ae752cd4a086ab82198380c08f1c7124da24cd2f
[deliverable/linux.git] / kernel / events / core.c
1 /*
2 * Performance events core code:
3 *
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8 *
9 * For licensing details see kernel-base/COPYING
10 */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/tick.h>
22 #include <linux/sysfs.h>
23 #include <linux/dcache.h>
24 #include <linux/percpu.h>
25 #include <linux/ptrace.h>
26 #include <linux/reboot.h>
27 #include <linux/vmstat.h>
28 #include <linux/device.h>
29 #include <linux/export.h>
30 #include <linux/vmalloc.h>
31 #include <linux/hardirq.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/perf_event.h>
38 #include <linux/ftrace_event.h>
39 #include <linux/hw_breakpoint.h>
40 #include <linux/mm_types.h>
41 #include <linux/cgroup.h>
42
43 #include "internal.h"
44
45 #include <asm/irq_regs.h>
46
47 struct remote_function_call {
48 struct task_struct *p;
49 int (*func)(void *info);
50 void *info;
51 int ret;
52 };
53
54 static void remote_function(void *data)
55 {
56 struct remote_function_call *tfc = data;
57 struct task_struct *p = tfc->p;
58
59 if (p) {
60 tfc->ret = -EAGAIN;
61 if (task_cpu(p) != smp_processor_id() || !task_curr(p))
62 return;
63 }
64
65 tfc->ret = tfc->func(tfc->info);
66 }
67
68 /**
69 * task_function_call - call a function on the cpu on which a task runs
70 * @p: the task to evaluate
71 * @func: the function to be called
72 * @info: the function call argument
73 *
74 * Calls the function @func when the task is currently running. This might
75 * be on the current CPU, which just calls the function directly
76 *
77 * returns: @func return value, or
78 * -ESRCH - when the process isn't running
79 * -EAGAIN - when the process moved away
80 */
81 static int
82 task_function_call(struct task_struct *p, int (*func) (void *info), void *info)
83 {
84 struct remote_function_call data = {
85 .p = p,
86 .func = func,
87 .info = info,
88 .ret = -ESRCH, /* No such (running) process */
89 };
90
91 if (task_curr(p))
92 smp_call_function_single(task_cpu(p), remote_function, &data, 1);
93
94 return data.ret;
95 }
96
97 /**
98 * cpu_function_call - call a function on the cpu
99 * @func: the function to be called
100 * @info: the function call argument
101 *
102 * Calls the function @func on the remote cpu.
103 *
104 * returns: @func return value or -ENXIO when the cpu is offline
105 */
106 static int cpu_function_call(int cpu, int (*func) (void *info), void *info)
107 {
108 struct remote_function_call data = {
109 .p = NULL,
110 .func = func,
111 .info = info,
112 .ret = -ENXIO, /* No such CPU */
113 };
114
115 smp_call_function_single(cpu, remote_function, &data, 1);
116
117 return data.ret;
118 }
119
120 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
121 PERF_FLAG_FD_OUTPUT |\
122 PERF_FLAG_PID_CGROUP)
123
124 /*
125 * branch priv levels that need permission checks
126 */
127 #define PERF_SAMPLE_BRANCH_PERM_PLM \
128 (PERF_SAMPLE_BRANCH_KERNEL |\
129 PERF_SAMPLE_BRANCH_HV)
130
131 enum event_type_t {
132 EVENT_FLEXIBLE = 0x1,
133 EVENT_PINNED = 0x2,
134 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
135 };
136
137 /*
138 * perf_sched_events : >0 events exist
139 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
140 */
141 struct static_key_deferred perf_sched_events __read_mostly;
142 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
143 static DEFINE_PER_CPU(atomic_t, perf_branch_stack_events);
144
145 static atomic_t nr_mmap_events __read_mostly;
146 static atomic_t nr_comm_events __read_mostly;
147 static atomic_t nr_task_events __read_mostly;
148
149 static LIST_HEAD(pmus);
150 static DEFINE_MUTEX(pmus_lock);
151 static struct srcu_struct pmus_srcu;
152
153 /*
154 * perf event paranoia level:
155 * -1 - not paranoid at all
156 * 0 - disallow raw tracepoint access for unpriv
157 * 1 - disallow cpu events for unpriv
158 * 2 - disallow kernel profiling for unpriv
159 */
160 int sysctl_perf_event_paranoid __read_mostly = 1;
161
162 /* Minimum for 512 kiB + 1 user control page */
163 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
164
165 /*
166 * max perf event sample rate
167 */
168 #define DEFAULT_MAX_SAMPLE_RATE 100000
169 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
170 static int max_samples_per_tick __read_mostly =
171 DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
172
173 int perf_proc_update_handler(struct ctl_table *table, int write,
174 void __user *buffer, size_t *lenp,
175 loff_t *ppos)
176 {
177 int ret = proc_dointvec(table, write, buffer, lenp, ppos);
178
179 if (ret || !write)
180 return ret;
181
182 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
183
184 return 0;
185 }
186
187 static atomic64_t perf_event_id;
188
189 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
190 enum event_type_t event_type);
191
192 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
193 enum event_type_t event_type,
194 struct task_struct *task);
195
196 static void update_context_time(struct perf_event_context *ctx);
197 static u64 perf_event_time(struct perf_event *event);
198
199 static void ring_buffer_attach(struct perf_event *event,
200 struct ring_buffer *rb);
201
202 void __weak perf_event_print_debug(void) { }
203
204 extern __weak const char *perf_pmu_name(void)
205 {
206 return "pmu";
207 }
208
209 static inline u64 perf_clock(void)
210 {
211 return local_clock();
212 }
213
214 static inline struct perf_cpu_context *
215 __get_cpu_context(struct perf_event_context *ctx)
216 {
217 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
218 }
219
220 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
221 struct perf_event_context *ctx)
222 {
223 raw_spin_lock(&cpuctx->ctx.lock);
224 if (ctx)
225 raw_spin_lock(&ctx->lock);
226 }
227
228 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
229 struct perf_event_context *ctx)
230 {
231 if (ctx)
232 raw_spin_unlock(&ctx->lock);
233 raw_spin_unlock(&cpuctx->ctx.lock);
234 }
235
236 #ifdef CONFIG_CGROUP_PERF
237
238 /*
239 * perf_cgroup_info keeps track of time_enabled for a cgroup.
240 * This is a per-cpu dynamically allocated data structure.
241 */
242 struct perf_cgroup_info {
243 u64 time;
244 u64 timestamp;
245 };
246
247 struct perf_cgroup {
248 struct cgroup_subsys_state css;
249 struct perf_cgroup_info __percpu *info;
250 };
251
252 /*
253 * Must ensure cgroup is pinned (css_get) before calling
254 * this function. In other words, we cannot call this function
255 * if there is no cgroup event for the current CPU context.
256 */
257 static inline struct perf_cgroup *
258 perf_cgroup_from_task(struct task_struct *task)
259 {
260 return container_of(task_subsys_state(task, perf_subsys_id),
261 struct perf_cgroup, css);
262 }
263
264 static inline bool
265 perf_cgroup_match(struct perf_event *event)
266 {
267 struct perf_event_context *ctx = event->ctx;
268 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
269
270 /* @event doesn't care about cgroup */
271 if (!event->cgrp)
272 return true;
273
274 /* wants specific cgroup scope but @cpuctx isn't associated with any */
275 if (!cpuctx->cgrp)
276 return false;
277
278 /*
279 * Cgroup scoping is recursive. An event enabled for a cgroup is
280 * also enabled for all its descendant cgroups. If @cpuctx's
281 * cgroup is a descendant of @event's (the test covers identity
282 * case), it's a match.
