains valid. This condition is satisfied when called through
2267 * perf_event_for_each_child or perf_event_for_each as described
2268 * for perf_event_disable.
2269 */
2270 static void _perf_event_enable(struct perf_event *event)
2271 {
2272 struct perf_event_context *ctx = event->ctx;
2273
2274 raw_spin_lock_irq(&ctx->lock);
2275 if (event->state >= PERF_EVENT_STATE_INACTIVE) {
2276 raw_spin_unlock_irq(&ctx->lock);
2277 return;
2278 }
2279
2280 /*
2281 * If the event is in error state, clear that first.
2282 *
2283 * That way, if we see the event in error state below, we know that it
2284 * has gone back into error state, as distinct from the task having
2285 * been scheduled away before the cross-call arrived.
2286 */
2287 if (event->state == PERF_EVENT_STATE_ERROR)
2288 event->state = PERF_EVENT_STATE_OFF;
2289 raw_spin_unlock_irq(&ctx->lock);
2290
2291 event_function_call(event, __perf_event_enable, NULL);
2292 }
2293
2294 /*
2295 * See perf_event_disable();
2296 */
2297 void perf_event_enable(struct perf_event *event)
2298 {
2299 struct perf_event_context *ctx;
2300
2301 ctx = perf_event_ctx_lock(event);
2302 _perf_event_enable(event);
2303 perf_event_ctx_unlock(event, ctx);
2304 }
2305 EXPORT_SYMBOL_GPL(perf_event_enable);
2306
2307 static int _perf_event_refresh(struct perf_event *event, int refresh)
2308 {
2309 /*
2310 * not supported on inherited events
2311 */
2312 if (event->attr.inherit || !is_sampling_event(event))
2313 return -EINVAL;
2314
2315 atomic_add(refresh, &event->event_limit);
2316 _perf_event_enable(event);
2317
2318 return 0;
2319 }
2320
2321 /*
2322 * See perf_event_disable()
2323 */
2324 int perf_event_refresh(struct perf_event *event, int refresh)
2325 {
2326 struct perf_event_context *ctx;
2327 int ret;
2328
2329 ctx = perf_event_ctx_lock(event);
2330 ret = _perf_event_refresh(event, refresh);
2331 perf_event_ctx_unlock(event, ctx);
2332
2333 return ret;
2334 }
2335 EXPORT_SYMBOL_GPL(perf_event_refresh);
2336
2337 static void ctx_sched_out(struct perf_event_context *ctx,
2338 struct perf_cpu_context *cpuctx,
2339 enum event_type_t event_type)
2340 {
2341 int is_active = ctx->is_active;
2342 struct perf_event *event;
2343
2344 lockdep_assert_held(&ctx->lock);
2345
2346 if (likely(!ctx->nr_events)) {
2347 /*
2348 * See __perf_remove_from_context().
2349 */
2350 WARN_ON_ONCE(ctx->is_active);
2351 if (ctx->task)
2352 WARN_ON_ONCE(cpuctx->task_ctx);
2353 return;
2354 }
2355
2356 ctx->is_active &= ~event_type;
2357 if (ctx->task) {
2358 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2359 if (!ctx->is_active)
2360 cpuctx->task_ctx = NULL;
2361 }
2362
2363 update_context_time(ctx);
2364 update_cgrp_time_from_cpuctx(cpuctx);
2365 if (!ctx->nr_active)
2366 return;
2367
2368 perf_pmu_disable(ctx->pmu);
2369 if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
2370 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2371 group_sched_out(event, cpuctx, ctx);
2372 }
2373
2374 if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
2375 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2376 group_sched_out(event, cpuctx, ctx);
2377 }
2378 perf_pmu_enable(ctx->pmu);
2379 }
2380
2381 /*
2382 * Test whether two contexts are equivalent, i.e. whether they have both been
2383 * cloned from the same version of the same context.
2384 *
2385 * Equivalence is measured using a generation number in the context that is
2386 * incremented on each modification to it; see unclone_ctx(), list_add_event()
2387 * and list_del_event().
2388 */
2389 static int context_equiv(struct perf_event_context *ctx1,
2390 struct perf_event_context *ctx2)
2391 {
2392 lockdep_assert_held(&ctx1->lock);
2393 lockdep_assert_held(&ctx2->lock);
2394
2395 /* Pinning disables the swap optimization */
2396 if (ctx1->pin_count || ctx2->pin_count)
2397 return 0;
2398
2399 /* If ctx1 is the parent of ctx2 */
2400 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2401 return 1;
2402
2403 /* If ctx2 is the parent of ctx1 */
2404 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2405 return 1;
2406
2407 /*
2408 * If ctx1 and ctx2 have the same parent; we flatten the parent
2409 * hierarchy, see perf_event_init_context().
2410 */
2411 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2412 ctx1->parent_gen == ctx2->parent_gen)
2413 return 1;
2414
2415 /* Unmatched */
2416 return 0;
2417 }
2418
2419 static void __perf_event_sync_stat(struct perf_event *event,
2420 struct perf_event *next_event)
2421 {
2422 u64 value;
2423
2424 if (!event->attr.inherit_stat)
2425 return;
2426
2427 /*
2428 * Update the event value, we cannot use perf_event_read()
2429 * because we're in the middle of a context switch and have IRQs
2430 * disabled, which upsets smp_call_function_single(), however
2431 * we know the event must be on the current CPU, therefore we
2432 * don't need to use it.
2433 */
2434 switch (event->state) {
2435 case PERF_EVENT_STATE_ACTIVE:
2436 event->pmu->read(event);
2437 /* fall-through */
2438
2439 case PERF_EVENT_STATE_INACTIVE:
2440 update_event_times(event);
2441 break;
2442
2443 default:
2444 break;
2445 }
2446
2447 /*
2448 * In order to keep per-task stats reliable we need to flip the event
2449 * values when we flip the contexts.
2450 */
2451 value = local64_read(&next_event->count);
2452 value = local64_xchg(&event->count, value);
2453 local64_set(&next_event->count, value);
2454
2455 swap(event->total_time_enabled, next_event->total_time_enabled);
2456 swap(event->total_time_running, next_event->total_time_running);
2457
2458 /*
2459 * Since we swizzled the values, update the user visible data too.
2460 */
2461 perf_event_update_userpage(event);
2462 perf_event_update_userpage(next_event);
2463 }
2464
2465 static void perf_event_sync_stat(struct perf_event_context *ctx,
2466 struct perf_event_context *next_ctx)
2467 {
2468 struct perf_event *event, *next_event;
2469
2470 if (!ctx->nr_stat)
2471 return;
2472
2473 update_context_time(ctx);
2474
2475 event = list_first_entry(&ctx->event_list,
2476 struct perf_event, event_entry);
2477
2478 next_event = list_first_entry(&next_ctx->event_list,
2479 struct perf_event, event_entry);
2480
2481 while (&event->event_entry != &ctx->event_list &&
2482 &next_event->event_entry != &next_ctx->event_list) {
2483
2484 __perf_event_sync_stat(event, next_event);
2485
2486 event = list_next_entry(event, event_entry);
2487 next_event = list_next_entry(next_event, event_entry);
2488 }
2489 }
2490
2491 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2492 struct task_struct *next)
2493 {
2494 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2495 struct perf_event_context *next_ctx;
2496 struct perf_event_context *parent, *next_parent;
2497 struct perf_cpu_context *cpuctx;
2498 int do_switch = 1;
2499
2500 if (likely(!ctx))
2501 return;
2502
2503 cpuctx = __get_cpu_context(ctx);
2504 if (!cpuctx->task_ctx)
2505 return;
2506
2507 rcu_read_lock();
2508 next_ctx = next->perf_event_ctxp[ctxn];
2509 if (!next_ctx)
2510 goto unlock;
2511
2512 parent = rcu_dereference(ctx->parent_ctx);
2513 next_parent = rcu_dereference(next_ctx->parent_ctx);
2514
2515 /* If neither context have a parent context; they cannot be clones. */
2516 if (!parent && !next_parent)
2517 goto unlock;
2518
2519 if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2520 /*
2521 * Looks like the two contexts are clones, so we might be
2522 * able to optimize the context switch. We lock both
2523 * contexts and check that they are clones under the
2524 * lock (including re-checking that neither has been
2525 * uncloned in the meantime). It doesn't matter which
2526 * order we take the locks because no other cpu could
2527 * be trying to lock both of these tasks.
2528 */
2529 raw_spin_lock(&ctx->lock);
2530 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2531 if (context_equiv(ctx, next_ctx)) {
2532 /*
2533 * XXX do we need a memory barrier of sorts
2534 * wrt to rcu_dereference() of perf_event_ctxp
2535 */
2536 task->perf_event_ctxp[ctxn] = next_ctx;
2537 next->perf_event_ctxp[ctxn] = ctx;
2538 ctx->task = next;
2539 next_ctx->task = task;
2540
2541 swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
2542
2543 do_switch = 0;
2544
2545 perf_event_sync_stat(ctx, next_ctx);
2546 }
2547 raw_spin_unlock(&next_ctx->lock);
2548 raw_spin_unlock(&ctx->lock);
2549 }
2550 unlock:
2551 rcu_read_unlock();
2552
2553 if (do_switch) {
2554 raw_spin_lock(&ctx->lock);
2555 task_ctx_sched_out(cpuctx, ctx);
2556 raw_spin_unlock(&ctx->lock);
2557 }
2558 }
2559
2560 void perf_sched_cb_dec(struct pmu *pmu)
2561 {
2562 this_cpu_dec(perf_sched_cb_usages);
2563 }
2564
2565 void perf_sched_cb_inc(struct pmu *pmu)
2566 {
2567 this_cpu_inc(perf_sched_cb_usages);
2568 }
2569
2570 /*
2571 * This function provides the context switch callback to the lower code
2572 * layer. It is invoked ONLY when the context switch callback is enabled.
2573 */
2574 static void perf_pmu_sched_task(struct task_struct *prev,
2575 struct task_struct *next,
2576 bool sched_in)
2577 {
2578 struct perf_cpu_context *cpuctx;
2579 struct pmu *pmu;
2580 unsigned long flags;
2581
2582 if (prev == next)
2583 return;
2584
2585 local_irq_save(flags);
2586
2587 rcu_read_lock();
2588
2589 list_for_each_entry_rcu(pmu, &pmus, entry) {
2590 if (pmu->sched_task) {
2591 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2592
2593 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2594
2595 perf_pmu_disable(pmu);
2596
2597 pmu->sched_task(cpuctx->task_ctx, sched_in);
2598
2599 perf_pmu_enable(pmu);
2600
2601 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2602 }
2603 }
2604
2605 rcu_read_unlock();
2606
2607 local_irq_restore(flags);
2608 }
2609
2610 static void perf_event_switch(struct task_struct *task,
2611 struct task_struct *next_prev, bool sched_in);
2612
2613 #define for_each_task_context_nr(ctxn) \
2614 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2615
2616 /*
2617 * Called from scheduler to remove the events of the current task,
2618 * with interrupts disabled.
2619 *
2620 * We stop each event and update the event value in event->count.
2621 *
2622 * This does not protect us against NMI, but disable()
2623 * sets the disabled bit in the control field of event _before_
2624 * accessing the event control register. If a NMI hits, then it will
2625 * not restart the event.
2626 */
2627 void __perf_event_task_sched_out(struct task_struct *task,
2628 struct task_struct *next)
2629 {
2630 int ctxn;
2631
2632 if (__this_cpu_read(perf_sched_cb_usages))
2633 perf_pmu_sched_task(task, next, false);
2634
2635 if (atomic_read(&nr_switch_events))
2636 perf_event_switch(task, next, false);
2637
2638 for_each_task_context_nr(ctxn)
2639 perf_event_context_sched_out(task, ctxn, next);
2640
2641 /*
2642 * if cgroup events exist on this CPU, then we need
2643 * to check if we have to switch out PMU state.
2644 * cgroup event are system-wide mode only
2645 */
2646 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2647 perf_cgroup_sched_out(task, next);
2648 }
2649
2650 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2651 struct perf_event_context *ctx)
2652 {
2653 if (!cpuctx->task_ctx)
2654 return;
2655
2656 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2657 return;
2658
2659 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2660 }
2661
2662 /*
2663 * Called with IRQs disabled
2664 */
2665 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2666 enum event_type_t event_type)
2667 {
2668 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2669 }
2670
2671 static void
2672 ctx_pinned_sched_in(struct perf_event_context *ctx,
2673 struct perf_cpu_context *cpuctx)
2674 {
2675 struct perf_event *event;
2676
2677 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2678 if (event->state <= PERF_EVENT_STATE_OFF)
2679 continue;
2680 if (!event_filter_match(event))
2681 continue;
2682
2683 /* may need to reset tstamp_enabled */
2684 if (is_cgroup_event(event))
2685 perf_cgroup_mark_enabled(event, ctx);
2686
2687 if (group_can_go_on(event, cpuctx, 1))
2688 group_sched_in(event, cpuctx, ctx);
2689
2690 /*
2691 * If this pinned group hasn't been scheduled,
2692 * put it in error state.
2693 */
2694 if (event->state == PERF_EVENT_STATE_INACTIVE) {
2695 update_group_times(event);
2696 event->state = PERF_EVENT_STATE_ERROR;
2697 }
2698 }
2699 }
2700
2701 static void
2702 ctx_flexible_sched_in(struct perf_event_context *ctx,
2703 struct perf_cpu_context *cpuctx)
2704 {
2705 struct perf_event *event;
2706 int can_add_hw = 1;
2707
2708 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2709 /* Ignore events in OFF or ERROR state */
2710 if (event->state <= PERF_EVENT_STATE_OFF)
2711 continue;
2712 /*
2713 * Listen to the 'cpu' scheduling filter constraint
2714 * of events:
2715 */
2716 if (!event_filter_match(event))
2717 continue;
2718
2719 /* may need to reset tstamp_enabled */
2720 if (is_cgroup_event(event))
2721 perf_cgroup_mark_enabled(event, ctx);
2722
2723 if (group_can_go_on(event, cpuctx, can_add_hw)) {
2724 if (group_sched_in(event, cpuctx, ctx))
2725 can_add_hw = 0;
2726 }
2727 }
2728 }
2729
2730 static void
2731 ctx_sched_in(struct perf_event_context *ctx,
2732 struct perf_cpu_context *cpuctx,
2733 enum event_type_t event_type,
2734 struct task_struct *task)
2735 {
2736 int is_active = ctx->is_active;
2737 u64 now;
2738
2739 lockdep_assert_held(&ctx->lock);
2740
2741 if (likely(!ctx->nr_events))
2742 return;
2743
2744 ctx->is_active |= event_type;
2745 if (ctx->task) {
2746 if (!is_active)
2747 cpuctx->task_ctx = ctx;
2748 else
2749 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2750 }
2751
2752 now = perf_clock();
2753 ctx->timestamp = now;
2754 perf_cgroup_set_timestamp(task, ctx);
2755 /*
2756 * First go through the list and put on any pinned groups
2757 * in order to give them the best chance of going on.
2758 */
2759 if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
2760 ctx_pinned_sched_in(ctx, cpuctx);
2761
2762 /* Then walk through the lower prio flexible groups */
2763 if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
2764 ctx_flexible_sched_in(ctx, cpuctx);
2765 }
2766
2767 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
2768 enum event_type_t event_type,
2769 struct task_struct *task)
2770 {
2771 struct perf_event_context *ctx = &cpuctx->ctx;
2772
2773 ctx_sched_in(ctx, cpuctx, event_type, task);
2774 }
2775
2776 static void perf_event_context_sched_in(struct perf_event_context *ctx,
2777 struct task_struct *task)
2778 {
2779 struct perf_cpu_context *cpuctx;
2780
2781 cpuctx = __get_cpu_context(ctx);
2782 if (cpuctx->task_ctx == ctx)
2783 return;
2784
2785 perf_ctx_lock(cpuctx, ctx);
2786 perf_pmu_disable(ctx->pmu);
2787 /*
2788 * We want to keep the following priority order:
2789 * cpu pinned (that don't need to move), task pinned,
2790 * cpu flexible, task flexible.
2791 */
2792 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2793 perf_event_sched_in(cpuctx, ctx, task);
2794 perf_pmu_enable(ctx->pmu);
2795 perf_ctx_unlock(cpuctx, ctx);
2796 }
2797
2798 /*
2799 * Called from scheduler to add the events of the current task
2800 * with interrupts disabled.
2801 *
2802 * We restore the event value and then enable it.
2803 *
2804 * This does not protect us against NMI, but enable()
2805 * sets the enabled bit in the control field of event _before_
2806 * accessing the event control register. If a NMI hits, then it will
2807 * keep the event running.
2808 */
2809 void __perf_event_task_sched_in(struct task_struct *prev,
2810 struct task_struct *task)
2811 {
2812 struct perf_event_context *ctx;
2813 int ctxn;
2814
2815 /*
2816 * If cgroup events exist on this CPU, then we need to check if we have
2817 * to switch in PMU state; cgroup event are system-wide mode only.
2818 *
2819 * Since cgroup events are CPU events, we must schedule these in before
2820 * we schedule in the task events.
2821 */
2822 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2823 perf_cgroup_sched_in(prev, task);
2824
2825 for_each_task_context_nr(ctxn) {
2826 ctx = task->perf_event_ctxp[ctxn];
2827 if (likely(!ctx))
2828 continue;
2829
2830 perf_event_context_sched_in(ctx, task);
2831 }
2832
2833 if (atomic_read(&nr_switch_events))
2834 perf_event_switch(task, prev, true);
2835
2836 if (__this_cpu_read(perf_sched_cb_usages))
2837 perf_pmu_sched_task(prev, task, true);
2838 }
2839
2840 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
2841 {
2842 u64 frequency = event->attr.sample_freq;
2843 u64 sec = NSEC_PER_SEC;
2844 u64 divisor, dividend;
2845
2846 int count_fls, nsec_fls, frequency_fls, sec_fls;
2847
2848 count_fls = fls64(count);
2849 nsec_fls = fls64(nsec);
2850 frequency_fls = fls64(frequency);
2851 sec_fls = 30;
2852
2853 /*
2854 * We got @count in @nsec, with a target of sample_freq HZ
2855 * the target period becomes:
2856 *
2857 * @count * 10^9
2858 * period = -------------------
2859 * @nsec * sample_freq
2860 *
2861 */
2862
2863 /*
2864 * Reduce accuracy by one bit such that @a and @b converge
2865 * to a similar magnitude.
2866 */
2867 #define REDUCE_FLS(a, b) \
2868 do { \
2869 if (a##_fls > b##_fls) { \
2870 a >>= 1; \
2871 a##_fls--; \
2872 } else { \
2873 b >>= 1; \
2874 b##_fls--; \
2875 } \
2876 } while (0)
2877
2878 /*
2879 * Reduce accuracy until either term fits in a u64, then proceed with
2880 * the other, so that finally we can do a u64/u64 division.
2881 */
2882 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
2883 REDUCE_FLS(nsec, frequency);
2884 REDUCE_FLS(sec, count);
2885 }
2886
2887 if (count_fls + sec_fls > 64) {
2888 divisor = nsec * frequency;
2889
2890 while (count_fls + sec_fls > 64) {
2891 REDUCE_FLS(count, sec);
2892 divisor >>= 1;
2893 }
2894
2895 dividend = count * sec;
2896 } else {
2897 dividend = count * sec;
2898
2899 while (nsec_fls + frequency_fls > 64) {
2900 REDUCE_FLS(nsec, frequency);
2901 dividend >>= 1;
2902 }
2903
2904 divisor = nsec * frequency;
2905 }
2906
2907 if (!divisor)
2908 return dividend;
2909
2910 return div64_u64(dividend, divisor);
2911 }
2912
2913 static DEFINE_PER_CPU(int, perf_throttled_count);
2914 static DEFINE_PER_CPU(u64, perf_throttled_seq);
2915
2916 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
2917 {
2918 struct hw_perf_event *hwc = &event->hw;
2919 s64 period, sample_period;
2920 s64 delta;
2921
2922 period = perf_calculate_period(event, nsec, count);
2923
2924 delta = (s64)(period - hwc->sample_period);
2925 delta = (delta + 7) / 8; /* low pass filter */
2926
2927 sample_period = hwc->sample_period + delta;
2928
2929 if (!sample_period)
2930 sample_period = 1;
2931
2932 hwc->sample_period = sample_period;
2933
2934 if (local64_read(&hwc->period_left) > 8*sample_period) {
2935 if (disable)
2936 event->pmu->stop(event, PERF_EF_UPDATE);
2937
2938 local64_set(&hwc->period_left, 0);
2939
2940 if (disable)
2941 event->pmu->start(event, PERF_EF_RELOAD);
2942 }
2943 }
2944
2945 /*
2946 * combine freq adjustment with unthrottling to avoid two passes over the
2947 * events. At the same time, make sure, having freq events does not change
2948 * the rate of unthrottling as that would introduce bias.
2949 */
2950 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
2951 int needs_unthr)
2952 {
2953 struct perf_event *event;
2954 struct hw_perf_event *hwc;
2955 u64 now, period = TICK_NSEC;
2956 s64 delta;
2957
2958 /*
2959 * only need to iterate over all events iff:
2960 * - context have events in frequency mode (needs freq adjust)
2961 * - there are events to unthrottle on this cpu
2962 */
2963 if (!(ctx->nr_freq || needs_unthr))
2964 return;
2965
2966 raw_spin_lock(&ctx->lock);
2967 perf_pmu_disable(ctx->pmu);
2968
2969 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
2970 if (event->state != PERF_EVENT_STATE_ACTIVE)
2971 continue;
2972
2973 if (!event_filter_match(event))
2974 continue;
2975
2976 perf_pmu_disable(event->pmu);
2977
2978 hwc = &event->hw;
2979
2980 if (hwc->interrupts == MAX_INTERRUPTS) {
2981 hwc->interrupts = 0;
2982 perf_log_throttle(event, 1);
2983 event->pmu->start(event, 0);
2984 }
2985
2986 if (!event->attr.freq || !event->attr.sample_freq)
2987 goto next;
2988
2989 /*
2990 * stop the event and update event->count
2991 */
2992 event->pmu->stop(event, PERF_EF_UPDATE);
2993
2994 now = local64_read(&event->count);
2995 delta = now - hwc->freq_count_stamp;
2996 hwc->freq_count_stamp = now;
2997
2998 /*
2999 * restart the event
3000 * reload only if value has changed
3001 * we have stopped the event so tell that
3002 * to perf_adjust_period() to avoid stopping it
3003 * twice.
3004 */
3005 if (delta > 0)
3006 perf_adjust_period(event, period, delta, false);
3007
3008 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3009 next:
3010 perf_pmu_enable(event->pmu);
3011 }
3012
3013 perf_pmu_enable(ctx->pmu);
3014 raw_spin_unlock(&ctx->lock);
3015 }
3016
3017 /*
3018 * Round-robin a context's events:
3019 */
3020 static void rotate_ctx(struct perf_event_context *ctx)
3021 {
3022 /*
3023 * Rotate the first entry last of non-pinned groups. Rotation might be
3024 * disabled by the inheritance code.
3025 */
3026 if (!ctx->rotate_disable)
3027 list_rotate_left(&ctx->flexible_groups);
3028 }
3029
3030 static int perf_rotate_context(struct perf_cpu_context *cpuctx)
3031 {
3032 struct perf_event_context *ctx = NULL;
3033 int rotate = 0;
3034
3035 if (cpuctx->ctx.nr_events) {
3036 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3037 rotate = 1;
3038 }
3039
3040 ctx = cpuctx->task_ctx;
3041 if (ctx && ctx->nr_events) {
3042 if (ctx->nr_events != ctx->nr_active)
3043 rotate = 1;
3044 }
3045
3046 if (!rotate)
3047 goto done;
3048
3049 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3050 perf_pmu_disable(cpuctx->ctx.pmu);
3051
3052 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3053 if (ctx)
3054 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
3055
3056 rotate_ctx(&cpuctx->ctx);
3057 if (ctx)
3058 rotate_ctx(ctx);
3059
3060 perf_event_sched_in(cpuctx, ctx, current);
3061
3062 perf_pmu_enable(cpuctx->ctx.pmu);
3063 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3064 done:
3065
3066 return rotate;
3067 }
3068
3069 #ifdef CONFIG_NO_HZ_FULL
3070 bool perf_event_can_stop_tick(void)
3071 {
3072 if (atomic_read(&nr_freq_events) ||
3073 __this_cpu_read(perf_throttled_count))
3074 return false;
3075 else
3076 return true;
3077 }
3078 #endif
3079
3080 void perf_event_task_tick(void)
3081 {
3082 struct list_head *head = this_cpu_ptr(&active_ctx_list);
3083 struct perf_event_context *ctx, *tmp;
3084 int throttled;
3085
3086 WARN_ON(!irqs_disabled());
3087
3088 __this_cpu_inc(perf_throttled_seq);
3089 throttled = __this_cpu_xchg(perf_throttled_count, 0);
3090
3091 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3092 perf_adjust_freq_unthr_context(ctx, throttled);
3093 }
3094
3095 static int event_enable_on_exec(struct perf_event *event,
3096 struct perf_event_context *ctx)
3097 {
3098 if (!event->attr.enable_on_exec)
3099 return 0;
3100
3101 event->attr.enable_on_exec = 0;
3102 if (event->state >= PERF_EVENT_STATE_INACTIVE)
3103 return 0;
3104
3105 __perf_event_mark_enabled(event);
3106
3107 return 1;
3108 }
3109
3110 /*
3111 * Enable all of a task's events that have been marked enable-on-exec.
3112 * This expects task == current.
3113 */
3114 static void perf_event_enable_on_exec(int ctxn)
3115 {
3116 struct perf_event_context *ctx, *clone_ctx = NULL;
3117 struct perf_cpu_context *cpuctx;
3118 struct perf_event *event;
3119 unsigned long flags;
3120 int enabled = 0;
3121
3122 local_irq_save(flags);
3123 ctx = current->perf_event_ctxp[ctxn];
3124 if (!ctx || !ctx->nr_events)
3125 goto out;
3126
3127 cpuctx = __get_cpu_context(ctx);
3128 perf_ctx_lock(cpuctx, ctx);
3129 list_for_each_entry(event, &ctx->event_list, event_entry)
3130 enabled |= event_enable_on_exec(event, ctx);
3131
3132 /*
3133 * Unclone and reschedule this context if we enabled any event.
