cgroup: remove cgroup_subsys argument from callbacks
[deliverable/linux.git] / kernel / events / core.c
1 /*
2 * Performance events core code:
3 *
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8 *
9 * For licensing details see kernel-base/COPYING
10 */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/sysfs.h>
22 #include <linux/dcache.h>
23 #include <linux/percpu.h>
24 #include <linux/ptrace.h>
25 #include <linux/reboot.h>
26 #include <linux/vmstat.h>
27 #include <linux/device.h>
28 #include <linux/export.h>
29 #include <linux/vmalloc.h>
30 #include <linux/hardirq.h>
31 #include <linux/rculist.h>
32 #include <linux/uaccess.h>
33 #include <linux/syscalls.h>
34 #include <linux/anon_inodes.h>
35 #include <linux/kernel_stat.h>
36 #include <linux/perf_event.h>
37 #include <linux/ftrace_event.h>
38 #include <linux/hw_breakpoint.h>
39
40 #include "internal.h"
41
42 #include <asm/irq_regs.h>
43
44 struct remote_function_call {
45 struct task_struct *p;
46 int (*func)(void *info);
47 void *info;
48 int ret;
49 };
50
51 static void remote_function(void *data)
52 {
53 struct remote_function_call *tfc = data;
54 struct task_struct *p = tfc->p;
55
56 if (p) {
57 tfc->ret = -EAGAIN;
58 if (task_cpu(p) != smp_processor_id() || !task_curr(p))
59 return;
60 }
61
62 tfc->ret = tfc->func(tfc->info);
63 }
64
65 /**
66 * task_function_call - call a function on the cpu on which a task runs
67 * @p: the task to evaluate
68 * @func: the function to be called
69 * @info: the function call argument
70 *
71 * Calls the function @func when the task is currently running. This might
72 * be on the current CPU, which just calls the function directly
73 *
74 * returns: @func return value, or
75 * -ESRCH - when the process isn't running
76 * -EAGAIN - when the process moved away
77 */
78 static int
79 task_function_call(struct task_struct *p, int (*func) (void *info), void *info)
80 {
81 struct remote_function_call data = {
82 .p = p,
83 .func = func,
84 .info = info,
85 .ret = -ESRCH, /* No such (running) process */
86 };
87
88 if (task_curr(p))
89 smp_call_function_single(task_cpu(p), remote_function, &data, 1);
90
91 return data.ret;
92 }
93
94 /**
95 * cpu_function_call - call a function on the cpu
96 * @func: the function to be called
97 * @info: the function call argument
98 *
99 * Calls the function @func on the remote cpu.
100 *
101 * returns: @func return value or -ENXIO when the cpu is offline
102 */
103 static int cpu_function_call(int cpu, int (*func) (void *info), void *info)
104 {
105 struct remote_function_call data = {
106 .p = NULL,
107 .func = func,
108 .info = info,
109 .ret = -ENXIO, /* No such CPU */
110 };
111
112 smp_call_function_single(cpu, remote_function, &data, 1);
113
114 return data.ret;
115 }
116
117 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
118 PERF_FLAG_FD_OUTPUT |\
119 PERF_FLAG_PID_CGROUP)
120
121 enum event_type_t {
122 EVENT_FLEXIBLE = 0x1,
123 EVENT_PINNED = 0x2,
124 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
125 };
126
127 /*
128 * perf_sched_events : >0 events exist
129 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
130 */
131 struct jump_label_key_deferred perf_sched_events __read_mostly;
132 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
133
134 static atomic_t nr_mmap_events __read_mostly;
135 static atomic_t nr_comm_events __read_mostly;
136 static atomic_t nr_task_events __read_mostly;
137
138 static LIST_HEAD(pmus);
139 static DEFINE_MUTEX(pmus_lock);
140 static struct srcu_struct pmus_srcu;
141
142 /*
143 * perf event paranoia level:
144 * -1 - not paranoid at all
145 * 0 - disallow raw tracepoint access for unpriv
146 * 1 - disallow cpu events for unpriv
147 * 2 - disallow kernel profiling for unpriv
148 */
149 int sysctl_perf_event_paranoid __read_mostly = 1;
150
151 /* Minimum for 512 kiB + 1 user control page */
152 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
153
154 /*
155 * max perf event sample rate
156 */
157 #define DEFAULT_MAX_SAMPLE_RATE 100000
158 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
159 static int max_samples_per_tick __read_mostly =
160 DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
161
162 int perf_proc_update_handler(struct ctl_table *table, int write,
163 void __user *buffer, size_t *lenp,
164 loff_t *ppos)
165 {
166 int ret = proc_dointvec(table, write, buffer, lenp, ppos);
167
168 if (ret || !write)
169 return ret;
170
171 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
172
173 return 0;
174 }
175
176 static atomic64_t perf_event_id;
177
178 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
179 enum event_type_t event_type);
180
181 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
182 enum event_type_t event_type,
183 struct task_struct *task);
184
185 static void update_context_time(struct perf_event_context *ctx);
186 static u64 perf_event_time(struct perf_event *event);
187
188 static void ring_buffer_attach(struct perf_event *event,
189 struct ring_buffer *rb);
190
191 void __weak perf_event_print_debug(void) { }
192
193 extern __weak const char *perf_pmu_name(void)
194 {
195 return "pmu";
196 }
197
198 static inline u64 perf_clock(void)
199 {
200 return local_clock();
201 }
202
203 static inline struct perf_cpu_context *
204 __get_cpu_context(struct perf_event_context *ctx)
205 {
206 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
207 }
208
209 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
210 struct perf_event_context *ctx)
211 {
212 raw_spin_lock(&cpuctx->ctx.lock);
213 if (ctx)
214 raw_spin_lock(&ctx->lock);
215 }
216
217 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
218 struct perf_event_context *ctx)
219 {
220 if (ctx)
221 raw_spin_unlock(&ctx->lock);
222 raw_spin_unlock(&cpuctx->ctx.lock);
223 }
224
225 #ifdef CONFIG_CGROUP_PERF
226
227 /*
228 * Must ensure cgroup is pinned (css_get) before calling
229 * this function. In other words, we cannot call this function
230 * if there is no cgroup event for the current CPU context.
231 */
232 static inline struct perf_cgroup *
233 perf_cgroup_from_task(struct task_struct *task)
234 {
235 return container_of(task_subsys_state(task, perf_subsys_id),
236 struct perf_cgroup, css);
237 }
238
239 static inline bool
240 perf_cgroup_match(struct perf_event *event)
241 {
242 struct perf_event_context *ctx = event->ctx;
243 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
244
245 return !event->cgrp || event->cgrp == cpuctx->cgrp;
246 }
247
248 static inline void perf_get_cgroup(struct perf_event *event)
249 {
250 css_get(&event->cgrp->css);
251 }
252
253 static inline void perf_put_cgroup(struct perf_event *event)
254 {
255 css_put(&event->cgrp->css);
256 }
257
258 static inline void perf_detach_cgroup(struct perf_event *event)
259 {
260 perf_put_cgroup(event);
261 event->cgrp = NULL;
262 }
263
264 static inline int is_cgroup_event(struct perf_event *event)
265 {
266 return event->cgrp != NULL;
267 }
268
269 static inline u64 perf_cgroup_event_time(struct perf_event *event)
270 {
271 struct perf_cgroup_info *t;
272
273 t = per_cpu_ptr(event->cgrp->info, event->cpu);
274 return t->time;
275 }
276
277 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
278 {
279 struct perf_cgroup_info *info;
280 u64 now;
281
282 now = perf_clock();
283
284 info = this_cpu_ptr(cgrp->info);
285
286 info->time += now - info->timestamp;
287 info->timestamp = now;
288 }
289
290 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
291 {
292 struct perf_cgroup *cgrp_out = cpuctx->cgrp;
293 if (cgrp_out)
294 __update_cgrp_time(cgrp_out);
295 }
296
297 static inline void update_cgrp_time_from_event(struct perf_event *event)
298 {
299 struct perf_cgroup *cgrp;
300
301 /*
302 * ensure we access cgroup data only when needed and
303 * when we know the cgroup is pinned (css_get)
304 */
305 if (!is_cgroup_event(event))
306 return;
307
308 cgrp = perf_cgroup_from_task(current);
309 /*
310 * Do not update time when cgroup is not active
311 */
312 if (cgrp == event->cgrp)
313 __update_cgrp_time(event->cgrp);
314 }
315
316 static inline void
317 perf_cgroup_set_timestamp(struct task_struct *task,
318 struct perf_event_context *ctx)
319 {
320 struct perf_cgroup *cgrp;
321 struct perf_cgroup_info *info;
322
323 /*
324 * ctx->lock held by caller
325 * ensure we do not access cgroup data
326 * unless we have the cgroup pinned (css_get)
327 */
328 if (!task || !ctx->nr_cgroups)
329 return;
330
331 cgrp = perf_cgroup_from_task(task);
332 info = this_cpu_ptr(cgrp->info);
333 info->timestamp = ctx->timestamp;
334 }
335
336 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
337 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
338
339 /*
340 * reschedule events based on the cgroup constraint of task.
341 *
342 * mode SWOUT : schedule out everything
343 * mode SWIN : schedule in based on cgroup for next
344 */
345 void perf_cgroup_switch(struct task_struct *task, int mode)
346 {
347 struct perf_cpu_context *cpuctx;
348 struct pmu *pmu;
349 unsigned long flags;
350
351 /*
352 * disable interrupts to avoid geting nr_cgroup
353 * changes via __perf_event_disable(). Also
354 * avoids preemption.
355 */
356 local_irq_save(flags);
357
358 /*
359 * we reschedule only in the presence of cgroup
360 * constrained events.
361 */
362 rcu_read_lock();
363
364 list_for_each_entry_rcu(pmu, &pmus, entry) {
365 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
366
367 /*
368 * perf_cgroup_events says at least one
369 * context on this CPU has cgroup events.
370 *
371 * ctx->nr_cgroups reports the number of cgroup
372 * events for a context.
373 */
374 if (cpuctx->ctx.nr_cgroups > 0) {
375 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
376 perf_pmu_disable(cpuctx->ctx.pmu);
377
378 if (mode & PERF_CGROUP_SWOUT) {
379 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
380 /*
381 * must not be done before ctxswout due
382 * to event_filter_match() in event_sched_out()
383 */
384 cpuctx->cgrp = NULL;
385 }
386
387 if (mode & PERF_CGROUP_SWIN) {
388 WARN_ON_ONCE(cpuctx->cgrp);
389 /* set cgrp before ctxsw in to
390 * allow event_filter_match() to not
391 * have to pass task around
392 */
393 cpuctx->cgrp = perf_cgroup_from_task(task);
394 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
395 }
396 perf_pmu_enable(cpuctx->ctx.pmu);
397 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
398 }
399 }
400
401 rcu_read_unlock();
402
403 local_irq_restore(flags);
404 }
405
406 static inline void perf_cgroup_sched_out(struct task_struct *task,
407 struct task_struct *next)
408 {
409 struct perf_cgroup *cgrp1;
410 struct perf_cgroup *cgrp2 = NULL;
411
412 /*
413 * we come here when we know perf_cgroup_events > 0
414 */
415 cgrp1 = perf_cgroup_from_task(task);
416
417 /*
418 * next is NULL when called from perf_event_enable_on_exec()
419 * that will systematically cause a cgroup_switch()
420 */
421 if (next)
422 cgrp2 = perf_cgroup_from_task(next);
423
424 /*
425 * only schedule out current cgroup events if we know
426 * that we are switching to a different cgroup. Otherwise,
427 * do no touch the cgroup events.
428 */
429 if (cgrp1 != cgrp2)
430 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
431 }
432
433 static inline void perf_cgroup_sched_in(struct task_struct *prev,
434 struct task_struct *task)
435 {
436 struct perf_cgroup *cgrp1;
437 struct perf_cgroup *cgrp2 = NULL;
438
439 /*
440 * we come here when we know perf_cgroup_events > 0
441 */
442 cgrp1 = perf_cgroup_from_task(task);
443
444 /* prev can never be NULL */
445 cgrp2 = perf_cgroup_from_task(prev);
446
447 /*
448 * only need to schedule in cgroup events if we are changing
449 * cgroup during ctxsw. Cgroup events were not scheduled
450 * out of ctxsw out if that was not the case.
451 */
452 if (cgrp1 != cgrp2)
453 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
454 }
455
456 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
457 struct perf_event_attr *attr,
458 struct perf_event *group_leader)
459 {
460 struct perf_cgroup *cgrp;
461 struct cgroup_subsys_state *css;
462 struct file *file;
463 int ret = 0, fput_needed;
464
465 file = fget_light(fd, &fput_needed);
466 if (!file)
467 return -EBADF;
468
469 css = cgroup_css_from_dir(file, perf_subsys_id);
470 if (IS_ERR(css)) {
471 ret = PTR_ERR(css);
472 goto out;
473 }
474
475 cgrp = container_of(css, struct perf_cgroup, css);
476 event->cgrp = cgrp;
477
478 /* must be done before we fput() the file */
479 perf_get_cgroup(event);
480
481 /*
482 * all events in a group must monitor
483 * the same cgroup because a task belongs
484 * to only one perf cgroup at a time
485 */
486 if (group_leader && group_leader->cgrp != cgrp) {
487 perf_detach_cgroup(event);
488 ret = -EINVAL;
489 }
490 out:
491 fput_light(file, fput_needed);
492 return ret;
493 }
494
495 static inline void
496 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
497 {
498 struct perf_cgroup_info *t;
499 t = per_cpu_ptr(event->cgrp->info, event->cpu);
500 event->shadow_ctx_time = now - t->timestamp;
501 }
502
503 static inline void
504 perf_cgroup_defer_enabled(struct perf_event *event)
505 {
506 /*
507 * when the current task's perf cgroup does not match
508 * the event's, we need to remember to call the
509 * perf_mark_enable() function the first time a task with
510 * a matching perf cgroup is scheduled in.
511 */
512 if (is_cgroup_event(event) && !perf_cgroup_match(event))
513 event->cgrp_defer_enabled = 1;
514 }
515
516 static inline void
517 perf_cgroup_mark_enabled(struct perf_event *event,
518 struct perf_event_context *ctx)
519 {
520 struct perf_event *sub;
521 u64 tstamp = perf_event_time(event);
522
523 if (!event->cgrp_defer_enabled)
524 return;
525
526 event->cgrp_defer_enabled = 0;
527
528 event->tstamp_enabled = tstamp - event->total_time_enabled;
529 list_for_each_entry(sub, &event->sibling_list, group_entry) {
530 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
531 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
532 sub->cgrp_defer_enabled = 0;
533 }
534 }
535 }
536 #else /* !CONFIG_CGROUP_PERF */
537
538 static inline bool
539 perf_cgroup_match(struct perf_event *event)
540 {
541 return true;
542 }
543
544 static inline void perf_detach_cgroup(struct perf_event *event)
545 {}
546
547 static inline int is_cgroup_event(struct perf_event *event)
548 {
549 return 0;
550 }
551
552 static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
553 {
554 return 0;
555 }
556
557 static inline void update_cgrp_time_from_event(struct perf_event *event)
558 {
559 }
560
561 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
562 {
563 }
564
565 static inline void perf_cgroup_sched_out(struct task_struct *task,
566 struct task_struct *next)
567 {
568 }
569
570 static inline void perf_cgroup_sched_in(struct task_struct *prev,
571 struct task_struct *task)
572 {
573 }
574
575 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
576 struct perf_event_attr *attr,
577 struct perf_event *group_leader)
578 {
579 return -EINVAL;
580 }
581
582 static inline void
583 perf_cgroup_set_timestamp(struct task_struct *task,
584 struct perf_event_context *ctx)
585 {
586 }
587
588 void
589 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
590 {
591 }
592
593 static inline void
594 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
595 {
596 }
597
598 static inline u64 perf_cgroup_event_time(struct perf_event *event)
599 {
600 return 0;
601 }
602
603 static inline void
604 perf_cgroup_defer_enabled(struct perf_event *event)
605 {
606 }
607
608 static inline void
609 perf_cgroup_mark_enabled(struct perf_event *event,
610 struct perf_event_context *ctx)
611 {
612 }
613 #endif
614
615 void perf_pmu_disable(struct pmu *pmu)
616 {
617 int *count = this_cpu_ptr(pmu->pmu_disable_count);
618 if (!(*count)++)
619 pmu->pmu_disable(pmu);
620 }
621
622 void perf_pmu_enable(struct pmu *pmu)
623 {
624 int *count = this_cpu_ptr(pmu->pmu_disable_count);
625 if (!--(*count))
626 pmu->pmu_enable(pmu);
627 }
628
629 static DEFINE_PER_CPU(struct list_head, rotation_list);
630
631 /*
632 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
633 * because they're strictly cpu affine and rotate_start is called with IRQs
634 * disabled, while rotate_context is called from IRQ context.
635 */
636 static void perf_pmu_rotate_start(struct pmu *pmu)
637 {
638 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
639 struct list_head *head = &__get_cpu_var(rotation_list);
640
641 WARN_ON(!irqs_disabled());
642
643 if (list_empty(&cpuctx->rotation_list))
644 list_add(&cpuctx->rotation_list, head);
645 }
646
647 static void get_ctx(struct perf_event_context *ctx)
648 {
649 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
650 }
651
652 static void put_ctx(struct perf_event_context *ctx)
653 {
654 if (atomic_dec_and_test(&ctx->refcount)) {
655 if (ctx->parent_ctx)
656 put_ctx(ctx->parent_ctx);
657 if (ctx->task)
658 put_task_struct(ctx->task);
659 kfree_rcu(ctx, rcu_head);
660 }
661 }
662
663 static void unclone_ctx(struct perf_event_context *ctx)
664 {
665 if (ctx->parent_ctx) {
666 put_ctx(ctx->parent_ctx);
667 ctx->parent_ctx = NULL;
668 }
669 }
670
671 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
672 {
673 /*
674 * only top level events have the pid namespace they were created in
675 */
676 if (event->parent)
677 event = event->parent;
678
679 return task_tgid_nr_ns(p, event->ns);
680 }
681
682 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
683 {
684 /*
685 * only top level events have the pid namespace they were created in
686 */
687 if (event->parent)
688 event = event->parent;
689
690 return task_pid_nr_ns(p, event->ns);
691 }
692
693 /*
694 * If we inherit events we want to return the parent event id
695 * to userspace.
696 */
697 static u64 primary_event_id(struct perf_event *event)
698 {
699 u64 id = event->id;
700
701 if (event->parent)
702 id = event->parent->id;
703
704 return id;
705 }
706
707 /*
708 * Get the perf_event_context for a task and lock it.
709 * This has to cope with with the fact that until it is locked,
710 * the context could get moved to another task.
711 */
712 static struct perf_event_context *
713 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
714 {
715 struct perf_event_context *ctx;
716
717 rcu_read_lock();
718 retry:
719 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
720 if (ctx) {
721 /*
722 * If this context is a clone of another, it might
723 * get swapped for another underneath us by
724 * perf_event_task_sched_out, though the
725 * rcu_read_lock() protects us from any context
726 * getting freed. Lock the context and check if it
727 * got swapped before we could get the lock, and retry
728 * if so. If we locked the right context, then it
729 * can't get swapped on us any more.
730 */
731 raw_spin_lock_irqsave(&ctx->lock, *flags);
732 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
733 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
734 goto retry;
735 }
736
737 if (!atomic_inc_not_zero(&ctx->refcount)) {
738 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
739 ctx = NULL;
740 }
741 }
742 rcu_read_unlock();
743 return ctx;
744 }
745
746 /*
747 * Get the context for a task and increment its pin_count so it
748 * can't get swapped to another task. This also increments its
749 * reference count so that the context can't get freed.
750 */
751 static struct perf_event_context *
752 perf_pin_task_context(struct task_struct *task, int ctxn)
753 {
754 struct perf_event_context *ctx;
755 unsigned long flags;
756
757 ctx = perf_lock_task_context(task, ctxn, &flags);
758 if (ctx) {
759 ++ctx->pin_count;
760 raw_spin_unlock_irqrestore(&ctx->lock, flags);
761 }
762 return ctx;
763 }
764
765 static void perf_unpin_context(struct perf_event_context *ctx)
766 {
767 unsigned long flags;
768
769 raw_spin_lock_irqsave(&ctx->lock, flags);
770 --ctx->pin_count;
771 raw_spin_unlock_irqrestore(&ctx->lock, flags);
772 }
773
774 /*
775 * Update the record of the current time in a context.
776 */
777 static void update_context_time(struct perf_event_context *ctx)
778 {
779 u64 now = perf_clock();
780
781 ctx->time += now - ctx->timestamp;
782 ctx->timestamp = now;
783 }
784
785 static u64 perf_event_time(struct perf_event *event)
786 {
787 struct perf_event_context *ctx = event->ctx;
788
789 if (is_cgroup_event(event))
790 return perf_cgroup_event_time(event);
791
792 return ctx ? ctx->time : 0;
793 }
794
795 /*
796 * Update the total_time_enabled and total_time_running fields for a event.
797 * The caller of this function needs to hold the ctx->lock.
798 */
799 static void update_event_times(struct perf_event *event)
800 {
801 struct perf_event_context *ctx = event->ctx;
802 u64 run_end;
803
804 if (event->state < PERF_EVENT_STATE_INACTIVE ||
805 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
806 return;
807 /*
808 * in cgroup mode, time_enabled represents
809 * the time the event was enabled AND active
810 * tasks were in the monitored cgroup. This is
811 * independent of the activity of the context as
812 * there may be a mix of cgroup and non-cgroup events.
813 *
814 * That is why we treat cgroup events differently
815 * here.
816 */
817 if (is_cgroup_event(event))
818 run_end = perf_event_time(event);
819 else if (ctx->is_active)
820 run_end = ctx->time;
821 else
822 run_end = event->tstamp_stopped;
823
824 event->total_time_enabled = run_end - event->tstamp_enabled;
825
826 if (event->state == PERF_EVENT_STATE_INACTIVE)
827 run_end = event->tstamp_stopped;
828 else
829 run_end = perf_event_time(event);
830
831 event->total_time_running = run_end - event->tstamp_running;
832
833 }
834
835 /*
836 * Update total_time_enabled and total_time_running for all events in a group.
837 */
838 static void update_group_times(struct perf_event *leader)
839 {
840 struct perf_event *event;
841
842 update_event_times(leader);
843 list_for_each_entry(event, &leader->sibling_list, group_entry)
844 update_event_times(event);
845 }
846
847 static struct list_head *
848 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
849 {
850 if (event->attr.pinned)
851 return &ctx->pinned_groups;
852 else
853 return &ctx->flexible_groups;
854 }
855
856 /*
857 * Add a event from the lists for its context.
858 * Must be called with ctx->mutex and ctx->lock held.
859 */
860 static void
861 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
862 {
863 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
864 event->attach_state |= PERF_ATTACH_CONTEXT;
865
866 /*
867 * If we're a stand alone event or group leader, we go to the context
868 * list, group events are kept attached to the group so that
869 * perf_group_detach can, at all times, locate all siblings.
870 */
871 if (event->group_leader == event) {
872 struct list_head *list;
873
874 if (is_software_event(event))
875 event->group_flags |= PERF_GROUP_SOFTWARE;
876
877 list = ctx_group_list(event, ctx);
878 list_add_tail(&event->group_entry, list);
879 }
880
881 if (is_cgroup_event(event))
882 ctx->nr_cgroups++;
883
884 list_add_rcu(&event->event_entry, &ctx->event_list);
885 if (!ctx->nr_events)
886 perf_pmu_rotate_start(ctx->pmu);
887 ctx->nr_events++;
888 if (event->attr.inherit_stat)
889 ctx->nr_stat++;
890 }
891
892 /*
893 * Called at perf_event creation and when events are attached/detached from a
894 * group.
895 */
896 static void perf_event__read_size(struct perf_event *event)
897 {
898 int entry = sizeof(u64); /* value */
899 int size = 0;
900 int nr = 1;
901
902 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
903 size += sizeof(u64);
904
905 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
906 size += sizeof(u64);
907
908 if (event->attr.read_format & PERF_FORMAT_ID)
909 entry += sizeof(u64);
910
911 if (event->attr.read_format & PERF_FORMAT_GROUP) {
912 nr += event->group_leader->nr_siblings;
913 size += sizeof(u64);
914 }
915
916 size += entry * nr;
917 event->read_size = size;
918 }
919
920 static void perf_event__header_size(struct perf_event *event)
921 {
922 struct perf_sample_data *data;
923 u64 sample_type = event->attr.sample_type;
924 u16 size = 0;
925
926 perf_event__read_size(event);
927
928 if (sample_type & PERF_SAMPLE_IP)
929 size += sizeof(data->ip);
930
931 if (sample_type & PERF_SAMPLE_ADDR)
932 size += sizeof(data->addr);
933
934 if (sample_type & PERF_SAMPLE_PERIOD)
935 size += sizeof(data->period);
936
937 if (sample_type & PERF_SAMPLE_READ)
938 size += event->read_size;
939
940 event->header_size = size;
941 }
942
943 static void perf_event__id_header_size(struct perf_event *event)
944 {
945 struct perf_sample_data *data;
946 u64 sample_type = event->attr.sample_type;
947 u16 size = 0;
948
949 if (sample_type & PERF_SAMPLE_TID)
950 size += sizeof(data->tid_entry);
951
952 if (sample_type & PERF_SAMPLE_TIME)
953 size += sizeof(data->time);
954
955 if (sample_type & PERF_SAMPLE_ID)
956 size += sizeof(data->id);
957
958 if (sample_type & PERF_SAMPLE_STREAM_ID)
959 size += sizeof(data->stream_id);
960
961 if (sample_type & PERF_SAMPLE_CPU)
962 size += sizeof(data->cpu_entry);
963
964 event->id_header_size = size;
965 }
966
967 static void perf_group_attach(struct perf_event *event)
968 {
969 struct perf_event *group_leader = event->group_leader, *pos;
970
971 /*
972 * We can have double attach due to group movement in perf_event_open.