283 */
284 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
285 event->cgrp->css.cgroup);
286 }
287
288 static inline bool perf_tryget_cgroup(struct perf_event *event)
289 {
290 return css_tryget(&event->cgrp->css);
291 }
292
293 static inline void perf_put_cgroup(struct perf_event *event)
294 {
295 css_put(&event->cgrp->css);
296 }
297
298 static inline void perf_detach_cgroup(struct perf_event *event)
299 {
300 perf_put_cgroup(event);
301 event->cgrp = NULL;
302 }
303
304 static inline int is_cgroup_event(struct perf_event *event)
305 {
306 return event->cgrp != NULL;
307 }
308
309 static inline u64 perf_cgroup_event_time(struct perf_event *event)
310 {
311 struct perf_cgroup_info *t;
312
313 t = per_cpu_ptr(event->cgrp->info, event->cpu);
314 return t->time;
315 }
316
317 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
318 {
319 struct perf_cgroup_info *info;
320 u64 now;
321
322 now = perf_clock();
323
324 info = this_cpu_ptr(cgrp->info);
325
326 info->time += now - info->timestamp;
327 info->timestamp = now;
328 }
329
330 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
331 {
332 struct perf_cgroup *cgrp_out = cpuctx->cgrp;
333 if (cgrp_out)
334 __update_cgrp_time(cgrp_out);
335 }
336
337 static inline void update_cgrp_time_from_event(struct perf_event *event)
338 {
339 struct perf_cgroup *cgrp;
340
341 /*
342 * ensure we access cgroup data only when needed and
343 * when we know the cgroup is pinned (css_get)
344 */
345 if (!is_cgroup_event(event))
346 return;
347
348 cgrp = perf_cgroup_from_task(current);
349 /*
350 * Do not update time when cgroup is not active
351 */
352 if (cgrp == event->cgrp)
353 __update_cgrp_time(event->cgrp);
354 }
355
356 static inline void
357 perf_cgroup_set_timestamp(struct task_struct *task,
358 struct perf_event_context *ctx)
359 {
360 struct perf_cgroup *cgrp;
361 struct perf_cgroup_info *info;
362
363 /*
364 * ctx->lock held by caller
365 * ensure we do not access cgroup data
366 * unless we have the cgroup pinned (css_get)
367 */
368 if (!task || !ctx->nr_cgroups)
369 return;
370
371 cgrp = perf_cgroup_from_task(task);
372 info = this_cpu_ptr(cgrp->info);
373 info->timestamp = ctx->timestamp;
374 }
375
376 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
377 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
378
379 /*
380 * reschedule events based on the cgroup constraint of task.
381 *
382 * mode SWOUT : schedule out everything
383 * mode SWIN : schedule in based on cgroup for next
384 */
385 void perf_cgroup_switch(struct task_struct *task, int mode)
386 {
387 struct perf_cpu_context *cpuctx;
388 struct pmu *pmu;
389 unsigned long flags;
390
391 /*
392 * disable interrupts to avoid geting nr_cgroup
393 * changes via __perf_event_disable(). Also
394 * avoids preemption.
395 */
396 local_irq_save(flags);
397
398 /*
399 * we reschedule only in the presence of cgroup
400 * constrained events.
401 */
402 rcu_read_lock();
403
404 list_for_each_entry_rcu(pmu, &pmus, entry) {
405 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
406 if (cpuctx->unique_pmu != pmu)
407 continue; /* ensure we process each cpuctx once */
408
409 /*
410 * perf_cgroup_events says at least one
411 * context on this CPU has cgroup events.
412 *
413 * ctx->nr_cgroups reports the number of cgroup
414 * events for a context.
415 */
416 if (cpuctx->ctx.nr_cgroups > 0) {
417 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
418 perf_pmu_disable(cpuctx->ctx.pmu);
419
420 if (mode & PERF_CGROUP_SWOUT) {
421 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
422 /*
423 * must not be done before ctxswout due
424 * to event_filter_match() in event_sched_out()
425 */
426 cpuctx->cgrp = NULL;
427 }
428
429 if (mode & PERF_CGROUP_SWIN) {
430 WARN_ON_ONCE(cpuctx->cgrp);
431 /*
432 * set cgrp before ctxsw in to allow
433 * event_filter_match() to not have to pass
434 * task around
435 */
436 cpuctx->cgrp = perf_cgroup_from_task(task);
437 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
438 }
439 perf_pmu_enable(cpuctx->ctx.pmu);
440 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
441 }
442 }
443
444 rcu_read_unlock();
445
446 local_irq_restore(flags);
447 }
448
449 static inline void perf_cgroup_sched_out(struct task_struct *task,
450 struct task_struct *next)
451 {
452 struct perf_cgroup *cgrp1;
453 struct perf_cgroup *cgrp2 = NULL;
454
455 /*
456 * we come here when we know perf_cgroup_events > 0
457 */
458 cgrp1 = perf_cgroup_from_task(task);
459
460 /*
461 * next is NULL when called from perf_event_enable_on_exec()
462 * that will systematically cause a cgroup_switch()
463 */
464 if (next)
465 cgrp2 = perf_cgroup_from_task(next);
466
467 /*
468 * only schedule out current cgroup events if we know
469 * that we are switching to a different cgroup. Otherwise,
470 * do no touch the cgroup events.
471 */
472 if (cgrp1 != cgrp2)
473 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
474 }
475
476 static inline void perf_cgroup_sched_in(struct task_struct *prev,
477 struct task_struct *task)
478 {
479 struct perf_cgroup *cgrp1;
480 struct perf_cgroup *cgrp2 = NULL;
481
482 /*
483 * we come here when we know perf_cgroup_events > 0
484 */
485 cgrp1 = perf_cgroup_from_task(task);
486
487 /* prev can never be NULL */
488 cgrp2 = perf_cgroup_from_task(prev);
489
490 /*
491 * only need to schedule in cgroup events if we are changing
492 * cgroup during ctxsw. Cgroup events were not scheduled
493 * out of ctxsw out if that was not the case.
494 */
495 if (cgrp1 != cgrp2)
496 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
497 }
498
499 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
500 struct perf_event_attr *attr,
501 struct perf_event *group_leader)
502 {
503 struct perf_cgroup *cgrp;
504 struct cgroup_subsys_state *css;
505 struct fd f = fdget(fd);
506 int ret = 0;
507
508 if (!f.file)
509 return -EBADF;
510
511 css = cgroup_css_from_dir(f.file, perf_subsys_id);
512 if (IS_ERR(css)) {
513 ret = PTR_ERR(css);
514 goto out;
515 }
516
517 cgrp = container_of(css, struct perf_cgroup, css);
518 event->cgrp = cgrp;
519
520 /* must be done before we fput() the file */
521 if (!perf_tryget_cgroup(event)) {
522 event->cgrp = NULL;
523 ret = -ENOENT;
524 goto out;
525 }
526
527 /*
528 * all events in a group must monitor
529 * the same cgroup because a task belongs
530 * to only one perf cgroup at a time
531 */
532 if (group_leader && group_leader->cgrp != cgrp) {
533 perf_detach_cgroup(event);
534 ret = -EINVAL;
535 }
536 out:
537 fdput(f);
538 return ret;
539 }
540
541 static inline void
542 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
543 {
544 struct perf_cgroup_info *t;
545 t = per_cpu_ptr(event->cgrp->info, event->cpu);
546 event->shadow_ctx_time = now - t->timestamp;
547 }
548
549 static inline void
550 perf_cgroup_defer_enabled(struct perf_event *event)
551 {
552 /*
553 * when the current task's perf cgroup does not match
554 * the event's, we need to remember to call the
555 * perf_mark_enable() function the first time a task with
556 * a matching perf cgroup is scheduled in.
557 */
558 if (is_cgroup_event(event) && !perf_cgroup_match(event))
559 event->cgrp_defer_enabled = 1;
560 }
561
562 static inline void
563 perf_cgroup_mark_enabled(struct perf_event *event,
564 struct perf_event_context *ctx)
565 {
566 struct perf_event *sub;
567 u64 tstamp = perf_event_time(event);
568
569 if (!event->cgrp_defer_enabled)
570 return;
571
572 event->cgrp_defer_enabled = 0;
573
574 event->tstamp_enabled = tstamp - event->total_time_enabled;
575 list_for_each_entry(sub, &event->sibling_list, group_entry) {
576 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
577 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
578 sub->cgrp_defer_enabled = 0;
579 }
580 }
581 }
582 #else /* !CONFIG_CGROUP_PERF */
583
584 static inline bool
585 perf_cgroup_match(struct perf_event *event)
586 {
587 return true;
588 }
589
590 static inline void perf_detach_cgroup(struct perf_event *event)
591 {}
592
593 static inline int is_cgroup_event(struct perf_event *event)
594 {
595 return 0;
596 }
597
598 static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
599 {
600 return 0;
601 }
602
603 static inline void update_cgrp_time_from_event(struct perf_event *event)
604 {
605 }
606
607 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
608 {
609 }
610
611 static inline void perf_cgroup_sched_out(struct task_struct *task,
612 struct task_struct *next)
613 {
614 }
615
616 static inline void perf_cgroup_sched_in(struct task_struct *prev,
617 struct task_struct *task)
618 {
619 }
620
621 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
622 struct perf_event_attr *attr,
623 struct perf_event *group_leader)
624 {
625 return -EINVAL;
626 }
627
628 static inline void
629 perf_cgroup_set_timestamp(struct task_struct *task,
630 struct perf_event_context *ctx)
631 {
632 }
633
634 void
635 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
636 {
637 }
638
639 static inline void
640 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
641 {
642 }
643
644 static inline u64 perf_cgroup_event_time(struct perf_event *event)
645 {
646 return 0;
647 }
648
649 static inline void
650 perf_cgroup_defer_enabled(struct perf_event *event)
651 {
652 }
653
654 static inline void
655 perf_cgroup_mark_enabled(struct perf_event *event,
656 struct perf_event_context *ctx)
657 {
658 }
659 #endif
660
661 void perf_pmu_disable(struct pmu *pmu)
662 {
663 int *count = this_cpu_ptr(pmu->pmu_disable_count);
664 if (!(*count)++)
665 pmu->pmu_disable(pmu);
666 }
667
668 void perf_pmu_enable(struct pmu *pmu)
669 {
670 int *count = this_cpu_ptr(pmu->pmu_disable_count);
671 if (!--(*count))
672 pmu->pmu_enable(pmu);
673 }
674
675 static DEFINE_PER_CPU(struct list_head, rotation_list);
676
677 /*
678 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
679 * because they're strictly cpu affine and rotate_start is called with IRQs
680 * disabled, while rotate_context is called from IRQ context.