3134 */
3135 if (enabled) {
3136 clone_ctx = unclone_ctx(ctx);
3137 ctx_resched(cpuctx, ctx);
3138 }
3139 perf_ctx_unlock(cpuctx, ctx);
3140
3141 out:
3142 local_irq_restore(flags);
3143
3144 if (clone_ctx)
3145 put_ctx(clone_ctx);
3146 }
3147
3148 void perf_event_exec(void)
3149 {
3150 int ctxn;
3151
3152 rcu_read_lock();
3153 for_each_task_context_nr(ctxn)
3154 perf_event_enable_on_exec(ctxn);
3155 rcu_read_unlock();
3156 }
3157
3158 struct perf_read_data {
3159 struct perf_event *event;
3160 bool group;
3161 int ret;
3162 };
3163
3164 /*
3165 * Cross CPU call to read the hardware event
3166 */
3167 static void __perf_event_read(void *info)
3168 {
3169 struct perf_read_data *data = info;
3170 struct perf_event *sub, *event = data->event;
3171 struct perf_event_context *ctx = event->ctx;
3172 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3173 struct pmu *pmu = event->pmu;
3174
3175 /*
3176 * If this is a task context, we need to check whether it is
3177 * the current task context of this cpu. If not it has been
3178 * scheduled out before the smp call arrived. In that case
3179 * event->count would have been updated to a recent sample
3180 * when the event was scheduled out.
3181 */
3182 if (ctx->task && cpuctx->task_ctx != ctx)
3183 return;
3184
3185 raw_spin_lock(&ctx->lock);
3186 if (ctx->is_active) {
3187 update_context_time(ctx);
3188 update_cgrp_time_from_event(event);
3189 }
3190
3191 update_event_times(event);
3192 if (event->state != PERF_EVENT_STATE_ACTIVE)
3193 goto unlock;
3194
3195 if (!data->group) {
3196 pmu->read(event);
3197 data->ret = 0;
3198 goto unlock;
3199 }
3200
3201 pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3202
3203 pmu->read(event);
3204
3205 list_for_each_entry(sub, &event->sibling_list, group_entry) {
3206 update_event_times(sub);
3207 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3208 /*
3209 * Use sibling's PMU rather than @event's since
3210 * sibling could be on different (eg: software) PMU.
3211 */
3212 sub->pmu->read(sub);
3213 }
3214 }
3215
3216 data->ret = pmu->commit_txn(pmu);
3217
3218 unlock:
3219 raw_spin_unlock(&ctx->lock);
3220 }
3221
3222 static inline u64 perf_event_count(struct perf_event *event)
3223 {
3224 if (event->pmu->count)
3225 return event->pmu->count(event);
3226
3227 return __perf_event_count(event);
3228 }
3229
3230 /*
3231 * NMI-safe method to read a local event, that is an event that
3232 * is:
3233 * - either for the current task, or for this CPU
3234 * - does not have inherit set, for inherited task events
3235 * will not be local and we cannot read them atomically
3236 * - must not have a pmu::count method
3237 */
3238 u64 perf_event_read_local(struct perf_event *event)
3239 {
3240 unsigned long flags;
3241 u64 val;
3242
3243 /*
3244 * Disabling interrupts avoids all counter scheduling (context
3245 * switches, timer based rotation and IPIs).
3246 */
3247 local_irq_save(flags);
3248
3249 /* If this is a per-task event, it must be for current */
3250 WARN_ON_ONCE((event->attach_state & PERF_ATTACH_TASK) &&
3251 event->hw.target != current);
3252
3253 /* If this is a per-CPU event, it must be for this CPU */
3254 WARN_ON_ONCE(!(event->attach_state & PERF_ATTACH_TASK) &&
3255 event->cpu != smp_processor_id());
3256
3257 /*
3258 * It must not be an event with inherit set, we cannot read
3259 * all child counters from atomic context.
3260 */
3261 WARN_ON_ONCE(event->attr.inherit);
3262
3263 /*
3264 * It must not have a pmu::count method, those are not
3265 * NMI safe.
3266 */
3267 WARN_ON_ONCE(event->pmu->count);
3268
3269 /*
3270 * If the event is currently on this CPU, its either a per-task event,
3271 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3272 * oncpu == -1).
3273 */
3274 if (event->oncpu == smp_processor_id())
3275 event->pmu->read(event);
3276
3277 val = local64_read(&event->count);
3278 local_irq_restore(flags);
3279
3280 return val;
3281 }
3282
3283 static int perf_event_read(struct perf_event *event, bool group)
3284 {
3285 int ret = 0;
3286
3287 /*
3288 * If event is enabled and currently active on a CPU, update the
3289 * value in the event structure:
3290 */
3291 if (event->state == PERF_EVENT_STATE_ACTIVE) {
3292 struct perf_read_data data = {
3293 .event = event,
3294 .group = group,
3295 .ret = 0,
3296 };
3297 smp_call_function_single(event->oncpu,
3298 __perf_event_read, &data, 1);
3299 ret = data.ret;
3300 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
3301 struct perf_event_context *ctx = event->ctx;
3302 unsigned long flags;
3303
3304 raw_spin_lock_irqsave(&ctx->lock, flags);
3305 /*
3306 * may read while context is not active
3307 * (e.g., thread is blocked), in that case
3308 * we cannot update context time
3309 */
3310 if (ctx->is_active) {
3311 update_context_time(ctx);
3312 update_cgrp_time_from_event(event);
3313 }
3314 if (group)
3315 update_group_times(event);
3316 else
3317 update_event_times(event);
3318 raw_spin_unlock_irqrestore(&ctx->lock, flags);
3319 }
3320
3321 return ret;
3322 }
3323
3324 /*
3325 * Initialize the perf_event context in a task_struct:
3326 */
3327 static void __perf_event_init_context(struct perf_event_context *ctx)
3328 {
3329 raw_spin_lock_init(&ctx->lock);
3330 mutex_init(&ctx->mutex);
3331 INIT_LIST_HEAD(&ctx->active_ctx_list);
3332 INIT_LIST_HEAD(&ctx->pinned_groups);
3333 INIT_LIST_HEAD(&ctx->flexible_groups);
3334 INIT_LIST_HEAD(&ctx->event_list);
3335 atomic_set(&ctx->refcount, 1);
3336 INIT_DELAYED_WORK(&ctx->orphans_remove, orphans_remove_work);
3337 }
3338
3339 static struct perf_event_context *
3340 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3341 {
3342 struct perf_event_context *ctx;
3343
3344 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3345 if (!ctx)
3346 return NULL;
3347
3348 __perf_event_init_context(ctx);
3349 if (task) {
3350 ctx->task = task;
3351 get_task_struct(task);
3352 }
3353 ctx->pmu = pmu;
3354
3355 return ctx;
3356 }
3357
3358 static struct task_struct *
3359 find_lively_task_by_vpid(pid_t vpid)
3360 {
3361 struct task_struct *task;
3362 int err;
3363
3364 rcu_read_lock();
3365 if (!vpid)
3366 task = current;
3367 else
3368 task = find_task_by_vpid(vpid);
3369 if (task)
3370 get_task_struct(task);
3371 rcu_read_unlock();
3372
3373 if (!task)
3374 return ERR_PTR(-ESRCH);
3375
3376 /* Reuse ptrace permission checks for now. */
3377 err = -EACCES;
3378 if (!ptrace_may_access(task, PTRACE_MODE_READ))
3379 goto errout;
3380
3381 return task;
3382 errout:
3383 put_task_struct(task);
3384 return ERR_PTR(err);
3385
3386 }
3387
3388 /*
3389 * Returns a matching context with refcount and pincount.
3390 */
3391 static struct perf_event_context *
3392 find_get_context(struct pmu *pmu, struct task_struct *task,
3393 struct perf_event *event)
3394 {
3395 struct perf_event_context *ctx, *clone_ctx = NULL;
3396 struct perf_cpu_context *cpuctx;
3397 void *task_ctx_data = NULL;
3398 unsigned long flags;
3399 int ctxn, err;
3400 int cpu = event->cpu;
3401
3402 if (!task) {
3403 /* Must be root to operate on a CPU event: */
3404 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
3405 return ERR_PTR(-EACCES);
3406
3407 /*
3408 * We could be clever and allow to attach a event to an
3409 * offline CPU and activate it when the CPU comes up, but
3410 * that's for later.
3411 */
3412 if (!cpu_online(cpu))
3413 return ERR_PTR(-ENODEV);
3414
3415 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
3416 ctx = &cpuctx->ctx;
3417 get_ctx(ctx);
3418 ++ctx->pin_count;
3419
3420 return ctx;
3421 }
3422
3423 err = -EINVAL;
3424 ctxn = pmu->task_ctx_nr;
3425 if (ctxn < 0)
3426 goto errout;
3427
3428 if (event->attach_state & PERF_ATTACH_TASK_DATA) {
3429 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
3430 if (!task_ctx_data) {
3431 err = -ENOMEM;
3432 goto errout;
3433 }
3434 }
3435
3436 retry:
3437 ctx = perf_lock_task_context(task, ctxn, &flags);
3438 if (ctx) {
3439 clone_ctx = unclone_ctx(ctx);
3440 ++ctx->pin_count;
3441
3442 if (task_ctx_data && !ctx->task_ctx_data) {
3443 ctx->task_ctx_data = task_ctx_data;
3444 task_ctx_data = NULL;
3445 }
3446 raw_spin_unlock_irqrestore(&ctx->lock, flags);
3447
3448 if (clone_ctx)
3449 put_ctx(clone_ctx);
3450 } else {
3451 ctx = alloc_perf_context(pmu, task);
3452 err = -ENOMEM;
3453 if (!ctx)
3454 goto errout;
3455
3456 if (task_ctx_data) {
3457 ctx->task_ctx_data = task_ctx_data;
3458 task_ctx_data = NULL;
3459 }
3460
3461 err = 0;
3462 mutex_lock(&task->perf_event_mutex);
3463 /*
3464 * If it has already passed perf_event_exit_task().
3465 * we must see PF_EXITING, it takes this mutex too.
3466 */
3467 if (task->flags & PF_EXITING)
3468 err = -ESRCH;
3469 else if (task->perf_event_ctxp[ctxn])
3470 err = -EAGAIN;
3471 else {
3472 get_ctx(ctx);
3473 ++ctx->pin_count;
3474 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3475 }
3476 mutex_unlock(&task->perf_event_mutex);
3477
3478 if (unlikely(err)) {
3479 put_ctx(ctx);
3480
3481 if (err == -EAGAIN)
3482 goto retry;
3483 goto errout;
3484 }
3485 }
3486
3487 kfree(task_ctx_data);
3488 return ctx;
3489
3490 errout:
3491 kfree(task_ctx_data);
3492 return ERR_PTR(err);
3493 }
3494
3495 static void perf_event_free_filter(struct perf_event *event);
3496 static void perf_event_free_bpf_prog(struct perf_event *event);
3497
3498 static void free_event_rcu(struct rcu_head *head)
3499 {
3500 struct perf_event *event;
3501
3502 event = container_of(head, struct perf_event, rcu_head);
3503 if (event->ns)
3504 put_pid_ns(event->ns);
3505 perf_event_free_filter(event);
3506 kfree(event);
3507 }
3508
3509 static void ring_buffer_attach(struct perf_event *event,
3510 struct ring_buffer *rb);
3511
3512 static void unaccount_event_cpu(struct perf_event *event, int cpu)
3513 {
3514 if (event->parent)
3515 return;
3516
3517 if (is_cgroup_event(event))
3518 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3519 }
3520
3521 static void unaccount_event(struct perf_event *event)
3522 {
3523 bool dec = false;
3524
3525 if (event->parent)
3526 return;
3527
3528 if (event->attach_state & PERF_ATTACH_TASK)
3529 dec = true;
3530 if (event->attr.mmap || event->attr.mmap_data)
3531 atomic_dec(&nr_mmap_events);
3532 if (event->attr.comm)
3533 atomic_dec(&nr_comm_events);
3534 if (event->attr.task)
3535 atomic_dec(&nr_task_events);
3536 if (event->attr.freq)
3537 atomic_dec(&nr_freq_events);
3538 if (event->attr.context_switch) {
3539 dec = true;
3540 atomic_dec(&nr_switch_events);
3541 }
3542 if (is_cgroup_event(event))
3543 dec = true;
3544 if (has_branch_stack(event))
3545 dec = true;
3546
3547 if (dec)
3548 static_key_slow_dec_deferred(&perf_sched_events);
3549
3550 unaccount_event_cpu(event, event->cpu);
3551 }
3552
3553 /*
3554 * The following implement mutual exclusion of events on "exclusive" pmus
3555 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
3556 * at a time, so we disallow creating events that might conflict, namely:
3557 *
3558 * 1) cpu-wide events in the presence of per-task events,
3559 * 2) per-task events in the presence of cpu-wide events,
3560 * 3) two matching events on the same context.
3561 *
3562 * The former two cases are handled in the allocation path (perf_event_alloc(),
3563 * __free_event()), the latter -- before the first perf_install_in_context().
3564 */
3565 static int exclusive_event_init(struct perf_event *event)
3566 {
3567 struct pmu *pmu = event->pmu;
3568
3569 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3570 return 0;
3571
3572 /*
3573 * Prevent co-existence of per-task and cpu-wide events on the
3574 * same exclusive pmu.
3575 *
3576 * Negative pmu::exclusive_cnt means there are cpu-wide
3577 * events on this "exclusive" pmu, positive means there are
3578 * per-task events.
3579 *
3580 * Since this is called in perf_event_alloc() path, event::ctx
3581 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
3582 * to mean "per-task event", because unlike other attach states it
3583 * never gets cleared.
3584 */
3585 if (event->attach_state & PERF_ATTACH_TASK) {
3586 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
3587 return -EBUSY;
3588 } else {
3589 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
3590 return -EBUSY;
3591 }
3592
3593 return 0;
3594 }
3595
3596 static void exclusive_event_destroy(struct perf_event *event)
3597 {
3598 struct pmu *pmu = event->pmu;
3599
3600 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3601 return;
3602
3603 /* see comment in exclusive_event_init() */
3604 if (event->attach_state & PERF_ATTACH_TASK)
3605 atomic_dec(&pmu->exclusive_cnt);
3606 else
3607 atomic_inc(&pmu->exclusive_cnt);
3608 }
3609
3610 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
3611 {
3612 if ((e1->pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) &&
3613 (e1->cpu == e2->cpu ||
3614 e1->cpu == -1 ||
3615 e2->cpu == -1))
3616 return true;
3617 return false;
3618 }
3619
3620 /* Called under the same ctx::mutex as perf_install_in_context() */
3621 static bool exclusive_event_installable(struct perf_event *event,
3622 struct perf_event_context *ctx)
3623 {
3624 struct perf_event *iter_event;
3625 struct pmu *pmu = event->pmu;
3626
3627 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3628 return true;
3629
3630 list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
3631 if (exclusive_event_match(iter_event, event))
3632 return false;
3633 }
3634
3635 return true;
3636 }
3637
3638 static void __free_event(struct perf_event *event)
3639 {
3640 if (!event->parent) {
3641 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
3642 put_callchain_buffers();
3643 }
3644
3645 perf_event_free_bpf_prog(event);
3646
3647 if (event->destroy)
3648 event->destroy(event);
3649
3650 if (event->ctx)
3651 put_ctx(event->ctx);
3652
3653 if (event->pmu) {
3654 exclusive_event_destroy(event);
3655 module_put(event->pmu->module);
3656 }
3657
3658 call_rcu(&event->rcu_head, free_event_rcu);
3659 }
3660
3661 static void _free_event(struct perf_event *event)
3662 {
3663 irq_work_sync(&event->pending);
3664
3665 unaccount_event(event);
3666
3667 if (event->rb) {
3668 /*
3669 * Can happen when we close an event with re-directed output.
3670 *
3671 * Since we have a 0 refcount, perf_mmap_close() will skip
3672 * over us; possibly making our ring_buffer_put() the last.
3673 */
3674 mutex_lock(&event->mmap_mutex);
3675 ring_buffer_attach(event, NULL);
3676 mutex_unlock(&event->mmap_mutex);
3677 }
3678
3679 if (is_cgroup_event(event))
3680 perf_detach_cgroup(event);
3681
3682 __free_event(event);
3683 }
3684
3685 /*
3686 * Used to free events which have a known refcount of 1, such as in error paths
3687 * where the event isn't exposed yet and inherited events.
3688 */
3689 static void free_event(struct perf_event *event)
3690 {
3691 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
3692 "unexpected event refcount: %ld; ptr=%p\n",
3693 atomic_long_read(&event->refcount), event)) {
3694 /* leak to avoid use-after-free */
3695 return;
3696 }
3697
3698 _free_event(event);
3699 }
3700
3701 /*
3702 * Remove user event from the owner task.
3703 */
3704 static void perf_remove_from_owner(struct perf_event *event)
3705 {
3706 struct task_struct *owner;
3707
3708 rcu_read_lock();
3709 owner = ACCESS_ONCE(event->owner);
3710 /*
3711 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
3712 * !owner it means the list deletion is complete and we can indeed
3713 * free this event, otherwise we need to serialize on
3714 * owner->perf_event_mutex.
3715 */
3716 smp_read_barrier_depends();
3717 if (owner) {
3718 /*
3719 * Since delayed_put_task_struct() also drops the last
3720 * task reference we can safely take a new reference
3721 * while holding the rcu_read_lock().
3722 */
3723 get_task_struct(owner);
3724 }
3725 rcu_read_unlock();
3726
3727 if (owner) {
3728 /*
3729 * If we're here through perf_event_exit_task() we're already
3730 * holding ctx->mutex which would be an inversion wrt. the
3731 * normal lock order.
3732 *
3733 * However we can safely take this lock because its the child
3734 * ctx->mutex.
3735 */
3736 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
3737
3738 /*
3739 * We have to re-check the event->owner field, if it is cleared
3740 * we raced with perf_event_exit_task(), acquiring the mutex
3741 * ensured they're done, and we can proceed with freeing the
3742 * event.
3743 */
3744 if (event->owner)
3745 list_del_init(&event->owner_entry);
3746 mutex_unlock(&owner->perf_event_mutex);
3747 put_task_struct(owner);
3748 }
3749 }
3750
3751 static void put_event(struct perf_event *event)
3752 {
3753 struct perf_event_context *ctx;
3754
3755 if (!atomic_long_dec_and_test(&event->refcount))
3756 return;
3757
3758 if (!is_kernel_event(event))
3759 perf_remove_from_owner(event);
3760
3761 /*
3762 * There are two ways this annotation is useful:
3763 *
3764 * 1) there is a lock recursion from perf_event_exit_task
3765 * see the comment there.
3766 *
3767 * 2) there is a lock-inversion with mmap_sem through
3768 * perf_read_group(), which takes faults while
3769 * holding ctx->mutex, however this is called after
3770 * the last filedesc died, so there is no possibility
3771 * to trigger the AB-BA case.
3772 */
3773 ctx = perf_event_ctx_lock_nested(event, SINGLE_DEPTH_NESTING);
3774 WARN_ON_ONCE(ctx->parent_ctx);
3775 perf_remove_from_context(event, true);
3776 perf_event_ctx_unlock(event, ctx);
3777
3778 _free_event(event);
3779 }
3780
3781 int perf_event_release_kernel(struct perf_event *event)
3782 {
3783 put_event(event);
3784 return 0;
3785 }
3786 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
3787
3788 /*
3789 * Called when the last reference to the file is gone.
3790 */
3791 static int perf_release(struct inode *inode, struct file *file)
3792 {
3793 put_event(file->private_data);
3794 return 0;
3795 }
3796
3797 /*
3798 * Remove all orphanes events from the context.
3799 */
3800 static void orphans_remove_work(struct work_struct *work)
3801 {
3802 struct perf_event_context *ctx;
3803 struct perf_event *event, *tmp;
3804
3805 ctx = container_of(work, struct perf_event_context,
3806 orphans_remove.work);
3807
3808 mutex_lock(&ctx->mutex);
3809 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry) {
3810 struct perf_event *parent_event = event->parent;
3811
3812 if (!is_orphaned_child(event))
3813 continue;
3814
3815 perf_remove_from_context(event, true);
3816
3817 mutex_lock(&parent_event->child_mutex);
3818 list_del_init(&event->child_list);
3819 mutex_unlock(&parent_event->child_mutex);
3820
3821 free_event(event);
3822 put_event(parent_event);
3823 }
3824
3825 raw_spin_lock_irq(&ctx->lock);
3826 ctx->orphans_remove_sched = false;
3827 raw_spin_unlock_irq(&ctx->lock);
3828 mutex_unlock(&ctx->mutex);
3829
3830 put_ctx(ctx);
3831 }
3832
3833 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
3834 {
3835 struct perf_event *child;
3836 u64 total = 0;
3837
3838 *enabled = 0;
3839 *running = 0;
3840
3841 mutex_lock(&event->child_mutex);
3842
3843 (void)perf_event_read(event, false);
3844 total += perf_event_count(event);
3845
3846 *enabled += event->total_time_enabled +
3847 atomic64_read(&event->child_total_time_enabled);
3848 *running += event->total_time_running +
3849 atomic64_read(&event->child_total_time_running);
3850
3851 list_for_each_entry(child, &event->child_list, child_list) {
3852 (void)perf_event_read(child, false);
3853 total += perf_event_count(child);
3854 *enabled += child->total_time_enabled;
3855 *running += child->total_time_running;
3856 }
3857 mutex_unlock(&event->child_mutex);
3858
3859 return total;
3860 }
3861 EXPORT_SYMBOL_GPL(perf_event_read_value);
3862
3863 static int __perf_read_group_add(struct perf_event *leader,
3864 u64 read_format, u64 *values)
3865 {
3866 struct perf_event *sub;
3867 int n = 1; /* skip @nr */
3868 int ret;
3869
3870 ret = perf_event_read(leader, true);
3871 if (ret)
3872 return ret;
3873
3874 /*
3875 * Since we co-schedule groups, {enabled,running} times of siblings
3876 * will be identical to those of the leader, so we only publish one
3877 * set.
3878 */
3879 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3880 values[n++] += leader->total_time_enabled +
3881 atomic64_read(&leader->child_total_time_enabled);
3882 }
3883
3884 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3885 values[n++] += leader->total_time_running +
3886 atomic64_read(&leader->child_total_time_running);
3887 }
3888
3889 /*
3890 * Write {count,id} tuples for every sibling.
3891 */
3892 values[n++] += perf_event_count(leader);
3893 if (read_format & PERF_FORMAT_ID)
3894 values[n++] = primary_event_id(leader);
3895
3896 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3897 values[n++] += perf_event_count(sub);
3898 if (read_format & PERF_FORMAT_ID)
3899 values[n++] = primary_event_id(sub);
3900 }
3901
3902 return 0;
3903 }
3904
3905 static int perf_read_group(struct perf_event *event,
3906 u64 read_format, char __user *buf)
3907 {
3908 struct perf_event *leader = event->group_leader, *child;
3909 struct perf_event_context *ctx = leader->ctx;
3910 int ret;
3911 u64 *values;
3912
3913 lockdep_assert_held(&ctx->mutex);
3914
3915 values = kzalloc(event->read_size, GFP_KERNEL);
3916 if (!values)
3917 return -ENOMEM;
3918
3919 values[0] = 1 + leader->nr_siblings;
3920
3921 /*
3922 * By locking the child_mutex of the leader we effectively
3923 * lock the child list of all siblings.. XXX explain how.
3924 */
3925 mutex_lock(&leader->child_mutex);
3926
3927 ret = __perf_read_group_add(leader, read_format, values);
3928 if (ret)
3929 goto unlock;
3930
3931 list_for_each_entry(child, &leader->child_list, child_list) {
3932 ret = __perf_read_group_add(child, read_format, values);
3933 if (ret)
3934 goto unlock;
3935 }
3936
3937 mutex_unlock(&leader->child_mutex);
3938
3939 ret = event->read_size;
3940 if (copy_to_user(buf, values, event->read_size))
3941 ret = -EFAULT;
3942 goto out;
3943
3944 unlock:
3945 mutex_unlock(&leader->child_mutex);
3946 out:
3947 kfree(values);
3948 return ret;
3949 }
3950
3951 static int perf_read_one(struct perf_event *event,
3952 u64 read_format, char __user *buf)
3953 {
3954 u64 enabled, running;
3955 u64 values[4];
3956 int n = 0;
3957
3958 values[n++] = perf_event_read_value(event, &enabled, &running);
3959 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3960 values[n++] = enabled;
3961 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3962 values[n++] = running;
3963 if (read_format & PERF_FORMAT_ID)
3964 values[n++] = primary_event_id(event);
3965
3966 if (copy_to_user(buf, values, n * sizeof(u64)))
3967 return -EFAULT;
3968
3969 return n * sizeof(u64);
3970 }
3971
3972 static bool is_event_hup(struct perf_event *event)
3973 {
3974 bool no_children;
3975
3976 if (event->state != PERF_EVENT_STATE_EXIT)
3977 return false;
3978
3979 mutex_lock(&event->child_mutex);
3980 no_children = list_empty(&event->child_list);
3981 mutex_unlock(&event->child_mutex);
3982 return no_children;
3983 }
3984
3985 /*
3986 * Read the performance event - simple non blocking version for now
3987 */
3988 static ssize_t
3989 __perf_read(struct perf_event *event, char __user *buf, size_t count)
3990 {
3991 u64 read_format = event->attr.read_format;
3992 int ret;
3993
3994 /*
3995 * Return end-of-file for a read on a event that is in
3996 * error state (i.e. because it was pinned but it couldn't be
3997 * scheduled on to the CPU at some point).