973 */
974 if (event->attach_state & PERF_ATTACH_GROUP)
975 return;
976
977 event->attach_state |= PERF_ATTACH_GROUP;
978
979 if (group_leader == event)
980 return;
981
982 if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
983 !is_software_event(event))
984 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
985
986 list_add_tail(&event->group_entry, &group_leader->sibling_list);
987 group_leader->nr_siblings++;
988
989 perf_event__header_size(group_leader);
990
991 list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
992 perf_event__header_size(pos);
993 }
994
995 /*
996 * Remove a event from the lists for its context.
997 * Must be called with ctx->mutex and ctx->lock held.
998 */
999 static void
1000 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1001 {
1002 struct perf_cpu_context *cpuctx;
1003 /*
1004 * We can have double detach due to exit/hot-unplug + close.
1005 */
1006 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1007 return;
1008
1009 event->attach_state &= ~PERF_ATTACH_CONTEXT;
1010
1011 if (is_cgroup_event(event)) {
1012 ctx->nr_cgroups--;
1013 cpuctx = __get_cpu_context(ctx);
1014 /*
1015 * if there are no more cgroup events
1016 * then cler cgrp to avoid stale pointer
1017 * in update_cgrp_time_from_cpuctx()
1018 */
1019 if (!ctx->nr_cgroups)
1020 cpuctx->cgrp = NULL;
1021 }
1022
1023 ctx->nr_events--;
1024 if (event->attr.inherit_stat)
1025 ctx->nr_stat--;
1026
1027 list_del_rcu(&event->event_entry);
1028
1029 if (event->group_leader == event)
1030 list_del_init(&event->group_entry);
1031
1032 update_group_times(event);
1033
1034 /*
1035 * If event was in error state, then keep it
1036 * that way, otherwise bogus counts will be
1037 * returned on read(). The only way to get out
1038 * of error state is by explicit re-enabling
1039 * of the event
1040 */
1041 if (event->state > PERF_EVENT_STATE_OFF)
1042 event->state = PERF_EVENT_STATE_OFF;
1043 }
1044
1045 static void perf_group_detach(struct perf_event *event)
1046 {
1047 struct perf_event *sibling, *tmp;
1048 struct list_head *list = NULL;
1049
1050 /*
1051 * We can have double detach due to exit/hot-unplug + close.
1052 */
1053 if (!(event->attach_state & PERF_ATTACH_GROUP))
1054 return;
1055
1056 event->attach_state &= ~PERF_ATTACH_GROUP;
1057
1058 /*
1059 * If this is a sibling, remove it from its group.
1060 */
1061 if (event->group_leader != event) {
1062 list_del_init(&event->group_entry);
1063 event->group_leader->nr_siblings--;
1064 goto out;
1065 }
1066
1067 if (!list_empty(&event->group_entry))
1068 list = &event->group_entry;
1069
1070 /*
1071 * If this was a group event with sibling events then
1072 * upgrade the siblings to singleton events by adding them
1073 * to whatever list we are on.
1074 */
1075 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1076 if (list)
1077 list_move_tail(&sibling->group_entry, list);
1078 sibling->group_leader = sibling;
1079
1080 /* Inherit group flags from the previous leader */
1081 sibling->group_flags = event->group_flags;
1082 }
1083
1084 out:
1085 perf_event__header_size(event->group_leader);
1086
1087 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1088 perf_event__header_size(tmp);
1089 }
1090
1091 static inline int
1092 event_filter_match(struct perf_event *event)
1093 {
1094 return (event->cpu == -1 || event->cpu == smp_processor_id())
1095 && perf_cgroup_match(event);
1096 }
1097
1098 static void
1099 event_sched_out(struct perf_event *event,
1100 struct perf_cpu_context *cpuctx,
1101 struct perf_event_context *ctx)
1102 {
1103 u64 tstamp = perf_event_time(event);
1104 u64 delta;
1105 /*
1106 * An event which could not be activated because of
1107 * filter mismatch still needs to have its timings
1108 * maintained, otherwise bogus information is return
1109 * via read() for time_enabled, time_running:
1110 */
1111 if (event->state == PERF_EVENT_STATE_INACTIVE
1112 && !event_filter_match(event)) {
1113 delta = tstamp - event->tstamp_stopped;
1114 event->tstamp_running += delta;
1115 event->tstamp_stopped = tstamp;
1116 }
1117
1118 if (event->state != PERF_EVENT_STATE_ACTIVE)
1119 return;
1120
1121 event->state = PERF_EVENT_STATE_INACTIVE;
1122 if (event->pending_disable) {
1123 event->pending_disable = 0;
1124 event->state = PERF_EVENT_STATE_OFF;
1125 }
1126 event->tstamp_stopped = tstamp;
1127 event->pmu->del(event, 0);
1128 event->oncpu = -1;
1129
1130 if (!is_software_event(event))
1131 cpuctx->active_oncpu--;
1132 ctx->nr_active--;
1133 if (event->attr.freq && event->attr.sample_freq)
1134 ctx->nr_freq--;
1135 if (event->attr.exclusive || !cpuctx->active_oncpu)
1136 cpuctx->exclusive = 0;
1137 }
1138
1139 static void
1140 group_sched_out(struct perf_event *group_event,
1141 struct perf_cpu_context *cpuctx,
1142 struct perf_event_context *ctx)
1143 {
1144 struct perf_event *event;
1145 int state = group_event->state;
1146
1147 event_sched_out(group_event, cpuctx, ctx);
1148
1149 /*
1150 * Schedule out siblings (if any):
1151 */
1152 list_for_each_entry(event, &group_event->sibling_list, group_entry)
1153 event_sched_out(event, cpuctx, ctx);
1154
1155 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1156 cpuctx->exclusive = 0;
1157 }
1158
1159 /*
1160 * Cross CPU call to remove a performance event
1161 *
1162 * We disable the event on the hardware level first. After that we
1163 * remove it from the context list.
1164 */
1165 static int __perf_remove_from_context(void *info)
1166 {
1167 struct perf_event *event = info;
1168 struct perf_event_context *ctx = event->ctx;
1169 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1170
1171 raw_spin_lock(&ctx->lock);
1172 event_sched_out(event, cpuctx, ctx);
1173 list_del_event(event, ctx);
1174 if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
1175 ctx->is_active = 0;
1176 cpuctx->task_ctx = NULL;
1177 }
1178 raw_spin_unlock(&ctx->lock);
1179
1180 return 0;
1181 }
1182
1183
1184 /*
1185 * Remove the event from a task's (or a CPU's) list of events.
1186 *
1187 * CPU events are removed with a smp call. For task events we only
1188 * call when the task is on a CPU.
1189 *
1190 * If event->ctx is a cloned context, callers must make sure that
1191 * every task struct that event->ctx->task could possibly point to
1192 * remains valid. This is OK when called from perf_release since
1193 * that only calls us on the top-level context, which can't be a clone.
1194 * When called from perf_event_exit_task, it's OK because the
1195 * context has been detached from its task.
1196 */
1197 static void perf_remove_from_context(struct perf_event *event)
1198 {
1199 struct perf_event_context *ctx = event->ctx;
1200 struct task_struct *task = ctx->task;
1201
1202 lockdep_assert_held(&ctx->mutex);
1203
1204 if (!task) {
1205 /*
1206 * Per cpu events are removed via an smp call and
1207 * the removal is always successful.
1208 */
1209 cpu_function_call(event->cpu, __perf_remove_from_context, event);
1210 return;
1211 }
1212
1213 retry:
1214 if (!task_function_call(task, __perf_remove_from_context, event))
1215 return;
1216
1217 raw_spin_lock_irq(&ctx->lock);
1218 /*
1219 * If we failed to find a running task, but find the context active now
1220 * that we've acquired the ctx->lock, retry.
1221 */
1222 if (ctx->is_active) {
1223 raw_spin_unlock_irq(&ctx->lock);
1224 goto retry;
1225 }
1226
1227 /*
1228 * Since the task isn't running, its safe to remove the event, us
1229 * holding the ctx->lock ensures the task won't get scheduled in.
1230 */
1231 list_del_event(event, ctx);
1232 raw_spin_unlock_irq(&ctx->lock);
1233 }
1234
1235 /*
1236 * Cross CPU call to disable a performance event
1237 */
1238 static int __perf_event_disable(void *info)
1239 {
1240 struct perf_event *event = info;
1241 struct perf_event_context *ctx = event->ctx;
1242 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1243
1244 /*
1245 * If this is a per-task event, need to check whether this
1246 * event's task is the current task on this cpu.
1247 *
1248 * Can trigger due to concurrent perf_event_context_sched_out()
1249 * flipping contexts around.
1250 */
1251 if (ctx->task && cpuctx->task_ctx != ctx)
1252 return -EINVAL;
1253
1254 raw_spin_lock(&ctx->lock);
1255
1256 /*
1257 * If the event is on, turn it off.
1258 * If it is in error state, leave it in error state.
1259 */
1260 if (event->state >= PERF_EVENT_STATE_INACTIVE) {
1261 update_context_time(ctx);
1262 update_cgrp_time_from_event(event);
1263 update_group_times(event);
1264 if (event == event->group_leader)
1265 group_sched_out(event, cpuctx, ctx);
1266 else
1267 event_sched_out(event, cpuctx, ctx);
1268 event->state = PERF_EVENT_STATE_OFF;
1269 }
1270
1271 raw_spin_unlock(&ctx->lock);
1272
1273 return 0;
1274 }
1275
1276 /*
1277 * Disable a event.
1278 *
1279 * If event->ctx is a cloned context, callers must make sure that
1280 * every task struct that event->ctx->task could possibly point to
1281 * remains valid. This condition is satisifed when called through
1282 * perf_event_for_each_child or perf_event_for_each because they
1283 * hold the top-level event's child_mutex, so any descendant that
1284 * goes to exit will block in sync_child_event.
1285 * When called from perf_pending_event it's OK because event->ctx
1286 * is the current context on this CPU and preemption is disabled,
1287 * hence we can't get into perf_event_task_sched_out for this context.
1288 */
1289 void perf_event_disable(struct perf_event *event)
1290 {
1291 struct perf_event_context *ctx = event->ctx;
1292 struct task_struct *task = ctx->task;
1293
1294 if (!task) {
1295 /*
1296 * Disable the event on the cpu that it's on
1297 */
1298 cpu_function_call(event->cpu, __perf_event_disable, event);
1299 return;
1300 }
1301
1302 retry:
1303 if (!task_function_call(task, __perf_event_disable, event))
1304 return;
1305
1306 raw_spin_lock_irq(&ctx->lock);
1307 /*
1308 * If the event is still active, we need to retry the cross-call.
1309 */
1310 if (event->state == PERF_EVENT_STATE_ACTIVE) {
1311 raw_spin_unlock_irq(&ctx->lock);
1312 /*
1313 * Reload the task pointer, it might have been changed by
1314 * a concurrent perf_event_context_sched_out().
1315 */
1316 task = ctx->task;
1317 goto retry;
1318 }
1319
1320 /*
1321 * Since we have the lock this context can't be scheduled
1322 * in, so we can change the state safely.
1323 */
1324 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1325 update_group_times(event);
1326 event->state = PERF_EVENT_STATE_OFF;
1327 }
1328 raw_spin_unlock_irq(&ctx->lock);
1329 }
1330 EXPORT_SYMBOL_GPL(perf_event_disable);
1331
1332 static void perf_set_shadow_time(struct perf_event *event,
1333 struct perf_event_context *ctx,
1334 u64 tstamp)
1335 {
1336 /*
1337 * use the correct time source for the time snapshot
1338 *
1339 * We could get by without this by leveraging the
1340 * fact that to get to this function, the caller
1341 * has most likely already called update_context_time()
1342 * and update_cgrp_time_xx() and thus both timestamp
1343 * are identical (or very close). Given that tstamp is,
1344 * already adjusted for cgroup, we could say that:
1345 * tstamp - ctx->timestamp
1346 * is equivalent to
1347 * tstamp - cgrp->timestamp.
1348 *
1349 * Then, in perf_output_read(), the calculation would
1350 * work with no changes because:
1351 * - event is guaranteed scheduled in
1352 * - no scheduled out in between
1353 * - thus the timestamp would be the same
1354 *
1355 * But this is a bit hairy.
1356 *
1357 * So instead, we have an explicit cgroup call to remain
1358 * within the time time source all along. We believe it
1359 * is cleaner and simpler to understand.
1360 */
1361 if (is_cgroup_event(event))
1362 perf_cgroup_set_shadow_time(event, tstamp);
1363 else
1364 event->shadow_ctx_time = tstamp - ctx->timestamp;
1365 }
1366
1367 #define MAX_INTERRUPTS (~0ULL)
1368
1369 static void perf_log_throttle(struct perf_event *event, int enable);
1370
1371 static int
1372 event_sched_in(struct perf_event *event,
1373 struct perf_cpu_context *cpuctx,
1374 struct perf_event_context *ctx)
1375 {
1376 u64 tstamp = perf_event_time(event);
1377
1378 if (event->state <= PERF_EVENT_STATE_OFF)
1379 return 0;
1380
1381 event->state = PERF_EVENT_STATE_ACTIVE;
1382 event->oncpu = smp_processor_id();
1383
1384 /*
1385 * Unthrottle events, since we scheduled we might have missed several
1386 * ticks already, also for a heavily scheduling task there is little
1387 * guarantee it'll get a tick in a timely manner.
1388 */
1389 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
1390 perf_log_throttle(event, 1);
1391 event->hw.interrupts = 0;
1392 }
1393
1394 /*
1395 * The new state must be visible before we turn it on in the hardware:
1396 */
1397 smp_wmb();
1398
1399 if (event->pmu->add(event, PERF_EF_START)) {
1400 event->state = PERF_EVENT_STATE_INACTIVE;
1401 event->oncpu = -1;
1402 return -EAGAIN;
1403 }
1404
1405 event->tstamp_running += tstamp - event->tstamp_stopped;
1406
1407 perf_set_shadow_time(event, ctx, tstamp);
1408
1409 if (!is_software_event(event))
1410 cpuctx->active_oncpu++;
1411 ctx->nr_active++;
1412 if (event->attr.freq && event->attr.sample_freq)
1413 ctx->nr_freq++;
1414
1415 if (event->attr.exclusive)
1416 cpuctx->exclusive = 1;
1417
1418 return 0;
1419 }
1420
1421 static int
1422 group_sched_in(struct perf_event *group_event,
1423 struct perf_cpu_context *cpuctx,
1424 struct perf_event_context *ctx)
1425 {
1426 struct perf_event *event, *partial_group = NULL;
1427 struct pmu *pmu = group_event->pmu;
1428 u64 now = ctx->time;
1429 bool simulate = false;
1430
1431 if (group_event->state == PERF_EVENT_STATE_OFF)
1432 return 0;
1433
1434 pmu->start_txn(pmu);
1435
1436 if (event_sched_in(group_event, cpuctx, ctx)) {
1437 pmu->cancel_txn(pmu);
1438 return -EAGAIN;
1439 }
1440
1441 /*
1442 * Schedule in siblings as one group (if any):
1443 */
1444 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1445 if (event_sched_in(event, cpuctx, ctx)) {
1446 partial_group = event;
1447 goto group_error;
1448 }
1449 }
1450
1451 if (!pmu->commit_txn(pmu))
1452 return 0;
1453
1454 group_error:
1455 /*
1456 * Groups can be scheduled in as one unit only, so undo any
1457 * partial group before returning:
1458 * The events up to the failed event are scheduled out normally,
1459 * tstamp_stopped will be updated.
1460 *
1461 * The failed events and the remaining siblings need to have
1462 * their timings updated as if they had gone thru event_sched_in()
1463 * and event_sched_out(). This is required to get consistent timings
1464 * across the group. This also takes care of the case where the group
1465 * could never be scheduled by ensuring tstamp_stopped is set to mark
1466 * the time the event was actually stopped, such that time delta
1467 * calculation in update_event_times() is correct.
1468 */
1469 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1470 if (event == partial_group)
1471 simulate = true;
1472
1473 if (simulate) {
1474 event->tstamp_running += now - event->tstamp_stopped;
1475 event->tstamp_stopped = now;
1476 } else {
1477 event_sched_out(event, cpuctx, ctx);
1478 }
1479 }
1480 event_sched_out(group_event, cpuctx, ctx);
1481
1482 pmu->cancel_txn(pmu);
1483
1484 return -EAGAIN;
1485 }
1486
1487 /*
1488 * Work out whether we can put this event group on the CPU now.
1489 */
1490 static int group_can_go_on(struct perf_event *event,
1491 struct perf_cpu_context *cpuctx,
1492 int can_add_hw)
1493 {
1494 /*
1495 * Groups consisting entirely of software events can always go on.
1496 */
1497 if (event->group_flags & PERF_GROUP_SOFTWARE)
1498 return 1;
1499 /*
1500 * If an exclusive group is already on, no other hardware
1501 * events can go on.
1502 */
1503 if (cpuctx->exclusive)
1504 return 0;
1505 /*
1506 * If this group is exclusive and there are already
1507 * events on the CPU, it can't go on.
1508 */
1509 if (event->attr.exclusive && cpuctx->active_oncpu)
1510 return 0;
1511 /*
1512 * Otherwise, try to add it if all previous groups were able
1513 * to go on.
1514 */
1515 return can_add_hw;
1516 }
1517
1518 static void add_event_to_ctx(struct perf_event *event,
1519 struct perf_event_context *ctx)
1520 {
1521 u64 tstamp = perf_event_time(event);
1522
1523 list_add_event(event, ctx);
1524 perf_group_attach(event);
1525 event->tstamp_enabled = tstamp;
1526 event->tstamp_running = tstamp;
1527 event->tstamp_stopped = tstamp;
1528 }
1529
1530 static void task_ctx_sched_out(struct perf_event_context *ctx);
1531 static void
1532 ctx_sched_in(struct perf_event_context *ctx,
1533 struct perf_cpu_context *cpuctx,
1534 enum event_type_t event_type,
1535 struct task_struct *task);
1536
1537 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
1538 struct perf_event_context *ctx,
1539 struct task_struct *task)
1540 {
1541 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
1542 if (ctx)
1543 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
1544 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
1545 if (ctx)
1546 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
1547 }
1548
1549 /*
1550 * Cross CPU call to install and enable a performance event
1551 *
1552 * Must be called with ctx->mutex held
1553 */
1554 static int __perf_install_in_context(void *info)
1555 {
1556 struct perf_event *event = info;
1557 struct perf_event_context *ctx = event->ctx;
1558 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1559 struct perf_event_context *task_ctx = cpuctx->task_ctx;
1560 struct task_struct *task = current;
1561
1562 perf_ctx_lock(cpuctx, task_ctx);
1563 perf_pmu_disable(cpuctx->ctx.pmu);
1564
1565 /*
1566 * If there was an active task_ctx schedule it out.
1567 */
1568 if (task_ctx)
1569 task_ctx_sched_out(task_ctx);
1570
1571 /*
1572 * If the context we're installing events in is not the
1573 * active task_ctx, flip them.
1574 */
1575 if (ctx->task && task_ctx != ctx) {
1576 if (task_ctx)
1577 raw_spin_unlock(&task_ctx->lock);
1578 raw_spin_lock(&ctx->lock);
1579 task_ctx = ctx;
1580 }
1581
1582 if (task_ctx) {
1583 cpuctx->task_ctx = task_ctx;
1584 task = task_ctx->task;
1585 }
1586
1587 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
1588
1589 update_context_time(ctx);
1590 /*
1591 * update cgrp time only if current cgrp
1592 * matches event->cgrp. Must be done before
1593 * calling add_event_to_ctx()
1594 */
1595 update_cgrp_time_from_event(event);
1596
1597 add_event_to_ctx(event, ctx);
1598
1599 /*
1600 * Schedule everything back in
1601 */
1602 perf_event_sched_in(cpuctx, task_ctx, task);
1603
1604 perf_pmu_enable(cpuctx->ctx.pmu);
1605 perf_ctx_unlock(cpuctx, task_ctx);
1606
1607 return 0;
1608 }
1609
1610 /*
1611 * Attach a performance event to a context
1612 *
1613 * First we add the event to the list with the hardware enable bit
1614 * in event->hw_config cleared.
1615 *
1616 * If the event is attached to a task which is on a CPU we use a smp
1617 * call to enable it in the task context. The task might have been
1618 * scheduled away, but we check this in the smp call again.
1619 */
1620 static void
1621 perf_install_in_context(struct perf_event_context *ctx,
1622 struct perf_event *event,
1623 int cpu)
1624 {
1625 struct task_struct *task = ctx->task;
1626
1627 lockdep_assert_held(&ctx->mutex);
1628
1629 event->ctx = ctx;
1630
1631 if (!task) {
1632 /*
1633 * Per cpu events are installed via an smp call and
1634 * the install is always successful.
1635 */
1636 cpu_function_call(cpu, __perf_install_in_context, event);
1637 return;
1638 }
1639
1640 retry:
1641 if (!task_function_call(task, __perf_install_in_context, event))
1642 return;
1643
1644 raw_spin_lock_irq(&ctx->lock);
1645 /*
1646 * If we failed to find a running task, but find the context active now
1647 * that we've acquired the ctx->lock, retry.
1648 */
1649 if (ctx->is_active) {
1650 raw_spin_unlock_irq(&ctx->lock);
1651 goto retry;
1652 }
1653
1654 /*
1655 * Since the task isn't running, its safe to add the event, us holding
1656 * the ctx->lock ensures the task won't get scheduled in.
1657 */
1658 add_event_to_ctx(event, ctx);
1659 raw_spin_unlock_irq(&ctx->lock);
1660 }
1661
1662 /*
1663 * Put a event into inactive state and update time fields.
1664 * Enabling the leader of a group effectively enables all
1665 * the group members that aren't explicitly disabled, so we
1666 * have to update their ->tstamp_enabled also.
1667 * Note: this works for group members as well as group leaders
1668 * since the non-leader members' sibling_lists will be empty.
1669 */
1670 static void __perf_event_mark_enabled(struct perf_event *event)
1671 {
1672 struct perf_event *sub;
1673 u64 tstamp = perf_event_time(event);
1674
1675 event->state = PERF_EVENT_STATE_INACTIVE;
1676 event->tstamp_enabled = tstamp - event->total_time_enabled;
1677 list_for_each_entry(sub, &event->sibling_list, group_entry) {
1678 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
1679 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
1680 }
1681 }
1682
1683 /*
1684 * Cross CPU call to enable a performance event
1685 */
1686 static int __perf_event_enable(void *info)
1687 {
1688 struct perf_event *event = info;
1689 struct perf_event_context *ctx = event->ctx;
1690 struct perf_event *leader = event->group_leader;
1691 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1692 int err;
1693
1694 if (WARN_ON_ONCE(!ctx->is_active))
1695 return -EINVAL;
1696
1697 raw_spin_lock(&ctx->lock);
1698 update_context_time(ctx);
1699
1700 if (event->state >= PERF_EVENT_STATE_INACTIVE)
1701 goto unlock;
1702
1703 /*
1704 * set current task's cgroup time reference point
1705 */
1706 perf_cgroup_set_timestamp(current, ctx);
1707
1708 __perf_event_mark_enabled(event);
1709
1710 if (!event_filter_match(event)) {
1711 if (is_cgroup_event(event))
1712 perf_cgroup_defer_enabled(event);
1713 goto unlock;
1714 }
1715
1716 /*
1717 * If the event is in a group and isn't the group leader,
1718 * then don't put it on unless the group is on.
1719 */
1720 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
1721 goto unlock;
1722
1723 if (!group_can_go_on(event, cpuctx, 1)) {
1724 err = -EEXIST;
1725 } else {
1726 if (event == leader)
1727 err = group_sched_in(event, cpuctx, ctx);
1728 else
1729 err = event_sched_in(event, cpuctx, ctx);
1730 }
1731
1732 if (err) {
1733 /*
1734 * If this event can't go on and it's part of a
1735 * group, then the whole group has to come off.
1736 */
1737 if (leader != event)
1738 group_sched_out(leader, cpuctx, ctx);
1739 if (leader->attr.pinned) {
1740 update_group_times(leader);
1741 leader->state = PERF_EVENT_STATE_ERROR;
1742 }
1743 }
1744
1745 unlock:
1746 raw_spin_unlock(&ctx->lock);
1747
1748 return 0;
1749 }
1750
1751 /*
1752 * Enable a event.
1753 *
1754 * If event->ctx is a cloned context, callers must make sure that
1755 * every task struct that event->ctx->task could possibly point to
1756 * remains valid. This condition is satisfied when called through
1757 * perf_event_for_each_child or perf_event_for_each as described
1758 * for perf_event_disable.
1759 */
1760 void perf_event_enable(struct perf_event *event)
1761 {
1762 struct perf_event_context *ctx = event->ctx;
1763 struct task_struct *task = ctx->task;
1764
1765 if (!task) {
1766 /*
1767 * Enable the event on the cpu that it's on
1768 */
1769 cpu_function_call(event->cpu, __perf_event_enable, event);
1770 return;
1771 }
1772
1773 raw_spin_lock_irq(&ctx->lock);
1774 if (event->state >= PERF_EVENT_STATE_INACTIVE)
1775 goto out;
1776
1777 /*
1778 * If the event is in error state, clear that first.
1779 * That way, if we see the event in error state below, we
1780 * know that it has gone back into error state, as distinct
1781 * from the task having been scheduled away before the
1782 * cross-call arrived.
1783 */
1784 if (event->state == PERF_EVENT_STATE_ERROR)
1785 event->state = PERF_EVENT_STATE_OFF;
1786
1787 retry:
1788 if (!ctx->is_active) {
1789 __perf_event_mark_enabled(event);
1790 goto out;
1791 }
1792
1793 raw_spin_unlock_irq(&ctx->lock);
1794
1795 if (!task_function_call(task, __perf_event_enable, event))
1796 return;
1797
1798 raw_spin_lock_irq(&ctx->lock);
1799
1800 /*
1801 * If the context is active and the event is still off,
1802 * we need to retry the cross-call.
