6759f2a332d76f1fe513fec3946e441e754a94f9
[deliverable/linux.git] / kernel / events / core.c
1 /*
2 * Performance events core code:
3 *
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8 *
9 * For licensing details see kernel-base/COPYING
10 */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/tick.h>
22 #include <linux/sysfs.h>
23 #include <linux/dcache.h>
24 #include <linux/percpu.h>
25 #include <linux/ptrace.h>
26 #include <linux/reboot.h>
27 #include <linux/vmstat.h>
28 #include <linux/device.h>
29 #include <linux/export.h>
30 #include <linux/vmalloc.h>
31 #include <linux/hardirq.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47
48 #include "internal.h"
49
50 #include <asm/irq_regs.h>
51
52 static struct workqueue_struct *perf_wq;
53
54 typedef int (*remote_function_f)(void *);
55
56 struct remote_function_call {
57 struct task_struct *p;
58 remote_function_f func;
59 void *info;
60 int ret;
61 };
62
63 static void remote_function(void *data)
64 {
65 struct remote_function_call *tfc = data;
66 struct task_struct *p = tfc->p;
67
68 if (p) {
69 tfc->ret = -EAGAIN;
70 if (task_cpu(p) != smp_processor_id() || !task_curr(p))
71 return;
72 }
73
74 tfc->ret = tfc->func(tfc->info);
75 }
76
77 /**
78 * task_function_call - call a function on the cpu on which a task runs
79 * @p: the task to evaluate
80 * @func: the function to be called
81 * @info: the function call argument
82 *
83 * Calls the function @func when the task is currently running. This might
84 * be on the current CPU, which just calls the function directly
85 *
86 * returns: @func return value, or
87 * -ESRCH - when the process isn't running
88 * -EAGAIN - when the process moved away
89 */
90 static int
91 task_function_call(struct task_struct *p, remote_function_f func, void *info)
92 {
93 struct remote_function_call data = {
94 .p = p,
95 .func = func,
96 .info = info,
97 .ret = -ESRCH, /* No such (running) process */
98 };
99
100 if (task_curr(p))
101 smp_call_function_single(task_cpu(p), remote_function, &data, 1);
102
103 return data.ret;
104 }
105
106 /**
107 * cpu_function_call - call a function on the cpu
108 * @func: the function to be called
109 * @info: the function call argument
110 *
111 * Calls the function @func on the remote cpu.
112 *
113 * returns: @func return value or -ENXIO when the cpu is offline
114 */
115 static int cpu_function_call(int cpu, remote_function_f func, void *info)
116 {
117 struct remote_function_call data = {
118 .p = NULL,
119 .func = func,
120 .info = info,
121 .ret = -ENXIO, /* No such CPU */
122 };
123
124 smp_call_function_single(cpu, remote_function, &data, 1);
125
126 return data.ret;
127 }
128
129 static inline struct perf_cpu_context *
130 __get_cpu_context(struct perf_event_context *ctx)
131 {
132 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
133 }
134
135 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
136 struct perf_event_context *ctx)
137 {
138 raw_spin_lock(&cpuctx->ctx.lock);
139 if (ctx)
140 raw_spin_lock(&ctx->lock);
141 }
142
143 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
144 struct perf_event_context *ctx)
145 {
146 if (ctx)
147 raw_spin_unlock(&ctx->lock);
148 raw_spin_unlock(&cpuctx->ctx.lock);
149 }
150
151 #define TASK_TOMBSTONE ((void *)-1L)
152
153 static bool is_kernel_event(struct perf_event *event)
154 {
155 return event->owner == TASK_TOMBSTONE;
156 }
157
158 /*
159 * On task ctx scheduling...
160 *
161 * When !ctx->nr_events a task context will not be scheduled. This means
162 * we can disable the scheduler hooks (for performance) without leaving
163 * pending task ctx state.
164 *
165 * This however results in two special cases:
166 *
167 * - removing the last event from a task ctx; this is relatively straight
168 * forward and is done in __perf_remove_from_context.
169 *
170 * - adding the first event to a task ctx; this is tricky because we cannot
171 * rely on ctx->is_active and therefore cannot use event_function_call().
172 * See perf_install_in_context().
173 *
174 * This is because we need a ctx->lock serialized variable (ctx->is_active)
175 * to reliably determine if a particular task/context is scheduled in. The
176 * task_curr() use in task_function_call() is racy in that a remote context
177 * switch is not a single atomic operation.
178 *
179 * As is, the situation is 'safe' because we set rq->curr before we do the
180 * actual context switch. This means that task_curr() will fail early, but
181 * we'll continue spinning on ctx->is_active until we've passed
182 * perf_event_task_sched_out().
183 *
184 * Without this ctx->lock serialized variable we could have race where we find
185 * the task (and hence the context) would not be active while in fact they are.
186 *
187 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
188 */
189
190 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
191 struct perf_event_context *, void *);
192
193 struct event_function_struct {
194 struct perf_event *event;
195 event_f func;
196 void *data;
197 };
198
199 static int event_function(void *info)
200 {
201 struct event_function_struct *efs = info;
202 struct perf_event *event = efs->event;
203 struct perf_event_context *ctx = event->ctx;
204 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
205 struct perf_event_context *task_ctx = cpuctx->task_ctx;
206 int ret = 0;
207
208 WARN_ON_ONCE(!irqs_disabled());
209
210 perf_ctx_lock(cpuctx, task_ctx);
211 /*
212 * Since we do the IPI call without holding ctx->lock things can have
213 * changed, double check we hit the task we set out to hit.
214 */
215 if (ctx->task) {
216 if (ctx->task != current) {
217 ret = -EAGAIN;
218 goto unlock;
219 }
220
221 /*
222 * We only use event_function_call() on established contexts,
223 * and event_function() is only ever called when active (or
224 * rather, we'll have bailed in task_function_call() or the
225 * above ctx->task != current test), therefore we must have
226 * ctx->is_active here.
227 */
228 WARN_ON_ONCE(!ctx->is_active);
229 /*
230 * And since we have ctx->is_active, cpuctx->task_ctx must
231 * match.
232 */
233 WARN_ON_ONCE(task_ctx != ctx);
234 } else {
235 WARN_ON_ONCE(&cpuctx->ctx != ctx);
236 }
237
238 efs->func(event, cpuctx, ctx, efs->data);
239 unlock:
240 perf_ctx_unlock(cpuctx, task_ctx);
241
242 return ret;
243 }
244
245 static void event_function_local(struct perf_event *event, event_f func, void *data)
246 {
247 struct event_function_struct efs = {
248 .event = event,
249 .func = func,
250 .data = data,
251 };
252
253 int ret = event_function(&efs);
254 WARN_ON_ONCE(ret);
255 }
256
257 static void event_function_call(struct perf_event *event, event_f func, void *data)
258 {
259 struct perf_event_context *ctx = event->ctx;
260 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
261 struct event_function_struct efs = {
262 .event = event,
263 .func = func,
264 .data = data,
265 };
266
267 if (!event->parent) {
268 /*
269 * If this is a !child event, we must hold ctx::mutex to
270 * stabilize the the event->ctx relation. See
271 * perf_event_ctx_lock().
272 */
273 lockdep_assert_held(&ctx->mutex);
274 }
275
276 if (!task) {
277 cpu_function_call(event->cpu, event_function, &efs);
278 return;
279 }
280
281 again:
282 if (task == TASK_TOMBSTONE)
283 return;
284
285 if (!task_function_call(task, event_function, &efs))
286 return;
287
288 raw_spin_lock_irq(&ctx->lock);
289 /*
290 * Reload the task pointer, it might have been changed by
291 * a concurrent perf_event_context_sched_out().
292 */
293 task = ctx->task;
294 if (task != TASK_TOMBSTONE) {
295 if (ctx->is_active) {
296 raw_spin_unlock_irq(&ctx->lock);
297 goto again;
298 }
299 func(event, NULL, ctx, data);
300 }
301 raw_spin_unlock_irq(&ctx->lock);
302 }
303
304 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
305 PERF_FLAG_FD_OUTPUT |\
306 PERF_FLAG_PID_CGROUP |\
307 PERF_FLAG_FD_CLOEXEC)
308
309 /*
310 * branch priv levels that need permission checks
311 */
312 #define PERF_SAMPLE_BRANCH_PERM_PLM \
313 (PERF_SAMPLE_BRANCH_KERNEL |\
314 PERF_SAMPLE_BRANCH_HV)
315
316 enum event_type_t {
317 EVENT_FLEXIBLE = 0x1,
318 EVENT_PINNED = 0x2,
319 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
320 };
321
322 /*
323 * perf_sched_events : >0 events exist
324 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
325 */
326 struct static_key_deferred perf_sched_events __read_mostly;
327 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
328 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
329
330 static atomic_t nr_mmap_events __read_mostly;
331 static atomic_t nr_comm_events __read_mostly;
332 static atomic_t nr_task_events __read_mostly;
333 static atomic_t nr_freq_events __read_mostly;
334 static atomic_t nr_switch_events __read_mostly;
335
336 static LIST_HEAD(pmus);
337 static DEFINE_MUTEX(pmus_lock);
338 static struct srcu_struct pmus_srcu;
339
340 /*
341 * perf event paranoia level:
342 * -1 - not paranoid at all
343 * 0 - disallow raw tracepoint access for unpriv
344 * 1 - disallow cpu events for unpriv
345 * 2 - disallow kernel profiling for unpriv
346 */
347 int sysctl_perf_event_paranoid __read_mostly = 1;
348
349 /* Minimum for 512 kiB + 1 user control page */
350 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
351
352 /*
353 * max perf event sample rate
354 */
355 #define DEFAULT_MAX_SAMPLE_RATE 100000
356 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
357 #define DEFAULT_CPU_TIME_MAX_PERCENT 25
358
359 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
360
361 static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
362 static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS;
363
364 static int perf_sample_allowed_ns __read_mostly =
365 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
366
367 static void update_perf_cpu_limits(void)
368 {
369 u64 tmp = perf_sample_period_ns;
370
371 tmp *= sysctl_perf_cpu_time_max_percent;
372 do_div(tmp, 100);
373 ACCESS_ONCE(perf_sample_allowed_ns) = tmp;
374 }
375
376 static int perf_rotate_context(struct perf_cpu_context *cpuctx);
377
378 int perf_proc_update_handler(struct ctl_table *table, int write,
379 void __user *buffer, size_t *lenp,
380 loff_t *ppos)
381 {
382 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
383
384 if (ret || !write)
385 return ret;
386
387 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
388 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
389 update_perf_cpu_limits();
390
391 return 0;
392 }
393
394 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
395
396 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
397 void __user *buffer, size_t *lenp,
398 loff_t *ppos)
399 {
400 int ret = proc_dointvec(table, write, buffer, lenp, ppos);
401
402 if (ret || !write)
403 return ret;
404
405 update_perf_cpu_limits();
406
407 return 0;
408 }
409
410 /*
411 * perf samples are done in some very critical code paths (NMIs).
412 * If they take too much CPU time, the system can lock up and not
413 * get any real work done. This will drop the sample rate when
414 * we detect that events are taking too long.
415 */
416 #define NR_ACCUMULATED_SAMPLES 128
417 static DEFINE_PER_CPU(u64, running_sample_length);
418
419 static void perf_duration_warn(struct irq_work *w)
420 {
421 u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
422 u64 avg_local_sample_len;
423 u64 local_samples_len;
424
425 local_samples_len = __this_cpu_read(running_sample_length);
426 avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
427
428 printk_ratelimited(KERN_WARNING
429 "perf interrupt took too long (%lld > %lld), lowering "
430 "kernel.perf_event_max_sample_rate to %d\n",
431 avg_local_sample_len, allowed_ns >> 1,
432 sysctl_perf_event_sample_rate);
433 }
434
435 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
436
437 void perf_sample_event_took(u64 sample_len_ns)
438 {
439 u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
440 u64 avg_local_sample_len;
441 u64 local_samples_len;
442
443 if (allowed_ns == 0)
444 return;
445
446 /* decay the counter by 1 average sample */
447 local_samples_len = __this_cpu_read(running_sample_length);
448 local_samples_len -= local_samples_len/NR_ACCUMULATED_SAMPLES;
449 local_samples_len += sample_len_ns;
450 __this_cpu_write(running_sample_length, local_samples_len);
451
452 /*
453 * note: this will be biased artifically low until we have
454 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
455 * from having to maintain a count.
456 */
457 avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
458
459 if (avg_local_sample_len <= allowed_ns)
460 return;
461
462 if (max_samples_per_tick <= 1)
463 return;
464
465 max_samples_per_tick = DIV_ROUND_UP(max_samples_per_tick, 2);
466 sysctl_perf_event_sample_rate = max_samples_per_tick * HZ;
467 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
468
469 update_perf_cpu_limits();
470
471 if (!irq_work_queue(&perf_duration_work)) {
472 early_printk("perf interrupt took too long (%lld > %lld), lowering "
473 "kernel.perf_event_max_sample_rate to %d\n",
474 avg_local_sample_len, allowed_ns >> 1,
475 sysctl_perf_event_sample_rate);
476 }
477 }
478
479 static atomic64_t perf_event_id;
480
481 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
482 enum event_type_t event_type);
483
484 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
485 enum event_type_t event_type,
486 struct task_struct *task);
487
488 static void update_context_time(struct perf_event_context *ctx);
489 static u64 perf_event_time(struct perf_event *event);
490
491 void __weak perf_event_print_debug(void) { }
492
493 extern __weak const char *perf_pmu_name(void)
494 {
495 return "pmu";
496 }
497
498 static inline u64 perf_clock(void)
499 {
500 return local_clock();
501 }
502
503 static inline u64 perf_event_clock(struct perf_event *event)
504 {
505 return event->clock();
506 }
507
508 #ifdef CONFIG_CGROUP_PERF
509
510 static inline bool
511 perf_cgroup_match(struct perf_event *event)
512 {
513 struct perf_event_context *ctx = event->ctx;
514 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
515
516 /* @event doesn't care about cgroup */
517 if (!event->cgrp)
518 return true;
519
520 /* wants specific cgroup scope but @cpuctx isn't associated with any */
521 if (!cpuctx->cgrp)
522 return false;
523
524 /*
525 * Cgroup scoping is recursive. An event enabled for a cgroup is
526 * also enabled for all its descendant cgroups. If @cpuctx's
527 * cgroup is a descendant of @event's (the test covers identity
528 * case), it's a match.
529 */
530 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
531 event->cgrp->css.cgroup);
532 }
533
534 static inline void perf_detach_cgroup(struct perf_event *event)
535 {
536 css_put(&event->cgrp->css);
537 event->cgrp = NULL;
538 }
539
540 static inline int is_cgroup_event(struct perf_event *event)
541 {
542 return event->cgrp != NULL;
543 }
544
545 static inline u64 perf_cgroup_event_time(struct perf_event *event)
546 {
547 struct perf_cgroup_info *t;
548
549 t = per_cpu_ptr(event->cgrp->info, event->cpu);
550 return t->time;
551 }
552
553 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
554 {
555 struct perf_cgroup_info *info;
556 u64 now;
557
558 now = perf_clock();
559
560 info = this_cpu_ptr(cgrp->info);
561
562 info->time += now - info->timestamp;
563 info->timestamp = now;
564 }
565
566 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
567 {
568 struct perf_cgroup *cgrp_out = cpuctx->cgrp;
569 if (cgrp_out)
570 __update_cgrp_time(cgrp_out);
571 }
572
573 static inline void update_cgrp_time_from_event(struct perf_event *event)
574 {
575 struct perf_cgroup *cgrp;
576
577 /*
578 * ensure we access cgroup data only when needed and
579 * when we know the cgroup is pinned (css_get)
580 */
581 if (!is_cgroup_event(event))
582 return;
583
584 cgrp = perf_cgroup_from_task(current, event->ctx);
585 /*
586 * Do not update time when cgroup is not active
587 */
588 if (cgrp == event->cgrp)
589 __update_cgrp_time(event->cgrp);
590 }
591
592 static inline void
593 perf_cgroup_set_timestamp(struct task_struct *task,
594 struct perf_event_context *ctx)
595 {
596 struct perf_cgroup *cgrp;
597 struct perf_cgroup_info *info;
598
599 /*
600 * ctx->lock held by caller
601 * ensure we do not access cgroup data
602 * unless we have the cgroup pinned (css_get)
603 */
604 if (!task || !ctx->nr_cgroups)
605 return;
606
607 cgrp = perf_cgroup_from_task(task, ctx);
608 info = this_cpu_ptr(cgrp->info);
609 info->timestamp = ctx->timestamp;
610 }
611
612 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
613 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
614
615 /*
616 * reschedule events based on the cgroup constraint of task.
617 *
618 * mode SWOUT : schedule out everything
619 * mode SWIN : schedule in based on cgroup for next
620 */
621 static void perf_cgroup_switch(struct task_struct *task, int mode)
622 {
623 struct perf_cpu_context *cpuctx;
624 struct pmu *pmu;
625 unsigned long flags;
626
627 /*
628 * disable interrupts to avoid geting nr_cgroup
629 * changes via __perf_event_disable(). Also
630 * avoids preemption.
631 */
632 local_irq_save(flags);
633
634 /*
635 * we reschedule only in the presence of cgroup
636 * constrained events.
637 */
638
639 list_for_each_entry_rcu(pmu, &pmus, entry) {
640 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
641 if (cpuctx->unique_pmu != pmu)
642 continue; /* ensure we process each cpuctx once */
643
644 /*
645 * perf_cgroup_events says at least one
646 * context on this CPU has cgroup events.
647 *
648 * ctx->nr_cgroups reports the number of cgroup
649 * events for a context.
650 */
651 if (cpuctx->ctx.nr_cgroups > 0) {
652 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
653 perf_pmu_disable(cpuctx->ctx.pmu);
654
655 if (mode & PERF_CGROUP_SWOUT) {
656 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
657 /*
658 * must not be done before ctxswout due
659 * to event_filter_match() in event_sched_out()
660 */
661 cpuctx->cgrp = NULL;
662 }
663
664 if (mode & PERF_CGROUP_SWIN) {
665 WARN_ON_ONCE(cpuctx->cgrp);
666 /*
667 * set cgrp before ctxsw in to allow
668 * event_filter_match() to not have to pass
669 * task around
670 * we pass the cpuctx->ctx to perf_cgroup_from_task()
671 * because cgorup events are only per-cpu
672 */
673 cpuctx->cgrp = perf_cgroup_from_task(task, &cpuctx->ctx);
674 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
675 }
676 perf_pmu_enable(cpuctx->ctx.pmu);
677 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
678 }
679 }
680
681 local_irq_restore(flags);
682 }
683
684 static inline void perf_cgroup_sched_out(struct task_struct *task,
685 struct task_struct *next)
686 {
687 struct perf_cgroup *cgrp1;
688 struct perf_cgroup *cgrp2 = NULL;
689
690 rcu_read_lock();
691 /*
692 * we come here when we know perf_cgroup_events > 0
693 * we do not need to pass the ctx here because we know
694 * we are holding the rcu lock
695 */
696 cgrp1 = perf_cgroup_from_task(task, NULL);
697 cgrp2 = perf_cgroup_from_task(next, NULL);
698
699 /*
700 * only schedule out current cgroup events if we know
701 * that we are switching to a different cgroup. Otherwise,
702 * do no touch the cgroup events.
703 */
704 if (cgrp1 != cgrp2)
705 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
706
707 rcu_read_unlock();
708 }
709
710 static inline void perf_cgroup_sched_in(struct task_struct *prev,
711 struct task_struct *task)
712 {
713 struct perf_cgroup *cgrp1;
714 struct perf_cgroup *cgrp2 = NULL;
715
716 rcu_read_lock();
717 /*
718 * we come here when we know perf_cgroup_events > 0
719 * we do not need to pass the ctx here because we know
720 * we are holding the rcu lock
721 */
722 cgrp1 = perf_cgroup_from_task(task, NULL);
723 cgrp2 = perf_cgroup_from_task(prev, NULL);
724
725 /*
726 * only need to schedule in cgroup events if we are changing
727 * cgroup during ctxsw. Cgroup events were not scheduled
728 * out of ctxsw out if that was not the case.
729 */
730 if (cgrp1 != cgrp2)
731 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
732
733 rcu_read_unlock();
734 }
735
736 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
737 struct perf_event_attr *attr,
738 struct perf_event *group_leader)
739 {
740 struct perf_cgroup *cgrp;
741 struct cgroup_subsys_state *css;
742 struct fd f = fdget(fd);
743 int ret = 0;
744
745 if (!f.file)
746 return -EBADF;
747
748 css = css_tryget_online_from_dir(f.file->f_path.dentry,
749 &perf_event_cgrp_subsys);
750 if (IS_ERR(css)) {
751 ret = PTR_ERR(css);
752 goto out;
753 }
754
755 cgrp = container_of(css, struct perf_cgroup, css);
756 event->cgrp = cgrp;
757
758 /*
759 * all events in a group must monitor
760 * the same cgroup because a task belongs
761 * to only one perf cgroup at a time
762 */
763 if (group_leader && group_leader->cgrp != cgrp) {
764 perf_detach_cgroup(event);
765 ret = -EINVAL;
766 }
767 out:
768 fdput(f);
769 return ret;
770 }
771
772 static inline void
773 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
774 {
775 struct perf_cgroup_info *t;
776 t = per_cpu_ptr(event->cgrp->info, event->cpu);
777 event->shadow_ctx_time = now - t->timestamp;
778 }
779
780 static inline void
781 perf_cgroup_defer_enabled(struct perf_event *event)
782 {
783 /*
784 * when the current task's perf cgroup does not match
785 * the event's, we need to remember to call the
786 * perf_mark_enable() function the first time a task with
787 * a matching perf cgroup is scheduled in.
788 */
789 if (is_cgroup_event(event) && !perf_cgroup_match(event))
790 event->cgrp_defer_enabled = 1;
791 }
792
793 static inline void
794 perf_cgroup_mark_enabled(struct perf_event *event,
795 struct perf_event_context *ctx)
796 {
797 struct perf_event *sub;
798 u64 tstamp = perf_event_time(event);
799
800 if (!event->cgrp_defer_enabled)
801 return;
802
803 event->cgrp_defer_enabled = 0;
804
805 event->tstamp_enabled = tstamp - event->total_time_enabled;
806 list_for_each_entry(sub, &event->sibling_list, group_entry) {
807 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
808 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
809 sub->cgrp_defer_enabled = 0;
810 }
811 }
812 }
813 #else /* !CONFIG_CGROUP_PERF */
814
815 static inline bool
816 perf_cgroup_match(struct perf_event *event)
817 {
818 return true;
819 }
820
821 static inline void perf_detach_cgroup(struct perf_event *event)
822 {}
823
824 static inline int is_cgroup_event(struct perf_event *event)
825 {
826 return 0;
827 }
828
829 static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
830 {
831 return 0;
832 }
833
834 static inline void update_cgrp_time_from_event(struct perf_event *event)
835 {
836 }
837
838 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
839 {
840 }
841
842 static inline void perf_cgroup_sched_out(struct task_struct *task,
843 struct task_struct *next)
844 {
845 }
846
847 static inline void perf_cgroup_sched_in(struct task_struct *prev,
848 struct task_struct *task)
849 {
850 }
851
852 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
853 struct perf_event_attr *attr,
854 struct perf_event *group_leader)
855 {
856 return -EINVAL;
857 }
858
859 static inline void
860 perf_cgroup_set_timestamp(struct task_struct *task,
861 struct perf_event_context *ctx)
862 {
863 }
864
865 void
866 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
867 {
868 }
869
870 static inline void
871 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
872 {
873 }
874
875 static inline u64 perf_cgroup_event_time(struct perf_event *event)
876 {
877 return 0;
878 }
879
880 static inline void
881 perf_cgroup_defer_enabled(struct perf_event *event)
882 {
883 }
884
885 static inline void
886 perf_cgroup_mark_enabled(struct perf_event *event,
887 struct perf_event_context *ctx)
888 {
889 }
890 #endif
891
892 /*
893 * set default to be dependent on timer tick just
894 * like original code
895 */
896 #define PERF_CPU_HRTIMER (1000 / HZ)
897 /*
898 * function must be called with interrupts disbled
899 */
900 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
901 {
902 struct perf_cpu_context *cpuctx;
903 int rotations = 0;
904
905 WARN_ON(!irqs_disabled());
906
907 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
908 rotations = perf_rotate_context(cpuctx);
909
910 raw_spin_lock(&cpuctx->hrtimer_lock);
911 if (rotations)
912 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
913 else
914 cpuctx->hrtimer_active = 0;
915 raw_spin_unlock(&cpuctx->hrtimer_lock);
916
917 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
918 }
919
920 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
921 {
922 struct hrtimer *timer = &cpuctx->hrtimer;
923 struct pmu *pmu = cpuctx->ctx.pmu;
924 u64 interval;
925
926 /* no multiplexing needed for SW PMU */
927 if (pmu->task_ctx_nr == perf_sw_context)
928 return;
929
930 /*
931 * check default is sane, if not set then force to
932 * default interval (1/tick)
933 */
934 interval = pmu->hrtimer_interval_ms;
935 if (interval < 1)
936 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
937
938 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
939
940 raw_spin_lock_init(&cpuctx->hrtimer_lock);
941 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
942 timer->function = perf_mux_hrtimer_handler;
943 }
944
945 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
946 {
947 struct hrtimer *timer = &cpuctx->hrtimer;
948 struct pmu *pmu = cpuctx->ctx.pmu;
949 unsigned long flags;
950
951 /* not for SW PMU */
952 if (pmu->task_ctx_nr == perf_sw_context)
953 return 0;
954
955 raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
956 if (!cpuctx->hrtimer_active) {
957 cpuctx->hrtimer_active = 1;
958 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
959 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
960 }
961 raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
962
963 return 0;
964 }
965
966 void perf_pmu_disable(struct pmu *pmu)
967 {
968 int *count = this_cpu_ptr(pmu->pmu_disable_count);
969 if (!(*count)++)
970 pmu->pmu_disable(pmu);
971 }
972
973 void perf_pmu_enable(struct pmu *pmu)
974 {
975 int *count = this_cpu_ptr(pmu->pmu_disable_count);
976 if (!--(*count))
977 pmu->pmu_enable(pmu);
978 }
979
980 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
981
982 /*
983 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
984 * perf_event_task_tick() are fully serialized because they're strictly cpu
985 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
986 * disabled, while perf_event_task_tick is called from IRQ context.
987 */
988 static void perf_event_ctx_activate(struct perf_event_context *ctx)
989 {
990 struct list_head *head = this_cpu_ptr(&active_ctx_list);
991
992 WARN_ON(!irqs_disabled());
993
994 WARN_ON(!list_empty(&ctx->active_ctx_list));
995
996 list_add(&ctx->active_ctx_list, head);
997 }
998
999 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1000 {
1001 WARN_ON(!irqs_disabled());
1002
1003 WARN_ON(list_empty(&ctx->active_ctx_list));
1004
1005 list_del_init(&ctx->active_ctx_list);
1006 }
1007
1008 static void get_ctx(struct perf_event_context *ctx)
1009 {
1010 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
1011 }
1012
1013 static void free_ctx(struct rcu_head *head)
1014 {
1015 struct perf_event_context *ctx;
1016
1017 ctx = container_of(head, struct perf_event_context, rcu_head);
1018 kfree(ctx->task_ctx_data);
1019 kfree(ctx);
1020 }
1021
1022 static void put_ctx(struct perf_event_context *ctx)
1023 {
1024 if (atomic_dec_and_test(&ctx->refcount)) {
1025 if (ctx->parent_ctx)
1026 put_ctx(ctx->parent_ctx);
1027 if (ctx->task && ctx->task != TASK_TOMBSTONE)
1028 put_task_struct(ctx->task);
1029 call_rcu(&ctx->rcu_head, free_ctx);
1030 }
1031 }
1032
1033 /*
1034 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1035 * perf_pmu_migrate_context() we need some magic.
1036 *
1037 * Those places that change perf_event::ctx will hold both
1038 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1039 *
1040 * Lock ordering is by mutex address. There are two other sites where
1041 * perf_event_context::mutex nests and those are:
1042 *
1043 * - perf_event_exit_task_context() [ child , 0 ]
1044 * __perf_event_exit_task()
1045 * sync_child_event()
1046 * put_event() [ parent, 1 ]
1047 *
1048 * - perf_event_init_context() [ parent, 0 ]
1049 * inherit_task_group()
1050 * inherit_group()
1051 * inherit_event()
1052 * perf_event_alloc()
1053 * perf_init_event()
1054 * perf_try_init_event() [ child , 1 ]
1055 *
1056 * While it appears there is an obvious deadlock here -- the parent and child
1057 * nesting levels are inverted between the two. This is in fact safe because
1058 * life-time rules separate them. That is an exiting task cannot fork, and a
1059 * spawning task cannot (yet) exit.
1060 *
1061 * But remember that that these are parent<->child context relations, and
1062 * migration does not affect children, therefore these two orderings should not
1063 * interact.
1064 *
1065 * The change in perf_event::ctx does not affect children (as claimed above)
1066 * because the sys_perf_event_open() case will install a new event and break
1067 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1068 * concerned with cpuctx and that doesn't have children.
1069 *
1070 * The places that change perf_event::ctx will issue:
1071 *
1072 * perf_remove_from_context();
1073 * synchronize_rcu();
1074 * perf_install_in_context();
1075 *
1076 * to affect the change. The remove_from_context() + synchronize_rcu() should
1077 * quiesce the event, after which we can install it in the new location. This
1078 * means that only external vectors (perf_fops, prctl) can perturb the event
1079 * while in transit. Therefore all such accessors should also acquire
1080 * perf_event_context::mutex to serialize against this.
1081 *
1082 * However; because event->ctx can change while we're waiting to acquire
1083 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1084 * function.
1085 *
1086 * Lock order:
1087 * task_struct::perf_event_mutex
1088 * perf_event_context::mutex
1089 * perf_event_context::lock
1090 * perf_event::child_mutex;
1091 * perf_event::mmap_mutex
1092 * mmap_sem
1093 */
1094 static struct perf_event_context *
1095 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1096 {
1097 struct perf_event_context *ctx;
1098
1099 again:
1100 rcu_read_lock();
1101 ctx = ACCESS_ONCE(event->ctx);
1102 if (!atomic_inc_not_zero(&ctx->refcount)) {
1103 rcu_read_unlock();
1104 goto again;
1105 }
1106 rcu_read_unlock();
1107
1108 mutex_lock_nested(&ctx->mutex, nesting);
1109 if (event->ctx != ctx) {
1110 mutex_unlock(&ctx->mutex);
1111 put_ctx(ctx);
1112 goto again;
1113 }
1114
1115 return ctx;
1116 }
1117
1118 static inline struct perf_event_context *
1119 perf_event_ctx_lock(struct perf_event *event)
1120 {
1121 return perf_event_ctx_lock_nested(event, 0);
1122 }
1123
1124 static void perf_event_ctx_unlock(struct perf_event *event,
1125 struct perf_event_context *ctx)
1126 {
1127 mutex_unlock(&ctx->mutex);
1128 put_ctx(ctx);
1129 }
1130
1131 /*
1132 * This must be done under the ctx->lock, such as to serialize against
1133 * context_equiv(), therefore we cannot call put_ctx() since that might end up
1134 * calling scheduler related locks and ctx->lock nests inside those.
1135 */
1136 static __must_check struct perf_event_context *
1137 unclone_ctx(struct perf_event_context *ctx)
1138 {
1139 struct perf_event_context *parent_ctx = ctx->parent_ctx;
1140
1141 lockdep_assert_held(&ctx->lock);
1142
1143 if (parent_ctx)
1144 ctx->parent_ctx = NULL;
1145 ctx->generation++;
1146
1147 return parent_ctx;
1148 }
1149
1150 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1151 {
1152 /*
1153 * only top level events have the pid namespace they were created in
1154 */
1155 if (event->parent)
1156 event = event->parent;
1157
1158 return task_tgid_nr_ns(p, event->ns);
1159 }
1160
1161 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1162 {
1163 /*
1164 * only top level events have the pid namespace they were created in
1165 */
1166 if (event->parent)
1167 event = event->parent;
1168
1169 return task_pid_nr_ns(p, event->ns);
1170 }
1171
1172 /*
1173 * If we inherit events we want to return the parent event id
1174 * to userspace.
1175 */
1176 static u64 primary_event_id(struct perf_event *event)
1177 {
1178 u64 id = event->id;
1179
1180 if (event->parent)
1181 id = event->parent->id;
1182
1183 return id;
1184 }
1185
1186 /*
1187 * Get the perf_event_context for a task and lock it.
1188 *
1189 * This has to cope with with the fact that until it is locked,
1190 * the context could get moved to another task.
1191 */
1192 static struct perf_event_context *
1193 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1194 {
1195 struct perf_event_context *ctx;
1196
1197 retry:
1198 /*
1199 * One of the few rules of preemptible RCU is that one cannot do
1200 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1201 * part of the read side critical section was irqs-enabled -- see
1202 * rcu_read_unlock_special().
1203 *
1204 * Since ctx->lock nests under rq->lock we must ensure the entire read
1205 * side critical section has interrupts disabled.
1206 */
1207 local_irq_save(*flags);
1208 rcu_read_lock();
1209 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1210 if (ctx) {
1211 /*
1212 * If this context is a clone of another, it might
1213 * get swapped for another underneath us by
1214 * perf_event_task_sched_out, though the
1215 * rcu_read_lock() protects us from any context
1216 * getting freed. Lock the context and check if it
1217 * got swapped before we could get the lock, and retry
1218 * if so. If we locked the right context, then it
1219 * can't get swapped on us any more.
1220 */
1221 raw_spin_lock(&ctx->lock);
1222 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1223 raw_spin_unlock(&ctx->lock);
1224 rcu_read_unlock();
1225 local_irq_restore(*flags);
1226 goto retry;
1227 }
1228
1229 if (ctx->task == TASK_TOMBSTONE ||
1230 !atomic_inc_not_zero(&ctx->refcount)) {
1231 raw_spin_unlock(&ctx->lock);
1232 ctx = NULL;
1233 }
1234
1235 WARN_ON_ONCE(ctx->task != task);
1236 }
1237 rcu_read_unlock();
1238 if (!ctx)
1239 local_irq_restore(*flags);
1240 return ctx;
1241 }
1242
1243 /*
1244 * Get the context for a task and increment its pin_count so it
1245 * can't get swapped to another task. This also increments its
1246 * reference count so that the context can't get freed.
1247 */
1248 static struct perf_event_context *
1249 perf_pin_task_context(struct task_struct *task, int ctxn)
1250 {
1251 struct perf_event_context *ctx;
1252 unsigned long flags;
1253
1254 ctx = perf_lock_task_context(task, ctxn, &flags);
1255 if (ctx) {
1256 ++ctx->pin_count;
1257 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1258 }
1259 return ctx;
1260 }
1261
1262 static void perf_unpin_context(struct perf_event_context *ctx)
1263 {
1264 unsigned long flags;
1265
1266 raw_spin_lock_irqsave(&ctx->lock, flags);
1267 --ctx->pin_count;
1268 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1269 }
1270
1271 /*
1272 * Update the record of the current time in a context.