681 */
682 static void perf_pmu_rotate_start(struct pmu *pmu)
683 {
684 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
685 struct list_head *head = &__get_cpu_var(rotation_list);
686
687 WARN_ON(!irqs_disabled());
688
689 if (list_empty(&cpuctx->rotation_list)) {
690 int was_empty = list_empty(head);
691 list_add(&cpuctx->rotation_list, head);
692 if (was_empty)
693 tick_nohz_full_kick();
694 }
695 }
696
697 static void get_ctx(struct perf_event_context *ctx)
698 {
699 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
700 }
701
702 static void put_ctx(struct perf_event_context *ctx)
703 {
704 if (atomic_dec_and_test(&ctx->refcount)) {
705 if (ctx->parent_ctx)
706 put_ctx(ctx->parent_ctx);
707 if (ctx->task)
708 put_task_struct(ctx->task);
709 kfree_rcu(ctx, rcu_head);
710 }
711 }
712
713 static void unclone_ctx(struct perf_event_context *ctx)
714 {
715 if (ctx->parent_ctx) {
716 put_ctx(ctx->parent_ctx);
717 ctx->parent_ctx = NULL;
718 }
719 }
720
721 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
722 {
723 /*
724 * only top level events have the pid namespace they were created in
725 */
726 if (event->parent)
727 event = event->parent;
728
729 return task_tgid_nr_ns(p, event->ns);
730 }
731
732 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
733 {
734 /*
735 * only top level events have the pid namespace they were created in
736 */
737 if (event->parent)
738 event = event->parent;
739
740 return task_pid_nr_ns(p, event->ns);
741 }
742
743 /*
744 * If we inherit events we want to return the parent event id
745 * to userspace.
746 */
747 static u64 primary_event_id(struct perf_event *event)
748 {
749 u64 id = event->id;
750
751 if (event->parent)
752 id = event->parent->id;
753
754 return id;
755 }
756
757 /*
758 * Get the perf_event_context for a task and lock it.
759 * This has to cope with with the fact that until it is locked,
760 * the context could get moved to another task.
761 */
762 static struct perf_event_context *
763 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
764 {
765 struct perf_event_context *ctx;
766
767 rcu_read_lock();
768 retry:
769 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
770 if (ctx) {
771 /*
772 * If this context is a clone of another, it might
773 * get swapped for another underneath us by
774 * perf_event_task_sched_out, though the
775 * rcu_read_lock() protects us from any context
776 * getting freed. Lock the context and check if it
777 * got swapped before we could get the lock, and retry
778 * if so. If we locked the right context, then it
779 * can't get swapped on us any more.
780 */
781 raw_spin_lock_irqsave(&ctx->lock, *flags);
782 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
783 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
784 goto retry;
785 }
786
787 if (!atomic_inc_not_zero(&ctx->refcount)) {
788 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
789 ctx = NULL;
790 }
791 }
792 rcu_read_unlock();
793 return ctx;
794 }
795
796 /*
797 * Get the context for a task and increment its pin_count so it
798 * can't get swapped to another task. This also increments its
799 * reference count so that the context can't get freed.
800 */
801 static struct perf_event_context *
802 perf_pin_task_context(struct task_struct *task, int ctxn)
803 {
804 struct perf_event_context *ctx;
805 unsigned long flags;
806
807 ctx = perf_lock_task_context(task, ctxn, &flags);
808 if (ctx) {
809 ++ctx->pin_count;
810 raw_spin_unlock_irqrestore(&ctx->lock, flags);
811 }
812 return ctx;
813 }
814
815 static void perf_unpin_context(struct perf_event_context *ctx)
816 {
817 unsigned long flags;
818
819 raw_spin_lock_irqsave(&ctx->lock, flags);
820 --ctx->pin_count;
821 raw_spin_unlock_irqrestore(&ctx->lock, flags);
822 }
823
824 /*
825 * Update the record of the current time in a context.
826 */
827 static void update_context_time(struct perf_event_context *ctx)
828 {
829 u64 now = perf_clock();
830
831 ctx->time += now - ctx->timestamp;
832 ctx->timestamp = now;
833 }
834
835 static u64 perf_event_time(struct perf_event *event)
836 {
837 struct perf_event_context *ctx = event->ctx;
838
839 if (is_cgroup_event(event))
840 return perf_cgroup_event_time(event);
841
842 return ctx ? ctx->time : 0;
843 }
844
845 /*
846 * Update the total_time_enabled and total_time_running fields for a event.
847 * The caller of this function needs to hold the ctx->lock.
848 */
849 static void update_event_times(struct perf_event *event)
850 {
851 struct perf_event_context *ctx = event->ctx;
852 u64 run_end;
853
854 if (event->state < PERF_EVENT_STATE_INACTIVE ||
855 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
856 return;
857 /*
858 * in cgroup mode, time_enabled represents
859 * the time the event was enabled AND active
860 * tasks were in the monitored cgroup. This is
861 * independent of the activity of the context as
862 * there may be a mix of cgroup and non-cgroup events.
863 *
864 * That is why we treat cgroup events differently
865 * here.
866 */
867 if (is_cgroup_event(event))
868 run_end = perf_cgroup_event_time(event);
869 else if (ctx->is_active)
870 run_end = ctx->time;
871 else
872 run_end = event->tstamp_stopped;
873
874 event->total_time_enabled = run_end - event->tstamp_enabled;
875
876 if (event->state == PERF_EVENT_STATE_INACTIVE)
877 run_end = event->tstamp_stopped;
878 else
879 run_end = perf_event_time(event);
880
881 event->total_time_running = run_end - event->tstamp_running;
882
883 }
884
885 /*
886 * Update total_time_enabled and total_time_running for all events in a group.
887 */
888 static void update_group_times(struct perf_event *leader)
889 {
890 struct perf_event *event;
891
892 update_event_times(leader);
893 list_for_each_entry(event, &leader->sibling_list, group_entry)
894 update_event_times(event);
895 }
896
897 static struct list_head *
898 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
899 {
900 if (event->attr.pinned)
901 return &ctx->pinned_groups;
902 else
903 return &ctx->flexible_groups;
904 }
905
906 /*
907 * Add a event from the lists for its context.
908 * Must be called with ctx->mutex and ctx->lock held.
909 */
910 static void
911 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
912 {
913 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
914 event->attach_state |= PERF_ATTACH_CONTEXT;
915
916 /*
917 * If we're a stand alone event or group leader, we go to the context
918 * list, group events are kept attached to the group so that
919 * perf_group_detach can, at all times, locate all siblings.
920 */
921 if (event->group_leader == event) {
922 struct list_head *list;
923
924 if (is_software_event(event))
925 event->group_flags |= PERF_GROUP_SOFTWARE;
926
927 list = ctx_group_list(event, ctx);
928 list_add_tail(&event->group_entry, list);
929 }
930
931 if (is_cgroup_event(event))
932 ctx->nr_cgroups++;
933
934 if (has_branch_stack(event))
935 ctx->nr_branch_stack++;
936
937 list_add_rcu(&event->event_entry, &ctx->event_list);
938 if (!ctx->nr_events)
939 perf_pmu_rotate_start(ctx->pmu);
940 ctx->nr_events++;
941 if (event->attr.inherit_stat)
942 ctx->nr_stat++;
943 }
944
945 /*
946 * Initialize event state based on the perf_event_attr::disabled.
947 */
948 static inline void perf_event__state_init(struct perf_event *event)
949 {
950 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
951 PERF_EVENT_STATE_INACTIVE;
952 }
953
954 /*
955 * Called at perf_event creation and when events are attached/detached from a
956 * group.