1803 */
1804 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
1805 /*
1806 * task could have been flipped by a concurrent
1807 * perf_event_context_sched_out()
1808 */
1809 task = ctx->task;
1810 goto retry;
1811 }
1812
1813 out:
1814 raw_spin_unlock_irq(&ctx->lock);
1815 }
1816 EXPORT_SYMBOL_GPL(perf_event_enable);
1817
1818 int perf_event_refresh(struct perf_event *event, int refresh)
1819 {
1820 /*
1821 * not supported on inherited events
1822 */
1823 if (event->attr.inherit || !is_sampling_event(event))
1824 return -EINVAL;
1825
1826 atomic_add(refresh, &event->event_limit);
1827 perf_event_enable(event);
1828
1829 return 0;
1830 }
1831 EXPORT_SYMBOL_GPL(perf_event_refresh);
1832
1833 static void ctx_sched_out(struct perf_event_context *ctx,
1834 struct perf_cpu_context *cpuctx,
1835 enum event_type_t event_type)
1836 {
1837 struct perf_event *event;
1838 int is_active = ctx->is_active;
1839
1840 ctx->is_active &= ~event_type;
1841 if (likely(!ctx->nr_events))
1842 return;
1843
1844 update_context_time(ctx);
1845 update_cgrp_time_from_cpuctx(cpuctx);
1846 if (!ctx->nr_active)
1847 return;
1848
1849 perf_pmu_disable(ctx->pmu);
1850 if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
1851 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
1852 group_sched_out(event, cpuctx, ctx);
1853 }
1854
1855 if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
1856 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
1857 group_sched_out(event, cpuctx, ctx);
1858 }
1859 perf_pmu_enable(ctx->pmu);
1860 }
1861
1862 /*
1863 * Test whether two contexts are equivalent, i.e. whether they
1864 * have both been cloned from the same version of the same context
1865 * and they both have the same number of enabled events.
1866 * If the number of enabled events is the same, then the set
1867 * of enabled events should be the same, because these are both
1868 * inherited contexts, therefore we can't access individual events
1869 * in them directly with an fd; we can only enable/disable all
1870 * events via prctl, or enable/disable all events in a family
1871 * via ioctl, which will have the same effect on both contexts.
1872 */
1873 static int context_equiv(struct perf_event_context *ctx1,
1874 struct perf_event_context *ctx2)
1875 {
1876 return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1877 && ctx1->parent_gen == ctx2->parent_gen
1878 && !ctx1->pin_count && !ctx2->pin_count;
1879 }
1880
1881 static void __perf_event_sync_stat(struct perf_event *event,
1882 struct perf_event *next_event)
1883 {
1884 u64 value;
1885
1886 if (!event->attr.inherit_stat)
1887 return;
1888
1889 /*
1890 * Update the event value, we cannot use perf_event_read()
1891 * because we're in the middle of a context switch and have IRQs
1892 * disabled, which upsets smp_call_function_single(), however
1893 * we know the event must be on the current CPU, therefore we
1894 * don't need to use it.
1895 */
1896 switch (event->state) {
1897 case PERF_EVENT_STATE_ACTIVE:
1898 event->pmu->read(event);
1899 /* fall-through */
1900
1901 case PERF_EVENT_STATE_INACTIVE:
1902 update_event_times(event);
1903 break;
1904
1905 default:
1906 break;
1907 }
1908
1909 /*
1910 * In order to keep per-task stats reliable we need to flip the event
1911 * values when we flip the contexts.
1912 */
1913 value = local64_read(&next_event->count);
1914 value = local64_xchg(&event->count, value);
1915 local64_set(&next_event->count, value);
1916
1917 swap(event->total_time_enabled, next_event->total_time_enabled);
1918 swap(event->total_time_running, next_event->total_time_running);
1919
1920 /*
1921 * Since we swizzled the values, update the user visible data too.
1922 */
1923 perf_event_update_userpage(event);
1924 perf_event_update_userpage(next_event);
1925 }
1926
1927 #define list_next_entry(pos, member) \
1928 list_entry(pos->member.next, typeof(*pos), member)
1929
1930 static void perf_event_sync_stat(struct perf_event_context *ctx,
1931 struct perf_event_context *next_ctx)
1932 {
1933 struct perf_event *event, *next_event;
1934
1935 if (!ctx->nr_stat)
1936 return;
1937
1938 update_context_time(ctx);
1939
1940 event = list_first_entry(&ctx->event_list,
1941 struct perf_event, event_entry);
1942
1943 next_event = list_first_entry(&next_ctx->event_list,
1944 struct perf_event, event_entry);
1945
1946 while (&event->event_entry != &ctx->event_list &&
1947 &next_event->event_entry != &next_ctx->event_list) {
1948
1949 __perf_event_sync_stat(event, next_event);
1950
1951 event = list_next_entry(event, event_entry);
1952 next_event = list_next_entry(next_event, event_entry);
1953 }
1954 }
1955
1956 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
1957 struct task_struct *next)
1958 {
1959 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
1960 struct perf_event_context *next_ctx;
1961 struct perf_event_context *parent;
1962 struct perf_cpu_context *cpuctx;
1963 int do_switch = 1;
1964
1965 if (likely(!ctx))
1966 return;
1967
1968 cpuctx = __get_cpu_context(ctx);
1969 if (!cpuctx->task_ctx)
1970 return;
1971
1972 rcu_read_lock();
1973 parent = rcu_dereference(ctx->parent_ctx);
1974 next_ctx = next->perf_event_ctxp[ctxn];
1975 if (parent && next_ctx &&
1976 rcu_dereference(next_ctx->parent_ctx) == parent) {
1977 /*
1978 * Looks like the two contexts are clones, so we might be
1979 * able to optimize the context switch. We lock both
1980 * contexts and check that they are clones under the
1981 * lock (including re-checking that neither has been
1982 * uncloned in the meantime). It doesn't matter which
1983 * order we take the locks because no other cpu could
1984 * be trying to lock both of these tasks.
1985 */
1986 raw_spin_lock(&ctx->lock);
1987 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1988 if (context_equiv(ctx, next_ctx)) {
1989 /*
1990 * XXX do we need a memory barrier of sorts
1991 * wrt to rcu_dereference() of perf_event_ctxp
1992 */
1993 task->perf_event_ctxp[ctxn] = next_ctx;
1994 next->perf_event_ctxp[ctxn] = ctx;
1995 ctx->task = next;
1996 next_ctx->task = task;
1997 do_switch = 0;
1998
1999 perf_event_sync_stat(ctx, next_ctx);
2000 }
2001 raw_spin_unlock(&next_ctx->lock);
2002 raw_spin_unlock(&ctx->lock);
2003 }
2004 rcu_read_unlock();
2005
2006 if (do_switch) {
2007 raw_spin_lock(&ctx->lock);
2008 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2009 cpuctx->task_ctx = NULL;
2010 raw_spin_unlock(&ctx->lock);
2011 }
2012 }
2013
2014 #define for_each_task_context_nr(ctxn) \
2015 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2016
2017 /*
2018 * Called from scheduler to remove the events of the current task,
2019 * with interrupts disabled.
2020 *
2021 * We stop each event and update the event value in event->count.
2022 *
2023 * This does not protect us against NMI, but disable()
2024 * sets the disabled bit in the control field of event _before_
2025 * accessing the event control register. If a NMI hits, then it will
2026 * not restart the event.
2027 */
2028 void __perf_event_task_sched_out(struct task_struct *task,
2029 struct task_struct *next)
2030 {
2031 int ctxn;
2032
2033 for_each_task_context_nr(ctxn)
2034 perf_event_context_sched_out(task, ctxn, next);
2035
2036 /*
2037 * if cgroup events exist on this CPU, then we need
2038 * to check if we have to switch out PMU state.
2039 * cgroup event are system-wide mode only
2040 */
2041 if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2042 perf_cgroup_sched_out(task, next);
2043 }
2044
2045 static void task_ctx_sched_out(struct perf_event_context *ctx)
2046 {
2047 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2048
2049 if (!cpuctx->task_ctx)
2050 return;
2051
2052 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2053 return;
2054
2055 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2056 cpuctx->task_ctx = NULL;
2057 }
2058
2059 /*
2060 * Called with IRQs disabled
2061 */
2062 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2063 enum event_type_t event_type)
2064 {
2065 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2066 }
2067
2068 static void
2069 ctx_pinned_sched_in(struct perf_event_context *ctx,
2070 struct perf_cpu_context *cpuctx)
2071 {
2072 struct perf_event *event;
2073
2074 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2075 if (event->state <= PERF_EVENT_STATE_OFF)
2076 continue;
2077 if (!event_filter_match(event))
2078 continue;
2079
2080 /* may need to reset tstamp_enabled */
2081 if (is_cgroup_event(event))
2082 perf_cgroup_mark_enabled(event, ctx);
2083
2084 if (group_can_go_on(event, cpuctx, 1))
2085 group_sched_in(event, cpuctx, ctx);
2086
2087 /*
2088 * If this pinned group hasn't been scheduled,
2089 * put it in error state.
2090 */
2091 if (event->state == PERF_EVENT_STATE_INACTIVE) {
2092 update_group_times(event);
2093 event->state = PERF_EVENT_STATE_ERROR;
2094 }
2095 }
2096 }
2097
2098 static void
2099 ctx_flexible_sched_in(struct perf_event_context *ctx,
2100 struct perf_cpu_context *cpuctx)
2101 {
2102 struct perf_event *event;
2103 int can_add_hw = 1;
2104
2105 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2106 /* Ignore events in OFF or ERROR state */
2107 if (event->state <= PERF_EVENT_STATE_OFF)
2108 continue;
2109 /*
2110 * Listen to the 'cpu' scheduling filter constraint
2111 * of events:
2112 */
2113 if (!event_filter_match(event))
2114 continue;
2115
2116 /* may need to reset tstamp_enabled */
2117 if (is_cgroup_event(event))
2118 perf_cgroup_mark_enabled(event, ctx);
2119
2120 if (group_can_go_on(event, cpuctx, can_add_hw)) {
2121 if (group_sched_in(event, cpuctx, ctx))
2122 can_add_hw = 0;
2123 }
2124 }
2125 }
2126
2127 static void
2128 ctx_sched_in(struct perf_event_context *ctx,
2129 struct perf_cpu_context *cpuctx,
2130 enum event_type_t event_type,
2131 struct task_struct *task)
2132 {
2133 u64 now;
2134 int is_active = ctx->is_active;
2135
2136 ctx->is_active |= event_type;
2137 if (likely(!ctx->nr_events))
2138 return;
2139
2140 now = perf_clock();
2141 ctx->timestamp = now;
2142 perf_cgroup_set_timestamp(task, ctx);
2143 /*
2144 * First go through the list and put on any pinned groups
2145 * in order to give them the best chance of going on.
2146 */
2147 if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
2148 ctx_pinned_sched_in(ctx, cpuctx);
2149
2150 /* Then walk through the lower prio flexible groups */
2151 if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
2152 ctx_flexible_sched_in(ctx, cpuctx);
2153 }
2154
2155 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
2156 enum event_type_t event_type,
2157 struct task_struct *task)
2158 {
2159 struct perf_event_context *ctx = &cpuctx->ctx;
2160
2161 ctx_sched_in(ctx, cpuctx, event_type, task);
2162 }
2163
2164 static void perf_event_context_sched_in(struct perf_event_context *ctx,
2165 struct task_struct *task)
2166 {
2167 struct perf_cpu_context *cpuctx;
2168
2169 cpuctx = __get_cpu_context(ctx);
2170 if (cpuctx->task_ctx == ctx)
2171 return;
2172
2173 perf_ctx_lock(cpuctx, ctx);
2174 perf_pmu_disable(ctx->pmu);
2175 /*
2176 * We want to keep the following priority order:
2177 * cpu pinned (that don't need to move), task pinned,
2178 * cpu flexible, task flexible.
2179 */
2180 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2181
2182 if (ctx->nr_events)
2183 cpuctx->task_ctx = ctx;
2184
2185 perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);
2186
2187 perf_pmu_enable(ctx->pmu);
2188 perf_ctx_unlock(cpuctx, ctx);
2189
2190 /*
2191 * Since these rotations are per-cpu, we need to ensure the
2192 * cpu-context we got scheduled on is actually rotating.
2193 */
2194 perf_pmu_rotate_start(ctx->pmu);
2195 }
2196
2197 /*
2198 * Called from scheduler to add the events of the current task
2199 * with interrupts disabled.
2200 *
2201 * We restore the event value and then enable it.
2202 *
2203 * This does not protect us against NMI, but enable()
2204 * sets the enabled bit in the control field of event _before_
2205 * accessing the event control register. If a NMI hits, then it will
2206 * keep the event running.
2207 */
2208 void __perf_event_task_sched_in(struct task_struct *prev,
2209 struct task_struct *task)
2210 {
2211 struct perf_event_context *ctx;
2212 int ctxn;
2213
2214 for_each_task_context_nr(ctxn) {
2215 ctx = task->perf_event_ctxp[ctxn];
2216 if (likely(!ctx))
2217 continue;
2218
2219 perf_event_context_sched_in(ctx, task);
2220 }
2221 /*
2222 * if cgroup events exist on this CPU, then we need
2223 * to check if we have to switch in PMU state.
2224 * cgroup event are system-wide mode only
2225 */
2226 if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2227 perf_cgroup_sched_in(prev, task);
2228 }
2229
2230 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
2231 {
2232 u64 frequency = event->attr.sample_freq;
2233 u64 sec = NSEC_PER_SEC;
2234 u64 divisor, dividend;
2235
2236 int count_fls, nsec_fls, frequency_fls, sec_fls;
2237
2238 count_fls = fls64(count);
2239 nsec_fls = fls64(nsec);
2240 frequency_fls = fls64(frequency);
2241 sec_fls = 30;
2242
2243 /*
2244 * We got @count in @nsec, with a target of sample_freq HZ
2245 * the target period becomes:
2246 *
2247 * @count * 10^9
2248 * period = -------------------
2249 * @nsec * sample_freq
2250 *
2251 */
2252
2253 /*
2254 * Reduce accuracy by one bit such that @a and @b converge
2255 * to a similar magnitude.
2256 */
2257 #define REDUCE_FLS(a, b) \
2258 do { \
2259 if (a##_fls > b##_fls) { \
2260 a >>= 1; \
2261 a##_fls--; \
2262 } else { \
2263 b >>= 1; \
2264 b##_fls--; \
2265 } \
2266 } while (0)
2267
2268 /*
2269 * Reduce accuracy until either term fits in a u64, then proceed with
2270 * the other, so that finally we can do a u64/u64 division.
2271 */
2272 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
2273 REDUCE_FLS(nsec, frequency);
2274 REDUCE_FLS(sec, count);
2275 }
2276
2277 if (count_fls + sec_fls > 64) {
2278 divisor = nsec * frequency;
2279
2280 while (count_fls + sec_fls > 64) {
2281 REDUCE_FLS(count, sec);
2282 divisor >>= 1;
2283 }
2284
2285 dividend = count * sec;
2286 } else {
2287 dividend = count * sec;
2288
2289 while (nsec_fls + frequency_fls > 64) {
2290 REDUCE_FLS(nsec, frequency);
2291 dividend >>= 1;
2292 }
2293
2294 divisor = nsec * frequency;
2295 }
2296
2297 if (!divisor)
2298 return dividend;
2299
2300 return div64_u64(dividend, divisor);
2301 }
2302
2303 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count)
2304 {
2305 struct hw_perf_event *hwc = &event->hw;
2306 s64 period, sample_period;
2307 s64 delta;
2308
2309 period = perf_calculate_period(event, nsec, count);
2310
2311 delta = (s64)(period - hwc->sample_period);
2312 delta = (delta + 7) / 8; /* low pass filter */
2313
2314 sample_period = hwc->sample_period + delta;
2315
2316 if (!sample_period)
2317 sample_period = 1;
2318
2319 hwc->sample_period = sample_period;
2320
2321 if (local64_read(&hwc->period_left) > 8*sample_period) {
2322 event->pmu->stop(event, PERF_EF_UPDATE);
2323 local64_set(&hwc->period_left, 0);
2324 event->pmu->start(event, PERF_EF_RELOAD);
2325 }
2326 }
2327
2328 static void perf_ctx_adjust_freq(struct perf_event_context *ctx, u64 period)
2329 {
2330 struct perf_event *event;
2331 struct hw_perf_event *hwc;
2332 u64 interrupts, now;
2333 s64 delta;
2334
2335 if (!ctx->nr_freq)
2336 return;
2337
2338 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
2339 if (event->state != PERF_EVENT_STATE_ACTIVE)
2340 continue;
2341
2342 if (!event_filter_match(event))
2343 continue;
2344
2345 hwc = &event->hw;
2346
2347 interrupts = hwc->interrupts;
2348 hwc->interrupts = 0;
2349
2350 /*
2351 * unthrottle events on the tick
2352 */
2353 if (interrupts == MAX_INTERRUPTS) {
2354 perf_log_throttle(event, 1);
2355 event->pmu->start(event, 0);
2356 }
2357
2358 if (!event->attr.freq || !event->attr.sample_freq)
2359 continue;
2360
2361 event->pmu->read(event);
2362 now = local64_read(&event->count);
2363 delta = now - hwc->freq_count_stamp;
2364 hwc->freq_count_stamp = now;
2365
2366 if (delta > 0)
2367 perf_adjust_period(event, period, delta);
2368 }
2369 }
2370
2371 /*
2372 * Round-robin a context's events:
2373 */
2374 static void rotate_ctx(struct perf_event_context *ctx)
2375 {
2376 /*
2377 * Rotate the first entry last of non-pinned groups. Rotation might be
2378 * disabled by the inheritance code.
2379 */
2380 if (!ctx->rotate_disable)
2381 list_rotate_left(&ctx->flexible_groups);
2382 }
2383
2384 /*
2385 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
2386 * because they're strictly cpu affine and rotate_start is called with IRQs
2387 * disabled, while rotate_context is called from IRQ context.
2388 */
2389 static void perf_rotate_context(struct perf_cpu_context *cpuctx)
2390 {
2391 u64 interval = (u64)cpuctx->jiffies_interval * TICK_NSEC;
2392 struct perf_event_context *ctx = NULL;
2393 int rotate = 0, remove = 1, freq = 0;
2394
2395 if (cpuctx->ctx.nr_events) {
2396 remove = 0;
2397 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
2398 rotate = 1;
2399 if (cpuctx->ctx.nr_freq)
2400 freq = 1;
2401 }
2402
2403 ctx = cpuctx->task_ctx;
2404 if (ctx && ctx->nr_events) {
2405 remove = 0;
2406 if (ctx->nr_events != ctx->nr_active)
2407 rotate = 1;
2408 if (ctx->nr_freq)
2409 freq = 1;
2410 }
2411
2412 if (!rotate && !freq)
2413 goto done;
2414
2415 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2416 perf_pmu_disable(cpuctx->ctx.pmu);
2417
2418 if (freq) {
2419 perf_ctx_adjust_freq(&cpuctx->ctx, interval);
2420 if (ctx)
2421 perf_ctx_adjust_freq(ctx, interval);
2422 }
2423
2424 if (rotate) {
2425 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2426 if (ctx)
2427 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
2428
2429 rotate_ctx(&cpuctx->ctx);
2430 if (ctx)
2431 rotate_ctx(ctx);
2432
2433 perf_event_sched_in(cpuctx, ctx, current);
2434 }
2435
2436 perf_pmu_enable(cpuctx->ctx.pmu);
2437 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2438
2439 done:
2440 if (remove)
2441 list_del_init(&cpuctx->rotation_list);
2442 }
2443
2444 void perf_event_task_tick(void)
2445 {
2446 struct list_head *head = &__get_cpu_var(rotation_list);
2447 struct perf_cpu_context *cpuctx, *tmp;
2448
2449 WARN_ON(!irqs_disabled());
2450
2451 list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
2452 if (cpuctx->jiffies_interval == 1 ||
2453 !(jiffies % cpuctx->jiffies_interval))
2454 perf_rotate_context(cpuctx);
2455 }
2456 }
2457
2458 static int event_enable_on_exec(struct perf_event *event,
2459 struct perf_event_context *ctx)
2460 {
2461 if (!event->attr.enable_on_exec)
2462 return 0;
2463
2464 event->attr.enable_on_exec = 0;
2465 if (event->state >= PERF_EVENT_STATE_INACTIVE)
2466 return 0;
2467
2468 __perf_event_mark_enabled(event);
2469
2470 return 1;
2471 }
2472
2473 /*
2474 * Enable all of a task's events that have been marked enable-on-exec.
2475 * This expects task == current.
2476 */
2477 static void perf_event_enable_on_exec(struct perf_event_context *ctx)
2478 {
2479 struct perf_event *event;
2480 unsigned long flags;
2481 int enabled = 0;
2482 int ret;
2483
2484 local_irq_save(flags);
2485 if (!ctx || !ctx->nr_events)
2486 goto out;
2487
2488 /*
2489 * We must ctxsw out cgroup events to avoid conflict
2490 * when invoking perf_task_event_sched_in() later on
2491 * in this function. Otherwise we end up trying to
2492 * ctxswin cgroup events which are already scheduled
2493 * in.
2494 */
2495 perf_cgroup_sched_out(current, NULL);
2496
2497 raw_spin_lock(&ctx->lock);
2498 task_ctx_sched_out(ctx);
2499
2500 list_for_each_entry(event, &ctx->event_list, event_entry) {
2501 ret = event_enable_on_exec(event, ctx);
2502 if (ret)
2503 enabled = 1;
2504 }
2505
2506 /*
2507 * Unclone this context if we enabled any event.
2508 */
2509 if (enabled)
2510 unclone_ctx(ctx);
2511
2512 raw_spin_unlock(&ctx->lock);
2513
2514 /*
2515 * Also calls ctxswin for cgroup events, if any:
2516 */
2517 perf_event_context_sched_in(ctx, ctx->task);
2518 out:
2519 local_irq_restore(flags);
2520 }
2521
2522 /*
2523 * Cross CPU call to read the hardware event
2524 */
2525 static void __perf_event_read(void *info)
2526 {
2527 struct perf_event *event = info;
2528 struct perf_event_context *ctx = event->ctx;
2529 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2530
2531 /*
2532 * If this is a task context, we need to check whether it is
2533 * the current task context of this cpu. If not it has been
2534 * scheduled out before the smp call arrived. In that case
2535 * event->count would have been updated to a recent sample
2536 * when the event was scheduled out.
2537 */
2538 if (ctx->task && cpuctx->task_ctx != ctx)
2539 return;
2540
2541 raw_spin_lock(&ctx->lock);
2542 if (ctx->is_active) {
2543 update_context_time(ctx);
2544 update_cgrp_time_from_event(event);
2545 }
2546 update_event_times(event);
2547 if (event->state == PERF_EVENT_STATE_ACTIVE)
2548 event->pmu->read(event);
2549 raw_spin_unlock(&ctx->lock);
2550 }
2551
2552 static inline u64 perf_event_count(struct perf_event *event)
2553 {
2554 return local64_read(&event->count) + atomic64_read(&event->child_count);
2555 }
2556
2557 static u64 perf_event_read(struct perf_event *event)
2558 {
2559 /*
2560 * If event is enabled and currently active on a CPU, update the
2561 * value in the event structure:
2562 */
2563 if (event->state == PERF_EVENT_STATE_ACTIVE) {
2564 smp_call_function_single(event->oncpu,
2565 __perf_event_read, event, 1);
2566 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
2567 struct perf_event_context *ctx = event->ctx;
2568 unsigned long flags;
2569
2570 raw_spin_lock_irqsave(&ctx->lock, flags);
2571 /*
2572 * may read while context is not active
2573 * (e.g., thread is blocked), in that case
2574 * we cannot update context time
2575 */
2576 if (ctx->is_active) {
2577 update_context_time(ctx);
2578 update_cgrp_time_from_event(event);
2579 }
2580 update_event_times(event);
2581 raw_spin_unlock_irqrestore(&ctx->lock, flags);
2582 }
2583
2584 return perf_event_count(event);
2585 }
2586
2587 /*
2588 * Initialize the perf_event context in a task_struct:
2589 */
2590 static void __perf_event_init_context(struct perf_event_context *ctx)
2591 {
2592 raw_spin_lock_init(&ctx->lock);
2593 mutex_init(&ctx->mutex);
2594 INIT_LIST_HEAD(&ctx->pinned_groups);
2595 INIT_LIST_HEAD(&ctx->flexible_groups);
2596 INIT_LIST_HEAD(&ctx->event_list);
2597 atomic_set(&ctx->refcount, 1);
2598 }
2599
2600 static struct perf_event_context *
2601 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
2602 {
2603 struct perf_event_context *ctx;
2604
2605 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
2606 if (!ctx)
2607 return NULL;
2608
2609 __perf_event_init_context(ctx);
2610 if (task) {
2611 ctx->task = task;
2612 get_task_struct(task);
2613 }
2614 ctx->pmu = pmu;
2615
2616 return ctx;
2617 }
2618
2619 static struct task_struct *
2620 find_lively_task_by_vpid(pid_t vpid)
2621 {
2622 struct task_struct *task;
2623 int err;
2624
2625 rcu_read_lock();
2626 if (!vpid)
2627 task = current;
2628 else
2629 task = find_task_by_vpid(vpid);
2630 if (task)
2631 get_task_struct(task);
2632 rcu_read_unlock();
2633
2634 if (!task)
2635 return ERR_PTR(-ESRCH);
2636
2637 /* Reuse ptrace permission checks for now. */
2638 err = -EACCES;
2639 if (!ptrace_may_access(task, PTRACE_MODE_READ))
2640 goto errout;
2641
2642 return task;
2643 errout:
2644 put_task_struct(task);
2645 return ERR_PTR(err);
2646
2647 }
2648
2649 /*
2650 * Returns a matching context with refcount and pincount.