1273 */
1274 static void update_context_time(struct perf_event_context *ctx)
1275 {
1276 u64 now = perf_clock();
1277
1278 ctx->time += now - ctx->timestamp;
1279 ctx->timestamp = now;
1280 }
1281
1282 static u64 perf_event_time(struct perf_event *event)
1283 {
1284 struct perf_event_context *ctx = event->ctx;
1285
1286 if (is_cgroup_event(event))
1287 return perf_cgroup_event_time(event);
1288
1289 return ctx ? ctx->time : 0;
1290 }
1291
1292 /*
1293 * Update the total_time_enabled and total_time_running fields for a event.
1294 * The caller of this function needs to hold the ctx->lock.
1295 */
1296 static void update_event_times(struct perf_event *event)
1297 {
1298 struct perf_event_context *ctx = event->ctx;
1299 u64 run_end;
1300
1301 if (event->state < PERF_EVENT_STATE_INACTIVE ||
1302 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1303 return;
1304 /*
1305 * in cgroup mode, time_enabled represents
1306 * the time the event was enabled AND active
1307 * tasks were in the monitored cgroup. This is
1308 * independent of the activity of the context as
1309 * there may be a mix of cgroup and non-cgroup events.
1310 *
1311 * That is why we treat cgroup events differently
1312 * here.
1313 */
1314 if (is_cgroup_event(event))
1315 run_end = perf_cgroup_event_time(event);
1316 else if (ctx->is_active)
1317 run_end = ctx->time;
1318 else
1319 run_end = event->tstamp_stopped;
1320
1321 event->total_time_enabled = run_end - event->tstamp_enabled;
1322
1323 if (event->state == PERF_EVENT_STATE_INACTIVE)
1324 run_end = event->tstamp_stopped;
1325 else
1326 run_end = perf_event_time(event);
1327
1328 event->total_time_running = run_end - event->tstamp_running;
1329
1330 }
1331
1332 /*
1333 * Update total_time_enabled and total_time_running for all events in a group.
1334 */
1335 static void update_group_times(struct perf_event *leader)
1336 {
1337 struct perf_event *event;
1338
1339 update_event_times(leader);
1340 list_for_each_entry(event, &leader->sibling_list, group_entry)
1341 update_event_times(event);
1342 }
1343
1344 static struct list_head *
1345 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1346 {
1347 if (event->attr.pinned)
1348 return &ctx->pinned_groups;
1349 else
1350 return &ctx->flexible_groups;
1351 }
1352
1353 /*
1354 * Add a event from the lists for its context.
1355 * Must be called with ctx->mutex and ctx->lock held.
1356 */
1357 static void
1358 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1359 {
1360 lockdep_assert_held(&ctx->lock);
1361
1362 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1363 event->attach_state |= PERF_ATTACH_CONTEXT;
1364
1365 /*
1366 * If we're a stand alone event or group leader, we go to the context
1367 * list, group events are kept attached to the group so that
1368 * perf_group_detach can, at all times, locate all siblings.
1369 */
1370 if (event->group_leader == event) {
1371 struct list_head *list;
1372
1373 if (is_software_event(event))
1374 event->group_flags |= PERF_GROUP_SOFTWARE;
1375
1376 list = ctx_group_list(event, ctx);
1377 list_add_tail(&event->group_entry, list);
1378 }
1379
1380 if (is_cgroup_event(event))
1381 ctx->nr_cgroups++;
1382
1383 list_add_rcu(&event->event_entry, &ctx->event_list);
1384 ctx->nr_events++;
1385 if (event->attr.inherit_stat)
1386 ctx->nr_stat++;
1387
1388 ctx->generation++;
1389 }
1390
1391 /*
1392 * Initialize event state based on the perf_event_attr::disabled.
1393 */
1394 static inline void perf_event__state_init(struct perf_event *event)
1395 {
1396 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1397 PERF_EVENT_STATE_INACTIVE;
1398 }
1399
1400 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1401 {
1402 int entry = sizeof(u64); /* value */
1403 int size = 0;
1404 int nr = 1;
1405
1406 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1407 size += sizeof(u64);
1408
1409 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1410 size += sizeof(u64);
1411
1412 if (event->attr.read_format & PERF_FORMAT_ID)
1413 entry += sizeof(u64);
1414
1415 if (event->attr.read_format & PERF_FORMAT_GROUP) {
1416 nr += nr_siblings;
1417 size += sizeof(u64);
1418 }
1419
1420 size += entry * nr;
1421 event->read_size = size;
1422 }
1423
1424 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1425 {
1426 struct perf_sample_data *data;
1427 u16 size = 0;
1428
1429 if (sample_type & PERF_SAMPLE_IP)
1430 size += sizeof(data->ip);
1431
1432 if (sample_type & PERF_SAMPLE_ADDR)
1433 size += sizeof(data->addr);
1434
1435 if (sample_type & PERF_SAMPLE_PERIOD)
1436 size += sizeof(data->period);
1437
1438 if (sample_type & PERF_SAMPLE_WEIGHT)
1439 size += sizeof(data->weight);
1440
1441 if (sample_type & PERF_SAMPLE_READ)
1442 size += event->read_size;
1443
1444 if (sample_type & PERF_SAMPLE_DATA_SRC)
1445 size += sizeof(data->data_src.val);
1446
1447 if (sample_type & PERF_SAMPLE_TRANSACTION)
1448 size += sizeof(data->txn);
1449
1450 event->header_size = size;
1451 }
1452
1453 /*
1454 * Called at perf_event creation and when events are attached/detached from a
1455 * group.
1456 */
1457 static void perf_event__header_size(struct perf_event *event)
1458 {
1459 __perf_event_read_size(event,
1460 event->group_leader->nr_siblings);
1461 __perf_event_header_size(event, event->attr.sample_type);
1462 }
1463
1464 static void perf_event__id_header_size(struct perf_event *event)
1465 {
1466 struct perf_sample_data *data;
1467 u64 sample_type = event->attr.sample_type;
1468 u16 size = 0;
1469
1470 if (sample_type & PERF_SAMPLE_TID)
1471 size += sizeof(data->tid_entry);
1472
1473 if (sample_type & PERF_SAMPLE_TIME)
1474 size += sizeof(data->time);
1475
1476 if (sample_type & PERF_SAMPLE_IDENTIFIER)
1477 size += sizeof(data->id);
1478
1479 if (sample_type & PERF_SAMPLE_ID)
1480 size += sizeof(data->id);
1481
1482 if (sample_type & PERF_SAMPLE_STREAM_ID)
1483 size += sizeof(data->stream_id);
1484
1485 if (sample_type & PERF_SAMPLE_CPU)
1486 size += sizeof(data->cpu_entry);
1487
1488 event->id_header_size = size;
1489 }
1490
1491 static bool perf_event_validate_size(struct perf_event *event)
1492 {
1493 /*
1494 * The values computed here will be over-written when we actually
1495 * attach the event.
1496 */
1497 __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1498 __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1499 perf_event__id_header_size(event);
1500
1501 /*
1502 * Sum the lot; should not exceed the 64k limit we have on records.
1503 * Conservative limit to allow for callchains and other variable fields.
1504 */
1505 if (event->read_size + event->header_size +
1506 event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1507 return false;
1508
1509 return true;
1510 }
1511
1512 static void perf_group_attach(struct perf_event *event)
1513 {
1514 struct perf_event *group_leader = event->group_leader, *pos;
1515
1516 /*
1517 * We can have double attach due to group movement in perf_event_open.
1518 */
1519 if (event->attach_state & PERF_ATTACH_GROUP)
1520 return;
1521
1522 event->attach_state |= PERF_ATTACH_GROUP;
1523
1524 if (group_leader == event)
1525 return;
1526
1527 WARN_ON_ONCE(group_leader->ctx != event->ctx);
1528
1529 if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
1530 !is_software_event(event))
1531 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
1532
1533 list_add_tail(&event->group_entry, &group_leader->sibling_list);
1534 group_leader->nr_siblings++;
1535
1536 perf_event__header_size(group_leader);
1537
1538 list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1539 perf_event__header_size(pos);
1540 }
1541
1542 /*
1543 * Remove a event from the lists for its context.
1544 * Must be called with ctx->mutex and ctx->lock held.
1545 */
1546 static void
1547 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1548 {
1549 struct perf_cpu_context *cpuctx;
1550
1551 WARN_ON_ONCE(event->ctx != ctx);
1552 lockdep_assert_held(&ctx->lock);
1553
1554 /*
1555 * We can have double detach due to exit/hot-unplug + close.
1556 */
1557 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1558 return;
1559
1560 event->attach_state &= ~PERF_ATTACH_CONTEXT;
1561
1562 if (is_cgroup_event(event)) {
1563 ctx->nr_cgroups--;
1564 /*
1565 * Because cgroup events are always per-cpu events, this will
1566 * always be called from the right CPU.
1567 */
1568 cpuctx = __get_cpu_context(ctx);
1569 /*
1570 * If there are no more cgroup events then clear cgrp to avoid
1571 * stale pointer in update_cgrp_time_from_cpuctx().
1572 */
1573 if (!ctx->nr_cgroups)
1574 cpuctx->cgrp = NULL;
1575 }
1576
1577 ctx->nr_events--;
1578 if (event->attr.inherit_stat)
1579 ctx->nr_stat--;
1580
1581 list_del_rcu(&event->event_entry);
1582
1583 if (event->group_leader == event)
1584 list_del_init(&event->group_entry);
1585
1586 update_group_times(event);
1587
1588 /*
1589 * If event was in error state, then keep it
1590 * that way, otherwise bogus counts will be
1591 * returned on read(). The only way to get out
1592 * of error state is by explicit re-enabling
1593 * of the event
1594 */
1595 if (event->state > PERF_EVENT_STATE_OFF)
1596 event->state = PERF_EVENT_STATE_OFF;
1597
1598 ctx->generation++;
1599 }
1600
1601 static void perf_group_detach(struct perf_event *event)
1602 {
1603 struct perf_event *sibling, *tmp;
1604 struct list_head *list = NULL;
1605
1606 /*
1607 * We can have double detach due to exit/hot-unplug + close.
1608 */
1609 if (!(event->attach_state & PERF_ATTACH_GROUP))
1610 return;
1611
1612 event->attach_state &= ~PERF_ATTACH_GROUP;
1613
1614 /*
1615 * If this is a sibling, remove it from its group.
1616 */
1617 if (event->group_leader != event) {
1618 list_del_init(&event->group_entry);
1619 event->group_leader->nr_siblings--;
1620 goto out;
1621 }
1622
1623 if (!list_empty(&event->group_entry))
1624 list = &event->group_entry;
1625
1626 /*
1627 * If this was a group event with sibling events then
1628 * upgrade the siblings to singleton events by adding them
1629 * to whatever list we are on.
1630 */
1631 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1632 if (list)
1633 list_move_tail(&sibling->group_entry, list);
1634 sibling->group_leader = sibling;
1635
1636 /* Inherit group flags from the previous leader */
1637 sibling->group_flags = event->group_flags;
1638
1639 WARN_ON_ONCE(sibling->ctx != event->ctx);
1640 }
1641
1642 out:
1643 perf_event__header_size(event->group_leader);
1644
1645 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1646 perf_event__header_size(tmp);
1647 }
1648
1649 /*
1650 * User event without the task.
1651 */
1652 static bool is_orphaned_event(struct perf_event *event)
1653 {
1654 return event && !is_kernel_event(event) && !event->owner;
1655 }
1656
1657 /*
1658 * Event has a parent but parent's task finished and it's
1659 * alive only because of children holding refference.
1660 */
1661 static bool is_orphaned_child(struct perf_event *event)
1662 {
1663 return is_orphaned_event(event->parent);
1664 }
1665
1666 static void orphans_remove_work(struct work_struct *work);
1667
1668 static void schedule_orphans_remove(struct perf_event_context *ctx)
1669 {
1670 if (!ctx->task || ctx->orphans_remove_sched || !perf_wq)
1671 return;
1672
1673 if (queue_delayed_work(perf_wq, &ctx->orphans_remove, 1)) {
1674 get_ctx(ctx);
1675 ctx->orphans_remove_sched = true;
1676 }
1677 }
1678
1679 static int __init perf_workqueue_init(void)
1680 {
1681 perf_wq = create_singlethread_workqueue("perf");
1682 WARN(!perf_wq, "failed to create perf workqueue\n");
1683 return perf_wq ? 0 : -1;
1684 }
1685
1686 core_initcall(perf_workqueue_init);
1687
1688 static inline int pmu_filter_match(struct perf_event *event)
1689 {
1690 struct pmu *pmu = event->pmu;
1691 return pmu->filter_match ? pmu->filter_match(event) : 1;
1692 }
1693
1694 static inline int
1695 event_filter_match(struct perf_event *event)
1696 {
1697 return (event->cpu == -1 || event->cpu == smp_processor_id())
1698 && perf_cgroup_match(event) && pmu_filter_match(event);
1699 }
1700
1701 static void
1702 event_sched_out(struct perf_event *event,
1703 struct perf_cpu_context *cpuctx,
1704 struct perf_event_context *ctx)
1705 {
1706 u64 tstamp = perf_event_time(event);
1707 u64 delta;
1708
1709 WARN_ON_ONCE(event->ctx != ctx);
1710 lockdep_assert_held(&ctx->lock);
1711
1712 /*
1713 * An event which could not be activated because of
1714 * filter mismatch still needs to have its timings
1715 * maintained, otherwise bogus information is return
1716 * via read() for time_enabled, time_running:
1717 */
1718 if (event->state == PERF_EVENT_STATE_INACTIVE
1719 && !event_filter_match(event)) {
1720 delta = tstamp - event->tstamp_stopped;
1721 event->tstamp_running += delta;
1722 event->tstamp_stopped = tstamp;
1723 }
1724
1725 if (event->state != PERF_EVENT_STATE_ACTIVE)
1726 return;
1727
1728 perf_pmu_disable(event->pmu);
1729
1730 event->state = PERF_EVENT_STATE_INACTIVE;
1731 if (event->pending_disable) {
1732 event->pending_disable = 0;
1733 event->state = PERF_EVENT_STATE_OFF;
1734 }
1735 event->tstamp_stopped = tstamp;
1736 event->pmu->del(event, 0);
1737 event->oncpu = -1;
1738
1739 if (!is_software_event(event))
1740 cpuctx->active_oncpu--;
1741 if (!--ctx->nr_active)
1742 perf_event_ctx_deactivate(ctx);
1743 if (event->attr.freq && event->attr.sample_freq)
1744 ctx->nr_freq--;
1745 if (event->attr.exclusive || !cpuctx->active_oncpu)
1746 cpuctx->exclusive = 0;
1747
1748 if (is_orphaned_child(event))
1749 schedule_orphans_remove(ctx);
1750
1751 perf_pmu_enable(event->pmu);
1752 }
1753
1754 static void
1755 group_sched_out(struct perf_event *group_event,
1756 struct perf_cpu_context *cpuctx,
1757 struct perf_event_context *ctx)
1758 {
1759 struct perf_event *event;
1760 int state = group_event->state;
1761
1762 event_sched_out(group_event, cpuctx, ctx);
1763
1764 /*
1765 * Schedule out siblings (if any):
1766 */
1767 list_for_each_entry(event, &group_event->sibling_list, group_entry)
1768 event_sched_out(event, cpuctx, ctx);
1769
1770 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1771 cpuctx->exclusive = 0;
1772 }
1773
1774 /*
1775 * Cross CPU call to remove a performance event
1776 *
1777 * We disable the event on the hardware level first. After that we
1778 * remove it from the context list.
1779 */
1780 static void
1781 __perf_remove_from_context(struct perf_event *event,
1782 struct perf_cpu_context *cpuctx,
1783 struct perf_event_context *ctx,
1784 void *info)
1785 {
1786 bool detach_group = (unsigned long)info;
1787
1788 event_sched_out(event, cpuctx, ctx);
1789 if (detach_group)
1790 perf_group_detach(event);
1791 list_del_event(event, ctx);
1792
1793 if (!ctx->nr_events && ctx->is_active) {
1794 ctx->is_active = 0;
1795 if (ctx->task) {
1796 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
1797 cpuctx->task_ctx = NULL;
1798 }
1799 }
1800 }
1801
1802 /*
1803 * Remove the event from a task's (or a CPU's) list of events.
1804 *
1805 * If event->ctx is a cloned context, callers must make sure that
1806 * every task struct that event->ctx->task could possibly point to
1807 * remains valid. This is OK when called from perf_release since
1808 * that only calls us on the top-level context, which can't be a clone.
1809 * When called from perf_event_exit_task, it's OK because the
1810 * context has been detached from its task.
1811 */
1812 static void perf_remove_from_context(struct perf_event *event, bool detach_group)
1813 {
1814 lockdep_assert_held(&event->ctx->mutex);
1815
1816 event_function_call(event, __perf_remove_from_context,
1817 (void *)(unsigned long)detach_group);
1818 }
1819
1820 /*
1821 * Cross CPU call to disable a performance event
1822 */
1823 static void __perf_event_disable(struct perf_event *event,
1824 struct perf_cpu_context *cpuctx,
1825 struct perf_event_context *ctx,
1826 void *info)
1827 {
1828 if (event->state < PERF_EVENT_STATE_INACTIVE)
1829 return;
1830
1831 update_context_time(ctx);
1832 update_cgrp_time_from_event(event);
1833 update_group_times(event);
1834 if (event == event->group_leader)
1835 group_sched_out(event, cpuctx, ctx);
1836 else
1837 event_sched_out(event, cpuctx, ctx);
1838 event->state = PERF_EVENT_STATE_OFF;
1839 }
1840
1841 /*
1842 * Disable a event.
1843 *
1844 * If event->ctx is a cloned context, callers must make sure that
1845 * every task struct that event->ctx->task could possibly point to
1846 * remains valid. This condition is satisifed when called through
1847 * perf_event_for_each_child or perf_event_for_each because they
1848 * hold the top-level event's child_mutex, so any descendant that
1849 * goes to exit will block in sync_child_event.
1850 * When called from perf_pending_event it's OK because event->ctx
1851 * is the current context on this CPU and preemption is disabled,
1852 * hence we can't get into perf_event_task_sched_out for this context.
1853 */
1854 static void _perf_event_disable(struct perf_event *event)
1855 {
1856 struct perf_event_context *ctx = event->ctx;
1857
1858 raw_spin_lock_irq(&ctx->lock);
1859 if (event->state <= PERF_EVENT_STATE_OFF) {
1860 raw_spin_unlock_irq(&ctx->lock);
1861 return;
1862 }
1863 raw_spin_unlock_irq(&ctx->lock);
1864
1865 event_function_call(event, __perf_event_disable, NULL);
1866 }
1867
1868 void perf_event_disable_local(struct perf_event *event)
1869 {
1870 event_function_local(event, __perf_event_disable, NULL);
1871 }
1872
1873 /*
1874 * Strictly speaking kernel users cannot create groups and therefore this
1875 * interface does not need the perf_event_ctx_lock() magic.
1876 */
1877 void perf_event_disable(struct perf_event *event)
1878 {
1879 struct perf_event_context *ctx;
1880
1881 ctx = perf_event_ctx_lock(event);
1882 _perf_event_disable(event);
1883 perf_event_ctx_unlock(event, ctx);
1884 }
1885 EXPORT_SYMBOL_GPL(perf_event_disable);
1886
1887 static void perf_set_shadow_time(struct perf_event *event,
1888 struct perf_event_context *ctx,
1889 u64 tstamp)
1890 {
1891 /*
1892 * use the correct time source for the time snapshot
1893 *
1894 * We could get by without this by leveraging the
1895 * fact that to get to this function, the caller
1896 * has most likely already called update_context_time()
1897 * and update_cgrp_time_xx() and thus both timestamp
1898 * are identical (or very close). Given that tstamp is,
1899 * already adjusted for cgroup, we could say that:
1900 * tstamp - ctx->timestamp
1901 * is equivalent to
1902 * tstamp - cgrp->timestamp.
1903 *
1904 * Then, in perf_output_read(), the calculation would
1905 * work with no changes because:
1906 * - event is guaranteed scheduled in
1907 * - no scheduled out in between
1908 * - thus the timestamp would be the same
1909 *
1910 * But this is a bit hairy.
1911 *
1912 * So instead, we have an explicit cgroup call to remain
1913 * within the time time source all along. We believe it
1914 * is cleaner and simpler to understand.
1915 */
1916 if (is_cgroup_event(event))
1917 perf_cgroup_set_shadow_time(event, tstamp);
1918 else
1919 event->shadow_ctx_time = tstamp - ctx->timestamp;
1920 }
1921
1922 #define MAX_INTERRUPTS (~0ULL)
1923
1924 static void perf_log_throttle(struct perf_event *event, int enable);
1925 static void perf_log_itrace_start(struct perf_event *event);
1926
1927 static int
1928 event_sched_in(struct perf_event *event,
1929 struct perf_cpu_context *cpuctx,
1930 struct perf_event_context *ctx)
1931 {
1932 u64 tstamp = perf_event_time(event);
1933 int ret = 0;
1934
1935 lockdep_assert_held(&ctx->lock);
1936
1937 if (event->state <= PERF_EVENT_STATE_OFF)
1938 return 0;
1939
1940 event->state = PERF_EVENT_STATE_ACTIVE;
1941 event->oncpu = smp_processor_id();
1942
1943 /*
1944 * Unthrottle events, since we scheduled we might have missed several
1945 * ticks already, also for a heavily scheduling task there is little
1946 * guarantee it'll get a tick in a timely manner.
1947 */
1948 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
1949 perf_log_throttle(event, 1);
1950 event->hw.interrupts = 0;
1951 }
1952
1953 /*
1954 * The new state must be visible before we turn it on in the hardware:
1955 */
1956 smp_wmb();
1957
1958 perf_pmu_disable(event->pmu);
1959
1960 perf_set_shadow_time(event, ctx, tstamp);
1961
1962 perf_log_itrace_start(event);
1963
1964 if (event->pmu->add(event, PERF_EF_START)) {
1965 event->state = PERF_EVENT_STATE_INACTIVE;
1966 event->oncpu = -1;
1967 ret = -EAGAIN;
1968 goto out;
1969 }
1970
1971 event->tstamp_running += tstamp - event->tstamp_stopped;
1972
1973 if (!is_software_event(event))
1974 cpuctx->active_oncpu++;
1975 if (!ctx->nr_active++)
1976 perf_event_ctx_activate(ctx);
1977 if (event->attr.freq && event->attr.sample_freq)
1978 ctx->nr_freq++;
1979
1980 if (event->attr.exclusive)
1981 cpuctx->exclusive = 1;
1982
1983 if (is_orphaned_child(event))
1984 schedule_orphans_remove(ctx);
1985
1986 out:
1987 perf_pmu_enable(event->pmu);
1988
1989 return ret;
1990 }
1991
1992 static int
1993 group_sched_in(struct perf_event *group_event,
1994 struct perf_cpu_context *cpuctx,
1995 struct perf_event_context *ctx)
1996 {
1997 struct perf_event *event, *partial_group = NULL;
1998 struct pmu *pmu = ctx->pmu;
1999 u64 now = ctx->time;
2000 bool simulate = false;
2001
2002 if (group_event->state == PERF_EVENT_STATE_OFF)
2003 return 0;
2004
2005 pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2006
2007 if (event_sched_in(group_event, cpuctx, ctx)) {
2008 pmu->cancel_txn(pmu);
2009 perf_mux_hrtimer_restart(cpuctx);
2010 return -EAGAIN;
2011 }
2012
2013 /*
2014 * Schedule in siblings as one group (if any):
2015 */
2016 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2017 if (event_sched_in(event, cpuctx, ctx)) {
2018 partial_group = event;
2019 goto group_error;
2020 }
2021 }
2022
2023 if (!pmu->commit_txn(pmu))
2024 return 0;
2025
2026 group_error:
2027 /*
2028 * Groups can be scheduled in as one unit only, so undo any
2029 * partial group before returning:
2030 * The events up to the failed event are scheduled out normally,
2031 * tstamp_stopped will be updated.
2032 *
2033 * The failed events and the remaining siblings need to have
2034 * their timings updated as if they had gone thru event_sched_in()
2035 * and event_sched_out(). This is required to get consistent timings
2036 * across the group. This also takes care of the case where the group
2037 * could never be scheduled by ensuring tstamp_stopped is set to mark
2038 * the time the event was actually stopped, such that time delta
2039 * calculation in update_event_times() is correct.
2040 */
2041 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2042 if (event == partial_group)
2043 simulate = true;
2044
2045 if (simulate) {
2046 event->tstamp_running += now - event->tstamp_stopped;
2047 event->tstamp_stopped = now;
2048 } else {
2049 event_sched_out(event, cpuctx, ctx);
2050 }
2051 }
2052 event_sched_out(group_event, cpuctx, ctx);
2053
2054 pmu->cancel_txn(pmu);
2055
2056 perf_mux_hrtimer_restart(cpuctx);
2057
2058 return -EAGAIN;
2059 }
2060
2061 /*
2062 * Work out whether we can put this event group on the CPU now.
2063 */
2064 static int group_can_go_on(struct perf_event *event,
2065 struct perf_cpu_context *cpuctx,
2066 int can_add_hw)
2067 {
2068 /*
2069 * Groups consisting entirely of software events can always go on.
2070 */
2071 if (event->group_flags & PERF_GROUP_SOFTWARE)
2072 return 1;
2073 /*
2074 * If an exclusive group is already on, no other hardware
2075 * events can go on.
2076 */
2077 if (cpuctx->exclusive)
2078 return 0;
2079 /*
2080 * If this group is exclusive and there are already
2081 * events on the CPU, it can't go on.
2082 */
2083 if (event->attr.exclusive && cpuctx->active_oncpu)
2084 return 0;
2085 /*
2086 * Otherwise, try to add it if all previous groups were able
2087 * to go on.
2088 */
2089 return can_add_hw;
2090 }
2091
2092 static void add_event_to_ctx(struct perf_event *event,
2093 struct perf_event_context *ctx)
2094 {
2095 u64 tstamp = perf_event_time(event);
2096
2097 list_add_event(event, ctx);
2098 perf_group_attach(event);
2099 event->tstamp_enabled = tstamp;
2100 event->tstamp_running = tstamp;
2101 event->tstamp_stopped = tstamp;
2102 }
2103
2104 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2105 struct perf_event_context *ctx);
2106 static void
2107 ctx_sched_in(struct perf_event_context *ctx,
2108 struct perf_cpu_context *cpuctx,
2109 enum event_type_t event_type,
2110 struct task_struct *task);
2111
2112 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2113 struct perf_event_context *ctx,
2114 struct task_struct *task)
2115 {
2116 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2117 if (ctx)
2118 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2119 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2120 if (ctx)
2121 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2122 }
2123
2124 static void ctx_resched(struct perf_cpu_context *cpuctx,
2125 struct perf_event_context *task_ctx)
2126 {
2127 perf_pmu_disable(cpuctx->ctx.pmu);
2128 if (task_ctx)
2129 task_ctx_sched_out(cpuctx, task_ctx);
2130 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
2131 perf_event_sched_in(cpuctx, task_ctx, current);
2132 perf_pmu_enable(cpuctx->ctx.pmu);
2133 }
2134
2135 /*
2136 * Cross CPU call to install and enable a performance event
2137 *
2138 * Must be called with ctx->mutex held
2139 */
2140 static int __perf_install_in_context(void *info)
2141 {
2142 struct perf_event_context *ctx = info;
2143 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2144 struct perf_event_context *task_ctx = cpuctx->task_ctx;
2145
2146 raw_spin_lock(&cpuctx->ctx.lock);
2147 if (ctx->task) {
2148 raw_spin_lock(&ctx->lock);
2149 /*
2150 * If we hit the 'wrong' task, we've since scheduled and
2151 * everything should be sorted, nothing to do!
2152 */
2153 task_ctx = ctx;
2154 if (ctx->task != current)
2155 goto unlock;
2156
2157 /*
2158 * If task_ctx is set, it had better be to us.
2159 */
2160 WARN_ON_ONCE(cpuctx->task_ctx != ctx && cpuctx->task_ctx);
2161 } else if (task_ctx) {
2162 raw_spin_lock(&task_ctx->lock);
2163 }
2164
2165 ctx_resched(cpuctx, task_ctx);
2166 unlock:
2167 perf_ctx_unlock(cpuctx, task_ctx);
2168
2169 return 0;
2170 }
2171
2172 /*
2173 * Attach a performance event to a context
2174 */
2175 static void
2176 perf_install_in_context(struct perf_event_context *ctx,
2177 struct perf_event *event,
2178 int cpu)
2179 {
2180 struct task_struct *task = NULL;
2181
2182 lockdep_assert_held(&ctx->mutex);
2183
2184 event->ctx = ctx;
2185 if (event->cpu != -1)
2186 event->cpu = cpu;
2187
2188 /*
2189 * Installing events is tricky because we cannot rely on ctx->is_active
2190 * to be set in case this is the nr_events 0 -> 1 transition.
2191 *
2192 * So what we do is we add the event to the list here, which will allow
2193 * a future context switch to DTRT and then send a racy IPI. If the IPI
2194 * fails to hit the right task, this means a context switch must have
2195 * happened and that will have taken care of business.
2196 */
2197 raw_spin_lock_irq(&ctx->lock);
2198 task = ctx->task;
2199 /*
2200 * Worse, we cannot even rely on the ctx actually existing anymore. If
2201 * between find_get_context() and perf_install_in_context() the task
2202 * went through perf_event_exit_task() its dead and we should not be
2203 * adding new events.
2204 */
2205 if (task == TASK_TOMBSTONE) {
2206 raw_spin_unlock_irq(&ctx->lock);
2207 return;
2208 }
2209 update_context_time(ctx);
2210 /*
2211 * Update cgrp time only if current cgrp matches event->cgrp.
2212 * Must be done before calling add_event_to_ctx().
2213 */
2214 update_cgrp_time_from_event(event);
2215 add_event_to_ctx(event, ctx);
2216 raw_spin_unlock_irq(&ctx->lock);
2217
2218 if (task)
2219 task_function_call(task, __perf_install_in_context, ctx);
2220 else
2221 cpu_function_call(cpu, __perf_install_in_context, ctx);
2222 }
2223
2224 /*
2225 * Put a event into inactive state and update time fields.
2226 * Enabling the leader of a group effectively enables all
2227 * the group members that aren't explicitly disabled, so we
2228 * have to update their ->tstamp_enabled also.
2229 * Note: this works for group members as well as group leaders
2230 * since the non-leader members' sibling_lists will be empty.
2231 */
2232 static void __perf_event_mark_enabled(struct perf_event *event)
2233 {
2234 struct perf_event *sub;
2235 u64 tstamp = perf_event_time(event);
2236
2237 event->state = PERF_EVENT_STATE_INACTIVE;
2238 event->tstamp_enabled = tstamp - event->total_time_enabled;
2239 list_for_each_entry(sub, &event->sibling_list, group_entry) {
2240 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
2241 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
2242 }
2243 }
2244
2245 /*
2246 * Cross CPU call to enable a performance event
2247 */
2248 static void __perf_event_enable(struct perf_event *event,
2249 struct perf_cpu_context *cpuctx,
2250 struct perf_event_context *ctx,
2251 void *info)
2252 {
2253 struct perf_event *leader = event->group_leader;
2254 struct perf_event_context *task_ctx;
2255
2256 if (event->state >= PERF_EVENT_STATE_INACTIVE)
2257 return;
2258
2259 update_context_time(ctx);
2260 __perf_event_mark_enabled(event);
2261
2262 if (!ctx->is_active)
2263 return;
2264
2265 if (!event_filter_match(event)) {
2266 if (is_cgroup_event(event)) {
2267 perf_cgroup_set_timestamp(current, ctx); // XXX ?
2268 perf_cgroup_defer_enabled(event);
2269 }
2270 return;
2271 }
2272
2273 /*
2274 * If the event is in a group and isn't the group leader,
2275 * then don't put it on unless the group is on.
2276 */
2277 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
2278 return;
2279
2280 task_ctx = cpuctx->task_ctx;
2281 if (ctx->task)
2282 WARN_ON_ONCE(task_ctx != ctx);
2283
2284 ctx_resched(cpuctx, task_ctx);
2285 }
2286
2287 /*
2288 * Enable a event.
2289 *
2290 * If event->ctx is a cloned context, callers must make sure that
2291 * every task struct that event->ctx->task could possibly point to
2292 * remains valid. This condition is satisfied when called through
2293 * perf_event_for_each_child or perf_event_for_each as described
2294 * for perf_event_disable.
2295 */
2296 static void _perf_event_enable(struct perf_event *event)
2297 {
2298 struct perf_event_context *ctx = event->ctx;
2299
2300 raw_spin_lock_irq(&ctx->lock);
2301 if (event->state >= PERF_EVENT_STATE_INACTIVE) {
2302 raw_spin_unlock_irq(&ctx->lock);
2303 return;
2304 }
2305
2306 /*
2307 * If the event is in error state, clear that first.
2308 *
2309 * That way, if we see the event in error state below, we know that it
2310 * has gone back into error state, as distinct from the task having
2311 * been scheduled away before the cross-call arrived.
2312 */
2313 if (event->state == PERF_EVENT_STATE_ERROR)
2314 event->state = PERF_EVENT_STATE_OFF;
2315 raw_spin_unlock_irq(&ctx->lock);
2316
2317 event_function_call(event, __perf_event_enable, NULL);
2318 }
2319
2320 /*
2321 * See perf_event_disable();
2322 */
2323 void perf_event_enable(struct perf_event *event)
2324 {
2325 struct perf_event_context *ctx;
2326
2327 ctx = perf_event_ctx_lock(event);
2328 _perf_event_enable(event);
2329 perf_event_ctx_unlock(event, ctx);
2330 }
2331 EXPORT_SYMBOL_GPL(perf_event_enable);
2332
2333 static int _perf_event_refresh(struct perf_event *event, int refresh)
2334 {
2335 /*
2336 * not supported on inherited events
2337 */
2338 if (event->attr.inherit || !is_sampling_event(event))
2339 return -EINVAL;
2340
2341 atomic_add(refresh, &event->event_limit);
2342 _perf_event_enable(event);
2343
2344 return 0;
2345 }
2346
2347 /*
2348 * See perf_event_disable()
2349 */
2350 int perf_event_refresh(struct perf_event *event, int refresh)
2351 {
2352 struct perf_event_context *ctx;
2353 int ret;
2354
2355 ctx = perf_event_ctx_lock(event);
2356 ret = _perf_event_refresh(event, refresh);
2357 perf_event_ctx_unlock(event, ctx);
2358
2359 return ret;
2360 }
2361 EXPORT_SYMBOL_GPL(perf_event_refresh);
2362
2363 static void ctx_sched_out(struct perf_event_context *ctx,
2364 struct perf_cpu_context *cpuctx,
2365 enum event_type_t event_type)
2366 {
2367 int is_active = ctx->is_active;
2368 struct perf_event *event;
2369
2370 lockdep_assert_held(&ctx->lock);
2371
2372 if (likely(!ctx->nr_events)) {
2373 /*
2374 * See __perf_remove_from_context().