3998 */
3999 if (event->state == PERF_EVENT_STATE_ERROR)
4000 return 0;
4001
4002 if (count < event->read_size)
4003 return -ENOSPC;
4004
4005 WARN_ON_ONCE(event->ctx->parent_ctx);
4006 if (read_format & PERF_FORMAT_GROUP)
4007 ret = perf_read_group(event, read_format, buf);
4008 else
4009 ret = perf_read_one(event, read_format, buf);
4010
4011 return ret;
4012 }
4013
4014 static ssize_t
4015 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4016 {
4017 struct perf_event *event = file->private_data;
4018 struct perf_event_context *ctx;
4019 int ret;
4020
4021 ctx = perf_event_ctx_lock(event);
4022 ret = __perf_read(event, buf, count);
4023 perf_event_ctx_unlock(event, ctx);
4024
4025 return ret;
4026 }
4027
4028 static unsigned int perf_poll(struct file *file, poll_table *wait)
4029 {
4030 struct perf_event *event = file->private_data;
4031 struct ring_buffer *rb;
4032 unsigned int events = POLLHUP;
4033
4034 poll_wait(file, &event->waitq, wait);
4035
4036 if (is_event_hup(event))
4037 return events;
4038
4039 /*
4040 * Pin the event->rb by taking event->mmap_mutex; otherwise
4041 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
4042 */
4043 mutex_lock(&event->mmap_mutex);
4044 rb = event->rb;
4045 if (rb)
4046 events = atomic_xchg(&rb->poll, 0);
4047 mutex_unlock(&event->mmap_mutex);
4048 return events;
4049 }
4050
4051 static void _perf_event_reset(struct perf_event *event)
4052 {
4053 (void)perf_event_read(event, false);
4054 local64_set(&event->count, 0);
4055 perf_event_update_userpage(event);
4056 }
4057
4058 /*
4059 * Holding the top-level event's child_mutex means that any
4060 * descendant process that has inherited this event will block
4061 * in sync_child_event if it goes to exit, thus satisfying the
4062 * task existence requirements of perf_event_enable/disable.
4063 */
4064 static void perf_event_for_each_child(struct perf_event *event,
4065 void (*func)(struct perf_event *))
4066 {
4067 struct perf_event *child;
4068
4069 WARN_ON_ONCE(event->ctx->parent_ctx);
4070
4071 mutex_lock(&event->child_mutex);
4072 func(event);
4073 list_for_each_entry(child, &event->child_list, child_list)
4074 func(child);
4075 mutex_unlock(&event->child_mutex);
4076 }
4077
4078 static void perf_event_for_each(struct perf_event *event,
4079 void (*func)(struct perf_event *))
4080 {
4081 struct perf_event_context *ctx = event->ctx;
4082 struct perf_event *sibling;
4083
4084 lockdep_assert_held(&ctx->mutex);
4085
4086 event = event->group_leader;
4087
4088 perf_event_for_each_child(event, func);
4089 list_for_each_entry(sibling, &event->sibling_list, group_entry)
4090 perf_event_for_each_child(sibling, func);
4091 }
4092
4093 static void __perf_event_period(struct perf_event *event,
4094 struct perf_cpu_context *cpuctx,
4095 struct perf_event_context *ctx,
4096 void *info)
4097 {
4098 u64 value = *((u64 *)info);
4099 bool active;
4100
4101 if (event->attr.freq) {
4102 event->attr.sample_freq = value;
4103 } else {
4104 event->attr.sample_period = value;
4105 event->hw.sample_period = value;
4106 }
4107
4108 active = (event->state == PERF_EVENT_STATE_ACTIVE);
4109 if (active) {
4110 perf_pmu_disable(ctx->pmu);
4111 event->pmu->stop(event, PERF_EF_UPDATE);
4112 }
4113
4114 local64_set(&event->hw.period_left, 0);
4115
4116 if (active) {
4117 event->pmu->start(event, PERF_EF_RELOAD);
4118 perf_pmu_enable(ctx->pmu);
4119 }
4120 }
4121
4122 static int perf_event_period(struct perf_event *event, u64 __user *arg)
4123 {
4124 u64 value;
4125
4126 if (!is_sampling_event(event))
4127 return -EINVAL;
4128
4129 if (copy_from_user(&value, arg, sizeof(value)))
4130 return -EFAULT;
4131
4132 if (!value)
4133 return -EINVAL;
4134
4135 if (event->attr.freq && value > sysctl_perf_event_sample_rate)
4136 return -EINVAL;
4137
4138 event_function_call(event, __perf_event_period, &value);
4139
4140 return 0;
4141 }
4142
4143 static const struct file_operations perf_fops;
4144
4145 static inline int perf_fget_light(int fd, struct fd *p)
4146 {
4147 struct fd f = fdget(fd);
4148 if (!f.file)
4149 return -EBADF;
4150
4151 if (f.file->f_op != &perf_fops) {
4152 fdput(f);
4153 return -EBADF;
4154 }
4155 *p = f;
4156 return 0;
4157 }
4158
4159 static int perf_event_set_output(struct perf_event *event,
4160 struct perf_event *output_event);
4161 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
4162 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
4163
4164 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
4165 {
4166 void (*func)(struct perf_event *);
4167 u32 flags = arg;
4168
4169 switch (cmd) {
4170 case PERF_EVENT_IOC_ENABLE:
4171 func = _perf_event_enable;
4172 break;
4173 case PERF_EVENT_IOC_DISABLE:
4174 func = _perf_event_disable;
4175 break;
4176 case PERF_EVENT_IOC_RESET:
4177 func = _perf_event_reset;
4178 break;
4179
4180 case PERF_EVENT_IOC_REFRESH:
4181 return _perf_event_refresh(event, arg);
4182
4183 case PERF_EVENT_IOC_PERIOD:
4184 return perf_event_period(event, (u64 __user *)arg);
4185
4186 case PERF_EVENT_IOC_ID:
4187 {
4188 u64 id = primary_event_id(event);
4189
4190 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
4191 return -EFAULT;
4192 return 0;
4193 }
4194
4195 case PERF_EVENT_IOC_SET_OUTPUT:
4196 {
4197 int ret;
4198 if (arg != -1) {
4199 struct perf_event *output_event;
4200 struct fd output;
4201 ret = perf_fget_light(arg, &output);
4202 if (ret)
4203 return ret;
4204 output_event = output.file->private_data;
4205 ret = perf_event_set_output(event, output_event);
4206 fdput(output);
4207 } else {
4208 ret = perf_event_set_output(event, NULL);
4209 }
4210 return ret;
4211 }
4212
4213 case PERF_EVENT_IOC_SET_FILTER:
4214 return perf_event_set_filter(event, (void __user *)arg);
4215
4216 case PERF_EVENT_IOC_SET_BPF:
4217 return perf_event_set_bpf_prog(event, arg);
4218
4219 default:
4220 return -ENOTTY;
4221 }
4222
4223 if (flags & PERF_IOC_FLAG_GROUP)
4224 perf_event_for_each(event, func);
4225 else
4226 perf_event_for_each_child(event, func);
4227
4228 return 0;
4229 }
4230
4231 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4232 {
4233 struct perf_event *event = file->private_data;
4234 struct perf_event_context *ctx;
4235 long ret;
4236
4237 ctx = perf_event_ctx_lock(event);
4238 ret = _perf_ioctl(event, cmd, arg);
4239 perf_event_ctx_unlock(event, ctx);
4240
4241 return ret;
4242 }
4243
4244 #ifdef CONFIG_COMPAT
4245 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
4246 unsigned long arg)
4247 {
4248 switch (_IOC_NR(cmd)) {
4249 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
4250 case _IOC_NR(PERF_EVENT_IOC_ID):
4251 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
4252 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
4253 cmd &= ~IOCSIZE_MASK;
4254 cmd |= sizeof(void *) << IOCSIZE_SHIFT;
4255 }
4256 break;
4257 }
4258 return perf_ioctl(file, cmd, arg);
4259 }
4260 #else
4261 # define perf_compat_ioctl NULL
4262 #endif
4263
4264 int perf_event_task_enable(void)
4265 {
4266 struct perf_event_context *ctx;
4267 struct perf_event *event;
4268
4269 mutex_lock(&current->perf_event_mutex);
4270 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4271 ctx = perf_event_ctx_lock(event);
4272 perf_event_for_each_child(event, _perf_event_enable);
4273 perf_event_ctx_unlock(event, ctx);
4274 }
4275 mutex_unlock(&current->perf_event_mutex);
4276
4277 return 0;
4278 }
4279
4280 int perf_event_task_disable(void)
4281 {
4282 struct perf_event_context *ctx;
4283 struct perf_event *event;
4284
4285 mutex_lock(&current->perf_event_mutex);
4286 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4287 ctx = perf_event_ctx_lock(event);
4288 perf_event_for_each_child(event, _perf_event_disable);
4289 perf_event_ctx_unlock(event, ctx);
4290 }
4291 mutex_unlock(&current->perf_event_mutex);
4292
4293 return 0;
4294 }
4295
4296 static int perf_event_index(struct perf_event *event)
4297 {
4298 if (event->hw.state & PERF_HES_STOPPED)
4299 return 0;
4300
4301 if (event->state != PERF_EVENT_STATE_ACTIVE)
4302 return 0;
4303
4304 return event->pmu->event_idx(event);
4305 }
4306
4307 static void calc_timer_values(struct perf_event *event,
4308 u64 *now,
4309 u64 *enabled,
4310 u64 *running)
4311 {
4312 u64 ctx_time;
4313
4314 *now = perf_clock();
4315 ctx_time = event->shadow_ctx_time + *now;
4316 *enabled = ctx_time - event->tstamp_enabled;
4317 *running = ctx_time - event->tstamp_running;
4318 }
4319
4320 static void perf_event_init_userpage(struct perf_event *event)
4321 {
4322 struct perf_event_mmap_page *userpg;
4323 struct ring_buffer *rb;
4324
4325 rcu_read_lock();
4326 rb = rcu_dereference(event->rb);
4327 if (!rb)
4328 goto unlock;
4329
4330 userpg = rb->user_page;
4331
4332 /* Allow new userspace to detect that bit 0 is deprecated */
4333 userpg->cap_bit0_is_deprecated = 1;
4334 userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
4335 userpg->data_offset = PAGE_SIZE;
4336 userpg->data_size = perf_data_size(rb);
4337
4338 unlock:
4339 rcu_read_unlock();
4340 }
4341
4342 void __weak arch_perf_update_userpage(
4343 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
4344 {
4345 }
4346
4347 /*
4348 * Callers need to ensure there can be no nesting of this function, otherwise
4349 * the seqlock logic goes bad. We can not serialize this because the arch
4350 * code calls this from NMI context.
4351 */
4352 void perf_event_update_userpage(struct perf_event *event)
4353 {
4354 struct perf_event_mmap_page *userpg;
4355 struct ring_buffer *rb;
4356 u64 enabled, running, now;
4357
4358 rcu_read_lock();
4359 rb = rcu_dereference(event->rb);
4360 if (!rb)
4361 goto unlock;
4362
4363 /*
4364 * compute total_time_enabled, total_time_running
4365 * based on snapshot values taken when the event
4366 * was last scheduled in.
4367 *
4368 * we cannot simply called update_context_time()
4369 * because of locking issue as we can be called in
4370 * NMI context
4371 */
4372 calc_timer_values(event, &now, &enabled, &running);
4373
4374 userpg = rb->user_page;
4375 /*
4376 * Disable preemption so as to not let the corresponding user-space
4377 * spin too long if we get preempted.
4378 */
4379 preempt_disable();
4380 ++userpg->lock;
4381 barrier();
4382 userpg->index = perf_event_index(event);
4383 userpg->offset = perf_event_count(event);
4384 if (userpg->index)
4385 userpg->offset -= local64_read(&event->hw.prev_count);
4386
4387 userpg->time_enabled = enabled +
4388 atomic64_read(&event->child_total_time_enabled);
4389
4390 userpg->time_running = running +
4391 atomic64_read(&event->child_total_time_running);
4392
4393 arch_perf_update_userpage(event, userpg, now);
4394
4395 barrier();
4396 ++userpg->lock;
4397 preempt_enable();
4398 unlock:
4399 rcu_read_unlock();
4400 }
4401
4402 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
4403 {
4404 struct perf_event *event = vma->vm_file->private_data;
4405 struct ring_buffer *rb;
4406 int ret = VM_FAULT_SIGBUS;
4407
4408 if (vmf->flags & FAULT_FLAG_MKWRITE) {
4409 if (vmf->pgoff == 0)
4410 ret = 0;
4411 return ret;
4412 }
4413
4414 rcu_read_lock();
4415 rb = rcu_dereference(event->rb);
4416 if (!rb)
4417 goto unlock;
4418
4419 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
4420 goto unlock;
4421
4422 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
4423 if (!vmf->page)
4424 goto unlock;
4425
4426 get_page(vmf->page);
4427 vmf->page->mapping = vma->vm_file->f_mapping;
4428 vmf->page->index = vmf->pgoff;
4429
4430 ret = 0;
4431 unlock:
4432 rcu_read_unlock();
4433
4434 return ret;
4435 }
4436
4437 static void ring_buffer_attach(struct perf_event *event,
4438 struct ring_buffer *rb)
4439 {
4440 struct ring_buffer *old_rb = NULL;
4441 unsigned long flags;
4442
4443 if (event->rb) {
4444 /*
4445 * Should be impossible, we set this when removing
4446 * event->rb_entry and wait/clear when adding event->rb_entry.
4447 */
4448 WARN_ON_ONCE(event->rcu_pending);
4449
4450 old_rb = event->rb;
4451 spin_lock_irqsave(&old_rb->event_lock, flags);
4452 list_del_rcu(&event->rb_entry);
4453 spin_unlock_irqrestore(&old_rb->event_lock, flags);
4454
4455 event->rcu_batches = get_state_synchronize_rcu();
4456 event->rcu_pending = 1;
4457 }
4458
4459 if (rb) {
4460 if (event->rcu_pending) {
4461 cond_synchronize_rcu(event->rcu_batches);
4462 event->rcu_pending = 0;
4463 }
4464
4465 spin_lock_irqsave(&rb->event_lock, flags);
4466 list_add_rcu(&event->rb_entry, &rb->event_list);
4467 spin_unlock_irqrestore(&rb->event_lock, flags);
4468 }
4469
4470 rcu_assign_pointer(event->rb, rb);
4471
4472 if (old_rb) {
4473 ring_buffer_put(old_rb);
4474 /*
4475 * Since we detached before setting the new rb, so that we
4476 * could attach the new rb, we could have missed a wakeup.
4477 * Provide it now.
4478 */
4479 wake_up_all(&event->waitq);
4480 }
4481 }
4482
4483 static void ring_buffer_wakeup(struct perf_event *event)
4484 {
4485 struct ring_buffer *rb;
4486
4487 rcu_read_lock();
4488 rb = rcu_dereference(event->rb);
4489 if (rb) {
4490 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
4491 wake_up_all(&event->waitq);
4492 }
4493 rcu_read_unlock();
4494 }
4495
4496 struct ring_buffer *ring_buffer_get(struct perf_event *event)
4497 {
4498 struct ring_buffer *rb;
4499
4500 rcu_read_lock();
4501 rb = rcu_dereference(event->rb);
4502 if (rb) {
4503 if (!atomic_inc_not_zero(&rb->refcount))
4504 rb = NULL;
4505 }
4506 rcu_read_unlock();
4507
4508 return rb;
4509 }
4510
4511 void ring_buffer_put(struct ring_buffer *rb)
4512 {
4513 if (!atomic_dec_and_test(&rb->refcount))
4514 return;
4515
4516 WARN_ON_ONCE(!list_empty(&rb->event_list));
4517
4518 call_rcu(&rb->rcu_head, rb_free_rcu);
4519 }
4520
4521 static void perf_mmap_open(struct vm_area_struct *vma)
4522 {
4523 struct perf_event *event = vma->vm_file->private_data;
4524
4525 atomic_inc(&event->mmap_count);
4526 atomic_inc(&event->rb->mmap_count);
4527
4528 if (vma->vm_pgoff)
4529 atomic_inc(&event->rb->aux_mmap_count);
4530
4531 if (event->pmu->event_mapped)
4532 event->pmu->event_mapped(event);
4533 }
4534
4535 /*
4536 * A buffer can be mmap()ed multiple times; either directly through the same
4537 * event, or through other events by use of perf_event_set_output().
4538 *
4539 * In order to undo the VM accounting done by perf_mmap() we need to destroy
4540 * the buffer here, where we still have a VM context. This means we need
4541 * to detach all events redirecting to us.
4542 */
4543 static void perf_mmap_close(struct vm_area_struct *vma)
4544 {
4545 struct perf_event *event = vma->vm_file->private_data;
4546
4547 struct ring_buffer *rb = ring_buffer_get(event);
4548 struct user_struct *mmap_user = rb->mmap_user;
4549 int mmap_locked = rb->mmap_locked;
4550 unsigned long size = perf_data_size(rb);
4551
4552 if (event->pmu->event_unmapped)
4553 event->pmu->event_unmapped(event);
4554
4555 /*
4556 * rb->aux_mmap_count will always drop before rb->mmap_count and
4557 * event->mmap_count, so it is ok to use event->mmap_mutex to
4558 * serialize with perf_mmap here.
4559 */
4560 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
4561 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
4562 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
4563 vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
4564
4565 rb_free_aux(rb);
4566 mutex_unlock(&event->mmap_mutex);
4567 }
4568
4569 atomic_dec(&rb->mmap_count);
4570
4571 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
4572 goto out_put;
4573
4574 ring_buffer_attach(event, NULL);
4575 mutex_unlock(&event->mmap_mutex);
4576
4577 /* If there's still other mmap()s of this buffer, we're done. */
4578 if (atomic_read(&rb->mmap_count))
4579 goto out_put;
4580
4581 /*
4582 * No other mmap()s, detach from all other events that might redirect
4583 * into the now unreachable buffer. Somewhat complicated by the
4584 * fact that rb::event_lock otherwise nests inside mmap_mutex.
4585 */
4586 again:
4587 rcu_read_lock();
4588 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
4589 if (!atomic_long_inc_not_zero(&event->refcount)) {
4590 /*
4591 * This event is en-route to free_event() which will
4592 * detach it and remove it from the list.
4593 */
4594 continue;
4595 }
4596 rcu_read_unlock();
4597
4598 mutex_lock(&event->mmap_mutex);
4599 /*
4600 * Check we didn't race with perf_event_set_output() which can
4601 * swizzle the rb from under us while we were waiting to
4602 * acquire mmap_mutex.
4603 *
4604 * If we find a different rb; ignore this event, a next
4605 * iteration will no longer find it on the list. We have to
4606 * still restart the iteration to make sure we're not now
4607 * iterating the wrong list.
4608 */
4609 if (event->rb == rb)
4610 ring_buffer_attach(event, NULL);
4611
4612 mutex_unlock(&event->mmap_mutex);
4613 put_event(event);
4614
4615 /*
4616 * Restart the iteration; either we're on the wrong list or
4617 * destroyed its integrity by doing a deletion.
4618 */
4619 goto again;
4620 }
4621 rcu_read_unlock();
4622
4623 /*
4624 * It could be there's still a few 0-ref events on the list; they'll
4625 * get cleaned up by free_event() -- they'll also still have their
4626 * ref on the rb and will free it whenever they are done with it.
4627 *
4628 * Aside from that, this buffer is 'fully' detached and unmapped,
4629 * undo the VM accounting.
4630 */
4631
4632 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
4633 vma->vm_mm->pinned_vm -= mmap_locked;
4634 free_uid(mmap_user);
4635
4636 out_put:
4637 ring_buffer_put(rb); /* could be last */
4638 }
4639
4640 static const struct vm_operations_struct perf_mmap_vmops = {
4641 .open = perf_mmap_open,
4642 .close = perf_mmap_close, /* non mergable */
4643 .fault = perf_mmap_fault,
4644 .page_mkwrite = perf_mmap_fault,
4645 };
4646
4647 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
4648 {
4649 struct perf_event *event = file->private_data;
4650 unsigned long user_locked, user_lock_limit;
4651 struct user_struct *user = current_user();
4652 unsigned long locked, lock_limit;
4653 struct ring_buffer *rb = NULL;
4654 unsigned long vma_size;
4655 unsigned long nr_pages;
4656 long user_extra = 0, extra = 0;
4657 int ret = 0, flags = 0;
4658
4659 /*
4660 * Don't allow mmap() of inherited per-task counters. This would
4661 * create a performance issue due to all children writing to the
4662 * same rb.
4663 */
4664 if (event->cpu == -1 && event->attr.inherit)
4665 return -EINVAL;
4666
4667 if (!(vma->vm_flags & VM_SHARED))
4668 return -EINVAL;
4669
4670 vma_size = vma->vm_end - vma->vm_start;
4671
4672 if (vma->vm_pgoff == 0) {
4673 nr_pages = (vma_size / PAGE_SIZE) - 1;
4674 } else {
4675 /*
4676 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
4677 * mapped, all subsequent mappings should have the same size
4678 * and offset. Must be above the normal perf buffer.
4679 */
4680 u64 aux_offset, aux_size;
4681
4682 if (!event->rb)
4683 return -EINVAL;
4684
4685 nr_pages = vma_size / PAGE_SIZE;
4686
4687 mutex_lock(&event->mmap_mutex);
4688 ret = -EINVAL;
4689
4690 rb = event->rb;
4691 if (!rb)
4692 goto aux_unlock;
4693
4694 aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
4695 aux_size = ACCESS_ONCE(rb->user_page->aux_size);
4696
4697 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
4698 goto aux_unlock;
4699
4700 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
4701 goto aux_unlock;
4702
4703 /* already mapped with a different offset */
4704 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
4705 goto aux_unlock;
4706
4707 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
4708 goto aux_unlock;
4709
4710 /* already mapped with a different size */
4711 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
4712 goto aux_unlock;
4713
4714 if (!is_power_of_2(nr_pages))
4715 goto aux_unlock;
4716
4717 if (!atomic_inc_not_zero(&rb->mmap_count))
4718 goto aux_unlock;
4719
4720 if (rb_has_aux(rb)) {
4721 atomic_inc(&rb->aux_mmap_count);
4722 ret = 0;
4723 goto unlock;
4724 }
4725
4726 atomic_set(&rb->aux_mmap_count, 1);
4727 user_extra = nr_pages;
4728
4729 goto accounting;
4730 }
4731
4732 /*
4733 * If we have rb pages ensure they're a power-of-two number, so we
4734 * can do bitmasks instead of modulo.
4735 */
4736 if (nr_pages != 0 && !is_power_of_2(nr_pages))
4737 return -EINVAL;
4738
4739 if (vma_size != PAGE_SIZE * (1 + nr_pages))
4740 return -EINVAL;
4741
4742 WARN_ON_ONCE(event->ctx->parent_ctx);
4743 again:
4744 mutex_lock(&event->mmap_mutex);
4745 if (event->rb) {
4746 if (event->rb->nr_pages != nr_pages) {
4747 ret = -EINVAL;
4748 goto unlock;
4749 }
4750
4751 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
4752 /*
4753 * Raced against perf_mmap_close() through
4754 * perf_event_set_output(). Try again, hope for better
4755 * luck.
4756 */
4757 mutex_unlock(&event->mmap_mutex);
4758 goto again;
4759 }
4760
4761 goto unlock;
4762 }
4763
4764 user_extra = nr_pages + 1;
4765
4766 accounting:
4767 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
4768
4769 /*
4770 * Increase the limit linearly with more CPUs:
4771 */
4772 user_lock_limit *= num_online_cpus();
4773
4774 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
4775
4776 if (user_locked > user_lock_limit)
4777 extra = user_locked - user_lock_limit;
4778
4779 lock_limit = rlimit(RLIMIT_MEMLOCK);
4780 lock_limit >>= PAGE_SHIFT;
4781 locked = vma->vm_mm->pinned_vm + extra;
4782
4783 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
4784 !capable(CAP_IPC_LOCK)) {
4785 ret = -EPERM;
4786 goto unlock;
4787 }
4788
4789 WARN_ON(!rb && event->rb);
4790
4791 if (vma->vm_flags & VM_WRITE)
4792 flags |= RING_BUFFER_WRITABLE;
4793
4794 if (!rb) {
4795 rb = rb_alloc(nr_pages,
4796 event->attr.watermark ? event->attr.wakeup_watermark : 0,
4797 event->cpu, flags);
4798
4799 if (!rb) {
4800 ret = -ENOMEM;
4801 goto unlock;
4802 }
4803
4804 atomic_set(&rb->mmap_count, 1);
4805 rb->mmap_user = get_current_user();
4806 rb->mmap_locked = extra;
4807
4808 ring_buffer_attach(event, rb);
4809
4810 perf_event_init_userpage(event);
4811 perf_event_update_userpage(event);
4812 } else {
4813 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
4814 event->attr.aux_watermark, flags);
4815 if (!ret)
4816 rb->aux_mmap_locked = extra;
4817 }
4818
4819 unlock:
4820 if (!ret) {
4821 atomic_long_add(user_extra, &user->locked_vm);
4822 vma->vm_mm->pinned_vm += extra;
4823
4824 atomic_inc(&event->mmap_count);
4825 } else if (rb) {
4826 atomic_dec(&rb->mmap_count);
4827 }
4828 aux_unlock:
4829 mutex_unlock(&event->mmap_mutex);
4830
4831 /*
4832 * Since pinned accounting is per vm we cannot allow fork() to copy our
4833 * vma.
4834 */
4835 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
4836 vma->vm_ops = &perf_mmap_vmops;
4837
4838 if (event->pmu->event_mapped)
4839 event->pmu->event_mapped(event);
4840
4841 return ret;
4842 }
4843
4844 static int perf_fasync(int fd, struct file *filp, int on)
4845 {
4846 struct inode *inode = file_inode(filp);
4847 struct perf_event *event = filp->private_data;
4848 int retval;
4849
4850 mutex_lock(&inode->i_mutex);
4851 retval = fasync_helper(fd, filp, on, &event->fasync);
4852 mutex_unlock(&inode->i_mutex);
4853
4854 if (retval < 0)
4855 return retval;
4856
4857 return 0;
4858 }
4859
4860 static const struct file_operations perf_fops = {
4861 .llseek = no_llseek,
4862 .release = perf_release,
4863 .read = perf_read,
4864 .poll = perf_poll,
4865 .unlocked_ioctl = perf_ioctl,
4866 .compat_ioctl = perf_compat_ioctl,
4867 .mmap = perf_mmap,
4868 .fasync = perf_fasync,
4869 };
4870
4871 /*
4872 * Perf event wakeup
4873 *
4874 * If there's data, ensure we set the poll() state and publish everything
4875 * to user-space before waking everybody up.
4876 */
4877
4878 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
4879 {
4880 /* only the parent has fasync state */
4881 if (event->parent)
4882 event = event->parent;
4883 return &event->fasync;
4884 }
4885
4886 void perf_event_wakeup(struct perf_event *event)
4887 {
4888 ring_buffer_wakeup(event);
4889
4890 if (event->pending_kill) {
4891 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
4892 event->pending_kill = 0;
4893 }
4894 }
4895
4896 static void perf_pending_event(struct irq_work *entry)
4897 {
4898 struct perf_event *event = container_of(entry,
4899 struct perf_event, pending);
4900 int rctx;
4901
4902 rctx = perf_swevent_get_recursion_context();
4903 /*
4904 * If we 'fail' here, that's OK, it means recursion is already disabled
4905 * and we won't recurse 'further'.