2651 */
2652 static struct perf_event_context *
2653 find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
2654 {
2655 struct perf_event_context *ctx;
2656 struct perf_cpu_context *cpuctx;
2657 unsigned long flags;
2658 int ctxn, err;
2659
2660 if (!task) {
2661 /* Must be root to operate on a CPU event: */
2662 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
2663 return ERR_PTR(-EACCES);
2664
2665 /*
2666 * We could be clever and allow to attach a event to an
2667 * offline CPU and activate it when the CPU comes up, but
2668 * that's for later.
2669 */
2670 if (!cpu_online(cpu))
2671 return ERR_PTR(-ENODEV);
2672
2673 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
2674 ctx = &cpuctx->ctx;
2675 get_ctx(ctx);
2676 ++ctx->pin_count;
2677
2678 return ctx;
2679 }
2680
2681 err = -EINVAL;
2682 ctxn = pmu->task_ctx_nr;
2683 if (ctxn < 0)
2684 goto errout;
2685
2686 retry:
2687 ctx = perf_lock_task_context(task, ctxn, &flags);
2688 if (ctx) {
2689 unclone_ctx(ctx);
2690 ++ctx->pin_count;
2691 raw_spin_unlock_irqrestore(&ctx->lock, flags);
2692 } else {
2693 ctx = alloc_perf_context(pmu, task);
2694 err = -ENOMEM;
2695 if (!ctx)
2696 goto errout;
2697
2698 err = 0;
2699 mutex_lock(&task->perf_event_mutex);
2700 /*
2701 * If it has already passed perf_event_exit_task().
2702 * we must see PF_EXITING, it takes this mutex too.
2703 */
2704 if (task->flags & PF_EXITING)
2705 err = -ESRCH;
2706 else if (task->perf_event_ctxp[ctxn])
2707 err = -EAGAIN;
2708 else {
2709 get_ctx(ctx);
2710 ++ctx->pin_count;
2711 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
2712 }
2713 mutex_unlock(&task->perf_event_mutex);
2714
2715 if (unlikely(err)) {
2716 put_ctx(ctx);
2717
2718 if (err == -EAGAIN)
2719 goto retry;
2720 goto errout;
2721 }
2722 }
2723
2724 return ctx;
2725
2726 errout:
2727 return ERR_PTR(err);
2728 }
2729
2730 static void perf_event_free_filter(struct perf_event *event);
2731
2732 static void free_event_rcu(struct rcu_head *head)
2733 {
2734 struct perf_event *event;
2735
2736 event = container_of(head, struct perf_event, rcu_head);
2737 if (event->ns)
2738 put_pid_ns(event->ns);
2739 perf_event_free_filter(event);
2740 kfree(event);
2741 }
2742
2743 static void ring_buffer_put(struct ring_buffer *rb);
2744
2745 static void free_event(struct perf_event *event)
2746 {
2747 irq_work_sync(&event->pending);
2748
2749 if (!event->parent) {
2750 if (event->attach_state & PERF_ATTACH_TASK)
2751 jump_label_dec_deferred(&perf_sched_events);
2752 if (event->attr.mmap || event->attr.mmap_data)
2753 atomic_dec(&nr_mmap_events);
2754 if (event->attr.comm)
2755 atomic_dec(&nr_comm_events);
2756 if (event->attr.task)
2757 atomic_dec(&nr_task_events);
2758 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
2759 put_callchain_buffers();
2760 if (is_cgroup_event(event)) {
2761 atomic_dec(&per_cpu(perf_cgroup_events, event->cpu));
2762 jump_label_dec_deferred(&perf_sched_events);
2763 }
2764 }
2765
2766 if (event->rb) {
2767 ring_buffer_put(event->rb);
2768 event->rb = NULL;
2769 }
2770
2771 if (is_cgroup_event(event))
2772 perf_detach_cgroup(event);
2773
2774 if (event->destroy)
2775 event->destroy(event);
2776
2777 if (event->ctx)
2778 put_ctx(event->ctx);
2779
2780 call_rcu(&event->rcu_head, free_event_rcu);
2781 }
2782
2783 int perf_event_release_kernel(struct perf_event *event)
2784 {
2785 struct perf_event_context *ctx = event->ctx;
2786
2787 WARN_ON_ONCE(ctx->parent_ctx);
2788 /*
2789 * There are two ways this annotation is useful:
2790 *
2791 * 1) there is a lock recursion from perf_event_exit_task
2792 * see the comment there.
2793 *
2794 * 2) there is a lock-inversion with mmap_sem through
2795 * perf_event_read_group(), which takes faults while
2796 * holding ctx->mutex, however this is called after
2797 * the last filedesc died, so there is no possibility
2798 * to trigger the AB-BA case.
2799 */
2800 mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
2801 raw_spin_lock_irq(&ctx->lock);
2802 perf_group_detach(event);
2803 raw_spin_unlock_irq(&ctx->lock);
2804 perf_remove_from_context(event);
2805 mutex_unlock(&ctx->mutex);
2806
2807 free_event(event);
2808
2809 return 0;
2810 }
2811 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
2812
2813 /*
2814 * Called when the last reference to the file is gone.
2815 */
2816 static int perf_release(struct inode *inode, struct file *file)
2817 {
2818 struct perf_event *event = file->private_data;
2819 struct task_struct *owner;
2820
2821 file->private_data = NULL;
2822
2823 rcu_read_lock();
2824 owner = ACCESS_ONCE(event->owner);
2825 /*
2826 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
2827 * !owner it means the list deletion is complete and we can indeed
2828 * free this event, otherwise we need to serialize on
2829 * owner->perf_event_mutex.
2830 */
2831 smp_read_barrier_depends();
2832 if (owner) {
2833 /*
2834 * Since delayed_put_task_struct() also drops the last
2835 * task reference we can safely take a new reference
2836 * while holding the rcu_read_lock().
2837 */
2838 get_task_struct(owner);
2839 }
2840 rcu_read_unlock();
2841
2842 if (owner) {
2843 mutex_lock(&owner->perf_event_mutex);
2844 /*
2845 * We have to re-check the event->owner field, if it is cleared
2846 * we raced with perf_event_exit_task(), acquiring the mutex
2847 * ensured they're done, and we can proceed with freeing the
2848 * event.
2849 */
2850 if (event->owner)
2851 list_del_init(&event->owner_entry);
2852 mutex_unlock(&owner->perf_event_mutex);
2853 put_task_struct(owner);
2854 }
2855
2856 return perf_event_release_kernel(event);
2857 }
2858
2859 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
2860 {
2861 struct perf_event *child;
2862 u64 total = 0;
2863
2864 *enabled = 0;
2865 *running = 0;
2866
2867 mutex_lock(&event->child_mutex);
2868 total += perf_event_read(event);
2869 *enabled += event->total_time_enabled +
2870 atomic64_read(&event->child_total_time_enabled);
2871 *running += event->total_time_running +
2872 atomic64_read(&event->child_total_time_running);
2873
2874 list_for_each_entry(child, &event->child_list, child_list) {
2875 total += perf_event_read(child);
2876 *enabled += child->total_time_enabled;
2877 *running += child->total_time_running;
2878 }
2879 mutex_unlock(&event->child_mutex);
2880
2881 return total;
2882 }
2883 EXPORT_SYMBOL_GPL(perf_event_read_value);
2884
2885 static int perf_event_read_group(struct perf_event *event,
2886 u64 read_format, char __user *buf)
2887 {
2888 struct perf_event *leader = event->group_leader, *sub;
2889 int n = 0, size = 0, ret = -EFAULT;
2890 struct perf_event_context *ctx = leader->ctx;
2891 u64 values[5];
2892 u64 count, enabled, running;
2893
2894 mutex_lock(&ctx->mutex);
2895 count = perf_event_read_value(leader, &enabled, &running);
2896
2897 values[n++] = 1 + leader->nr_siblings;
2898 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2899 values[n++] = enabled;
2900 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2901 values[n++] = running;
2902 values[n++] = count;
2903 if (read_format & PERF_FORMAT_ID)
2904 values[n++] = primary_event_id(leader);
2905
2906 size = n * sizeof(u64);
2907
2908 if (copy_to_user(buf, values, size))
2909 goto unlock;
2910
2911 ret = size;
2912
2913 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
2914 n = 0;
2915
2916 values[n++] = perf_event_read_value(sub, &enabled, &running);
2917 if (read_format & PERF_FORMAT_ID)
2918 values[n++] = primary_event_id(sub);
2919
2920 size = n * sizeof(u64);
2921
2922 if (copy_to_user(buf + ret, values, size)) {
2923 ret = -EFAULT;
2924 goto unlock;
2925 }
2926
2927 ret += size;
2928 }
2929 unlock:
2930 mutex_unlock(&ctx->mutex);
2931
2932 return ret;
2933 }
2934
2935 static int perf_event_read_one(struct perf_event *event,
2936 u64 read_format, char __user *buf)
2937 {
2938 u64 enabled, running;
2939 u64 values[4];
2940 int n = 0;
2941
2942 values[n++] = perf_event_read_value(event, &enabled, &running);
2943 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2944 values[n++] = enabled;
2945 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2946 values[n++] = running;
2947 if (read_format & PERF_FORMAT_ID)
2948 values[n++] = primary_event_id(event);
2949
2950 if (copy_to_user(buf, values, n * sizeof(u64)))
2951 return -EFAULT;
2952
2953 return n * sizeof(u64);
2954 }
2955
2956 /*
2957 * Read the performance event - simple non blocking version for now
2958 */
2959 static ssize_t
2960 perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
2961 {
2962 u64 read_format = event->attr.read_format;
2963 int ret;
2964
2965 /*
2966 * Return end-of-file for a read on a event that is in
2967 * error state (i.e. because it was pinned but it couldn't be
2968 * scheduled on to the CPU at some point).
2969 */
2970 if (event->state == PERF_EVENT_STATE_ERROR)
2971 return 0;
2972
2973 if (count < event->read_size)
2974 return -ENOSPC;
2975
2976 WARN_ON_ONCE(event->ctx->parent_ctx);
2977 if (read_format & PERF_FORMAT_GROUP)
2978 ret = perf_event_read_group(event, read_format, buf);
2979 else
2980 ret = perf_event_read_one(event, read_format, buf);
2981
2982 return ret;
2983 }
2984
2985 static ssize_t
2986 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
2987 {
2988 struct perf_event *event = file->private_data;
2989
2990 return perf_read_hw(event, buf, count);
2991 }
2992
2993 static unsigned int perf_poll(struct file *file, poll_table *wait)
2994 {
2995 struct perf_event *event = file->private_data;
2996 struct ring_buffer *rb;
2997 unsigned int events = POLL_HUP;
2998
2999 /*
3000 * Race between perf_event_set_output() and perf_poll(): perf_poll()
3001 * grabs the rb reference but perf_event_set_output() overrides it.
3002 * Here is the timeline for two threads T1, T2:
3003 * t0: T1, rb = rcu_dereference(event->rb)
3004 * t1: T2, old_rb = event->rb
3005 * t2: T2, event->rb = new rb
3006 * t3: T2, ring_buffer_detach(old_rb)
3007 * t4: T1, ring_buffer_attach(rb1)
3008 * t5: T1, poll_wait(event->waitq)
3009 *
3010 * To avoid this problem, we grab mmap_mutex in perf_poll()
3011 * thereby ensuring that the assignment of the new ring buffer
3012 * and the detachment of the old buffer appear atomic to perf_poll()
3013 */
3014 mutex_lock(&event->mmap_mutex);
3015
3016 rcu_read_lock();
3017 rb = rcu_dereference(event->rb);
3018 if (rb) {
3019 ring_buffer_attach(event, rb);
3020 events = atomic_xchg(&rb->poll, 0);
3021 }
3022 rcu_read_unlock();
3023
3024 mutex_unlock(&event->mmap_mutex);
3025
3026 poll_wait(file, &event->waitq, wait);
3027
3028 return events;
3029 }
3030
3031 static void perf_event_reset(struct perf_event *event)
3032 {
3033 (void)perf_event_read(event);
3034 local64_set(&event->count, 0);
3035 perf_event_update_userpage(event);
3036 }
3037
3038 /*
3039 * Holding the top-level event's child_mutex means that any
3040 * descendant process that has inherited this event will block
3041 * in sync_child_event if it goes to exit, thus satisfying the
3042 * task existence requirements of perf_event_enable/disable.
3043 */
3044 static void perf_event_for_each_child(struct perf_event *event,
3045 void (*func)(struct perf_event *))
3046 {
3047 struct perf_event *child;
3048
3049 WARN_ON_ONCE(event->ctx->parent_ctx);
3050 mutex_lock(&event->child_mutex);
3051 func(event);
3052 list_for_each_entry(child, &event->child_list, child_list)
3053 func(child);
3054 mutex_unlock(&event->child_mutex);
3055 }
3056
3057 static void perf_event_for_each(struct perf_event *event,
3058 void (*func)(struct perf_event *))
3059 {
3060 struct perf_event_context *ctx = event->ctx;
3061 struct perf_event *sibling;
3062
3063 WARN_ON_ONCE(ctx->parent_ctx);
3064 mutex_lock(&ctx->mutex);
3065 event = event->group_leader;
3066
3067 perf_event_for_each_child(event, func);
3068 func(event);
3069 list_for_each_entry(sibling, &event->sibling_list, group_entry)
3070 perf_event_for_each_child(event, func);
3071 mutex_unlock(&ctx->mutex);
3072 }
3073
3074 static int perf_event_period(struct perf_event *event, u64 __user *arg)
3075 {
3076 struct perf_event_context *ctx = event->ctx;
3077 int ret = 0;
3078 u64 value;
3079
3080 if (!is_sampling_event(event))
3081 return -EINVAL;
3082
3083 if (copy_from_user(&value, arg, sizeof(value)))
3084 return -EFAULT;
3085
3086 if (!value)
3087 return -EINVAL;
3088
3089 raw_spin_lock_irq(&ctx->lock);
3090 if (event->attr.freq) {
3091 if (value > sysctl_perf_event_sample_rate) {
3092 ret = -EINVAL;
3093 goto unlock;
3094 }
3095
3096 event->attr.sample_freq = value;
3097 } else {
3098 event->attr.sample_period = value;
3099 event->hw.sample_period = value;
3100 }
3101 unlock:
3102 raw_spin_unlock_irq(&ctx->lock);
3103
3104 return ret;
3105 }
3106
3107 static const struct file_operations perf_fops;
3108
3109 static struct perf_event *perf_fget_light(int fd, int *fput_needed)
3110 {
3111 struct file *file;
3112
3113 file = fget_light(fd, fput_needed);
3114 if (!file)
3115 return ERR_PTR(-EBADF);
3116
3117 if (file->f_op != &perf_fops) {
3118 fput_light(file, *fput_needed);
3119 *fput_needed = 0;
3120 return ERR_PTR(-EBADF);
3121 }
3122
3123 return file->private_data;
3124 }
3125
3126 static int perf_event_set_output(struct perf_event *event,
3127 struct perf_event *output_event);
3128 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
3129
3130 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
3131 {
3132 struct perf_event *event = file->private_data;
3133 void (*func)(struct perf_event *);
3134 u32 flags = arg;
3135
3136 switch (cmd) {
3137 case PERF_EVENT_IOC_ENABLE:
3138 func = perf_event_enable;
3139 break;
3140 case PERF_EVENT_IOC_DISABLE:
3141 func = perf_event_disable;
3142 break;
3143 case PERF_EVENT_IOC_RESET:
3144 func = perf_event_reset;
3145 break;
3146
3147 case PERF_EVENT_IOC_REFRESH:
3148 return perf_event_refresh(event, arg);
3149
3150 case PERF_EVENT_IOC_PERIOD:
3151 return perf_event_period(event, (u64 __user *)arg);
3152
3153 case PERF_EVENT_IOC_SET_OUTPUT:
3154 {
3155 struct perf_event *output_event = NULL;
3156 int fput_needed = 0;
3157 int ret;
3158
3159 if (arg != -1) {
3160 output_event = perf_fget_light(arg, &fput_needed);
3161 if (IS_ERR(output_event))
3162 return PTR_ERR(output_event);
3163 }
3164
3165 ret = perf_event_set_output(event, output_event);
3166 if (output_event)
3167 fput_light(output_event->filp, fput_needed);
3168
3169 return ret;
3170 }
3171
3172 case PERF_EVENT_IOC_SET_FILTER:
3173 return perf_event_set_filter(event, (void __user *)arg);
3174
3175 default:
3176 return -ENOTTY;
3177 }
3178
3179 if (flags & PERF_IOC_FLAG_GROUP)
3180 perf_event_for_each(event, func);
3181 else
3182 perf_event_for_each_child(event, func);
3183
3184 return 0;
3185 }
3186
3187 int perf_event_task_enable(void)
3188 {
3189 struct perf_event *event;
3190
3191 mutex_lock(&current->perf_event_mutex);
3192 list_for_each_entry(event, &current->perf_event_list, owner_entry)
3193 perf_event_for_each_child(event, perf_event_enable);
3194 mutex_unlock(&current->perf_event_mutex);
3195
3196 return 0;
3197 }
3198
3199 int perf_event_task_disable(void)
3200 {
3201 struct perf_event *event;
3202
3203 mutex_lock(&current->perf_event_mutex);
3204 list_for_each_entry(event, &current->perf_event_list, owner_entry)
3205 perf_event_for_each_child(event, perf_event_disable);
3206 mutex_unlock(&current->perf_event_mutex);
3207
3208 return 0;
3209 }
3210
3211 #ifndef PERF_EVENT_INDEX_OFFSET
3212 # define PERF_EVENT_INDEX_OFFSET 0
3213 #endif
3214
3215 static int perf_event_index(struct perf_event *event)
3216 {
3217 if (event->hw.state & PERF_HES_STOPPED)
3218 return 0;
3219
3220 if (event->state != PERF_EVENT_STATE_ACTIVE)
3221 return 0;
3222
3223 return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
3224 }
3225
3226 static void calc_timer_values(struct perf_event *event,
3227 u64 *enabled,
3228 u64 *running)
3229 {
3230 u64 now, ctx_time;
3231
3232 now = perf_clock();
3233 ctx_time = event->shadow_ctx_time + now;
3234 *enabled = ctx_time - event->tstamp_enabled;
3235 *running = ctx_time - event->tstamp_running;
3236 }
3237
3238 /*
3239 * Callers need to ensure there can be no nesting of this function, otherwise
3240 * the seqlock logic goes bad. We can not serialize this because the arch
3241 * code calls this from NMI context.
3242 */
3243 void perf_event_update_userpage(struct perf_event *event)
3244 {
3245 struct perf_event_mmap_page *userpg;
3246 struct ring_buffer *rb;
3247 u64 enabled, running;
3248
3249 rcu_read_lock();
3250 /*
3251 * compute total_time_enabled, total_time_running
3252 * based on snapshot values taken when the event
3253 * was last scheduled in.
3254 *
3255 * we cannot simply called update_context_time()
3256 * because of locking issue as we can be called in
3257 * NMI context
3258 */
3259 calc_timer_values(event, &enabled, &running);
3260 rb = rcu_dereference(event->rb);
3261 if (!rb)
3262 goto unlock;
3263
3264 userpg = rb->user_page;
3265
3266 /*
3267 * Disable preemption so as to not let the corresponding user-space
3268 * spin too long if we get preempted.
3269 */
3270 preempt_disable();
3271 ++userpg->lock;
3272 barrier();
3273 userpg->index = perf_event_index(event);
3274 userpg->offset = perf_event_count(event);
3275 if (event->state == PERF_EVENT_STATE_ACTIVE)
3276 userpg->offset -= local64_read(&event->hw.prev_count);
3277
3278 userpg->time_enabled = enabled +
3279 atomic64_read(&event->child_total_time_enabled);
3280
3281 userpg->time_running = running +
3282 atomic64_read(&event->child_total_time_running);
3283
3284 barrier();
3285 ++userpg->lock;
3286 preempt_enable();
3287 unlock:
3288 rcu_read_unlock();
3289 }
3290
3291 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
3292 {
3293 struct perf_event *event = vma->vm_file->private_data;
3294 struct ring_buffer *rb;
3295 int ret = VM_FAULT_SIGBUS;
3296
3297 if (vmf->flags & FAULT_FLAG_MKWRITE) {
3298 if (vmf->pgoff == 0)
3299 ret = 0;
3300 return ret;
3301 }
3302
3303 rcu_read_lock();
3304 rb = rcu_dereference(event->rb);
3305 if (!rb)
3306 goto unlock;
3307
3308 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
3309 goto unlock;
3310
3311 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
3312 if (!vmf->page)
3313 goto unlock;
3314
3315 get_page(vmf->page);
3316 vmf->page->mapping = vma->vm_file->f_mapping;
3317 vmf->page->index = vmf->pgoff;
3318
3319 ret = 0;
3320 unlock:
3321 rcu_read_unlock();
3322
3323 return ret;
3324 }
3325
3326 static void ring_buffer_attach(struct perf_event *event,
3327 struct ring_buffer *rb)
3328 {
3329 unsigned long flags;
3330
3331 if (!list_empty(&event->rb_entry))
3332 return;
3333
3334 spin_lock_irqsave(&rb->event_lock, flags);
3335 if (!list_empty(&event->rb_entry))
3336 goto unlock;
3337
3338 list_add(&event->rb_entry, &rb->event_list);
3339 unlock:
3340 spin_unlock_irqrestore(&rb->event_lock, flags);
3341 }
3342
3343 static void ring_buffer_detach(struct perf_event *event,
3344 struct ring_buffer *rb)
3345 {
3346 unsigned long flags;
3347
3348 if (list_empty(&event->rb_entry))
3349 return;
3350
3351 spin_lock_irqsave(&rb->event_lock, flags);
3352 list_del_init(&event->rb_entry);
3353 wake_up_all(&event->waitq);
3354 spin_unlock_irqrestore(&rb->event_lock, flags);
3355 }
3356
3357 static void ring_buffer_wakeup(struct perf_event *event)
3358 {
3359 struct ring_buffer *rb;
3360
3361 rcu_read_lock();
3362 rb = rcu_dereference(event->rb);
3363 if (!rb)
3364 goto unlock;
3365
3366 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
3367 wake_up_all(&event->waitq);
3368
3369 unlock:
3370 rcu_read_unlock();
3371 }
3372
3373 static void rb_free_rcu(struct rcu_head *rcu_head)
3374 {
3375 struct ring_buffer *rb;
3376
3377 rb = container_of(rcu_head, struct ring_buffer, rcu_head);
3378 rb_free(rb);
3379 }
3380
3381 static struct ring_buffer *ring_buffer_get(struct perf_event *event)
3382 {
3383 struct ring_buffer *rb;
3384
3385 rcu_read_lock();
3386 rb = rcu_dereference(event->rb);
3387 if (rb) {
3388 if (!atomic_inc_not_zero(&rb->refcount))
3389 rb = NULL;
3390 }
3391 rcu_read_unlock();
3392
3393 return rb;
3394 }
3395
3396 static void ring_buffer_put(struct ring_buffer *rb)
3397 {
3398 struct perf_event *event, *n;
3399 unsigned long flags;
3400
3401 if (!atomic_dec_and_test(&rb->refcount))
3402 return;
3403
3404 spin_lock_irqsave(&rb->event_lock, flags);
3405 list_for_each_entry_safe(event, n, &rb->event_list, rb_entry) {
3406 list_del_init(&event->rb_entry);
3407 wake_up_all(&event->waitq);
3408 }
3409 spin_unlock_irqrestore(&rb->event_lock, flags);
3410
3411 call_rcu(&rb->rcu_head, rb_free_rcu);
3412 }
3413
3414 static void perf_mmap_open(struct vm_area_struct *vma)
3415 {
3416 struct perf_event *event = vma->vm_file->private_data;
3417
3418 atomic_inc(&event->mmap_count);
3419 }
3420
3421 static void perf_mmap_close(struct vm_area_struct *vma)
3422 {
3423 struct perf_event *event = vma->vm_file->private_data;
3424
3425 if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
3426 unsigned long size = perf_data_size(event->rb);
3427 struct user_struct *user = event->mmap_user;
3428 struct ring_buffer *rb = event->rb;
3429
3430 atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
3431 vma->vm_mm->pinned_vm -= event->mmap_locked;
3432 rcu_assign_pointer(event->rb, NULL);
3433 ring_buffer_detach(event, rb);
3434 mutex_unlock(&event->mmap_mutex);
3435
3436 ring_buffer_put(rb);
3437 free_uid(user);
3438 }
3439 }
3440
3441 static const struct vm_operations_struct perf_mmap_vmops = {
3442 .open = perf_mmap_open,
3443 .close = perf_mmap_close,
3444 .fault = perf_mmap_fault,
3445 .page_mkwrite = perf_mmap_fault,
3446 };
3447
3448 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
3449 {
3450 struct perf_event *event = file->private_data;
3451 unsigned long user_locked, user_lock_limit;
3452 struct user_struct *user = current_user();
3453 unsigned long locked, lock_limit;
3454 struct ring_buffer *rb;
3455 unsigned long vma_size;
3456 unsigned long nr_pages;
3457 long user_extra, extra;
3458 int ret = 0, flags = 0;
3459
3460 /*
3461 * Don't allow mmap() of inherited per-task counters. This would
3462 * create a performance issue due to all children writing to the
3463 * same rb.
3464 */
3465 if (event->cpu == -1 && event->attr.inherit)
3466 return -EINVAL;
3467
3468 if (!(vma->vm_flags & VM_SHARED))
3469 return -EINVAL;
3470
3471 vma_size = vma->vm_end - vma->vm_start;
3472 nr_pages = (vma_size / PAGE_SIZE) - 1;
3473
3474 /*
3475 * If we have rb pages ensure they're a power-of-two number, so we
3476 * can do bitmasks instead of modulo.