2375 */
2376 WARN_ON_ONCE(ctx->is_active);
2377 if (ctx->task)
2378 WARN_ON_ONCE(cpuctx->task_ctx);
2379 return;
2380 }
2381
2382 ctx->is_active &= ~event_type;
2383 if (ctx->task) {
2384 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2385 if (!ctx->is_active)
2386 cpuctx->task_ctx = NULL;
2387 }
2388
2389 update_context_time(ctx);
2390 update_cgrp_time_from_cpuctx(cpuctx);
2391 if (!ctx->nr_active)
2392 return;
2393
2394 perf_pmu_disable(ctx->pmu);
2395 if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
2396 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2397 group_sched_out(event, cpuctx, ctx);
2398 }
2399
2400 if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
2401 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2402 group_sched_out(event, cpuctx, ctx);
2403 }
2404 perf_pmu_enable(ctx->pmu);
2405 }
2406
2407 /*
2408 * Test whether two contexts are equivalent, i.e. whether they have both been
2409 * cloned from the same version of the same context.
2410 *
2411 * Equivalence is measured using a generation number in the context that is
2412 * incremented on each modification to it; see unclone_ctx(), list_add_event()
2413 * and list_del_event().
2414 */
2415 static int context_equiv(struct perf_event_context *ctx1,
2416 struct perf_event_context *ctx2)
2417 {
2418 lockdep_assert_held(&ctx1->lock);
2419 lockdep_assert_held(&ctx2->lock);
2420
2421 /* Pinning disables the swap optimization */
2422 if (ctx1->pin_count || ctx2->pin_count)
2423 return 0;
2424
2425 /* If ctx1 is the parent of ctx2 */
2426 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2427 return 1;
2428
2429 /* If ctx2 is the parent of ctx1 */
2430 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2431 return 1;
2432
2433 /*
2434 * If ctx1 and ctx2 have the same parent; we flatten the parent
2435 * hierarchy, see perf_event_init_context().
2436 */
2437 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2438 ctx1->parent_gen == ctx2->parent_gen)
2439 return 1;
2440
2441 /* Unmatched */
2442 return 0;
2443 }
2444
2445 static void __perf_event_sync_stat(struct perf_event *event,
2446 struct perf_event *next_event)
2447 {
2448 u64 value;
2449
2450 if (!event->attr.inherit_stat)
2451 return;
2452
2453 /*
2454 * Update the event value, we cannot use perf_event_read()
2455 * because we're in the middle of a context switch and have IRQs
2456 * disabled, which upsets smp_call_function_single(), however
2457 * we know the event must be on the current CPU, therefore we
2458 * don't need to use it.
2459 */
2460 switch (event->state) {
2461 case PERF_EVENT_STATE_ACTIVE:
2462 event->pmu->read(event);
2463 /* fall-through */
2464
2465 case PERF_EVENT_STATE_INACTIVE:
2466 update_event_times(event);
2467 break;
2468
2469 default:
2470 break;
2471 }
2472
2473 /*
2474 * In order to keep per-task stats reliable we need to flip the event
2475 * values when we flip the contexts.
2476 */
2477 value = local64_read(&next_event->count);
2478 value = local64_xchg(&event->count, value);
2479 local64_set(&next_event->count, value);
2480
2481 swap(event->total_time_enabled, next_event->total_time_enabled);
2482 swap(event->total_time_running, next_event->total_time_running);
2483
2484 /*
2485 * Since we swizzled the values, update the user visible data too.
2486 */
2487 perf_event_update_userpage(event);
2488 perf_event_update_userpage(next_event);
2489 }
2490
2491 static void perf_event_sync_stat(struct perf_event_context *ctx,
2492 struct perf_event_context *next_ctx)
2493 {
2494 struct perf_event *event, *next_event;
2495
2496 if (!ctx->nr_stat)
2497 return;
2498
2499 update_context_time(ctx);
2500
2501 event = list_first_entry(&ctx->event_list,
2502 struct perf_event, event_entry);
2503
2504 next_event = list_first_entry(&next_ctx->event_list,
2505 struct perf_event, event_entry);
2506
2507 while (&event->event_entry != &ctx->event_list &&
2508 &next_event->event_entry != &next_ctx->event_list) {
2509
2510 __perf_event_sync_stat(event, next_event);
2511
2512 event = list_next_entry(event, event_entry);
2513 next_event = list_next_entry(next_event, event_entry);
2514 }
2515 }
2516
2517 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2518 struct task_struct *next)
2519 {
2520 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2521 struct perf_event_context *next_ctx;
2522 struct perf_event_context *parent, *next_parent;
2523 struct perf_cpu_context *cpuctx;
2524 int do_switch = 1;
2525
2526 if (likely(!ctx))
2527 return;
2528
2529 cpuctx = __get_cpu_context(ctx);
2530 if (!cpuctx->task_ctx)
2531 return;
2532
2533 rcu_read_lock();
2534 next_ctx = next->perf_event_ctxp[ctxn];
2535 if (!next_ctx)
2536 goto unlock;
2537
2538 parent = rcu_dereference(ctx->parent_ctx);
2539 next_parent = rcu_dereference(next_ctx->parent_ctx);
2540
2541 /* If neither context have a parent context; they cannot be clones. */
2542 if (!parent && !next_parent)
2543 goto unlock;
2544
2545 if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2546 /*
2547 * Looks like the two contexts are clones, so we might be
2548 * able to optimize the context switch. We lock both
2549 * contexts and check that they are clones under the
2550 * lock (including re-checking that neither has been
2551 * uncloned in the meantime). It doesn't matter which
2552 * order we take the locks because no other cpu could
2553 * be trying to lock both of these tasks.
2554 */
2555 raw_spin_lock(&ctx->lock);
2556 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2557 if (context_equiv(ctx, next_ctx)) {
2558 WRITE_ONCE(ctx->task, next);
2559 WRITE_ONCE(next_ctx->task, task);
2560
2561 swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
2562
2563 /*
2564 * RCU_INIT_POINTER here is safe because we've not
2565 * modified the ctx and the above modification of
2566 * ctx->task and ctx->task_ctx_data are immaterial
2567 * since those values are always verified under
2568 * ctx->lock which we're now holding.
2569 */
2570 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
2571 RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
2572
2573 do_switch = 0;
2574
2575 perf_event_sync_stat(ctx, next_ctx);
2576 }
2577 raw_spin_unlock(&next_ctx->lock);
2578 raw_spin_unlock(&ctx->lock);
2579 }
2580 unlock:
2581 rcu_read_unlock();
2582
2583 if (do_switch) {
2584 raw_spin_lock(&ctx->lock);
2585 task_ctx_sched_out(cpuctx, ctx);
2586 raw_spin_unlock(&ctx->lock);
2587 }
2588 }
2589
2590 void perf_sched_cb_dec(struct pmu *pmu)
2591 {
2592 this_cpu_dec(perf_sched_cb_usages);
2593 }
2594
2595 void perf_sched_cb_inc(struct pmu *pmu)
2596 {
2597 this_cpu_inc(perf_sched_cb_usages);
2598 }
2599
2600 /*
2601 * This function provides the context switch callback to the lower code
2602 * layer. It is invoked ONLY when the context switch callback is enabled.
2603 */
2604 static void perf_pmu_sched_task(struct task_struct *prev,
2605 struct task_struct *next,
2606 bool sched_in)
2607 {
2608 struct perf_cpu_context *cpuctx;
2609 struct pmu *pmu;
2610 unsigned long flags;
2611
2612 if (prev == next)
2613 return;
2614
2615 local_irq_save(flags);
2616
2617 rcu_read_lock();
2618
2619 list_for_each_entry_rcu(pmu, &pmus, entry) {
2620 if (pmu->sched_task) {
2621 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2622
2623 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2624
2625 perf_pmu_disable(pmu);
2626
2627 pmu->sched_task(cpuctx->task_ctx, sched_in);
2628
2629 perf_pmu_enable(pmu);
2630
2631 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2632 }
2633 }
2634
2635 rcu_read_unlock();
2636
2637 local_irq_restore(flags);
2638 }
2639
2640 static void perf_event_switch(struct task_struct *task,
2641 struct task_struct *next_prev, bool sched_in);
2642
2643 #define for_each_task_context_nr(ctxn) \
2644 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2645
2646 /*
2647 * Called from scheduler to remove the events of the current task,
2648 * with interrupts disabled.
2649 *
2650 * We stop each event and update the event value in event->count.
2651 *
2652 * This does not protect us against NMI, but disable()
2653 * sets the disabled bit in the control field of event _before_
2654 * accessing the event control register. If a NMI hits, then it will
2655 * not restart the event.
2656 */
2657 void __perf_event_task_sched_out(struct task_struct *task,
2658 struct task_struct *next)
2659 {
2660 int ctxn;
2661
2662 if (__this_cpu_read(perf_sched_cb_usages))
2663 perf_pmu_sched_task(task, next, false);
2664
2665 if (atomic_read(&nr_switch_events))
2666 perf_event_switch(task, next, false);
2667
2668 for_each_task_context_nr(ctxn)
2669 perf_event_context_sched_out(task, ctxn, next);
2670
2671 /*
2672 * if cgroup events exist on this CPU, then we need
2673 * to check if we have to switch out PMU state.
2674 * cgroup event are system-wide mode only
2675 */
2676 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2677 perf_cgroup_sched_out(task, next);
2678 }
2679
2680 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2681 struct perf_event_context *ctx)
2682 {
2683 if (!cpuctx->task_ctx)
2684 return;
2685
2686 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2687 return;
2688
2689 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2690 }
2691
2692 /*
2693 * Called with IRQs disabled
2694 */
2695 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2696 enum event_type_t event_type)
2697 {
2698 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2699 }
2700
2701 static void
2702 ctx_pinned_sched_in(struct perf_event_context *ctx,
2703 struct perf_cpu_context *cpuctx)
2704 {
2705 struct perf_event *event;
2706
2707 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2708 if (event->state <= PERF_EVENT_STATE_OFF)
2709 continue;
2710 if (!event_filter_match(event))
2711 continue;
2712
2713 /* may need to reset tstamp_enabled */
2714 if (is_cgroup_event(event))
2715 perf_cgroup_mark_enabled(event, ctx);
2716
2717 if (group_can_go_on(event, cpuctx, 1))
2718 group_sched_in(event, cpuctx, ctx);
2719
2720 /*
2721 * If this pinned group hasn't been scheduled,
2722 * put it in error state.
2723 */
2724 if (event->state == PERF_EVENT_STATE_INACTIVE) {
2725 update_group_times(event);
2726 event->state = PERF_EVENT_STATE_ERROR;
2727 }
2728 }
2729 }
2730
2731 static void
2732 ctx_flexible_sched_in(struct perf_event_context *ctx,
2733 struct perf_cpu_context *cpuctx)
2734 {
2735 struct perf_event *event;
2736 int can_add_hw = 1;
2737
2738 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2739 /* Ignore events in OFF or ERROR state */
2740 if (event->state <= PERF_EVENT_STATE_OFF)
2741 continue;
2742 /*
2743 * Listen to the 'cpu' scheduling filter constraint
2744 * of events:
2745 */
2746 if (!event_filter_match(event))
2747 continue;
2748
2749 /* may need to reset tstamp_enabled */
2750 if (is_cgroup_event(event))
2751 perf_cgroup_mark_enabled(event, ctx);
2752
2753 if (group_can_go_on(event, cpuctx, can_add_hw)) {
2754 if (group_sched_in(event, cpuctx, ctx))
2755 can_add_hw = 0;
2756 }
2757 }
2758 }
2759
2760 static void
2761 ctx_sched_in(struct perf_event_context *ctx,
2762 struct perf_cpu_context *cpuctx,
2763 enum event_type_t event_type,
2764 struct task_struct *task)
2765 {
2766 int is_active = ctx->is_active;
2767 u64 now;
2768
2769 lockdep_assert_held(&ctx->lock);
2770
2771 if (likely(!ctx->nr_events))
2772 return;
2773
2774 ctx->is_active |= event_type;
2775 if (ctx->task) {
2776 if (!is_active)
2777 cpuctx->task_ctx = ctx;
2778 else
2779 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2780 }
2781
2782 now = perf_clock();
2783 ctx->timestamp = now;
2784 perf_cgroup_set_timestamp(task, ctx);
2785 /*
2786 * First go through the list and put on any pinned groups
2787 * in order to give them the best chance of going on.
2788 */
2789 if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
2790 ctx_pinned_sched_in(ctx, cpuctx);
2791
2792 /* Then walk through the lower prio flexible groups */
2793 if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
2794 ctx_flexible_sched_in(ctx, cpuctx);
2795 }
2796
2797 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
2798 enum event_type_t event_type,
2799 struct task_struct *task)
2800 {
2801 struct perf_event_context *ctx = &cpuctx->ctx;
2802
2803 ctx_sched_in(ctx, cpuctx, event_type, task);
2804 }
2805
2806 static void perf_event_context_sched_in(struct perf_event_context *ctx,
2807 struct task_struct *task)
2808 {
2809 struct perf_cpu_context *cpuctx;
2810
2811 cpuctx = __get_cpu_context(ctx);
2812 if (cpuctx->task_ctx == ctx)
2813 return;
2814
2815 perf_ctx_lock(cpuctx, ctx);
2816 perf_pmu_disable(ctx->pmu);
2817 /*
2818 * We want to keep the following priority order:
2819 * cpu pinned (that don't need to move), task pinned,
2820 * cpu flexible, task flexible.
2821 */
2822 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2823 perf_event_sched_in(cpuctx, ctx, task);
2824 perf_pmu_enable(ctx->pmu);
2825 perf_ctx_unlock(cpuctx, ctx);
2826 }
2827
2828 /*
2829 * Called from scheduler to add the events of the current task
2830 * with interrupts disabled.
2831 *
2832 * We restore the event value and then enable it.
2833 *
2834 * This does not protect us against NMI, but enable()
2835 * sets the enabled bit in the control field of event _before_
2836 * accessing the event control register. If a NMI hits, then it will
2837 * keep the event running.
2838 */
2839 void __perf_event_task_sched_in(struct task_struct *prev,
2840 struct task_struct *task)
2841 {
2842 struct perf_event_context *ctx;
2843 int ctxn;
2844
2845 /*
2846 * If cgroup events exist on this CPU, then we need to check if we have
2847 * to switch in PMU state; cgroup event are system-wide mode only.
2848 *
2849 * Since cgroup events are CPU events, we must schedule these in before
2850 * we schedule in the task events.
2851 */
2852 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2853 perf_cgroup_sched_in(prev, task);
2854
2855 for_each_task_context_nr(ctxn) {
2856 ctx = task->perf_event_ctxp[ctxn];
2857 if (likely(!ctx))
2858 continue;
2859
2860 perf_event_context_sched_in(ctx, task);
2861 }
2862
2863 if (atomic_read(&nr_switch_events))
2864 perf_event_switch(task, prev, true);
2865
2866 if (__this_cpu_read(perf_sched_cb_usages))
2867 perf_pmu_sched_task(prev, task, true);
2868 }
2869
2870 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
2871 {
2872 u64 frequency = event->attr.sample_freq;
2873 u64 sec = NSEC_PER_SEC;
2874 u64 divisor, dividend;
2875
2876 int count_fls, nsec_fls, frequency_fls, sec_fls;
2877
2878 count_fls = fls64(count);
2879 nsec_fls = fls64(nsec);
2880 frequency_fls = fls64(frequency);
2881 sec_fls = 30;
2882
2883 /*
2884 * We got @count in @nsec, with a target of sample_freq HZ
2885 * the target period becomes:
2886 *
2887 * @count * 10^9
2888 * period = -------------------
2889 * @nsec * sample_freq
2890 *
2891 */
2892
2893 /*
2894 * Reduce accuracy by one bit such that @a and @b converge
2895 * to a similar magnitude.
2896 */
2897 #define REDUCE_FLS(a, b) \
2898 do { \
2899 if (a##_fls > b##_fls) { \
2900 a >>= 1; \
2901 a##_fls--; \
2902 } else { \
2903 b >>= 1; \
2904 b##_fls--; \
2905 } \
2906 } while (0)
2907
2908 /*
2909 * Reduce accuracy until either term fits in a u64, then proceed with
2910 * the other, so that finally we can do a u64/u64 division.
2911 */
2912 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
2913 REDUCE_FLS(nsec, frequency);
2914 REDUCE_FLS(sec, count);
2915 }
2916
2917 if (count_fls + sec_fls > 64) {
2918 divisor = nsec * frequency;
2919
2920 while (count_fls + sec_fls > 64) {
2921 REDUCE_FLS(count, sec);
2922 divisor >>= 1;
2923 }
2924
2925 dividend = count * sec;
2926 } else {
2927 dividend = count * sec;
2928
2929 while (nsec_fls + frequency_fls > 64) {
2930 REDUCE_FLS(nsec, frequency);
2931 dividend >>= 1;
2932 }
2933
2934 divisor = nsec * frequency;
2935 }
2936
2937 if (!divisor)
2938 return dividend;
2939
2940 return div64_u64(dividend, divisor);
2941 }
2942
2943 static DEFINE_PER_CPU(int, perf_throttled_count);
2944 static DEFINE_PER_CPU(u64, perf_throttled_seq);
2945
2946 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
2947 {
2948 struct hw_perf_event *hwc = &event->hw;
2949 s64 period, sample_period;
2950 s64 delta;
2951
2952 period = perf_calculate_period(event, nsec, count);
2953
2954 delta = (s64)(period - hwc->sample_period);
2955 delta = (delta + 7) / 8; /* low pass filter */
2956
2957 sample_period = hwc->sample_period + delta;
2958
2959 if (!sample_period)
2960 sample_period = 1;
2961
2962 hwc->sample_period = sample_period;
2963
2964 if (local64_read(&hwc->period_left) > 8*sample_period) {
2965 if (disable)
2966 event->pmu->stop(event, PERF_EF_UPDATE);
2967
2968 local64_set(&hwc->period_left, 0);
2969
2970 if (disable)
2971 event->pmu->start(event, PERF_EF_RELOAD);
2972 }
2973 }
2974
2975 /*
2976 * combine freq adjustment with unthrottling to avoid two passes over the
2977 * events. At the same time, make sure, having freq events does not change
2978 * the rate of unthrottling as that would introduce bias.
2979 */
2980 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
2981 int needs_unthr)
2982 {
2983 struct perf_event *event;
2984 struct hw_perf_event *hwc;
2985 u64 now, period = TICK_NSEC;
2986 s64 delta;
2987
2988 /*
2989 * only need to iterate over all events iff:
2990 * - context have events in frequency mode (needs freq adjust)
2991 * - there are events to unthrottle on this cpu
2992 */
2993 if (!(ctx->nr_freq || needs_unthr))
2994 return;
2995
2996 raw_spin_lock(&ctx->lock);
2997 perf_pmu_disable(ctx->pmu);
2998
2999 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3000 if (event->state != PERF_EVENT_STATE_ACTIVE)
3001 continue;
3002
3003 if (!event_filter_match(event))
3004 continue;
3005
3006 perf_pmu_disable(event->pmu);
3007
3008 hwc = &event->hw;
3009
3010 if (hwc->interrupts == MAX_INTERRUPTS) {
3011 hwc->interrupts = 0;
3012 perf_log_throttle(event, 1);
3013 event->pmu->start(event, 0);
3014 }
3015
3016 if (!event->attr.freq || !event->attr.sample_freq)
3017 goto next;
3018
3019 /*
3020 * stop the event and update event->count
3021 */
3022 event->pmu->stop(event, PERF_EF_UPDATE);
3023
3024 now = local64_read(&event->count);
3025 delta = now - hwc->freq_count_stamp;
3026 hwc->freq_count_stamp = now;
3027
3028 /*
3029 * restart the event
3030 * reload only if value has changed
3031 * we have stopped the event so tell that
3032 * to perf_adjust_period() to avoid stopping it
3033 * twice.
3034 */
3035 if (delta > 0)
3036 perf_adjust_period(event, period, delta, false);
3037
3038 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3039 next:
3040 perf_pmu_enable(event->pmu);
3041 }
3042
3043 perf_pmu_enable(ctx->pmu);
3044 raw_spin_unlock(&ctx->lock);
3045 }
3046
3047 /*
3048 * Round-robin a context's events:
3049 */
3050 static void rotate_ctx(struct perf_event_context *ctx)
3051 {
3052 /*
3053 * Rotate the first entry last of non-pinned groups. Rotation might be
3054 * disabled by the inheritance code.
3055 */
3056 if (!ctx->rotate_disable)
3057 list_rotate_left(&ctx->flexible_groups);
3058 }
3059
3060 static int perf_rotate_context(struct perf_cpu_context *cpuctx)
3061 {
3062 struct perf_event_context *ctx = NULL;
3063 int rotate = 0;
3064
3065 if (cpuctx->ctx.nr_events) {
3066 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3067 rotate = 1;
3068 }
3069
3070 ctx = cpuctx->task_ctx;
3071 if (ctx && ctx->nr_events) {
3072 if (ctx->nr_events != ctx->nr_active)
3073 rotate = 1;
3074 }
3075
3076 if (!rotate)
3077 goto done;
3078
3079 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3080 perf_pmu_disable(cpuctx->ctx.pmu);
3081
3082 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3083 if (ctx)
3084 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
3085
3086 rotate_ctx(&cpuctx->ctx);
3087 if (ctx)
3088 rotate_ctx(ctx);
3089
3090 perf_event_sched_in(cpuctx, ctx, current);
3091
3092 perf_pmu_enable(cpuctx->ctx.pmu);
3093 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3094 done:
3095
3096 return rotate;
3097 }
3098
3099 #ifdef CONFIG_NO_HZ_FULL
3100 bool perf_event_can_stop_tick(void)
3101 {
3102 if (atomic_read(&nr_freq_events) ||
3103 __this_cpu_read(perf_throttled_count))
3104 return false;
3105 else
3106 return true;
3107 }
3108 #endif
3109
3110 void perf_event_task_tick(void)
3111 {
3112 struct list_head *head = this_cpu_ptr(&active_ctx_list);
3113 struct perf_event_context *ctx, *tmp;
3114 int throttled;
3115
3116 WARN_ON(!irqs_disabled());
3117
3118 __this_cpu_inc(perf_throttled_seq);
3119 throttled = __this_cpu_xchg(perf_throttled_count, 0);
3120
3121 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3122 perf_adjust_freq_unthr_context(ctx, throttled);
3123 }
3124
3125 static int event_enable_on_exec(struct perf_event *event,
3126 struct perf_event_context *ctx)
3127 {
3128 if (!event->attr.enable_on_exec)
3129 return 0;
3130
3131 event->attr.enable_on_exec = 0;
3132 if (event->state >= PERF_EVENT_STATE_INACTIVE)
3133 return 0;
3134
3135 __perf_event_mark_enabled(event);
3136
3137 return 1;
3138 }
3139
3140 /*
3141 * Enable all of a task's events that have been marked enable-on-exec.
3142 * This expects task == current.
3143 */
3144 static void perf_event_enable_on_exec(int ctxn)
3145 {
3146 struct perf_event_context *ctx, *clone_ctx = NULL;
3147 struct perf_cpu_context *cpuctx;
3148 struct perf_event *event;
3149 unsigned long flags;
3150 int enabled = 0;
3151
3152 local_irq_save(flags);
3153 ctx = current->perf_event_ctxp[ctxn];
3154 if (!ctx || !ctx->nr_events)
3155 goto out;
3156
3157 cpuctx = __get_cpu_context(ctx);
3158 perf_ctx_lock(cpuctx, ctx);
3159 list_for_each_entry(event, &ctx->event_list, event_entry)
3160 enabled |= event_enable_on_exec(event, ctx);
3161
3162 /*
3163 * Unclone and reschedule this context if we enabled any event.
3164 */
3165 if (enabled) {
3166 clone_ctx = unclone_ctx(ctx);
3167 ctx_resched(cpuctx, ctx);
3168 }
3169 perf_ctx_unlock(cpuctx, ctx);
3170
3171 out:
3172 local_irq_restore(flags);
3173
3174 if (clone_ctx)
3175 put_ctx(clone_ctx);
3176 }
3177
3178 void perf_event_exec(void)
3179 {
3180 int ctxn;
3181
3182 rcu_read_lock();
3183 for_each_task_context_nr(ctxn)
3184 perf_event_enable_on_exec(ctxn);
3185 rcu_read_unlock();
3186 }
3187
3188 struct perf_read_data {
3189 struct perf_event *event;
3190 bool group;
3191 int ret;
3192 };
3193
3194 /*
3195 * Cross CPU call to read the hardware event
3196 */
3197 static void __perf_event_read(void *info)
3198 {
3199 struct perf_read_data *data = info;
3200 struct perf_event *sub, *event = data->event;
3201 struct perf_event_context *ctx = event->ctx;
3202 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3203 struct pmu *pmu = event->pmu;
3204
3205 /*
3206 * If this is a task context, we need to check whether it is
3207 * the current task context of this cpu. If not it has been
3208 * scheduled out before the smp call arrived. In that case
3209 * event->count would have been updated to a recent sample
3210 * when the event was scheduled out.
3211 */
3212 if (ctx->task && cpuctx->task_ctx != ctx)
3213 return;
3214
3215 raw_spin_lock(&ctx->lock);
3216 if (ctx->is_active) {
3217 update_context_time(ctx);
3218 update_cgrp_time_from_event(event);
3219 }
3220
3221 update_event_times(event);
3222 if (event->state != PERF_EVENT_STATE_ACTIVE)
3223 goto unlock;
3224
3225 if (!data->group) {
3226 pmu->read(event);
3227 data->ret = 0;
3228 goto unlock;
3229 }
3230
3231 pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3232
3233 pmu->read(event);
3234
3235 list_for_each_entry(sub, &event->sibling_list, group_entry) {
3236 update_event_times(sub);
3237 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3238 /*
3239 * Use sibling's PMU rather than @event's since
3240 * sibling could be on different (eg: software) PMU.
3241 */
3242 sub->pmu->read(sub);
3243 }
3244 }
3245
3246 data->ret = pmu->commit_txn(pmu);
3247
3248 unlock:
3249 raw_spin_unlock(&ctx->lock);
3250 }
3251
3252 static inline u64 perf_event_count(struct perf_event *event)
3253 {
3254 if (event->pmu->count)
3255 return event->pmu->count(event);
3256
3257 return __perf_event_count(event);
3258 }
3259
3260 /*
3261 * NMI-safe method to read a local event, that is an event that
3262 * is:
3263 * - either for the current task, or for this CPU
3264 * - does not have inherit set, for inherited task events
3265 * will not be local and we cannot read them atomically
3266 * - must not have a pmu::count method
3267 */
3268 u64 perf_event_read_local(struct perf_event *event)
3269 {
3270 unsigned long flags;
3271 u64 val;
3272
3273 /*
3274 * Disabling interrupts avoids all counter scheduling (context
3275 * switches, timer based rotation and IPIs).
3276 */
3277 local_irq_save(flags);
3278
3279 /* If this is a per-task event, it must be for current */
3280 WARN_ON_ONCE((event->attach_state & PERF_ATTACH_TASK) &&
3281 event->hw.target != current);
3282
3283 /* If this is a per-CPU event, it must be for this CPU */
3284 WARN_ON_ONCE(!(event->attach_state & PERF_ATTACH_TASK) &&
3285 event->cpu != smp_processor_id());
3286
3287 /*
3288 * It must not be an event with inherit set, we cannot read
3289 * all child counters from atomic context.
3290 */
3291 WARN_ON_ONCE(event->attr.inherit);
3292
3293 /*
3294 * It must not have a pmu::count method, those are not
3295 * NMI safe.
3296 */
3297 WARN_ON_ONCE(event->pmu->count);
3298
3299 /*
3300 * If the event is currently on this CPU, its either a per-task event,
3301 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3302 * oncpu == -1).
3303 */
3304 if (event->oncpu == smp_processor_id())
3305 event->pmu->read(event);
3306
3307 val = local64_read(&event->count);
3308 local_irq_restore(flags);
3309
3310 return val;
3311 }
3312
3313 static int perf_event_read(struct perf_event *event, bool group)
3314 {
3315 int ret = 0;
3316
3317 /*
3318 * If event is enabled and currently active on a CPU, update the
3319 * value in the event structure:
3320 */
3321 if (event->state == PERF_EVENT_STATE_ACTIVE) {
3322 struct perf_read_data data = {
3323 .event = event,
3324 .group = group,
3325 .ret = 0,
3326 };
3327 smp_call_function_single(event->oncpu,
3328 __perf_event_read, &data, 1);
3329 ret = data.ret;
3330 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
3331 struct perf_event_context *ctx = event->ctx;
3332 unsigned long flags;
3333
3334 raw_spin_lock_irqsave(&ctx->lock, flags);
3335 /*
3336 * may read while context is not active
3337 * (e.g., thread is blocked), in that case
3338 * we cannot update context time
3339 */
3340 if (ctx->is_active) {
3341 update_context_time(ctx);
3342 update_cgrp_time_from_event(event);
3343 }
3344 if (group)
3345 update_group_times(event);
3346 else
3347 update_event_times(event);
3348 raw_spin_unlock_irqrestore(&ctx->lock, flags);
3349 }
3350
3351 return ret;
3352 }
3353
3354 /*
3355 * Initialize the perf_event context in a task_struct:
3356 */
3357 static void __perf_event_init_context(struct perf_event_context *ctx)
3358 {
3359 raw_spin_lock_init(&ctx->lock);
3360 mutex_init(&ctx->mutex);
3361 INIT_LIST_HEAD(&ctx->active_ctx_list);
3362 INIT_LIST_HEAD(&ctx->pinned_groups);
3363 INIT_LIST_HEAD(&ctx->flexible_groups);
3364 INIT_LIST_HEAD(&ctx->event_list);
3365 atomic_set(&ctx->refcount, 1);
3366 INIT_DELAYED_WORK(&ctx->orphans_remove, orphans_remove_work);
3367 }
3368
3369 static struct perf_event_context *
3370 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3371 {
3372 struct perf_event_context *ctx;
3373
3374 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3375 if (!ctx)
3376 return NULL;
3377
3378 __perf_event_init_context(ctx);
3379 if (task) {
3380 ctx->task = task;
3381 get_task_struct(task);
3382 }
3383 ctx->pmu = pmu;
3384
3385 return ctx;
3386 }
3387
3388 static struct task_struct *
3389 find_lively_task_by_vpid(pid_t vpid)
3390 {
3391 struct task_struct *task;
3392 int err;
3393
3394 rcu_read_lock();
3395 if (!vpid)
3396 task = current;
3397 else
3398 task = find_task_by_vpid(vpid);
3399 if (task)
3400 get_task_struct(task);
3401 rcu_read_unlock();
3402
3403 if (!task)
3404 return ERR_PTR(-ESRCH);
3405
3406 /* Reuse ptrace permission checks for now. */
3407 err = -EACCES;
3408 if (!ptrace_may_access(task, PTRACE_MODE_READ))
3409 goto errout;
3410
3411 return task;
3412 errout:
3413 put_task_struct(task);
3414 return ERR_PTR(err);
3415
3416 }
3417
3418 /*
3419 * Returns a matching context with refcount and pincount.
3420 */
3421 static struct perf_event_context *
3422 find_get_context(struct pmu *pmu, struct task_struct *task,
3423 struct perf_event *event)
3424 {
3425 struct perf_event_context *ctx, *clone_ctx = NULL;
3426 struct perf_cpu_context *cpuctx;
3427 void *task_ctx_data = NULL;
3428 unsigned long flags;
3429 int ctxn, err;
3430 int cpu = event->cpu;
3431
3432 if (!task) {
3433 /* Must be root to operate on a CPU event: */
3434 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
3435 return ERR_PTR(-EACCES);
3436
3437 /*
3438 * We could be clever and allow to attach a event to an
3439 * offline CPU and activate it when the CPU comes up, but
3440 * that's for later.
3441 */
3442 if (!cpu_online(cpu))
3443 return ERR_PTR(-ENODEV);
3444
3445 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
3446 ctx = &cpuctx->ctx;
3447 get_ctx(ctx);
3448 ++ctx->pin_count;
3449
3450 return ctx;
3451 }
3452
3453 err = -EINVAL;
3454 ctxn = pmu->task_ctx_nr;
3455 if (ctxn < 0)
3456 goto errout;
3457
3458 if (event->attach_state & PERF_ATTACH_TASK_DATA) {
3459 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
3460 if (!task_ctx_data) {
3461 err = -ENOMEM;
3462 goto errout;
3463 }
3464 }
3465
3466 retry:
3467 ctx = perf_lock_task_context(task, ctxn, &flags);
3468 if (ctx) {
3469 clone_ctx = unclone_ctx(ctx);
3470 ++ctx->pin_count;
3471
3472 if (task_ctx_data && !ctx->task_ctx_data) {
3473 ctx->task_ctx_data = task_ctx_data;
3474 task_ctx_data = NULL;
3475 }
3476 raw_spin_unlock_irqrestore(&ctx->lock, flags);
3477
3478 if (clone_ctx)
3479 put_ctx(clone_ctx);
3480 } else {
3481 ctx = alloc_perf_context(pmu, task);
3482 err = -ENOMEM;
3483 if (!ctx)
3484 goto errout;
3485
3486 if (task_ctx_data) {
3487 ctx->task_ctx_data = task_ctx_data;
3488 task_ctx_data = NULL;
3489 }
3490
3491 err = 0;
3492 mutex_lock(&task->perf_event_mutex);
3493 /*
3494 * If it has already passed perf_event_exit_task().
3495 * we must see PF_EXITING, it takes this mutex too.