957 */
958 static void perf_event__read_size(struct perf_event *event)
959 {
960 int entry = sizeof(u64); /* value */
961 int size = 0;
962 int nr = 1;
963
964 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
965 size += sizeof(u64);
966
967 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
968 size += sizeof(u64);
969
970 if (event->attr.read_format & PERF_FORMAT_ID)
971 entry += sizeof(u64);
972
973 if (event->attr.read_format & PERF_FORMAT_GROUP) {
974 nr += event->group_leader->nr_siblings;
975 size += sizeof(u64);
976 }
977
978 size += entry * nr;
979 event->read_size = size;
980 }
981
982 static void perf_event__header_size(struct perf_event *event)
983 {
984 struct perf_sample_data *data;
985 u64 sample_type = event->attr.sample_type;
986 u16 size = 0;
987
988 perf_event__read_size(event);
989
990 if (sample_type & PERF_SAMPLE_IP)
991 size += sizeof(data->ip);
992
993 if (sample_type & PERF_SAMPLE_ADDR)
994 size += sizeof(data->addr);
995
996 if (sample_type & PERF_SAMPLE_PERIOD)
997 size += sizeof(data->period);
998
999 if (sample_type & PERF_SAMPLE_WEIGHT)
1000 size += sizeof(data->weight);
1001
1002 if (sample_type & PERF_SAMPLE_READ)
1003 size += event->read_size;
1004
1005 if (sample_type & PERF_SAMPLE_DATA_SRC)
1006 size += sizeof(data->data_src.val);
1007
1008 event->header_size = size;
1009 }
1010
1011 static void perf_event__id_header_size(struct perf_event *event)
1012 {
1013 struct perf_sample_data *data;
1014 u64 sample_type = event->attr.sample_type;
1015 u16 size = 0;
1016
1017 if (sample_type & PERF_SAMPLE_TID)
1018 size += sizeof(data->tid_entry);
1019
1020 if (sample_type & PERF_SAMPLE_TIME)
1021 size += sizeof(data->time);
1022
1023 if (sample_type & PERF_SAMPLE_ID)
1024 size += sizeof(data->id);
1025
1026 if (sample_type & PERF_SAMPLE_STREAM_ID)
1027 size += sizeof(data->stream_id);
1028
1029 if (sample_type & PERF_SAMPLE_CPU)
1030 size += sizeof(data->cpu_entry);
1031
1032 event->id_header_size = size;
1033 }
1034
1035 static void perf_group_attach(struct perf_event *event)
1036 {
1037 struct perf_event *group_leader = event->group_leader, *pos;
1038
1039 /*
1040 * We can have double attach due to group movement in perf_event_open.
1041 */
1042 if (event->attach_state & PERF_ATTACH_GROUP)
1043 return;
1044
1045 event->attach_state |= PERF_ATTACH_GROUP;
1046
1047 if (group_leader == event)
1048 return;
1049
1050 if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
1051 !is_software_event(event))
1052 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
1053
1054 list_add_tail(&event->group_entry, &group_leader->sibling_list);
1055 group_leader->nr_siblings++;
1056
1057 perf_event__header_size(group_leader);
1058
1059 list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1060 perf_event__header_size(pos);
1061 }
1062
1063 /*
1064 * Remove a event from the lists for its context.
1065 * Must be called with ctx->mutex and ctx->lock held.
1066 */
1067 static void
1068 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1069 {
1070 struct perf_cpu_context *cpuctx;
1071 /*
1072 * We can have double detach due to exit/hot-unplug + close.
1073 */
1074 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1075 return;
1076
1077 event->attach_state &= ~PERF_ATTACH_CONTEXT;
1078
1079 if (is_cgroup_event(event)) {
1080 ctx->nr_cgroups--;
1081 cpuctx = __get_cpu_context(ctx);
1082 /*
1083 * if there are no more cgroup events
1084 * then cler cgrp to avoid stale pointer
1085 * in update_cgrp_time_from_cpuctx()
1086 */
1087 if (!ctx->nr_cgroups)
1088 cpuctx->cgrp = NULL;
1089 }
1090
1091 if (has_branch_stack(event))
1092 ctx->nr_branch_stack--;
1093
1094 ctx->nr_events--;
1095 if (event->attr.inherit_stat)
1096 ctx->nr_stat--;
1097
1098 list_del_rcu(&event->event_entry);
1099
1100 if (event->group_leader == event)
1101 list_del_init(&event->group_entry);
1102
1103 update_group_times(event);
1104
1105 /*
1106 * If event was in error state, then keep it
1107 * that way, otherwise bogus counts will be
1108 * returned on read(). The only way to get out
1109 * of error state is by explicit re-enabling
1110 * of the event
1111 */
1112 if (event->state > PERF_EVENT_STATE_OFF)
1113 event->state = PERF_EVENT_STATE_OFF;
1114 }
1115
1116 static void perf_group_detach(struct perf_event *event)
1117 {
1118 struct perf_event *sibling, *tmp;
1119 struct list_head *list = NULL;
1120
1121 /*
1122 * We can have double detach due to exit/hot-unplug + close.
1123 */
1124 if (!(event->attach_state & PERF_ATTACH_GROUP))
1125 return;
1126
1127 event->attach_state &= ~PERF_ATTACH_GROUP;
1128
1129 /*
1130 * If this is a sibling, remove it from its group.
1131 */
1132 if (event->group_leader != event) {
1133 list_del_init(&event->group_entry);
1134 event->group_leader->nr_siblings--;
1135 goto out;
1136 }
1137
1138 if (!list_empty(&event->group_entry))
1139 list = &event->group_entry;
1140
1141 /*
1142 * If this was a group event with sibling events then
1143 * upgrade the siblings to singleton events by adding them
1144 * to whatever list we are on.
1145 */
1146 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1147 if (list)
1148 list_move_tail(&sibling->group_entry, list);
1149 sibling->group_leader = sibling;
1150
1151 /* Inherit group flags from the previous leader */
1152 sibling->group_flags = event->group_flags;
1153 }
1154
1155 out:
1156 perf_event__header_size(event->group_leader);
1157
1158 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1159 perf_event__header_size(tmp);
1160 }
1161
1162 static inline int
1163 event_filter_match(struct perf_event *event)
1164 {
1165 return (event->cpu == -1 || event->cpu == smp_processor_id())
1166 && perf_cgroup_match(event);
1167 }
1168
1169 static void
1170 event_sched_out(struct perf_event *event,
1171 struct perf_cpu_context *cpuctx,
1172 struct perf_event_context *ctx)
1173 {
1174 u64 tstamp = perf_event_time(event);
1175 u64 delta;
1176 /*
1177 * An event which could not be activated because of
1178 * filter mismatch still needs to have its timings
1179 * maintained, otherwise bogus information is return
1180 * via read() for time_enabled, time_running:
1181 */
1182 if (event->state == PERF_EVENT_STATE_INACTIVE
1183 && !event_filter_match(event)) {
1184 delta = tstamp - event->tstamp_stopped;
1185 event->tstamp_running += delta;
1186 event->tstamp_stopped = tstamp;
1187 }
1188
1189 if (event->state != PERF_EVENT_STATE_ACTIVE)
1190 return;
1191
1192 event->state = PERF_EVENT_STATE_INACTIVE;
1193 if (event->pending_disable) {
1194 event->pending_disable = 0;
1195 event->state = PERF_EVENT_STATE_OFF;
1196 }
1197 event->tstamp_stopped = tstamp;
1198 event->pmu->del(event, 0);
1199 event->oncpu = -1;
1200
1201 if (!is_software_event(event))
1202 cpuctx->active_oncpu--;
1203 ctx->nr_active--;
1204 if (event->attr.freq && event->attr.sample_freq)
1205 ctx->nr_freq--;
1206 if (event->attr.exclusive || !cpuctx->active_oncpu)
1207 cpuctx->exclusive = 0;
1208 }
1209
1210 static void
1211 group_sched_out(struct perf_event *group_event,
1212 struct perf_cpu_context *cpuctx,
1213 struct perf_event_context *ctx)
1214 {
1215 struct perf_event *event;
1216 int state = group_event->state;
1217
1218 event_sched_out(group_event, cpuctx, ctx);
1219
1220 /*
1221 * Schedule out siblings (if any):
1222 */
1223 list_for_each_entry(event, &group_event->sibling_list, group_entry)
1224 event_sched_out(event, cpuctx, ctx);
1225
1226 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1227 cpuctx->exclusive = 0;
1228 }
1229
1230 /*
1231 * Cross CPU call to remove a performance event
1232 *
1233 * We disable the event on the hardware level first. After that we
1234 * remove it from the context list.
1235 */
1236 static int __perf_remove_from_context(void *info)
1237 {
1238 struct perf_event *event = info;
1239 struct perf_event_context *ctx = event->ctx;
1240 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1241
1242 raw_spin_lock(&ctx->lock);
1243 event_sched_out(event, cpuctx, ctx);
1244 list_del_event(event, ctx);
1245 if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
1246 ctx->is_active = 0;
1247 cpuctx->task_ctx = NULL;
1248 }
1249 raw_spin_unlock(&ctx->lock);
1250
1251 return 0;
1252 }
1253
1254
1255 /*
1256 * Remove the event from a task's (or a CPU's) list of events.