3477 */
3478 if (nr_pages != 0 && !is_power_of_2(nr_pages))
3479 return -EINVAL;
3480
3481 if (vma_size != PAGE_SIZE * (1 + nr_pages))
3482 return -EINVAL;
3483
3484 if (vma->vm_pgoff != 0)
3485 return -EINVAL;
3486
3487 WARN_ON_ONCE(event->ctx->parent_ctx);
3488 mutex_lock(&event->mmap_mutex);
3489 if (event->rb) {
3490 if (event->rb->nr_pages == nr_pages)
3491 atomic_inc(&event->rb->refcount);
3492 else
3493 ret = -EINVAL;
3494 goto unlock;
3495 }
3496
3497 user_extra = nr_pages + 1;
3498 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
3499
3500 /*
3501 * Increase the limit linearly with more CPUs:
3502 */
3503 user_lock_limit *= num_online_cpus();
3504
3505 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
3506
3507 extra = 0;
3508 if (user_locked > user_lock_limit)
3509 extra = user_locked - user_lock_limit;
3510
3511 lock_limit = rlimit(RLIMIT_MEMLOCK);
3512 lock_limit >>= PAGE_SHIFT;
3513 locked = vma->vm_mm->pinned_vm + extra;
3514
3515 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
3516 !capable(CAP_IPC_LOCK)) {
3517 ret = -EPERM;
3518 goto unlock;
3519 }
3520
3521 WARN_ON(event->rb);
3522
3523 if (vma->vm_flags & VM_WRITE)
3524 flags |= RING_BUFFER_WRITABLE;
3525
3526 rb = rb_alloc(nr_pages,
3527 event->attr.watermark ? event->attr.wakeup_watermark : 0,
3528 event->cpu, flags);
3529
3530 if (!rb) {
3531 ret = -ENOMEM;
3532 goto unlock;
3533 }
3534 rcu_assign_pointer(event->rb, rb);
3535
3536 atomic_long_add(user_extra, &user->locked_vm);
3537 event->mmap_locked = extra;
3538 event->mmap_user = get_current_user();
3539 vma->vm_mm->pinned_vm += event->mmap_locked;
3540
3541 unlock:
3542 if (!ret)
3543 atomic_inc(&event->mmap_count);
3544 mutex_unlock(&event->mmap_mutex);
3545
3546 vma->vm_flags |= VM_RESERVED;
3547 vma->vm_ops = &perf_mmap_vmops;
3548
3549 return ret;
3550 }
3551
3552 static int perf_fasync(int fd, struct file *filp, int on)
3553 {
3554 struct inode *inode = filp->f_path.dentry->d_inode;
3555 struct perf_event *event = filp->private_data;
3556 int retval;
3557
3558 mutex_lock(&inode->i_mutex);
3559 retval = fasync_helper(fd, filp, on, &event->fasync);
3560 mutex_unlock(&inode->i_mutex);
3561
3562 if (retval < 0)
3563 return retval;
3564
3565 return 0;
3566 }
3567
3568 static const struct file_operations perf_fops = {
3569 .llseek = no_llseek,
3570 .release = perf_release,
3571 .read = perf_read,
3572 .poll = perf_poll,
3573 .unlocked_ioctl = perf_ioctl,
3574 .compat_ioctl = perf_ioctl,
3575 .mmap = perf_mmap,
3576 .fasync = perf_fasync,
3577 };
3578
3579 /*
3580 * Perf event wakeup
3581 *
3582 * If there's data, ensure we set the poll() state and publish everything
3583 * to user-space before waking everybody up.
3584 */
3585
3586 void perf_event_wakeup(struct perf_event *event)
3587 {
3588 ring_buffer_wakeup(event);
3589
3590 if (event->pending_kill) {
3591 kill_fasync(&event->fasync, SIGIO, event->pending_kill);
3592 event->pending_kill = 0;
3593 }
3594 }
3595
3596 static void perf_pending_event(struct irq_work *entry)
3597 {
3598 struct perf_event *event = container_of(entry,
3599 struct perf_event, pending);
3600
3601 if (event->pending_disable) {
3602 event->pending_disable = 0;
3603 __perf_event_disable(event);
3604 }
3605
3606 if (event->pending_wakeup) {
3607 event->pending_wakeup = 0;
3608 perf_event_wakeup(event);
3609 }
3610 }
3611
3612 /*
3613 * We assume there is only KVM supporting the callbacks.
3614 * Later on, we might change it to a list if there is
3615 * another virtualization implementation supporting the callbacks.
3616 */
3617 struct perf_guest_info_callbacks *perf_guest_cbs;
3618
3619 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
3620 {
3621 perf_guest_cbs = cbs;
3622 return 0;
3623 }
3624 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
3625
3626 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
3627 {
3628 perf_guest_cbs = NULL;
3629 return 0;
3630 }
3631 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
3632
3633 static void __perf_event_header__init_id(struct perf_event_header *header,
3634 struct perf_sample_data *data,
3635 struct perf_event *event)
3636 {
3637 u64 sample_type = event->attr.sample_type;
3638
3639 data->type = sample_type;
3640 header->size += event->id_header_size;
3641
3642 if (sample_type & PERF_SAMPLE_TID) {
3643 /* namespace issues */
3644 data->tid_entry.pid = perf_event_pid(event, current);
3645 data->tid_entry.tid = perf_event_tid(event, current);
3646 }
3647
3648 if (sample_type & PERF_SAMPLE_TIME)
3649 data->time = perf_clock();
3650
3651 if (sample_type & PERF_SAMPLE_ID)
3652 data->id = primary_event_id(event);
3653
3654 if (sample_type & PERF_SAMPLE_STREAM_ID)
3655 data->stream_id = event->id;
3656
3657 if (sample_type & PERF_SAMPLE_CPU) {
3658 data->cpu_entry.cpu = raw_smp_processor_id();
3659 data->cpu_entry.reserved = 0;
3660 }
3661 }
3662
3663 void perf_event_header__init_id(struct perf_event_header *header,
3664 struct perf_sample_data *data,
3665 struct perf_event *event)
3666 {
3667 if (event->attr.sample_id_all)
3668 __perf_event_header__init_id(header, data, event);
3669 }
3670
3671 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
3672 struct perf_sample_data *data)
3673 {
3674 u64 sample_type = data->type;
3675
3676 if (sample_type & PERF_SAMPLE_TID)
3677 perf_output_put(handle, data->tid_entry);
3678
3679 if (sample_type & PERF_SAMPLE_TIME)
3680 perf_output_put(handle, data->time);
3681
3682 if (sample_type & PERF_SAMPLE_ID)
3683 perf_output_put(handle, data->id);
3684
3685 if (sample_type & PERF_SAMPLE_STREAM_ID)
3686 perf_output_put(handle, data->stream_id);
3687
3688 if (sample_type & PERF_SAMPLE_CPU)
3689 perf_output_put(handle, data->cpu_entry);
3690 }
3691
3692 void perf_event__output_id_sample(struct perf_event *event,
3693 struct perf_output_handle *handle,
3694 struct perf_sample_data *sample)
3695 {
3696 if (event->attr.sample_id_all)
3697 __perf_event__output_id_sample(handle, sample);
3698 }
3699
3700 static void perf_output_read_one(struct perf_output_handle *handle,
3701 struct perf_event *event,
3702 u64 enabled, u64 running)
3703 {
3704 u64 read_format = event->attr.read_format;
3705 u64 values[4];
3706 int n = 0;
3707
3708 values[n++] = perf_event_count(event);
3709 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3710 values[n++] = enabled +
3711 atomic64_read(&event->child_total_time_enabled);
3712 }
3713 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3714 values[n++] = running +
3715 atomic64_read(&event->child_total_time_running);
3716 }
3717 if (read_format & PERF_FORMAT_ID)
3718 values[n++] = primary_event_id(event);
3719
3720 __output_copy(handle, values, n * sizeof(u64));
3721 }
3722
3723 /*
3724 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3725 */
3726 static void perf_output_read_group(struct perf_output_handle *handle,
3727 struct perf_event *event,
3728 u64 enabled, u64 running)
3729 {
3730 struct perf_event *leader = event->group_leader, *sub;
3731 u64 read_format = event->attr.read_format;
3732 u64 values[5];
3733 int n = 0;
3734
3735 values[n++] = 1 + leader->nr_siblings;
3736
3737 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3738 values[n++] = enabled;
3739
3740 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3741 values[n++] = running;
3742
3743 if (leader != event)
3744 leader->pmu->read(leader);
3745
3746 values[n++] = perf_event_count(leader);
3747 if (read_format & PERF_FORMAT_ID)
3748 values[n++] = primary_event_id(leader);
3749
3750 __output_copy(handle, values, n * sizeof(u64));
3751
3752 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3753 n = 0;
3754
3755 if (sub != event)
3756 sub->pmu->read(sub);
3757
3758 values[n++] = perf_event_count(sub);
3759 if (read_format & PERF_FORMAT_ID)
3760 values[n++] = primary_event_id(sub);
3761
3762 __output_copy(handle, values, n * sizeof(u64));
3763 }
3764 }
3765
3766 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
3767 PERF_FORMAT_TOTAL_TIME_RUNNING)
3768
3769 static void perf_output_read(struct perf_output_handle *handle,
3770 struct perf_event *event)
3771 {
3772 u64 enabled = 0, running = 0;
3773 u64 read_format = event->attr.read_format;
3774
3775 /*
3776 * compute total_time_enabled, total_time_running
3777 * based on snapshot values taken when the event
3778 * was last scheduled in.
3779 *
3780 * we cannot simply called update_context_time()
3781 * because of locking issue as we are called in
3782 * NMI context
3783 */
3784 if (read_format & PERF_FORMAT_TOTAL_TIMES)
3785 calc_timer_values(event, &enabled, &running);
3786
3787 if (event->attr.read_format & PERF_FORMAT_GROUP)
3788 perf_output_read_group(handle, event, enabled, running);
3789 else
3790 perf_output_read_one(handle, event, enabled, running);
3791 }
3792
3793 void perf_output_sample(struct perf_output_handle *handle,
3794 struct perf_event_header *header,
3795 struct perf_sample_data *data,
3796 struct perf_event *event)
3797 {
3798 u64 sample_type = data->type;
3799
3800 perf_output_put(handle, *header);
3801
3802 if (sample_type & PERF_SAMPLE_IP)
3803 perf_output_put(handle, data->ip);
3804
3805 if (sample_type & PERF_SAMPLE_TID)
3806 perf_output_put(handle, data->tid_entry);
3807
3808 if (sample_type & PERF_SAMPLE_TIME)
3809 perf_output_put(handle, data->time);
3810
3811 if (sample_type & PERF_SAMPLE_ADDR)
3812 perf_output_put(handle, data->addr);
3813
3814 if (sample_type & PERF_SAMPLE_ID)
3815 perf_output_put(handle, data->id);
3816
3817 if (sample_type & PERF_SAMPLE_STREAM_ID)
3818 perf_output_put(handle, data->stream_id);
3819
3820 if (sample_type & PERF_SAMPLE_CPU)
3821 perf_output_put(handle, data->cpu_entry);
3822
3823 if (sample_type & PERF_SAMPLE_PERIOD)
3824 perf_output_put(handle, data->period);
3825
3826 if (sample_type & PERF_SAMPLE_READ)
3827 perf_output_read(handle, event);
3828
3829 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3830 if (data->callchain) {
3831 int size = 1;
3832
3833 if (data->callchain)
3834 size += data->callchain->nr;
3835
3836 size *= sizeof(u64);
3837
3838 __output_copy(handle, data->callchain, size);
3839 } else {
3840 u64 nr = 0;
3841 perf_output_put(handle, nr);
3842 }
3843 }
3844
3845 if (sample_type & PERF_SAMPLE_RAW) {
3846 if (data->raw) {
3847 perf_output_put(handle, data->raw->size);
3848 __output_copy(handle, data->raw->data,
3849 data->raw->size);
3850 } else {
3851 struct {
3852 u32 size;
3853 u32 data;
3854 } raw = {
3855 .size = sizeof(u32),
3856 .data = 0,
3857 };
3858 perf_output_put(handle, raw);
3859 }
3860 }
3861
3862 if (!event->attr.watermark) {
3863 int wakeup_events = event->attr.wakeup_events;
3864
3865 if (wakeup_events) {
3866 struct ring_buffer *rb = handle->rb;
3867 int events = local_inc_return(&rb->events);
3868
3869 if (events >= wakeup_events) {
3870 local_sub(wakeup_events, &rb->events);
3871 local_inc(&rb->wakeup);
3872 }
3873 }
3874 }
3875 }
3876
3877 void perf_prepare_sample(struct perf_event_header *header,
3878 struct perf_sample_data *data,
3879 struct perf_event *event,
3880 struct pt_regs *regs)
3881 {
3882 u64 sample_type = event->attr.sample_type;
3883
3884 header->type = PERF_RECORD_SAMPLE;
3885 header->size = sizeof(*header) + event->header_size;
3886
3887 header->misc = 0;
3888 header->misc |= perf_misc_flags(regs);
3889
3890 __perf_event_header__init_id(header, data, event);
3891
3892 if (sample_type & PERF_SAMPLE_IP)
3893 data->ip = perf_instruction_pointer(regs);
3894
3895 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3896 int size = 1;
3897
3898 data->callchain = perf_callchain(regs);
3899
3900 if (data->callchain)
3901 size += data->callchain->nr;
3902
3903 header->size += size * sizeof(u64);
3904 }
3905
3906 if (sample_type & PERF_SAMPLE_RAW) {
3907 int size = sizeof(u32);
3908
3909 if (data->raw)
3910 size += data->raw->size;
3911 else
3912 size += sizeof(u32);
3913
3914 WARN_ON_ONCE(size & (sizeof(u64)-1));
3915 header->size += size;
3916 }
3917 }
3918
3919 static void perf_event_output(struct perf_event *event,
3920 struct perf_sample_data *data,
3921 struct pt_regs *regs)
3922 {
3923 struct perf_output_handle handle;
3924 struct perf_event_header header;
3925
3926 /* protect the callchain buffers */
3927 rcu_read_lock();
3928
3929 perf_prepare_sample(&header, data, event, regs);
3930
3931 if (perf_output_begin(&handle, event, header.size))
3932 goto exit;
3933
3934 perf_output_sample(&handle, &header, data, event);
3935
3936 perf_output_end(&handle);
3937
3938 exit:
3939 rcu_read_unlock();
3940 }
3941
3942 /*
3943 * read event_id
3944 */
3945
3946 struct perf_read_event {
3947 struct perf_event_header header;
3948
3949 u32 pid;
3950 u32 tid;
3951 };
3952
3953 static void
3954 perf_event_read_event(struct perf_event *event,
3955 struct task_struct *task)
3956 {
3957 struct perf_output_handle handle;
3958 struct perf_sample_data sample;
3959 struct perf_read_event read_event = {
3960 .header = {
3961 .type = PERF_RECORD_READ,
3962 .misc = 0,
3963 .size = sizeof(read_event) + event->read_size,
3964 },
3965 .pid = perf_event_pid(event, task),
3966 .tid = perf_event_tid(event, task),
3967 };
3968 int ret;
3969
3970 perf_event_header__init_id(&read_event.header, &sample, event);
3971 ret = perf_output_begin(&handle, event, read_event.header.size);
3972 if (ret)
3973 return;
3974
3975 perf_output_put(&handle, read_event);
3976 perf_output_read(&handle, event);
3977 perf_event__output_id_sample(event, &handle, &sample);
3978
3979 perf_output_end(&handle);
3980 }
3981
3982 /*
3983 * task tracking -- fork/exit
3984 *
3985 * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task
3986 */
3987
3988 struct perf_task_event {
3989 struct task_struct *task;
3990 struct perf_event_context *task_ctx;
3991
3992 struct {
3993 struct perf_event_header header;
3994
3995 u32 pid;
3996 u32 ppid;
3997 u32 tid;
3998 u32 ptid;
3999 u64 time;
4000 } event_id;
4001 };
4002
4003 static void perf_event_task_output(struct perf_event *event,
4004 struct perf_task_event *task_event)
4005 {
4006 struct perf_output_handle handle;
4007 struct perf_sample_data sample;
4008 struct task_struct *task = task_event->task;
4009 int ret, size = task_event->event_id.header.size;
4010
4011 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
4012
4013 ret = perf_output_begin(&handle, event,
4014 task_event->event_id.header.size);
4015 if (ret)
4016 goto out;
4017
4018 task_event->event_id.pid = perf_event_pid(event, task);
4019 task_event->event_id.ppid = perf_event_pid(event, current);
4020
4021 task_event->event_id.tid = perf_event_tid(event, task);
4022 task_event->event_id.ptid = perf_event_tid(event, current);
4023
4024 perf_output_put(&handle, task_event->event_id);
4025
4026 perf_event__output_id_sample(event, &handle, &sample);
4027
4028 perf_output_end(&handle);
4029 out:
4030 task_event->event_id.header.size = size;
4031 }
4032
4033 static int perf_event_task_match(struct perf_event *event)
4034 {
4035 if (event->state < PERF_EVENT_STATE_INACTIVE)
4036 return 0;
4037
4038 if (!event_filter_match(event))
4039 return 0;
4040
4041 if (event->attr.comm || event->attr.mmap ||
4042 event->attr.mmap_data || event->attr.task)
4043 return 1;
4044
4045 return 0;
4046 }
4047
4048 static void perf_event_task_ctx(struct perf_event_context *ctx,
4049 struct perf_task_event *task_event)
4050 {
4051 struct perf_event *event;
4052
4053 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4054 if (perf_event_task_match(event))
4055 perf_event_task_output(event, task_event);
4056 }
4057 }
4058
4059 static void perf_event_task_event(struct perf_task_event *task_event)
4060 {
4061 struct perf_cpu_context *cpuctx;
4062 struct perf_event_context *ctx;
4063 struct pmu *pmu;
4064 int ctxn;
4065
4066 rcu_read_lock();
4067 list_for_each_entry_rcu(pmu, &pmus, entry) {
4068 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4069 if (cpuctx->active_pmu != pmu)
4070 goto next;
4071 perf_event_task_ctx(&cpuctx->ctx, task_event);
4072
4073 ctx = task_event->task_ctx;
4074 if (!ctx) {
4075 ctxn = pmu->task_ctx_nr;
4076 if (ctxn < 0)
4077 goto next;
4078 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4079 }
4080 if (ctx)
4081 perf_event_task_ctx(ctx, task_event);
4082 next:
4083 put_cpu_ptr(pmu->pmu_cpu_context);
4084 }
4085 rcu_read_unlock();
4086 }
4087
4088 static void perf_event_task(struct task_struct *task,
4089 struct perf_event_context *task_ctx,
4090 int new)
4091 {
4092 struct perf_task_event task_event;
4093
4094 if (!atomic_read(&nr_comm_events) &&
4095 !atomic_read(&nr_mmap_events) &&
4096 !atomic_read(&nr_task_events))
4097 return;
4098
4099 task_event = (struct perf_task_event){
4100 .task = task,
4101 .task_ctx = task_ctx,
4102 .event_id = {
4103 .header = {
4104 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
4105 .misc = 0,
4106 .size = sizeof(task_event.event_id),
4107 },
4108 /* .pid */
4109 /* .ppid */
4110 /* .tid */
4111 /* .ptid */
4112 .time = perf_clock(),
4113 },
4114 };
4115
4116 perf_event_task_event(&task_event);
4117 }
4118
4119 void perf_event_fork(struct task_struct *task)
4120 {
4121 perf_event_task(task, NULL, 1);
4122 }
4123
4124 /*
4125 * comm tracking
4126 */
4127
4128 struct perf_comm_event {
4129 struct task_struct *task;
4130 char *comm;
4131 int comm_size;
4132
4133 struct {
4134 struct perf_event_header header;
4135
4136 u32 pid;
4137 u32 tid;
4138 } event_id;
4139 };
4140
4141 static void perf_event_comm_output(struct perf_event *event,
4142 struct perf_comm_event *comm_event)
4143 {
4144 struct perf_output_handle handle;
4145 struct perf_sample_data sample;
4146 int size = comm_event->event_id.header.size;
4147 int ret;
4148
4149 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
4150 ret = perf_output_begin(&handle, event,
4151 comm_event->event_id.header.size);
4152
4153 if (ret)
4154 goto out;
4155
4156 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
4157 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
4158
4159 perf_output_put(&handle, comm_event->event_id);
4160 __output_copy(&handle, comm_event->comm,
4161 comm_event->comm_size);
4162
4163 perf_event__output_id_sample(event, &handle, &sample);
4164
4165 perf_output_end(&handle);
4166 out:
4167 comm_event->event_id.header.size = size;
4168 }
4169
4170 static int perf_event_comm_match(struct perf_event *event)
4171 {
4172 if (event->state < PERF_EVENT_STATE_INACTIVE)
4173 return 0;
4174
4175 if (!event_filter_match(event))
4176 return 0;
4177
4178 if (event->attr.comm)
4179 return 1;
4180
4181 return 0;
4182 }
4183
4184 static void perf_event_comm_ctx(struct perf_event_context *ctx,
4185 struct perf_comm_event *comm_event)
4186 {
4187 struct perf_event *event;
4188
4189 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4190 if (perf_event_comm_match(event))
4191 perf_event_comm_output(event, comm_event);
4192 }
4193 }
4194
4195 static void perf_event_comm_event(struct perf_comm_event *comm_event)
4196 {
4197 struct perf_cpu_context *cpuctx;
4198 struct perf_event_context *ctx;
4199 char comm[TASK_COMM_LEN];
4200 unsigned int size;
4201 struct pmu *pmu;
4202 int ctxn;
4203
4204 memset(comm, 0, sizeof(comm));
4205 strlcpy(comm, comm_event->task->comm, sizeof(comm));
4206 size = ALIGN(strlen(comm)+1, sizeof(u64));
4207
4208 comm_event->comm = comm;
4209 comm_event->comm_size = size;
4210
4211 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
4212 rcu_read_lock();
4213 list_for_each_entry_rcu(pmu, &pmus, entry) {
4214 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4215 if (cpuctx->active_pmu != pmu)
4216 goto next;
4217 perf_event_comm_ctx(&cpuctx->ctx, comm_event);
4218
4219 ctxn = pmu->task_ctx_nr;
4220 if (ctxn < 0)
4221 goto next;
4222
4223 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4224 if (ctx)
4225 perf_event_comm_ctx(ctx, comm_event);
4226 next:
4227 put_cpu_ptr(pmu->pmu_cpu_context);
4228 }
4229 rcu_read_unlock();
4230 }
4231
4232 void perf_event_comm(struct task_struct *task)
4233 {
4234 struct perf_comm_event comm_event;
4235 struct perf_event_context *ctx;
4236 int ctxn;
4237
4238 for_each_task_context_nr(ctxn) {
4239 ctx = task->perf_event_ctxp[ctxn];
4240 if (!ctx)
4241 continue;
4242
4243 perf_event_enable_on_exec(ctx);
4244 }
4245
4246 if (!atomic_read(&nr_comm_events))
4247 return;
4248
4249 comm_event = (struct perf_comm_event){
4250 .task = task,
4251 /* .comm */
4252 /* .comm_size */
4253 .event_id = {
4254 .header = {
4255 .type = PERF_RECORD_COMM,
4256 .misc = 0,
4257 /* .size */
4258 },
4259 /* .pid */
4260 /* .tid */
4261 },
4262 };
4263
4264 perf_event_comm_event(&comm_event);
4265 }
4266
4267 /*
4268 * mmap tracking
4269 */
4270
4271 struct perf_mmap_event {
4272 struct vm_area_struct *vma;
4273
4274 const char *file_name;
4275 int file_size;
4276
4277 struct {
4278 struct perf_event_header header;
4279
4280 u32 pid;
4281 u32 tid;
4282 u64 start;
4283 u64 len;
4284 u64 pgoff;
4285 } event_id;
4286 };
4287
4288 static void perf_event_mmap_output(struct perf_event *event,
4289 struct perf_mmap_event *mmap_event)
4290 {
4291 struct perf_output_handle handle;
4292 struct perf_sample_data sample;
4293 int size = mmap_event->event_id.header.size;
4294 int ret;
4295
4296 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
4297 ret = perf_output_begin(&handle, event,
4298 mmap_event->event_id.header.size);
4299 if (ret)
4300 goto out;
4301
4302 mmap_event->event_id.pid = perf_event_pid(event, current);
4303 mmap_event->event_id.tid = perf_event_tid(event, current);
4304
4305 perf_output_put(&handle, mmap_event->event_id);
4306 __output_copy(&handle, mmap_event->file_name,
4307 mmap_event->file_size);
4308
4309 perf_event__output_id_sample(event, &handle, &sample);
4310
4311 perf_output_end(&handle);
4312 out:
4313 mmap_event->event_id.header.size = size;
4314 }
4315
4316 static int perf_event_mmap_match(struct perf_event *event,
4317 struct perf_mmap_event *mmap_event,
4318 int executable)
4319 {
4320 if (event->state < PERF_EVENT_STATE_INACTIVE)
4321 return 0;
4322
4323 if (!event_filter_match(event))
4324 return 0;
4325
4326 if ((!executable && event->attr.mmap_data) ||
4327 (executable && event->attr.mmap))
4328 return 1;
4329
4330 return 0;
4331 }
4332
4333 static void perf_event_mmap_ctx(struct perf_event_context *ctx,
4334 struct perf_mmap_event *mmap_event,
4335 int executable)
4336 {
4337 struct perf_event *event;
4338
4339 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4340 if (perf_event_mmap_match(event, mmap_event, executable))
4341 perf_event_mmap_output(event, mmap_event);
4342 }
4343 }
4344
4345 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
4346 {
4347 struct perf_cpu_context *cpuctx;
4348 struct perf_event_context *ctx;
4349 struct vm_area_struct *vma = mmap_event->vma;
4350 struct file *file = vma->vm_file;
4351 unsigned int size;
4352 char tmp[16];
4353 char *buf = NULL;
4354 const char *name;
4355 struct pmu *pmu;
4356 int ctxn;
4357
4358 memset(tmp, 0, sizeof(tmp));
4359
4360 if (file) {
4361 /*
4362 * d_path works from the end of the rb backwards, so we
4363 * need to add enough zero bytes after the string to handle
4364 * the 64bit alignment we do later.