4906 */
4907
4908 if (event->pending_disable) {
4909 event->pending_disable = 0;
4910 perf_event_disable_local(event);
4911 }
4912
4913 if (event->pending_wakeup) {
4914 event->pending_wakeup = 0;
4915 perf_event_wakeup(event);
4916 }
4917
4918 if (rctx >= 0)
4919 perf_swevent_put_recursion_context(rctx);
4920 }
4921
4922 /*
4923 * We assume there is only KVM supporting the callbacks.
4924 * Later on, we might change it to a list if there is
4925 * another virtualization implementation supporting the callbacks.
4926 */
4927 struct perf_guest_info_callbacks *perf_guest_cbs;
4928
4929 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4930 {
4931 perf_guest_cbs = cbs;
4932 return 0;
4933 }
4934 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
4935
4936 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4937 {
4938 perf_guest_cbs = NULL;
4939 return 0;
4940 }
4941 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
4942
4943 static void
4944 perf_output_sample_regs(struct perf_output_handle *handle,
4945 struct pt_regs *regs, u64 mask)
4946 {
4947 int bit;
4948
4949 for_each_set_bit(bit, (const unsigned long *) &mask,
4950 sizeof(mask) * BITS_PER_BYTE) {
4951 u64 val;
4952
4953 val = perf_reg_value(regs, bit);
4954 perf_output_put(handle, val);
4955 }
4956 }
4957
4958 static void perf_sample_regs_user(struct perf_regs *regs_user,
4959 struct pt_regs *regs,
4960 struct pt_regs *regs_user_copy)
4961 {
4962 if (user_mode(regs)) {
4963 regs_user->abi = perf_reg_abi(current);
4964 regs_user->regs = regs;
4965 } else if (current->mm) {
4966 perf_get_regs_user(regs_user, regs, regs_user_copy);
4967 } else {
4968 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
4969 regs_user->regs = NULL;
4970 }
4971 }
4972
4973 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
4974 struct pt_regs *regs)
4975 {
4976 regs_intr->regs = regs;
4977 regs_intr->abi = perf_reg_abi(current);
4978 }
4979
4980
4981 /*
4982 * Get remaining task size from user stack pointer.
4983 *
4984 * It'd be better to take stack vma map and limit this more
4985 * precisly, but there's no way to get it safely under interrupt,
4986 * so using TASK_SIZE as limit.
4987 */
4988 static u64 perf_ustack_task_size(struct pt_regs *regs)
4989 {
4990 unsigned long addr = perf_user_stack_pointer(regs);
4991
4992 if (!addr || addr >= TASK_SIZE)
4993 return 0;
4994
4995 return TASK_SIZE - addr;
4996 }
4997
4998 static u16
4999 perf_sample_ustack_size(u16 stack_size, u16 header_size,
5000 struct pt_regs *regs)
5001 {
5002 u64 task_size;
5003
5004 /* No regs, no stack pointer, no dump. */
5005 if (!regs)
5006 return 0;
5007
5008 /*
5009 * Check if we fit in with the requested stack size into the:
5010 * - TASK_SIZE
5011 * If we don't, we limit the size to the TASK_SIZE.
5012 *
5013 * - remaining sample size
5014 * If we don't, we customize the stack size to
5015 * fit in to the remaining sample size.
5016 */
5017
5018 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
5019 stack_size = min(stack_size, (u16) task_size);
5020
5021 /* Current header size plus static size and dynamic size. */
5022 header_size += 2 * sizeof(u64);
5023
5024 /* Do we fit in with the current stack dump size? */
5025 if ((u16) (header_size + stack_size) < header_size) {
5026 /*
5027 * If we overflow the maximum size for the sample,
5028 * we customize the stack dump size to fit in.
5029 */
5030 stack_size = USHRT_MAX - header_size - sizeof(u64);
5031 stack_size = round_up(stack_size, sizeof(u64));
5032 }
5033
5034 return stack_size;
5035 }
5036
5037 static void
5038 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
5039 struct pt_regs *regs)
5040 {
5041 /* Case of a kernel thread, nothing to dump */
5042 if (!regs) {
5043 u64 size = 0;
5044 perf_output_put(handle, size);
5045 } else {
5046 unsigned long sp;
5047 unsigned int rem;
5048 u64 dyn_size;
5049
5050 /*
5051 * We dump:
5052 * static size
5053 * - the size requested by user or the best one we can fit
5054 * in to the sample max size
5055 * data
5056 * - user stack dump data
5057 * dynamic size
5058 * - the actual dumped size
5059 */
5060
5061 /* Static size. */
5062 perf_output_put(handle, dump_size);
5063
5064 /* Data. */
5065 sp = perf_user_stack_pointer(regs);
5066 rem = __output_copy_user(handle, (void *) sp, dump_size);
5067 dyn_size = dump_size - rem;
5068
5069 perf_output_skip(handle, rem);
5070
5071 /* Dynamic size. */
5072 perf_output_put(handle, dyn_size);
5073 }
5074 }
5075
5076 static void __perf_event_header__init_id(struct perf_event_header *header,
5077 struct perf_sample_data *data,
5078 struct perf_event *event)
5079 {
5080 u64 sample_type = event->attr.sample_type;
5081
5082 data->type = sample_type;
5083 header->size += event->id_header_size;
5084
5085 if (sample_type & PERF_SAMPLE_TID) {
5086 /* namespace issues */
5087 data->tid_entry.pid = perf_event_pid(event, current);
5088 data->tid_entry.tid = perf_event_tid(event, current);
5089 }
5090
5091 if (sample_type & PERF_SAMPLE_TIME)
5092 data->time = perf_event_clock(event);
5093
5094 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
5095 data->id = primary_event_id(event);
5096
5097 if (sample_type & PERF_SAMPLE_STREAM_ID)
5098 data->stream_id = event->id;
5099
5100 if (sample_type & PERF_SAMPLE_CPU) {
5101 data->cpu_entry.cpu = raw_smp_processor_id();
5102 data->cpu_entry.reserved = 0;
5103 }
5104 }
5105
5106 void perf_event_header__init_id(struct perf_event_header *header,
5107 struct perf_sample_data *data,
5108 struct perf_event *event)
5109 {
5110 if (event->attr.sample_id_all)
5111 __perf_event_header__init_id(header, data, event);
5112 }
5113
5114 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
5115 struct perf_sample_data *data)
5116 {
5117 u64 sample_type = data->type;
5118
5119 if (sample_type & PERF_SAMPLE_TID)
5120 perf_output_put(handle, data->tid_entry);
5121
5122 if (sample_type & PERF_SAMPLE_TIME)
5123 perf_output_put(handle, data->time);
5124
5125 if (sample_type & PERF_SAMPLE_ID)
5126 perf_output_put(handle, data->id);
5127
5128 if (sample_type & PERF_SAMPLE_STREAM_ID)
5129 perf_output_put(handle, data->stream_id);
5130
5131 if (sample_type & PERF_SAMPLE_CPU)
5132 perf_output_put(handle, data->cpu_entry);
5133
5134 if (sample_type & PERF_SAMPLE_IDENTIFIER)
5135 perf_output_put(handle, data->id);
5136 }
5137
5138 void perf_event__output_id_sample(struct perf_event *event,
5139 struct perf_output_handle *handle,
5140 struct perf_sample_data *sample)
5141 {
5142 if (event->attr.sample_id_all)
5143 __perf_event__output_id_sample(handle, sample);
5144 }
5145
5146 static void perf_output_read_one(struct perf_output_handle *handle,
5147 struct perf_event *event,
5148 u64 enabled, u64 running)
5149 {
5150 u64 read_format = event->attr.read_format;
5151 u64 values[4];
5152 int n = 0;
5153
5154 values[n++] = perf_event_count(event);
5155 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5156 values[n++] = enabled +
5157 atomic64_read(&event->child_total_time_enabled);
5158 }
5159 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5160 values[n++] = running +
5161 atomic64_read(&event->child_total_time_running);
5162 }
5163 if (read_format & PERF_FORMAT_ID)
5164 values[n++] = primary_event_id(event);
5165
5166 __output_copy(handle, values, n * sizeof(u64));
5167 }
5168
5169 /*
5170 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
5171 */
5172 static void perf_output_read_group(struct perf_output_handle *handle,
5173 struct perf_event *event,
5174 u64 enabled, u64 running)
5175 {
5176 struct perf_event *leader = event->group_leader, *sub;
5177 u64 read_format = event->attr.read_format;
5178 u64 values[5];
5179 int n = 0;
5180
5181 values[n++] = 1 + leader->nr_siblings;
5182
5183 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5184 values[n++] = enabled;
5185
5186 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5187 values[n++] = running;
5188
5189 if (leader != event)
5190 leader->pmu->read(leader);
5191
5192 values[n++] = perf_event_count(leader);
5193 if (read_format & PERF_FORMAT_ID)
5194 values[n++] = primary_event_id(leader);
5195
5196 __output_copy(handle, values, n * sizeof(u64));
5197
5198 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
5199 n = 0;
5200
5201 if ((sub != event) &&
5202 (sub->state == PERF_EVENT_STATE_ACTIVE))
5203 sub->pmu->read(sub);
5204
5205 values[n++] = perf_event_count(sub);
5206 if (read_format & PERF_FORMAT_ID)
5207 values[n++] = primary_event_id(sub);
5208
5209 __output_copy(handle, values, n * sizeof(u64));
5210 }
5211 }
5212
5213 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
5214 PERF_FORMAT_TOTAL_TIME_RUNNING)
5215
5216 static void perf_output_read(struct perf_output_handle *handle,
5217 struct perf_event *event)
5218 {
5219 u64 enabled = 0, running = 0, now;
5220 u64 read_format = event->attr.read_format;
5221
5222 /*
5223 * compute total_time_enabled, total_time_running
5224 * based on snapshot values taken when the event
5225 * was last scheduled in.
5226 *
5227 * we cannot simply called update_context_time()
5228 * because of locking issue as we are called in
5229 * NMI context
5230 */
5231 if (read_format & PERF_FORMAT_TOTAL_TIMES)
5232 calc_timer_values(event, &now, &enabled, &running);
5233
5234 if (event->attr.read_format & PERF_FORMAT_GROUP)
5235 perf_output_read_group(handle, event, enabled, running);
5236 else
5237 perf_output_read_one(handle, event, enabled, running);
5238 }
5239
5240 void perf_output_sample(struct perf_output_handle *handle,
5241 struct perf_event_header *header,
5242 struct perf_sample_data *data,
5243 struct perf_event *event)
5244 {
5245 u64 sample_type = data->type;
5246
5247 perf_output_put(handle, *header);
5248
5249 if (sample_type & PERF_SAMPLE_IDENTIFIER)
5250 perf_output_put(handle, data->id);
5251
5252 if (sample_type & PERF_SAMPLE_IP)
5253 perf_output_put(handle, data->ip);
5254
5255 if (sample_type & PERF_SAMPLE_TID)
5256 perf_output_put(handle, data->tid_entry);
5257
5258 if (sample_type & PERF_SAMPLE_TIME)
5259 perf_output_put(handle, data->time);
5260
5261 if (sample_type & PERF_SAMPLE_ADDR)
5262 perf_output_put(handle, data->addr);
5263
5264 if (sample_type & PERF_SAMPLE_ID)
5265 perf_output_put(handle, data->id);
5266
5267 if (sample_type & PERF_SAMPLE_STREAM_ID)
5268 perf_output_put(handle, data->stream_id);
5269
5270 if (sample_type & PERF_SAMPLE_CPU)
5271 perf_output_put(handle, data->cpu_entry);
5272
5273 if (sample_type & PERF_SAMPLE_PERIOD)
5274 perf_output_put(handle, data->period);
5275
5276 if (sample_type & PERF_SAMPLE_READ)
5277 perf_output_read(handle, event);
5278
5279 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5280 if (data->callchain) {
5281 int size = 1;
5282
5283 if (data->callchain)
5284 size += data->callchain->nr;
5285
5286 size *= sizeof(u64);
5287
5288 __output_copy(handle, data->callchain, size);
5289 } else {
5290 u64 nr = 0;
5291 perf_output_put(handle, nr);
5292 }
5293 }
5294
5295 if (sample_type & PERF_SAMPLE_RAW) {
5296 if (data->raw) {
5297 u32 raw_size = data->raw->size;
5298 u32 real_size = round_up(raw_size + sizeof(u32),
5299 sizeof(u64)) - sizeof(u32);
5300 u64 zero = 0;
5301
5302 perf_output_put(handle, real_size);
5303 __output_copy(handle, data->raw->data, raw_size);
5304 if (real_size - raw_size)
5305 __output_copy(handle, &zero, real_size - raw_size);
5306 } else {
5307 struct {
5308 u32 size;
5309 u32 data;
5310 } raw = {
5311 .size = sizeof(u32),
5312 .data = 0,
5313 };
5314 perf_output_put(handle, raw);
5315 }
5316 }
5317
5318 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5319 if (data->br_stack) {
5320 size_t size;
5321
5322 size = data->br_stack->nr
5323 * sizeof(struct perf_branch_entry);
5324
5325 perf_output_put(handle, data->br_stack->nr);
5326 perf_output_copy(handle, data->br_stack->entries, size);
5327 } else {
5328 /*
5329 * we always store at least the value of nr
5330 */
5331 u64 nr = 0;
5332 perf_output_put(handle, nr);
5333 }
5334 }
5335
5336 if (sample_type & PERF_SAMPLE_REGS_USER) {
5337 u64 abi = data->regs_user.abi;
5338
5339 /*
5340 * If there are no regs to dump, notice it through
5341 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5342 */
5343 perf_output_put(handle, abi);
5344
5345 if (abi) {
5346 u64 mask = event->attr.sample_regs_user;
5347 perf_output_sample_regs(handle,
5348 data->regs_user.regs,
5349 mask);
5350 }
5351 }
5352
5353 if (sample_type & PERF_SAMPLE_STACK_USER) {
5354 perf_output_sample_ustack(handle,
5355 data->stack_user_size,
5356 data->regs_user.regs);
5357 }
5358
5359 if (sample_type & PERF_SAMPLE_WEIGHT)
5360 perf_output_put(handle, data->weight);
5361
5362 if (sample_type & PERF_SAMPLE_DATA_SRC)
5363 perf_output_put(handle, data->data_src.val);
5364
5365 if (sample_type & PERF_SAMPLE_TRANSACTION)
5366 perf_output_put(handle, data->txn);
5367
5368 if (sample_type & PERF_SAMPLE_REGS_INTR) {
5369 u64 abi = data->regs_intr.abi;
5370 /*
5371 * If there are no regs to dump, notice it through
5372 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5373 */
5374 perf_output_put(handle, abi);
5375
5376 if (abi) {
5377 u64 mask = event->attr.sample_regs_intr;
5378
5379 perf_output_sample_regs(handle,
5380 data->regs_intr.regs,
5381 mask);
5382 }
5383 }
5384
5385 if (!event->attr.watermark) {
5386 int wakeup_events = event->attr.wakeup_events;
5387
5388 if (wakeup_events) {
5389 struct ring_buffer *rb = handle->rb;
5390 int events = local_inc_return(&rb->events);
5391
5392 if (events >= wakeup_events) {
5393 local_sub(wakeup_events, &rb->events);
5394 local_inc(&rb->wakeup);
5395 }
5396 }
5397 }
5398 }
5399
5400 void perf_prepare_sample(struct perf_event_header *header,
5401 struct perf_sample_data *data,
5402 struct perf_event *event,
5403 struct pt_regs *regs)
5404 {
5405 u64 sample_type = event->attr.sample_type;
5406
5407 header->type = PERF_RECORD_SAMPLE;
5408 header->size = sizeof(*header) + event->header_size;
5409
5410 header->misc = 0;
5411 header->misc |= perf_misc_flags(regs);
5412
5413 __perf_event_header__init_id(header, data, event);
5414
5415 if (sample_type & PERF_SAMPLE_IP)
5416 data->ip = perf_instruction_pointer(regs);
5417
5418 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5419 int size = 1;
5420
5421 data->callchain = perf_callchain(event, regs);
5422
5423 if (data->callchain)
5424 size += data->callchain->nr;
5425
5426 header->size += size * sizeof(u64);
5427 }
5428
5429 if (sample_type & PERF_SAMPLE_RAW) {
5430 int size = sizeof(u32);
5431
5432 if (data->raw)
5433 size += data->raw->size;
5434 else
5435 size += sizeof(u32);
5436
5437 header->size += round_up(size, sizeof(u64));
5438 }
5439
5440 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5441 int size = sizeof(u64); /* nr */
5442 if (data->br_stack) {
5443 size += data->br_stack->nr
5444 * sizeof(struct perf_branch_entry);
5445 }
5446 header->size += size;
5447 }
5448
5449 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
5450 perf_sample_regs_user(&data->regs_user, regs,
5451 &data->regs_user_copy);
5452
5453 if (sample_type & PERF_SAMPLE_REGS_USER) {
5454 /* regs dump ABI info */
5455 int size = sizeof(u64);
5456
5457 if (data->regs_user.regs) {
5458 u64 mask = event->attr.sample_regs_user;
5459 size += hweight64(mask) * sizeof(u64);
5460 }
5461
5462 header->size += size;
5463 }
5464
5465 if (sample_type & PERF_SAMPLE_STACK_USER) {
5466 /*
5467 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
5468 * processed as the last one or have additional check added
5469 * in case new sample type is added, because we could eat
5470 * up the rest of the sample size.
5471 */
5472 u16 stack_size = event->attr.sample_stack_user;
5473 u16 size = sizeof(u64);
5474
5475 stack_size = perf_sample_ustack_size(stack_size, header->size,
5476 data->regs_user.regs);
5477
5478 /*
5479 * If there is something to dump, add space for the dump
5480 * itself and for the field that tells the dynamic size,
5481 * which is how many have been actually dumped.
5482 */
5483 if (stack_size)
5484 size += sizeof(u64) + stack_size;
5485
5486 data->stack_user_size = stack_size;
5487 header->size += size;
5488 }
5489
5490 if (sample_type & PERF_SAMPLE_REGS_INTR) {
5491 /* regs dump ABI info */
5492 int size = sizeof(u64);
5493
5494 perf_sample_regs_intr(&data->regs_intr, regs);
5495
5496 if (data->regs_intr.regs) {
5497 u64 mask = event->attr.sample_regs_intr;
5498
5499 size += hweight64(mask) * sizeof(u64);
5500 }
5501
5502 header->size += size;
5503 }
5504 }
5505
5506 void perf_event_output(struct perf_event *event,
5507 struct perf_sample_data *data,
5508 struct pt_regs *regs)
5509 {
5510 struct perf_output_handle handle;
5511 struct perf_event_header header;
5512
5513 /* protect the callchain buffers */
5514 rcu_read_lock();
5515
5516 perf_prepare_sample(&header, data, event, regs);
5517
5518 if (perf_output_begin(&handle, event, header.size))
5519 goto exit;
5520
5521 perf_output_sample(&handle, &header, data, event);
5522
5523 perf_output_end(&handle);
5524
5525 exit:
5526 rcu_read_unlock();
5527 }
5528
5529 /*
5530 * read event_id
5531 */
5532
5533 struct perf_read_event {
5534 struct perf_event_header header;
5535
5536 u32 pid;
5537 u32 tid;
5538 };
5539
5540 static void
5541 perf_event_read_event(struct perf_event *event,
5542 struct task_struct *task)
5543 {
5544 struct perf_output_handle handle;
5545 struct perf_sample_data sample;
5546 struct perf_read_event read_event = {
5547 .header = {
5548 .type = PERF_RECORD_READ,
5549 .misc = 0,
5550 .size = sizeof(read_event) + event->read_size,
5551 },
5552 .pid = perf_event_pid(event, task),
5553 .tid = perf_event_tid(event, task),
5554 };
5555 int ret;
5556
5557 perf_event_header__init_id(&read_event.header, &sample, event);
5558 ret = perf_output_begin(&handle, event, read_event.header.size);
5559 if (ret)
5560 return;
5561
5562 perf_output_put(&handle, read_event);
5563 perf_output_read(&handle, event);
5564 perf_event__output_id_sample(event, &handle, &sample);
5565
5566 perf_output_end(&handle);
5567 }
5568
5569 typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);
5570
5571 static void
5572 perf_event_aux_ctx(struct perf_event_context *ctx,
5573 perf_event_aux_output_cb output,
5574 void *data)
5575 {
5576 struct perf_event *event;
5577
5578 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
5579 if (event->state < PERF_EVENT_STATE_INACTIVE)
5580 continue;
5581 if (!event_filter_match(event))
5582 continue;
5583 output(event, data);
5584 }
5585 }
5586
5587 static void
5588 perf_event_aux_task_ctx(perf_event_aux_output_cb output, void *data,
5589 struct perf_event_context *task_ctx)
5590 {
5591 rcu_read_lock();
5592 preempt_disable();
5593 perf_event_aux_ctx(task_ctx, output, data);
5594 preempt_enable();
5595 rcu_read_unlock();
5596 }
5597
5598 static void
5599 perf_event_aux(perf_event_aux_output_cb output, void *data,
5600 struct perf_event_context *task_ctx)
5601 {
5602 struct perf_cpu_context *cpuctx;
5603 struct perf_event_context *ctx;
5604 struct pmu *pmu;
5605 int ctxn;
5606
5607 /*
5608 * If we have task_ctx != NULL we only notify
5609 * the task context itself. The task_ctx is set
5610 * only for EXIT events before releasing task
5611 * context.
5612 */
5613 if (task_ctx) {
5614 perf_event_aux_task_ctx(output, data, task_ctx);
5615 return;
5616 }
5617
5618 rcu_read_lock();
5619 list_for_each_entry_rcu(pmu, &pmus, entry) {
5620 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
5621 if (cpuctx->unique_pmu != pmu)
5622 goto next;
5623 perf_event_aux_ctx(&cpuctx->ctx, output, data);
5624 ctxn = pmu->task_ctx_nr;
5625 if (ctxn < 0)
5626 goto next;
5627 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
5628 if (ctx)
5629 perf_event_aux_ctx(ctx, output, data);
5630 next:
5631 put_cpu_ptr(pmu->pmu_cpu_context);
5632 }
5633 rcu_read_unlock();
5634 }
5635
5636 /*
5637 * task tracking -- fork/exit
5638 *
5639 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
5640 */
5641
5642 struct perf_task_event {
5643 struct task_struct *task;
5644 struct perf_event_context *task_ctx;
5645
5646 struct {
5647 struct perf_event_header header;
5648
5649 u32 pid;
5650 u32 ppid;
5651 u32 tid;
5652 u32 ptid;
5653 u64 time;
5654 } event_id;
5655 };
5656
5657 static int perf_event_task_match(struct perf_event *event)
5658 {
5659 return event->attr.comm || event->attr.mmap ||
5660 event->attr.mmap2 || event->attr.mmap_data ||
5661 event->attr.task;
5662 }
5663
5664 static void perf_event_task_output(struct perf_event *event,
5665 void *data)
5666 {
5667 struct perf_task_event *task_event = data;
5668 struct perf_output_handle handle;
5669 struct perf_sample_data sample;
5670 struct task_struct *task = task_event->task;
5671 int ret, size = task_event->event_id.header.size;
5672
5673 if (!perf_event_task_match(event))
5674 return;
5675
5676 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
5677
5678 ret = perf_output_begin(&handle, event,
5679 task_event->event_id.header.size);
5680 if (ret)
5681 goto out;
5682
5683 task_event->event_id.pid = perf_event_pid(event, task);
5684 task_event->event_id.ppid = perf_event_pid(event, current);
5685
5686 task_event->event_id.tid = perf_event_tid(event, task);
5687 task_event->event_id.ptid = perf_event_tid(event, current);
5688
5689 task_event->event_id.time = perf_event_clock(event);
5690
5691 perf_output_put(&handle, task_event->event_id);
5692
5693 perf_event__output_id_sample(event, &handle, &sample);
5694
5695 perf_output_end(&handle);
5696 out:
5697 task_event->event_id.header.size = size;
5698 }
5699
5700 static void perf_event_task(struct task_struct *task,
5701 struct perf_event_context *task_ctx,
5702 int new)
5703 {
5704 struct perf_task_event task_event;
5705
5706 if (!atomic_read(&nr_comm_events) &&
5707 !atomic_read(&nr_mmap_events) &&
5708 !atomic_read(&nr_task_events))
5709 return;
5710
5711 task_event = (struct perf_task_event){
5712 .task = task,
5713 .task_ctx = task_ctx,
5714 .event_id = {
5715 .header = {
5716 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
5717 .misc = 0,
5718 .size = sizeof(task_event.event_id),
5719 },
5720 /* .pid */
5721 /* .ppid */
5722 /* .tid */
5723 /* .ptid */
5724 /* .time */
5725 },
5726 };
5727
5728 perf_event_aux(perf_event_task_output,
5729 &task_event,
5730 task_ctx);
5731 }
5732
5733 void perf_event_fork(struct task_struct *task)
5734 {
5735 perf_event_task(task, NULL, 1);
5736 }
5737
5738 /*
5739 * comm tracking
5740 */
5741
5742 struct perf_comm_event {
5743 struct task_struct *task;
5744 char *comm;
5745 int comm_size;
5746
5747 struct {
5748 struct perf_event_header header;
5749
5750 u32 pid;
5751 u32 tid;
5752 } event_id;
5753 };
5754
5755 static int perf_event_comm_match(struct perf_event *event)
5756 {
5757 return event->attr.comm;
5758 }
5759
5760 static void perf_event_comm_output(struct perf_event *event,
5761 void *data)
5762 {
5763 struct perf_comm_event *comm_event = data;
5764 struct perf_output_handle handle;
5765 struct perf_sample_data sample;
5766 int size = comm_event->event_id.header.size;
5767 int ret;
5768
5769 if (!perf_event_comm_match(event))
5770 return;
5771
5772 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
5773 ret = perf_output_begin(&handle, event,
5774 comm_event->event_id.header.size);
5775
5776 if (ret)
5777 goto out;
5778
5779 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
5780 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
5781
5782 perf_output_put(&handle, comm_event->event_id);
5783 __output_copy(&handle, comm_event->comm,
5784 comm_event->comm_size);
5785
5786 perf_event__output_id_sample(event, &handle, &sample);
5787
5788 perf_output_end(&handle);
5789 out:
5790 comm_event->event_id.header.size = size;
5791 }
5792
5793 static void perf_event_comm_event(struct perf_comm_event *comm_event)
5794 {
5795 char comm[TASK_COMM_LEN];
5796 unsigned int size;
5797
5798 memset(comm, 0, sizeof(comm));
5799 strlcpy(comm, comm_event->task->comm, sizeof(comm));
5800 size = ALIGN(strlen(comm)+1, sizeof(u64));
5801
5802 comm_event->comm = comm;
5803 comm_event->comm_size = size;
5804
5805 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
5806
5807 perf_event_aux(perf_event_comm_output,
5808 comm_event,
5809 NULL);
5810 }
5811
5812 void perf_event_comm(struct task_struct *task, bool exec)
5813 {
5814 struct perf_comm_event comm_event;
5815
5816 if (!atomic_read(&nr_comm_events))
5817 return;
5818
5819 comm_event = (struct perf_comm_event){
5820 .task = task,
5821 /* .comm */
5822 /* .comm_size */
5823 .event_id = {
5824 .header = {
5825 .type = PERF_RECORD_COMM,
5826 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
5827 /* .size */
5828 },
5829 /* .pid */
5830 /* .tid */
5831 },
5832 };
5833
5834 perf_event_comm_event(&comm_event);
5835 }
5836
5837 /*
5838 * mmap tracking
5839 */
5840
5841 struct perf_mmap_event {
5842 struct vm_area_struct *vma;
5843
5844 const char *file_name;
5845 int file_size;
5846 int maj, min;
5847 u64 ino;
5848 u64 ino_generation;
5849 u32 prot, flags;
5850
5851 struct {
5852 struct perf_event_header header;
5853
5854 u32 pid;
5855 u32 tid;
5856 u64 start;
5857 u64 len;
5858 u64 pgoff;
5859 } event_id;
5860 };
5861
5862 static int perf_event_mmap_match(struct perf_event *event,
5863 void *data)
5864 {
5865 struct perf_mmap_event *mmap_event = data;
5866 struct vm_area_struct *vma = mmap_event->vma;
5867 int executable = vma->vm_flags & VM_EXEC;
5868
5869 return (!executable && event->attr.mmap_data) ||
5870 (executable && (event->attr.mmap || event->attr.mmap2));
5871 }
5872
5873 static void perf_event_mmap_output(struct perf_event *event,
5874 void *data)
5875 {
5876 struct perf_mmap_event *mmap_event = data;
5877 struct perf_output_handle handle;
5878 struct perf_sample_data sample;
5879 int size = mmap_event->event_id.header.size;
5880 int ret;
5881
5882 if (!perf_event_mmap_match(event, data))
5883 return;
5884
5885 if (event->attr.mmap2) {
5886 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
5887 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
5888 mmap_event->event_id.header.size += sizeof(mmap_event->min);
5889 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
5890 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
5891 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
5892 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
5893 }
5894
5895 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
5896 ret = perf_output_begin(&handle, event,
5897 mmap_event->event_id.header.size);
5898 if (ret)
5899 goto out;
5900
5901 mmap_event->event_id.pid = perf_event_pid(event, current);
5902 mmap_event->event_id.tid = perf_event_tid(event, current);
5903
5904 perf_output_put(&handle, mmap_event->event_id);
5905
5906 if (event->attr.mmap2) {
5907 perf_output_put(&handle, mmap_event->maj);
5908 perf_output_put(&handle, mmap_event->min);
5909 perf_output_put(&handle, mmap_event->ino);
5910 perf_output_put(&handle, mmap_event->ino_generation);
5911 perf_output_put(&handle, mmap_event->prot);
5912 perf_output_put(&handle, mmap_event->flags);
5913 }
5914
5915 __output_copy(&handle, mmap_event->file_name,
5916 mmap_event->file_size);
5917
5918 perf_event__output_id_sample(event, &handle, &sample);
5919
5920 perf_output_end(&handle);
5921 out:
5922 mmap_event->event_id.header.size = size;
5923 }
5924
5925 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
5926 {
5927 struct vm_area_struct *vma = mmap_event->vma;
5928 struct file *file = vma->vm_file;
5929 int maj = 0, min = 0;
5930 u64 ino = 0, gen = 0;
5931 u32 prot = 0, flags = 0;
5932 unsigned int size;
5933 char tmp[16];
5934 char *buf = NULL;
5935 char *name;
5936
5937 if (file) {
5938 struct inode *inode;
5939 dev_t dev;
5940
5941 buf = kmalloc(PATH_MAX, GFP_KERNEL);
5942 if (!buf) {
5943 name = "//enomem";
5944 goto cpy_name;
5945 }
5946 /*
5947 * d_path() works from the end of the rb backwards, so we
5948 * need to add enough zero bytes after the string to handle
5949 * the 64bit alignment we do later.