3496 */
3497 if (task->flags & PF_EXITING)
3498 err = -ESRCH;
3499 else if (task->perf_event_ctxp[ctxn])
3500 err = -EAGAIN;
3501 else {
3502 get_ctx(ctx);
3503 ++ctx->pin_count;
3504 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3505 }
3506 mutex_unlock(&task->perf_event_mutex);
3507
3508 if (unlikely(err)) {
3509 put_ctx(ctx);
3510
3511 if (err == -EAGAIN)
3512 goto retry;
3513 goto errout;
3514 }
3515 }
3516
3517 kfree(task_ctx_data);
3518 return ctx;
3519
3520 errout:
3521 kfree(task_ctx_data);
3522 return ERR_PTR(err);
3523 }
3524
3525 static void perf_event_free_filter(struct perf_event *event);
3526 static void perf_event_free_bpf_prog(struct perf_event *event);
3527
3528 static void free_event_rcu(struct rcu_head *head)
3529 {
3530 struct perf_event *event;
3531
3532 event = container_of(head, struct perf_event, rcu_head);
3533 if (event->ns)
3534 put_pid_ns(event->ns);
3535 perf_event_free_filter(event);
3536 kfree(event);
3537 }
3538
3539 static void ring_buffer_attach(struct perf_event *event,
3540 struct ring_buffer *rb);
3541
3542 static void unaccount_event_cpu(struct perf_event *event, int cpu)
3543 {
3544 if (event->parent)
3545 return;
3546
3547 if (is_cgroup_event(event))
3548 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3549 }
3550
3551 static void unaccount_event(struct perf_event *event)
3552 {
3553 bool dec = false;
3554
3555 if (event->parent)
3556 return;
3557
3558 if (event->attach_state & PERF_ATTACH_TASK)
3559 dec = true;
3560 if (event->attr.mmap || event->attr.mmap_data)
3561 atomic_dec(&nr_mmap_events);
3562 if (event->attr.comm)
3563 atomic_dec(&nr_comm_events);
3564 if (event->attr.task)
3565 atomic_dec(&nr_task_events);
3566 if (event->attr.freq)
3567 atomic_dec(&nr_freq_events);
3568 if (event->attr.context_switch) {
3569 dec = true;
3570 atomic_dec(&nr_switch_events);
3571 }
3572 if (is_cgroup_event(event))
3573 dec = true;
3574 if (has_branch_stack(event))
3575 dec = true;
3576
3577 if (dec)
3578 static_key_slow_dec_deferred(&perf_sched_events);
3579
3580 unaccount_event_cpu(event, event->cpu);
3581 }
3582
3583 /*
3584 * The following implement mutual exclusion of events on "exclusive" pmus
3585 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
3586 * at a time, so we disallow creating events that might conflict, namely:
3587 *
3588 * 1) cpu-wide events in the presence of per-task events,
3589 * 2) per-task events in the presence of cpu-wide events,
3590 * 3) two matching events on the same context.
3591 *
3592 * The former two cases are handled in the allocation path (perf_event_alloc(),
3593 * __free_event()), the latter -- before the first perf_install_in_context().
3594 */
3595 static int exclusive_event_init(struct perf_event *event)
3596 {
3597 struct pmu *pmu = event->pmu;
3598
3599 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3600 return 0;
3601
3602 /*
3603 * Prevent co-existence of per-task and cpu-wide events on the
3604 * same exclusive pmu.
3605 *
3606 * Negative pmu::exclusive_cnt means there are cpu-wide
3607 * events on this "exclusive" pmu, positive means there are
3608 * per-task events.
3609 *
3610 * Since this is called in perf_event_alloc() path, event::ctx
3611 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
3612 * to mean "per-task event", because unlike other attach states it
3613 * never gets cleared.
3614 */
3615 if (event->attach_state & PERF_ATTACH_TASK) {
3616 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
3617 return -EBUSY;
3618 } else {
3619 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
3620 return -EBUSY;
3621 }
3622
3623 return 0;
3624 }
3625
3626 static void exclusive_event_destroy(struct perf_event *event)
3627 {
3628 struct pmu *pmu = event->pmu;
3629
3630 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3631 return;
3632
3633 /* see comment in exclusive_event_init() */
3634 if (event->attach_state & PERF_ATTACH_TASK)
3635 atomic_dec(&pmu->exclusive_cnt);
3636 else
3637 atomic_inc(&pmu->exclusive_cnt);
3638 }
3639
3640 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
3641 {
3642 if ((e1->pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) &&
3643 (e1->cpu == e2->cpu ||
3644 e1->cpu == -1 ||
3645 e2->cpu == -1))
3646 return true;
3647 return false;
3648 }
3649
3650 /* Called under the same ctx::mutex as perf_install_in_context() */
3651 static bool exclusive_event_installable(struct perf_event *event,
3652 struct perf_event_context *ctx)
3653 {
3654 struct perf_event *iter_event;
3655 struct pmu *pmu = event->pmu;
3656
3657 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3658 return true;
3659
3660 list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
3661 if (exclusive_event_match(iter_event, event))
3662 return false;
3663 }
3664
3665 return true;
3666 }
3667
3668 static void __free_event(struct perf_event *event)
3669 {
3670 if (!event->parent) {
3671 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
3672 put_callchain_buffers();
3673 }
3674
3675 perf_event_free_bpf_prog(event);
3676
3677 if (event->destroy)
3678 event->destroy(event);
3679
3680 if (event->ctx)
3681 put_ctx(event->ctx);
3682
3683 if (event->pmu) {
3684 exclusive_event_destroy(event);
3685 module_put(event->pmu->module);
3686 }
3687
3688 call_rcu(&event->rcu_head, free_event_rcu);
3689 }
3690
3691 static void _free_event(struct perf_event *event)
3692 {
3693 irq_work_sync(&event->pending);
3694
3695 unaccount_event(event);
3696
3697 if (event->rb) {
3698 /*
3699 * Can happen when we close an event with re-directed output.
3700 *
3701 * Since we have a 0 refcount, perf_mmap_close() will skip
3702 * over us; possibly making our ring_buffer_put() the last.
3703 */
3704 mutex_lock(&event->mmap_mutex);
3705 ring_buffer_attach(event, NULL);
3706 mutex_unlock(&event->mmap_mutex);
3707 }
3708
3709 if (is_cgroup_event(event))
3710 perf_detach_cgroup(event);
3711
3712 __free_event(event);
3713 }
3714
3715 /*
3716 * Used to free events which have a known refcount of 1, such as in error paths
3717 * where the event isn't exposed yet and inherited events.
3718 */
3719 static void free_event(struct perf_event *event)
3720 {
3721 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
3722 "unexpected event refcount: %ld; ptr=%p\n",
3723 atomic_long_read(&event->refcount), event)) {
3724 /* leak to avoid use-after-free */
3725 return;
3726 }
3727
3728 _free_event(event);
3729 }
3730
3731 /*
3732 * Remove user event from the owner task.
3733 */
3734 static void perf_remove_from_owner(struct perf_event *event)
3735 {
3736 struct task_struct *owner;
3737
3738 rcu_read_lock();
3739 owner = ACCESS_ONCE(event->owner);
3740 /*
3741 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
3742 * !owner it means the list deletion is complete and we can indeed
3743 * free this event, otherwise we need to serialize on
3744 * owner->perf_event_mutex.
3745 */
3746 smp_read_barrier_depends();
3747 if (owner) {
3748 /*
3749 * Since delayed_put_task_struct() also drops the last
3750 * task reference we can safely take a new reference
3751 * while holding the rcu_read_lock().
3752 */
3753 get_task_struct(owner);
3754 }
3755 rcu_read_unlock();
3756
3757 if (owner) {
3758 /*
3759 * If we're here through perf_event_exit_task() we're already
3760 * holding ctx->mutex which would be an inversion wrt. the
3761 * normal lock order.
3762 *
3763 * However we can safely take this lock because its the child
3764 * ctx->mutex.
3765 */
3766 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
3767
3768 /*
3769 * We have to re-check the event->owner field, if it is cleared
3770 * we raced with perf_event_exit_task(), acquiring the mutex
3771 * ensured they're done, and we can proceed with freeing the
3772 * event.
3773 */
3774 if (event->owner)
3775 list_del_init(&event->owner_entry);
3776 mutex_unlock(&owner->perf_event_mutex);
3777 put_task_struct(owner);
3778 }
3779 }
3780
3781 static void put_event(struct perf_event *event)
3782 {
3783 struct perf_event_context *ctx;
3784
3785 if (!atomic_long_dec_and_test(&event->refcount))
3786 return;
3787
3788 if (!is_kernel_event(event))
3789 perf_remove_from_owner(event);
3790
3791 /*
3792 * There are two ways this annotation is useful:
3793 *
3794 * 1) there is a lock recursion from perf_event_exit_task
3795 * see the comment there.
3796 *
3797 * 2) there is a lock-inversion with mmap_sem through
3798 * perf_read_group(), which takes faults while
3799 * holding ctx->mutex, however this is called after
3800 * the last filedesc died, so there is no possibility
3801 * to trigger the AB-BA case.
3802 */
3803 ctx = perf_event_ctx_lock_nested(event, SINGLE_DEPTH_NESTING);
3804 WARN_ON_ONCE(ctx->parent_ctx);
3805 perf_remove_from_context(event, true);
3806 perf_event_ctx_unlock(event, ctx);
3807
3808 _free_event(event);
3809 }
3810
3811 int perf_event_release_kernel(struct perf_event *event)
3812 {
3813 put_event(event);
3814 return 0;
3815 }
3816 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
3817
3818 /*
3819 * Called when the last reference to the file is gone.
3820 */
3821 static int perf_release(struct inode *inode, struct file *file)
3822 {
3823 put_event(file->private_data);
3824 return 0;
3825 }
3826
3827 /*
3828 * Remove all orphanes events from the context.
3829 */
3830 static void orphans_remove_work(struct work_struct *work)
3831 {
3832 struct perf_event_context *ctx;
3833 struct perf_event *event, *tmp;
3834
3835 ctx = container_of(work, struct perf_event_context,
3836 orphans_remove.work);
3837
3838 mutex_lock(&ctx->mutex);
3839 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry) {
3840 struct perf_event *parent_event = event->parent;
3841
3842 if (!is_orphaned_child(event))
3843 continue;
3844
3845 perf_remove_from_context(event, true);
3846
3847 mutex_lock(&parent_event->child_mutex);
3848 list_del_init(&event->child_list);
3849 mutex_unlock(&parent_event->child_mutex);
3850
3851 free_event(event);
3852 put_event(parent_event);
3853 }
3854
3855 raw_spin_lock_irq(&ctx->lock);
3856 ctx->orphans_remove_sched = false;
3857 raw_spin_unlock_irq(&ctx->lock);
3858 mutex_unlock(&ctx->mutex);
3859
3860 put_ctx(ctx);
3861 }
3862
3863 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
3864 {
3865 struct perf_event *child;
3866 u64 total = 0;
3867
3868 *enabled = 0;
3869 *running = 0;
3870
3871 mutex_lock(&event->child_mutex);
3872
3873 (void)perf_event_read(event, false);
3874 total += perf_event_count(event);
3875
3876 *enabled += event->total_time_enabled +
3877 atomic64_read(&event->child_total_time_enabled);
3878 *running += event->total_time_running +
3879 atomic64_read(&event->child_total_time_running);
3880
3881 list_for_each_entry(child, &event->child_list, child_list) {
3882 (void)perf_event_read(child, false);
3883 total += perf_event_count(child);
3884 *enabled += child->total_time_enabled;
3885 *running += child->total_time_running;
3886 }
3887 mutex_unlock(&event->child_mutex);
3888
3889 return total;
3890 }
3891 EXPORT_SYMBOL_GPL(perf_event_read_value);
3892
3893 static int __perf_read_group_add(struct perf_event *leader,
3894 u64 read_format, u64 *values)
3895 {
3896 struct perf_event *sub;
3897 int n = 1; /* skip @nr */
3898 int ret;
3899
3900 ret = perf_event_read(leader, true);
3901 if (ret)
3902 return ret;
3903
3904 /*
3905 * Since we co-schedule groups, {enabled,running} times of siblings
3906 * will be identical to those of the leader, so we only publish one
3907 * set.
3908 */
3909 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3910 values[n++] += leader->total_time_enabled +
3911 atomic64_read(&leader->child_total_time_enabled);
3912 }
3913
3914 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3915 values[n++] += leader->total_time_running +
3916 atomic64_read(&leader->child_total_time_running);
3917 }
3918
3919 /*
3920 * Write {count,id} tuples for every sibling.
3921 */
3922 values[n++] += perf_event_count(leader);
3923 if (read_format & PERF_FORMAT_ID)
3924 values[n++] = primary_event_id(leader);
3925
3926 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3927 values[n++] += perf_event_count(sub);
3928 if (read_format & PERF_FORMAT_ID)
3929 values[n++] = primary_event_id(sub);
3930 }
3931
3932 return 0;
3933 }
3934
3935 static int perf_read_group(struct perf_event *event,
3936 u64 read_format, char __user *buf)
3937 {
3938 struct perf_event *leader = event->group_leader, *child;
3939 struct perf_event_context *ctx = leader->ctx;
3940 int ret;
3941 u64 *values;
3942
3943 lockdep_assert_held(&ctx->mutex);
3944
3945 values = kzalloc(event->read_size, GFP_KERNEL);
3946 if (!values)
3947 return -ENOMEM;
3948
3949 values[0] = 1 + leader->nr_siblings;
3950
3951 /*
3952 * By locking the child_mutex of the leader we effectively
3953 * lock the child list of all siblings.. XXX explain how.
3954 */
3955 mutex_lock(&leader->child_mutex);
3956
3957 ret = __perf_read_group_add(leader, read_format, values);
3958 if (ret)
3959 goto unlock;
3960
3961 list_for_each_entry(child, &leader->child_list, child_list) {
3962 ret = __perf_read_group_add(child, read_format, values);
3963 if (ret)
3964 goto unlock;
3965 }
3966
3967 mutex_unlock(&leader->child_mutex);
3968
3969 ret = event->read_size;
3970 if (copy_to_user(buf, values, event->read_size))
3971 ret = -EFAULT;
3972 goto out;
3973
3974 unlock:
3975 mutex_unlock(&leader->child_mutex);
3976 out:
3977 kfree(values);
3978 return ret;
3979 }
3980
3981 static int perf_read_one(struct perf_event *event,
3982 u64 read_format, char __user *buf)
3983 {
3984 u64 enabled, running;
3985 u64 values[4];
3986 int n = 0;
3987
3988 values[n++] = perf_event_read_value(event, &enabled, &running);
3989 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3990 values[n++] = enabled;
3991 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3992 values[n++] = running;
3993 if (read_format & PERF_FORMAT_ID)
3994 values[n++] = primary_event_id(event);
3995
3996 if (copy_to_user(buf, values, n * sizeof(u64)))
3997 return -EFAULT;
3998
3999 return n * sizeof(u64);
4000 }
4001
4002 static bool is_event_hup(struct perf_event *event)
4003 {
4004 bool no_children;
4005
4006 if (event->state != PERF_EVENT_STATE_EXIT)
4007 return false;
4008
4009 mutex_lock(&event->child_mutex);
4010 no_children = list_empty(&event->child_list);
4011 mutex_unlock(&event->child_mutex);
4012 return no_children;
4013 }
4014
4015 /*
4016 * Read the performance event - simple non blocking version for now
4017 */
4018 static ssize_t
4019 __perf_read(struct perf_event *event, char __user *buf, size_t count)
4020 {
4021 u64 read_format = event->attr.read_format;
4022 int ret;
4023
4024 /*
4025 * Return end-of-file for a read on a event that is in
4026 * error state (i.e. because it was pinned but it couldn't be
4027 * scheduled on to the CPU at some point).
4028 */
4029 if (event->state == PERF_EVENT_STATE_ERROR)
4030 return 0;
4031
4032 if (count < event->read_size)
4033 return -ENOSPC;
4034
4035 WARN_ON_ONCE(event->ctx->parent_ctx);
4036 if (read_format & PERF_FORMAT_GROUP)
4037 ret = perf_read_group(event, read_format, buf);
4038 else
4039 ret = perf_read_one(event, read_format, buf);
4040
4041 return ret;
4042 }
4043
4044 static ssize_t
4045 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4046 {
4047 struct perf_event *event = file->private_data;
4048 struct perf_event_context *ctx;
4049 int ret;
4050
4051 ctx = perf_event_ctx_lock(event);
4052 ret = __perf_read(event, buf, count);
4053 perf_event_ctx_unlock(event, ctx);
4054
4055 return ret;
4056 }
4057
4058 static unsigned int perf_poll(struct file *file, poll_table *wait)
4059 {
4060 struct perf_event *event = file->private_data;
4061 struct ring_buffer *rb;
4062 unsigned int events = POLLHUP;
4063
4064 poll_wait(file, &event->waitq, wait);
4065
4066 if (is_event_hup(event))
4067 return events;
4068
4069 /*
4070 * Pin the event->rb by taking event->mmap_mutex; otherwise
4071 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
4072 */
4073 mutex_lock(&event->mmap_mutex);
4074 rb = event->rb;
4075 if (rb)
4076 events = atomic_xchg(&rb->poll, 0);
4077 mutex_unlock(&event->mmap_mutex);
4078 return events;
4079 }
4080
4081 static void _perf_event_reset(struct perf_event *event)
4082 {
4083 (void)perf_event_read(event, false);
4084 local64_set(&event->count, 0);
4085 perf_event_update_userpage(event);
4086 }
4087
4088 /*
4089 * Holding the top-level event's child_mutex means that any
4090 * descendant process that has inherited this event will block
4091 * in sync_child_event if it goes to exit, thus satisfying the
4092 * task existence requirements of perf_event_enable/disable.
4093 */
4094 static void perf_event_for_each_child(struct perf_event *event,
4095 void (*func)(struct perf_event *))
4096 {
4097 struct perf_event *child;
4098
4099 WARN_ON_ONCE(event->ctx->parent_ctx);
4100
4101 mutex_lock(&event->child_mutex);
4102 func(event);
4103 list_for_each_entry(child, &event->child_list, child_list)
4104 func(child);
4105 mutex_unlock(&event->child_mutex);
4106 }
4107
4108 static void perf_event_for_each(struct perf_event *event,
4109 void (*func)(struct perf_event *))
4110 {
4111 struct perf_event_context *ctx = event->ctx;
4112 struct perf_event *sibling;
4113
4114 lockdep_assert_held(&ctx->mutex);
4115
4116 event = event->group_leader;
4117
4118 perf_event_for_each_child(event, func);
4119 list_for_each_entry(sibling, &event->sibling_list, group_entry)
4120 perf_event_for_each_child(sibling, func);
4121 }
4122
4123 static void __perf_event_period(struct perf_event *event,
4124 struct perf_cpu_context *cpuctx,
4125 struct perf_event_context *ctx,
4126 void *info)
4127 {
4128 u64 value = *((u64 *)info);
4129 bool active;
4130
4131 if (event->attr.freq) {
4132 event->attr.sample_freq = value;
4133 } else {
4134 event->attr.sample_period = value;
4135 event->hw.sample_period = value;
4136 }
4137
4138 active = (event->state == PERF_EVENT_STATE_ACTIVE);
4139 if (active) {
4140 perf_pmu_disable(ctx->pmu);
4141 event->pmu->stop(event, PERF_EF_UPDATE);
4142 }
4143
4144 local64_set(&event->hw.period_left, 0);
4145
4146 if (active) {
4147 event->pmu->start(event, PERF_EF_RELOAD);
4148 perf_pmu_enable(ctx->pmu);
4149 }
4150 }
4151
4152 static int perf_event_period(struct perf_event *event, u64 __user *arg)
4153 {
4154 u64 value;
4155
4156 if (!is_sampling_event(event))
4157 return -EINVAL;
4158
4159 if (copy_from_user(&value, arg, sizeof(value)))
4160 return -EFAULT;
4161
4162 if (!value)
4163 return -EINVAL;
4164
4165 if (event->attr.freq && value > sysctl_perf_event_sample_rate)
4166 return -EINVAL;
4167
4168 event_function_call(event, __perf_event_period, &value);
4169
4170 return 0;
4171 }
4172
4173 static const struct file_operations perf_fops;
4174
4175 static inline int perf_fget_light(int fd, struct fd *p)
4176 {
4177 struct fd f = fdget(fd);
4178 if (!f.file)
4179 return -EBADF;
4180
4181 if (f.file->f_op != &perf_fops) {
4182 fdput(f);
4183 return -EBADF;
4184 }
4185 *p = f;
4186 return 0;
4187 }
4188
4189 static int perf_event_set_output(struct perf_event *event,
4190 struct perf_event *output_event);
4191 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
4192 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
4193
4194 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
4195 {
4196 void (*func)(struct perf_event *);
4197 u32 flags = arg;
4198
4199 switch (cmd) {
4200 case PERF_EVENT_IOC_ENABLE:
4201 func = _perf_event_enable;
4202 break;
4203 case PERF_EVENT_IOC_DISABLE:
4204 func = _perf_event_disable;
4205 break;
4206 case PERF_EVENT_IOC_RESET:
4207 func = _perf_event_reset;
4208 break;
4209
4210 case PERF_EVENT_IOC_REFRESH:
4211 return _perf_event_refresh(event, arg);
4212
4213 case PERF_EVENT_IOC_PERIOD:
4214 return perf_event_period(event, (u64 __user *)arg);
4215
4216 case PERF_EVENT_IOC_ID:
4217 {
4218 u64 id = primary_event_id(event);
4219
4220 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
4221 return -EFAULT;
4222 return 0;
4223 }
4224
4225 case PERF_EVENT_IOC_SET_OUTPUT:
4226 {
4227 int ret;
4228 if (arg != -1) {
4229 struct perf_event *output_event;
4230 struct fd output;
4231 ret = perf_fget_light(arg, &output);
4232 if (ret)
4233 return ret;
4234 output_event = output.file->private_data;
4235 ret = perf_event_set_output(event, output_event);
4236 fdput(output);
4237 } else {
4238 ret = perf_event_set_output(event, NULL);
4239 }
4240 return ret;
4241 }
4242
4243 case PERF_EVENT_IOC_SET_FILTER:
4244 return perf_event_set_filter(event, (void __user *)arg);
4245
4246 case PERF_EVENT_IOC_SET_BPF:
4247 return perf_event_set_bpf_prog(event, arg);
4248
4249 default:
4250 return -ENOTTY;
4251 }
4252
4253 if (flags & PERF_IOC_FLAG_GROUP)
4254 perf_event_for_each(event, func);
4255 else
4256 perf_event_for_each_child(event, func);
4257
4258 return 0;
4259 }
4260
4261 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4262 {
4263 struct perf_event *event = file->private_data;
4264 struct perf_event_context *ctx;
4265 long ret;
4266
4267 ctx = perf_event_ctx_lock(event);
4268 ret = _perf_ioctl(event, cmd, arg);
4269 perf_event_ctx_unlock(event, ctx);
4270
4271 return ret;
4272 }
4273
4274 #ifdef CONFIG_COMPAT
4275 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
4276 unsigned long arg)
4277 {
4278 switch (_IOC_NR(cmd)) {
4279 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
4280 case _IOC_NR(PERF_EVENT_IOC_ID):
4281 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
4282 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
4283 cmd &= ~IOCSIZE_MASK;
4284 cmd |= sizeof(void *) << IOCSIZE_SHIFT;
4285 }
4286 break;
4287 }
4288 return perf_ioctl(file, cmd, arg);
4289 }
4290 #else
4291 # define perf_compat_ioctl NULL
4292 #endif
4293
4294 int perf_event_task_enable(void)
4295 {
4296 struct perf_event_context *ctx;
4297 struct perf_event *event;
4298
4299 mutex_lock(&current->perf_event_mutex);
4300 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4301 ctx = perf_event_ctx_lock(event);
4302 perf_event_for_each_child(event, _perf_event_enable);
4303 perf_event_ctx_unlock(event, ctx);
4304 }
4305 mutex_unlock(&current->perf_event_mutex);
4306
4307 return 0;
4308 }
4309
4310 int perf_event_task_disable(void)
4311 {
4312 struct perf_event_context *ctx;
4313 struct perf_event *event;
4314
4315 mutex_lock(&current->perf_event_mutex);
4316 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4317 ctx = perf_event_ctx_lock(event);
4318 perf_event_for_each_child(event, _perf_event_disable);
4319 perf_event_ctx_unlock(event, ctx);
4320 }
4321 mutex_unlock(&current->perf_event_mutex);
4322
4323 return 0;
4324 }
4325
4326 static int perf_event_index(struct perf_event *event)
4327 {
4328 if (event->hw.state & PERF_HES_STOPPED)
4329 return 0;
4330
4331 if (event->state != PERF_EVENT_STATE_ACTIVE)
4332 return 0;
4333
4334 return event->pmu->event_idx(event);
4335 }
4336
4337 static void calc_timer_values(struct perf_event *event,
4338 u64 *now,
4339 u64 *enabled,
4340 u64 *running)
4341 {
4342 u64 ctx_time;
4343
4344 *now = perf_clock();
4345 ctx_time = event->shadow_ctx_time + *now;
4346 *enabled = ctx_time - event->tstamp_enabled;
4347 *running = ctx_time - event->tstamp_running;
4348 }
4349
4350 static void perf_event_init_userpage(struct perf_event *event)
4351 {
4352 struct perf_event_mmap_page *userpg;
4353 struct ring_buffer *rb;
4354
4355 rcu_read_lock();
4356 rb = rcu_dereference(event->rb);
4357 if (!rb)
4358 goto unlock;
4359
4360 userpg = rb->user_page;
4361
4362 /* Allow new userspace to detect that bit 0 is deprecated */
4363 userpg->cap_bit0_is_deprecated = 1;
4364 userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
4365 userpg->data_offset = PAGE_SIZE;
4366 userpg->data_size = perf_data_size(rb);
4367
4368 unlock:
4369 rcu_read_unlock();
4370 }
4371
4372 void __weak arch_perf_update_userpage(
4373 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
4374 {
4375 }
4376
4377 /*
4378 * Callers need to ensure there can be no nesting of this function, otherwise
4379 * the seqlock logic goes bad. We can not serialize this because the arch
4380 * code calls this from NMI context.
4381 */
4382 void perf_event_update_userpage(struct perf_event *event)
4383 {
4384 struct perf_event_mmap_page *userpg;
4385 struct ring_buffer *rb;
4386 u64 enabled, running, now;
4387
4388 rcu_read_lock();
4389 rb = rcu_dereference(event->rb);
4390 if (!rb)
4391 goto unlock;
4392
4393 /*
4394 * compute total_time_enabled, total_time_running
4395 * based on snapshot values taken when the event
4396 * was last scheduled in.
4397 *
4398 * we cannot simply called update_context_time()
4399 * because of locking issue as we can be called in
4400 * NMI context
4401 */
4402 calc_timer_values(event, &now, &enabled, &running);
4403
4404 userpg = rb->user_page;
4405 /*
4406 * Disable preemption so as to not let the corresponding user-space
4407 * spin too long if we get preempted.
4408 */
4409 preempt_disable();
4410 ++userpg->lock;
4411 barrier();
4412 userpg->index = perf_event_index(event);
4413 userpg->offset = perf_event_count(event);
4414 if (userpg->index)
4415 userpg->offset -= local64_read(&event->hw.prev_count);
4416
4417 userpg->time_enabled = enabled +
4418 atomic64_read(&event->child_total_time_enabled);
4419
4420 userpg->time_running = running +
4421 atomic64_read(&event->child_total_time_running);
4422
4423 arch_perf_update_userpage(event, userpg, now);
4424
4425 barrier();
4426 ++userpg->lock;
4427 preempt_enable();
4428 unlock:
4429 rcu_read_unlock();
4430 }
4431
4432 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
4433 {
4434 struct perf_event *event = vma->vm_file->private_data;
4435 struct ring_buffer *rb;
4436 int ret = VM_FAULT_SIGBUS;
4437
4438 if (vmf->flags & FAULT_FLAG_MKWRITE) {
4439 if (vmf->pgoff == 0)
4440 ret = 0;
4441 return ret;
4442 }
4443
4444 rcu_read_lock();
4445 rb = rcu_dereference(event->rb);
4446 if (!rb)
4447 goto unlock;
4448
4449 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
4450 goto unlock;
4451
4452 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
4453 if (!vmf->page)
4454 goto unlock;
4455
4456 get_page(vmf->page);
4457 vmf->page->mapping = vma->vm_file->f_mapping;
4458 vmf->page->index = vmf->pgoff;
4459
4460 ret = 0;
4461 unlock:
4462 rcu_read_unlock();
4463
4464 return ret;
4465 }
4466
4467 static void ring_buffer_attach(struct perf_event *event,
4468 struct ring_buffer *rb)
4469 {
4470 struct ring_buffer *old_rb = NULL;
4471 unsigned long flags;
4472
4473 if (event->rb) {
4474 /*
4475 * Should be impossible, we set this when removing
4476 * event->rb_entry and wait/clear when adding event->rb_entry.
4477 */
4478 WARN_ON_ONCE(event->rcu_pending);
4479
4480 old_rb = event->rb;
4481 spin_lock_irqsave(&old_rb->event_lock, flags);
4482 list_del_rcu(&event->rb_entry);
4483 spin_unlock_irqrestore(&old_rb->event_lock, flags);
4484
4485 event->rcu_batches = get_state_synchronize_rcu();
4486 event->rcu_pending = 1;
4487 }
4488
4489 if (rb) {
4490 if (event->rcu_pending) {
4491 cond_synchronize_rcu(event->rcu_batches);
4492 event->rcu_pending = 0;
4493 }
4494
4495 spin_lock_irqsave(&rb->event_lock, flags);
4496 list_add_rcu(&event->rb_entry, &rb->event_list);
4497 spin_unlock_irqrestore(&rb->event_lock, flags);
4498 }
4499
4500 rcu_assign_pointer(event->rb, rb);
4501
4502 if (old_rb) {
4503 ring_buffer_put(old_rb);
4504 /*
4505 * Since we detached before setting the new rb, so that we
4506 * could attach the new rb, we could have missed a wakeup.
4507 * Provide it now.
4508 */
4509 wake_up_all(&event->waitq);
4510 }
4511 }
4512
4513 static void ring_buffer_wakeup(struct perf_event *event)
4514 {
4515 struct ring_buffer *rb;
4516
4517 rcu_read_lock();
4518 rb = rcu_dereference(event->rb);
4519 if (rb) {
4520 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
4521 wake_up_all(&event->waitq);
4522 }
4523 rcu_read_unlock();
4524 }
4525
4526 struct ring_buffer *ring_buffer_get(struct perf_event *event)
4527 {
4528 struct ring_buffer *rb;
4529
4530 rcu_read_lock();
4531 rb = rcu_dereference(event->rb);
4532 if (rb) {
4533 if (!atomic_inc_not_zero(&rb->refcount))
4534 rb = NULL;
4535 }
4536 rcu_read_unlock();
4537
4538 return rb;
4539 }
4540
4541 void ring_buffer_put(struct ring_buffer *rb)
4542 {
4543 if (!atomic_dec_and_test(&rb->refcount))
4544 return;
4545
4546 WARN_ON_ONCE(!list_empty(&rb->event_list));
4547
4548 call_rcu(&rb->rcu_head, rb_free_rcu);
4549 }
4550
4551 static void perf_mmap_open(struct vm_area_struct *vma)
4552 {
4553 struct perf_event *event = vma->vm_file->private_data;
4554
4555 atomic_inc(&event->mmap_count);
4556 atomic_inc(&event->rb->mmap_count);
4557
4558 if (vma->vm_pgoff)
4559 atomic_inc(&event->rb->aux_mmap_count);
4560
4561 if (event->pmu->event_mapped)
4562 event->pmu->event_mapped(event);
4563 }
4564
4565 /*
4566 * A buffer can be mmap()ed multiple times; either directly through the same
4567 * event, or through other events by use of perf_event_set_output().
4568 *
4569 * In order to undo the VM accounting done by perf_mmap() we need to destroy
4570 * the buffer here, where we still have a VM context. This means we need
4571 * to detach all events redirecting to us.
4572 */
4573 static void perf_mmap_close(struct vm_area_struct *vma)
4574 {
4575 struct perf_event *event = vma->vm_file->private_data;
4576
4577 struct ring_buffer *rb = ring_buffer_get(event);
4578 struct user_struct *mmap_user = rb->mmap_user;
4579 int mmap_locked = rb->mmap_locked;
4580 unsigned long size = perf_data_size(rb);
4581
4582 if (event->pmu->event_unmapped)
4583 event->pmu->event_unmapped(event);
4584
4585 /*
4586 * rb->aux_mmap_count will always drop before rb->mmap_count and
4587 * event->mmap_count, so it is ok to use event->mmap_mutex to
4588 * serialize with perf_mmap here.
4589 */
4590 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
4591 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
4592 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
4593 vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
4594
4595 rb_free_aux(rb);
4596 mutex_unlock(&event->mmap_mutex);
4597 }
4598
4599 atomic_dec(&rb->mmap_count);
4600
4601 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
4602 goto out_put;
4603
4604 ring_buffer_attach(event, NULL);
4605 mutex_unlock(&event->mmap_mutex);
4606
4607 /* If there's still other mmap()s of this buffer, we're done. */
4608 if (atomic_read(&rb->mmap_count))
4609 goto out_put;
4610
4611 /*
4612 * No other mmap()s, detach from all other events that might redirect
4613 * into the now unreachable buffer. Somewhat complicated by the
4614 * fact that rb::event_lock otherwise nests inside mmap_mutex.
4615 */
4616 again:
4617 rcu_read_lock();
4618 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
4619 if (!atomic_long_inc_not_zero(&event->refcount)) {
4620 /*
4621 * This event is en-route to free_event() which will
4622 * detach it and remove it from the list.
4623 */
4624 continue;
4625 }
4626 rcu_read_unlock();
4627
4628 mutex_lock(&event->mmap_mutex);
4629 /*
4630 * Check we didn't race with perf_event_set_output() which can
4631 * swizzle the rb from under us while we were waiting to
4632 * acquire mmap_mutex.
4633 *
4634 * If we find a different rb; ignore this event, a next
4635 * iteration will no longer find it on the list. We have to
4636 * still restart the iteration to make sure we're not now
4637 * iterating the wrong list.
4638 */
4639 if (event->rb == rb)
4640 ring_buffer_attach(event, NULL);
4641
4642 mutex_unlock(&event->mmap_mutex);
4643 put_event(event);
4644
4645 /*
4646 * Restart the iteration; either we're on the wrong list or
4647 * destroyed its integrity by doing a deletion.
4648 */
4649 goto again;
4650 }
4651 rcu_read_unlock();
4652
4653 /*
4654 * It could be there's still a few 0-ref events on the list; they'll
4655 * get cleaned up by free_event() -- they'll also still have their
4656 * ref on the rb and will free it whenever they are done with it.
4657 *
4658 * Aside from that, this buffer is 'fully' detached and unmapped,
4659 * undo the VM accounting.