4365 */
4366 buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
4367 if (!buf) {
4368 name = strncpy(tmp, "//enomem", sizeof(tmp));
4369 goto got_name;
4370 }
4371 name = d_path(&file->f_path, buf, PATH_MAX);
4372 if (IS_ERR(name)) {
4373 name = strncpy(tmp, "//toolong", sizeof(tmp));
4374 goto got_name;
4375 }
4376 } else {
4377 if (arch_vma_name(mmap_event->vma)) {
4378 name = strncpy(tmp, arch_vma_name(mmap_event->vma),
4379 sizeof(tmp));
4380 goto got_name;
4381 }
4382
4383 if (!vma->vm_mm) {
4384 name = strncpy(tmp, "[vdso]", sizeof(tmp));
4385 goto got_name;
4386 } else if (vma->vm_start <= vma->vm_mm->start_brk &&
4387 vma->vm_end >= vma->vm_mm->brk) {
4388 name = strncpy(tmp, "[heap]", sizeof(tmp));
4389 goto got_name;
4390 } else if (vma->vm_start <= vma->vm_mm->start_stack &&
4391 vma->vm_end >= vma->vm_mm->start_stack) {
4392 name = strncpy(tmp, "[stack]", sizeof(tmp));
4393 goto got_name;
4394 }
4395
4396 name = strncpy(tmp, "//anon", sizeof(tmp));
4397 goto got_name;
4398 }
4399
4400 got_name:
4401 size = ALIGN(strlen(name)+1, sizeof(u64));
4402
4403 mmap_event->file_name = name;
4404 mmap_event->file_size = size;
4405
4406 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
4407
4408 rcu_read_lock();
4409 list_for_each_entry_rcu(pmu, &pmus, entry) {
4410 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4411 if (cpuctx->active_pmu != pmu)
4412 goto next;
4413 perf_event_mmap_ctx(&cpuctx->ctx, mmap_event,
4414 vma->vm_flags & VM_EXEC);
4415
4416 ctxn = pmu->task_ctx_nr;
4417 if (ctxn < 0)
4418 goto next;
4419
4420 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4421 if (ctx) {
4422 perf_event_mmap_ctx(ctx, mmap_event,
4423 vma->vm_flags & VM_EXEC);
4424 }
4425 next:
4426 put_cpu_ptr(pmu->pmu_cpu_context);
4427 }
4428 rcu_read_unlock();
4429
4430 kfree(buf);
4431 }
4432
4433 void perf_event_mmap(struct vm_area_struct *vma)
4434 {
4435 struct perf_mmap_event mmap_event;
4436
4437 if (!atomic_read(&nr_mmap_events))
4438 return;
4439
4440 mmap_event = (struct perf_mmap_event){
4441 .vma = vma,
4442 /* .file_name */
4443 /* .file_size */
4444 .event_id = {
4445 .header = {
4446 .type = PERF_RECORD_MMAP,
4447 .misc = PERF_RECORD_MISC_USER,
4448 /* .size */
4449 },
4450 /* .pid */
4451 /* .tid */
4452 .start = vma->vm_start,
4453 .len = vma->vm_end - vma->vm_start,
4454 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
4455 },
4456 };
4457
4458 perf_event_mmap_event(&mmap_event);
4459 }
4460
4461 /*
4462 * IRQ throttle logging
4463 */
4464
4465 static void perf_log_throttle(struct perf_event *event, int enable)
4466 {
4467 struct perf_output_handle handle;
4468 struct perf_sample_data sample;
4469 int ret;
4470
4471 struct {
4472 struct perf_event_header header;
4473 u64 time;
4474 u64 id;
4475 u64 stream_id;
4476 } throttle_event = {
4477 .header = {
4478 .type = PERF_RECORD_THROTTLE,
4479 .misc = 0,
4480 .size = sizeof(throttle_event),
4481 },
4482 .time = perf_clock(),
4483 .id = primary_event_id(event),
4484 .stream_id = event->id,
4485 };
4486
4487 if (enable)
4488 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
4489
4490 perf_event_header__init_id(&throttle_event.header, &sample, event);
4491
4492 ret = perf_output_begin(&handle, event,
4493 throttle_event.header.size);
4494 if (ret)
4495 return;
4496
4497 perf_output_put(&handle, throttle_event);
4498 perf_event__output_id_sample(event, &handle, &sample);
4499 perf_output_end(&handle);
4500 }
4501
4502 /*
4503 * Generic event overflow handling, sampling.
4504 */
4505
4506 static int __perf_event_overflow(struct perf_event *event,
4507 int throttle, struct perf_sample_data *data,
4508 struct pt_regs *regs)
4509 {
4510 int events = atomic_read(&event->event_limit);
4511 struct hw_perf_event *hwc = &event->hw;
4512 int ret = 0;
4513
4514 /*
4515 * Non-sampling counters might still use the PMI to fold short
4516 * hardware counters, ignore those.
4517 */
4518 if (unlikely(!is_sampling_event(event)))
4519 return 0;
4520
4521 if (unlikely(hwc->interrupts >= max_samples_per_tick)) {
4522 if (throttle) {
4523 hwc->interrupts = MAX_INTERRUPTS;
4524 perf_log_throttle(event, 0);
4525 ret = 1;
4526 }
4527 } else
4528 hwc->interrupts++;
4529
4530 if (event->attr.freq) {
4531 u64 now = perf_clock();
4532 s64 delta = now - hwc->freq_time_stamp;
4533
4534 hwc->freq_time_stamp = now;
4535
4536 if (delta > 0 && delta < 2*TICK_NSEC)
4537 perf_adjust_period(event, delta, hwc->last_period);
4538 }
4539
4540 /*
4541 * XXX event_limit might not quite work as expected on inherited
4542 * events
4543 */
4544
4545 event->pending_kill = POLL_IN;
4546 if (events && atomic_dec_and_test(&event->event_limit)) {
4547 ret = 1;
4548 event->pending_kill = POLL_HUP;
4549 event->pending_disable = 1;
4550 irq_work_queue(&event->pending);
4551 }
4552
4553 if (event->overflow_handler)
4554 event->overflow_handler(event, data, regs);
4555 else
4556 perf_event_output(event, data, regs);
4557
4558 if (event->fasync && event->pending_kill) {
4559 event->pending_wakeup = 1;
4560 irq_work_queue(&event->pending);
4561 }
4562
4563 return ret;
4564 }
4565
4566 int perf_event_overflow(struct perf_event *event,
4567 struct perf_sample_data *data,
4568 struct pt_regs *regs)
4569 {
4570 return __perf_event_overflow(event, 1, data, regs);
4571 }
4572
4573 /*
4574 * Generic software event infrastructure
4575 */
4576
4577 struct swevent_htable {
4578 struct swevent_hlist *swevent_hlist;
4579 struct mutex hlist_mutex;
4580 int hlist_refcount;
4581
4582 /* Recursion avoidance in each contexts */
4583 int recursion[PERF_NR_CONTEXTS];
4584 };
4585
4586 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
4587
4588 /*
4589 * We directly increment event->count and keep a second value in
4590 * event->hw.period_left to count intervals. This period event
4591 * is kept in the range [-sample_period, 0] so that we can use the
4592 * sign as trigger.
4593 */
4594
4595 static u64 perf_swevent_set_period(struct perf_event *event)
4596 {
4597 struct hw_perf_event *hwc = &event->hw;
4598 u64 period = hwc->last_period;
4599 u64 nr, offset;
4600 s64 old, val;
4601
4602 hwc->last_period = hwc->sample_period;
4603
4604 again:
4605 old = val = local64_read(&hwc->period_left);
4606 if (val < 0)
4607 return 0;
4608
4609 nr = div64_u64(period + val, period);
4610 offset = nr * period;
4611 val -= offset;
4612 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
4613 goto again;
4614
4615 return nr;
4616 }
4617
4618 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
4619 struct perf_sample_data *data,
4620 struct pt_regs *regs)
4621 {
4622 struct hw_perf_event *hwc = &event->hw;
4623 int throttle = 0;
4624
4625 if (!overflow)
4626 overflow = perf_swevent_set_period(event);
4627
4628 if (hwc->interrupts == MAX_INTERRUPTS)
4629 return;
4630
4631 for (; overflow; overflow--) {
4632 if (__perf_event_overflow(event, throttle,
4633 data, regs)) {
4634 /*
4635 * We inhibit the overflow from happening when
4636 * hwc->interrupts == MAX_INTERRUPTS.
4637 */
4638 break;
4639 }
4640 throttle = 1;
4641 }
4642 }
4643
4644 static void perf_swevent_event(struct perf_event *event, u64 nr,
4645 struct perf_sample_data *data,
4646 struct pt_regs *regs)
4647 {
4648 struct hw_perf_event *hwc = &event->hw;
4649
4650 local64_add(nr, &event->count);
4651
4652 if (!regs)
4653 return;
4654
4655 if (!is_sampling_event(event))
4656 return;
4657
4658 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
4659 data->period = nr;
4660 return perf_swevent_overflow(event, 1, data, regs);
4661 } else
4662 data->period = event->hw.last_period;
4663
4664 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
4665 return perf_swevent_overflow(event, 1, data, regs);
4666
4667 if (local64_add_negative(nr, &hwc->period_left))
4668 return;
4669
4670 perf_swevent_overflow(event, 0, data, regs);
4671 }
4672
4673 static int perf_exclude_event(struct perf_event *event,
4674 struct pt_regs *regs)
4675 {
4676 if (event->hw.state & PERF_HES_STOPPED)
4677 return 1;
4678
4679 if (regs) {
4680 if (event->attr.exclude_user && user_mode(regs))
4681 return 1;
4682
4683 if (event->attr.exclude_kernel && !user_mode(regs))
4684 return 1;
4685 }
4686
4687 return 0;
4688 }
4689
4690 static int perf_swevent_match(struct perf_event *event,
4691 enum perf_type_id type,
4692 u32 event_id,
4693 struct perf_sample_data *data,
4694 struct pt_regs *regs)
4695 {
4696 if (event->attr.type != type)
4697 return 0;
4698
4699 if (event->attr.config != event_id)
4700 return 0;
4701
4702 if (perf_exclude_event(event, regs))
4703 return 0;
4704
4705 return 1;
4706 }
4707
4708 static inline u64 swevent_hash(u64 type, u32 event_id)
4709 {
4710 u64 val = event_id | (type << 32);
4711
4712 return hash_64(val, SWEVENT_HLIST_BITS);
4713 }
4714
4715 static inline struct hlist_head *
4716 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
4717 {
4718 u64 hash = swevent_hash(type, event_id);
4719
4720 return &hlist->heads[hash];
4721 }
4722
4723 /* For the read side: events when they trigger */
4724 static inline struct hlist_head *
4725 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
4726 {
4727 struct swevent_hlist *hlist;
4728
4729 hlist = rcu_dereference(swhash->swevent_hlist);
4730 if (!hlist)
4731 return NULL;
4732
4733 return __find_swevent_head(hlist, type, event_id);
4734 }
4735
4736 /* For the event head insertion and removal in the hlist */
4737 static inline struct hlist_head *
4738 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
4739 {
4740 struct swevent_hlist *hlist;
4741 u32 event_id = event->attr.config;
4742 u64 type = event->attr.type;
4743
4744 /*
4745 * Event scheduling is always serialized against hlist allocation
4746 * and release. Which makes the protected version suitable here.
4747 * The context lock guarantees that.
4748 */
4749 hlist = rcu_dereference_protected(swhash->swevent_hlist,
4750 lockdep_is_held(&event->ctx->lock));
4751 if (!hlist)
4752 return NULL;
4753
4754 return __find_swevent_head(hlist, type, event_id);
4755 }
4756
4757 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
4758 u64 nr,
4759 struct perf_sample_data *data,
4760 struct pt_regs *regs)
4761 {
4762 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4763 struct perf_event *event;
4764 struct hlist_node *node;
4765 struct hlist_head *head;
4766
4767 rcu_read_lock();
4768 head = find_swevent_head_rcu(swhash, type, event_id);
4769 if (!head)
4770 goto end;
4771
4772 hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
4773 if (perf_swevent_match(event, type, event_id, data, regs))
4774 perf_swevent_event(event, nr, data, regs);
4775 }
4776 end:
4777 rcu_read_unlock();
4778 }
4779
4780 int perf_swevent_get_recursion_context(void)
4781 {
4782 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4783
4784 return get_recursion_context(swhash->recursion);
4785 }
4786 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
4787
4788 inline void perf_swevent_put_recursion_context(int rctx)
4789 {
4790 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4791
4792 put_recursion_context(swhash->recursion, rctx);
4793 }
4794
4795 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
4796 {
4797 struct perf_sample_data data;
4798 int rctx;
4799
4800 preempt_disable_notrace();
4801 rctx = perf_swevent_get_recursion_context();
4802 if (rctx < 0)
4803 return;
4804
4805 perf_sample_data_init(&data, addr);
4806
4807 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
4808
4809 perf_swevent_put_recursion_context(rctx);
4810 preempt_enable_notrace();
4811 }
4812
4813 static void perf_swevent_read(struct perf_event *event)
4814 {
4815 }
4816
4817 static int perf_swevent_add(struct perf_event *event, int flags)
4818 {
4819 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4820 struct hw_perf_event *hwc = &event->hw;
4821 struct hlist_head *head;
4822
4823 if (is_sampling_event(event)) {
4824 hwc->last_period = hwc->sample_period;
4825 perf_swevent_set_period(event);
4826 }
4827
4828 hwc->state = !(flags & PERF_EF_START);
4829
4830 head = find_swevent_head(swhash, event);
4831 if (WARN_ON_ONCE(!head))
4832 return -EINVAL;
4833
4834 hlist_add_head_rcu(&event->hlist_entry, head);
4835
4836 return 0;
4837 }
4838
4839 static void perf_swevent_del(struct perf_event *event, int flags)
4840 {
4841 hlist_del_rcu(&event->hlist_entry);
4842 }
4843
4844 static void perf_swevent_start(struct perf_event *event, int flags)
4845 {
4846 event->hw.state = 0;
4847 }
4848
4849 static void perf_swevent_stop(struct perf_event *event, int flags)
4850 {
4851 event->hw.state = PERF_HES_STOPPED;
4852 }
4853
4854 /* Deref the hlist from the update side */
4855 static inline struct swevent_hlist *
4856 swevent_hlist_deref(struct swevent_htable *swhash)
4857 {
4858 return rcu_dereference_protected(swhash->swevent_hlist,
4859 lockdep_is_held(&swhash->hlist_mutex));
4860 }
4861
4862 static void swevent_hlist_release(struct swevent_htable *swhash)
4863 {
4864 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
4865
4866 if (!hlist)
4867 return;
4868
4869 rcu_assign_pointer(swhash->swevent_hlist, NULL);
4870 kfree_rcu(hlist, rcu_head);
4871 }
4872
4873 static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
4874 {
4875 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
4876
4877 mutex_lock(&swhash->hlist_mutex);
4878
4879 if (!--swhash->hlist_refcount)
4880 swevent_hlist_release(swhash);
4881
4882 mutex_unlock(&swhash->hlist_mutex);
4883 }
4884
4885 static void swevent_hlist_put(struct perf_event *event)
4886 {
4887 int cpu;
4888
4889 if (event->cpu != -1) {
4890 swevent_hlist_put_cpu(event, event->cpu);
4891 return;
4892 }
4893
4894 for_each_possible_cpu(cpu)
4895 swevent_hlist_put_cpu(event, cpu);
4896 }
4897
4898 static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
4899 {
4900 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
4901 int err = 0;
4902
4903 mutex_lock(&swhash->hlist_mutex);
4904
4905 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
4906 struct swevent_hlist *hlist;
4907
4908 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
4909 if (!hlist) {
4910 err = -ENOMEM;
4911 goto exit;
4912 }
4913 rcu_assign_pointer(swhash->swevent_hlist, hlist);
4914 }
4915 swhash->hlist_refcount++;
4916 exit:
4917 mutex_unlock(&swhash->hlist_mutex);
4918
4919 return err;
4920 }
4921
4922 static int swevent_hlist_get(struct perf_event *event)
4923 {
4924 int err;
4925 int cpu, failed_cpu;
4926
4927 if (event->cpu != -1)
4928 return swevent_hlist_get_cpu(event, event->cpu);
4929
4930 get_online_cpus();
4931 for_each_possible_cpu(cpu) {
4932 err = swevent_hlist_get_cpu(event, cpu);
4933 if (err) {
4934 failed_cpu = cpu;
4935 goto fail;
4936 }
4937 }
4938 put_online_cpus();
4939
4940 return 0;
4941 fail:
4942 for_each_possible_cpu(cpu) {
4943 if (cpu == failed_cpu)
4944 break;
4945 swevent_hlist_put_cpu(event, cpu);
4946 }
4947
4948 put_online_cpus();
4949 return err;
4950 }
4951
4952 struct jump_label_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
4953
4954 static void sw_perf_event_destroy(struct perf_event *event)
4955 {
4956 u64 event_id = event->attr.config;
4957
4958 WARN_ON(event->parent);
4959
4960 jump_label_dec(&perf_swevent_enabled[event_id]);
4961 swevent_hlist_put(event);
4962 }
4963
4964 static int perf_swevent_init(struct perf_event *event)
4965 {
4966 int event_id = event->attr.config;
4967
4968 if (event->attr.type != PERF_TYPE_SOFTWARE)
4969 return -ENOENT;
4970
4971 switch (event_id) {
4972 case PERF_COUNT_SW_CPU_CLOCK:
4973 case PERF_COUNT_SW_TASK_CLOCK:
4974 return -ENOENT;
4975
4976 default:
4977 break;
4978 }
4979
4980 if (event_id >= PERF_COUNT_SW_MAX)
4981 return -ENOENT;
4982
4983 if (!event->parent) {
4984 int err;
4985
4986 err = swevent_hlist_get(event);
4987 if (err)
4988 return err;
4989
4990 jump_label_inc(&perf_swevent_enabled[event_id]);
4991 event->destroy = sw_perf_event_destroy;
4992 }
4993
4994 return 0;
4995 }
4996
4997 static struct pmu perf_swevent = {
4998 .task_ctx_nr = perf_sw_context,
4999
5000 .event_init = perf_swevent_init,
5001 .add = perf_swevent_add,
5002 .del = perf_swevent_del,
5003 .start = perf_swevent_start,
5004 .stop = perf_swevent_stop,
5005 .read = perf_swevent_read,
5006 };
5007
5008 #ifdef CONFIG_EVENT_TRACING
5009
5010 static int perf_tp_filter_match(struct perf_event *event,
5011 struct perf_sample_data *data)
5012 {
5013 void *record = data->raw->data;
5014
5015 if (likely(!event->filter) || filter_match_preds(event->filter, record))
5016 return 1;
5017 return 0;
5018 }
5019
5020 static int perf_tp_event_match(struct perf_event *event,
5021 struct perf_sample_data *data,
5022 struct pt_regs *regs)
5023 {
5024 if (event->hw.state & PERF_HES_STOPPED)
5025 return 0;
5026 /*
5027 * All tracepoints are from kernel-space.
5028 */
5029 if (event->attr.exclude_kernel)
5030 return 0;
5031
5032 if (!perf_tp_filter_match(event, data))
5033 return 0;
5034
5035 return 1;
5036 }
5037
5038 void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
5039 struct pt_regs *regs, struct hlist_head *head, int rctx)
5040 {
5041 struct perf_sample_data data;
5042 struct perf_event *event;
5043 struct hlist_node *node;
5044
5045 struct perf_raw_record raw = {
5046 .size = entry_size,
5047 .data = record,
5048 };
5049
5050 perf_sample_data_init(&data, addr);
5051 data.raw = &raw;
5052
5053 hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
5054 if (perf_tp_event_match(event, &data, regs))
5055 perf_swevent_event(event, count, &data, regs);
5056 }
5057
5058 perf_swevent_put_recursion_context(rctx);
5059 }
5060 EXPORT_SYMBOL_GPL(perf_tp_event);
5061
5062 static void tp_perf_event_destroy(struct perf_event *event)
5063 {
5064 perf_trace_destroy(event);
5065 }
5066
5067 static int perf_tp_event_init(struct perf_event *event)
5068 {
5069 int err;
5070
5071 if (event->attr.type != PERF_TYPE_TRACEPOINT)
5072 return -ENOENT;
5073
5074 err = perf_trace_init(event);
5075 if (err)
5076 return err;
5077
5078 event->destroy = tp_perf_event_destroy;
5079
5080 return 0;
5081 }
5082
5083 static struct pmu perf_tracepoint = {
5084 .task_ctx_nr = perf_sw_context,
5085
5086 .event_init = perf_tp_event_init,
5087 .add = perf_trace_add,
5088 .del = perf_trace_del,
5089 .start = perf_swevent_start,
5090 .stop = perf_swevent_stop,
5091 .read = perf_swevent_read,
5092 };
5093
5094 static inline void perf_tp_register(void)
5095 {
5096 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
5097 }
5098
5099 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
5100 {
5101 char *filter_str;
5102 int ret;
5103
5104 if (event->attr.type != PERF_TYPE_TRACEPOINT)
5105 return -EINVAL;
5106
5107 filter_str = strndup_user(arg, PAGE_SIZE);
5108 if (IS_ERR(filter_str))
5109 return PTR_ERR(filter_str);
5110
5111 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
5112
5113 kfree(filter_str);
5114 return ret;
5115 }
5116
5117 static void perf_event_free_filter(struct perf_event *event)
5118 {
5119 ftrace_profile_free_filter(event);
5120 }
5121
5122 #else
5123
5124 static inline void perf_tp_register(void)
5125 {
5126 }
5127
5128 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
5129 {
5130 return -ENOENT;
5131 }
5132
5133 static void perf_event_free_filter(struct perf_event *event)
5134 {
5135 }
5136
5137 #endif /* CONFIG_EVENT_TRACING */
5138
5139 #ifdef CONFIG_HAVE_HW_BREAKPOINT
5140 void perf_bp_event(struct perf_event *bp, void *data)
5141 {
5142 struct perf_sample_data sample;
5143 struct pt_regs *regs = data;
5144
5145 perf_sample_data_init(&sample, bp->attr.bp_addr);
5146
5147 if (!bp->hw.state && !perf_exclude_event(bp, regs))
5148 perf_swevent_event(bp, 1, &sample, regs);
5149 }
5150 #endif
5151
5152 /*
5153 * hrtimer based swevent callback
5154 */
5155
5156 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
5157 {
5158 enum hrtimer_restart ret = HRTIMER_RESTART;
5159 struct perf_sample_data data;
5160 struct pt_regs *regs;
5161 struct perf_event *event;
5162 u64 period;
5163
5164 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
5165
5166 if (event->state != PERF_EVENT_STATE_ACTIVE)
5167 return HRTIMER_NORESTART;
5168
5169 event->pmu->read(event);
5170
5171 perf_sample_data_init(&data, 0);
5172 data.period = event->hw.last_period;
5173 regs = get_irq_regs();
5174
5175 if (regs && !perf_exclude_event(event, regs)) {
5176 if (!(event->attr.exclude_idle && is_idle_task(current)))
5177 if (perf_event_overflow(event, &data, regs))
5178 ret = HRTIMER_NORESTART;
5179 }
5180
5181 period = max_t(u64, 10000, event->hw.sample_period);
5182 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
5183
5184 return ret;
5185 }
5186
5187 static void perf_swevent_start_hrtimer(struct perf_event *event)
5188 {
5189 struct hw_perf_event *hwc = &event->hw;
5190 s64 period;
5191
5192 if (!is_sampling_event(event))
5193 return;
5194
5195 period = local64_read(&hwc->period_left);
5196 if (period) {
5197 if (period < 0)
5198 period = 10000;
5199
5200 local64_set(&hwc->period_left, 0);
5201 } else {
5202 period = max_t(u64, 10000, hwc->sample_period);
5203 }
5204 __hrtimer_start_range_ns(&hwc->hrtimer,
5205 ns_to_ktime(period), 0,
5206 HRTIMER_MODE_REL_PINNED, 0);
5207 }
5208
5209 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
5210 {
5211 struct hw_perf_event *hwc = &event->hw;
5212
5213 if (is_sampling_event(event)) {
5214 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
5215 local64_set(&hwc->period_left, ktime_to_ns(remaining));
5216
5217 hrtimer_cancel(&hwc->hrtimer);
5218 }
5219 }
5220
5221 static void perf_swevent_init_hrtimer(struct perf_event *event)
5222 {
5223 struct hw_perf_event *hwc = &event->hw;
5224
5225 if (!is_sampling_event(event))
5226 return;
5227
5228 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
5229 hwc->hrtimer.function = perf_swevent_hrtimer;
5230
5231 /*
5232 * Since hrtimers have a fixed rate, we can do a static freq->period
5233 * mapping and avoid the whole period adjust feedback stuff.