5950 */
5951 name = file_path(file, buf, PATH_MAX - sizeof(u64));
5952 if (IS_ERR(name)) {
5953 name = "//toolong";
5954 goto cpy_name;
5955 }
5956 inode = file_inode(vma->vm_file);
5957 dev = inode->i_sb->s_dev;
5958 ino = inode->i_ino;
5959 gen = inode->i_generation;
5960 maj = MAJOR(dev);
5961 min = MINOR(dev);
5962
5963 if (vma->vm_flags & VM_READ)
5964 prot |= PROT_READ;
5965 if (vma->vm_flags & VM_WRITE)
5966 prot |= PROT_WRITE;
5967 if (vma->vm_flags & VM_EXEC)
5968 prot |= PROT_EXEC;
5969
5970 if (vma->vm_flags & VM_MAYSHARE)
5971 flags = MAP_SHARED;
5972 else
5973 flags = MAP_PRIVATE;
5974
5975 if (vma->vm_flags & VM_DENYWRITE)
5976 flags |= MAP_DENYWRITE;
5977 if (vma->vm_flags & VM_MAYEXEC)
5978 flags |= MAP_EXECUTABLE;
5979 if (vma->vm_flags & VM_LOCKED)
5980 flags |= MAP_LOCKED;
5981 if (vma->vm_flags & VM_HUGETLB)
5982 flags |= MAP_HUGETLB;
5983
5984 goto got_name;
5985 } else {
5986 if (vma->vm_ops && vma->vm_ops->name) {
5987 name = (char *) vma->vm_ops->name(vma);
5988 if (name)
5989 goto cpy_name;
5990 }
5991
5992 name = (char *)arch_vma_name(vma);
5993 if (name)
5994 goto cpy_name;
5995
5996 if (vma->vm_start <= vma->vm_mm->start_brk &&
5997 vma->vm_end >= vma->vm_mm->brk) {
5998 name = "[heap]";
5999 goto cpy_name;
6000 }
6001 if (vma->vm_start <= vma->vm_mm->start_stack &&
6002 vma->vm_end >= vma->vm_mm->start_stack) {
6003 name = "[stack]";
6004 goto cpy_name;
6005 }
6006
6007 name = "//anon";
6008 goto cpy_name;
6009 }
6010
6011 cpy_name:
6012 strlcpy(tmp, name, sizeof(tmp));
6013 name = tmp;
6014 got_name:
6015 /*
6016 * Since our buffer works in 8 byte units we need to align our string
6017 * size to a multiple of 8. However, we must guarantee the tail end is
6018 * zero'd out to avoid leaking random bits to userspace.
6019 */
6020 size = strlen(name)+1;
6021 while (!IS_ALIGNED(size, sizeof(u64)))
6022 name[size++] = '\0';
6023
6024 mmap_event->file_name = name;
6025 mmap_event->file_size = size;
6026 mmap_event->maj = maj;
6027 mmap_event->min = min;
6028 mmap_event->ino = ino;
6029 mmap_event->ino_generation = gen;
6030 mmap_event->prot = prot;
6031 mmap_event->flags = flags;
6032
6033 if (!(vma->vm_flags & VM_EXEC))
6034 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
6035
6036 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
6037
6038 perf_event_aux(perf_event_mmap_output,
6039 mmap_event,
6040 NULL);
6041
6042 kfree(buf);
6043 }
6044
6045 void perf_event_mmap(struct vm_area_struct *vma)
6046 {
6047 struct perf_mmap_event mmap_event;
6048
6049 if (!atomic_read(&nr_mmap_events))
6050 return;
6051
6052 mmap_event = (struct perf_mmap_event){
6053 .vma = vma,
6054 /* .file_name */
6055 /* .file_size */
6056 .event_id = {
6057 .header = {
6058 .type = PERF_RECORD_MMAP,
6059 .misc = PERF_RECORD_MISC_USER,
6060 /* .size */
6061 },
6062 /* .pid */
6063 /* .tid */
6064 .start = vma->vm_start,
6065 .len = vma->vm_end - vma->vm_start,
6066 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
6067 },
6068 /* .maj (attr_mmap2 only) */
6069 /* .min (attr_mmap2 only) */
6070 /* .ino (attr_mmap2 only) */
6071 /* .ino_generation (attr_mmap2 only) */
6072 /* .prot (attr_mmap2 only) */
6073 /* .flags (attr_mmap2 only) */
6074 };
6075
6076 perf_event_mmap_event(&mmap_event);
6077 }
6078
6079 void perf_event_aux_event(struct perf_event *event, unsigned long head,
6080 unsigned long size, u64 flags)
6081 {
6082 struct perf_output_handle handle;
6083 struct perf_sample_data sample;
6084 struct perf_aux_event {
6085 struct perf_event_header header;
6086 u64 offset;
6087 u64 size;
6088 u64 flags;
6089 } rec = {
6090 .header = {
6091 .type = PERF_RECORD_AUX,
6092 .misc = 0,
6093 .size = sizeof(rec),
6094 },
6095 .offset = head,
6096 .size = size,
6097 .flags = flags,
6098 };
6099 int ret;
6100
6101 perf_event_header__init_id(&rec.header, &sample, event);
6102 ret = perf_output_begin(&handle, event, rec.header.size);
6103
6104 if (ret)
6105 return;
6106
6107 perf_output_put(&handle, rec);
6108 perf_event__output_id_sample(event, &handle, &sample);
6109
6110 perf_output_end(&handle);
6111 }
6112
6113 /*
6114 * Lost/dropped samples logging
6115 */
6116 void perf_log_lost_samples(struct perf_event *event, u64 lost)
6117 {
6118 struct perf_output_handle handle;
6119 struct perf_sample_data sample;
6120 int ret;
6121
6122 struct {
6123 struct perf_event_header header;
6124 u64 lost;
6125 } lost_samples_event = {
6126 .header = {
6127 .type = PERF_RECORD_LOST_SAMPLES,
6128 .misc = 0,
6129 .size = sizeof(lost_samples_event),
6130 },
6131 .lost = lost,
6132 };
6133
6134 perf_event_header__init_id(&lost_samples_event.header, &sample, event);
6135
6136 ret = perf_output_begin(&handle, event,
6137 lost_samples_event.header.size);
6138 if (ret)
6139 return;
6140
6141 perf_output_put(&handle, lost_samples_event);
6142 perf_event__output_id_sample(event, &handle, &sample);
6143 perf_output_end(&handle);
6144 }
6145
6146 /*
6147 * context_switch tracking
6148 */
6149
6150 struct perf_switch_event {
6151 struct task_struct *task;
6152 struct task_struct *next_prev;
6153
6154 struct {
6155 struct perf_event_header header;
6156 u32 next_prev_pid;
6157 u32 next_prev_tid;
6158 } event_id;
6159 };
6160
6161 static int perf_event_switch_match(struct perf_event *event)
6162 {
6163 return event->attr.context_switch;
6164 }
6165
6166 static void perf_event_switch_output(struct perf_event *event, void *data)
6167 {
6168 struct perf_switch_event *se = data;
6169 struct perf_output_handle handle;
6170 struct perf_sample_data sample;
6171 int ret;
6172
6173 if (!perf_event_switch_match(event))
6174 return;
6175
6176 /* Only CPU-wide events are allowed to see next/prev pid/tid */
6177 if (event->ctx->task) {
6178 se->event_id.header.type = PERF_RECORD_SWITCH;
6179 se->event_id.header.size = sizeof(se->event_id.header);
6180 } else {
6181 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
6182 se->event_id.header.size = sizeof(se->event_id);
6183 se->event_id.next_prev_pid =
6184 perf_event_pid(event, se->next_prev);
6185 se->event_id.next_prev_tid =
6186 perf_event_tid(event, se->next_prev);
6187 }
6188
6189 perf_event_header__init_id(&se->event_id.header, &sample, event);
6190
6191 ret = perf_output_begin(&handle, event, se->event_id.header.size);
6192 if (ret)
6193 return;
6194
6195 if (event->ctx->task)
6196 perf_output_put(&handle, se->event_id.header);
6197 else
6198 perf_output_put(&handle, se->event_id);
6199
6200 perf_event__output_id_sample(event, &handle, &sample);
6201
6202 perf_output_end(&handle);
6203 }
6204
6205 static void perf_event_switch(struct task_struct *task,
6206 struct task_struct *next_prev, bool sched_in)
6207 {
6208 struct perf_switch_event switch_event;
6209
6210 /* N.B. caller checks nr_switch_events != 0 */
6211
6212 switch_event = (struct perf_switch_event){
6213 .task = task,
6214 .next_prev = next_prev,
6215 .event_id = {
6216 .header = {
6217 /* .type */
6218 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
6219 /* .size */
6220 },
6221 /* .next_prev_pid */
6222 /* .next_prev_tid */
6223 },
6224 };
6225
6226 perf_event_aux(perf_event_switch_output,
6227 &switch_event,
6228 NULL);
6229 }
6230
6231 /*
6232 * IRQ throttle logging
6233 */
6234
6235 static void perf_log_throttle(struct perf_event *event, int enable)
6236 {
6237 struct perf_output_handle handle;
6238 struct perf_sample_data sample;
6239 int ret;
6240
6241 struct {
6242 struct perf_event_header header;
6243 u64 time;
6244 u64 id;
6245 u64 stream_id;
6246 } throttle_event = {
6247 .header = {
6248 .type = PERF_RECORD_THROTTLE,
6249 .misc = 0,
6250 .size = sizeof(throttle_event),
6251 },
6252 .time = perf_event_clock(event),
6253 .id = primary_event_id(event),
6254 .stream_id = event->id,
6255 };
6256
6257 if (enable)
6258 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
6259
6260 perf_event_header__init_id(&throttle_event.header, &sample, event);
6261
6262 ret = perf_output_begin(&handle, event,
6263 throttle_event.header.size);
6264 if (ret)
6265 return;
6266
6267 perf_output_put(&handle, throttle_event);
6268 perf_event__output_id_sample(event, &handle, &sample);
6269 perf_output_end(&handle);
6270 }
6271
6272 static void perf_log_itrace_start(struct perf_event *event)
6273 {
6274 struct perf_output_handle handle;
6275 struct perf_sample_data sample;
6276 struct perf_aux_event {
6277 struct perf_event_header header;
6278 u32 pid;
6279 u32 tid;
6280 } rec;
6281 int ret;
6282
6283 if (event->parent)
6284 event = event->parent;
6285
6286 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
6287 event->hw.itrace_started)
6288 return;
6289
6290 rec.header.type = PERF_RECORD_ITRACE_START;
6291 rec.header.misc = 0;
6292 rec.header.size = sizeof(rec);
6293 rec.pid = perf_event_pid(event, current);
6294 rec.tid = perf_event_tid(event, current);
6295
6296 perf_event_header__init_id(&rec.header, &sample, event);
6297 ret = perf_output_begin(&handle, event, rec.header.size);
6298
6299 if (ret)
6300 return;
6301
6302 perf_output_put(&handle, rec);
6303 perf_event__output_id_sample(event, &handle, &sample);
6304
6305 perf_output_end(&handle);
6306 }
6307
6308 /*
6309 * Generic event overflow handling, sampling.
6310 */
6311
6312 static int __perf_event_overflow(struct perf_event *event,
6313 int throttle, struct perf_sample_data *data,
6314 struct pt_regs *regs)
6315 {
6316 int events = atomic_read(&event->event_limit);
6317 struct hw_perf_event *hwc = &event->hw;
6318 u64 seq;
6319 int ret = 0;
6320
6321 /*
6322 * Non-sampling counters might still use the PMI to fold short
6323 * hardware counters, ignore those.
6324 */
6325 if (unlikely(!is_sampling_event(event)))
6326 return 0;
6327
6328 seq = __this_cpu_read(perf_throttled_seq);
6329 if (seq != hwc->interrupts_seq) {
6330 hwc->interrupts_seq = seq;
6331 hwc->interrupts = 1;
6332 } else {
6333 hwc->interrupts++;
6334 if (unlikely(throttle
6335 && hwc->interrupts >= max_samples_per_tick)) {
6336 __this_cpu_inc(perf_throttled_count);
6337 hwc->interrupts = MAX_INTERRUPTS;
6338 perf_log_throttle(event, 0);
6339 tick_nohz_full_kick();
6340 ret = 1;
6341 }
6342 }
6343
6344 if (event->attr.freq) {
6345 u64 now = perf_clock();
6346 s64 delta = now - hwc->freq_time_stamp;
6347
6348 hwc->freq_time_stamp = now;
6349
6350 if (delta > 0 && delta < 2*TICK_NSEC)
6351 perf_adjust_period(event, delta, hwc->last_period, true);
6352 }
6353
6354 /*
6355 * XXX event_limit might not quite work as expected on inherited
6356 * events
6357 */
6358
6359 event->pending_kill = POLL_IN;
6360 if (events && atomic_dec_and_test(&event->event_limit)) {
6361 ret = 1;
6362 event->pending_kill = POLL_HUP;
6363 event->pending_disable = 1;
6364 irq_work_queue(&event->pending);
6365 }
6366
6367 if (event->overflow_handler)
6368 event->overflow_handler(event, data, regs);
6369 else
6370 perf_event_output(event, data, regs);
6371
6372 if (*perf_event_fasync(event) && event->pending_kill) {
6373 event->pending_wakeup = 1;
6374 irq_work_queue(&event->pending);
6375 }
6376
6377 return ret;
6378 }
6379
6380 int perf_event_overflow(struct perf_event *event,
6381 struct perf_sample_data *data,
6382 struct pt_regs *regs)
6383 {
6384 return __perf_event_overflow(event, 1, data, regs);
6385 }
6386
6387 /*
6388 * Generic software event infrastructure
6389 */
6390
6391 struct swevent_htable {
6392 struct swevent_hlist *swevent_hlist;
6393 struct mutex hlist_mutex;
6394 int hlist_refcount;
6395
6396 /* Recursion avoidance in each contexts */
6397 int recursion[PERF_NR_CONTEXTS];
6398 };
6399
6400 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
6401
6402 /*
6403 * We directly increment event->count and keep a second value in
6404 * event->hw.period_left to count intervals. This period event
6405 * is kept in the range [-sample_period, 0] so that we can use the
6406 * sign as trigger.
6407 */
6408
6409 u64 perf_swevent_set_period(struct perf_event *event)
6410 {
6411 struct hw_perf_event *hwc = &event->hw;
6412 u64 period = hwc->last_period;
6413 u64 nr, offset;
6414 s64 old, val;
6415
6416 hwc->last_period = hwc->sample_period;
6417
6418 again:
6419 old = val = local64_read(&hwc->period_left);
6420 if (val < 0)
6421 return 0;
6422
6423 nr = div64_u64(period + val, period);
6424 offset = nr * period;
6425 val -= offset;
6426 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
6427 goto again;
6428
6429 return nr;
6430 }
6431
6432 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
6433 struct perf_sample_data *data,
6434 struct pt_regs *regs)
6435 {
6436 struct hw_perf_event *hwc = &event->hw;
6437 int throttle = 0;
6438
6439 if (!overflow)
6440 overflow = perf_swevent_set_period(event);
6441
6442 if (hwc->interrupts == MAX_INTERRUPTS)
6443 return;
6444
6445 for (; overflow; overflow--) {
6446 if (__perf_event_overflow(event, throttle,
6447 data, regs)) {
6448 /*
6449 * We inhibit the overflow from happening when
6450 * hwc->interrupts == MAX_INTERRUPTS.
6451 */
6452 break;
6453 }
6454 throttle = 1;
6455 }
6456 }
6457
6458 static void perf_swevent_event(struct perf_event *event, u64 nr,
6459 struct perf_sample_data *data,
6460 struct pt_regs *regs)
6461 {
6462 struct hw_perf_event *hwc = &event->hw;
6463
6464 local64_add(nr, &event->count);
6465
6466 if (!regs)
6467 return;
6468
6469 if (!is_sampling_event(event))
6470 return;
6471
6472 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
6473 data->period = nr;
6474 return perf_swevent_overflow(event, 1, data, regs);
6475 } else
6476 data->period = event->hw.last_period;
6477
6478 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
6479 return perf_swevent_overflow(event, 1, data, regs);
6480
6481 if (local64_add_negative(nr, &hwc->period_left))
6482 return;
6483
6484 perf_swevent_overflow(event, 0, data, regs);
6485 }
6486
6487 static int perf_exclude_event(struct perf_event *event,
6488 struct pt_regs *regs)
6489 {
6490 if (event->hw.state & PERF_HES_STOPPED)
6491 return 1;
6492
6493 if (regs) {
6494 if (event->attr.exclude_user && user_mode(regs))
6495 return 1;
6496
6497 if (event->attr.exclude_kernel && !user_mode(regs))
6498 return 1;
6499 }
6500
6501 return 0;
6502 }
6503
6504 static int perf_swevent_match(struct perf_event *event,
6505 enum perf_type_id type,
6506 u32 event_id,
6507 struct perf_sample_data *data,
6508 struct pt_regs *regs)
6509 {
6510 if (event->attr.type != type)
6511 return 0;
6512
6513 if (event->attr.config != event_id)
6514 return 0;
6515
6516 if (perf_exclude_event(event, regs))
6517 return 0;
6518
6519 return 1;
6520 }
6521
6522 static inline u64 swevent_hash(u64 type, u32 event_id)
6523 {
6524 u64 val = event_id | (type << 32);
6525
6526 return hash_64(val, SWEVENT_HLIST_BITS);
6527 }
6528
6529 static inline struct hlist_head *
6530 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
6531 {
6532 u64 hash = swevent_hash(type, event_id);
6533
6534 return &hlist->heads[hash];
6535 }
6536
6537 /* For the read side: events when they trigger */
6538 static inline struct hlist_head *
6539 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
6540 {
6541 struct swevent_hlist *hlist;
6542
6543 hlist = rcu_dereference(swhash->swevent_hlist);
6544 if (!hlist)
6545 return NULL;
6546
6547 return __find_swevent_head(hlist, type, event_id);
6548 }
6549
6550 /* For the event head insertion and removal in the hlist */
6551 static inline struct hlist_head *
6552 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
6553 {
6554 struct swevent_hlist *hlist;
6555 u32 event_id = event->attr.config;
6556 u64 type = event->attr.type;
6557
6558 /*
6559 * Event scheduling is always serialized against hlist allocation
6560 * and release. Which makes the protected version suitable here.
6561 * The context lock guarantees that.