1257 *
1258 * CPU events are removed with a smp call. For task events we only
1259 * call when the task is on a CPU.
1260 *
1261 * If event->ctx is a cloned context, callers must make sure that
1262 * every task struct that event->ctx->task could possibly point to
1263 * remains valid. This is OK when called from perf_release since
1264 * that only calls us on the top-level context, which can't be a clone.
1265 * When called from perf_event_exit_task, it's OK because the
1266 * context has been detached from its task.
1267 */
1268 static void perf_remove_from_context(struct perf_event *event)
1269 {
1270 struct perf_event_context *ctx = event->ctx;
1271 struct task_struct *task = ctx->task;
1272
1273 lockdep_assert_held(&ctx->mutex);
1274
1275 if (!task) {
1276 /*
1277 * Per cpu events are removed via an smp call and
1278 * the removal is always successful.
1279 */
1280 cpu_function_call(event->cpu, __perf_remove_from_context, event);
1281 return;
1282 }
1283
1284 retry:
1285 if (!task_function_call(task, __perf_remove_from_context, event))
1286 return;
1287
1288 raw_spin_lock_irq(&ctx->lock);
1289 /*
1290 * If we failed to find a running task, but find the context active now
1291 * that we've acquired the ctx->lock, retry.
1292 */
1293 if (ctx->is_active) {
1294 raw_spin_unlock_irq(&ctx->lock);
1295 goto retry;
1296 }
1297
1298 /*
1299 * Since the task isn't running, its safe to remove the event, us
1300 * holding the ctx->lock ensures the task won't get scheduled in.
1301 */
1302 list_del_event(event, ctx);
1303 raw_spin_unlock_irq(&ctx->lock);
1304 }
1305
1306 /*
1307 * Cross CPU call to disable a performance event
1308 */
1309 int __perf_event_disable(void *info)
1310 {
1311 struct perf_event *event = info;
1312 struct perf_event_context *ctx = event->ctx;
1313 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1314
1315 /*
1316 * If this is a per-task event, need to check whether this
1317 * event's task is the current task on this cpu.
1318 *
1319 * Can trigger due to concurrent perf_event_context_sched_out()
1320 * flipping contexts around.
1321 */
1322 if (ctx->task && cpuctx->task_ctx != ctx)
1323 return -EINVAL;
1324
1325 raw_spin_lock(&ctx->lock);
1326
1327 /*
1328 * If the event is on, turn it off.
1329 * If it is in error state, leave it in error state.
1330 */
1331 if (event->state >= PERF_EVENT_STATE_INACTIVE) {
1332 update_context_time(ctx);
1333 update_cgrp_time_from_event(event);
1334 update_group_times(event);
1335 if (event == event->group_leader)
1336 group_sched_out(event, cpuctx, ctx);
1337 else
1338 event_sched_out(event, cpuctx, ctx);
1339 event->state = PERF_EVENT_STATE_OFF;
1340 }
1341
1342 raw_spin_unlock(&ctx->lock);
1343
1344 return 0;
1345 }
1346
1347 /*
1348 * Disable a event.
1349 *
1350 * If event->ctx is a cloned context, callers must make sure that
1351 * every task struct that event->ctx->task could possibly point to
1352 * remains valid. This condition is satisifed when called through
1353 * perf_event_for_each_child or perf_event_for_each because they
1354 * hold the top-level event's child_mutex, so any descendant that
1355 * goes to exit will block in sync_child_event.
1356 * When called from perf_pending_event it's OK because event->ctx
1357 * is the current context on this CPU and preemption is disabled,
1358 * hence we can't get into perf_event_task_sched_out for this context.
1359 */
1360 void perf_event_disable(struct perf_event *event)
1361 {
1362 struct perf_event_context *ctx = event->ctx;
1363 struct task_struct *task = ctx->task;
1364
1365 if (!task) {
1366 /*
1367 * Disable the event on the cpu that it's on
1368 */
1369 cpu_function_call(event->cpu, __perf_event_disable, event);
1370 return;
1371 }
1372
1373 retry:
1374 if (!task_function_call(task, __perf_event_disable, event))
1375 return;
1376
1377 raw_spin_lock_irq(&ctx->lock);
1378 /*
1379 * If the event is still active, we need to retry the cross-call.
1380 */
1381 if (event->state == PERF_EVENT_STATE_ACTIVE) {
1382 raw_spin_unlock_irq(&ctx->lock);
1383 /*
1384 * Reload the task pointer, it might have been changed by
1385 * a concurrent perf_event_context_sched_out().
1386 */
1387 task = ctx->task;
1388 goto retry;
1389 }
1390
1391 /*
1392 * Since we have the lock this context can't be scheduled
1393 * in, so we can change the state safely.
1394 */
1395 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1396 update_group_times(event);
1397 event->state = PERF_EVENT_STATE_OFF;
1398 }
1399 raw_spin_unlock_irq(&ctx->lock);
1400 }
1401 EXPORT_SYMBOL_GPL(perf_event_disable);
1402
1403 static void perf_set_shadow_time(struct perf_event *event,
1404 struct perf_event_context *ctx,
1405 u64 tstamp)
1406 {
1407 /*
1408 * use the correct time source for the time snapshot
1409 *
1410 * We could get by without this by leveraging the
1411 * fact that to get to this function, the caller
1412 * has most likely already called update_context_time()
1413 * and update_cgrp_time_xx() and thus both timestamp
1414 * are identical (or very close). Given that tstamp is,
1415 * already adjusted for cgroup, we could say that:
1416 * tstamp - ctx->timestamp
1417 * is equivalent to
1418 * tstamp - cgrp->timestamp.
1419 *
1420 * Then, in perf_output_read(), the calculation would
1421 * work with no changes because:
1422 * - event is guaranteed scheduled in
1423 * - no scheduled out in between
1424 * - thus the timestamp would be the same
1425 *
1426 * But this is a bit hairy.
1427 *
1428 * So instead, we have an explicit cgroup call to remain
1429 * within the time time source all along. We believe it
1430 * is cleaner and simpler to understand.
1431 */
1432 if (is_cgroup_event(event))
1433 perf_cgroup_set_shadow_time(event, tstamp);
1434 else
1435 event->shadow_ctx_time = tstamp - ctx->timestamp;
1436 }
1437
1438 #define MAX_INTERRUPTS (~0ULL)
1439
1440 static void perf_log_throttle(struct perf_event *event, int enable);
1441
1442 static int
1443 event_sched_in(struct perf_event *event,
1444 struct perf_cpu_context *cpuctx,
1445 struct perf_event_context *ctx)
1446 {
1447 u64 tstamp = perf_event_time(event);
1448
1449 if (event->state <= PERF_EVENT_STATE_OFF)
1450 return 0;
1451
1452 event->state = PERF_EVENT_STATE_ACTIVE;
1453 event->oncpu = smp_processor_id();
1454
1455 /*
1456 * Unthrottle events, since we scheduled we might have missed several
1457 * ticks already, also for a heavily scheduling task there is little
1458 * guarantee it'll get a tick in a timely manner.
1459 */
1460 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
1461 perf_log_throttle(event, 1);
1462 event->hw.interrupts = 0;
1463 }
1464
1465 /*
1466 * The new state must be visible before we turn it on in the hardware:
1467 */
1468 smp_wmb();
1469
1470 if (event->pmu->add(event, PERF_EF_START)) {
1471 event->state = PERF_EVENT_STATE_INACTIVE;
1472 event->oncpu = -1;
1473 return -EAGAIN;
1474 }
1475
1476 event->tstamp_running += tstamp - event->tstamp_stopped;
1477
1478 perf_set_shadow_time(event, ctx, tstamp);
1479
1480 if (!is_software_event(event))
1481 cpuctx->active_oncpu++;
1482 ctx->nr_active++;
1483 if (event->attr.freq && event->attr.sample_freq)
1484 ctx->nr_freq++;
1485
1486 if (event->attr.exclusive)
1487 cpuctx->exclusive = 1;
1488
1489 return 0;
1490 }
1491
1492 static int
1493 group_sched_in(struct perf_event *group_event,
1494 struct perf_cpu_context *cpuctx,
1495 struct perf_event_context *ctx)
1496 {
1497 struct perf_event *event, *partial_group = NULL;
1498 struct pmu *pmu = group_event->pmu;
1499 u64 now = ctx->time;
1500 bool simulate = false;
1501
1502 if (group_event->state == PERF_EVENT_STATE_OFF)
1503 return 0;
1504
1505 pmu->start_txn(pmu);
1506
1507 if (event_sched_in(group_event, cpuctx, ctx)) {
1508 pmu->cancel_txn(pmu);
1509 return -EAGAIN;
1510 }
1511
1512 /*
1513 * Schedule in siblings as one group (if any):
1514 */
1515 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1516 if (event_sched_in(event, cpuctx, ctx)) {
1517 partial_group = event;
1518 goto group_error;
1519 }
1520 }
1521
1522 if (!pmu->commit_txn(pmu))
1523 return 0;
1524
1525 group_error:
1526 /*
1527 * Groups can be scheduled in as one unit only, so undo any
1528 * partial group before returning:
1529 * The events up to the failed event are scheduled out normally,
1530 * tstamp_stopped will be updated.