5234 */
5235 if (event->attr.freq) {
5236 long freq = event->attr.sample_freq;
5237
5238 event->attr.sample_period = NSEC_PER_SEC / freq;
5239 hwc->sample_period = event->attr.sample_period;
5240 local64_set(&hwc->period_left, hwc->sample_period);
5241 event->attr.freq = 0;
5242 }
5243 }
5244
5245 /*
5246 * Software event: cpu wall time clock
5247 */
5248
5249 static void cpu_clock_event_update(struct perf_event *event)
5250 {
5251 s64 prev;
5252 u64 now;
5253
5254 now = local_clock();
5255 prev = local64_xchg(&event->hw.prev_count, now);
5256 local64_add(now - prev, &event->count);
5257 }
5258
5259 static void cpu_clock_event_start(struct perf_event *event, int flags)
5260 {
5261 local64_set(&event->hw.prev_count, local_clock());
5262 perf_swevent_start_hrtimer(event);
5263 }
5264
5265 static void cpu_clock_event_stop(struct perf_event *event, int flags)
5266 {
5267 perf_swevent_cancel_hrtimer(event);
5268 cpu_clock_event_update(event);
5269 }
5270
5271 static int cpu_clock_event_add(struct perf_event *event, int flags)
5272 {
5273 if (flags & PERF_EF_START)
5274 cpu_clock_event_start(event, flags);
5275
5276 return 0;
5277 }
5278
5279 static void cpu_clock_event_del(struct perf_event *event, int flags)
5280 {
5281 cpu_clock_event_stop(event, flags);
5282 }
5283
5284 static void cpu_clock_event_read(struct perf_event *event)
5285 {
5286 cpu_clock_event_update(event);
5287 }
5288
5289 static int cpu_clock_event_init(struct perf_event *event)
5290 {
5291 if (event->attr.type != PERF_TYPE_SOFTWARE)
5292 return -ENOENT;
5293
5294 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
5295 return -ENOENT;
5296
5297 perf_swevent_init_hrtimer(event);
5298
5299 return 0;
5300 }
5301
5302 static struct pmu perf_cpu_clock = {
5303 .task_ctx_nr = perf_sw_context,
5304
5305 .event_init = cpu_clock_event_init,
5306 .add = cpu_clock_event_add,
5307 .del = cpu_clock_event_del,
5308 .start = cpu_clock_event_start,
5309 .stop = cpu_clock_event_stop,
5310 .read = cpu_clock_event_read,
5311 };
5312
5313 /*
5314 * Software event: task time clock
5315 */
5316
5317 static void task_clock_event_update(struct perf_event *event, u64 now)
5318 {
5319 u64 prev;
5320 s64 delta;
5321
5322 prev = local64_xchg(&event->hw.prev_count, now);
5323 delta = now - prev;
5324 local64_add(delta, &event->count);
5325 }
5326
5327 static void task_clock_event_start(struct perf_event *event, int flags)
5328 {
5329 local64_set(&event->hw.prev_count, event->ctx->time);
5330 perf_swevent_start_hrtimer(event);
5331 }
5332
5333 static void task_clock_event_stop(struct perf_event *event, int flags)
5334 {
5335 perf_swevent_cancel_hrtimer(event);
5336 task_clock_event_update(event, event->ctx->time);
5337 }
5338
5339 static int task_clock_event_add(struct perf_event *event, int flags)
5340 {
5341 if (flags & PERF_EF_START)
5342 task_clock_event_start(event, flags);
5343
5344 return 0;
5345 }
5346
5347 static void task_clock_event_del(struct perf_event *event, int flags)
5348 {
5349 task_clock_event_stop(event, PERF_EF_UPDATE);
5350 }
5351
5352 static void task_clock_event_read(struct perf_event *event)
5353 {
5354 u64 now = perf_clock();
5355 u64 delta = now - event->ctx->timestamp;
5356 u64 time = event->ctx->time + delta;
5357
5358 task_clock_event_update(event, time);
5359 }
5360
5361 static int task_clock_event_init(struct perf_event *event)
5362 {
5363 if (event->attr.type != PERF_TYPE_SOFTWARE)
5364 return -ENOENT;
5365
5366 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
5367 return -ENOENT;
5368
5369 perf_swevent_init_hrtimer(event);
5370
5371 return 0;
5372 }
5373
5374 static struct pmu perf_task_clock = {
5375 .task_ctx_nr = perf_sw_context,
5376
5377 .event_init = task_clock_event_init,
5378 .add = task_clock_event_add,
5379 .del = task_clock_event_del,
5380 .start = task_clock_event_start,
5381 .stop = task_clock_event_stop,
5382 .read = task_clock_event_read,
5383 };
5384
5385 static void perf_pmu_nop_void(struct pmu *pmu)
5386 {
5387 }
5388
5389 static int perf_pmu_nop_int(struct pmu *pmu)
5390 {
5391 return 0;
5392 }
5393
5394 static void perf_pmu_start_txn(struct pmu *pmu)
5395 {
5396 perf_pmu_disable(pmu);
5397 }
5398
5399 static int perf_pmu_commit_txn(struct pmu *pmu)
5400 {
5401 perf_pmu_enable(pmu);
5402 return 0;
5403 }
5404
5405 static void perf_pmu_cancel_txn(struct pmu *pmu)
5406 {
5407 perf_pmu_enable(pmu);
5408 }
5409
5410 /*
5411 * Ensures all contexts with the same task_ctx_nr have the same
5412 * pmu_cpu_context too.
5413 */
5414 static void *find_pmu_context(int ctxn)
5415 {
5416 struct pmu *pmu;
5417
5418 if (ctxn < 0)
5419 return NULL;
5420
5421 list_for_each_entry(pmu, &pmus, entry) {
5422 if (pmu->task_ctx_nr == ctxn)
5423 return pmu->pmu_cpu_context;
5424 }
5425
5426 return NULL;
5427 }
5428
5429 static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
5430 {
5431 int cpu;
5432
5433 for_each_possible_cpu(cpu) {
5434 struct perf_cpu_context *cpuctx;
5435
5436 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
5437
5438 if (cpuctx->active_pmu == old_pmu)
5439 cpuctx->active_pmu = pmu;
5440 }
5441 }
5442
5443 static void free_pmu_context(struct pmu *pmu)
5444 {
5445 struct pmu *i;
5446
5447 mutex_lock(&pmus_lock);
5448 /*
5449 * Like a real lame refcount.
5450 */
5451 list_for_each_entry(i, &pmus, entry) {
5452 if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
5453 update_pmu_context(i, pmu);
5454 goto out;
5455 }
5456 }
5457
5458 free_percpu(pmu->pmu_cpu_context);
5459 out:
5460 mutex_unlock(&pmus_lock);
5461 }
5462 static struct idr pmu_idr;
5463
5464 static ssize_t
5465 type_show(struct device *dev, struct device_attribute *attr, char *page)
5466 {
5467 struct pmu *pmu = dev_get_drvdata(dev);
5468
5469 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
5470 }
5471
5472 static struct device_attribute pmu_dev_attrs[] = {
5473 __ATTR_RO(type),
5474 __ATTR_NULL,
5475 };
5476
5477 static int pmu_bus_running;
5478 static struct bus_type pmu_bus = {
5479 .name = "event_source",
5480 .dev_attrs = pmu_dev_attrs,
5481 };
5482
5483 static void pmu_dev_release(struct device *dev)
5484 {
5485 kfree(dev);
5486 }
5487
5488 static int pmu_dev_alloc(struct pmu *pmu)
5489 {
5490 int ret = -ENOMEM;
5491
5492 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
5493 if (!pmu->dev)
5494 goto out;
5495
5496 device_initialize(pmu->dev);
5497 ret = dev_set_name(pmu->dev, "%s", pmu->name);
5498 if (ret)
5499 goto free_dev;
5500
5501 dev_set_drvdata(pmu->dev, pmu);
5502 pmu->dev->bus = &pmu_bus;
5503 pmu->dev->release = pmu_dev_release;
5504 ret = device_add(pmu->dev);
5505 if (ret)
5506 goto free_dev;
5507
5508 out:
5509 return ret;
5510
5511 free_dev:
5512 put_device(pmu->dev);
5513 goto out;
5514 }
5515
5516 static struct lock_class_key cpuctx_mutex;
5517 static struct lock_class_key cpuctx_lock;
5518
5519 int perf_pmu_register(struct pmu *pmu, char *name, int type)
5520 {
5521 int cpu, ret;
5522
5523 mutex_lock(&pmus_lock);
5524 ret = -ENOMEM;
5525 pmu->pmu_disable_count = alloc_percpu(int);
5526 if (!pmu->pmu_disable_count)
5527 goto unlock;
5528
5529 pmu->type = -1;
5530 if (!name)
5531 goto skip_type;
5532 pmu->name = name;
5533
5534 if (type < 0) {
5535 int err = idr_pre_get(&pmu_idr, GFP_KERNEL);
5536 if (!err)
5537 goto free_pdc;
5538
5539 err = idr_get_new_above(&pmu_idr, pmu, PERF_TYPE_MAX, &type);
5540 if (err) {
5541 ret = err;
5542 goto free_pdc;
5543 }
5544 }
5545 pmu->type = type;
5546
5547 if (pmu_bus_running) {
5548 ret = pmu_dev_alloc(pmu);
5549 if (ret)
5550 goto free_idr;
5551 }
5552
5553 skip_type:
5554 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
5555 if (pmu->pmu_cpu_context)
5556 goto got_cpu_context;
5557
5558 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
5559 if (!pmu->pmu_cpu_context)
5560 goto free_dev;
5561
5562 for_each_possible_cpu(cpu) {
5563 struct perf_cpu_context *cpuctx;
5564
5565 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
5566 __perf_event_init_context(&cpuctx->ctx);
5567 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
5568 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
5569 cpuctx->ctx.type = cpu_context;
5570 cpuctx->ctx.pmu = pmu;
5571 cpuctx->jiffies_interval = 1;
5572 INIT_LIST_HEAD(&cpuctx->rotation_list);
5573 cpuctx->active_pmu = pmu;
5574 }
5575
5576 got_cpu_context:
5577 if (!pmu->start_txn) {
5578 if (pmu->pmu_enable) {
5579 /*
5580 * If we have pmu_enable/pmu_disable calls, install
5581 * transaction stubs that use that to try and batch
5582 * hardware accesses.
5583 */
5584 pmu->start_txn = perf_pmu_start_txn;
5585 pmu->commit_txn = perf_pmu_commit_txn;
5586 pmu->cancel_txn = perf_pmu_cancel_txn;
5587 } else {
5588 pmu->start_txn = perf_pmu_nop_void;
5589 pmu->commit_txn = perf_pmu_nop_int;
5590 pmu->cancel_txn = perf_pmu_nop_void;
5591 }
5592 }
5593
5594 if (!pmu->pmu_enable) {
5595 pmu->pmu_enable = perf_pmu_nop_void;
5596 pmu->pmu_disable = perf_pmu_nop_void;
5597 }
5598
5599 list_add_rcu(&pmu->entry, &pmus);
5600 ret = 0;
5601 unlock:
5602 mutex_unlock(&pmus_lock);
5603
5604 return ret;
5605
5606 free_dev:
5607 device_del(pmu->dev);
5608 put_device(pmu->dev);
5609
5610 free_idr:
5611 if (pmu->type >= PERF_TYPE_MAX)
5612 idr_remove(&pmu_idr, pmu->type);
5613
5614 free_pdc:
5615 free_percpu(pmu->pmu_disable_count);
5616 goto unlock;
5617 }
5618
5619 void perf_pmu_unregister(struct pmu *pmu)
5620 {
5621 mutex_lock(&pmus_lock);
5622 list_del_rcu(&pmu->entry);
5623 mutex_unlock(&pmus_lock);
5624
5625 /*
5626 * We dereference the pmu list under both SRCU and regular RCU, so
5627 * synchronize against both of those.
5628 */
5629 synchronize_srcu(&pmus_srcu);
5630 synchronize_rcu();
5631
5632 free_percpu(pmu->pmu_disable_count);
5633 if (pmu->type >= PERF_TYPE_MAX)
5634 idr_remove(&pmu_idr, pmu->type);
5635 device_del(pmu->dev);
5636 put_device(pmu->dev);
5637 free_pmu_context(pmu);
5638 }
5639
5640 struct pmu *perf_init_event(struct perf_event *event)
5641 {
5642 struct pmu *pmu = NULL;
5643 int idx;
5644 int ret;
5645
5646 idx = srcu_read_lock(&pmus_srcu);
5647
5648 rcu_read_lock();
5649 pmu = idr_find(&pmu_idr, event->attr.type);
5650 rcu_read_unlock();
5651 if (pmu) {
5652 event->pmu = pmu;
5653 ret = pmu->event_init(event);
5654 if (ret)
5655 pmu = ERR_PTR(ret);
5656 goto unlock;
5657 }
5658
5659 list_for_each_entry_rcu(pmu, &pmus, entry) {
5660 event->pmu = pmu;
5661 ret = pmu->event_init(event);
5662 if (!ret)
5663 goto unlock;
5664
5665 if (ret != -ENOENT) {
5666 pmu = ERR_PTR(ret);
5667 goto unlock;
5668 }
5669 }
5670 pmu = ERR_PTR(-ENOENT);
5671 unlock:
5672 srcu_read_unlock(&pmus_srcu, idx);
5673
5674 return pmu;
5675 }
5676
5677 /*
5678 * Allocate and initialize a event structure
5679 */
5680 static struct perf_event *
5681 perf_event_alloc(struct perf_event_attr *attr, int cpu,
5682 struct task_struct *task,
5683 struct perf_event *group_leader,
5684 struct perf_event *parent_event,
5685 perf_overflow_handler_t overflow_handler,
5686 void *context)
5687 {
5688 struct pmu *pmu;
5689 struct perf_event *event;
5690 struct hw_perf_event *hwc;
5691 long err;
5692
5693 if ((unsigned)cpu >= nr_cpu_ids) {
5694 if (!task || cpu != -1)
5695 return ERR_PTR(-EINVAL);
5696 }
5697
5698 event = kzalloc(sizeof(*event), GFP_KERNEL);
5699 if (!event)
5700 return ERR_PTR(-ENOMEM);
5701
5702 /*
5703 * Single events are their own group leaders, with an
5704 * empty sibling list:
5705 */
5706 if (!group_leader)
5707 group_leader = event;
5708
5709 mutex_init(&event->child_mutex);
5710 INIT_LIST_HEAD(&event->child_list);
5711
5712 INIT_LIST_HEAD(&event->group_entry);
5713 INIT_LIST_HEAD(&event->event_entry);
5714 INIT_LIST_HEAD(&event->sibling_list);
5715 INIT_LIST_HEAD(&event->rb_entry);
5716
5717 init_waitqueue_head(&event->waitq);
5718 init_irq_work(&event->pending, perf_pending_event);
5719
5720 mutex_init(&event->mmap_mutex);
5721
5722 event->cpu = cpu;
5723 event->attr = *attr;
5724 event->group_leader = group_leader;
5725 event->pmu = NULL;
5726 event->oncpu = -1;
5727
5728 event->parent = parent_event;
5729
5730 event->ns = get_pid_ns(current->nsproxy->pid_ns);
5731 event->id = atomic64_inc_return(&perf_event_id);
5732
5733 event->state = PERF_EVENT_STATE_INACTIVE;
5734
5735 if (task) {
5736 event->attach_state = PERF_ATTACH_TASK;
5737 #ifdef CONFIG_HAVE_HW_BREAKPOINT
5738 /*
5739 * hw_breakpoint is a bit difficult here..
5740 */
5741 if (attr->type == PERF_TYPE_BREAKPOINT)
5742 event->hw.bp_target = task;
5743 #endif
5744 }
5745
5746 if (!overflow_handler && parent_event) {
5747 overflow_handler = parent_event->overflow_handler;
5748 context = parent_event->overflow_handler_context;
5749 }
5750
5751 event->overflow_handler = overflow_handler;
5752 event->overflow_handler_context = context;
5753
5754 if (attr->disabled)
5755 event->state = PERF_EVENT_STATE_OFF;
5756
5757 pmu = NULL;
5758
5759 hwc = &event->hw;
5760 hwc->sample_period = attr->sample_period;
5761 if (attr->freq && attr->sample_freq)
5762 hwc->sample_period = 1;
5763 hwc->last_period = hwc->sample_period;
5764
5765 local64_set(&hwc->period_left, hwc->sample_period);
5766
5767 /*
5768 * we currently do not support PERF_FORMAT_GROUP on inherited events
5769 */
5770 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
5771 goto done;
5772
5773 pmu = perf_init_event(event);
5774
5775 done:
5776 err = 0;
5777 if (!pmu)
5778 err = -EINVAL;
5779 else if (IS_ERR(pmu))
5780 err = PTR_ERR(pmu);
5781
5782 if (err) {
5783 if (event->ns)
5784 put_pid_ns(event->ns);
5785 kfree(event);
5786 return ERR_PTR(err);
5787 }
5788
5789 if (!event->parent) {
5790 if (event->attach_state & PERF_ATTACH_TASK)
5791 jump_label_inc(&perf_sched_events.key);
5792 if (event->attr.mmap || event->attr.mmap_data)
5793 atomic_inc(&nr_mmap_events);
5794 if (event->attr.comm)
5795 atomic_inc(&nr_comm_events);
5796 if (event->attr.task)
5797 atomic_inc(&nr_task_events);
5798 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
5799 err = get_callchain_buffers();
5800 if (err) {
5801 free_event(event);
5802 return ERR_PTR(err);
5803 }
5804 }
5805 }
5806
5807 return event;
5808 }
5809
5810 static int perf_copy_attr(struct perf_event_attr __user *uattr,
5811 struct perf_event_attr *attr)
5812 {
5813 u32 size;
5814 int ret;
5815
5816 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
5817 return -EFAULT;
5818
5819 /*
5820 * zero the full structure, so that a short copy will be nice.
5821 */
5822 memset(attr, 0, sizeof(*attr));
5823
5824 ret = get_user(size, &uattr->size);
5825 if (ret)
5826 return ret;
5827
5828 if (size > PAGE_SIZE) /* silly large */
5829 goto err_size;
5830
5831 if (!size) /* abi compat */
5832 size = PERF_ATTR_SIZE_VER0;
5833
5834 if (size < PERF_ATTR_SIZE_VER0)
5835 goto err_size;
5836
5837 /*
5838 * If we're handed a bigger struct than we know of,
5839 * ensure all the unknown bits are 0 - i.e. new
5840 * user-space does not rely on any kernel feature
5841 * extensions we dont know about yet.
5842 */
5843 if (size > sizeof(*attr)) {
5844 unsigned char __user *addr;
5845 unsigned char __user *end;
5846 unsigned char val;
5847
5848 addr = (void __user *)uattr + sizeof(*attr);
5849 end = (void __user *)uattr + size;
5850
5851 for (; addr < end; addr++) {
5852 ret = get_user(val, addr);
5853 if (ret)
5854 return ret;
5855 if (val)
5856 goto err_size;
5857 }
5858 size = sizeof(*attr);
5859 }
5860
5861 ret = copy_from_user(attr, uattr, size);
5862 if (ret)
5863 return -EFAULT;
5864
5865 if (attr->__reserved_1)
5866 return -EINVAL;
5867
5868 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
5869 return -EINVAL;
5870
5871 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
5872 return -EINVAL;
5873
5874 out:
5875 return ret;
5876
5877 err_size:
5878 put_user(sizeof(*attr), &uattr->size);
5879 ret = -E2BIG;
5880 goto out;
5881 }
5882
5883 static int
5884 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
5885 {
5886 struct ring_buffer *rb = NULL, *old_rb = NULL;
5887 int ret = -EINVAL;
5888
5889 if (!output_event)
5890 goto set;
5891
5892 /* don't allow circular references */
5893 if (event == output_event)
5894 goto out;
5895
5896 /*
5897 * Don't allow cross-cpu buffers
5898 */
5899 if (output_event->cpu != event->cpu)
5900 goto out;
5901
5902 /*
5903 * If its not a per-cpu rb, it must be the same task.
5904 */
5905 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
5906 goto out;
5907
5908 set:
5909 mutex_lock(&event->mmap_mutex);
5910 /* Can't redirect output if we've got an active mmap() */
5911 if (atomic_read(&event->mmap_count))
5912 goto unlock;
5913
5914 if (output_event) {
5915 /* get the rb we want to redirect to */
5916 rb = ring_buffer_get(output_event);
5917 if (!rb)
5918 goto unlock;
5919 }
5920
5921 old_rb = event->rb;
5922 rcu_assign_pointer(event->rb, rb);
5923 if (old_rb)
5924 ring_buffer_detach(event, old_rb);
5925 ret = 0;
5926 unlock:
5927 mutex_unlock(&event->mmap_mutex);
5928
5929 if (old_rb)
5930 ring_buffer_put(old_rb);
5931 out:
5932 return ret;
5933 }
5934
5935 /**
5936 * sys_perf_event_open - open a performance event, associate it to a task/cpu
5937 *
5938 * @attr_uptr: event_id type attributes for monitoring/sampling
5939 * @pid: target pid
5940 * @cpu: target cpu
5941 * @group_fd: group leader event fd
5942 */
5943 SYSCALL_DEFINE5(perf_event_open,
5944 struct perf_event_attr __user *, attr_uptr,
5945 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
5946 {
5947 struct perf_event *group_leader = NULL, *output_event = NULL;
5948 struct perf_event *event, *sibling;
5949 struct perf_event_attr attr;
5950 struct perf_event_context *ctx;
5951 struct file *event_file = NULL;
5952 struct file *group_file = NULL;
5953 struct task_struct *task = NULL;
5954 struct pmu *pmu;
5955 int event_fd;
5956 int move_group = 0;
5957 int fput_needed = 0;
5958 int err;
5959
5960 /* for future expandability... */
5961 if (flags & ~PERF_FLAG_ALL)
5962 return -EINVAL;
5963
5964 err = perf_copy_attr(attr_uptr, &attr);
5965 if (err)
5966 return err;
5967
5968 if (!attr.exclude_kernel) {
5969 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
5970 return -EACCES;
5971 }
5972
5973 if (attr.freq) {
5974 if (attr.sample_freq > sysctl_perf_event_sample_rate)
5975 return -EINVAL;
5976 }
5977
5978 /*
5979 * In cgroup mode, the pid argument is used to pass the fd
5980 * opened to the cgroup directory in cgroupfs. The cpu argument
5981 * designates the cpu on which to monitor threads from that
5982 * cgroup.
5983 */
5984 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
5985 return -EINVAL;
5986
5987 event_fd = get_unused_fd_flags(O_RDWR);
5988 if (event_fd < 0)
5989 return event_fd;
5990
5991 if (group_fd != -1) {
5992 group_leader = perf_fget_light(group_fd, &fput_needed);
5993 if (IS_ERR(group_leader)) {
5994 err = PTR_ERR(group_leader);
5995 goto err_fd;
5996 }
5997 group_file = group_leader->filp;
5998 if (flags & PERF_FLAG_FD_OUTPUT)
5999 output_event = group_leader;
6000 if (flags & PERF_FLAG_FD_NO_GROUP)
6001 group_leader = NULL;
6002 }
6003
6004 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
6005 task = find_lively_task_by_vpid(pid);
6006 if (IS_ERR(task)) {
6007 err = PTR_ERR(task);
6008 goto err_group_fd;
6009 }
6010 }
6011
6012 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
6013 NULL, NULL);
6014 if (IS_ERR(event)) {
6015 err = PTR_ERR(event);
6016 goto err_task;
6017 }
6018
6019 if (flags & PERF_FLAG_PID_CGROUP) {
6020 err = perf_cgroup_connect(pid, event, &attr, group_leader);
6021 if (err)
6022 goto err_alloc;
6023 /*
6024 * one more event:
6025 * - that has cgroup constraint on event->cpu
6026 * - that may need work on context switch
6027 */
6028 atomic_inc(&per_cpu(perf_cgroup_events, event->cpu));
6029 jump_label_inc(&perf_sched_events.key);
6030 }
6031
6032 /*
6033 * Special case software events and allow them to be part of
6034 * any hardware group.
6035 */
6036 pmu = event->pmu;
6037
6038 if (group_leader &&
6039 (is_software_event(event) != is_software_event(group_leader))) {
6040 if (is_software_event(event)) {
6041 /*
6042 * If event and group_leader are not both a software
6043 * event, and event is, then group leader is not.
6044 *
6045 * Allow the addition of software events to !software
6046 * groups, this is safe because software events never
6047 * fail to schedule.
6048 */
6049 pmu = group_leader->pmu;
6050 } else if (is_software_event(group_leader) &&
6051 (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
6052 /*
6053 * In case the group is a pure software group, and we
6054 * try to add a hardware event, move the whole group to
6055 * the hardware context.
6056 */
6057 move_group = 1;
6058 }
6059 }
6060
6061 /*
6062 * Get the target context (task or percpu):
6063 */
6064 ctx = find_get_context(pmu, task, cpu);
6065 if (IS_ERR(ctx)) {
6066 err = PTR_ERR(ctx);
6067 goto err_alloc;
6068 }
6069
6070 if (task) {
6071 put_task_struct(task);
6072 task = NULL;
6073 }
6074
6075 /*
6076 * Look up the group leader (we will attach this event to it):
6077 */
6078 if (group_leader) {
6079 err = -EINVAL;
6080
6081 /*
6082 * Do not allow a recursive hierarchy (this new sibling
6083 * becoming part of another group-sibling):
6084 */
6085 if (group_leader->group_leader != group_leader)
6086 goto err_context;
6087 /*
6088 * Do not allow to attach to a group in a different
6089 * task or CPU context:
6090 */
6091 if (move_group) {
6092 if (group_leader->ctx->type != ctx->type)
6093 goto err_context;
6094 } else {
6095 if (group_leader->ctx != ctx)
6096 goto err_context;
6097 }
6098
6099 /*
6100 * Only a group leader can be exclusive or pinned
6101 */
6102 if (attr.exclusive || attr.pinned)
6103 goto err_context;
6104 }
6105
6106 if (output_event) {
6107 err = perf_event_set_output(event, output_event);
6108 if (err)
6109 goto err_context;
6110 }
6111
6112 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
6113 if (IS_ERR(event_file)) {
6114 err = PTR_ERR(event_file);
6115 goto err_context;
6116 }
6117
6118 if (move_group) {
6119 struct perf_event_context *gctx = group_leader->ctx;
6120
6121 mutex_lock(&gctx->mutex);
6122 perf_remove_from_context(group_leader);
6123 list_for_each_entry(sibling, &group_leader->sibling_list,
6124 group_entry) {
6125 perf_remove_from_context(sibling);
6126 put_ctx(gctx);
6127 }
6128 mutex_unlock(&gctx->mutex);
6129 put_ctx(gctx);
6130 }
6131
6132 event->filp = event_file;
6133 WARN_ON_ONCE(ctx->parent_ctx);
6134 mutex_lock(&ctx->mutex);
6135
6136 if (move_group) {
6137 perf_install_in_context(ctx, group_leader, cpu);
6138 get_ctx(ctx);
6139 list_for_each_entry(sibling, &group_leader->sibling_list,
6140 group_entry) {
6141 perf_install_in_context(ctx, sibling, cpu);
6142 get_ctx(ctx);
6143 }
6144 }
6145
6146 perf_install_in_context(ctx, event, cpu);
6147 ++ctx->generation;
6148 perf_unpin_context(ctx);
6149 mutex_unlock(&ctx->mutex);
6150
6151 event->owner = current;
6152
6153 mutex_lock(&current->perf_event_mutex);
6154 list_add_tail(&event->owner_entry, &current->perf_event_list);
6155 mutex_unlock(&current->perf_event_mutex);
6156
6157 /*
6158 * Precalculate sample_data sizes
6159 */
6160 perf_event__header_size(event);
6161 perf_event__id_header_size(event);
6162
6163 /*
6164 * Drop the reference on the group_event after placing the
6165 * new event on the sibling_list. This ensures destruction
6166 * of the group leader will find the pointer to itself in
6167 * perf_group_detach().