6562 */
6563 hlist = rcu_dereference_protected(swhash->swevent_hlist,
6564 lockdep_is_held(&event->ctx->lock));
6565 if (!hlist)
6566 return NULL;
6567
6568 return __find_swevent_head(hlist, type, event_id);
6569 }
6570
6571 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
6572 u64 nr,
6573 struct perf_sample_data *data,
6574 struct pt_regs *regs)
6575 {
6576 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6577 struct perf_event *event;
6578 struct hlist_head *head;
6579
6580 rcu_read_lock();
6581 head = find_swevent_head_rcu(swhash, type, event_id);
6582 if (!head)
6583 goto end;
6584
6585 hlist_for_each_entry_rcu(event, head, hlist_entry) {
6586 if (perf_swevent_match(event, type, event_id, data, regs))
6587 perf_swevent_event(event, nr, data, regs);
6588 }
6589 end:
6590 rcu_read_unlock();
6591 }
6592
6593 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
6594
6595 int perf_swevent_get_recursion_context(void)
6596 {
6597 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6598
6599 return get_recursion_context(swhash->recursion);
6600 }
6601 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
6602
6603 inline void perf_swevent_put_recursion_context(int rctx)
6604 {
6605 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6606
6607 put_recursion_context(swhash->recursion, rctx);
6608 }
6609
6610 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
6611 {
6612 struct perf_sample_data data;
6613
6614 if (WARN_ON_ONCE(!regs))
6615 return;
6616
6617 perf_sample_data_init(&data, addr, 0);
6618 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
6619 }
6620
6621 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
6622 {
6623 int rctx;
6624
6625 preempt_disable_notrace();
6626 rctx = perf_swevent_get_recursion_context();
6627 if (unlikely(rctx < 0))
6628 goto fail;
6629
6630 ___perf_sw_event(event_id, nr, regs, addr);
6631
6632 perf_swevent_put_recursion_context(rctx);
6633 fail:
6634 preempt_enable_notrace();
6635 }
6636
6637 static void perf_swevent_read(struct perf_event *event)
6638 {
6639 }
6640
6641 static int perf_swevent_add(struct perf_event *event, int flags)
6642 {
6643 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6644 struct hw_perf_event *hwc = &event->hw;
6645 struct hlist_head *head;
6646
6647 if (is_sampling_event(event)) {
6648 hwc->last_period = hwc->sample_period;
6649 perf_swevent_set_period(event);
6650 }
6651
6652 hwc->state = !(flags & PERF_EF_START);
6653
6654 head = find_swevent_head(swhash, event);
6655 if (WARN_ON_ONCE(!head))
6656 return -EINVAL;
6657
6658 hlist_add_head_rcu(&event->hlist_entry, head);
6659 perf_event_update_userpage(event);
6660
6661 return 0;
6662 }
6663
6664 static void perf_swevent_del(struct perf_event *event, int flags)
6665 {
6666 hlist_del_rcu(&event->hlist_entry);
6667 }
6668
6669 static void perf_swevent_start(struct perf_event *event, int flags)
6670 {
6671 event->hw.state = 0;
6672 }
6673
6674 static void perf_swevent_stop(struct perf_event *event, int flags)
6675 {
6676 event->hw.state = PERF_HES_STOPPED;
6677 }
6678
6679 /* Deref the hlist from the update side */
6680 static inline struct swevent_hlist *
6681 swevent_hlist_deref(struct swevent_htable *swhash)
6682 {
6683 return rcu_dereference_protected(swhash->swevent_hlist,
6684 lockdep_is_held(&swhash->hlist_mutex));
6685 }
6686
6687 static void swevent_hlist_release(struct swevent_htable *swhash)
6688 {
6689 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
6690
6691 if (!hlist)
6692 return;
6693
6694 RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
6695 kfree_rcu(hlist, rcu_head);
6696 }
6697
6698 static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
6699 {
6700 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6701
6702 mutex_lock(&swhash->hlist_mutex);
6703
6704 if (!--swhash->hlist_refcount)
6705 swevent_hlist_release(swhash);
6706
6707 mutex_unlock(&swhash->hlist_mutex);
6708 }
6709
6710 static void swevent_hlist_put(struct perf_event *event)
6711 {
6712 int cpu;
6713
6714 for_each_possible_cpu(cpu)
6715 swevent_hlist_put_cpu(event, cpu);
6716 }
6717
6718 static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
6719 {
6720 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6721 int err = 0;
6722
6723 mutex_lock(&swhash->hlist_mutex);
6724 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
6725 struct swevent_hlist *hlist;
6726
6727 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
6728 if (!hlist) {
6729 err = -ENOMEM;
6730 goto exit;
6731 }
6732 rcu_assign_pointer(swhash->swevent_hlist, hlist);
6733 }
6734 swhash->hlist_refcount++;
6735 exit:
6736 mutex_unlock(&swhash->hlist_mutex);
6737
6738 return err;
6739 }
6740
6741 static int swevent_hlist_get(struct perf_event *event)
6742 {
6743 int err;
6744 int cpu, failed_cpu;
6745
6746 get_online_cpus();
6747 for_each_possible_cpu(cpu) {
6748 err = swevent_hlist_get_cpu(event, cpu);
6749 if (err) {
6750 failed_cpu = cpu;
6751 goto fail;
6752 }
6753 }
6754 put_online_cpus();
6755
6756 return 0;
6757 fail:
6758 for_each_possible_cpu(cpu) {
6759 if (cpu == failed_cpu)
6760 break;
6761 swevent_hlist_put_cpu(event, cpu);
6762 }
6763
6764 put_online_cpus();
6765 return err;
6766 }
6767
6768 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
6769
6770 static void sw_perf_event_destroy(struct perf_event *event)
6771 {
6772 u64 event_id = event->attr.config;
6773
6774 WARN_ON(event->parent);
6775
6776 static_key_slow_dec(&perf_swevent_enabled[event_id]);
6777 swevent_hlist_put(event);
6778 }
6779
6780 static int perf_swevent_init(struct perf_event *event)
6781 {
6782 u64 event_id = event->attr.config;
6783
6784 if (event->attr.type != PERF_TYPE_SOFTWARE)
6785 return -ENOENT;
6786
6787 /*
6788 * no branch sampling for software events
6789 */
6790 if (has_branch_stack(event))
6791 return -EOPNOTSUPP;
6792
6793 switch (event_id) {
6794 case PERF_COUNT_SW_CPU_CLOCK:
6795 case PERF_COUNT_SW_TASK_CLOCK:
6796 return -ENOENT;
6797
6798 default:
6799 break;
6800 }
6801
6802 if (event_id >= PERF_COUNT_SW_MAX)
6803 return -ENOENT;
6804
6805 if (!event->parent) {
6806 int err;
6807
6808 err = swevent_hlist_get(event);
6809 if (err)
6810 return err;
6811
6812 static_key_slow_inc(&perf_swevent_enabled[event_id]);
6813 event->destroy = sw_perf_event_destroy;
6814 }
6815
6816 return 0;
6817 }
6818
6819 static struct pmu perf_swevent = {
6820 .task_ctx_nr = perf_sw_context,
6821
6822 .capabilities = PERF_PMU_CAP_NO_NMI,
6823
6824 .event_init = perf_swevent_init,
6825 .add = perf_swevent_add,
6826 .del = perf_swevent_del,
6827 .start = perf_swevent_start,
6828 .stop = perf_swevent_stop,
6829 .read = perf_swevent_read,
6830 };
6831
6832 #ifdef CONFIG_EVENT_TRACING
6833
6834 static int perf_tp_filter_match(struct perf_event *event,
6835 struct perf_sample_data *data)
6836 {
6837 void *record = data->raw->data;
6838
6839 /* only top level events have filters set */
6840 if (event->parent)
6841 event = event->parent;
6842
6843 if (likely(!event->filter) || filter_match_preds(event->filter, record))
6844 return 1;
6845 return 0;
6846 }
6847
6848 static int perf_tp_event_match(struct perf_event *event,
6849 struct perf_sample_data *data,
6850 struct pt_regs *regs)
6851 {
6852 if (event->hw.state & PERF_HES_STOPPED)
6853 return 0;
6854 /*
6855 * All tracepoints are from kernel-space.
6856 */
6857 if (event->attr.exclude_kernel)
6858 return 0;
6859
6860 if (!perf_tp_filter_match(event, data))
6861 return 0;
6862
6863 return 1;
6864 }
6865
6866 void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
6867 struct pt_regs *regs, struct hlist_head *head, int rctx,
6868 struct task_struct *task)
6869 {
6870 struct perf_sample_data data;
6871 struct perf_event *event;
6872
6873 struct perf_raw_record raw = {
6874 .size = entry_size,
6875 .data = record,
6876 };
6877
6878 perf_sample_data_init(&data, addr, 0);
6879 data.raw = &raw;
6880
6881 hlist_for_each_entry_rcu(event, head, hlist_entry) {
6882 if (perf_tp_event_match(event, &data, regs))
6883 perf_swevent_event(event, count, &data, regs);
6884 }
6885
6886 /*
6887 * If we got specified a target task, also iterate its context and
6888 * deliver this event there too.
6889 */
6890 if (task && task != current) {
6891 struct perf_event_context *ctx;
6892 struct trace_entry *entry = record;
6893
6894 rcu_read_lock();
6895 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
6896 if (!ctx)
6897 goto unlock;
6898
6899 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
6900 if (event->attr.type != PERF_TYPE_TRACEPOINT)
6901 continue;
6902 if (event->attr.config != entry->type)
6903 continue;
6904 if (perf_tp_event_match(event, &data, regs))
6905 perf_swevent_event(event, count, &data, regs);
6906 }
6907 unlock:
6908 rcu_read_unlock();
6909 }
6910
6911 perf_swevent_put_recursion_context(rctx);
6912 }
6913 EXPORT_SYMBOL_GPL(perf_tp_event);
6914
6915 static void tp_perf_event_destroy(struct perf_event *event)
6916 {
6917 perf_trace_destroy(event);
6918 }
6919
6920 static int perf_tp_event_init(struct perf_event *event)
6921 {
6922 int err;
6923
6924 if (event->attr.type != PERF_TYPE_TRACEPOINT)
6925 return -ENOENT;
6926
6927 /*
6928 * no branch sampling for tracepoint events
6929 */
6930 if (has_branch_stack(event))
6931 return -EOPNOTSUPP;
6932
6933 err = perf_trace_init(event);
6934 if (err)
6935 return err;
6936
6937 event->destroy = tp_perf_event_destroy;
6938
6939 return 0;
6940 }
6941
6942 static struct pmu perf_tracepoint = {
6943 .task_ctx_nr = perf_sw_context,
6944
6945 .event_init = perf_tp_event_init,
6946 .add = perf_trace_add,
6947 .del = perf_trace_del,
6948 .start = perf_swevent_start,
6949 .stop = perf_swevent_stop,
6950 .read = perf_swevent_read,
6951 };
6952
6953 static inline void perf_tp_register(void)
6954 {
6955 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
6956 }
6957
6958 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
6959 {
6960 char *filter_str;
6961 int ret;
6962
6963 if (event->attr.type != PERF_TYPE_TRACEPOINT)
6964 return -EINVAL;
6965
6966 filter_str = strndup_user(arg, PAGE_SIZE);
6967 if (IS_ERR(filter_str))
6968 return PTR_ERR(filter_str);
6969
6970 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
6971
6972 kfree(filter_str);
6973 return ret;
6974 }
6975
6976 static void perf_event_free_filter(struct perf_event *event)
6977 {
6978 ftrace_profile_free_filter(event);
6979 }
6980
6981 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
6982 {
6983 struct bpf_prog *prog;
6984
6985 if (event->attr.type != PERF_TYPE_TRACEPOINT)
6986 return -EINVAL;
6987
6988 if (event->tp_event->prog)
6989 return -EEXIST;
6990
6991 if (!(event->tp_event->flags & TRACE_EVENT_FL_UKPROBE))
6992 /* bpf programs can only be attached to u/kprobes */
6993 return -EINVAL;
6994
6995 prog = bpf_prog_get(prog_fd);
6996 if (IS_ERR(prog))
6997 return PTR_ERR(prog);
6998
6999 if (prog->type != BPF_PROG_TYPE_KPROBE) {
7000 /* valid fd, but invalid bpf program type */
7001 bpf_prog_put(prog);
7002 return -EINVAL;
7003 }
7004
7005 event->tp_event->prog = prog;
7006
7007 return 0;
7008 }
7009
7010 static void perf_event_free_bpf_prog(struct perf_event *event)
7011 {
7012 struct bpf_prog *prog;
7013
7014 if (!event->tp_event)
7015 return;
7016
7017 prog = event->tp_event->prog;
7018 if (prog) {
7019 event->tp_event->prog = NULL;
7020 bpf_prog_put(prog);
7021 }
7022 }
7023
7024 #else
7025
7026 static inline void perf_tp_register(void)
7027 {
7028 }
7029
7030 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
7031 {
7032 return -ENOENT;
7033 }
7034
7035 static void perf_event_free_filter(struct perf_event *event)
7036 {
7037 }
7038
7039 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
7040 {
7041 return -ENOENT;
7042 }
7043
7044 static void perf_event_free_bpf_prog(struct perf_event *event)
7045 {
7046 }
7047 #endif /* CONFIG_EVENT_TRACING */
7048
7049 #ifdef CONFIG_HAVE_HW_BREAKPOINT
7050 void perf_bp_event(struct perf_event *bp, void *data)
7051 {
7052 struct perf_sample_data sample;
7053 struct pt_regs *regs = data;
7054
7055 perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
7056
7057 if (!bp->hw.state && !perf_exclude_event(bp, regs))
7058 perf_swevent_event(bp, 1, &sample, regs);
7059 }
7060 #endif
7061
7062 /*
7063 * hrtimer based swevent callback
7064 */
7065
7066 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
7067 {
7068 enum hrtimer_restart ret = HRTIMER_RESTART;
7069 struct perf_sample_data data;
7070 struct pt_regs *regs;
7071 struct perf_event *event;
7072 u64 period;
7073
7074 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
7075
7076 if (event->state != PERF_EVENT_STATE_ACTIVE)
7077 return HRTIMER_NORESTART;
7078
7079 event->pmu->read(event);
7080
7081 perf_sample_data_init(&data, 0, event->hw.last_period);
7082 regs = get_irq_regs();
7083
7084 if (regs && !perf_exclude_event(event, regs)) {
7085 if (!(event->attr.exclude_idle && is_idle_task(current)))
7086 if (__perf_event_overflow(event, 1, &data, regs))
7087 ret = HRTIMER_NORESTART;
7088 }
7089
7090 period = max_t(u64, 10000, event->hw.sample_period);
7091 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
7092
7093 return ret;
7094 }
7095
7096 static void perf_swevent_start_hrtimer(struct perf_event *event)
7097 {
7098 struct hw_perf_event *hwc = &event->hw;
7099 s64 period;
7100
7101 if (!is_sampling_event(event))
7102 return;
7103
7104 period = local64_read(&hwc->period_left);
7105 if (period) {
7106 if (period < 0)
7107 period = 10000;
7108
7109 local64_set(&hwc->period_left, 0);
7110 } else {
7111 period = max_t(u64, 10000, hwc->sample_period);
7112 }
7113 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
7114 HRTIMER_MODE_REL_PINNED);
7115 }
7116
7117 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
7118 {
7119 struct hw_perf_event *hwc = &event->hw;
7120
7121 if (is_sampling_event(event)) {
7122 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
7123 local64_set(&hwc->period_left, ktime_to_ns(remaining));
7124
7125 hrtimer_cancel(&hwc->hrtimer);
7126 }
7127 }
7128
7129 static void perf_swevent_init_hrtimer(struct perf_event *event)
7130 {
7131 struct hw_perf_event *hwc = &event->hw;
7132
7133 if (!is_sampling_event(event))
7134 return;
7135
7136 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
7137 hwc->hrtimer.function = perf_swevent_hrtimer;
7138
7139 /*
7140 * Since hrtimers have a fixed rate, we can do a static freq->period
7141 * mapping and avoid the whole period adjust feedback stuff.
7142 */
7143 if (event->attr.freq) {
7144 long freq = event->attr.sample_freq;
7145
7146 event->attr.sample_period = NSEC_PER_SEC / freq;
7147 hwc->sample_period = event->attr.sample_period;
7148 local64_set(&hwc->period_left, hwc->sample_period);
7149 hwc->last_period = hwc->sample_period;
7150 event->attr.freq = 0;
7151 }
7152 }
7153
7154 /*
7155 * Software event: cpu wall time clock
7156 */
7157
7158 static void cpu_clock_event_update(struct perf_event *event)
7159 {
7160 s64 prev;
7161 u64 now;
7162
7163 now = local_clock();
7164 prev = local64_xchg(&event->hw.prev_count, now);
7165 local64_add(now - prev, &event->count);
7166 }
7167
7168 static void cpu_clock_event_start(struct perf_event *event, int flags)
7169 {
7170 local64_set(&event->hw.prev_count, local_clock());
7171 perf_swevent_start_hrtimer(event);
7172 }
7173
7174 static void cpu_clock_event_stop(struct perf_event *event, int flags)
7175 {
7176 perf_swevent_cancel_hrtimer(event);
7177 cpu_clock_event_update(event);
7178 }
7179
7180 static int cpu_clock_event_add(struct perf_event *event, int flags)
7181 {
7182 if (flags & PERF_EF_START)
7183 cpu_clock_event_start(event, flags);
7184 perf_event_update_userpage(event);
7185
7186 return 0;
7187 }
7188
7189 static void cpu_clock_event_del(struct perf_event *event, int flags)
7190 {
7191 cpu_clock_event_stop(event, flags);
7192 }
7193
7194 static void cpu_clock_event_read(struct perf_event *event)
7195 {
7196 cpu_clock_event_update(event);
7197 }
7198
7199 static int cpu_clock_event_init(struct perf_event *event)
7200 {
7201 if (event->attr.type != PERF_TYPE_SOFTWARE)
7202 return -ENOENT;
7203
7204 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
7205 return -ENOENT;
7206
7207 /*
7208 * no branch sampling for software events
7209 */
7210 if (has_branch_stack(event))
7211 return -EOPNOTSUPP;
7212
7213 perf_swevent_init_hrtimer(event);
7214
7215 return 0;
7216 }
7217
7218 static struct pmu perf_cpu_clock = {
7219 .task_ctx_nr = perf_sw_context,
7220
7221 .capabilities = PERF_PMU_CAP_NO_NMI,
7222
7223 .event_init = cpu_clock_event_init,
7224 .add = cpu_clock_event_add,
7225 .del = cpu_clock_event_del,
7226 .start = cpu_clock_event_start,
7227 .stop = cpu_clock_event_stop,
7228 .read = cpu_clock_event_read,
7229 };
7230
7231 /*
7232 * Software event: task time clock
7233 */
7234
7235 static void task_clock_event_update(struct perf_event *event, u64 now)
7236 {
7237 u64 prev;
7238 s64 delta;
7239
7240 prev = local64_xchg(&event->hw.prev_count, now);
7241 delta = now - prev;
7242 local64_add(delta, &event->count);
7243 }
7244
7245 static void task_clock_event_start(struct perf_event *event, int flags)
7246 {
7247 local64_set(&event->hw.prev_count, event->ctx->time);
7248 perf_swevent_start_hrtimer(event);
7249 }
7250
7251 static void task_clock_event_stop(struct perf_event *event, int flags)
7252 {
7253 perf_swevent_cancel_hrtimer(event);
7254 task_clock_event_update(event, event->ctx->time);
7255 }
7256
7257 static int task_clock_event_add(struct perf_event *event, int flags)
7258 {
7259 if (flags & PERF_EF_START)
7260 task_clock_event_start(event, flags);
7261 perf_event_update_userpage(event);
7262
7263 return 0;
7264 }
7265
7266 static void task_clock_event_del(struct perf_event *event, int flags)
7267 {
7268 task_clock_event_stop(event, PERF_EF_UPDATE);
7269 }
7270
7271 static void task_clock_event_read(struct perf_event *event)
7272 {
7273 u64 now = perf_clock();
7274 u64 delta = now - event->ctx->timestamp;
7275 u64 time = event->ctx->time + delta;
7276
7277 task_clock_event_update(event, time);
7278 }
7279
7280 static int task_clock_event_init(struct perf_event *event)
7281 {
7282 if (event->attr.type != PERF_TYPE_SOFTWARE)
7283 return -ENOENT;
7284
7285 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
7286 return -ENOENT;
7287
7288 /*
7289 * no branch sampling for software events
7290 */
7291 if (has_branch_stack(event))
7292 return -EOPNOTSUPP;
7293
7294 perf_swevent_init_hrtimer(event);
7295
7296 return 0;
7297 }
7298
7299 static struct pmu perf_task_clock = {
7300 .task_ctx_nr = perf_sw_context,
7301
7302 .capabilities = PERF_PMU_CAP_NO_NMI,
7303
7304 .event_init = task_clock_event_init,
7305 .add = task_clock_event_add,
7306 .del = task_clock_event_del,
7307 .start = task_clock_event_start,
7308 .stop = task_clock_event_stop,
7309 .read = task_clock_event_read,
7310 };
7311
7312 static void perf_pmu_nop_void(struct pmu *pmu)
7313 {
7314 }
7315
7316 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
7317 {
7318 }
7319
7320 static int perf_pmu_nop_int(struct pmu *pmu)
7321 {
7322 return 0;
7323 }
7324
7325 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
7326
7327 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
7328 {
7329 __this_cpu_write(nop_txn_flags, flags);
7330
7331 if (flags & ~PERF_PMU_TXN_ADD)
7332 return;
7333
7334 perf_pmu_disable(pmu);
7335 }
7336
7337 static int perf_pmu_commit_txn(struct pmu *pmu)
7338 {
7339 unsigned int flags = __this_cpu_read(nop_txn_flags);
7340
7341 __this_cpu_write(nop_txn_flags, 0);
7342
7343 if (flags & ~PERF_PMU_TXN_ADD)
7344 return 0;
7345
7346 perf_pmu_enable(pmu);
7347 return 0;
7348 }
7349
7350 static void perf_pmu_cancel_txn(struct pmu *pmu)
7351 {
7352 unsigned int flags = __this_cpu_read(nop_txn_flags);
7353
7354 __this_cpu_write(nop_txn_flags, 0);
7355
7356 if (flags & ~PERF_PMU_TXN_ADD)
7357 return;
7358
7359 perf_pmu_enable(pmu);
7360 }
7361
7362 static int perf_event_idx_default(struct perf_event *event)
7363 {
7364 return 0;
7365 }
7366
7367 /*
7368 * Ensures all contexts with the same task_ctx_nr have the same
7369 * pmu_cpu_context too.
7370 */
7371 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
7372 {
7373 struct pmu *pmu;
7374
7375 if (ctxn < 0)
7376 return NULL;
7377
7378 list_for_each_entry(pmu, &pmus, entry) {
7379 if (pmu->task_ctx_nr == ctxn)
7380 return pmu->pmu_cpu_context;
7381 }
7382
7383 return NULL;
7384 }
7385
7386 static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
7387 {
7388 int cpu;
7389
7390 for_each_possible_cpu(cpu) {
7391 struct perf_cpu_context *cpuctx;
7392
7393 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7394
7395 if (cpuctx->unique_pmu == old_pmu)
7396 cpuctx->unique_pmu = pmu;
7397 }
7398 }
7399
7400 static void free_pmu_context(struct pmu *pmu)
7401 {
7402 struct pmu *i;
7403
7404 mutex_lock(&pmus_lock);
7405 /*
7406 * Like a real lame refcount.
7407 */
7408 list_for_each_entry(i, &pmus, entry) {
7409 if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
7410 update_pmu_context(i, pmu);
7411 goto out;
7412 }
7413 }
7414
7415 free_percpu(pmu->pmu_cpu_context);
7416 out:
7417 mutex_unlock(&pmus_lock);
7418 }
7419 static struct idr pmu_idr;
7420
7421 static ssize_t
7422 type_show(struct device *dev, struct device_attribute *attr, char *page)
7423 {
7424 struct pmu *pmu = dev_get_drvdata(dev);
7425
7426 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
7427 }
7428 static DEVICE_ATTR_RO(type);
7429
7430 static ssize_t
7431 perf_event_mux_interval_ms_show(struct device *dev,
7432 struct device_attribute *attr,
7433 char *page)
7434 {
7435 struct pmu *pmu = dev_get_drvdata(dev);
7436
7437 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
7438 }
7439
7440 static DEFINE_MUTEX(mux_interval_mutex);
7441
7442 static ssize_t
7443 perf_event_mux_interval_ms_store(struct device *dev,
7444 struct device_attribute *attr,
7445 const char *buf, size_t count)
7446 {
7447 struct pmu *pmu = dev_get_drvdata(dev);
7448 int timer, cpu, ret;
7449
7450 ret = kstrtoint(buf, 0, &timer);
7451 if (ret)
7452 return ret;
7453
7454 if (timer < 1)
7455 return -EINVAL;
7456
7457 /* same value, noting to do */
7458 if (timer == pmu->hrtimer_interval_ms)
7459 return count;
7460
7461 mutex_lock(&mux_interval_mutex);
7462 pmu->hrtimer_interval_ms = timer;
7463
7464 /* update all cpuctx for this PMU */
7465 get_online_cpus();
7466 for_each_online_cpu(cpu) {
7467 struct perf_cpu_context *cpuctx;
7468 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7469 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
7470
7471 cpu_function_call(cpu,
7472 (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
7473 }
7474 put_online_cpus();
7475 mutex_unlock(&mux_interval_mutex);
7476
7477 return count;
7478 }
7479 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
7480
7481 static struct attribute *pmu_dev_attrs[] = {
7482 &dev_attr_type.attr,
7483 &dev_attr_perf_event_mux_interval_ms.attr,
7484 NULL,
7485 };
7486 ATTRIBUTE_GROUPS(pmu_dev);
7487
7488 static int pmu_bus_running;
7489 static struct bus_type pmu_bus = {
7490 .name = "event_source",
7491 .dev_groups = pmu_dev_groups,
7492 };
7493
7494 static void pmu_dev_release(struct device *dev)
7495 {
7496 kfree(dev);
7497 }
7498
7499 static int pmu_dev_alloc(struct pmu *pmu)
7500 {
7501 int ret = -ENOMEM;
7502
7503 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
7504 if (!pmu->dev)
7505 goto out;
7506
7507 pmu->dev->groups = pmu->attr_groups;
7508 device_initialize(pmu->dev);
7509 ret = dev_set_name(pmu->dev, "%s", pmu->name);
7510 if (ret)
7511 goto free_dev;
7512
7513 dev_set_drvdata(pmu->dev, pmu);
7514 pmu->dev->bus = &pmu_bus;
7515 pmu->dev->release = pmu_dev_release;
7516 ret = device_add(pmu->dev);
7517 if (ret)
7518 goto free_dev;
7519
7520 out:
7521 return ret;
7522
7523 free_dev:
7524 put_device(pmu->dev);
7525 goto out;
7526 }
7527
7528 static struct lock_class_key cpuctx_mutex;
7529 static struct lock_class_key cpuctx_lock;
7530
7531 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
7532 {
7533 int cpu, ret;
7534
7535 mutex_lock(&pmus_lock);
7536 ret = -ENOMEM;
7537 pmu->pmu_disable_count = alloc_percpu(int);
7538 if (!pmu->pmu_disable_count)
7539 goto unlock;
7540
7541 pmu->type = -1;
7542 if (!name)
7543 goto skip_type;
7544 pmu->name = name;
7545
7546 if (type < 0) {
7547 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
7548 if (type < 0) {
7549 ret = type;
7550 goto free_pdc;
7551 }
7552 }
7553 pmu->type = type;
7554
7555 if (pmu_bus_running) {
7556 ret = pmu_dev_alloc(pmu);
7557 if (ret)
7558 goto free_idr;
7559 }
7560
7561 skip_type:
7562 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
7563 if (pmu->pmu_cpu_context)
7564 goto got_cpu_context;
7565
7566 ret = -ENOMEM;
7567 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
7568 if (!pmu->pmu_cpu_context)
7569 goto free_dev;
7570
7571 for_each_possible_cpu(cpu) {
7572 struct perf_cpu_context *cpuctx;
7573
7574 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7575 __perf_event_init_context(&cpuctx->ctx);
7576 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
7577 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
7578 cpuctx->ctx.pmu = pmu;
7579
7580 __perf_mux_hrtimer_init(cpuctx, cpu);
7581
7582 cpuctx->unique_pmu = pmu;
7583 }
7584
7585 got_cpu_context:
7586 if (!pmu->start_txn) {
7587 if (pmu->pmu_enable) {
7588 /*
7589 * If we have pmu_enable/pmu_disable calls, install
7590 * transaction stubs that use that to try and batch
7591 * hardware accesses.
7592 */
7593 pmu->start_txn = perf_pmu_start_txn;
7594 pmu->commit_txn = perf_pmu_commit_txn;
7595 pmu->cancel_txn = perf_pmu_cancel_txn;
7596 } else {
7597 pmu->start_txn = perf_pmu_nop_txn;
7598 pmu->commit_txn = perf_pmu_nop_int;
7599 pmu->cancel_txn = perf_pmu_nop_void;
7600 }
7601 }
7602
7603 if (!pmu->pmu_enable) {
7604 pmu->pmu_enable = perf_pmu_nop_void;
7605 pmu->pmu_disable = perf_pmu_nop_void;
7606 }
7607
7608 if (!pmu->event_idx)
7609 pmu->event_idx = perf_event_idx_default;
7610
7611 list_add_rcu(&pmu->entry, &pmus);
7612 atomic_set(&pmu->exclusive_cnt, 0);
7613 ret = 0;
7614 unlock:
7615 mutex_unlock(&pmus_lock);
7616
7617 return ret;
7618
7619 free_dev:
7620 device_del(pmu->dev);
7621 put_device(pmu->dev);
7622
7623 free_idr:
7624 if (pmu->type >= PERF_TYPE_MAX)
7625 idr_remove(&pmu_idr, pmu->type);
7626
7627 free_pdc:
7628 free_percpu(pmu->pmu_disable_count);
7629 goto unlock;
7630 }
7631 EXPORT_SYMBOL_GPL(perf_pmu_register);
7632
7633 void perf_pmu_unregister(struct pmu *pmu)
7634 {
7635 mutex_lock(&pmus_lock);
7636 list_del_rcu(&pmu->entry);
7637 mutex_unlock(&pmus_lock);
7638
7639 /*
7640 * We dereference the pmu list under both SRCU and regular RCU, so
7641 * synchronize against both of those.