1531 *
1532 * The failed events and the remaining siblings need to have
1533 * their timings updated as if they had gone thru event_sched_in()
1534 * and event_sched_out(). This is required to get consistent timings
1535 * across the group. This also takes care of the case where the group
1536 * could never be scheduled by ensuring tstamp_stopped is set to mark
1537 * the time the event was actually stopped, such that time delta
1538 * calculation in update_event_times() is correct.
1539 */
1540 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1541 if (event == partial_group)
1542 simulate = true;
1543
1544 if (simulate) {
1545 event->tstamp_running += now - event->tstamp_stopped;
1546 event->tstamp_stopped = now;
1547 } else {
1548 event_sched_out(event, cpuctx, ctx);
1549 }
1550 }
1551 event_sched_out(group_event, cpuctx, ctx);
1552
1553 pmu->cancel_txn(pmu);
1554
1555 return -EAGAIN;
1556 }
1557
1558 /*
1559 * Work out whether we can put this event group on the CPU now.
1560 */
1561 static int group_can_go_on(struct perf_event *event,
1562 struct perf_cpu_context *cpuctx,
1563 int can_add_hw)
1564 {
1565 /*
1566 * Groups consisting entirely of software events can always go on.
1567 */
1568 if (event->group_flags & PERF_GROUP_SOFTWARE)
1569 return 1;
1570 /*
1571 * If an exclusive group is already on, no other hardware
1572 * events can go on.
1573 */
1574 if (cpuctx->exclusive)
1575 return 0;
1576 /*
1577 * If this group is exclusive and there are already
1578 * events on the CPU, it can't go on.
1579 */
1580 if (event->attr.exclusive && cpuctx->active_oncpu)
1581 return 0;
1582 /*
1583 * Otherwise, try to add it if all previous groups were able
1584 * to go on.
1585 */
1586 return can_add_hw;
1587 }
1588
1589 static void add_event_to_ctx(struct perf_event *event,
1590 struct perf_event_context *ctx)
1591 {
1592 u64 tstamp = perf_event_time(event);
1593
1594 list_add_event(event, ctx);
1595 perf_group_attach(event);
1596 event->tstamp_enabled = tstamp;
1597 event->tstamp_running = tstamp;
1598 event->tstamp_stopped = tstamp;
1599 }
1600
1601 static void task_ctx_sched_out(struct perf_event_context *ctx);
1602 static void
1603 ctx_sched_in(struct perf_event_context *ctx,
1604 struct perf_cpu_context *cpuctx,
1605 enum event_type_t event_type,
1606 struct task_struct *task);
1607
1608 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
1609 struct perf_event_context *ctx,
1610 struct task_struct *task)
1611 {
1612 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
1613 if (ctx)
1614 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
1615 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
1616 if (ctx)
1617 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
1618 }
1619
1620 /*
1621 * Cross CPU call to install and enable a performance event
1622 *
1623 * Must be called with ctx->mutex held
1624 */
1625 static int __perf_install_in_context(void *info)
1626 {
1627 struct perf_event *event = info;
1628 struct perf_event_context *ctx = event->ctx;
1629 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1630 struct perf_event_context *task_ctx = cpuctx->task_ctx;
1631 struct task_struct *task = current;
1632
1633 perf_ctx_lock(cpuctx, task_ctx);
1634 perf_pmu_disable(cpuctx->ctx.pmu);
1635
1636 /*
1637 * If there was an active task_ctx schedule it out.
1638 */
1639 if (task_ctx)
1640 task_ctx_sched_out(task_ctx);
1641
1642 /*
1643 * If the context we're installing events in is not the
1644 * active task_ctx, flip them.
1645 */
1646 if (ctx->task && task_ctx != ctx) {
1647 if (task_ctx)
1648 raw_spin_unlock(&task_ctx->lock);
1649 raw_spin_lock(&ctx->lock);
1650 task_ctx = ctx;
1651 }
1652
1653 if (task_ctx) {
1654 cpuctx->task_ctx = task_ctx;
1655 task = task_ctx->task;
1656 }
1657
1658 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
1659
1660 update_context_time(ctx);
1661 /*
1662 * update cgrp time only if current cgrp
1663 * matches event->cgrp. Must be done before
1664 * calling add_event_to_ctx()
1665 */
1666 update_cgrp_time_from_event(event);
1667
1668 add_event_to_ctx(event, ctx);
1669
1670 /*
1671 * Schedule everything back in
1672 */
1673 perf_event_sched_in(cpuctx, task_ctx, task);
1674
1675 perf_pmu_enable(cpuctx->ctx.pmu);
1676 perf_ctx_unlock(cpuctx, task_ctx);
1677
1678 return 0;
1679 }
1680
1681 /*
1682 * Attach a performance event to a context
1683 *
1684 * First we add the event to the list with the hardware enable bit
1685 * in event->hw_config cleared.
1686 *
1687 * If the event is attached to a task which is on a CPU we use a smp
1688 * call to enable it in the task context. The task might have been
1689 * scheduled away, but we check this in the smp call again.
1690 */
1691 static void
1692 perf_install_in_context(struct perf_event_context *ctx,
1693 struct perf_event *event,
1694 int cpu)
1695 {
1696 struct task_struct *task = ctx->task;
1697
1698 lockdep_assert_held(&ctx->mutex);
1699
1700 event->ctx = ctx;
1701 if (event->cpu != -1)
1702 event->cpu = cpu;
1703
1704 if (!task) {
1705 /*
1706 * Per cpu events are installed via an smp call and
1707 * the install is always successful.
1708 */
1709 cpu_function_call(cpu, __perf_install_in_context, event);
1710 return;
1711 }
1712
1713 retry:
1714 if (!task_function_call(task, __perf_install_in_context, event))
1715 return;
1716
1717 raw_spin_lock_irq(&ctx->lock);
1718 /*
1719 * If we failed to find a running task, but find the context active now
1720 * that we've acquired the ctx->lock, retry.
1721 */
1722 if (ctx->is_active) {
1723 raw_spin_unlock_irq(&ctx->lock);
1724 goto retry;
1725 }
1726
1727 /*
1728 * Since the task isn't running, its safe to add the event, us holding
1729 * the ctx->lock ensures the task won't get scheduled in.
1730 */
1731 add_event_to_ctx(event, ctx);
1732 raw_spin_unlock_irq(&ctx->lock);
1733 }
1734
1735 /*
1736 * Put a event into inactive state and update time fields.
1737 * Enabling the leader of a group effectively enables all
1738 * the group members that aren't explicitly disabled, so we
1739 * have to update their ->tstamp_enabled also.
1740 * Note: this works for group members as well as group leaders
1741 * since the non-leader members' sibling_lists will be empty.
1742 */
1743 static void __perf_event_mark_enabled(struct perf_event *event)
1744 {
1745 struct perf_event *sub;
1746 u64 tstamp = perf_event_time(event);
1747
1748 event->state = PERF_EVENT_STATE_INACTIVE;
1749 event->tstamp_enabled = tstamp - event->total_time_enabled;
1750 list_for_each_entry(sub, &event->sibling_list, group_entry) {
1751 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
1752 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
1753 }
1754 }
1755
1756 /*
1757 * Cross CPU call to enable a performance event
1758 */
1759 static int __perf_event_enable(void *info)
1760 {
1761 struct perf_event *event = info;
1762 struct perf_event_context *ctx = event->ctx;
1763 struct perf_event *leader = event->group_leader;
1764 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1765 int err;
1766
1767 if (WARN_ON_ONCE(!ctx->is_active))
1768 return -EINVAL;
1769
1770 raw_spin_lock(&ctx->lock);
1771 update_context_time(ctx);
1772
1773 if (event->state >= PERF_EVENT_STATE_INACTIVE)
1774 goto unlock;
1775
1776 /*
1777 * set current task's cgroup time reference point
1778 */
1779 perf_cgroup_set_timestamp(current, ctx);
1780
1781 __perf_event_mark_enabled(event);
1782
1783 if (!event_filter_match(event)) {
1784 if (is_cgroup_event(event))
1785 perf_cgroup_defer_enabled(event);
1786 goto unlock;
1787 }
1788
1789 /*
1790 * If the event is in a group and isn't the group leader,
1791 * then don't put it on unless the group is on.