4660 */
4661
4662 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
4663 vma->vm_mm->pinned_vm -= mmap_locked;
4664 free_uid(mmap_user);
4665
4666 out_put:
4667 ring_buffer_put(rb); /* could be last */
4668 }
4669
4670 static const struct vm_operations_struct perf_mmap_vmops = {
4671 .open = perf_mmap_open,
4672 .close = perf_mmap_close, /* non mergable */
4673 .fault = perf_mmap_fault,
4674 .page_mkwrite = perf_mmap_fault,
4675 };
4676
4677 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
4678 {
4679 struct perf_event *event = file->private_data;
4680 unsigned long user_locked, user_lock_limit;
4681 struct user_struct *user = current_user();
4682 unsigned long locked, lock_limit;
4683 struct ring_buffer *rb = NULL;
4684 unsigned long vma_size;
4685 unsigned long nr_pages;
4686 long user_extra = 0, extra = 0;
4687 int ret = 0, flags = 0;
4688
4689 /*
4690 * Don't allow mmap() of inherited per-task counters. This would
4691 * create a performance issue due to all children writing to the
4692 * same rb.
4693 */
4694 if (event->cpu == -1 && event->attr.inherit)
4695 return -EINVAL;
4696
4697 if (!(vma->vm_flags & VM_SHARED))
4698 return -EINVAL;
4699
4700 vma_size = vma->vm_end - vma->vm_start;
4701
4702 if (vma->vm_pgoff == 0) {
4703 nr_pages = (vma_size / PAGE_SIZE) - 1;
4704 } else {
4705 /*
4706 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
4707 * mapped, all subsequent mappings should have the same size
4708 * and offset. Must be above the normal perf buffer.
4709 */
4710 u64 aux_offset, aux_size;
4711
4712 if (!event->rb)
4713 return -EINVAL;
4714
4715 nr_pages = vma_size / PAGE_SIZE;
4716
4717 mutex_lock(&event->mmap_mutex);
4718 ret = -EINVAL;
4719
4720 rb = event->rb;
4721 if (!rb)
4722 goto aux_unlock;
4723
4724 aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
4725 aux_size = ACCESS_ONCE(rb->user_page->aux_size);
4726
4727 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
4728 goto aux_unlock;
4729
4730 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
4731 goto aux_unlock;
4732
4733 /* already mapped with a different offset */
4734 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
4735 goto aux_unlock;
4736
4737 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
4738 goto aux_unlock;
4739
4740 /* already mapped with a different size */
4741 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
4742 goto aux_unlock;
4743
4744 if (!is_power_of_2(nr_pages))
4745 goto aux_unlock;
4746
4747 if (!atomic_inc_not_zero(&rb->mmap_count))
4748 goto aux_unlock;
4749
4750 if (rb_has_aux(rb)) {
4751 atomic_inc(&rb->aux_mmap_count);
4752 ret = 0;
4753 goto unlock;
4754 }
4755
4756 atomic_set(&rb->aux_mmap_count, 1);
4757 user_extra = nr_pages;
4758
4759 goto accounting;
4760 }
4761
4762 /*
4763 * If we have rb pages ensure they're a power-of-two number, so we
4764 * can do bitmasks instead of modulo.
4765 */
4766 if (nr_pages != 0 && !is_power_of_2(nr_pages))
4767 return -EINVAL;
4768
4769 if (vma_size != PAGE_SIZE * (1 + nr_pages))
4770 return -EINVAL;
4771
4772 WARN_ON_ONCE(event->ctx->parent_ctx);
4773 again:
4774 mutex_lock(&event->mmap_mutex);
4775 if (event->rb) {
4776 if (event->rb->nr_pages != nr_pages) {
4777 ret = -EINVAL;
4778 goto unlock;
4779 }
4780
4781 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
4782 /*
4783 * Raced against perf_mmap_close() through
4784 * perf_event_set_output(). Try again, hope for better
4785 * luck.
4786 */
4787 mutex_unlock(&event->mmap_mutex);
4788 goto again;
4789 }
4790
4791 goto unlock;
4792 }
4793
4794 user_extra = nr_pages + 1;
4795
4796 accounting:
4797 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
4798
4799 /*
4800 * Increase the limit linearly with more CPUs:
4801 */
4802 user_lock_limit *= num_online_cpus();
4803
4804 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
4805
4806 if (user_locked > user_lock_limit)
4807 extra = user_locked - user_lock_limit;
4808
4809 lock_limit = rlimit(RLIMIT_MEMLOCK);
4810 lock_limit >>= PAGE_SHIFT;
4811 locked = vma->vm_mm->pinned_vm + extra;
4812
4813 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
4814 !capable(CAP_IPC_LOCK)) {
4815 ret = -EPERM;
4816 goto unlock;
4817 }
4818
4819 WARN_ON(!rb && event->rb);
4820
4821 if (vma->vm_flags & VM_WRITE)
4822 flags |= RING_BUFFER_WRITABLE;
4823
4824 if (!rb) {
4825 rb = rb_alloc(nr_pages,
4826 event->attr.watermark ? event->attr.wakeup_watermark : 0,
4827 event->cpu, flags);
4828
4829 if (!rb) {
4830 ret = -ENOMEM;
4831 goto unlock;
4832 }
4833
4834 atomic_set(&rb->mmap_count, 1);
4835 rb->mmap_user = get_current_user();
4836 rb->mmap_locked = extra;
4837
4838 ring_buffer_attach(event, rb);
4839
4840 perf_event_init_userpage(event);
4841 perf_event_update_userpage(event);
4842 } else {
4843 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
4844 event->attr.aux_watermark, flags);
4845 if (!ret)
4846 rb->aux_mmap_locked = extra;
4847 }
4848
4849 unlock:
4850 if (!ret) {
4851 atomic_long_add(user_extra, &user->locked_vm);
4852 vma->vm_mm->pinned_vm += extra;
4853
4854 atomic_inc(&event->mmap_count);
4855 } else if (rb) {
4856 atomic_dec(&rb->mmap_count);
4857 }
4858 aux_unlock:
4859 mutex_unlock(&event->mmap_mutex);
4860
4861 /*
4862 * Since pinned accounting is per vm we cannot allow fork() to copy our
4863 * vma.
4864 */
4865 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
4866 vma->vm_ops = &perf_mmap_vmops;
4867
4868 if (event->pmu->event_mapped)
4869 event->pmu->event_mapped(event);
4870
4871 return ret;
4872 }
4873
4874 static int perf_fasync(int fd, struct file *filp, int on)
4875 {
4876 struct inode *inode = file_inode(filp);
4877 struct perf_event *event = filp->private_data;
4878 int retval;
4879
4880 mutex_lock(&inode->i_mutex);
4881 retval = fasync_helper(fd, filp, on, &event->fasync);
4882 mutex_unlock(&inode->i_mutex);
4883
4884 if (retval < 0)
4885 return retval;
4886
4887 return 0;
4888 }
4889
4890 static const struct file_operations perf_fops = {
4891 .llseek = no_llseek,
4892 .release = perf_release,
4893 .read = perf_read,
4894 .poll = perf_poll,
4895 .unlocked_ioctl = perf_ioctl,
4896 .compat_ioctl = perf_compat_ioctl,
4897 .mmap = perf_mmap,
4898 .fasync = perf_fasync,
4899 };
4900
4901 /*
4902 * Perf event wakeup
4903 *
4904 * If there's data, ensure we set the poll() state and publish everything
4905 * to user-space before waking everybody up.
4906 */
4907
4908 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
4909 {
4910 /* only the parent has fasync state */
4911 if (event->parent)
4912 event = event->parent;
4913 return &event->fasync;
4914 }
4915
4916 void perf_event_wakeup(struct perf_event *event)
4917 {
4918 ring_buffer_wakeup(event);
4919
4920 if (event->pending_kill) {
4921 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
4922 event->pending_kill = 0;
4923 }
4924 }
4925
4926 static void perf_pending_event(struct irq_work *entry)
4927 {
4928 struct perf_event *event = container_of(entry,
4929 struct perf_event, pending);
4930 int rctx;
4931
4932 rctx = perf_swevent_get_recursion_context();
4933 /*
4934 * If we 'fail' here, that's OK, it means recursion is already disabled
4935 * and we won't recurse 'further'.
4936 */
4937
4938 if (event->pending_disable) {
4939 event->pending_disable = 0;
4940 perf_event_disable_local(event);
4941 }
4942
4943 if (event->pending_wakeup) {
4944 event->pending_wakeup = 0;
4945 perf_event_wakeup(event);
4946 }
4947
4948 if (rctx >= 0)
4949 perf_swevent_put_recursion_context(rctx);
4950 }
4951
4952 /*
4953 * We assume there is only KVM supporting the callbacks.
4954 * Later on, we might change it to a list if there is
4955 * another virtualization implementation supporting the callbacks.
4956 */
4957 struct perf_guest_info_callbacks *perf_guest_cbs;
4958
4959 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4960 {
4961 perf_guest_cbs = cbs;
4962 return 0;
4963 }
4964 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
4965
4966 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4967 {
4968 perf_guest_cbs = NULL;
4969 return 0;
4970 }
4971 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
4972
4973 static void
4974 perf_output_sample_regs(struct perf_output_handle *handle,
4975 struct pt_regs *regs, u64 mask)
4976 {
4977 int bit;
4978
4979 for_each_set_bit(bit, (const unsigned long *) &mask,
4980 sizeof(mask) * BITS_PER_BYTE) {
4981 u64 val;
4982
4983 val = perf_reg_value(regs, bit);
4984 perf_output_put(handle, val);
4985 }
4986 }
4987
4988 static void perf_sample_regs_user(struct perf_regs *regs_user,
4989 struct pt_regs *regs,
4990 struct pt_regs *regs_user_copy)
4991 {
4992 if (user_mode(regs)) {
4993 regs_user->abi = perf_reg_abi(current);
4994 regs_user->regs = regs;
4995 } else if (current->mm) {
4996 perf_get_regs_user(regs_user, regs, regs_user_copy);
4997 } else {
4998 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
4999 regs_user->regs = NULL;
5000 }
5001 }
5002
5003 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
5004 struct pt_regs *regs)
5005 {
5006 regs_intr->regs = regs;
5007 regs_intr->abi = perf_reg_abi(current);
5008 }
5009
5010
5011 /*
5012 * Get remaining task size from user stack pointer.
5013 *
5014 * It'd be better to take stack vma map and limit this more
5015 * precisly, but there's no way to get it safely under interrupt,
5016 * so using TASK_SIZE as limit.
5017 */
5018 static u64 perf_ustack_task_size(struct pt_regs *regs)
5019 {
5020 unsigned long addr = perf_user_stack_pointer(regs);
5021
5022 if (!addr || addr >= TASK_SIZE)
5023 return 0;
5024
5025 return TASK_SIZE - addr;
5026 }
5027
5028 static u16
5029 perf_sample_ustack_size(u16 stack_size, u16 header_size,
5030 struct pt_regs *regs)
5031 {
5032 u64 task_size;
5033
5034 /* No regs, no stack pointer, no dump. */
5035 if (!regs)
5036 return 0;
5037
5038 /*
5039 * Check if we fit in with the requested stack size into the:
5040 * - TASK_SIZE
5041 * If we don't, we limit the size to the TASK_SIZE.
5042 *
5043 * - remaining sample size
5044 * If we don't, we customize the stack size to
5045 * fit in to the remaining sample size.
5046 */
5047
5048 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
5049 stack_size = min(stack_size, (u16) task_size);
5050
5051 /* Current header size plus static size and dynamic size. */
5052 header_size += 2 * sizeof(u64);
5053
5054 /* Do we fit in with the current stack dump size? */
5055 if ((u16) (header_size + stack_size) < header_size) {
5056 /*
5057 * If we overflow the maximum size for the sample,
5058 * we customize the stack dump size to fit in.
5059 */
5060 stack_size = USHRT_MAX - header_size - sizeof(u64);
5061 stack_size = round_up(stack_size, sizeof(u64));
5062 }
5063
5064 return stack_size;
5065 }
5066
5067 static void
5068 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
5069 struct pt_regs *regs)
5070 {
5071 /* Case of a kernel thread, nothing to dump */
5072 if (!regs) {
5073 u64 size = 0;
5074 perf_output_put(handle, size);
5075 } else {
5076 unsigned long sp;
5077 unsigned int rem;
5078 u64 dyn_size;
5079
5080 /*
5081 * We dump:
5082 * static size
5083 * - the size requested by user or the best one we can fit
5084 * in to the sample max size
5085 * data
5086 * - user stack dump data
5087 * dynamic size
5088 * - the actual dumped size
5089 */
5090
5091 /* Static size. */
5092 perf_output_put(handle, dump_size);
5093
5094 /* Data. */
5095 sp = perf_user_stack_pointer(regs);
5096 rem = __output_copy_user(handle, (void *) sp, dump_size);
5097 dyn_size = dump_size - rem;
5098
5099 perf_output_skip(handle, rem);
5100
5101 /* Dynamic size. */
5102 perf_output_put(handle, dyn_size);
5103 }
5104 }
5105
5106 static void __perf_event_header__init_id(struct perf_event_header *header,
5107 struct perf_sample_data *data,
5108 struct perf_event *event)
5109 {
5110 u64 sample_type = event->attr.sample_type;
5111
5112 data->type = sample_type;
5113 header->size += event->id_header_size;
5114
5115 if (sample_type & PERF_SAMPLE_TID) {
5116 /* namespace issues */
5117 data->tid_entry.pid = perf_event_pid(event, current);
5118 data->tid_entry.tid = perf_event_tid(event, current);
5119 }
5120
5121 if (sample_type & PERF_SAMPLE_TIME)
5122 data->time = perf_event_clock(event);
5123
5124 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
5125 data->id = primary_event_id(event);
5126
5127 if (sample_type & PERF_SAMPLE_STREAM_ID)
5128 data->stream_id = event->id;
5129
5130 if (sample_type & PERF_SAMPLE_CPU) {
5131 data->cpu_entry.cpu = raw_smp_processor_id();
5132 data->cpu_entry.reserved = 0;
5133 }
5134 }
5135
5136 void perf_event_header__init_id(struct perf_event_header *header,
5137 struct perf_sample_data *data,
5138 struct perf_event *event)
5139 {
5140 if (event->attr.sample_id_all)
5141 __perf_event_header__init_id(header, data, event);
5142 }
5143
5144 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
5145 struct perf_sample_data *data)
5146 {
5147 u64 sample_type = data->type;
5148
5149 if (sample_type & PERF_SAMPLE_TID)
5150 perf_output_put(handle, data->tid_entry);
5151
5152 if (sample_type & PERF_SAMPLE_TIME)
5153 perf_output_put(handle, data->time);
5154
5155 if (sample_type & PERF_SAMPLE_ID)
5156 perf_output_put(handle, data->id);
5157
5158 if (sample_type & PERF_SAMPLE_STREAM_ID)
5159 perf_output_put(handle, data->stream_id);
5160
5161 if (sample_type & PERF_SAMPLE_CPU)
5162 perf_output_put(handle, data->cpu_entry);
5163
5164 if (sample_type & PERF_SAMPLE_IDENTIFIER)
5165 perf_output_put(handle, data->id);
5166 }
5167
5168 void perf_event__output_id_sample(struct perf_event *event,
5169 struct perf_output_handle *handle,
5170 struct perf_sample_data *sample)
5171 {
5172 if (event->attr.sample_id_all)
5173 __perf_event__output_id_sample(handle, sample);
5174 }
5175
5176 static void perf_output_read_one(struct perf_output_handle *handle,
5177 struct perf_event *event,
5178 u64 enabled, u64 running)
5179 {
5180 u64 read_format = event->attr.read_format;
5181 u64 values[4];
5182 int n = 0;
5183
5184 values[n++] = perf_event_count(event);
5185 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5186 values[n++] = enabled +
5187 atomic64_read(&event->child_total_time_enabled);
5188 }
5189 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5190 values[n++] = running +
5191 atomic64_read(&event->child_total_time_running);
5192 }
5193 if (read_format & PERF_FORMAT_ID)
5194 values[n++] = primary_event_id(event);
5195
5196 __output_copy(handle, values, n * sizeof(u64));
5197 }
5198
5199 /*
5200 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
5201 */
5202 static void perf_output_read_group(struct perf_output_handle *handle,
5203 struct perf_event *event,
5204 u64 enabled, u64 running)
5205 {
5206 struct perf_event *leader = event->group_leader, *sub;
5207 u64 read_format = event->attr.read_format;
5208 u64 values[5];
5209 int n = 0;
5210
5211 values[n++] = 1 + leader->nr_siblings;
5212
5213 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5214 values[n++] = enabled;
5215
5216 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5217 values[n++] = running;
5218
5219 if (leader != event)
5220 leader->pmu->read(leader);
5221
5222 values[n++] = perf_event_count(leader);
5223 if (read_format & PERF_FORMAT_ID)
5224 values[n++] = primary_event_id(leader);
5225
5226 __output_copy(handle, values, n * sizeof(u64));
5227
5228 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
5229 n = 0;
5230
5231 if ((sub != event) &&
5232 (sub->state == PERF_EVENT_STATE_ACTIVE))
5233 sub->pmu->read(sub);
5234
5235 values[n++] = perf_event_count(sub);
5236 if (read_format & PERF_FORMAT_ID)
5237 values[n++] = primary_event_id(sub);
5238
5239 __output_copy(handle, values, n * sizeof(u64));
5240 }
5241 }
5242
5243 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
5244 PERF_FORMAT_TOTAL_TIME_RUNNING)
5245
5246 static void perf_output_read(struct perf_output_handle *handle,
5247 struct perf_event *event)
5248 {
5249 u64 enabled = 0, running = 0, now;
5250 u64 read_format = event->attr.read_format;
5251
5252 /*
5253 * compute total_time_enabled, total_time_running
5254 * based on snapshot values taken when the event
5255 * was last scheduled in.
5256 *
5257 * we cannot simply called update_context_time()
5258 * because of locking issue as we are called in
5259 * NMI context
5260 */
5261 if (read_format & PERF_FORMAT_TOTAL_TIMES)
5262 calc_timer_values(event, &now, &enabled, &running);
5263
5264 if (event->attr.read_format & PERF_FORMAT_GROUP)
5265 perf_output_read_group(handle, event, enabled, running);
5266 else
5267 perf_output_read_one(handle, event, enabled, running);
5268 }
5269
5270 void perf_output_sample(struct perf_output_handle *handle,
5271 struct perf_event_header *header,
5272 struct perf_sample_data *data,
5273 struct perf_event *event)
5274 {
5275 u64 sample_type = data->type;
5276
5277 perf_output_put(handle, *header);
5278
5279 if (sample_type & PERF_SAMPLE_IDENTIFIER)
5280 perf_output_put(handle, data->id);
5281
5282 if (sample_type & PERF_SAMPLE_IP)
5283 perf_output_put(handle, data->ip);
5284
5285 if (sample_type & PERF_SAMPLE_TID)
5286 perf_output_put(handle, data->tid_entry);
5287
5288 if (sample_type & PERF_SAMPLE_TIME)
5289 perf_output_put(handle, data->time);
5290
5291 if (sample_type & PERF_SAMPLE_ADDR)
5292 perf_output_put(handle, data->addr);
5293
5294 if (sample_type & PERF_SAMPLE_ID)
5295 perf_output_put(handle, data->id);
5296
5297 if (sample_type & PERF_SAMPLE_STREAM_ID)
5298 perf_output_put(handle, data->stream_id);
5299
5300 if (sample_type & PERF_SAMPLE_CPU)
5301 perf_output_put(handle, data->cpu_entry);
5302
5303 if (sample_type & PERF_SAMPLE_PERIOD)
5304 perf_output_put(handle, data->period);
5305
5306 if (sample_type & PERF_SAMPLE_READ)
5307 perf_output_read(handle, event);
5308
5309 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5310 if (data->callchain) {
5311 int size = 1;
5312
5313 if (data->callchain)
5314 size += data->callchain->nr;
5315
5316 size *= sizeof(u64);
5317
5318 __output_copy(handle, data->callchain, size);
5319 } else {
5320 u64 nr = 0;
5321 perf_output_put(handle, nr);
5322 }
5323 }
5324
5325 if (sample_type & PERF_SAMPLE_RAW) {
5326 if (data->raw) {
5327 u32 raw_size = data->raw->size;
5328 u32 real_size = round_up(raw_size + sizeof(u32),
5329 sizeof(u64)) - sizeof(u32);
5330 u64 zero = 0;
5331
5332 perf_output_put(handle, real_size);
5333 __output_copy(handle, data->raw->data, raw_size);
5334 if (real_size - raw_size)
5335 __output_copy(handle, &zero, real_size - raw_size);
5336 } else {
5337 struct {
5338 u32 size;
5339 u32 data;
5340 } raw = {
5341 .size = sizeof(u32),
5342 .data = 0,
5343 };
5344 perf_output_put(handle, raw);
5345 }
5346 }
5347
5348 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5349 if (data->br_stack) {
5350 size_t size;
5351
5352 size = data->br_stack->nr
5353 * sizeof(struct perf_branch_entry);
5354
5355 perf_output_put(handle, data->br_stack->nr);
5356 perf_output_copy(handle, data->br_stack->entries, size);
5357 } else {
5358 /*
5359 * we always store at least the value of nr
5360 */
5361 u64 nr = 0;
5362 perf_output_put(handle, nr);
5363 }
5364 }
5365
5366 if (sample_type & PERF_SAMPLE_REGS_USER) {
5367 u64 abi = data->regs_user.abi;
5368
5369 /*
5370 * If there are no regs to dump, notice it through
5371 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5372 */
5373 perf_output_put(handle, abi);
5374
5375 if (abi) {
5376 u64 mask = event->attr.sample_regs_user;
5377 perf_output_sample_regs(handle,
5378 data->regs_user.regs,
5379 mask);
5380 }
5381 }
5382
5383 if (sample_type & PERF_SAMPLE_STACK_USER) {
5384 perf_output_sample_ustack(handle,
5385 data->stack_user_size,
5386 data->regs_user.regs);
5387 }
5388
5389 if (sample_type & PERF_SAMPLE_WEIGHT)
5390 perf_output_put(handle, data->weight);
5391
5392 if (sample_type & PERF_SAMPLE_DATA_SRC)
5393 perf_output_put(handle, data->data_src.val);
5394
5395 if (sample_type & PERF_SAMPLE_TRANSACTION)
5396 perf_output_put(handle, data->txn);
5397
5398 if (sample_type & PERF_SAMPLE_REGS_INTR) {
5399 u64 abi = data->regs_intr.abi;
5400 /*
5401 * If there are no regs to dump, notice it through
5402 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5403 */
5404 perf_output_put(handle, abi);
5405
5406 if (abi) {
5407 u64 mask = event->attr.sample_regs_intr;
5408
5409 perf_output_sample_regs(handle,
5410 data->regs_intr.regs,
5411 mask);
5412 }
5413 }
5414
5415 if (!event->attr.watermark) {
5416 int wakeup_events = event->attr.wakeup_events;
5417
5418 if (wakeup_events) {
5419 struct ring_buffer *rb = handle->rb;
5420 int events = local_inc_return(&rb->events);
5421
5422 if (events >= wakeup_events) {
5423 local_sub(wakeup_events, &rb->events);
5424 local_inc(&rb->wakeup);
5425 }
5426 }
5427 }
5428 }
5429
5430 void perf_prepare_sample(struct perf_event_header *header,
5431 struct perf_sample_data *data,
5432 struct perf_event *event,
5433 struct pt_regs *regs)
5434 {
5435 u64 sample_type = event->attr.sample_type;
5436
5437 header->type = PERF_RECORD_SAMPLE;
5438 header->size = sizeof(*header) + event->header_size;
5439
5440 header->misc = 0;
5441 header->misc |= perf_misc_flags(regs);
5442
5443 __perf_event_header__init_id(header, data, event);
5444
5445 if (sample_type & PERF_SAMPLE_IP)
5446 data->ip = perf_instruction_pointer(regs);
5447
5448 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5449 int size = 1;
5450
5451 data->callchain = perf_callchain(event, regs);
5452
5453 if (data->callchain)
5454 size += data->callchain->nr;
5455
5456 header->size += size * sizeof(u64);
5457 }
5458
5459 if (sample_type & PERF_SAMPLE_RAW) {
5460 int size = sizeof(u32);
5461
5462 if (data->raw)
5463 size += data->raw->size;
5464 else
5465 size += sizeof(u32);
5466
5467 header->size += round_up(size, sizeof(u64));
5468 }
5469
5470 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5471 int size = sizeof(u64); /* nr */
5472 if (data->br_stack) {
5473 size += data->br_stack->nr
5474 * sizeof(struct perf_branch_entry);
5475 }
5476 header->size += size;
5477 }
5478
5479 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
5480 perf_sample_regs_user(&data->regs_user, regs,
5481 &data->regs_user_copy);
5482
5483 if (sample_type & PERF_SAMPLE_REGS_USER) {
5484 /* regs dump ABI info */
5485 int size = sizeof(u64);
5486
5487 if (data->regs_user.regs) {
5488 u64 mask = event->attr.sample_regs_user;
5489 size += hweight64(mask) * sizeof(u64);
5490 }
5491
5492 header->size += size;
5493 }
5494
5495 if (sample_type & PERF_SAMPLE_STACK_USER) {
5496 /*
5497 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
5498 * processed as the last one or have additional check added
5499 * in case new sample type is added, because we could eat
5500 * up the rest of the sample size.
5501 */
5502 u16 stack_size = event->attr.sample_stack_user;
5503 u16 size = sizeof(u64);
5504
5505 stack_size = perf_sample_ustack_size(stack_size, header->size,
5506 data->regs_user.regs);
5507
5508 /*
5509 * If there is something to dump, add space for the dump
5510 * itself and for the field that tells the dynamic size,
5511 * which is how many have been actually dumped.
5512 */
5513 if (stack_size)
5514 size += sizeof(u64) + stack_size;
5515
5516 data->stack_user_size = stack_size;
5517 header->size += size;
5518 }
5519
5520 if (sample_type & PERF_SAMPLE_REGS_INTR) {
5521 /* regs dump ABI info */
5522 int size = sizeof(u64);
5523
5524 perf_sample_regs_intr(&data->regs_intr, regs);
5525
5526 if (data->regs_intr.regs) {
5527 u64 mask = event->attr.sample_regs_intr;
5528
5529 size += hweight64(mask) * sizeof(u64);
5530 }
5531
5532 header->size += size;
5533 }
5534 }
5535
5536 void perf_event_output(struct perf_event *event,
5537 struct perf_sample_data *data,
5538 struct pt_regs *regs)
5539 {
5540 struct perf_output_handle handle;
5541 struct perf_event_header header;
5542
5543 /* protect the callchain buffers */
5544 rcu_read_lock();
5545
5546 perf_prepare_sample(&header, data, event, regs);
5547
5548 if (perf_output_begin(&handle, event, header.size))
5549 goto exit;
5550
5551 perf_output_sample(&handle, &header, data, event);
5552
5553 perf_output_end(&handle);
5554
5555 exit:
5556 rcu_read_unlock();
5557 }
5558
5559 /*
5560 * read event_id
5561 */
5562
5563 struct perf_read_event {
5564 struct perf_event_header header;
5565
5566 u32 pid;
5567 u32 tid;
5568 };
5569
5570 static void
5571 perf_event_read_event(struct perf_event *event,
5572 struct task_struct *task)
5573 {
5574 struct perf_output_handle handle;
5575 struct perf_sample_data sample;
5576 struct perf_read_event read_event = {
5577 .header = {
5578 .type = PERF_RECORD_READ,
5579 .misc = 0,
5580 .size = sizeof(read_event) + event->read_size,
5581 },
5582 .pid = perf_event_pid(event, task),
5583 .tid = perf_event_tid(event, task),
5584 };
5585 int ret;
5586
5587 perf_event_header__init_id(&read_event.header, &sample, event);
5588 ret = perf_output_begin(&handle, event, read_event.header.size);
5589 if (ret)
5590 return;
5591
5592 perf_output_put(&handle, read_event);
5593 perf_output_read(&handle, event);
5594 perf_event__output_id_sample(event, &handle, &sample);
5595
5596 perf_output_end(&handle);
5597 }
5598
5599 typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);
5600
5601 static void
5602 perf_event_aux_ctx(struct perf_event_context *ctx,
5603 perf_event_aux_output_cb output,
5604 void *data)
5605 {
5606 struct perf_event *event;
5607
5608 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
5609 if (event->state < PERF_EVENT_STATE_INACTIVE)
5610 continue;
5611 if (!event_filter_match(event))
5612 continue;
5613 output(event, data);
5614 }
5615 }
5616
5617 static void
5618 perf_event_aux_task_ctx(perf_event_aux_output_cb output, void *data,
5619 struct perf_event_context *task_ctx)
5620 {
5621 rcu_read_lock();
5622 preempt_disable();
5623 perf_event_aux_ctx(task_ctx, output, data);
5624 preempt_enable();
5625 rcu_read_unlock();
5626 }
5627
5628 static void
5629 perf_event_aux(perf_event_aux_output_cb output, void *data,
5630 struct perf_event_context *task_ctx)
5631 {
5632 struct perf_cpu_context *cpuctx;
5633 struct perf_event_context *ctx;
5634 struct pmu *pmu;
5635 int ctxn;
5636
5637 /*
5638 * If we have task_ctx != NULL we only notify
5639 * the task context itself. The task_ctx is set
5640 * only for EXIT events before releasing task
5641 * context.
5642 */
5643 if (task_ctx) {
5644 perf_event_aux_task_ctx(output, data, task_ctx);
5645 return;
5646 }
5647
5648 rcu_read_lock();
5649 list_for_each_entry_rcu(pmu, &pmus, entry) {
5650 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
5651 if (cpuctx->unique_pmu != pmu)
5652 goto next;
5653 perf_event_aux_ctx(&cpuctx->ctx, output, data);
5654 ctxn = pmu->task_ctx_nr;
5655 if (ctxn < 0)
5656 goto next;
5657 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
5658 if (ctx)
5659 perf_event_aux_ctx(ctx, output, data);
5660 next:
5661 put_cpu_ptr(pmu->pmu_cpu_context);
5662 }
5663 rcu_read_unlock();
5664 }
5665
5666 /*
5667 * task tracking -- fork/exit
5668 *
5669 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
5670 */
5671
5672 struct perf_task_event {
5673 struct task_struct *task;
5674 struct perf_event_context *task_ctx;
5675
5676 struct {
5677 struct perf_event_header header;
5678
5679 u32 pid;
5680 u32 ppid;
5681 u32 tid;
5682 u32 ptid;
5683 u64 time;
5684 } event_id;
5685 };
5686
5687 static int perf_event_task_match(struct perf_event *event)
5688 {
5689 return event->attr.comm || event->attr.mmap ||
5690 event->attr.mmap2 || event->attr.mmap_data ||
5691 event->attr.task;
5692 }
5693
5694 static void perf_event_task_output(struct perf_event *event,
5695 void *data)
5696 {
5697 struct perf_task_event *task_event = data;
5698 struct perf_output_handle handle;
5699 struct perf_sample_data sample;
5700 struct task_struct *task = task_event->task;
5701 int ret, size = task_event->event_id.header.size;
5702
5703 if (!perf_event_task_match(event))
5704 return;
5705
5706 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
5707
5708 ret = perf_output_begin(&handle, event,
5709 task_event->event_id.header.size);
5710 if (ret)
5711 goto out;
5712
5713 task_event->event_id.pid = perf_event_pid(event, task);
5714 task_event->event_id.ppid = perf_event_pid(event, current);
5715
5716 task_event->event_id.tid = perf_event_tid(event, task);
5717 task_event->event_id.ptid = perf_event_tid(event, current);
5718
5719 task_event->event_id.time = perf_event_clock(event);
5720
5721 perf_output_put(&handle, task_event->event_id);
5722
5723 perf_event__output_id_sample(event, &handle, &sample);
5724
5725 perf_output_end(&handle);
5726 out:
5727 task_event->event_id.header.size = size;
5728 }
5729
5730 static void perf_event_task(struct task_struct *task,
5731 struct perf_event_context *task_ctx,
5732 int new)
5733 {
5734 struct perf_task_event task_event;
5735
5736 if (!atomic_read(&nr_comm_events) &&
5737 !atomic_read(&nr_mmap_events) &&
5738 !atomic_read(&nr_task_events))
5739 return;
5740
5741 task_event = (struct perf_task_event){
5742 .task = task,
5743 .task_ctx = task_ctx,
5744 .event_id = {
5745 .header = {
5746 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
5747 .misc = 0,
5748 .size = sizeof(task_event.event_id),
5749 },
5750 /* .pid */
5751 /* .ppid */
5752 /* .tid */
5753 /* .ptid */
5754 /* .time */
5755 },
5756 };
5757
5758 perf_event_aux(perf_event_task_output,
5759 &task_event,
5760 task_ctx);
5761 }
5762
5763 void perf_event_fork(struct task_struct *task)
5764 {
5765 perf_event_task(task, NULL, 1);
5766 }
5767
5768 /*
5769 * comm tracking
5770 */
5771
5772 struct perf_comm_event {
5773 struct task_struct *task;
5774 char *comm;
5775 int comm_size;
5776
5777 struct {
5778 struct perf_event_header header;
5779
5780 u32 pid;
5781 u32 tid;
5782 } event_id;
5783 };
5784
5785 static int perf_event_comm_match(struct perf_event *event)
5786 {
5787 return event->attr.comm;
5788 }
5789
5790 static void perf_event_comm_output(struct perf_event *event,
5791 void *data)
5792 {
5793 struct perf_comm_event *comm_event = data;
5794 struct perf_output_handle handle;
5795 struct perf_sample_data sample;
5796 int size = comm_event->event_id.header.size;
5797 int ret;
5798
5799 if (!perf_event_comm_match(event))
5800 return;
5801
5802 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
5803 ret = perf_output_begin(&handle, event,
5804 comm_event->event_id.header.size);
5805
5806 if (ret)
5807 goto out;
5808
5809 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
5810 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
5811
5812 perf_output_put(&handle, comm_event->event_id);
5813 __output_copy(&handle, comm_event->comm,
5814 comm_event->comm_size);
5815
5816 perf_event__output_id_sample(event, &handle, &sample);
5817
5818 perf_output_end(&handle);
5819 out:
5820 comm_event->event_id.header.size = size;
5821 }
5822
5823 static void perf_event_comm_event(struct perf_comm_event *comm_event)
5824 {
5825 char comm[TASK_COMM_LEN];
5826 unsigned int size;
5827
5828 memset(comm, 0, sizeof(comm));
5829 strlcpy(comm, comm_event->task->comm, sizeof(comm));
5830 size = ALIGN(strlen(comm)+1, sizeof(u64));
5831
5832 comm_event->comm = comm;
5833 comm_event->comm_size = size;
5834
5835 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
5836
5837 perf_event_aux(perf_event_comm_output,
5838 comm_event,
5839 NULL);
5840 }
5841
5842 void perf_event_comm(struct task_struct *task, bool exec)
5843 {
5844 struct perf_comm_event comm_event;
5845
5846 if (!atomic_read(&nr_comm_events))
5847 return;
5848
5849 comm_event = (struct perf_comm_event){
5850 .task = task,
5851 /* .comm */
5852 /* .comm_size */
5853 .event_id = {
5854 .header = {
5855 .type = PERF_RECORD_COMM,
5856 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
5857 /* .size */
5858 },
5859 /* .pid */
5860 /* .tid */
5861 },
5862 };
5863
5864 perf_event_comm_event(&comm_event);
5865 }
5866
5867 /*
5868 * mmap tracking
5869 */
5870
5871 struct perf_mmap_event {
5872 struct vm_area_struct *vma;
5873
5874 const char *file_name;
5875 int file_size;
5876 int maj, min;
5877 u64 ino;
5878 u64 ino_generation;
5879 u32 prot, flags;
5880
5881 struct {
5882 struct perf_event_header header;
5883
5884 u32 pid;
5885 u32 tid;
5886 u64 start;
5887 u64 len;
5888 u64 pgoff;
5889 } event_id;
5890 };
5891
5892 static int perf_event_mmap_match(struct perf_event *event,
5893 void *data)
5894 {
5895 struct perf_mmap_event *mmap_event = data;
5896 struct vm_area_struct *vma = mmap_event->vma;
5897 int executable = vma->vm_flags & VM_EXEC;
5898
5899 return (!executable && event->attr.mmap_data) ||
5900 (executable && (event->attr.mmap || event->attr.mmap2));
5901 }
5902
5903 static void perf_event_mmap_output(struct perf_event *event,
5904 void *data)
5905 {
5906 struct perf_mmap_event *mmap_event = data;
5907 struct perf_output_handle handle;
5908 struct perf_sample_data sample;
5909 int size = mmap_event->event_id.header.size;
5910 int ret;
5911
5912 if (!perf_event_mmap_match(event, data))
5913 return;
5914
5915 if (event->attr.mmap2) {
5916 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
5917 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
5918 mmap_event->event_id.header.size += sizeof(mmap_event->min);
5919 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
5920 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
5921 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
5922 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
5923 }
5924
5925 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
5926 ret = perf_output_begin(&handle, event,
5927 mmap_event->event_id.header.size);
5928 if (ret)
5929 goto out;
5930
5931 mmap_event->event_id.pid = perf_event_pid(event, current);
5932 mmap_event->event_id.tid = perf_event_tid(event, current);
5933
5934 perf_output_put(&handle, mmap_event->event_id);
5935
5936 if (event->attr.mmap2) {
5937 perf_output_put(&handle, mmap_event->maj);
5938 perf_output_put(&handle, mmap_event->min);
5939 perf_output_put(&handle, mmap_event->ino);
5940 perf_output_put(&handle, mmap_event->ino_generation);
5941 perf_output_put(&handle, mmap_event->prot);
5942 perf_output_put(&handle, mmap_event->flags);
5943 }
5944
5945 __output_copy(&handle, mmap_event->file_name,
5946 mmap_event->file_size);
5947
5948 perf_event__output_id_sample(event, &handle, &sample);
5949
5950 perf_output_end(&handle);
5951 out:
5952 mmap_event->event_id.header.size = size;
5953 }
5954
5955 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
5956 {
5957 struct vm_area_struct *vma = mmap_event->vma;
5958 struct file *file = vma->vm_file;
5959 int maj = 0, min = 0;
5960 u64 ino = 0, gen = 0;
5961 u32 prot = 0, flags = 0;
5962 unsigned int size;
5963 char tmp[16];
5964 char *buf = NULL;
5965 char *name;
5966
5967 if (file) {
5968 struct inode *inode;
5969 dev_t dev;
5970
5971 buf = kmalloc(PATH_MAX, GFP_KERNEL);
5972 if (!buf) {
5973 name = "//enomem";
5974 goto cpy_name;
5975 }
5976 /*
5977 * d_path() works from the end of the rb backwards, so we
5978 * need to add enough zero bytes after the string to handle
5979 * the 64bit alignment we do later.