7642 */
7643 synchronize_srcu(&pmus_srcu);
7644 synchronize_rcu();
7645
7646 free_percpu(pmu->pmu_disable_count);
7647 if (pmu->type >= PERF_TYPE_MAX)
7648 idr_remove(&pmu_idr, pmu->type);
7649 device_del(pmu->dev);
7650 put_device(pmu->dev);
7651 free_pmu_context(pmu);
7652 }
7653 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
7654
7655 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
7656 {
7657 struct perf_event_context *ctx = NULL;
7658 int ret;
7659
7660 if (!try_module_get(pmu->module))
7661 return -ENODEV;
7662
7663 if (event->group_leader != event) {
7664 /*
7665 * This ctx->mutex can nest when we're called through
7666 * inheritance. See the perf_event_ctx_lock_nested() comment.
7667 */
7668 ctx = perf_event_ctx_lock_nested(event->group_leader,
7669 SINGLE_DEPTH_NESTING);
7670 BUG_ON(!ctx);
7671 }
7672
7673 event->pmu = pmu;
7674 ret = pmu->event_init(event);
7675
7676 if (ctx)
7677 perf_event_ctx_unlock(event->group_leader, ctx);
7678
7679 if (ret)
7680 module_put(pmu->module);
7681
7682 return ret;
7683 }
7684
7685 static struct pmu *perf_init_event(struct perf_event *event)
7686 {
7687 struct pmu *pmu = NULL;
7688 int idx;
7689 int ret;
7690
7691 idx = srcu_read_lock(&pmus_srcu);
7692
7693 rcu_read_lock();
7694 pmu = idr_find(&pmu_idr, event->attr.type);
7695 rcu_read_unlock();
7696 if (pmu) {
7697 ret = perf_try_init_event(pmu, event);
7698 if (ret)
7699 pmu = ERR_PTR(ret);
7700 goto unlock;
7701 }
7702
7703 list_for_each_entry_rcu(pmu, &pmus, entry) {
7704 ret = perf_try_init_event(pmu, event);
7705 if (!ret)
7706 goto unlock;
7707
7708 if (ret != -ENOENT) {
7709 pmu = ERR_PTR(ret);
7710 goto unlock;
7711 }
7712 }
7713 pmu = ERR_PTR(-ENOENT);
7714 unlock:
7715 srcu_read_unlock(&pmus_srcu, idx);
7716
7717 return pmu;
7718 }
7719
7720 static void account_event_cpu(struct perf_event *event, int cpu)
7721 {
7722 if (event->parent)
7723 return;
7724
7725 if (is_cgroup_event(event))
7726 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
7727 }
7728
7729 static void account_event(struct perf_event *event)
7730 {
7731 bool inc = false;
7732
7733 if (event->parent)
7734 return;
7735
7736 if (event->attach_state & PERF_ATTACH_TASK)
7737 inc = true;
7738 if (event->attr.mmap || event->attr.mmap_data)
7739 atomic_inc(&nr_mmap_events);
7740 if (event->attr.comm)
7741 atomic_inc(&nr_comm_events);
7742 if (event->attr.task)
7743 atomic_inc(&nr_task_events);
7744 if (event->attr.freq) {
7745 if (atomic_inc_return(&nr_freq_events) == 1)
7746 tick_nohz_full_kick_all();
7747 }
7748 if (event->attr.context_switch) {
7749 atomic_inc(&nr_switch_events);
7750 inc = true;
7751 }
7752 if (has_branch_stack(event))
7753 inc = true;
7754 if (is_cgroup_event(event))
7755 inc = true;
7756
7757 if (inc)
7758 static_key_slow_inc(&perf_sched_events.key);
7759
7760 account_event_cpu(event, event->cpu);
7761 }
7762
7763 /*
7764 * Allocate and initialize a event structure
7765 */
7766 static struct perf_event *
7767 perf_event_alloc(struct perf_event_attr *attr, int cpu,
7768 struct task_struct *task,
7769 struct perf_event *group_leader,
7770 struct perf_event *parent_event,
7771 perf_overflow_handler_t overflow_handler,
7772 void *context, int cgroup_fd)
7773 {
7774 struct pmu *pmu;
7775 struct perf_event *event;
7776 struct hw_perf_event *hwc;
7777 long err = -EINVAL;
7778
7779 if ((unsigned)cpu >= nr_cpu_ids) {
7780 if (!task || cpu != -1)
7781 return ERR_PTR(-EINVAL);
7782 }
7783
7784 event = kzalloc(sizeof(*event), GFP_KERNEL);
7785 if (!event)
7786 return ERR_PTR(-ENOMEM);
7787
7788 /*
7789 * Single events are their own group leaders, with an
7790 * empty sibling list:
7791 */
7792 if (!group_leader)
7793 group_leader = event;
7794
7795 mutex_init(&event->child_mutex);
7796 INIT_LIST_HEAD(&event->child_list);
7797
7798 INIT_LIST_HEAD(&event->group_entry);
7799 INIT_LIST_HEAD(&event->event_entry);
7800 INIT_LIST_HEAD(&event->sibling_list);
7801 INIT_LIST_HEAD(&event->rb_entry);
7802 INIT_LIST_HEAD(&event->active_entry);
7803 INIT_HLIST_NODE(&event->hlist_entry);
7804
7805
7806 init_waitqueue_head(&event->waitq);
7807 init_irq_work(&event->pending, perf_pending_event);
7808
7809 mutex_init(&event->mmap_mutex);
7810
7811 atomic_long_set(&event->refcount, 1);
7812 event->cpu = cpu;
7813 event->attr = *attr;
7814 event->group_leader = group_leader;
7815 event->pmu = NULL;
7816 event->oncpu = -1;
7817
7818 event->parent = parent_event;
7819
7820 event->ns = get_pid_ns(task_active_pid_ns(current));
7821 event->id = atomic64_inc_return(&perf_event_id);
7822
7823 event->state = PERF_EVENT_STATE_INACTIVE;
7824
7825 if (task) {
7826 event->attach_state = PERF_ATTACH_TASK;
7827 /*
7828 * XXX pmu::event_init needs to know what task to account to
7829 * and we cannot use the ctx information because we need the
7830 * pmu before we get a ctx.
7831 */
7832 event->hw.target = task;
7833 }
7834
7835 event->clock = &local_clock;
7836 if (parent_event)
7837 event->clock = parent_event->clock;
7838
7839 if (!overflow_handler && parent_event) {
7840 overflow_handler = parent_event->overflow_handler;
7841 context = parent_event->overflow_handler_context;
7842 }
7843
7844 event->overflow_handler = overflow_handler;
7845 event->overflow_handler_context = context;
7846
7847 perf_event__state_init(event);
7848
7849 pmu = NULL;
7850
7851 hwc = &event->hw;
7852 hwc->sample_period = attr->sample_period;
7853 if (attr->freq && attr->sample_freq)
7854 hwc->sample_period = 1;
7855 hwc->last_period = hwc->sample_period;
7856
7857 local64_set(&hwc->period_left, hwc->sample_period);
7858
7859 /*
7860 * we currently do not support PERF_FORMAT_GROUP on inherited events
7861 */
7862 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
7863 goto err_ns;
7864
7865 if (!has_branch_stack(event))
7866 event->attr.branch_sample_type = 0;
7867
7868 if (cgroup_fd != -1) {
7869 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
7870 if (err)
7871 goto err_ns;
7872 }
7873
7874 pmu = perf_init_event(event);
7875 if (!pmu)
7876 goto err_ns;
7877 else if (IS_ERR(pmu)) {
7878 err = PTR_ERR(pmu);
7879 goto err_ns;
7880 }
7881
7882 err = exclusive_event_init(event);
7883 if (err)
7884 goto err_pmu;
7885
7886 if (!event->parent) {
7887 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
7888 err = get_callchain_buffers();
7889 if (err)
7890 goto err_per_task;
7891 }
7892 }
7893
7894 return event;
7895
7896 err_per_task:
7897 exclusive_event_destroy(event);
7898
7899 err_pmu:
7900 if (event->destroy)
7901 event->destroy(event);
7902 module_put(pmu->module);
7903 err_ns:
7904 if (is_cgroup_event(event))
7905 perf_detach_cgroup(event);
7906 if (event->ns)
7907 put_pid_ns(event->ns);
7908 kfree(event);
7909
7910 return ERR_PTR(err);
7911 }
7912
7913 static int perf_copy_attr(struct perf_event_attr __user *uattr,
7914 struct perf_event_attr *attr)
7915 {
7916 u32 size;
7917 int ret;
7918
7919 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
7920 return -EFAULT;
7921
7922 /*
7923 * zero the full structure, so that a short copy will be nice.
7924 */
7925 memset(attr, 0, sizeof(*attr));
7926
7927 ret = get_user(size, &uattr->size);
7928 if (ret)
7929 return ret;
7930
7931 if (size > PAGE_SIZE) /* silly large */
7932 goto err_size;
7933
7934 if (!size) /* abi compat */
7935 size = PERF_ATTR_SIZE_VER0;
7936
7937 if (size < PERF_ATTR_SIZE_VER0)
7938 goto err_size;
7939
7940 /*
7941 * If we're handed a bigger struct than we know of,
7942 * ensure all the unknown bits are 0 - i.e. new
7943 * user-space does not rely on any kernel feature
7944 * extensions we dont know about yet.
7945 */
7946 if (size > sizeof(*attr)) {
7947 unsigned char __user *addr;
7948 unsigned char __user *end;
7949 unsigned char val;
7950
7951 addr = (void __user *)uattr + sizeof(*attr);
7952 end = (void __user *)uattr + size;
7953
7954 for (; addr < end; addr++) {
7955 ret = get_user(val, addr);
7956 if (ret)
7957 return ret;
7958 if (val)
7959 goto err_size;
7960 }
7961 size = sizeof(*attr);
7962 }
7963
7964 ret = copy_from_user(attr, uattr, size);
7965 if (ret)
7966 return -EFAULT;
7967
7968 if (attr->__reserved_1)
7969 return -EINVAL;
7970
7971 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
7972 return -EINVAL;
7973
7974 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
7975 return -EINVAL;
7976
7977 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
7978 u64 mask = attr->branch_sample_type;
7979
7980 /* only using defined bits */
7981 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
7982 return -EINVAL;
7983
7984 /* at least one branch bit must be set */
7985 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
7986 return -EINVAL;
7987
7988 /* propagate priv level, when not set for branch */
7989 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
7990
7991 /* exclude_kernel checked on syscall entry */
7992 if (!attr->exclude_kernel)
7993 mask |= PERF_SAMPLE_BRANCH_KERNEL;
7994
7995 if (!attr->exclude_user)
7996 mask |= PERF_SAMPLE_BRANCH_USER;
7997
7998 if (!attr->exclude_hv)
7999 mask |= PERF_SAMPLE_BRANCH_HV;
8000 /*
8001 * adjust user setting (for HW filter setup)
8002 */
8003 attr->branch_sample_type = mask;
8004 }
8005 /* privileged levels capture (kernel, hv): check permissions */
8006 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
8007 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
8008 return -EACCES;
8009 }
8010
8011 if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
8012 ret = perf_reg_validate(attr->sample_regs_user);
8013 if (ret)
8014 return ret;
8015 }
8016
8017 if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
8018 if (!arch_perf_have_user_stack_dump())
8019 return -ENOSYS;
8020
8021 /*
8022 * We have __u32 type for the size, but so far
8023 * we can only use __u16 as maximum due to the
8024 * __u16 sample size limit.
8025 */
8026 if (attr->sample_stack_user >= USHRT_MAX)
8027 ret = -EINVAL;
8028 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
8029 ret = -EINVAL;
8030 }
8031
8032 if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
8033 ret = perf_reg_validate(attr->sample_regs_intr);
8034 out:
8035 return ret;
8036
8037 err_size:
8038 put_user(sizeof(*attr), &uattr->size);
8039 ret = -E2BIG;
8040 goto out;
8041 }
8042
8043 static int
8044 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
8045 {
8046 struct ring_buffer *rb = NULL;
8047 int ret = -EINVAL;
8048
8049 if (!output_event)
8050 goto set;
8051
8052 /* don't allow circular references */
8053 if (event == output_event)
8054 goto out;
8055
8056 /*
8057 * Don't allow cross-cpu buffers
8058 */
8059 if (output_event->cpu != event->cpu)
8060 goto out;
8061
8062 /*
8063 * If its not a per-cpu rb, it must be the same task.
8064 */
8065 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
8066 goto out;
8067
8068 /*
8069 * Mixing clocks in the same buffer is trouble you don't need.
8070 */
8071 if (output_event->clock != event->clock)
8072 goto out;
8073
8074 /*
8075 * If both events generate aux data, they must be on the same PMU
8076 */
8077 if (has_aux(event) && has_aux(output_event) &&
8078 event->pmu != output_event->pmu)
8079 goto out;
8080
8081 set:
8082 mutex_lock(&event->mmap_mutex);
8083 /* Can't redirect output if we've got an active mmap() */
8084 if (atomic_read(&event->mmap_count))
8085 goto unlock;
8086
8087 if (output_event) {
8088 /* get the rb we want to redirect to */
8089 rb = ring_buffer_get(output_event);
8090 if (!rb)
8091 goto unlock;
8092 }
8093
8094 ring_buffer_attach(event, rb);
8095
8096 ret = 0;
8097 unlock:
8098 mutex_unlock(&event->mmap_mutex);
8099
8100 out:
8101 return ret;
8102 }
8103
8104 static void mutex_lock_double(struct mutex *a, struct mutex *b)
8105 {
8106 if (b < a)
8107 swap(a, b);
8108
8109 mutex_lock(a);
8110 mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
8111 }
8112
8113 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
8114 {
8115 bool nmi_safe = false;
8116
8117 switch (clk_id) {
8118 case CLOCK_MONOTONIC:
8119 event->clock = &ktime_get_mono_fast_ns;
8120 nmi_safe = true;
8121 break;
8122
8123 case CLOCK_MONOTONIC_RAW:
8124 event->clock = &ktime_get_raw_fast_ns;
8125 nmi_safe = true;
8126 break;
8127
8128 case CLOCK_REALTIME:
8129 event->clock = &ktime_get_real_ns;
8130 break;
8131
8132 case CLOCK_BOOTTIME:
8133 event->clock = &ktime_get_boot_ns;
8134 break;
8135
8136 case CLOCK_TAI:
8137 event->clock = &ktime_get_tai_ns;
8138 break;
8139
8140 default:
8141 return -EINVAL;
8142 }
8143
8144 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
8145 return -EINVAL;
8146
8147 return 0;
8148 }
8149
8150 /**
8151 * sys_perf_event_open - open a performance event, associate it to a task/cpu
8152 *
8153 * @attr_uptr: event_id type attributes for monitoring/sampling
8154 * @pid: target pid
8155 * @cpu: target cpu
8156 * @group_fd: group leader event fd
8157 */
8158 SYSCALL_DEFINE5(perf_event_open,
8159 struct perf_event_attr __user *, attr_uptr,
8160 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
8161 {
8162 struct perf_event *group_leader = NULL, *output_event = NULL;
8163 struct perf_event *event, *sibling;
8164 struct perf_event_attr attr;
8165 struct perf_event_context *ctx, *uninitialized_var(gctx);
8166 struct file *event_file = NULL;
8167 struct fd group = {NULL, 0};
8168 struct task_struct *task = NULL;
8169 struct pmu *pmu;
8170 int event_fd;
8171 int move_group = 0;
8172 int err;
8173 int f_flags = O_RDWR;
8174 int cgroup_fd = -1;
8175
8176 /* for future expandability... */
8177 if (flags & ~PERF_FLAG_ALL)
8178 return -EINVAL;
8179
8180 err = perf_copy_attr(attr_uptr, &attr);
8181 if (err)
8182 return err;
8183
8184 if (!attr.exclude_kernel) {
8185 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
8186 return -EACCES;
8187 }
8188
8189 if (attr.freq) {
8190 if (attr.sample_freq > sysctl_perf_event_sample_rate)
8191 return -EINVAL;
8192 } else {
8193 if (attr.sample_period & (1ULL << 63))
8194 return -EINVAL;
8195 }
8196
8197 /*
8198 * In cgroup mode, the pid argument is used to pass the fd
8199 * opened to the cgroup directory in cgroupfs. The cpu argument
8200 * designates the cpu on which to monitor threads from that
8201 * cgroup.
8202 */
8203 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
8204 return -EINVAL;
8205
8206 if (flags & PERF_FLAG_FD_CLOEXEC)
8207 f_flags |= O_CLOEXEC;
8208
8209 event_fd = get_unused_fd_flags(f_flags);
8210 if (event_fd < 0)
8211 return event_fd;
8212
8213 if (group_fd != -1) {
8214 err = perf_fget_light(group_fd, &group);
8215 if (err)
8216 goto err_fd;
8217 group_leader = group.file->private_data;
8218 if (flags & PERF_FLAG_FD_OUTPUT)
8219 output_event = group_leader;
8220 if (flags & PERF_FLAG_FD_NO_GROUP)
8221 group_leader = NULL;
8222 }
8223
8224 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
8225 task = find_lively_task_by_vpid(pid);
8226 if (IS_ERR(task)) {
8227 err = PTR_ERR(task);
8228 goto err_group_fd;
8229 }
8230 }
8231
8232 if (task && group_leader &&
8233 group_leader->attr.inherit != attr.inherit) {
8234 err = -EINVAL;
8235 goto err_task;
8236 }
8237
8238 get_online_cpus();
8239
8240 if (flags & PERF_FLAG_PID_CGROUP)
8241 cgroup_fd = pid;
8242
8243 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
8244 NULL, NULL, cgroup_fd);
8245 if (IS_ERR(event)) {
8246 err = PTR_ERR(event);
8247 goto err_cpus;
8248 }
8249
8250 if (is_sampling_event(event)) {
8251 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
8252 err = -ENOTSUPP;
8253 goto err_alloc;
8254 }
8255 }
8256
8257 account_event(event);
8258
8259 /*
8260 * Special case software events and allow them to be part of
8261 * any hardware group.
8262 */
8263 pmu = event->pmu;
8264
8265 if (attr.use_clockid) {
8266 err = perf_event_set_clock(event, attr.clockid);
8267 if (err)
8268 goto err_alloc;
8269 }
8270
8271 if (group_leader &&
8272 (is_software_event(event) != is_software_event(group_leader))) {
8273 if (is_software_event(event)) {
8274 /*
8275 * If event and group_leader are not both a software
8276 * event, and event is, then group leader is not.
8277 *
8278 * Allow the addition of software events to !software
8279 * groups, this is safe because software events never
8280 * fail to schedule.
8281 */
8282 pmu = group_leader->pmu;
8283 } else if (is_software_event(group_leader) &&
8284 (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
8285 /*
8286 * In case the group is a pure software group, and we
8287 * try to add a hardware event, move the whole group to
8288 * the hardware context.
8289 */
8290 move_group = 1;
8291 }
8292 }
8293
8294 /*
8295 * Get the target context (task or percpu):
8296 */
8297 ctx = find_get_context(pmu, task, event);
8298 if (IS_ERR(ctx)) {
8299 err = PTR_ERR(ctx);
8300 goto err_alloc;
8301 }
8302
8303 if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
8304 err = -EBUSY;
8305 goto err_context;
8306 }
8307
8308 if (task) {
8309 put_task_struct(task);
8310 task = NULL;
8311 }
8312
8313 /*
8314 * Look up the group leader (we will attach this event to it):
8315 */
8316 if (group_leader) {
8317 err = -EINVAL;
8318
8319 /*
8320 * Do not allow a recursive hierarchy (this new sibling
8321 * becoming part of another group-sibling):
8322 */
8323 if (group_leader->group_leader != group_leader)
8324 goto err_context;
8325
8326 /* All events in a group should have the same clock */
8327 if (group_leader->clock != event->clock)
8328 goto err_context;
8329
8330 /*
8331 * Do not allow to attach to a group in a different
8332 * task or CPU context:
8333 */
8334 if (move_group) {
8335 /*
8336 * Make sure we're both on the same task, or both
8337 * per-cpu events.
8338 */
8339 if (group_leader->ctx->task != ctx->task)
8340 goto err_context;
8341
8342 /*
8343 * Make sure we're both events for the same CPU;
8344 * grouping events for different CPUs is broken; since
8345 * you can never concurrently schedule them anyhow.
8346 */
8347 if (group_leader->cpu != event->cpu)
8348 goto err_context;
8349 } else {
8350 if (group_leader->ctx != ctx)
8351 goto err_context;
8352 }
8353
8354 /*
8355 * Only a group leader can be exclusive or pinned
8356 */
8357 if (attr.exclusive || attr.pinned)
8358 goto err_context;
8359 }
8360
8361 if (output_event) {
8362 err = perf_event_set_output(event, output_event);
8363 if (err)
8364 goto err_context;
8365 }
8366
8367 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
8368 f_flags);
8369 if (IS_ERR(event_file)) {
8370 err = PTR_ERR(event_file);
8371 goto err_context;
8372 }
8373
8374 if (move_group) {
8375 gctx = group_leader->ctx;
8376 mutex_lock_double(&gctx->mutex, &ctx->mutex);
8377 } else {
8378 mutex_lock(&ctx->mutex);
8379 }
8380
8381 if (!perf_event_validate_size(event)) {
8382 err = -E2BIG;
8383 goto err_locked;
8384 }
8385
8386 /*
8387 * Must be under the same ctx::mutex as perf_install_in_context(),
8388 * because we need to serialize with concurrent event creation.
8389 */
8390 if (!exclusive_event_installable(event, ctx)) {
8391 /* exclusive and group stuff are assumed mutually exclusive */
8392 WARN_ON_ONCE(move_group);
8393
8394 err = -EBUSY;
8395 goto err_locked;
8396 }
8397
8398 WARN_ON_ONCE(ctx->parent_ctx);
8399
8400 if (move_group) {
8401 /*
8402 * See perf_event_ctx_lock() for comments on the details
8403 * of swizzling perf_event::ctx.
8404 */
8405 perf_remove_from_context(group_leader, false);
8406
8407 list_for_each_entry(sibling, &group_leader->sibling_list,
8408 group_entry) {
8409 perf_remove_from_context(sibling, false);
8410 put_ctx(gctx);
8411 }
8412
8413 /*
8414 * Wait for everybody to stop referencing the events through
8415 * the old lists, before installing it on new lists.
8416 */
8417 synchronize_rcu();
8418
8419 /*
8420 * Install the group siblings before the group leader.
8421 *
8422 * Because a group leader will try and install the entire group
8423 * (through the sibling list, which is still in-tact), we can
8424 * end up with siblings installed in the wrong context.
8425 *
8426 * By installing siblings first we NO-OP because they're not
8427 * reachable through the group lists.
8428 */
8429 list_for_each_entry(sibling, &group_leader->sibling_list,
8430 group_entry) {
8431 perf_event__state_init(sibling);
8432 perf_install_in_context(ctx, sibling, sibling->cpu);
8433 get_ctx(ctx);
8434 }
8435
8436 /*
8437 * Removing from the context ends up with disabled
8438 * event. What we want here is event in the initial
8439 * startup state, ready to be add into new context.
8440 */
8441 perf_event__state_init(group_leader);
8442 perf_install_in_context(ctx, group_leader, group_leader->cpu);
8443 get_ctx(ctx);
8444
8445 /*
8446 * Now that all events are installed in @ctx, nothing
8447 * references @gctx anymore, so drop the last reference we have
8448 * on it.
8449 */
8450 put_ctx(gctx);
8451 }
8452
8453 /*
8454 * Precalculate sample_data sizes; do while holding ctx::mutex such
8455 * that we're serialized against further additions and before
8456 * perf_install_in_context() which is the point the event is active and
8457 * can use these values.
8458 */
8459 perf_event__header_size(event);
8460 perf_event__id_header_size(event);
8461
8462 perf_install_in_context(ctx, event, event->cpu);
8463 perf_unpin_context(ctx);
8464
8465 if (move_group)
8466 mutex_unlock(&gctx->mutex);
8467 mutex_unlock(&ctx->mutex);
8468
8469 put_online_cpus();
8470
8471 event->owner = current;
8472
8473 mutex_lock(&current->perf_event_mutex);
8474 list_add_tail(&event->owner_entry, &current->perf_event_list);
8475 mutex_unlock(&current->perf_event_mutex);
8476
8477 /*
8478 * Drop the reference on the group_event after placing the
8479 * new event on the sibling_list. This ensures destruction
8480 * of the group leader will find the pointer to itself in
8481 * perf_group_detach().
8482 */
8483 fdput(group);
8484 fd_install(event_fd, event_file);
8485 return event_fd;
8486
8487 err_locked:
8488 if (move_group)
8489 mutex_unlock(&gctx->mutex);
8490 mutex_unlock(&ctx->mutex);
8491 /* err_file: */
8492 fput(event_file);
8493 err_context:
8494 perf_unpin_context(ctx);
8495 put_ctx(ctx);
8496 err_alloc:
8497 free_event(event);
8498 err_cpus:
8499 put_online_cpus();
8500 err_task:
8501 if (task)
8502 put_task_struct(task);
8503 err_group_fd:
8504 fdput(group);
8505 err_fd:
8506 put_unused_fd(event_fd);
8507 return err;
8508 }
8509
8510 /**
8511 * perf_event_create_kernel_counter
8512 *
8513 * @attr: attributes of the counter to create
8514 * @cpu: cpu in which the counter is bound
8515 * @task: task to profile (NULL for percpu)
8516 */
8517 struct perf_event *
8518 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
8519 struct task_struct *task,
8520 perf_overflow_handler_t overflow_handler,
8521 void *context)
8522 {
8523 struct perf_event_context *ctx;
8524 struct perf_event *event;
8525 int err;
8526
8527 /*
8528 * Get the target context (task or percpu):
8529 */
8530
8531 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
8532 overflow_handler, context, -1);
8533 if (IS_ERR(event)) {
8534 err = PTR_ERR(event);
8535 goto err;
8536 }
8537
8538 /* Mark owner so we could distinguish it from user events. */
8539 event->owner = EVENT_OWNER_KERNEL;
8540
8541 account_event(event);
8542
8543 ctx = find_get_context(event->pmu, task, event);
8544 if (IS_ERR(ctx)) {
8545 err = PTR_ERR(ctx);
8546 goto err_free;
8547 }
8548
8549 WARN_ON_ONCE(ctx->parent_ctx);
8550 mutex_lock(&ctx->mutex);
8551 if (!exclusive_event_installable(event, ctx)) {
8552 mutex_unlock(&ctx->mutex);
8553 perf_unpin_context(ctx);
8554 put_ctx(ctx);
8555 err = -EBUSY;
8556 goto err_free;
8557 }
8558
8559 perf_install_in_context(ctx, event, cpu);
8560 perf_unpin_context(ctx);
8561 mutex_unlock(&ctx->mutex);
8562
8563 return event;
8564
8565 err_free:
8566 free_event(event);
8567 err:
8568 return ERR_PTR(err);
8569 }
8570 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
8571
8572 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
8573 {
8574 struct perf_event_context *src_ctx;
8575 struct perf_event_context *dst_ctx;
8576 struct perf_event *event, *tmp;
8577 LIST_HEAD(events);
8578
8579 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
8580 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
8581
8582 /*
8583 * See perf_event_ctx_lock() for comments on the details
8584 * of swizzling perf_event::ctx.