1792 */
1793 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
1794 goto unlock;
1795
1796 if (!group_can_go_on(event, cpuctx, 1)) {
1797 err = -EEXIST;
1798 } else {
1799 if (event == leader)
1800 err = group_sched_in(event, cpuctx, ctx);
1801 else
1802 err = event_sched_in(event, cpuctx, ctx);
1803 }
1804
1805 if (err) {
1806 /*
1807 * If this event can't go on and it's part of a
1808 * group, then the whole group has to come off.
1809 */
1810 if (leader != event)
1811 group_sched_out(leader, cpuctx, ctx);
1812 if (leader->attr.pinned) {
1813 update_group_times(leader);
1814 leader->state = PERF_EVENT_STATE_ERROR;
1815 }
1816 }
1817
1818 unlock:
1819 raw_spin_unlock(&ctx->lock);
1820
1821 return 0;
1822 }
1823
1824 /*
1825 * Enable a event.
1826 *
1827 * If event->ctx is a cloned context, callers must make sure that
1828 * every task struct that event->ctx->task could possibly point to
1829 * remains valid. This condition is satisfied when called through
1830 * perf_event_for_each_child or perf_event_for_each as described
1831 * for perf_event_disable.
1832 */
1833 void perf_event_enable(struct perf_event *event)
1834 {
1835 struct perf_event_context *ctx = event->ctx;
1836 struct task_struct *task = ctx->task;
1837
1838 if (!task) {
1839 /*
1840 * Enable the event on the cpu that it's on
1841 */
1842 cpu_function_call(event->cpu, __perf_event_enable, event);
1843 return;
1844 }
1845
1846 raw_spin_lock_irq(&ctx->lock);
1847 if (event->state >= PERF_EVENT_STATE_INACTIVE)
1848 goto out;
1849
1850 /*
1851 * If the event is in error state, clear that first.
1852 * That way, if we see the event in error state below, we
1853 * know that it has gone back into error state, as distinct
1854 * from the task having been scheduled away before the
1855 * cross-call arrived.
1856 */
1857 if (event->state == PERF_EVENT_STATE_ERROR)
1858 event->state = PERF_EVENT_STATE_OFF;
1859
1860 retry:
1861 if (!ctx->is_active) {
1862 __perf_event_mark_enabled(event);
1863 goto out;
1864 }
1865
1866 raw_spin_unlock_irq(&ctx->lock);
1867
1868 if (!task_function_call(task, __perf_event_enable, event))
1869 return;
1870
1871 raw_spin_lock_irq(&ctx->lock);
1872
1873 /*
1874 * If the context is active and the event is still off,
1875 * we need to retry the cross-call.
1876 */
1877 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
1878 /*
1879 * task could have been flipped by a concurrent
1880 * perf_event_context_sched_out()
1881 */
1882 task = ctx->task;
1883 goto retry;
1884 }
1885
1886 out:
1887 raw_spin_unlock_irq(&ctx->lock);
1888 }
1889 EXPORT_SYMBOL_GPL(perf_event_enable);
1890
1891 int perf_event_refresh(struct perf_event *event, int refresh)
1892 {
1893 /*
1894 * not supported on inherited events
1895 */
1896 if (event->attr.inherit || !is_sampling_event(event))
1897 return -EINVAL;
1898
1899 atomic_add(refresh, &event->event_limit);
1900 perf_event_enable(event);
1901
1902 return 0;
1903 }
1904 EXPORT_SYMBOL_GPL(perf_event_refresh);
1905
1906 static void ctx_sched_out(struct perf_event_context *ctx,
1907 struct perf_cpu_context *cpuctx,
1908 enum event_type_t event_type)
1909 {
1910 struct perf_event *event;
1911 int is_active = ctx->is_active;
1912
1913 ctx->is_active &= ~event_type;
1914 if (likely(!ctx->nr_events))
1915 return;
1916
1917 update_context_time(ctx);
1918 update_cgrp_time_from_cpuctx(cpuctx);
1919 if (!ctx->nr_active)
1920 return;
1921
1922 perf_pmu_disable(ctx->pmu);
1923 if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
1924 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
1925 group_sched_out(event, cpuctx, ctx);
1926 }
1927
1928 if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
1929 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
1930 group_sched_out(event, cpuctx, ctx);
1931 }
1932 perf_pmu_enable(ctx->pmu);
1933 }
1934
1935 /*
1936 * Test whether two contexts are equivalent, i.e. whether they
1937 * have both been cloned from the same version of the same context
1938 * and they both have the same number of enabled events.
1939 * If the number of enabled events is the same, then the set
1940 * of enabled events should be the same, because these are both
1941 * inherited contexts, therefore we can't access individual events
1942 * in them directly with an fd; we can only enable/disable all
1943 * events via prctl, or enable/disable all events in a family
1944 * via ioctl, which will have the same effect on both contexts.
1945 */
1946 static int context_equiv(struct perf_event_context *ctx1,
1947 struct perf_event_context *ctx2)
1948 {
1949 return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1950 && ctx1->parent_gen == ctx2->parent_gen
1951 && !ctx1->pin_count && !ctx2->pin_count;
1952 }
1953
1954 static void __perf_event_sync_stat(struct perf_event *event,
1955 struct perf_event *next_event)
1956 {
1957 u64 value;
1958
1959 if (!event->attr.inherit_stat)
1960 return;
1961
1962 /*
1963 * Update the event value, we cannot use perf_event_read()
1964 * because we're in the middle of a context switch and have IRQs
1965 * disabled, which upsets smp_call_function_single(), however
1966 * we know the event must be on the current CPU, therefore we
1967 * don't need to use it.
1968 */
1969 switch (event->state) {
1970 case PERF_EVENT_STATE_ACTIVE:
1971 event->pmu->read(event);
1972 /* fall-through */
1973
1974 case PERF_EVENT_STATE_INACTIVE:
1975 update_event_times(event);
1976 break;
1977
1978 default:
1979 break;
1980 }
1981
1982 /*
1983 * In order to keep per-task stats reliable we need to flip the event
1984 * values when we flip the contexts.
1985 */
1986 value = local64_read(&next_event->count);
1987 value = local64_xchg(&event->count, value);
1988 local64_set(&next_event->count, value);
1989
1990 swap(event->total_time_enabled, next_event->total_time_enabled);
1991 swap(event->total_time_running, next_event->total_time_running);
1992
1993 /*
1994 * Since we swizzled the values, update the user visible data too.
1995 */
1996 perf_event_update_userpage(event);
1997 perf_event_update_userpage(next_event);
1998 }
1999
2000 #define list_next_entry(pos, member) \
2001 list_entry(pos->member.next, typeof(*pos), member)
2002
2003 static void perf_event_sync_stat(struct perf_event_context *ctx,
2004 struct perf_event_context *next_ctx)
2005 {
2006 struct perf_event *event, *next_event;
2007
2008 if (!ctx->nr_stat)
2009 return;
2010
2011 update_context_time(ctx);
2012
2013 event = list_first_entry(&ctx->event_list,
2014 struct perf_event, event_entry);
2015
2016 next_event = list_first_entry(&next_ctx->event_list,
2017 struct perf_event, event_entry);
2018
2019 while (&event->event_entry != &ctx->event_list &&
2020 &next_event->event_entry != &next_ctx->event_list) {
2021
2022 __perf_event_sync_stat(event, next_event);
2023
2024 event = list_next_entry(event, event_entry);
2025 next_event = list_next_entry(next_event, event_entry);
2026 }
2027 }
2028
2029 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2030 struct task_struct *next)
2031 {
2032 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2033 struct perf_event_context *next_ctx;
2034 struct perf_event_context *parent;
2035 struct perf_cpu_context *cpuctx;
2036 int do_switch = 1;
2037
2038 if (likely(!ctx))
2039 return;
2040
2041 cpuctx = __get_cpu_context(ctx);
2042 if (!cpuctx->task_ctx)
2043 return;
2044
2045 rcu_read_lock();
2046 parent = rcu_dereference(ctx->parent_ctx);
2047 next_ctx = next->perf_event_ctxp[ctxn];
2048 if (parent && next_ctx &&
2049 rcu_dereference(next_ctx->parent_ctx) == parent) {
2050 /*
2051 * Looks like the two contexts are clones, so we might be
2052 * able to optimize the context switch. We lock both
2053 * contexts and check that they are clones under the
2054 * lock (including re-checking that neither has been
2055 * uncloned in the meantime). It doesn't matter which
2056 * order we take the locks because no other cpu could
2057 * be trying to lock both of these tasks.