5980 */
5981 name = file_path(file, buf, PATH_MAX - sizeof(u64));
5982 if (IS_ERR(name)) {
5983 name = "//toolong";
5984 goto cpy_name;
5985 }
5986 inode = file_inode(vma->vm_file);
5987 dev = inode->i_sb->s_dev;
5988 ino = inode->i_ino;
5989 gen = inode->i_generation;
5990 maj = MAJOR(dev);
5991 min = MINOR(dev);
5992
5993 if (vma->vm_flags & VM_READ)
5994 prot |= PROT_READ;
5995 if (vma->vm_flags & VM_WRITE)
5996 prot |= PROT_WRITE;
5997 if (vma->vm_flags & VM_EXEC)
5998 prot |= PROT_EXEC;
5999
6000 if (vma->vm_flags & VM_MAYSHARE)
6001 flags = MAP_SHARED;
6002 else
6003 flags = MAP_PRIVATE;
6004
6005 if (vma->vm_flags & VM_DENYWRITE)
6006 flags |= MAP_DENYWRITE;
6007 if (vma->vm_flags & VM_MAYEXEC)
6008 flags |= MAP_EXECUTABLE;
6009 if (vma->vm_flags & VM_LOCKED)
6010 flags |= MAP_LOCKED;
6011 if (vma->vm_flags & VM_HUGETLB)
6012 flags |= MAP_HUGETLB;
6013
6014 goto got_name;
6015 } else {
6016 if (vma->vm_ops && vma->vm_ops->name) {
6017 name = (char *) vma->vm_ops->name(vma);
6018 if (name)
6019 goto cpy_name;
6020 }
6021
6022 name = (char *)arch_vma_name(vma);
6023 if (name)
6024 goto cpy_name;
6025
6026 if (vma->vm_start <= vma->vm_mm->start_brk &&
6027 vma->vm_end >= vma->vm_mm->brk) {
6028 name = "[heap]";
6029 goto cpy_name;
6030 }
6031 if (vma->vm_start <= vma->vm_mm->start_stack &&
6032 vma->vm_end >= vma->vm_mm->start_stack) {
6033 name = "[stack]";
6034 goto cpy_name;
6035 }
6036
6037 name = "//anon";
6038 goto cpy_name;
6039 }
6040
6041 cpy_name:
6042 strlcpy(tmp, name, sizeof(tmp));
6043 name = tmp;
6044 got_name:
6045 /*
6046 * Since our buffer works in 8 byte units we need to align our string
6047 * size to a multiple of 8. However, we must guarantee the tail end is
6048 * zero'd out to avoid leaking random bits to userspace.
6049 */
6050 size = strlen(name)+1;
6051 while (!IS_ALIGNED(size, sizeof(u64)))
6052 name[size++] = '\0';
6053
6054 mmap_event->file_name = name;
6055 mmap_event->file_size = size;
6056 mmap_event->maj = maj;
6057 mmap_event->min = min;
6058 mmap_event->ino = ino;
6059 mmap_event->ino_generation = gen;
6060 mmap_event->prot = prot;
6061 mmap_event->flags = flags;
6062
6063 if (!(vma->vm_flags & VM_EXEC))
6064 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
6065
6066 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
6067
6068 perf_event_aux(perf_event_mmap_output,
6069 mmap_event,
6070 NULL);
6071
6072 kfree(buf);
6073 }
6074
6075 void perf_event_mmap(struct vm_area_struct *vma)
6076 {
6077 struct perf_mmap_event mmap_event;
6078
6079 if (!atomic_read(&nr_mmap_events))
6080 return;
6081
6082 mmap_event = (struct perf_mmap_event){
6083 .vma = vma,
6084 /* .file_name */
6085 /* .file_size */
6086 .event_id = {
6087 .header = {
6088 .type = PERF_RECORD_MMAP,
6089 .misc = PERF_RECORD_MISC_USER,
6090 /* .size */
6091 },
6092 /* .pid */
6093 /* .tid */
6094 .start = vma->vm_start,
6095 .len = vma->vm_end - vma->vm_start,
6096 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
6097 },
6098 /* .maj (attr_mmap2 only) */
6099 /* .min (attr_mmap2 only) */
6100 /* .ino (attr_mmap2 only) */
6101 /* .ino_generation (attr_mmap2 only) */
6102 /* .prot (attr_mmap2 only) */
6103 /* .flags (attr_mmap2 only) */
6104 };
6105
6106 perf_event_mmap_event(&mmap_event);
6107 }
6108
6109 void perf_event_aux_event(struct perf_event *event, unsigned long head,
6110 unsigned long size, u64 flags)
6111 {
6112 struct perf_output_handle handle;
6113 struct perf_sample_data sample;
6114 struct perf_aux_event {
6115 struct perf_event_header header;
6116 u64 offset;
6117 u64 size;
6118 u64 flags;
6119 } rec = {
6120 .header = {
6121 .type = PERF_RECORD_AUX,
6122 .misc = 0,
6123 .size = sizeof(rec),
6124 },
6125 .offset = head,
6126 .size = size,
6127 .flags = flags,
6128 };
6129 int ret;
6130
6131 perf_event_header__init_id(&rec.header, &sample, event);
6132 ret = perf_output_begin(&handle, event, rec.header.size);
6133
6134 if (ret)
6135 return;
6136
6137 perf_output_put(&handle, rec);
6138 perf_event__output_id_sample(event, &handle, &sample);
6139
6140 perf_output_end(&handle);
6141 }
6142
6143 /*
6144 * Lost/dropped samples logging
6145 */
6146 void perf_log_lost_samples(struct perf_event *event, u64 lost)
6147 {
6148 struct perf_output_handle handle;
6149 struct perf_sample_data sample;
6150 int ret;
6151
6152 struct {
6153 struct perf_event_header header;
6154 u64 lost;
6155 } lost_samples_event = {
6156 .header = {
6157 .type = PERF_RECORD_LOST_SAMPLES,
6158 .misc = 0,
6159 .size = sizeof(lost_samples_event),
6160 },
6161 .lost = lost,
6162 };
6163
6164 perf_event_header__init_id(&lost_samples_event.header, &sample, event);
6165
6166 ret = perf_output_begin(&handle, event,
6167 lost_samples_event.header.size);
6168 if (ret)
6169 return;
6170
6171 perf_output_put(&handle, lost_samples_event);
6172 perf_event__output_id_sample(event, &handle, &sample);
6173 perf_output_end(&handle);
6174 }
6175
6176 /*
6177 * context_switch tracking
6178 */
6179
6180 struct perf_switch_event {
6181 struct task_struct *task;
6182 struct task_struct *next_prev;
6183
6184 struct {
6185 struct perf_event_header header;
6186 u32 next_prev_pid;
6187 u32 next_prev_tid;
6188 } event_id;
6189 };
6190
6191 static int perf_event_switch_match(struct perf_event *event)
6192 {
6193 return event->attr.context_switch;
6194 }
6195
6196 static void perf_event_switch_output(struct perf_event *event, void *data)
6197 {
6198 struct perf_switch_event *se = data;
6199 struct perf_output_handle handle;
6200 struct perf_sample_data sample;
6201 int ret;
6202
6203 if (!perf_event_switch_match(event))
6204 return;
6205
6206 /* Only CPU-wide events are allowed to see next/prev pid/tid */
6207 if (event->ctx->task) {
6208 se->event_id.header.type = PERF_RECORD_SWITCH;
6209 se->event_id.header.size = sizeof(se->event_id.header);
6210 } else {
6211 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
6212 se->event_id.header.size = sizeof(se->event_id);
6213 se->event_id.next_prev_pid =
6214 perf_event_pid(event, se->next_prev);
6215 se->event_id.next_prev_tid =
6216 perf_event_tid(event, se->next_prev);
6217 }
6218
6219 perf_event_header__init_id(&se->event_id.header, &sample, event);
6220
6221 ret = perf_output_begin(&handle, event, se->event_id.header.size);
6222 if (ret)
6223 return;
6224
6225 if (event->ctx->task)
6226 perf_output_put(&handle, se->event_id.header);
6227 else
6228 perf_output_put(&handle, se->event_id);
6229
6230 perf_event__output_id_sample(event, &handle, &sample);
6231
6232 perf_output_end(&handle);
6233 }
6234
6235 static void perf_event_switch(struct task_struct *task,
6236 struct task_struct *next_prev, bool sched_in)
6237 {
6238 struct perf_switch_event switch_event;
6239
6240 /* N.B. caller checks nr_switch_events != 0 */
6241
6242 switch_event = (struct perf_switch_event){
6243 .task = task,
6244 .next_prev = next_prev,
6245 .event_id = {
6246 .header = {
6247 /* .type */
6248 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
6249 /* .size */
6250 },
6251 /* .next_prev_pid */
6252 /* .next_prev_tid */
6253 },
6254 };
6255
6256 perf_event_aux(perf_event_switch_output,
6257 &switch_event,
6258 NULL);
6259 }
6260
6261 /*
6262 * IRQ throttle logging
6263 */
6264
6265 static void perf_log_throttle(struct perf_event *event, int enable)
6266 {
6267 struct perf_output_handle handle;
6268 struct perf_sample_data sample;
6269 int ret;
6270
6271 struct {
6272 struct perf_event_header header;
6273 u64 time;
6274 u64 id;
6275 u64 stream_id;
6276 } throttle_event = {
6277 .header = {
6278 .type = PERF_RECORD_THROTTLE,
6279 .misc = 0,
6280 .size = sizeof(throttle_event),
6281 },
6282 .time = perf_event_clock(event),
6283 .id = primary_event_id(event),
6284 .stream_id = event->id,
6285 };
6286
6287 if (enable)
6288 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
6289
6290 perf_event_header__init_id(&throttle_event.header, &sample, event);
6291
6292 ret = perf_output_begin(&handle, event,
6293 throttle_event.header.size);
6294 if (ret)
6295 return;
6296
6297 perf_output_put(&handle, throttle_event);
6298 perf_event__output_id_sample(event, &handle, &sample);
6299 perf_output_end(&handle);
6300 }
6301
6302 static void perf_log_itrace_start(struct perf_event *event)
6303 {
6304 struct perf_output_handle handle;
6305 struct perf_sample_data sample;
6306 struct perf_aux_event {
6307 struct perf_event_header header;
6308 u32 pid;
6309 u32 tid;
6310 } rec;
6311 int ret;
6312
6313 if (event->parent)
6314 event = event->parent;
6315
6316 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
6317 event->hw.itrace_started)
6318 return;
6319
6320 rec.header.type = PERF_RECORD_ITRACE_START;
6321 rec.header.misc = 0;
6322 rec.header.size = sizeof(rec);
6323 rec.pid = perf_event_pid(event, current);
6324 rec.tid = perf_event_tid(event, current);
6325
6326 perf_event_header__init_id(&rec.header, &sample, event);
6327 ret = perf_output_begin(&handle, event, rec.header.size);
6328
6329 if (ret)
6330 return;
6331
6332 perf_output_put(&handle, rec);
6333 perf_event__output_id_sample(event, &handle, &sample);
6334
6335 perf_output_end(&handle);
6336 }
6337
6338 /*
6339 * Generic event overflow handling, sampling.
6340 */
6341
6342 static int __perf_event_overflow(struct perf_event *event,
6343 int throttle, struct perf_sample_data *data,
6344 struct pt_regs *regs)
6345 {
6346 int events = atomic_read(&event->event_limit);
6347 struct hw_perf_event *hwc = &event->hw;
6348 u64 seq;
6349 int ret = 0;
6350
6351 /*
6352 * Non-sampling counters might still use the PMI to fold short
6353 * hardware counters, ignore those.
6354 */
6355 if (unlikely(!is_sampling_event(event)))
6356 return 0;
6357
6358 seq = __this_cpu_read(perf_throttled_seq);
6359 if (seq != hwc->interrupts_seq) {
6360 hwc->interrupts_seq = seq;
6361 hwc->interrupts = 1;
6362 } else {
6363 hwc->interrupts++;
6364 if (unlikely(throttle
6365 && hwc->interrupts >= max_samples_per_tick)) {
6366 __this_cpu_inc(perf_throttled_count);
6367 hwc->interrupts = MAX_INTERRUPTS;
6368 perf_log_throttle(event, 0);
6369 tick_nohz_full_kick();
6370 ret = 1;
6371 }
6372 }
6373
6374 if (event->attr.freq) {
6375 u64 now = perf_clock();
6376 s64 delta = now - hwc->freq_time_stamp;
6377
6378 hwc->freq_time_stamp = now;
6379
6380 if (delta > 0 && delta < 2*TICK_NSEC)
6381 perf_adjust_period(event, delta, hwc->last_period, true);
6382 }
6383
6384 /*
6385 * XXX event_limit might not quite work as expected on inherited
6386 * events
6387 */
6388
6389 event->pending_kill = POLL_IN;
6390 if (events && atomic_dec_and_test(&event->event_limit)) {
6391 ret = 1;
6392 event->pending_kill = POLL_HUP;
6393 event->pending_disable = 1;
6394 irq_work_queue(&event->pending);
6395 }
6396
6397 if (event->overflow_handler)
6398 event->overflow_handler(event, data, regs);
6399 else
6400 perf_event_output(event, data, regs);
6401
6402 if (*perf_event_fasync(event) && event->pending_kill) {
6403 event->pending_wakeup = 1;
6404 irq_work_queue(&event->pending);
6405 }
6406
6407 return ret;
6408 }
6409
6410 int perf_event_overflow(struct perf_event *event,
6411 struct perf_sample_data *data,
6412 struct pt_regs *regs)
6413 {
6414 return __perf_event_overflow(event, 1, data, regs);
6415 }
6416
6417 /*
6418 * Generic software event infrastructure
6419 */
6420
6421 struct swevent_htable {
6422 struct swevent_hlist *swevent_hlist;
6423 struct mutex hlist_mutex;
6424 int hlist_refcount;
6425
6426 /* Recursion avoidance in each contexts */
6427 int recursion[PERF_NR_CONTEXTS];
6428 };
6429
6430 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
6431
6432 /*
6433 * We directly increment event->count and keep a second value in
6434 * event->hw.period_left to count intervals. This period event
6435 * is kept in the range [-sample_period, 0] so that we can use the
6436 * sign as trigger.
6437 */
6438
6439 u64 perf_swevent_set_period(struct perf_event *event)
6440 {
6441 struct hw_perf_event *hwc = &event->hw;
6442 u64 period = hwc->last_period;
6443 u64 nr, offset;
6444 s64 old, val;
6445
6446 hwc->last_period = hwc->sample_period;
6447
6448 again:
6449 old = val = local64_read(&hwc->period_left);
6450 if (val < 0)
6451 return 0;
6452
6453 nr = div64_u64(period + val, period);
6454 offset = nr * period;
6455 val -= offset;
6456 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
6457 goto again;
6458
6459 return nr;
6460 }
6461
6462 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
6463 struct perf_sample_data *data,
6464 struct pt_regs *regs)
6465 {
6466 struct hw_perf_event *hwc = &event->hw;
6467 int throttle = 0;
6468
6469 if (!overflow)
6470 overflow = perf_swevent_set_period(event);
6471
6472 if (hwc->interrupts == MAX_INTERRUPTS)
6473 return;
6474
6475 for (; overflow; overflow--) {
6476 if (__perf_event_overflow(event, throttle,
6477 data, regs)) {
6478 /*
6479 * We inhibit the overflow from happening when
6480 * hwc->interrupts == MAX_INTERRUPTS.
6481 */
6482 break;
6483 }
6484 throttle = 1;
6485 }
6486 }
6487
6488 static void perf_swevent_event(struct perf_event *event, u64 nr,
6489 struct perf_sample_data *data,
6490 struct pt_regs *regs)
6491 {
6492 struct hw_perf_event *hwc = &event->hw;
6493
6494 local64_add(nr, &event->count);
6495
6496 if (!regs)
6497 return;
6498
6499 if (!is_sampling_event(event))
6500 return;
6501
6502 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
6503 data->period = nr;
6504 return perf_swevent_overflow(event, 1, data, regs);
6505 } else
6506 data->period = event->hw.last_period;
6507
6508 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
6509 return perf_swevent_overflow(event, 1, data, regs);
6510
6511 if (local64_add_negative(nr, &hwc->period_left))
6512 return;
6513
6514 perf_swevent_overflow(event, 0, data, regs);
6515 }
6516
6517 static int perf_exclude_event(struct perf_event *event,
6518 struct pt_regs *regs)
6519 {
6520 if (event->hw.state & PERF_HES_STOPPED)
6521 return 1;
6522
6523 if (regs) {
6524 if (event->attr.exclude_user && user_mode(regs))
6525 return 1;
6526
6527 if (event->attr.exclude_kernel && !user_mode(regs))
6528 return 1;
6529 }
6530
6531 return 0;
6532 }
6533
6534 static int perf_swevent_match(struct perf_event *event,
6535 enum perf_type_id type,
6536 u32 event_id,
6537 struct perf_sample_data *data,
6538 struct pt_regs *regs)
6539 {
6540 if (event->attr.type != type)
6541 return 0;
6542
6543 if (event->attr.config != event_id)
6544 return 0;
6545
6546 if (perf_exclude_event(event, regs))
6547 return 0;
6548
6549 return 1;
6550 }
6551
6552 static inline u64 swevent_hash(u64 type, u32 event_id)
6553 {
6554 u64 val = event_id | (type << 32);
6555
6556 return hash_64(val, SWEVENT_HLIST_BITS);
6557 }
6558
6559 static inline struct hlist_head *
6560 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
6561 {
6562 u64 hash = swevent_hash(type, event_id);
6563
6564 return &hlist->heads[hash];
6565 }
6566
6567 /* For the read side: events when they trigger */
6568 static inline struct hlist_head *
6569 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
6570 {
6571 struct swevent_hlist *hlist;
6572
6573 hlist = rcu_dereference(swhash->swevent_hlist);
6574 if (!hlist)
6575 return NULL;
6576
6577 return __find_swevent_head(hlist, type, event_id);
6578 }
6579
6580 /* For the event head insertion and removal in the hlist */
6581 static inline struct hlist_head *
6582 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
6583 {
6584 struct swevent_hlist *hlist;
6585 u32 event_id = event->attr.config;
6586 u64 type = event->attr.type;
6587
6588 /*
6589 * Event scheduling is always serialized against hlist allocation
6590 * and release. Which makes the protected version suitable here.
6591 * The context lock guarantees that.
6592 */
6593 hlist = rcu_dereference_protected(swhash->swevent_hlist,
6594 lockdep_is_held(&event->ctx->lock));
6595 if (!hlist)
6596 return NULL;
6597
6598 return __find_swevent_head(hlist, type, event_id);
6599 }
6600
6601 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
6602 u64 nr,
6603 struct perf_sample_data *data,
6604 struct pt_regs *regs)
6605 {
6606 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6607 struct perf_event *event;
6608 struct hlist_head *head;
6609
6610 rcu_read_lock();
6611 head = find_swevent_head_rcu(swhash, type, event_id);
6612 if (!head)
6613 goto end;
6614
6615 hlist_for_each_entry_rcu(event, head, hlist_entry) {
6616 if (perf_swevent_match(event, type, event_id, data, regs))
6617 perf_swevent_event(event, nr, data, regs);
6618 }
6619 end:
6620 rcu_read_unlock();
6621 }
6622
6623 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
6624
6625 int perf_swevent_get_recursion_context(void)
6626 {
6627 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6628
6629 return get_recursion_context(swhash->recursion);
6630 }
6631 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
6632
6633 inline void perf_swevent_put_recursion_context(int rctx)
6634 {
6635 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6636
6637 put_recursion_context(swhash->recursion, rctx);
6638 }
6639
6640 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
6641 {
6642 struct perf_sample_data data;
6643
6644 if (WARN_ON_ONCE(!regs))
6645 return;
6646
6647 perf_sample_data_init(&data, addr, 0);
6648 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
6649 }
6650
6651 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
6652 {
6653 int rctx;
6654
6655 preempt_disable_notrace();
6656 rctx = perf_swevent_get_recursion_context();
6657 if (unlikely(rctx < 0))
6658 goto fail;
6659
6660 ___perf_sw_event(event_id, nr, regs, addr);
6661
6662 perf_swevent_put_recursion_context(rctx);
6663 fail:
6664 preempt_enable_notrace();
6665 }
6666
6667 static void perf_swevent_read(struct perf_event *event)
6668 {
6669 }
6670
6671 static int perf_swevent_add(struct perf_event *event, int flags)
6672 {
6673 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6674 struct hw_perf_event *hwc = &event->hw;
6675 struct hlist_head *head;
6676
6677 if (is_sampling_event(event)) {
6678 hwc->last_period = hwc->sample_period;
6679 perf_swevent_set_period(event);
6680 }
6681
6682 hwc->state = !(flags & PERF_EF_START);
6683
6684 head = find_swevent_head(swhash, event);
6685 if (WARN_ON_ONCE(!head))
6686 return -EINVAL;
6687
6688 hlist_add_head_rcu(&event->hlist_entry, head);
6689 perf_event_update_userpage(event);
6690
6691 return 0;
6692 }
6693
6694 static void perf_swevent_del(struct perf_event *event, int flags)
6695 {
6696 hlist_del_rcu(&event->hlist_entry);
6697 }
6698
6699 static void perf_swevent_start(struct perf_event *event, int flags)
6700 {
6701 event->hw.state = 0;
6702 }
6703
6704 static void perf_swevent_stop(struct perf_event *event, int flags)
6705 {
6706 event->hw.state = PERF_HES_STOPPED;
6707 }
6708
6709 /* Deref the hlist from the update side */
6710 static inline struct swevent_hlist *
6711 swevent_hlist_deref(struct swevent_htable *swhash)
6712 {
6713 return rcu_dereference_protected(swhash->swevent_hlist,
6714 lockdep_is_held(&swhash->hlist_mutex));
6715 }
6716
6717 static void swevent_hlist_release(struct swevent_htable *swhash)
6718 {
6719 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
6720
6721 if (!hlist)
6722 return;
6723
6724 RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
6725 kfree_rcu(hlist, rcu_head);
6726 }
6727
6728 static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
6729 {
6730 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6731
6732 mutex_lock(&swhash->hlist_mutex);
6733
6734 if (!--swhash->hlist_refcount)
6735 swevent_hlist_release(swhash);
6736
6737 mutex_unlock(&swhash->hlist_mutex);
6738 }
6739
6740 static void swevent_hlist_put(struct perf_event *event)
6741 {
6742 int cpu;
6743
6744 for_each_possible_cpu(cpu)
6745 swevent_hlist_put_cpu(event, cpu);
6746 }
6747
6748 static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
6749 {
6750 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6751 int err = 0;
6752
6753 mutex_lock(&swhash->hlist_mutex);
6754 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
6755 struct swevent_hlist *hlist;
6756
6757 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
6758 if (!hlist) {
6759 err = -ENOMEM;
6760 goto exit;
6761 }
6762 rcu_assign_pointer(swhash->swevent_hlist, hlist);
6763 }
6764 swhash->hlist_refcount++;
6765 exit:
6766 mutex_unlock(&swhash->hlist_mutex);
6767
6768 return err;
6769 }
6770
6771 static int swevent_hlist_get(struct perf_event *event)
6772 {
6773 int err;
6774 int cpu, failed_cpu;
6775
6776 get_online_cpus();
6777 for_each_possible_cpu(cpu) {
6778 err = swevent_hlist_get_cpu(event, cpu);
6779 if (err) {
6780 failed_cpu = cpu;
6781 goto fail;
6782 }
6783 }
6784 put_online_cpus();
6785
6786 return 0;
6787 fail:
6788 for_each_possible_cpu(cpu) {
6789 if (cpu == failed_cpu)
6790 break;
6791 swevent_hlist_put_cpu(event, cpu);
6792 }
6793
6794 put_online_cpus();
6795 return err;
6796 }
6797
6798 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
6799
6800 static void sw_perf_event_destroy(struct perf_event *event)
6801 {
6802 u64 event_id = event->attr.config;
6803
6804 WARN_ON(event->parent);
6805
6806 static_key_slow_dec(&perf_swevent_enabled[event_id]);
6807 swevent_hlist_put(event);
6808 }
6809
6810 static int perf_swevent_init(struct perf_event *event)
6811 {
6812 u64 event_id = event->attr.config;
6813
6814 if (event->attr.type != PERF_TYPE_SOFTWARE)
6815 return -ENOENT;
6816
6817 /*
6818 * no branch sampling for software events
6819 */
6820 if (has_branch_stack(event))
6821 return -EOPNOTSUPP;
6822
6823 switch (event_id) {
6824 case PERF_COUNT_SW_CPU_CLOCK:
6825 case PERF_COUNT_SW_TASK_CLOCK:
6826 return -ENOENT;
6827
6828 default:
6829 break;
6830 }
6831
6832 if (event_id >= PERF_COUNT_SW_MAX)
6833 return -ENOENT;
6834
6835 if (!event->parent) {
6836 int err;
6837
6838 err = swevent_hlist_get(event);
6839 if (err)
6840 return err;
6841
6842 static_key_slow_inc(&perf_swevent_enabled[event_id]);
6843 event->destroy = sw_perf_event_destroy;
6844 }
6845
6846 return 0;
6847 }
6848
6849 static struct pmu perf_swevent = {
6850 .task_ctx_nr = perf_sw_context,
6851
6852 .capabilities = PERF_PMU_CAP_NO_NMI,
6853
6854 .event_init = perf_swevent_init,
6855 .add = perf_swevent_add,
6856 .del = perf_swevent_del,
6857 .start = perf_swevent_start,
6858 .stop = perf_swevent_stop,
6859 .read = perf_swevent_read,
6860 };
6861
6862 #ifdef CONFIG_EVENT_TRACING
6863
6864 static int perf_tp_filter_match(struct perf_event *event,
6865 struct perf_sample_data *data)
6866 {
6867 void *record = data->raw->data;
6868
6869 /* only top level events have filters set */
6870 if (event->parent)
6871 event = event->parent;
6872
6873 if (likely(!event->filter) || filter_match_preds(event->filter, record))
6874 return 1;
6875 return 0;
6876 }
6877
6878 static int perf_tp_event_match(struct perf_event *event,
6879 struct perf_sample_data *data,
6880 struct pt_regs *regs)
6881 {
6882 if (event->hw.state & PERF_HES_STOPPED)
6883 return 0;
6884 /*
6885 * All tracepoints are from kernel-space.
6886 */
6887 if (event->attr.exclude_kernel)
6888 return 0;
6889
6890 if (!perf_tp_filter_match(event, data))
6891 return 0;
6892
6893 return 1;
6894 }
6895
6896 void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
6897 struct pt_regs *regs, struct hlist_head *head, int rctx,
6898 struct task_struct *task)
6899 {
6900 struct perf_sample_data data;
6901 struct perf_event *event;
6902
6903 struct perf_raw_record raw = {
6904 .size = entry_size,
6905 .data = record,
6906 };
6907
6908 perf_sample_data_init(&data, addr, 0);
6909 data.raw = &raw;
6910
6911 hlist_for_each_entry_rcu(event, head, hlist_entry) {
6912 if (perf_tp_event_match(event, &data, regs))
6913 perf_swevent_event(event, count, &data, regs);
6914 }
6915
6916 /*
6917 * If we got specified a target task, also iterate its context and
6918 * deliver this event there too.
6919 */
6920 if (task && task != current) {
6921 struct perf_event_context *ctx;
6922 struct trace_entry *entry = record;
6923
6924 rcu_read_lock();
6925 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
6926 if (!ctx)
6927 goto unlock;
6928
6929 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
6930 if (event->attr.type != PERF_TYPE_TRACEPOINT)
6931 continue;
6932 if (event->attr.config != entry->type)
6933 continue;
6934 if (perf_tp_event_match(event, &data, regs))
6935 perf_swevent_event(event, count, &data, regs);
6936 }
6937 unlock:
6938 rcu_read_unlock();
6939 }
6940
6941 perf_swevent_put_recursion_context(rctx);
6942 }
6943 EXPORT_SYMBOL_GPL(perf_tp_event);
6944
6945 static void tp_perf_event_destroy(struct perf_event *event)
6946 {
6947 perf_trace_destroy(event);
6948 }
6949
6950 static int perf_tp_event_init(struct perf_event *event)
6951 {
6952 int err;
6953
6954 if (event->attr.type != PERF_TYPE_TRACEPOINT)
6955 return -ENOENT;
6956
6957 /*
6958 * no branch sampling for tracepoint events
6959 */
6960 if (has_branch_stack(event))
6961 return -EOPNOTSUPP;
6962
6963 err = perf_trace_init(event);
6964 if (err)
6965 return err;
6966
6967 event->destroy = tp_perf_event_destroy;
6968
6969 return 0;
6970 }
6971
6972 static struct pmu perf_tracepoint = {
6973 .task_ctx_nr = perf_sw_context,
6974
6975 .event_init = perf_tp_event_init,
6976 .add = perf_trace_add,
6977 .del = perf_trace_del,
6978 .start = perf_swevent_start,
6979 .stop = perf_swevent_stop,
6980 .read = perf_swevent_read,
6981 };
6982
6983 static inline void perf_tp_register(void)
6984 {
6985 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
6986 }
6987
6988 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
6989 {
6990 char *filter_str;
6991 int ret;
6992
6993 if (event->attr.type != PERF_TYPE_TRACEPOINT)
6994 return -EINVAL;
6995
6996 filter_str = strndup_user(arg, PAGE_SIZE);
6997 if (IS_ERR(filter_str))
6998 return PTR_ERR(filter_str);
6999
7000 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
7001
7002 kfree(filter_str);
7003 return ret;
7004 }
7005
7006 static void perf_event_free_filter(struct perf_event *event)
7007 {
7008 ftrace_profile_free_filter(event);
7009 }
7010
7011 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
7012 {
7013 struct bpf_prog *prog;
7014
7015 if (event->attr.type != PERF_TYPE_TRACEPOINT)
7016 return -EINVAL;
7017
7018 if (event->tp_event->prog)
7019 return -EEXIST;
7020
7021 if (!(event->tp_event->flags & TRACE_EVENT_FL_UKPROBE))
7022 /* bpf programs can only be attached to u/kprobes */
7023 return -EINVAL;
7024
7025 prog = bpf_prog_get(prog_fd);
7026 if (IS_ERR(prog))
7027 return PTR_ERR(prog);
7028
7029 if (prog->type != BPF_PROG_TYPE_KPROBE) {
7030 /* valid fd, but invalid bpf program type */
7031 bpf_prog_put(prog);
7032 return -EINVAL;
7033 }
7034
7035 event->tp_event->prog = prog;
7036
7037 return 0;
7038 }
7039
7040 static void perf_event_free_bpf_prog(struct perf_event *event)
7041 {
7042 struct bpf_prog *prog;
7043
7044 if (!event->tp_event)
7045 return;
7046
7047 prog = event->tp_event->prog;
7048 if (prog) {
7049 event->tp_event->prog = NULL;
7050 bpf_prog_put(prog);
7051 }
7052 }
7053
7054 #else
7055
7056 static inline void perf_tp_register(void)
7057 {
7058 }
7059
7060 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
7061 {
7062 return -ENOENT;
7063 }
7064
7065 static void perf_event_free_filter(struct perf_event *event)
7066 {
7067 }
7068
7069 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
7070 {
7071 return -ENOENT;
7072 }
7073
7074 static void perf_event_free_bpf_prog(struct perf_event *event)
7075 {
7076 }
7077 #endif /* CONFIG_EVENT_TRACING */
7078
7079 #ifdef CONFIG_HAVE_HW_BREAKPOINT
7080 void perf_bp_event(struct perf_event *bp, void *data)
7081 {
7082 struct perf_sample_data sample;
7083 struct pt_regs *regs = data;
7084
7085 perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
7086
7087 if (!bp->hw.state && !perf_exclude_event(bp, regs))
7088 perf_swevent_event(bp, 1, &sample, regs);
7089 }
7090 #endif
7091
7092 /*
7093 * hrtimer based swevent callback
7094 */
7095
7096 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
7097 {
7098 enum hrtimer_restart ret = HRTIMER_RESTART;
7099 struct perf_sample_data data;
7100 struct pt_regs *regs;
7101 struct perf_event *event;
7102 u64 period;
7103
7104 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
7105
7106 if (event->state != PERF_EVENT_STATE_ACTIVE)
7107 return HRTIMER_NORESTART;
7108
7109 event->pmu->read(event);
7110
7111 perf_sample_data_init(&data, 0, event->hw.last_period);
7112 regs = get_irq_regs();
7113
7114 if (regs && !perf_exclude_event(event, regs)) {
7115 if (!(event->attr.exclude_idle && is_idle_task(current)))
7116 if (__perf_event_overflow(event, 1, &data, regs))
7117 ret = HRTIMER_NORESTART;
7118 }
7119
7120 period = max_t(u64, 10000, event->hw.sample_period);
7121 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
7122
7123 return ret;
7124 }
7125
7126 static void perf_swevent_start_hrtimer(struct perf_event *event)
7127 {
7128 struct hw_perf_event *hwc = &event->hw;
7129 s64 period;
7130
7131 if (!is_sampling_event(event))
7132 return;
7133
7134 period = local64_read(&hwc->period_left);
7135 if (period) {
7136 if (period < 0)
7137 period = 10000;
7138
7139 local64_set(&hwc->period_left, 0);
7140 } else {
7141 period = max_t(u64, 10000, hwc->sample_period);
7142 }
7143 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
7144 HRTIMER_MODE_REL_PINNED);
7145 }
7146
7147 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
7148 {
7149 struct hw_perf_event *hwc = &event->hw;
7150
7151 if (is_sampling_event(event)) {
7152 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
7153 local64_set(&hwc->period_left, ktime_to_ns(remaining));
7154
7155 hrtimer_cancel(&hwc->hrtimer);
7156 }
7157 }
7158
7159 static void perf_swevent_init_hrtimer(struct perf_event *event)
7160 {
7161 struct hw_perf_event *hwc = &event->hw;
7162
7163 if (!is_sampling_event(event))
7164 return;
7165
7166 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
7167 hwc->hrtimer.function = perf_swevent_hrtimer;
7168
7169 /*
7170 * Since hrtimers have a fixed rate, we can do a static freq->period
7171 * mapping and avoid the whole period adjust feedback stuff.