6168 */
6169 fput_light(group_file, fput_needed);
6170 fd_install(event_fd, event_file);
6171 return event_fd;
6172
6173 err_context:
6174 perf_unpin_context(ctx);
6175 put_ctx(ctx);
6176 err_alloc:
6177 free_event(event);
6178 err_task:
6179 if (task)
6180 put_task_struct(task);
6181 err_group_fd:
6182 fput_light(group_file, fput_needed);
6183 err_fd:
6184 put_unused_fd(event_fd);
6185 return err;
6186 }
6187
6188 /**
6189 * perf_event_create_kernel_counter
6190 *
6191 * @attr: attributes of the counter to create
6192 * @cpu: cpu in which the counter is bound
6193 * @task: task to profile (NULL for percpu)
6194 */
6195 struct perf_event *
6196 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
6197 struct task_struct *task,
6198 perf_overflow_handler_t overflow_handler,
6199 void *context)
6200 {
6201 struct perf_event_context *ctx;
6202 struct perf_event *event;
6203 int err;
6204
6205 /*
6206 * Get the target context (task or percpu):
6207 */
6208
6209 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
6210 overflow_handler, context);
6211 if (IS_ERR(event)) {
6212 err = PTR_ERR(event);
6213 goto err;
6214 }
6215
6216 ctx = find_get_context(event->pmu, task, cpu);
6217 if (IS_ERR(ctx)) {
6218 err = PTR_ERR(ctx);
6219 goto err_free;
6220 }
6221
6222 event->filp = NULL;
6223 WARN_ON_ONCE(ctx->parent_ctx);
6224 mutex_lock(&ctx->mutex);
6225 perf_install_in_context(ctx, event, cpu);
6226 ++ctx->generation;
6227 perf_unpin_context(ctx);
6228 mutex_unlock(&ctx->mutex);
6229
6230 return event;
6231
6232 err_free:
6233 free_event(event);
6234 err:
6235 return ERR_PTR(err);
6236 }
6237 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
6238
6239 static void sync_child_event(struct perf_event *child_event,
6240 struct task_struct *child)
6241 {
6242 struct perf_event *parent_event = child_event->parent;
6243 u64 child_val;
6244
6245 if (child_event->attr.inherit_stat)
6246 perf_event_read_event(child_event, child);
6247
6248 child_val = perf_event_count(child_event);
6249
6250 /*
6251 * Add back the child's count to the parent's count:
6252 */
6253 atomic64_add(child_val, &parent_event->child_count);
6254 atomic64_add(child_event->total_time_enabled,
6255 &parent_event->child_total_time_enabled);
6256 atomic64_add(child_event->total_time_running,
6257 &parent_event->child_total_time_running);
6258
6259 /*
6260 * Remove this event from the parent's list
6261 */
6262 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
6263 mutex_lock(&parent_event->child_mutex);
6264 list_del_init(&child_event->child_list);
6265 mutex_unlock(&parent_event->child_mutex);
6266
6267 /*
6268 * Release the parent event, if this was the last
6269 * reference to it.
6270 */
6271 fput(parent_event->filp);
6272 }
6273
6274 static void
6275 __perf_event_exit_task(struct perf_event *child_event,
6276 struct perf_event_context *child_ctx,
6277 struct task_struct *child)
6278 {
6279 if (child_event->parent) {
6280 raw_spin_lock_irq(&child_ctx->lock);
6281 perf_group_detach(child_event);
6282 raw_spin_unlock_irq(&child_ctx->lock);
6283 }
6284
6285 perf_remove_from_context(child_event);
6286
6287 /*
6288 * It can happen that the parent exits first, and has events
6289 * that are still around due to the child reference. These
6290 * events need to be zapped.
6291 */
6292 if (child_event->parent) {
6293 sync_child_event(child_event, child);
6294 free_event(child_event);
6295 }
6296 }
6297
6298 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
6299 {
6300 struct perf_event *child_event, *tmp;
6301 struct perf_event_context *child_ctx;
6302 unsigned long flags;
6303
6304 if (likely(!child->perf_event_ctxp[ctxn])) {
6305 perf_event_task(child, NULL, 0);
6306 return;
6307 }
6308
6309 local_irq_save(flags);
6310 /*
6311 * We can't reschedule here because interrupts are disabled,
6312 * and either child is current or it is a task that can't be
6313 * scheduled, so we are now safe from rescheduling changing
6314 * our context.
6315 */
6316 child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
6317
6318 /*
6319 * Take the context lock here so that if find_get_context is
6320 * reading child->perf_event_ctxp, we wait until it has
6321 * incremented the context's refcount before we do put_ctx below.
6322 */
6323 raw_spin_lock(&child_ctx->lock);
6324 task_ctx_sched_out(child_ctx);
6325 child->perf_event_ctxp[ctxn] = NULL;
6326 /*
6327 * If this context is a clone; unclone it so it can't get
6328 * swapped to another process while we're removing all
6329 * the events from it.
6330 */
6331 unclone_ctx(child_ctx);
6332 update_context_time(child_ctx);
6333 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
6334
6335 /*
6336 * Report the task dead after unscheduling the events so that we
6337 * won't get any samples after PERF_RECORD_EXIT. We can however still
6338 * get a few PERF_RECORD_READ events.
6339 */
6340 perf_event_task(child, child_ctx, 0);
6341
6342 /*
6343 * We can recurse on the same lock type through:
6344 *
6345 * __perf_event_exit_task()
6346 * sync_child_event()
6347 * fput(parent_event->filp)
6348 * perf_release()
6349 * mutex_lock(&ctx->mutex)
6350 *
6351 * But since its the parent context it won't be the same instance.
6352 */
6353 mutex_lock(&child_ctx->mutex);
6354
6355 again:
6356 list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
6357 group_entry)
6358 __perf_event_exit_task(child_event, child_ctx, child);
6359
6360 list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
6361 group_entry)
6362 __perf_event_exit_task(child_event, child_ctx, child);
6363
6364 /*
6365 * If the last event was a group event, it will have appended all
6366 * its siblings to the list, but we obtained 'tmp' before that which
6367 * will still point to the list head terminating the iteration.
6368 */
6369 if (!list_empty(&child_ctx->pinned_groups) ||
6370 !list_empty(&child_ctx->flexible_groups))
6371 goto again;
6372
6373 mutex_unlock(&child_ctx->mutex);
6374
6375 put_ctx(child_ctx);
6376 }
6377
6378 /*
6379 * When a child task exits, feed back event values to parent events.
6380 */
6381 void perf_event_exit_task(struct task_struct *child)
6382 {
6383 struct perf_event *event, *tmp;
6384 int ctxn;
6385
6386 mutex_lock(&child->perf_event_mutex);
6387 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
6388 owner_entry) {
6389 list_del_init(&event->owner_entry);
6390
6391 /*
6392 * Ensure the list deletion is visible before we clear
6393 * the owner, closes a race against perf_release() where
6394 * we need to serialize on the owner->perf_event_mutex.
6395 */
6396 smp_wmb();
6397 event->owner = NULL;
6398 }
6399 mutex_unlock(&child->perf_event_mutex);
6400
6401 for_each_task_context_nr(ctxn)
6402 perf_event_exit_task_context(child, ctxn);
6403 }
6404
6405 static void perf_free_event(struct perf_event *event,
6406 struct perf_event_context *ctx)
6407 {
6408 struct perf_event *parent = event->parent;
6409
6410 if (WARN_ON_ONCE(!parent))
6411 return;
6412
6413 mutex_lock(&parent->child_mutex);
6414 list_del_init(&event->child_list);
6415 mutex_unlock(&parent->child_mutex);
6416
6417 fput(parent->filp);
6418
6419 perf_group_detach(event);
6420 list_del_event(event, ctx);
6421 free_event(event);
6422 }
6423
6424 /*
6425 * free an unexposed, unused context as created by inheritance by
6426 * perf_event_init_task below, used by fork() in case of fail.
6427 */
6428 void perf_event_free_task(struct task_struct *task)
6429 {
6430 struct perf_event_context *ctx;
6431 struct perf_event *event, *tmp;
6432 int ctxn;
6433
6434 for_each_task_context_nr(ctxn) {
6435 ctx = task->perf_event_ctxp[ctxn];
6436 if (!ctx)
6437 continue;
6438
6439 mutex_lock(&ctx->mutex);
6440 again:
6441 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
6442 group_entry)
6443 perf_free_event(event, ctx);
6444
6445 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
6446 group_entry)
6447 perf_free_event(event, ctx);
6448
6449 if (!list_empty(&ctx->pinned_groups) ||
6450 !list_empty(&ctx->flexible_groups))
6451 goto again;
6452
6453 mutex_unlock(&ctx->mutex);
6454
6455 put_ctx(ctx);
6456 }
6457 }
6458
6459 void perf_event_delayed_put(struct task_struct *task)
6460 {
6461 int ctxn;
6462
6463 for_each_task_context_nr(ctxn)
6464 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
6465 }
6466
6467 /*
6468 * inherit a event from parent task to child task:
6469 */
6470 static struct perf_event *
6471 inherit_event(struct perf_event *parent_event,
6472 struct task_struct *parent,
6473 struct perf_event_context *parent_ctx,
6474 struct task_struct *child,
6475 struct perf_event *group_leader,
6476 struct perf_event_context *child_ctx)
6477 {
6478 struct perf_event *child_event;
6479 unsigned long flags;
6480
6481 /*
6482 * Instead of creating recursive hierarchies of events,
6483 * we link inherited events back to the original parent,
6484 * which has a filp for sure, which we use as the reference
6485 * count:
6486 */
6487 if (parent_event->parent)
6488 parent_event = parent_event->parent;
6489
6490 child_event = perf_event_alloc(&parent_event->attr,
6491 parent_event->cpu,
6492 child,
6493 group_leader, parent_event,
6494 NULL, NULL);
6495 if (IS_ERR(child_event))
6496 return child_event;
6497 get_ctx(child_ctx);
6498
6499 /*
6500 * Make the child state follow the state of the parent event,
6501 * not its attr.disabled bit. We hold the parent's mutex,
6502 * so we won't race with perf_event_{en, dis}able_family.
6503 */
6504 if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
6505 child_event->state = PERF_EVENT_STATE_INACTIVE;
6506 else
6507 child_event->state = PERF_EVENT_STATE_OFF;
6508
6509 if (parent_event->attr.freq) {
6510 u64 sample_period = parent_event->hw.sample_period;
6511 struct hw_perf_event *hwc = &child_event->hw;
6512
6513 hwc->sample_period = sample_period;
6514 hwc->last_period = sample_period;
6515
6516 local64_set(&hwc->period_left, sample_period);
6517 }
6518
6519 child_event->ctx = child_ctx;
6520 child_event->overflow_handler = parent_event->overflow_handler;
6521 child_event->overflow_handler_context
6522 = parent_event->overflow_handler_context;
6523
6524 /*
6525 * Precalculate sample_data sizes
6526 */
6527 perf_event__header_size(child_event);
6528 perf_event__id_header_size(child_event);
6529
6530 /*
6531 * Link it up in the child's context:
6532 */
6533 raw_spin_lock_irqsave(&child_ctx->lock, flags);
6534 add_event_to_ctx(child_event, child_ctx);
6535 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
6536
6537 /*
6538 * Get a reference to the parent filp - we will fput it
6539 * when the child event exits. This is safe to do because
6540 * we are in the parent and we know that the filp still
6541 * exists and has a nonzero count:
6542 */
6543 atomic_long_inc(&parent_event->filp->f_count);
6544
6545 /*
6546 * Link this into the parent event's child list
6547 */
6548 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
6549 mutex_lock(&parent_event->child_mutex);
6550 list_add_tail(&child_event->child_list, &parent_event->child_list);
6551 mutex_unlock(&parent_event->child_mutex);
6552
6553 return child_event;
6554 }
6555
6556 static int inherit_group(struct perf_event *parent_event,
6557 struct task_struct *parent,
6558 struct perf_event_context *parent_ctx,
6559 struct task_struct *child,
6560 struct perf_event_context *child_ctx)
6561 {
6562 struct perf_event *leader;
6563 struct perf_event *sub;
6564 struct perf_event *child_ctr;
6565
6566 leader = inherit_event(parent_event, parent, parent_ctx,
6567 child, NULL, child_ctx);
6568 if (IS_ERR(leader))
6569 return PTR_ERR(leader);
6570 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
6571 child_ctr = inherit_event(sub, parent, parent_ctx,
6572 child, leader, child_ctx);
6573 if (IS_ERR(child_ctr))
6574 return PTR_ERR(child_ctr);
6575 }
6576 return 0;
6577 }
6578
6579 static int
6580 inherit_task_group(struct perf_event *event, struct task_struct *parent,
6581 struct perf_event_context *parent_ctx,
6582 struct task_struct *child, int ctxn,
6583 int *inherited_all)
6584 {
6585 int ret;
6586 struct perf_event_context *child_ctx;
6587
6588 if (!event->attr.inherit) {
6589 *inherited_all = 0;
6590 return 0;
6591 }
6592
6593 child_ctx = child->perf_event_ctxp[ctxn];
6594 if (!child_ctx) {
6595 /*
6596 * This is executed from the parent task context, so
6597 * inherit events that have been marked for cloning.
6598 * First allocate and initialize a context for the
6599 * child.
6600 */
6601
6602 child_ctx = alloc_perf_context(event->pmu, child);
6603 if (!child_ctx)
6604 return -ENOMEM;
6605
6606 child->perf_event_ctxp[ctxn] = child_ctx;
6607 }
6608
6609 ret = inherit_group(event, parent, parent_ctx,
6610 child, child_ctx);
6611
6612 if (ret)
6613 *inherited_all = 0;
6614
6615 return ret;
6616 }
6617
6618 /*
6619 * Initialize the perf_event context in task_struct
6620 */
6621 int perf_event_init_context(struct task_struct *child, int ctxn)
6622 {
6623 struct perf_event_context *child_ctx, *parent_ctx;
6624 struct perf_event_context *cloned_ctx;
6625 struct perf_event *event;
6626 struct task_struct *parent = current;
6627 int inherited_all = 1;
6628 unsigned long flags;
6629 int ret = 0;
6630
6631 if (likely(!parent->perf_event_ctxp[ctxn]))
6632 return 0;
6633
6634 /*
6635 * If the parent's context is a clone, pin it so it won't get
6636 * swapped under us.
6637 */
6638 parent_ctx = perf_pin_task_context(parent, ctxn);
6639
6640 /*
6641 * No need to check if parent_ctx != NULL here; since we saw
6642 * it non-NULL earlier, the only reason for it to become NULL
6643 * is if we exit, and since we're currently in the middle of
6644 * a fork we can't be exiting at the same time.
6645 */
6646
6647 /*
6648 * Lock the parent list. No need to lock the child - not PID
6649 * hashed yet and not running, so nobody can access it.
6650 */
6651 mutex_lock(&parent_ctx->mutex);
6652
6653 /*
6654 * We dont have to disable NMIs - we are only looking at
6655 * the list, not manipulating it:
6656 */
6657 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
6658 ret = inherit_task_group(event, parent, parent_ctx,
6659 child, ctxn, &inherited_all);
6660 if (ret)
6661 break;
6662 }
6663
6664 /*
6665 * We can't hold ctx->lock when iterating the ->flexible_group list due
6666 * to allocations, but we need to prevent rotation because
6667 * rotate_ctx() will change the list from interrupt context.
6668 */
6669 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
6670 parent_ctx->rotate_disable = 1;
6671 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
6672
6673 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
6674 ret = inherit_task_group(event, parent, parent_ctx,
6675 child, ctxn, &inherited_all);
6676 if (ret)
6677 break;
6678 }
6679
6680 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
6681 parent_ctx->rotate_disable = 0;
6682
6683 child_ctx = child->perf_event_ctxp[ctxn];
6684
6685 if (child_ctx && inherited_all) {
6686 /*
6687 * Mark the child context as a clone of the parent
6688 * context, or of whatever the parent is a clone of.
6689 *
6690 * Note that if the parent is a clone, the holding of
6691 * parent_ctx->lock avoids it from being uncloned.
6692 */
6693 cloned_ctx = parent_ctx->parent_ctx;
6694 if (cloned_ctx) {
6695 child_ctx->parent_ctx = cloned_ctx;
6696 child_ctx->parent_gen = parent_ctx->parent_gen;
6697 } else {
6698 child_ctx->parent_ctx = parent_ctx;
6699 child_ctx->parent_gen = parent_ctx->generation;
6700 }
6701 get_ctx(child_ctx->parent_ctx);
6702 }
6703
6704 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
6705 mutex_unlock(&parent_ctx->mutex);
6706
6707 perf_unpin_context(parent_ctx);
6708 put_ctx(parent_ctx);
6709
6710 return ret;
6711 }
6712
6713 /*
6714 * Initialize the perf_event context in task_struct
6715 */
6716 int perf_event_init_task(struct task_struct *child)
6717 {
6718 int ctxn, ret;
6719
6720 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
6721 mutex_init(&child->perf_event_mutex);
6722 INIT_LIST_HEAD(&child->perf_event_list);
6723
6724 for_each_task_context_nr(ctxn) {
6725 ret = perf_event_init_context(child, ctxn);
6726 if (ret)
6727 return ret;
6728 }
6729
6730 return 0;
6731 }
6732
6733 static void __init perf_event_init_all_cpus(void)
6734 {
6735 struct swevent_htable *swhash;
6736 int cpu;
6737
6738 for_each_possible_cpu(cpu) {
6739 swhash = &per_cpu(swevent_htable, cpu);
6740 mutex_init(&swhash->hlist_mutex);
6741 INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
6742 }
6743 }
6744
6745 static void __cpuinit perf_event_init_cpu(int cpu)
6746 {
6747 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6748
6749 mutex_lock(&swhash->hlist_mutex);
6750 if (swhash->hlist_refcount > 0) {
6751 struct swevent_hlist *hlist;
6752
6753 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
6754 WARN_ON(!hlist);
6755 rcu_assign_pointer(swhash->swevent_hlist, hlist);
6756 }
6757 mutex_unlock(&swhash->hlist_mutex);
6758 }
6759
6760 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
6761 static void perf_pmu_rotate_stop(struct pmu *pmu)
6762 {
6763 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
6764
6765 WARN_ON(!irqs_disabled());
6766
6767 list_del_init(&cpuctx->rotation_list);
6768 }
6769
6770 static void __perf_event_exit_context(void *__info)
6771 {
6772 struct perf_event_context *ctx = __info;
6773 struct perf_event *event, *tmp;
6774
6775 perf_pmu_rotate_stop(ctx->pmu);
6776
6777 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
6778 __perf_remove_from_context(event);
6779 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
6780 __perf_remove_from_context(event);
6781 }
6782
6783 static void perf_event_exit_cpu_context(int cpu)
6784 {
6785 struct perf_event_context *ctx;
6786 struct pmu *pmu;
6787 int idx;
6788
6789 idx = srcu_read_lock(&pmus_srcu);
6790 list_for_each_entry_rcu(pmu, &pmus, entry) {
6791 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
6792
6793 mutex_lock(&ctx->mutex);
6794 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
6795 mutex_unlock(&ctx->mutex);
6796 }
6797 srcu_read_unlock(&pmus_srcu, idx);
6798 }
6799
6800 static void perf_event_exit_cpu(int cpu)
6801 {
6802 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6803
6804 mutex_lock(&swhash->hlist_mutex);
6805 swevent_hlist_release(swhash);
6806 mutex_unlock(&swhash->hlist_mutex);
6807
6808 perf_event_exit_cpu_context(cpu);
6809 }
6810 #else
6811 static inline void perf_event_exit_cpu(int cpu) { }
6812 #endif
6813
6814 static int
6815 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
6816 {
6817 int cpu;
6818
6819 for_each_online_cpu(cpu)
6820 perf_event_exit_cpu(cpu);
6821
6822 return NOTIFY_OK;
6823 }
6824
6825 /*
6826 * Run the perf reboot notifier at the very last possible moment so that
6827 * the generic watchdog code runs as long as possible.
6828 */
6829 static struct notifier_block perf_reboot_notifier = {
6830 .notifier_call = perf_reboot,
6831 .priority = INT_MIN,
6832 };
6833
6834 static int __cpuinit
6835 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
6836 {
6837 unsigned int cpu = (long)hcpu;
6838
6839 switch (action & ~CPU_TASKS_FROZEN) {
6840
6841 case CPU_UP_PREPARE:
6842 case CPU_DOWN_FAILED:
6843 perf_event_init_cpu(cpu);
6844 break;
6845
6846 case CPU_UP_CANCELED:
6847 case CPU_DOWN_PREPARE:
6848 perf_event_exit_cpu(cpu);
6849 break;
6850
6851 default:
6852 break;
6853 }
6854
6855 return NOTIFY_OK;
6856 }
6857
6858 void __init perf_event_init(void)
6859 {
6860 int ret;
6861
6862 idr_init(&pmu_idr);
6863
6864 perf_event_init_all_cpus();
6865 init_srcu_struct(&pmus_srcu);
6866 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
6867 perf_pmu_register(&perf_cpu_clock, NULL, -1);
6868 perf_pmu_register(&perf_task_clock, NULL, -1);
6869 perf_tp_register();
6870 perf_cpu_notifier(perf_cpu_notify);
6871 register_reboot_notifier(&perf_reboot_notifier);
6872
6873 ret = init_hw_breakpoint();
6874 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
6875
6876 /* do not patch jump label more than once per second */
6877 jump_label_rate_limit(&perf_sched_events, HZ);
6878 }
6879
6880 static int __init perf_event_sysfs_init(void)
6881 {
6882 struct pmu *pmu;
6883 int ret;
6884
6885 mutex_lock(&pmus_lock);
6886
6887 ret = bus_register(&pmu_bus);
6888 if (ret)
6889 goto unlock;
6890
6891 list_for_each_entry(pmu, &pmus, entry) {
6892 if (!pmu->name || pmu->type < 0)
6893 continue;
6894
6895 ret = pmu_dev_alloc(pmu);
6896 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
6897 }
6898 pmu_bus_running = 1;
6899 ret = 0;
6900
6901 unlock:
6902 mutex_unlock(&pmus_lock);
6903
6904 return ret;
6905 }
6906 device_initcall(perf_event_sysfs_init);
6907
6908 #ifdef CONFIG_CGROUP_PERF
6909 static struct cgroup_subsys_state *perf_cgroup_create(struct cgroup *cont)
6910 {
6911 struct perf_cgroup *jc;
6912
6913 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
6914 if (!jc)
6915 return ERR_PTR(-ENOMEM);
6916
6917 jc->info = alloc_percpu(struct perf_cgroup_info);
6918 if (!jc->info) {
6919 kfree(jc);
6920 return ERR_PTR(-ENOMEM);
6921 }
6922
6923 return &jc->css;
6924 }
6925
6926 static void perf_cgroup_destroy(struct cgroup *cont)
6927 {
6928 struct perf_cgroup *jc;
6929 jc = container_of(cgroup_subsys_state(cont, perf_subsys_id),
6930 struct perf_cgroup, css);
6931 free_percpu(jc->info);
6932 kfree(jc);
6933 }
6934
6935 static int __perf_cgroup_move(void *info)
6936 {
6937 struct task_struct *task = info;
6938 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
6939 return 0;
6940 }
6941
6942 static void perf_cgroup_attach(struct cgroup *cgrp, struct cgroup_taskset *tset)
6943 {
6944 struct task_struct *task;
6945
6946 cgroup_taskset_for_each(task, cgrp, tset)
6947 task_function_call(task, __perf_cgroup_move, task);
6948 }
6949
6950 static void perf_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp,
6951 struct task_struct *task)
6952 {
6953 /*
6954 * cgroup_exit() is called in the copy_process() failure path.
6955 * Ignore this case since the task hasn't ran yet, this avoids
6956 * trying to poke a half freed task state from generic code.
6957 */
6958 if (!(task->flags & PF_EXITING))
6959 return;
6960
6961 task_function_call(task, __perf_cgroup_move, task);
6962 }
6963
6964 struct cgroup_subsys perf_subsys = {
6965 .name = "perf_event",
6966 .subsys_id = perf_subsys_id,
6967 .create = perf_cgroup_create,
6968 .destroy = perf_cgroup_destroy,
6969 .exit = perf_cgroup_exit,
6970 .attach = perf_cgroup_attach,
6971 };
6972 #endif /* CONFIG_CGROUP_PERF */
This page took 0.261648 seconds and 5 git commands to generate.