8585 */
8586 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
8587 list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
8588 event_entry) {
8589 perf_remove_from_context(event, false);
8590 unaccount_event_cpu(event, src_cpu);
8591 put_ctx(src_ctx);
8592 list_add(&event->migrate_entry, &events);
8593 }
8594
8595 /*
8596 * Wait for the events to quiesce before re-instating them.
8597 */
8598 synchronize_rcu();
8599
8600 /*
8601 * Re-instate events in 2 passes.
8602 *
8603 * Skip over group leaders and only install siblings on this first
8604 * pass, siblings will not get enabled without a leader, however a
8605 * leader will enable its siblings, even if those are still on the old
8606 * context.
8607 */
8608 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
8609 if (event->group_leader == event)
8610 continue;
8611
8612 list_del(&event->migrate_entry);
8613 if (event->state >= PERF_EVENT_STATE_OFF)
8614 event->state = PERF_EVENT_STATE_INACTIVE;
8615 account_event_cpu(event, dst_cpu);
8616 perf_install_in_context(dst_ctx, event, dst_cpu);
8617 get_ctx(dst_ctx);
8618 }
8619
8620 /*
8621 * Once all the siblings are setup properly, install the group leaders
8622 * to make it go.
8623 */
8624 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
8625 list_del(&event->migrate_entry);
8626 if (event->state >= PERF_EVENT_STATE_OFF)
8627 event->state = PERF_EVENT_STATE_INACTIVE;
8628 account_event_cpu(event, dst_cpu);
8629 perf_install_in_context(dst_ctx, event, dst_cpu);
8630 get_ctx(dst_ctx);
8631 }
8632 mutex_unlock(&dst_ctx->mutex);
8633 mutex_unlock(&src_ctx->mutex);
8634 }
8635 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
8636
8637 static void sync_child_event(struct perf_event *child_event,
8638 struct task_struct *child)
8639 {
8640 struct perf_event *parent_event = child_event->parent;
8641 u64 child_val;
8642
8643 if (child_event->attr.inherit_stat)
8644 perf_event_read_event(child_event, child);
8645
8646 child_val = perf_event_count(child_event);
8647
8648 /*
8649 * Add back the child's count to the parent's count:
8650 */
8651 atomic64_add(child_val, &parent_event->child_count);
8652 atomic64_add(child_event->total_time_enabled,
8653 &parent_event->child_total_time_enabled);
8654 atomic64_add(child_event->total_time_running,
8655 &parent_event->child_total_time_running);
8656
8657 /*
8658 * Remove this event from the parent's list
8659 */
8660 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
8661 mutex_lock(&parent_event->child_mutex);
8662 list_del_init(&child_event->child_list);
8663 mutex_unlock(&parent_event->child_mutex);
8664
8665 /*
8666 * Make sure user/parent get notified, that we just
8667 * lost one event.
8668 */
8669 perf_event_wakeup(parent_event);
8670
8671 /*
8672 * Release the parent event, if this was the last
8673 * reference to it.
8674 */
8675 put_event(parent_event);
8676 }
8677
8678 static void
8679 __perf_event_exit_task(struct perf_event *child_event,
8680 struct perf_event_context *child_ctx,
8681 struct task_struct *child)
8682 {
8683 /*
8684 * Do not destroy the 'original' grouping; because of the context
8685 * switch optimization the original events could've ended up in a
8686 * random child task.
8687 *
8688 * If we were to destroy the original group, all group related
8689 * operations would cease to function properly after this random
8690 * child dies.
8691 *
8692 * Do destroy all inherited groups, we don't care about those
8693 * and being thorough is better.
8694 */
8695 raw_spin_lock_irq(&child_ctx->lock);
8696 WARN_ON_ONCE(child_ctx->is_active);
8697
8698 if (!!child_event->parent)
8699 perf_group_detach(child_event);
8700 list_del_event(child_event, child_ctx);
8701 raw_spin_unlock_irq(&child_ctx->lock);
8702
8703 /*
8704 * It can happen that the parent exits first, and has events
8705 * that are still around due to the child reference. These
8706 * events need to be zapped.
8707 */
8708 if (child_event->parent) {
8709 sync_child_event(child_event, child);
8710 free_event(child_event);
8711 } else {
8712 child_event->state = PERF_EVENT_STATE_EXIT;
8713 perf_event_wakeup(child_event);
8714 }
8715 }
8716
8717 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
8718 {
8719 struct perf_event *child_event, *next;
8720 struct perf_event_context *child_ctx, *clone_ctx = NULL;
8721
8722 if (likely(!child->perf_event_ctxp[ctxn]))
8723 return;
8724
8725 local_irq_disable();
8726 WARN_ON_ONCE(child != current);
8727 /*
8728 * We can't reschedule here because interrupts are disabled,
8729 * and child must be current.
8730 */
8731 child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
8732
8733 /*
8734 * Take the context lock here so that if find_get_context is
8735 * reading child->perf_event_ctxp, we wait until it has
8736 * incremented the context's refcount before we do put_ctx below.
8737 */
8738 raw_spin_lock(&child_ctx->lock);
8739 task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx);
8740 child->perf_event_ctxp[ctxn] = NULL;
8741
8742 /*
8743 * If this context is a clone; unclone it so it can't get
8744 * swapped to another process while we're removing all
8745 * the events from it.
8746 */
8747 clone_ctx = unclone_ctx(child_ctx);
8748 update_context_time(child_ctx);
8749 raw_spin_unlock_irq(&child_ctx->lock);
8750
8751 if (clone_ctx)
8752 put_ctx(clone_ctx);
8753
8754 /*
8755 * Report the task dead after unscheduling the events so that we
8756 * won't get any samples after PERF_RECORD_EXIT. We can however still
8757 * get a few PERF_RECORD_READ events.
8758 */
8759 perf_event_task(child, child_ctx, 0);
8760
8761 /*
8762 * We can recurse on the same lock type through:
8763 *
8764 * __perf_event_exit_task()
8765 * sync_child_event()
8766 * put_event()
8767 * mutex_lock(&ctx->mutex)
8768 *
8769 * But since its the parent context it won't be the same instance.
8770 */
8771 mutex_lock(&child_ctx->mutex);
8772
8773 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
8774 __perf_event_exit_task(child_event, child_ctx, child);
8775
8776 mutex_unlock(&child_ctx->mutex);
8777
8778 put_ctx(child_ctx);
8779 }
8780
8781 /*
8782 * When a child task exits, feed back event values to parent events.
8783 */
8784 void perf_event_exit_task(struct task_struct *child)
8785 {
8786 struct perf_event *event, *tmp;
8787 int ctxn;
8788
8789 mutex_lock(&child->perf_event_mutex);
8790 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
8791 owner_entry) {
8792 list_del_init(&event->owner_entry);
8793
8794 /*
8795 * Ensure the list deletion is visible before we clear
8796 * the owner, closes a race against perf_release() where
8797 * we need to serialize on the owner->perf_event_mutex.
8798 */
8799 smp_wmb();
8800 event->owner = NULL;
8801 }
8802 mutex_unlock(&child->perf_event_mutex);
8803
8804 for_each_task_context_nr(ctxn)
8805 perf_event_exit_task_context(child, ctxn);
8806
8807 /*
8808 * The perf_event_exit_task_context calls perf_event_task
8809 * with child's task_ctx, which generates EXIT events for
8810 * child contexts and sets child->perf_event_ctxp[] to NULL.
8811 * At this point we need to send EXIT events to cpu contexts.
8812 */
8813 perf_event_task(child, NULL, 0);
8814 }
8815
8816 static void perf_free_event(struct perf_event *event,
8817 struct perf_event_context *ctx)
8818 {
8819 struct perf_event *parent = event->parent;
8820
8821 if (WARN_ON_ONCE(!parent))
8822 return;
8823
8824 mutex_lock(&parent->child_mutex);
8825 list_del_init(&event->child_list);
8826 mutex_unlock(&parent->child_mutex);
8827
8828 put_event(parent);
8829
8830 raw_spin_lock_irq(&ctx->lock);
8831 perf_group_detach(event);
8832 list_del_event(event, ctx);
8833 raw_spin_unlock_irq(&ctx->lock);
8834 free_event(event);
8835 }
8836
8837 /*
8838 * Free an unexposed, unused context as created by inheritance by
8839 * perf_event_init_task below, used by fork() in case of fail.
8840 *
8841 * Not all locks are strictly required, but take them anyway to be nice and
8842 * help out with the lockdep assertions.
8843 */
8844 void perf_event_free_task(struct task_struct *task)
8845 {
8846 struct perf_event_context *ctx;
8847 struct perf_event *event, *tmp;
8848 int ctxn;
8849
8850 for_each_task_context_nr(ctxn) {
8851 ctx = task->perf_event_ctxp[ctxn];
8852 if (!ctx)
8853 continue;
8854
8855 mutex_lock(&ctx->mutex);
8856 again:
8857 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
8858 group_entry)
8859 perf_free_event(event, ctx);
8860
8861 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
8862 group_entry)
8863 perf_free_event(event, ctx);
8864
8865 if (!list_empty(&ctx->pinned_groups) ||
8866 !list_empty(&ctx->flexible_groups))
8867 goto again;
8868
8869 mutex_unlock(&ctx->mutex);
8870
8871 put_ctx(ctx);
8872 }
8873 }
8874
8875 void perf_event_delayed_put(struct task_struct *task)
8876 {
8877 int ctxn;
8878
8879 for_each_task_context_nr(ctxn)
8880 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
8881 }
8882
8883 struct perf_event *perf_event_get(unsigned int fd)
8884 {
8885 int err;
8886 struct fd f;
8887 struct perf_event *event;
8888
8889 err = perf_fget_light(fd, &f);
8890 if (err)
8891 return ERR_PTR(err);
8892
8893 event = f.file->private_data;
8894 atomic_long_inc(&event->refcount);
8895 fdput(f);
8896
8897 return event;
8898 }
8899
8900 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
8901 {
8902 if (!event)
8903 return ERR_PTR(-EINVAL);
8904
8905 return &event->attr;
8906 }
8907
8908 /*
8909 * inherit a event from parent task to child task:
8910 */
8911 static struct perf_event *
8912 inherit_event(struct perf_event *parent_event,
8913 struct task_struct *parent,
8914 struct perf_event_context *parent_ctx,
8915 struct task_struct *child,
8916 struct perf_event *group_leader,
8917 struct perf_event_context *child_ctx)
8918 {
8919 enum perf_event_active_state parent_state = parent_event->state;
8920 struct perf_event *child_event;
8921 unsigned long flags;
8922
8923 /*
8924 * Instead of creating recursive hierarchies of events,
8925 * we link inherited events back to the original parent,
8926 * which has a filp for sure, which we use as the reference
8927 * count:
8928 */
8929 if (parent_event->parent)
8930 parent_event = parent_event->parent;
8931
8932 child_event = perf_event_alloc(&parent_event->attr,
8933 parent_event->cpu,
8934 child,
8935 group_leader, parent_event,
8936 NULL, NULL, -1);
8937 if (IS_ERR(child_event))
8938 return child_event;
8939
8940 if (is_orphaned_event(parent_event) ||
8941 !atomic_long_inc_not_zero(&parent_event->refcount)) {
8942 free_event(child_event);
8943 return NULL;
8944 }
8945
8946 get_ctx(child_ctx);
8947
8948 /*
8949 * Make the child state follow the state of the parent event,
8950 * not its attr.disabled bit. We hold the parent's mutex,
8951 * so we won't race with perf_event_{en, dis}able_family.
8952 */
8953 if (parent_state >= PERF_EVENT_STATE_INACTIVE)
8954 child_event->state = PERF_EVENT_STATE_INACTIVE;
8955 else
8956 child_event->state = PERF_EVENT_STATE_OFF;
8957
8958 if (parent_event->attr.freq) {
8959 u64 sample_period = parent_event->hw.sample_period;
8960 struct hw_perf_event *hwc = &child_event->hw;
8961
8962 hwc->sample_period = sample_period;
8963 hwc->last_period = sample_period;
8964
8965 local64_set(&hwc->period_left, sample_period);
8966 }
8967
8968 child_event->ctx = child_ctx;
8969 child_event->overflow_handler = parent_event->overflow_handler;
8970 child_event->overflow_handler_context
8971 = parent_event->overflow_handler_context;
8972
8973 /*
8974 * Precalculate sample_data sizes
8975 */
8976 perf_event__header_size(child_event);
8977 perf_event__id_header_size(child_event);
8978
8979 /*
8980 * Link it up in the child's context:
8981 */
8982 raw_spin_lock_irqsave(&child_ctx->lock, flags);
8983 add_event_to_ctx(child_event, child_ctx);
8984 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
8985
8986 /*
8987 * Link this into the parent event's child list
8988 */
8989 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
8990 mutex_lock(&parent_event->child_mutex);
8991 list_add_tail(&child_event->child_list, &parent_event->child_list);
8992 mutex_unlock(&parent_event->child_mutex);
8993
8994 return child_event;
8995 }
8996
8997 static int inherit_group(struct perf_event *parent_event,
8998 struct task_struct *parent,
8999 struct perf_event_context *parent_ctx,
9000 struct task_struct *child,
9001 struct perf_event_context *child_ctx)
9002 {
9003 struct perf_event *leader;
9004 struct perf_event *sub;
9005 struct perf_event *child_ctr;
9006
9007 leader = inherit_event(parent_event, parent, parent_ctx,
9008 child, NULL, child_ctx);
9009 if (IS_ERR(leader))
9010 return PTR_ERR(leader);
9011 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
9012 child_ctr = inherit_event(sub, parent, parent_ctx,
9013 child, leader, child_ctx);
9014 if (IS_ERR(child_ctr))
9015 return PTR_ERR(child_ctr);
9016 }
9017 return 0;
9018 }
9019
9020 static int
9021 inherit_task_group(struct perf_event *event, struct task_struct *parent,
9022 struct perf_event_context *parent_ctx,
9023 struct task_struct *child, int ctxn,
9024 int *inherited_all)
9025 {
9026 int ret;
9027 struct perf_event_context *child_ctx;
9028
9029 if (!event->attr.inherit) {
9030 *inherited_all = 0;
9031 return 0;
9032 }
9033
9034 child_ctx = child->perf_event_ctxp[ctxn];
9035 if (!child_ctx) {
9036 /*
9037 * This is executed from the parent task context, so
9038 * inherit events that have been marked for cloning.
9039 * First allocate and initialize a context for the
9040 * child.
9041 */
9042
9043 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
9044 if (!child_ctx)
9045 return -ENOMEM;
9046
9047 child->perf_event_ctxp[ctxn] = child_ctx;
9048 }
9049
9050 ret = inherit_group(event, parent, parent_ctx,
9051 child, child_ctx);
9052
9053 if (ret)
9054 *inherited_all = 0;
9055
9056 return ret;
9057 }
9058
9059 /*
9060 * Initialize the perf_event context in task_struct
9061 */
9062 static int perf_event_init_context(struct task_struct *child, int ctxn)
9063 {
9064 struct perf_event_context *child_ctx, *parent_ctx;
9065 struct perf_event_context *cloned_ctx;
9066 struct perf_event *event;
9067 struct task_struct *parent = current;
9068 int inherited_all = 1;
9069 unsigned long flags;
9070 int ret = 0;
9071
9072 if (likely(!parent->perf_event_ctxp[ctxn]))
9073 return 0;
9074
9075 /*
9076 * If the parent's context is a clone, pin it so it won't get
9077 * swapped under us.
9078 */
9079 parent_ctx = perf_pin_task_context(parent, ctxn);
9080 if (!parent_ctx)
9081 return 0;
9082
9083 /*
9084 * No need to check if parent_ctx != NULL here; since we saw
9085 * it non-NULL earlier, the only reason for it to become NULL
9086 * is if we exit, and since we're currently in the middle of
9087 * a fork we can't be exiting at the same time.
9088 */
9089
9090 /*
9091 * Lock the parent list. No need to lock the child - not PID
9092 * hashed yet and not running, so nobody can access it.
9093 */
9094 mutex_lock(&parent_ctx->mutex);
9095
9096 /*
9097 * We dont have to disable NMIs - we are only looking at
9098 * the list, not manipulating it:
9099 */
9100 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
9101 ret = inherit_task_group(event, parent, parent_ctx,
9102 child, ctxn, &inherited_all);
9103 if (ret)
9104 break;
9105 }
9106
9107 /*
9108 * We can't hold ctx->lock when iterating the ->flexible_group list due
9109 * to allocations, but we need to prevent rotation because
9110 * rotate_ctx() will change the list from interrupt context.
9111 */
9112 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
9113 parent_ctx->rotate_disable = 1;
9114 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
9115
9116 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
9117 ret = inherit_task_group(event, parent, parent_ctx,
9118 child, ctxn, &inherited_all);
9119 if (ret)
9120 break;
9121 }
9122
9123 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
9124 parent_ctx->rotate_disable = 0;
9125
9126 child_ctx = child->perf_event_ctxp[ctxn];
9127
9128 if (child_ctx && inherited_all) {
9129 /*
9130 * Mark the child context as a clone of the parent
9131 * context, or of whatever the parent is a clone of.
9132 *
9133 * Note that if the parent is a clone, the holding of
9134 * parent_ctx->lock avoids it from being uncloned.
9135 */
9136 cloned_ctx = parent_ctx->parent_ctx;
9137 if (cloned_ctx) {
9138 child_ctx->parent_ctx = cloned_ctx;
9139 child_ctx->parent_gen = parent_ctx->parent_gen;
9140 } else {
9141 child_ctx->parent_ctx = parent_ctx;
9142 child_ctx->parent_gen = parent_ctx->generation;
9143 }
9144 get_ctx(child_ctx->parent_ctx);
9145 }
9146
9147 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
9148 mutex_unlock(&parent_ctx->mutex);
9149
9150 perf_unpin_context(parent_ctx);
9151 put_ctx(parent_ctx);
9152
9153 return ret;
9154 }
9155
9156 /*
9157 * Initialize the perf_event context in task_struct
9158 */
9159 int perf_event_init_task(struct task_struct *child)
9160 {
9161 int ctxn, ret;
9162
9163 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
9164 mutex_init(&child->perf_event_mutex);
9165 INIT_LIST_HEAD(&child->perf_event_list);
9166
9167 for_each_task_context_nr(ctxn) {
9168 ret = perf_event_init_context(child, ctxn);
9169 if (ret) {
9170 perf_event_free_task(child);
9171 return ret;
9172 }
9173 }
9174
9175 return 0;
9176 }
9177
9178 static void __init perf_event_init_all_cpus(void)
9179 {
9180 struct swevent_htable *swhash;
9181 int cpu;
9182
9183 for_each_possible_cpu(cpu) {
9184 swhash = &per_cpu(swevent_htable, cpu);
9185 mutex_init(&swhash->hlist_mutex);
9186 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
9187 }
9188 }
9189
9190 static void perf_event_init_cpu(int cpu)
9191 {
9192 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
9193
9194 mutex_lock(&swhash->hlist_mutex);
9195 if (swhash->hlist_refcount > 0) {
9196 struct swevent_hlist *hlist;
9197
9198 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
9199 WARN_ON(!hlist);
9200 rcu_assign_pointer(swhash->swevent_hlist, hlist);
9201 }
9202 mutex_unlock(&swhash->hlist_mutex);
9203 }
9204
9205 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
9206 static void __perf_event_exit_context(void *__info)
9207 {
9208 struct perf_event_context *ctx = __info;
9209 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
9210 struct perf_event *event;
9211
9212 raw_spin_lock(&ctx->lock);
9213 list_for_each_entry(event, &ctx->event_list, event_entry)
9214 __perf_remove_from_context(event, cpuctx, ctx, (void *)(unsigned long)true);
9215 raw_spin_unlock(&ctx->lock);
9216 }
9217
9218 static void perf_event_exit_cpu_context(int cpu)
9219 {
9220 struct perf_event_context *ctx;
9221 struct pmu *pmu;
9222 int idx;
9223
9224 idx = srcu_read_lock(&pmus_srcu);
9225 list_for_each_entry_rcu(pmu, &pmus, entry) {
9226 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
9227
9228 mutex_lock(&ctx->mutex);
9229 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
9230 mutex_unlock(&ctx->mutex);
9231 }
9232 srcu_read_unlock(&pmus_srcu, idx);
9233 }
9234
9235 static void perf_event_exit_cpu(int cpu)
9236 {
9237 perf_event_exit_cpu_context(cpu);
9238 }
9239 #else
9240 static inline void perf_event_exit_cpu(int cpu) { }
9241 #endif
9242
9243 static int
9244 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
9245 {
9246 int cpu;
9247
9248 for_each_online_cpu(cpu)
9249 perf_event_exit_cpu(cpu);
9250
9251 return NOTIFY_OK;
9252 }
9253
9254 /*
9255 * Run the perf reboot notifier at the very last possible moment so that
9256 * the generic watchdog code runs as long as possible.
9257 */
9258 static struct notifier_block perf_reboot_notifier = {
9259 .notifier_call = perf_reboot,
9260 .priority = INT_MIN,
9261 };
9262
9263 static int
9264 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
9265 {
9266 unsigned int cpu = (long)hcpu;
9267
9268 switch (action & ~CPU_TASKS_FROZEN) {
9269
9270 case CPU_UP_PREPARE:
9271 case CPU_DOWN_FAILED:
9272 perf_event_init_cpu(cpu);
9273 break;
9274
9275 case CPU_UP_CANCELED:
9276 case CPU_DOWN_PREPARE:
9277 perf_event_exit_cpu(cpu);
9278 break;
9279 default:
9280 break;
9281 }
9282
9283 return NOTIFY_OK;
9284 }
9285
9286 void __init perf_event_init(void)
9287 {
9288 int ret;
9289
9290 idr_init(&pmu_idr);
9291
9292 perf_event_init_all_cpus();
9293 init_srcu_struct(&pmus_srcu);
9294 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
9295 perf_pmu_register(&perf_cpu_clock, NULL, -1);
9296 perf_pmu_register(&perf_task_clock, NULL, -1);
9297 perf_tp_register();
9298 perf_cpu_notifier(perf_cpu_notify);
9299 register_reboot_notifier(&perf_reboot_notifier);
9300
9301 ret = init_hw_breakpoint();
9302 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
9303
9304 /* do not patch jump label more than once per second */
9305 jump_label_rate_limit(&perf_sched_events, HZ);
9306
9307 /*
9308 * Build time assertion that we keep the data_head at the intended
9309 * location. IOW, validation we got the __reserved[] size right.
9310 */
9311 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
9312 != 1024);
9313 }
9314
9315 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
9316 char *page)
9317 {
9318 struct perf_pmu_events_attr *pmu_attr =
9319 container_of(attr, struct perf_pmu_events_attr, attr);
9320
9321 if (pmu_attr->event_str)
9322 return sprintf(page, "%s\n", pmu_attr->event_str);
9323
9324 return 0;
9325 }
9326
9327 static int __init perf_event_sysfs_init(void)
9328 {
9329 struct pmu *pmu;
9330 int ret;
9331
9332 mutex_lock(&pmus_lock);
9333
9334 ret = bus_register(&pmu_bus);
9335 if (ret)
9336 goto unlock;
9337
9338 list_for_each_entry(pmu, &pmus, entry) {
9339 if (!pmu->name || pmu->type < 0)
9340 continue;
9341
9342 ret = pmu_dev_alloc(pmu);
9343 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
9344 }
9345 pmu_bus_running = 1;
9346 ret = 0;
9347
9348 unlock:
9349 mutex_unlock(&pmus_lock);
9350
9351 return ret;
9352 }
9353 device_initcall(perf_event_sysfs_init);
9354
9355 #ifdef CONFIG_CGROUP_PERF
9356 static struct cgroup_subsys_state *
9357 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
9358 {
9359 struct perf_cgroup *jc;
9360
9361 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
9362 if (!jc)
9363 return ERR_PTR(-ENOMEM);
9364
9365 jc->info = alloc_percpu(struct perf_cgroup_info);
9366 if (!jc->info) {
9367 kfree(jc);
9368 return ERR_PTR(-ENOMEM);
9369 }
9370
9371 return &jc->css;
9372 }
9373
9374 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
9375 {
9376 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
9377
9378 free_percpu(jc->info);
9379 kfree(jc);
9380 }
9381
9382 static int __perf_cgroup_move(void *info)
9383 {
9384 struct task_struct *task = info;
9385 rcu_read_lock();
9386 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
9387 rcu_read_unlock();
9388 return 0;
9389 }
9390
9391 static void perf_cgroup_attach(struct cgroup_taskset *tset)
9392 {
9393 struct task_struct *task;
9394 struct cgroup_subsys_state *css;
9395
9396 cgroup_taskset_for_each(task, css, tset)
9397 task_function_call(task, __perf_cgroup_move, task);
9398 }
9399
9400 struct cgroup_subsys perf_event_cgrp_subsys = {
9401 .css_alloc = perf_cgroup_css_alloc,
9402 .css_free = perf_cgroup_css_free,
9403 .attach = perf_cgroup_attach,
9404 };
9405 #endif /* CONFIG_CGROUP_PERF */
This page took 0.816856 seconds and 5 git commands to generate.