7172 */
7173 if (event->attr.freq) {
7174 long freq = event->attr.sample_freq;
7175
7176 event->attr.sample_period = NSEC_PER_SEC / freq;
7177 hwc->sample_period = event->attr.sample_period;
7178 local64_set(&hwc->period_left, hwc->sample_period);
7179 hwc->last_period = hwc->sample_period;
7180 event->attr.freq = 0;
7181 }
7182 }
7183
7184 /*
7185 * Software event: cpu wall time clock
7186 */
7187
7188 static void cpu_clock_event_update(struct perf_event *event)
7189 {
7190 s64 prev;
7191 u64 now;
7192
7193 now = local_clock();
7194 prev = local64_xchg(&event->hw.prev_count, now);
7195 local64_add(now - prev, &event->count);
7196 }
7197
7198 static void cpu_clock_event_start(struct perf_event *event, int flags)
7199 {
7200 local64_set(&event->hw.prev_count, local_clock());
7201 perf_swevent_start_hrtimer(event);
7202 }
7203
7204 static void cpu_clock_event_stop(struct perf_event *event, int flags)
7205 {
7206 perf_swevent_cancel_hrtimer(event);
7207 cpu_clock_event_update(event);
7208 }
7209
7210 static int cpu_clock_event_add(struct perf_event *event, int flags)
7211 {
7212 if (flags & PERF_EF_START)
7213 cpu_clock_event_start(event, flags);
7214 perf_event_update_userpage(event);
7215
7216 return 0;
7217 }
7218
7219 static void cpu_clock_event_del(struct perf_event *event, int flags)
7220 {
7221 cpu_clock_event_stop(event, flags);
7222 }
7223
7224 static void cpu_clock_event_read(struct perf_event *event)
7225 {
7226 cpu_clock_event_update(event);
7227 }
7228
7229 static int cpu_clock_event_init(struct perf_event *event)
7230 {
7231 if (event->attr.type != PERF_TYPE_SOFTWARE)
7232 return -ENOENT;
7233
7234 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
7235 return -ENOENT;
7236
7237 /*
7238 * no branch sampling for software events
7239 */
7240 if (has_branch_stack(event))
7241 return -EOPNOTSUPP;
7242
7243 perf_swevent_init_hrtimer(event);
7244
7245 return 0;
7246 }
7247
7248 static struct pmu perf_cpu_clock = {
7249 .task_ctx_nr = perf_sw_context,
7250
7251 .capabilities = PERF_PMU_CAP_NO_NMI,
7252
7253 .event_init = cpu_clock_event_init,
7254 .add = cpu_clock_event_add,
7255 .del = cpu_clock_event_del,
7256 .start = cpu_clock_event_start,
7257 .stop = cpu_clock_event_stop,
7258 .read = cpu_clock_event_read,
7259 };
7260
7261 /*
7262 * Software event: task time clock
7263 */
7264
7265 static void task_clock_event_update(struct perf_event *event, u64 now)
7266 {
7267 u64 prev;
7268 s64 delta;
7269
7270 prev = local64_xchg(&event->hw.prev_count, now);
7271 delta = now - prev;
7272 local64_add(delta, &event->count);
7273 }
7274
7275 static void task_clock_event_start(struct perf_event *event, int flags)
7276 {
7277 local64_set(&event->hw.prev_count, event->ctx->time);
7278 perf_swevent_start_hrtimer(event);
7279 }
7280
7281 static void task_clock_event_stop(struct perf_event *event, int flags)
7282 {
7283 perf_swevent_cancel_hrtimer(event);
7284 task_clock_event_update(event, event->ctx->time);
7285 }
7286
7287 static int task_clock_event_add(struct perf_event *event, int flags)
7288 {
7289 if (flags & PERF_EF_START)
7290 task_clock_event_start(event, flags);
7291 perf_event_update_userpage(event);
7292
7293 return 0;
7294 }
7295
7296 static void task_clock_event_del(struct perf_event *event, int flags)
7297 {
7298 task_clock_event_stop(event, PERF_EF_UPDATE);
7299 }
7300
7301 static void task_clock_event_read(struct perf_event *event)
7302 {
7303 u64 now = perf_clock();
7304 u64 delta = now - event->ctx->timestamp;
7305 u64 time = event->ctx->time + delta;
7306
7307 task_clock_event_update(event, time);
7308 }
7309
7310 static int task_clock_event_init(struct perf_event *event)
7311 {
7312 if (event->attr.type != PERF_TYPE_SOFTWARE)
7313 return -ENOENT;
7314
7315 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
7316 return -ENOENT;
7317
7318 /*
7319 * no branch sampling for software events
7320 */
7321 if (has_branch_stack(event))
7322 return -EOPNOTSUPP;
7323
7324 perf_swevent_init_hrtimer(event);
7325
7326 return 0;
7327 }
7328
7329 static struct pmu perf_task_clock = {
7330 .task_ctx_nr = perf_sw_context,
7331
7332 .capabilities = PERF_PMU_CAP_NO_NMI,
7333
7334 .event_init = task_clock_event_init,
7335 .add = task_clock_event_add,
7336 .del = task_clock_event_del,
7337 .start = task_clock_event_start,
7338 .stop = task_clock_event_stop,
7339 .read = task_clock_event_read,
7340 };
7341
7342 static void perf_pmu_nop_void(struct pmu *pmu)
7343 {
7344 }
7345
7346 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
7347 {
7348 }
7349
7350 static int perf_pmu_nop_int(struct pmu *pmu)
7351 {
7352 return 0;
7353 }
7354
7355 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
7356
7357 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
7358 {
7359 __this_cpu_write(nop_txn_flags, flags);
7360
7361 if (flags & ~PERF_PMU_TXN_ADD)
7362 return;
7363
7364 perf_pmu_disable(pmu);
7365 }
7366
7367 static int perf_pmu_commit_txn(struct pmu *pmu)
7368 {
7369 unsigned int flags = __this_cpu_read(nop_txn_flags);
7370
7371 __this_cpu_write(nop_txn_flags, 0);
7372
7373 if (flags & ~PERF_PMU_TXN_ADD)
7374 return 0;
7375
7376 perf_pmu_enable(pmu);
7377 return 0;
7378 }
7379
7380 static void perf_pmu_cancel_txn(struct pmu *pmu)
7381 {
7382 unsigned int flags = __this_cpu_read(nop_txn_flags);
7383
7384 __this_cpu_write(nop_txn_flags, 0);
7385
7386 if (flags & ~PERF_PMU_TXN_ADD)
7387 return;
7388
7389 perf_pmu_enable(pmu);
7390 }
7391
7392 static int perf_event_idx_default(struct perf_event *event)
7393 {
7394 return 0;
7395 }
7396
7397 /*
7398 * Ensures all contexts with the same task_ctx_nr have the same
7399 * pmu_cpu_context too.
7400 */
7401 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
7402 {
7403 struct pmu *pmu;
7404
7405 if (ctxn < 0)
7406 return NULL;
7407
7408 list_for_each_entry(pmu, &pmus, entry) {
7409 if (pmu->task_ctx_nr == ctxn)
7410 return pmu->pmu_cpu_context;
7411 }
7412
7413 return NULL;
7414 }
7415
7416 static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
7417 {
7418 int cpu;
7419
7420 for_each_possible_cpu(cpu) {
7421 struct perf_cpu_context *cpuctx;
7422
7423 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7424
7425 if (cpuctx->unique_pmu == old_pmu)
7426 cpuctx->unique_pmu = pmu;
7427 }
7428 }
7429
7430 static void free_pmu_context(struct pmu *pmu)
7431 {
7432 struct pmu *i;
7433
7434 mutex_lock(&pmus_lock);
7435 /*
7436 * Like a real lame refcount.
7437 */
7438 list_for_each_entry(i, &pmus, entry) {
7439 if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
7440 update_pmu_context(i, pmu);
7441 goto out;
7442 }
7443 }
7444
7445 free_percpu(pmu->pmu_cpu_context);
7446 out:
7447 mutex_unlock(&pmus_lock);
7448 }
7449 static struct idr pmu_idr;
7450
7451 static ssize_t
7452 type_show(struct device *dev, struct device_attribute *attr, char *page)
7453 {
7454 struct pmu *pmu = dev_get_drvdata(dev);
7455
7456 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
7457 }
7458 static DEVICE_ATTR_RO(type);
7459
7460 static ssize_t
7461 perf_event_mux_interval_ms_show(struct device *dev,
7462 struct device_attribute *attr,
7463 char *page)
7464 {
7465 struct pmu *pmu = dev_get_drvdata(dev);
7466
7467 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
7468 }
7469
7470 static DEFINE_MUTEX(mux_interval_mutex);
7471
7472 static ssize_t
7473 perf_event_mux_interval_ms_store(struct device *dev,
7474 struct device_attribute *attr,
7475 const char *buf, size_t count)
7476 {
7477 struct pmu *pmu = dev_get_drvdata(dev);
7478 int timer, cpu, ret;
7479
7480 ret = kstrtoint(buf, 0, &timer);
7481 if (ret)
7482 return ret;
7483
7484 if (timer < 1)
7485 return -EINVAL;
7486
7487 /* same value, noting to do */
7488 if (timer == pmu->hrtimer_interval_ms)
7489 return count;
7490
7491 mutex_lock(&mux_interval_mutex);
7492 pmu->hrtimer_interval_ms = timer;
7493
7494 /* update all cpuctx for this PMU */
7495 get_online_cpus();
7496 for_each_online_cpu(cpu) {
7497 struct perf_cpu_context *cpuctx;
7498 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7499 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
7500
7501 cpu_function_call(cpu,
7502 (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
7503 }
7504 put_online_cpus();
7505 mutex_unlock(&mux_interval_mutex);
7506
7507 return count;
7508 }
7509 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
7510
7511 static struct attribute *pmu_dev_attrs[] = {
7512 &dev_attr_type.attr,
7513 &dev_attr_perf_event_mux_interval_ms.attr,
7514 NULL,
7515 };
7516 ATTRIBUTE_GROUPS(pmu_dev);
7517
7518 static int pmu_bus_running;
7519 static struct bus_type pmu_bus = {
7520 .name = "event_source",
7521 .dev_groups = pmu_dev_groups,
7522 };
7523
7524 static void pmu_dev_release(struct device *dev)
7525 {
7526 kfree(dev);
7527 }
7528
7529 static int pmu_dev_alloc(struct pmu *pmu)
7530 {
7531 int ret = -ENOMEM;
7532
7533 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
7534 if (!pmu->dev)
7535 goto out;
7536
7537 pmu->dev->groups = pmu->attr_groups;
7538 device_initialize(pmu->dev);
7539 ret = dev_set_name(pmu->dev, "%s", pmu->name);
7540 if (ret)
7541 goto free_dev;
7542
7543 dev_set_drvdata(pmu->dev, pmu);
7544 pmu->dev->bus = &pmu_bus;
7545 pmu->dev->release = pmu_dev_release;
7546 ret = device_add(pmu->dev);
7547 if (ret)
7548 goto free_dev;
7549
7550 out:
7551 return ret;
7552
7553 free_dev:
7554 put_device(pmu->dev);
7555 goto out;
7556 }
7557
7558 static struct lock_class_key cpuctx_mutex;
7559 static struct lock_class_key cpuctx_lock;
7560
7561 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
7562 {
7563 int cpu, ret;
7564
7565 mutex_lock(&pmus_lock);
7566 ret = -ENOMEM;
7567 pmu->pmu_disable_count = alloc_percpu(int);
7568 if (!pmu->pmu_disable_count)
7569 goto unlock;
7570
7571 pmu->type = -1;
7572 if (!name)
7573 goto skip_type;
7574 pmu->name = name;
7575
7576 if (type < 0) {
7577 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
7578 if (type < 0) {
7579 ret = type;
7580 goto free_pdc;
7581 }
7582 }
7583 pmu->type = type;
7584
7585 if (pmu_bus_running) {
7586 ret = pmu_dev_alloc(pmu);
7587 if (ret)
7588 goto free_idr;
7589 }
7590
7591 skip_type:
7592 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
7593 if (pmu->pmu_cpu_context)
7594 goto got_cpu_context;
7595
7596 ret = -ENOMEM;
7597 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
7598 if (!pmu->pmu_cpu_context)
7599 goto free_dev;
7600
7601 for_each_possible_cpu(cpu) {
7602 struct perf_cpu_context *cpuctx;
7603
7604 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7605 __perf_event_init_context(&cpuctx->ctx);
7606 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
7607 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
7608 cpuctx->ctx.pmu = pmu;
7609
7610 __perf_mux_hrtimer_init(cpuctx, cpu);
7611
7612 cpuctx->unique_pmu = pmu;
7613 }
7614
7615 got_cpu_context:
7616 if (!pmu->start_txn) {
7617 if (pmu->pmu_enable) {
7618 /*
7619 * If we have pmu_enable/pmu_disable calls, install
7620 * transaction stubs that use that to try and batch
7621 * hardware accesses.
7622 */
7623 pmu->start_txn = perf_pmu_start_txn;
7624 pmu->commit_txn = perf_pmu_commit_txn;
7625 pmu->cancel_txn = perf_pmu_cancel_txn;
7626 } else {
7627 pmu->start_txn = perf_pmu_nop_txn;
7628 pmu->commit_txn = perf_pmu_nop_int;
7629 pmu->cancel_txn = perf_pmu_nop_void;
7630 }
7631 }
7632
7633 if (!pmu->pmu_enable) {
7634 pmu->pmu_enable = perf_pmu_nop_void;
7635 pmu->pmu_disable = perf_pmu_nop_void;
7636 }
7637
7638 if (!pmu->event_idx)
7639 pmu->event_idx = perf_event_idx_default;
7640
7641 list_add_rcu(&pmu->entry, &pmus);
7642 atomic_set(&pmu->exclusive_cnt, 0);
7643 ret = 0;
7644 unlock:
7645 mutex_unlock(&pmus_lock);
7646
7647 return ret;
7648
7649 free_dev:
7650 device_del(pmu->dev);
7651 put_device(pmu->dev);
7652
7653 free_idr:
7654 if (pmu->type >= PERF_TYPE_MAX)
7655 idr_remove(&pmu_idr, pmu->type);
7656
7657 free_pdc:
7658 free_percpu(pmu->pmu_disable_count);
7659 goto unlock;
7660 }
7661 EXPORT_SYMBOL_GPL(perf_pmu_register);
7662
7663 void perf_pmu_unregister(struct pmu *pmu)
7664 {
7665 mutex_lock(&pmus_lock);
7666 list_del_rcu(&pmu->entry);
7667 mutex_unlock(&pmus_lock);
7668
7669 /*
7670 * We dereference the pmu list under both SRCU and regular RCU, so
7671 * synchronize against both of those.
7672 */
7673 synchronize_srcu(&pmus_srcu);
7674 synchronize_rcu();
7675
7676 free_percpu(pmu->pmu_disable_count);
7677 if (pmu->type >= PERF_TYPE_MAX)
7678 idr_remove(&pmu_idr, pmu->type);
7679 device_del(pmu->dev);
7680 put_device(pmu->dev);
7681 free_pmu_context(pmu);
7682 }
7683 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
7684
7685 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
7686 {
7687 struct perf_event_context *ctx = NULL;
7688 int ret;
7689
7690 if (!try_module_get(pmu->module))
7691 return -ENODEV;
7692
7693 if (event->group_leader != event) {
7694 /*
7695 * This ctx->mutex can nest when we're called through
7696 * inheritance. See the perf_event_ctx_lock_nested() comment.
7697 */
7698 ctx = perf_event_ctx_lock_nested(event->group_leader,
7699 SINGLE_DEPTH_NESTING);
7700 BUG_ON(!ctx);
7701 }
7702
7703 event->pmu = pmu;
7704 ret = pmu->event_init(event);
7705
7706 if (ctx)
7707 perf_event_ctx_unlock(event->group_leader, ctx);
7708
7709 if (ret)
7710 module_put(pmu->module);
7711
7712 return ret;
7713 }
7714
7715 static struct pmu *perf_init_event(struct perf_event *event)
7716 {
7717 struct pmu *pmu = NULL;
7718 int idx;
7719 int ret;
7720
7721 idx = srcu_read_lock(&pmus_srcu);
7722
7723 rcu_read_lock();
7724 pmu = idr_find(&pmu_idr, event->attr.type);
7725 rcu_read_unlock();
7726 if (pmu) {
7727 ret = perf_try_init_event(pmu, event);
7728 if (ret)
7729 pmu = ERR_PTR(ret);
7730 goto unlock;
7731 }
7732
7733 list_for_each_entry_rcu(pmu, &pmus, entry) {
7734 ret = perf_try_init_event(pmu, event);
7735 if (!ret)
7736 goto unlock;
7737
7738 if (ret != -ENOENT) {
7739 pmu = ERR_PTR(ret);
7740 goto unlock;
7741 }
7742 }
7743 pmu = ERR_PTR(-ENOENT);
7744 unlock:
7745 srcu_read_unlock(&pmus_srcu, idx);
7746
7747 return pmu;
7748 }
7749
7750 static void account_event_cpu(struct perf_event *event, int cpu)
7751 {
7752 if (event->parent)
7753 return;
7754
7755 if (is_cgroup_event(event))
7756 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
7757 }
7758
7759 static void account_event(struct perf_event *event)
7760 {
7761 bool inc = false;
7762
7763 if (event->parent)
7764 return;
7765
7766 if (event->attach_state & PERF_ATTACH_TASK)
7767 inc = true;
7768 if (event->attr.mmap || event->attr.mmap_data)
7769 atomic_inc(&nr_mmap_events);
7770 if (event->attr.comm)
7771 atomic_inc(&nr_comm_events);
7772 if (event->attr.task)
7773 atomic_inc(&nr_task_events);
7774 if (event->attr.freq) {
7775 if (atomic_inc_return(&nr_freq_events) == 1)
7776 tick_nohz_full_kick_all();
7777 }
7778 if (event->attr.context_switch) {
7779 atomic_inc(&nr_switch_events);
7780 inc = true;
7781 }
7782 if (has_branch_stack(event))
7783 inc = true;
7784 if (is_cgroup_event(event))
7785 inc = true;
7786
7787 if (inc)
7788 static_key_slow_inc(&perf_sched_events.key);
7789
7790 account_event_cpu(event, event->cpu);
7791 }
7792
7793 /*
7794 * Allocate and initialize a event structure
7795 */
7796 static struct perf_event *
7797 perf_event_alloc(struct perf_event_attr *attr, int cpu,
7798 struct task_struct *task,
7799 struct perf_event *group_leader,
7800 struct perf_event *parent_event,
7801 perf_overflow_handler_t overflow_handler,
7802 void *context, int cgroup_fd)
7803 {
7804 struct pmu *pmu;
7805 struct perf_event *event;
7806 struct hw_perf_event *hwc;
7807 long err = -EINVAL;
7808
7809 if ((unsigned)cpu >= nr_cpu_ids) {
7810 if (!task || cpu != -1)
7811 return ERR_PTR(-EINVAL);
7812 }
7813
7814 event = kzalloc(sizeof(*event), GFP_KERNEL);
7815 if (!event)
7816 return ERR_PTR(-ENOMEM);
7817
7818 /*
7819 * Single events are their own group leaders, with an
7820 * empty sibling list:
7821 */
7822 if (!group_leader)
7823 group_leader = event;
7824
7825 mutex_init(&event->child_mutex);
7826 INIT_LIST_HEAD(&event->child_list);
7827
7828 INIT_LIST_HEAD(&event->group_entry);
7829 INIT_LIST_HEAD(&event->event_entry);
7830 INIT_LIST_HEAD(&event->sibling_list);
7831 INIT_LIST_HEAD(&event->rb_entry);
7832 INIT_LIST_HEAD(&event->active_entry);
7833 INIT_HLIST_NODE(&event->hlist_entry);
7834
7835
7836 init_waitqueue_head(&event->waitq);
7837 init_irq_work(&event->pending, perf_pending_event);
7838
7839 mutex_init(&event->mmap_mutex);
7840
7841 atomic_long_set(&event->refcount, 1);
7842 event->cpu = cpu;
7843 event->attr = *attr;
7844 event->group_leader = group_leader;
7845 event->pmu = NULL;
7846 event->oncpu = -1;
7847
7848 event->parent = parent_event;
7849
7850 event->ns = get_pid_ns(task_active_pid_ns(current));
7851 event->id = atomic64_inc_return(&perf_event_id);
7852
7853 event->state = PERF_EVENT_STATE_INACTIVE;
7854
7855 if (task) {
7856 event->attach_state = PERF_ATTACH_TASK;
7857 /*
7858 * XXX pmu::event_init needs to know what task to account to
7859 * and we cannot use the ctx information because we need the
7860 * pmu before we get a ctx.
7861 */
7862 event->hw.target = task;
7863 }
7864
7865 event->clock = &local_clock;
7866 if (parent_event)
7867 event->clock = parent_event->clock;
7868
7869 if (!overflow_handler && parent_event) {
7870 overflow_handler = parent_event->overflow_handler;
7871 context = parent_event->overflow_handler_context;
7872 }
7873
7874 event->overflow_handler = overflow_handler;
7875 event->overflow_handler_context = context;
7876
7877 perf_event__state_init(event);
7878
7879 pmu = NULL;
7880
7881 hwc = &event->hw;
7882 hwc->sample_period = attr->sample_period;
7883 if (attr->freq && attr->sample_freq)
7884 hwc->sample_period = 1;
7885 hwc->last_period = hwc->sample_period;
7886
7887 local64_set(&hwc->period_left, hwc->sample_period);
7888
7889 /*
7890 * we currently do not support PERF_FORMAT_GROUP on inherited events
7891 */
7892 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
7893 goto err_ns;
7894
7895 if (!has_branch_stack(event))
7896 event->attr.branch_sample_type = 0;
7897
7898 if (cgroup_fd != -1) {
7899 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
7900 if (err)
7901 goto err_ns;
7902 }
7903
7904 pmu = perf_init_event(event);
7905 if (!pmu)
7906 goto err_ns;
7907 else if (IS_ERR(pmu)) {
7908 err = PTR_ERR(pmu);
7909 goto err_ns;
7910 }
7911
7912 err = exclusive_event_init(event);
7913 if (err)
7914 goto err_pmu;
7915
7916 if (!event->parent) {
7917 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
7918 err = get_callchain_buffers();
7919 if (err)
7920 goto err_per_task;
7921 }
7922 }
7923
7924 return event;
7925
7926 err_per_task:
7927 exclusive_event_destroy(event);
7928
7929 err_pmu:
7930 if (event->destroy)
7931 event->destroy(event);
7932 module_put(pmu->module);
7933 err_ns:
7934 if (is_cgroup_event(event))
7935 perf_detach_cgroup(event);
7936 if (event->ns)
7937 put_pid_ns(event->ns);
7938 kfree(event);
7939
7940 return ERR_PTR(err);
7941 }
7942
7943 static int perf_copy_attr(struct perf_event_attr __user *uattr,
7944 struct perf_event_attr *attr)
7945 {
7946 u32 size;
7947 int ret;
7948
7949 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
7950 return -EFAULT;
7951
7952 /*
7953 * zero the full structure, so that a short copy will be nice.
7954 */
7955 memset(attr, 0, sizeof(*attr));
7956
7957 ret = get_user(size, &uattr->size);
7958 if (ret)
7959 return ret;
7960
7961 if (size > PAGE_SIZE) /* silly large */
7962 goto err_size;
7963
7964 if (!size) /* abi compat */
7965 size = PERF_ATTR_SIZE_VER0;
7966
7967 if (size < PERF_ATTR_SIZE_VER0)
7968 goto err_size;
7969
7970 /*
7971 * If we're handed a bigger struct than we know of,
7972 * ensure all the unknown bits are 0 - i.e. new
7973 * user-space does not rely on any kernel feature
7974 * extensions we dont know about yet.
7975 */
7976 if (size > sizeof(*attr)) {
7977 unsigned char __user *addr;
7978 unsigned char __user *end;
7979 unsigned char val;
7980
7981 addr = (void __user *)uattr + sizeof(*attr);
7982 end = (void __user *)uattr + size;
7983
7984 for (; addr < end; addr++) {
7985 ret = get_user(val, addr);
7986 if (ret)
7987 return ret;
7988 if (val)
7989 goto err_size;
7990 }
7991 size = sizeof(*attr);
7992 }
7993
7994 ret = copy_from_user(attr, uattr, size);
7995 if (ret)
7996 return -EFAULT;
7997
7998 if (attr->__reserved_1)
7999 return -EINVAL;
8000
8001 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
8002 return -EINVAL;
8003
8004 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
8005 return -EINVAL;
8006
8007 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
8008 u64 mask = attr->branch_sample_type;
8009
8010 /* only using defined bits */
8011 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
8012 return -EINVAL;
8013
8014 /* at least one branch bit must be set */
8015 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
8016 return -EINVAL;
8017
8018 /* propagate priv level, when not set for branch */
8019 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
8020
8021 /* exclude_kernel checked on syscall entry */
8022 if (!attr->exclude_kernel)
8023 mask |= PERF_SAMPLE_BRANCH_KERNEL;
8024
8025 if (!attr->exclude_user)
8026 mask |= PERF_SAMPLE_BRANCH_USER;
8027
8028 if (!attr->exclude_hv)
8029 mask |= PERF_SAMPLE_BRANCH_HV;
8030 /*
8031 * adjust user setting (for HW filter setup)
8032 */
8033 attr->branch_sample_type = mask;
8034 }
8035 /* privileged levels capture (kernel, hv): check permissions */
8036 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
8037 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
8038 return -EACCES;
8039 }
8040
8041 if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
8042 ret = perf_reg_validate(attr->sample_regs_user);
8043 if (ret)
8044 return ret;
8045 }
8046
8047 if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
8048 if (!arch_perf_have_user_stack_dump())
8049 return -ENOSYS;
8050
8051 /*
8052 * We have __u32 type for the size, but so far
8053 * we can only use __u16 as maximum due to the
8054 * __u16 sample size limit.
8055 */
8056 if (attr->sample_stack_user >= USHRT_MAX)
8057 ret = -EINVAL;
8058 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
8059 ret = -EINVAL;
8060 }
8061
8062 if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
8063 ret = perf_reg_validate(attr->sample_regs_intr);
8064 out:
8065 return ret;
8066
8067 err_size:
8068 put_user(sizeof(*attr), &uattr->size);
8069 ret = -E2BIG;
8070 goto out;
8071 }
8072
8073 static int
8074 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
8075 {
8076 struct ring_buffer *rb = NULL;
8077 int ret = -EINVAL;
8078
8079 if (!output_event)
8080 goto set;
8081
8082 /* don't allow circular references */
8083 if (event == output_event)
8084 goto out;
8085
8086 /*
8087 * Don't allow cross-cpu buffers
8088 */
8089 if (output_event->cpu != event->cpu)
8090 goto out;
8091
8092 /*
8093 * If its not a per-cpu rb, it must be the same task.
8094 */
8095 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
8096 goto out;
8097
8098 /*
8099 * Mixing clocks in the same buffer is trouble you don't need.
8100 */
8101 if (output_event->clock != event->clock)
8102 goto out;
8103
8104 /*
8105 * If both events generate aux data, they must be on the same PMU
8106 */
8107 if (has_aux(event) && has_aux(output_event) &&
8108 event->pmu != output_event->pmu)
8109 goto out;
8110
8111 set:
8112 mutex_lock(&event->mmap_mutex);
8113 /* Can't redirect output if we've got an active mmap() */
8114 if (atomic_read(&event->mmap_count))
8115 goto unlock;
8116
8117 if (output_event) {
8118 /* get the rb we want to redirect to */
8119 rb = ring_buffer_get(output_event);
8120 if (!rb)
8121 goto unlock;
8122 }
8123
8124 ring_buffer_attach(event, rb);
8125
8126 ret = 0;
8127 unlock:
8128 mutex_unlock(&event->mmap_mutex);
8129
8130 out:
8131 return ret;
8132 }
8133
8134 static void mutex_lock_double(struct mutex *a, struct mutex *b)
8135 {
8136 if (b < a)
8137 swap(a, b);
8138
8139 mutex_lock(a);
8140 mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
8141 }
8142
8143 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
8144 {
8145 bool nmi_safe = false;
8146
8147 switch (clk_id) {
8148 case CLOCK_MONOTONIC:
8149 event->clock = &ktime_get_mono_fast_ns;
8150 nmi_safe = true;
8151 break;
8152
8153 case CLOCK_MONOTONIC_RAW:
8154 event->clock = &ktime_get_raw_fast_ns;
8155 nmi_safe = true;
8156 break;
8157
8158 case CLOCK_REALTIME:
8159 event->clock = &ktime_get_real_ns;
8160 break;
8161
8162 case CLOCK_BOOTTIME:
8163 event->clock = &ktime_get_boot_ns;
8164 break;
8165
8166 case CLOCK_TAI:
8167 event->clock = &ktime_get_tai_ns;
8168 break;
8169
8170 default:
8171 return -EINVAL;
8172 }
8173
8174 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
8175 return -EINVAL;
8176
8177 return 0;
8178 }
8179
8180 /**
8181 * sys_perf_event_open - open a performance event, associate it to a task/cpu
8182 *
8183 * @attr_uptr: event_id type attributes for monitoring/sampling
8184 * @pid: target pid
8185 * @cpu: target cpu
8186 * @group_fd: group leader event fd
8187 */
8188 SYSCALL_DEFINE5(perf_event_open,
8189 struct perf_event_attr __user *, attr_uptr,
8190 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
8191 {
8192 struct perf_event *group_leader = NULL, *output_event = NULL;
8193 struct perf_event *event, *sibling;
8194 struct perf_event_attr attr;
8195 struct perf_event_context *ctx, *uninitialized_var(gctx);
8196 struct file *event_file = NULL;
8197 struct fd group = {NULL, 0};
8198 struct task_struct *task = NULL;
8199 struct pmu *pmu;
8200 int event_fd;
8201 int move_group = 0;
8202 int err;
8203 int f_flags = O_RDWR;
8204 int cgroup_fd = -1;
8205
8206 /* for future expandability... */
8207 if (flags & ~PERF_FLAG_ALL)
8208 return -EINVAL;
8209
8210 err = perf_copy_attr(attr_uptr, &attr);
8211 if (err)
8212 return err;
8213
8214 if (!attr.exclude_kernel) {
8215 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
8216 return -EACCES;
8217 }
8218
8219 if (attr.freq) {
8220 if (attr.sample_freq > sysctl_perf_event_sample_rate)
8221 return -EINVAL;
8222 } else {
8223 if (attr.sample_period & (1ULL << 63))
8224 return -EINVAL;
8225 }
8226
8227 /*
8228 * In cgroup mode, the pid argument is used to pass the fd
8229 * opened to the cgroup directory in cgroupfs. The cpu argument
8230 * designates the cpu on which to monitor threads from that
8231 * cgroup.
8232 */
8233 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
8234 return -EINVAL;
8235
8236 if (flags & PERF_FLAG_FD_CLOEXEC)
8237 f_flags |= O_CLOEXEC;
8238
8239 event_fd = get_unused_fd_flags(f_flags);
8240 if (event_fd < 0)
8241 return event_fd;
8242
8243 if (group_fd != -1) {
8244 err = perf_fget_light(group_fd, &group);
8245 if (err)
8246 goto err_fd;
8247 group_leader = group.file->private_data;
8248 if (flags & PERF_FLAG_FD_OUTPUT)
8249 output_event = group_leader;
8250 if (flags & PERF_FLAG_FD_NO_GROUP)
8251 group_leader = NULL;
8252 }
8253
8254 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
8255 task = find_lively_task_by_vpid(pid);
8256 if (IS_ERR(task)) {
8257 err = PTR_ERR(task);
8258 goto err_group_fd;
8259 }
8260 }
8261
8262 if (task && group_leader &&
8263 group_leader->attr.inherit != attr.inherit) {
8264 err = -EINVAL;
8265 goto err_task;
8266 }
8267
8268 get_online_cpus();
8269
8270 if (flags & PERF_FLAG_PID_CGROUP)
8271 cgroup_fd = pid;
8272
8273 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
8274 NULL, NULL, cgroup_fd);
8275 if (IS_ERR(event)) {
8276 err = PTR_ERR(event);
8277 goto err_cpus;
8278 }
8279
8280 if (is_sampling_event(event)) {
8281 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
8282 err = -ENOTSUPP;
8283 goto err_alloc;
8284 }
8285 }
8286
8287 account_event(event);
8288
8289 /*
8290 * Special case software events and allow them to be part of
8291 * any hardware group.
8292 */
8293 pmu = event->pmu;
8294
8295 if (attr.use_clockid) {
8296 err = perf_event_set_clock(event, attr.clockid);
8297 if (err)
8298 goto err_alloc;
8299 }
8300
8301 if (group_leader &&
8302 (is_software_event(event) != is_software_event(group_leader))) {
8303 if (is_software_event(event)) {
8304 /*
8305 * If event and group_leader are not both a software
8306 * event, and event is, then group leader is not.
8307 *
8308 * Allow the addition of software events to !software
8309 * groups, this is safe because software events never
8310 * fail to schedule.
8311 */
8312 pmu = group_leader->pmu;
8313 } else if (is_software_event(group_leader) &&
8314 (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
8315 /*
8316 * In case the group is a pure software group, and we
8317 * try to add a hardware event, move the whole group to
8318 * the hardware context.
8319 */
8320 move_group = 1;
8321 }
8322 }
8323
8324 /*
8325 * Get the target context (task or percpu):
8326 */
8327 ctx = find_get_context(pmu, task, event);
8328 if (IS_ERR(ctx)) {
8329 err = PTR_ERR(ctx);
8330 goto err_alloc;
8331 }
8332
8333 if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
8334 err = -EBUSY;
8335 goto err_context;
8336 }
8337
8338 if (task) {
8339 put_task_struct(task);
8340 task = NULL;
8341 }
8342
8343 /*
8344 * Look up the group leader (we will attach this event to it):
8345 */
8346 if (group_leader) {
8347 err = -EINVAL;
8348
8349 /*
8350 * Do not allow a recursive hierarchy (this new sibling
8351 * becoming part of another group-sibling):
8352 */
8353 if (group_leader->group_leader != group_leader)
8354 goto err_context;
8355
8356 /* All events in a group should have the same clock */
8357 if (group_leader->clock != event->clock)
8358 goto err_context;
8359
8360 /*
8361 * Do not allow to attach to a group in a different
8362 * task or CPU context:
8363 */
8364 if (move_group) {
8365 /*
8366 * Make sure we're both on the same task, or both
8367 * per-cpu events.
8368 */
8369 if (group_leader->ctx->task != ctx->task)
8370 goto err_context;
8371
8372 /*
8373 * Make sure we're both events for the same CPU;
8374 * grouping events for different CPUs is broken; since
8375 * you can never concurrently schedule them anyhow.
8376 */
8377 if (group_leader->cpu != event->cpu)
8378 goto err_context;
8379 } else {
8380 if (group_leader->ctx != ctx)
8381 goto err_context;
8382 }
8383
8384 /*
8385 * Only a group leader can be exclusive or pinned
8386 */
8387 if (attr.exclusive || attr.pinned)
8388 goto err_context;
8389 }
8390
8391 if (output_event) {
8392 err = perf_event_set_output(event, output_event);
8393 if (err)
8394 goto err_context;
8395 }
8396
8397 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
8398 f_flags);
8399 if (IS_ERR(event_file)) {
8400 err = PTR_ERR(event_file);
8401 goto err_context;
8402 }
8403
8404 if (move_group) {
8405 gctx = group_leader->ctx;
8406 mutex_lock_double(&gctx->mutex, &ctx->mutex);
8407 } else {
8408 mutex_lock(&ctx->mutex);
8409 }
8410
8411 if (!perf_event_validate_size(event)) {
8412 err = -E2BIG;
8413 goto err_locked;
8414 }
8415
8416 /*
8417 * Must be under the same ctx::mutex as perf_install_in_context(),
8418 * because we need to serialize with concurrent event creation.
8419 */
8420 if (!exclusive_event_installable(event, ctx)) {
8421 /* exclusive and group stuff are assumed mutually exclusive */
8422 WARN_ON_ONCE(move_group);
8423
8424 err = -EBUSY;
8425 goto err_locked;
8426 }
8427
8428 WARN_ON_ONCE(ctx->parent_ctx);
8429
8430 if (move_group) {
8431 /*
8432 * See perf_event_ctx_lock() for comments on the details
8433 * of swizzling perf_event::ctx.
8434 */
8435 perf_remove_from_context(group_leader, false);
8436
8437 list_for_each_entry(sibling, &group_leader->sibling_list,
8438 group_entry) {
8439 perf_remove_from_context(sibling, false);
8440 put_ctx(gctx);
8441 }
8442
8443 /*
8444 * Wait for everybody to stop referencing the events through
8445 * the old lists, before installing it on new lists.
8446 */
8447 synchronize_rcu();
8448
8449 /*
8450 * Install the group siblings before the group leader.
8451 *
8452 * Because a group leader will try and install the entire group
8453 * (through the sibling list, which is still in-tact), we can
8454 * end up with siblings installed in the wrong context.
8455 *
8456 * By installing siblings first we NO-OP because they're not
8457 * reachable through the group lists.
8458 */
8459 list_for_each_entry(sibling, &group_leader->sibling_list,
8460 group_entry) {
8461 perf_event__state_init(sibling);
8462 perf_install_in_context(ctx, sibling, sibling->cpu);
8463 get_ctx(ctx);
8464 }
8465
8466 /*
8467 * Removing from the context ends up with disabled
8468 * event. What we want here is event in the initial
8469 * startup state, ready to be add into new context.
8470 */
8471 perf_event__state_init(group_leader);
8472 perf_install_in_context(ctx, group_leader, group_leader->cpu);
8473 get_ctx(ctx);
8474
8475 /*
8476 * Now that all events are installed in @ctx, nothing
8477 * references @gctx anymore, so drop the last reference we have
8478 * on it.
8479 */
8480 put_ctx(gctx);
8481 }
8482
8483 /*
8484 * Precalculate sample_data sizes; do while holding ctx::mutex such
8485 * that we're serialized against further additions and before
8486 * perf_install_in_context() which is the point the event is active and
8487 * can use these values.
8488 */
8489 perf_event__header_size(event);
8490 perf_event__id_header_size(event);
8491
8492 event->owner = current;
8493
8494 perf_install_in_context(ctx, event, event->cpu);
8495 perf_unpin_context(ctx);
8496
8497 if (move_group)
8498 mutex_unlock(&gctx->mutex);
8499 mutex_unlock(&ctx->mutex);
8500
8501 put_online_cpus();
8502
8503 mutex_lock(&current->perf_event_mutex);
8504 list_add_tail(&event->owner_entry, &current->perf_event_list);
8505 mutex_unlock(&current->perf_event_mutex);
8506
8507 /*
8508 * Drop the reference on the group_event after placing the
8509 * new event on the sibling_list. This ensures destruction
8510 * of the group leader will find the pointer to itself in
8511 * perf_group_detach().
8512 */
8513 fdput(group);
8514 fd_install(event_fd, event_file);
8515 return event_fd;
8516
8517 err_locked:
8518 if (move_group)
8519 mutex_unlock(&gctx->mutex);
8520 mutex_unlock(&ctx->mutex);
8521 /* err_file: */
8522 fput(event_file);
8523 err_context:
8524 perf_unpin_context(ctx);
8525 put_ctx(ctx);
8526 err_alloc:
8527 free_event(event);
8528 err_cpus:
8529 put_online_cpus();
8530 err_task:
8531 if (task)
8532 put_task_struct(task);
8533 err_group_fd:
8534 fdput(group);
8535 err_fd:
8536 put_unused_fd(event_fd);
8537 return err;
8538 }
8539
8540 /**
8541 * perf_event_create_kernel_counter
8542 *
8543 * @attr: attributes of the counter to create
8544 * @cpu: cpu in which the counter is bound
8545 * @task: task to profile (NULL for percpu)
8546 */
8547 struct perf_event *
8548 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
8549 struct task_struct *task,
8550 perf_overflow_handler_t overflow_handler,
8551 void *context)
8552 {
8553 struct perf_event_context *ctx;
8554 struct perf_event *event;
8555 int err;
8556
8557 /*
8558 * Get the target context (task or percpu):
8559 */
8560
8561 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
8562 overflow_handler, context, -1);
8563 if (IS_ERR(event)) {
8564 err = PTR_ERR(event);
8565 goto err;
8566 }
8567
8568 /* Mark owner so we could distinguish it from user events. */
8569 event->owner = TASK_TOMBSTONE;
8570
8571 account_event(event);
8572
8573 ctx = find_get_context(event->pmu, task, event);
8574 if (IS_ERR(ctx)) {
8575 err = PTR_ERR(ctx);
8576 goto err_free;
8577 }
8578
8579 WARN_ON_ONCE(ctx->parent_ctx);
8580 mutex_lock(&ctx->mutex);
8581 if (!exclusive_event_installable(event, ctx)) {
8582 mutex_unlock(&ctx->mutex);
8583 perf_unpin_context(ctx);
8584 put_ctx(ctx);
8585 err = -EBUSY;
8586 goto err_free;
8587 }
8588
8589 perf_install_in_context(ctx, event, cpu);
8590 perf_unpin_context(ctx);
8591 mutex_unlock(&ctx->mutex);
8592
8593 return event;
8594
8595 err_free:
8596 free_event(event);
8597 err:
8598 return ERR_PTR(err);
8599 }
8600 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
8601
8602 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
8603 {
8604 struct perf_event_context *src_ctx;
8605 struct perf_event_context *dst_ctx;
8606 struct perf_event *event, *tmp;
8607 LIST_HEAD(events);
8608
8609 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
8610 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
8611
8612 /*
8613 * See perf_event_ctx_lock() for comments on the details
8614 * of swizzling perf_event::ctx.
8615 */
8616 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
8617 list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
8618 event_entry) {
8619 perf_remove_from_context(event, false);
8620 unaccount_event_cpu(event, src_cpu);
8621 put_ctx(src_ctx);
8622 list_add(&event->migrate_entry, &events);
8623 }
8624
8625 /*
8626 * Wait for the events to quiesce before re-instating them.
8627 */
8628 synchronize_rcu();
8629
8630 /*
8631 * Re-instate events in 2 passes.
8632 *
8633 * Skip over group leaders and only install siblings on this first
8634 * pass, siblings will not get enabled without a leader, however a
8635 * leader will enable its siblings, even if those are still on the old
8636 * context.
8637 */
8638 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
8639 if (event->group_leader == event)
8640 continue;
8641
8642 list_del(&event->migrate_entry);
8643 if (event->state >= PERF_EVENT_STATE_OFF)
8644 event->state = PERF_EVENT_STATE_INACTIVE;
8645 account_event_cpu(event, dst_cpu);
8646 perf_install_in_context(dst_ctx, event, dst_cpu);
8647 get_ctx(dst_ctx);
8648 }
8649
8650 /*
8651 * Once all the siblings are setup properly, install the group leaders
8652 * to make it go.
8653 */
8654 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
8655 list_del(&event->migrate_entry);
8656 if (event->state >= PERF_EVENT_STATE_OFF)
8657 event->state = PERF_EVENT_STATE_INACTIVE;
8658 account_event_cpu(event, dst_cpu);
8659 perf_install_in_context(dst_ctx, event, dst_cpu);
8660 get_ctx(dst_ctx);
8661 }
8662 mutex_unlock(&dst_ctx->mutex);
8663 mutex_unlock(&src_ctx->mutex);
8664 }
8665 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
8666
8667 static void sync_child_event(struct perf_event *child_event,
8668 struct task_struct *child)
8669 {
8670 struct perf_event *parent_event = child_event->parent;
8671 u64 child_val;
8672
8673 if (child_event->attr.inherit_stat)
8674 perf_event_read_event(child_event, child);
8675
8676 child_val = perf_event_count(child_event);
8677
8678 /*
8679 * Add back the child's count to the parent's count:
8680 */
8681 atomic64_add(child_val, &parent_event->child_count);
8682 atomic64_add(child_event->total_time_enabled,
8683 &parent_event->child_total_time_enabled);
8684 atomic64_add(child_event->total_time_running,
8685 &parent_event->child_total_time_running);
8686
8687 /*
8688 * Remove this event from the parent's list
8689 */
8690 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
8691 mutex_lock(&parent_event->child_mutex);
8692 list_del_init(&child_event->child_list);
8693 mutex_unlock(&parent_event->child_mutex);
8694
8695 /*
8696 * Make sure user/parent get notified, that we just
8697 * lost one event.
8698 */
8699 perf_event_wakeup(parent_event);
8700
8701 /*
8702 * Release the parent event, if this was the last
8703 * reference to it.
8704 */
8705 put_event(parent_event);
8706 }
8707
8708 static void
8709 __perf_event_exit_task(struct perf_event *child_event,
8710 struct perf_event_context *child_ctx,
8711 struct task_struct *child)
8712 {
8713 /*
8714 * Do not destroy the 'original' grouping; because of the context
8715 * switch optimization the original events could've ended up in a
8716 * random child task.
8717 *
8718 * If we were to destroy the original group, all group related
8719 * operations would cease to function properly after this random
8720 * child dies.
8721 *
8722 * Do destroy all inherited groups, we don't care about those
8723 * and being thorough is better.
8724 */
8725 raw_spin_lock_irq(&child_ctx->lock);
8726 WARN_ON_ONCE(child_ctx->is_active);
8727
8728 if (!!child_event->parent)
8729 perf_group_detach(child_event);
8730 list_del_event(child_event, child_ctx);
8731 raw_spin_unlock_irq(&child_ctx->lock);
8732
8733 /*
8734 * It can happen that the parent exits first, and has events
8735 * that are still around due to the child reference. These
8736 * events need to be zapped.
8737 */
8738 if (child_event->parent) {
8739 sync_child_event(child_event, child);
8740 free_event(child_event);
8741 } else {
8742 child_event->state = PERF_EVENT_STATE_EXIT;
8743 perf_event_wakeup(child_event);
8744 }
8745 }
8746
8747 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
8748 {
8749 struct perf_event_context *child_ctx, *clone_ctx = NULL;
8750 struct perf_event *child_event, *next;
8751 unsigned long flags;
8752
8753 WARN_ON_ONCE(child != current);
8754
8755 child_ctx = perf_lock_task_context(child, ctxn, &flags);
8756 if (!child_ctx)
8757 return;
8758
8759 task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx);
8760
8761 /*
8762 * Now that the context is inactive, destroy the task <-> ctx relation
8763 * and mark the context dead.
8764 */
8765 RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
8766 put_ctx(child_ctx); /* cannot be last */
8767 WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
8768 put_task_struct(current); /* cannot be last */
8769
8770 /*
8771 * If this context is a clone; unclone it so it can't get
8772 * swapped to another process while we're removing all
8773 * the events from it.
8774 */
8775 clone_ctx = unclone_ctx(child_ctx);
8776 update_context_time(child_ctx);
8777 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
8778
8779 if (clone_ctx)
8780 put_ctx(clone_ctx);
8781
8782 /*
8783 * Report the task dead after unscheduling the events so that we
8784 * won't get any samples after PERF_RECORD_EXIT. We can however still
8785 * get a few PERF_RECORD_READ events.
8786 */
8787 perf_event_task(child, child_ctx, 0);
8788
8789 /*
8790 * We can recurse on the same lock type through:
8791 *
8792 * __perf_event_exit_task()
8793 * sync_child_event()
8794 * put_event()
8795 * mutex_lock(&ctx->mutex)
8796 *
8797 * But since its the parent context it won't be the same instance.
8798 */
8799 mutex_lock(&child_ctx->mutex);
8800
8801 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
8802 __perf_event_exit_task(child_event, child_ctx, child);
8803
8804 mutex_unlock(&child_ctx->mutex);
8805
8806 put_ctx(child_ctx);
8807 }
8808
8809 /*
8810 * When a child task exits, feed back event values to parent events.
8811 */
8812 void perf_event_exit_task(struct task_struct *child)
8813 {
8814 struct perf_event *event, *tmp;
8815 int ctxn;
8816
8817 mutex_lock(&child->perf_event_mutex);
8818 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
8819 owner_entry) {
8820 list_del_init(&event->owner_entry);
8821
8822 /*
8823 * Ensure the list deletion is visible before we clear
8824 * the owner, closes a race against perf_release() where
8825 * we need to serialize on the owner->perf_event_mutex.
8826 */
8827 smp_wmb();
8828 event->owner = NULL;
8829 }
8830 mutex_unlock(&child->perf_event_mutex);
8831
8832 for_each_task_context_nr(ctxn)
8833 perf_event_exit_task_context(child, ctxn);
8834
8835 /*
8836 * The perf_event_exit_task_context calls perf_event_task
8837 * with child's task_ctx, which generates EXIT events for
8838 * child contexts and sets child->perf_event_ctxp[] to NULL.
8839 * At this point we need to send EXIT events to cpu contexts.
8840 */
8841 perf_event_task(child, NULL, 0);
8842 }
8843
8844 static void perf_free_event(struct perf_event *event,
8845 struct perf_event_context *ctx)
8846 {
8847 struct perf_event *parent = event->parent;
8848
8849 if (WARN_ON_ONCE(!parent))
8850 return;
8851
8852 mutex_lock(&parent->child_mutex);
8853 list_del_init(&event->child_list);
8854 mutex_unlock(&parent->child_mutex);
8855
8856 put_event(parent);
8857
8858 raw_spin_lock_irq(&ctx->lock);
8859 perf_group_detach(event);
8860 list_del_event(event, ctx);
8861 raw_spin_unlock_irq(&ctx->lock);
8862 free_event(event);
8863 }
8864
8865 /*
8866 * Free an unexposed, unused context as created by inheritance by
8867 * perf_event_init_task below, used by fork() in case of fail.
8868 *
8869 * Not all locks are strictly required, but take them anyway to be nice and
8870 * help out with the lockdep assertions.
8871 */
8872 void perf_event_free_task(struct task_struct *task)
8873 {
8874 struct perf_event_context *ctx;
8875 struct perf_event *event, *tmp;
8876 int ctxn;
8877
8878 for_each_task_context_nr(ctxn) {
8879 ctx = task->perf_event_ctxp[ctxn];
8880 if (!ctx)
8881 continue;
8882
8883 mutex_lock(&ctx->mutex);
8884 again:
8885 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
8886 group_entry)
8887 perf_free_event(event, ctx);
8888
8889 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
8890 group_entry)
8891 perf_free_event(event, ctx);
8892
8893 if (!list_empty(&ctx->pinned_groups) ||
8894 !list_empty(&ctx->flexible_groups))
8895 goto again;
8896
8897 mutex_unlock(&ctx->mutex);
8898
8899 put_ctx(ctx);
8900 }
8901 }
8902
8903 void perf_event_delayed_put(struct task_struct *task)
8904 {
8905 int ctxn;
8906
8907 for_each_task_context_nr(ctxn)
8908 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
8909 }
8910
8911 struct perf_event *perf_event_get(unsigned int fd)
8912 {
8913 int err;
8914 struct fd f;
8915 struct perf_event *event;
8916
8917 err = perf_fget_light(fd, &f);
8918 if (err)
8919 return ERR_PTR(err);
8920
8921 event = f.file->private_data;
8922 atomic_long_inc(&event->refcount);
8923 fdput(f);
8924
8925 return event;
8926 }
8927
8928 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
8929 {
8930 if (!event)
8931 return ERR_PTR(-EINVAL);
8932
8933 return &event->attr;
8934 }
8935
8936 /*
8937 * inherit a event from parent task to child task:
8938 */
8939 static struct perf_event *
8940 inherit_event(struct perf_event *parent_event,
8941 struct task_struct *parent,
8942 struct perf_event_context *parent_ctx,
8943 struct task_struct *child,
8944 struct perf_event *group_leader,
8945 struct perf_event_context *child_ctx)
8946 {
8947 enum perf_event_active_state parent_state = parent_event->state;
8948 struct perf_event *child_event;
8949 unsigned long flags;
8950
8951 /*
8952 * Instead of creating recursive hierarchies of events,
8953 * we link inherited events back to the original parent,
8954 * which has a filp for sure, which we use as the reference
8955 * count:
8956 */
8957 if (parent_event->parent)
8958 parent_event = parent_event->parent;
8959
8960 child_event = perf_event_alloc(&parent_event->attr,
8961 parent_event->cpu,
8962 child,
8963 group_leader, parent_event,
8964 NULL, NULL, -1);
8965 if (IS_ERR(child_event))
8966 return child_event;
8967
8968 if (is_orphaned_event(parent_event) ||
8969 !atomic_long_inc_not_zero(&parent_event->refcount)) {
8970 free_event(child_event);
8971 return NULL;
8972 }
8973
8974 get_ctx(child_ctx);
8975
8976 /*
8977 * Make the child state follow the state of the parent event,
8978 * not its attr.disabled bit. We hold the parent's mutex,
8979 * so we won't race with perf_event_{en, dis}able_family.
8980 */
8981 if (parent_state >= PERF_EVENT_STATE_INACTIVE)
8982 child_event->state = PERF_EVENT_STATE_INACTIVE;
8983 else
8984 child_event->state = PERF_EVENT_STATE_OFF;
8985
8986 if (parent_event->attr.freq) {
8987 u64 sample_period = parent_event->hw.sample_period;
8988 struct hw_perf_event *hwc = &child_event->hw;
8989
8990 hwc->sample_period = sample_period;
8991 hwc->last_period = sample_period;
8992
8993 local64_set(&hwc->period_left, sample_period);
8994 }
8995
8996 child_event->ctx = child_ctx;
8997 child_event->overflow_handler = parent_event->overflow_handler;
8998 child_event->overflow_handler_context
8999 = parent_event->overflow_handler_context;
9000
9001 /*
9002 * Precalculate sample_data sizes
9003 */
9004 perf_event__header_size(child_event);
9005 perf_event__id_header_size(child_event);
9006
9007 /*
9008 * Link it up in the child's context:
9009 */
9010 raw_spin_lock_irqsave(&child_ctx->lock, flags);
9011 add_event_to_ctx(child_event, child_ctx);
9012 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
9013
9014 /*
9015 * Link this into the parent event's child list
9016 */
9017 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
9018 mutex_lock(&parent_event->child_mutex);
9019 list_add_tail(&child_event->child_list, &parent_event->child_list);
9020 mutex_unlock(&parent_event->child_mutex);
9021
9022 return child_event;
9023 }
9024
9025 static int inherit_group(struct perf_event *parent_event,
9026 struct task_struct *parent,
9027 struct perf_event_context *parent_ctx,
9028 struct task_struct *child,
9029 struct perf_event_context *child_ctx)
9030 {
9031 struct perf_event *leader;
9032 struct perf_event *sub;
9033 struct perf_event *child_ctr;
9034
9035 leader = inherit_event(parent_event, parent, parent_ctx,
9036 child, NULL, child_ctx);
9037 if (IS_ERR(leader))
9038 return PTR_ERR(leader);
9039 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
9040 child_ctr = inherit_event(sub, parent, parent_ctx,
9041 child, leader, child_ctx);
9042 if (IS_ERR(child_ctr))
9043 return PTR_ERR(child_ctr);
9044 }
9045 return 0;
9046 }
9047
9048 static int
9049 inherit_task_group(struct perf_event *event, struct task_struct *parent,
9050 struct perf_event_context *parent_ctx,
9051 struct task_struct *child, int ctxn,
9052 int *inherited_all)
9053 {
9054 int ret;
9055 struct perf_event_context *child_ctx;
9056
9057 if (!event->attr.inherit) {
9058 *inherited_all = 0;
9059 return 0;
9060 }
9061
9062 child_ctx = child->perf_event_ctxp[ctxn];
9063 if (!child_ctx) {
9064 /*
9065 * This is executed from the parent task context, so
9066 * inherit events that have been marked for cloning.
9067 * First allocate and initialize a context for the
9068 * child.
9069 */
9070
9071 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
9072 if (!child_ctx)
9073 return -ENOMEM;
9074
9075 child->perf_event_ctxp[ctxn] = child_ctx;
9076 }
9077
9078 ret = inherit_group(event, parent, parent_ctx,
9079 child, child_ctx);
9080
9081 if (ret)
9082 *inherited_all = 0;
9083
9084 return ret;
9085 }
9086
9087 /*
9088 * Initialize the perf_event context in task_struct
9089 */
9090 static int perf_event_init_context(struct task_struct *child, int ctxn)
9091 {
9092 struct perf_event_context *child_ctx, *parent_ctx;
9093 struct perf_event_context *cloned_ctx;
9094 struct perf_event *event;
9095 struct task_struct *parent = current;
9096 int inherited_all = 1;
9097 unsigned long flags;
9098 int ret = 0;
9099
9100 if (likely(!parent->perf_event_ctxp[ctxn]))
9101 return 0;
9102
9103 /*
9104 * If the parent's context is a clone, pin it so it won't get
9105 * swapped under us.
9106 */
9107 parent_ctx = perf_pin_task_context(parent, ctxn);
9108 if (!parent_ctx)
9109 return 0;
9110
9111 /*
9112 * No need to check if parent_ctx != NULL here; since we saw
9113 * it non-NULL earlier, the only reason for it to become NULL
9114 * is if we exit, and since we're currently in the middle of
9115 * a fork we can't be exiting at the same time.
9116 */
9117
9118 /*
9119 * Lock the parent list. No need to lock the child - not PID
9120 * hashed yet and not running, so nobody can access it.
9121 */
9122 mutex_lock(&parent_ctx->mutex);
9123
9124 /*
9125 * We dont have to disable NMIs - we are only looking at
9126 * the list, not manipulating it:
9127 */
9128 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
9129 ret = inherit_task_group(event, parent, parent_ctx,
9130 child, ctxn, &inherited_all);
9131 if (ret)
9132 break;
9133 }
9134
9135 /*
9136 * We can't hold ctx->lock when iterating the ->flexible_group list due
9137 * to allocations, but we need to prevent rotation because
9138 * rotate_ctx() will change the list from interrupt context.
9139 */
9140 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
9141 parent_ctx->rotate_disable = 1;
9142 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
9143
9144 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
9145 ret = inherit_task_group(event, parent, parent_ctx,
9146 child, ctxn, &inherited_all);
9147 if (ret)
9148 break;
9149 }
9150
9151 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
9152 parent_ctx->rotate_disable = 0;
9153
9154 child_ctx = child->perf_event_ctxp[ctxn];
9155
9156 if (child_ctx && inherited_all) {
9157 /*
9158 * Mark the child context as a clone of the parent
9159 * context, or of whatever the parent is a clone of.
9160 *
9161 * Note that if the parent is a clone, the holding of
9162 * parent_ctx->lock avoids it from being uncloned.
9163 */
9164 cloned_ctx = parent_ctx->parent_ctx;
9165 if (cloned_ctx) {
9166 child_ctx->parent_ctx = cloned_ctx;
9167 child_ctx->parent_gen = parent_ctx->parent_gen;
9168 } else {
9169 child_ctx->parent_ctx = parent_ctx;
9170 child_ctx->parent_gen = parent_ctx->generation;
9171 }
9172 get_ctx(child_ctx->parent_ctx);
9173 }
9174
9175 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
9176 mutex_unlock(&parent_ctx->mutex);
9177
9178 perf_unpin_context(parent_ctx);
9179 put_ctx(parent_ctx);
9180
9181 return ret;
9182 }
9183
9184 /*
9185 * Initialize the perf_event context in task_struct
9186 */
9187 int perf_event_init_task(struct task_struct *child)
9188 {
9189 int ctxn, ret;
9190
9191 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
9192 mutex_init(&child->perf_event_mutex);
9193 INIT_LIST_HEAD(&child->perf_event_list);
9194
9195 for_each_task_context_nr(ctxn) {
9196 ret = perf_event_init_context(child, ctxn);
9197 if (ret) {
9198 perf_event_free_task(child);
9199 return ret;
9200 }
9201 }
9202
9203 return 0;
9204 }
9205
9206 static void __init perf_event_init_all_cpus(void)
9207 {
9208 struct swevent_htable *swhash;
9209 int cpu;
9210
9211 for_each_possible_cpu(cpu) {
9212 swhash = &per_cpu(swevent_htable, cpu);
9213 mutex_init(&swhash->hlist_mutex);
9214 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
9215 }
9216 }
9217
9218 static void perf_event_init_cpu(int cpu)
9219 {
9220 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
9221
9222 mutex_lock(&swhash->hlist_mutex);
9223 if (swhash->hlist_refcount > 0) {
9224 struct swevent_hlist *hlist;
9225
9226 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
9227 WARN_ON(!hlist);
9228 rcu_assign_pointer(swhash->swevent_hlist, hlist);
9229 }
9230 mutex_unlock(&swhash->hlist_mutex);
9231 }
9232
9233 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
9234 static void __perf_event_exit_context(void *__info)
9235 {
9236 struct perf_event_context *ctx = __info;
9237 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
9238 struct perf_event *event;
9239
9240 raw_spin_lock(&ctx->lock);
9241 list_for_each_entry(event, &ctx->event_list, event_entry)
9242 __perf_remove_from_context(event, cpuctx, ctx, (void *)(unsigned long)true);
9243 raw_spin_unlock(&ctx->lock);
9244 }
9245
9246 static void perf_event_exit_cpu_context(int cpu)
9247 {
9248 struct perf_event_context *ctx;
9249 struct pmu *pmu;
9250 int idx;
9251
9252 idx = srcu_read_lock(&pmus_srcu);
9253 list_for_each_entry_rcu(pmu, &pmus, entry) {
9254 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
9255
9256 mutex_lock(&ctx->mutex);
9257 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
9258 mutex_unlock(&ctx->mutex);
9259 }
9260 srcu_read_unlock(&pmus_srcu, idx);
9261 }
9262
9263 static void perf_event_exit_cpu(int cpu)
9264 {
9265 perf_event_exit_cpu_context(cpu);
9266 }
9267 #else
9268 static inline void perf_event_exit_cpu(int cpu) { }
9269 #endif
9270
9271 static int
9272 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
9273 {
9274 int cpu;
9275
9276 for_each_online_cpu(cpu)
9277 perf_event_exit_cpu(cpu);
9278
9279 return NOTIFY_OK;
9280 }
9281
9282 /*
9283 * Run the perf reboot notifier at the very last possible moment so that
9284 * the generic watchdog code runs as long as possible.
9285 */
9286 static struct notifier_block perf_reboot_notifier = {
9287 .notifier_call = perf_reboot,
9288 .priority = INT_MIN,
9289 };
9290
9291 static int
9292 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
9293 {
9294 unsigned int cpu = (long)hcpu;
9295
9296 switch (action & ~CPU_TASKS_FROZEN) {
9297
9298 case CPU_UP_PREPARE:
9299 case CPU_DOWN_FAILED:
9300 perf_event_init_cpu(cpu);
9301 break;
9302
9303 case CPU_UP_CANCELED:
9304 case CPU_DOWN_PREPARE:
9305 perf_event_exit_cpu(cpu);
9306 break;
9307 default:
9308 break;
9309 }
9310
9311 return NOTIFY_OK;
9312 }
9313
9314 void __init perf_event_init(void)
9315 {
9316 int ret;
9317
9318 idr_init(&pmu_idr);
9319
9320 perf_event_init_all_cpus();
9321 init_srcu_struct(&pmus_srcu);
9322 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
9323 perf_pmu_register(&perf_cpu_clock, NULL, -1);
9324 perf_pmu_register(&perf_task_clock, NULL, -1);
9325 perf_tp_register();
9326 perf_cpu_notifier(perf_cpu_notify);
9327 register_reboot_notifier(&perf_reboot_notifier);
9328
9329 ret = init_hw_breakpoint();
9330 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
9331
9332 /* do not patch jump label more than once per second */
9333 jump_label_rate_limit(&perf_sched_events, HZ);
9334
9335 /*
9336 * Build time assertion that we keep the data_head at the intended
9337 * location. IOW, validation we got the __reserved[] size right.
9338 */
9339 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
9340 != 1024);
9341 }
9342
9343 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
9344 char *page)
9345 {
9346 struct perf_pmu_events_attr *pmu_attr =
9347 container_of(attr, struct perf_pmu_events_attr, attr);
9348
9349 if (pmu_attr->event_str)
9350 return sprintf(page, "%s\n", pmu_attr->event_str);
9351
9352 return 0;
9353 }
9354
9355 static int __init perf_event_sysfs_init(void)
9356 {
9357 struct pmu *pmu;
9358 int ret;
9359
9360 mutex_lock(&pmus_lock);
9361
9362 ret = bus_register(&pmu_bus);
9363 if (ret)
9364 goto unlock;
9365
9366 list_for_each_entry(pmu, &pmus, entry) {
9367 if (!pmu->name || pmu->type < 0)
9368 continue;
9369
9370 ret = pmu_dev_alloc(pmu);
9371 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
9372 }
9373 pmu_bus_running = 1;
9374 ret = 0;
9375
9376 unlock:
9377 mutex_unlock(&pmus_lock);
9378
9379 return ret;
9380 }
9381 device_initcall(perf_event_sysfs_init);
9382
9383 #ifdef CONFIG_CGROUP_PERF
9384 static struct cgroup_subsys_state *
9385 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
9386 {
9387 struct perf_cgroup *jc;
9388
9389 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
9390 if (!jc)
9391 return ERR_PTR(-ENOMEM);
9392
9393 jc->info = alloc_percpu(struct perf_cgroup_info);
9394 if (!jc->info) {
9395 kfree(jc);
9396 return ERR_PTR(-ENOMEM);
9397 }
9398
9399 return &jc->css;
9400 }
9401
9402 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
9403 {
9404 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
9405
9406 free_percpu(jc->info);
9407 kfree(jc);
9408 }
9409
9410 static int __perf_cgroup_move(void *info)
9411 {
9412 struct task_struct *task = info;
9413 rcu_read_lock();
9414 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
9415 rcu_read_unlock();
9416 return 0;
9417 }
9418
9419 static void perf_cgroup_attach(struct cgroup_taskset *tset)
9420 {
9421 struct task_struct *task;
9422 struct cgroup_subsys_state *css;
9423
9424 cgroup_taskset_for_each(task, css, tset)
9425 task_function_call(task, __perf_cgroup_move, task);
9426 }
9427
9428 struct cgroup_subsys perf_event_cgrp_subsys = {
9429 .css_alloc = perf_cgroup_css_alloc,
9430 .css_free = perf_cgroup_css_free,
9431 .attach = perf_cgroup_attach,
9432 };
9433 #endif /* CONFIG_CGROUP_PERF */
This page took 0.662768 seconds and 4 git commands to generate.