2058 */
2059 raw_spin_lock(&ctx->lock);
2060 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2061 if (context_equiv(ctx, next_ctx)) {
2062 /*
2063 * XXX do we need a memory barrier of sorts
2064 * wrt to rcu_dereference() of perf_event_ctxp
2065 */
2066 task->perf_event_ctxp[ctxn] = next_ctx;
2067 next->perf_event_ctxp[ctxn] = ctx;
2068 ctx->task = next;
2069 next_ctx->task = task;
2070 do_switch = 0;
2071
2072 perf_event_sync_stat(ctx, next_ctx);
2073 }
2074 raw_spin_unlock(&next_ctx->lock);
2075 raw_spin_unlock(&ctx->lock);
2076 }
2077 rcu_read_unlock();
2078
2079 if (do_switch) {
2080 raw_spin_lock(&ctx->lock);
2081 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2082 cpuctx->task_ctx = NULL;
2083 raw_spin_unlock(&ctx->lock);
2084 }
2085 }
2086
2087 #define for_each_task_context_nr(ctxn) \
2088 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2089
2090 /*
2091 * Called from scheduler to remove the events of the current task,
2092 * with interrupts disabled.
2093 *
2094 * We stop each event and update the event value in event->count.
2095 *
2096 * This does not protect us against NMI, but disable()
2097 * sets the disabled bit in the control field of event _before_
2098 * accessing the event control register. If a NMI hits, then it will
2099 * not restart the event.
2100 */
2101 void __perf_event_task_sched_out(struct task_struct *task,
2102 struct task_struct *next)
2103 {
2104 int ctxn;
2105
2106 for_each_task_context_nr(ctxn)
2107 perf_event_context_sched_out(task, ctxn, next);
2108
2109 /*
2110 * if cgroup events exist on this CPU, then we need
2111 * to check if we have to switch out PMU state.
2112 * cgroup event are system-wide mode only
2113 */
2114 if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2115 perf_cgroup_sched_out(task, next);
2116 }
2117
2118 static void task_ctx_sched_out(struct perf_event_context *ctx)
2119 {
2120 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2121
2122 if (!cpuctx->task_ctx)
2123 return;
2124
2125 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2126 return;
2127
2128 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2129 cpuctx->task_ctx = NULL;
2130 }
2131
2132 /*
2133 * Called with IRQs disabled
2134 */
2135 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2136 enum event_type_t event_type)
2137 {
2138 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2139 }
2140
2141 static void
2142 ctx_pinned_sched_in(struct perf_event_context *ctx,
2143 struct perf_cpu_context *cpuctx)
2144 {
2145 struct perf_event *event;
2146
2147 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2148 if (event->state <= PERF_EVENT_STATE_OFF)
2149 continue;
2150 if (!event_filter_match(event))
2151 continue;
2152
2153 /* may need to reset tstamp_enabled */
2154 if (is_cgroup_event(event))
2155 perf_cgroup_mark_enabled(event, ctx);
2156
2157 if (group_can_go_on(event, cpuctx, 1))
2158 group_sched_in(event, cpuctx, ctx);
2159
2160 /*
2161 * If this pinned group hasn't been scheduled,
2162 * put it in error state.
2163 */
2164 if (event->state == PERF_EVENT_STATE_INACTIVE) {
2165 update_group_times(event);
2166 event->state = PERF_EVENT_STATE_ERROR;
2167 }
2168 }
2169 }
2170
2171 static void
2172 ctx_flexible_sched_in(struct perf_event_context *ctx,
2173 struct perf_cpu_context *cpuctx)
2174 {
2175 struct perf_event *event;
2176 int can_add_hw = 1;
2177
2178 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2179 /* Ignore events in OFF or ERROR state */
2180 if (event->state <= PERF_EVENT_STATE_OFF)
2181 continue;
2182 /*
2183 * Listen to the 'cpu' scheduling filter constraint
2184 * of events:
2185 */
2186 if (!event_filter_match(event))
2187 continue;
2188
2189 /* may need to reset tstamp_enabled */
2190 if (is_cgroup_event(event))
2191 perf_cgroup_mark_enabled(event, ctx);
2192
2193 if (group_can_go_on(event, cpuctx, can_add_hw)) {
2194 if (group_sched_in(event, cpuctx, ctx))
2195 can_add_hw = 0;
2196 }
2197 }
2198 }
2199
2200 static void
2201 ctx_sched_in(struct perf_event_context *ctx,
2202 struct perf_cpu_context *cpuctx,
2203 enum event_type_t event_type,
2204 struct task_struct *task)
2205 {
2206 u64 now;
2207 int is_active = ctx->is_active;
2208
2209 ctx->is_active |= event_type;
2210 if (likely(!ctx->nr_events))
2211 return;
2212
2213 now = perf_clock();
2214 ctx->timestamp = now;
2215 perf_cgroup_set_timestamp(task, ctx);
2216 /*
2217 * First go through the list and put on any pinned groups
2218 * in order to give them the best chance of going on.
2219 */
2220 if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
2221 ctx_pinned_sched_in(ctx, cpuctx);
2222
2223 /* Then walk through the lower prio flexible groups */
2224 if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
2225 ctx_flexible_sched_in(ctx, cpuctx);
2226 }
2227
2228 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
2229 enum event_type_t event_type,
2230 struct task_struct *task)
2231 {
2232 struct perf_event_context *ctx = &cpuctx->ctx;
2233
2234 ctx_sched_in(ctx, cpuctx, event_type, task);
2235 }
2236
2237 static void perf_event_context_sched_in(struct perf_event_context *ctx,
2238 struct task_struct *task)
2239 {
2240 struct perf_cpu_context *cpuctx;
2241
2242 cpuctx = __get_cpu_context(ctx);
2243 if (cpuctx->task_ctx == ctx)
2244 return;
2245
2246 perf_ctx_lock(cpuctx, ctx);
2247 perf_pmu_disable(ctx->pmu);
2248 /*
2249 * We want to keep the following priority order:
2250 * cpu pinned (that don't need to move), task pinned,
2251 * cpu flexible, task flexible.
2252 */
2253 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2254
2255 if (ctx->nr_events)
2256 cpuctx->task_ctx = ctx;
2257
2258 perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);
2259
2260 perf_pmu_enable(ctx->pmu);
2261 perf_ctx_unlock(cpuctx, ctx);
2262
2263 /*
2264 * Since these rotations are per-cpu, we need to ensure the
2265 * cpu-context we got scheduled on is actually rotating.
2266 */
2267 perf_pmu_rotate_start(ctx->pmu);
2268 }
2269
2270 /*
2271 * When sampling the branck stack in system-wide, it may be necessary
2272 * to flush the stack on context switch. This happens when the branch
2273 * stack does not tag its entries with the pid of the current task.
2274 * Otherwise it becomes impossible to associate a branch entry with a
2275 * task. This ambiguity is more likely to appear when the branch stack
2276 * supports priv level filtering and the user sets it to monitor only
2277 * at the user level (which could be a useful measurement in system-wide
2278 * mode). In that case, the risk is high of having a branch stack with
2279 * branch from multiple tasks. Flushing may mean dropping the existing
2280 * entries or stashing them somewhere in the PMU specific code layer.
2281 *
2282 * This function provides the context switch callback to the lower code
2283 * layer. It is invoked ONLY when there is at least one system-wide context
2284 * with at least one active event using taken branch sampling.
2285 */
2286 static void perf_branch_stack_sched_in(struct task_struct *prev,
2287 struct task_struct *task)
2288 {
2289 struct perf_cpu_context *cpuctx;
2290 struct pmu *pmu;
2291 unsigned long flags;
2292
2293 /* no need to flush branch stack if not changing task */
2294 if (prev == task)
2295 return;
2296
2297 local_irq_save(flags);
2298
2299 rcu_read_lock();
2300
2301 list_for_each_entry_rcu(pmu, &pmus, entry) {
2302 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2303
2304 /*
2305 * check if the context has at least one
2306 * event using PERF_SAMPLE_BRANCH_STACK
2307 */
2308 if (cpuctx->ctx.nr_branch_stack > 0
2309 && pmu->flush_branch_stack) {
2310
2311 pmu = cpuctx->ctx.pmu;
2312
2313 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2314
2315 perf_pmu_disable(pmu);
2316
2317 pmu->flush_branch_stack();
2318
2319 perf_pmu_enable(pmu);
2320
2321 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2322 }
2323 }
2324
2325 rcu_read_unlock();
2326
2327 local_irq_restore(flags);
2328 }
2329
2330 /*
2331 * Called from scheduler to add the events of the current task
2332 * with interrupts disabled.
2333 *
2334 * We restore the event value and then enable it.
2335 *
2336 * This does not protect us against NMI, but enable()
2337 * sets the enabled bit in the control field of event _before_
2338 * accessing the event control register. If a NMI hits, then it will
2339 * keep the event running.
2340 */
2341 void __perf_event_task_sched_in(struct task_struct *prev,
2342 struct task_struct *task)
2343 {
2344 struct perf_event_context *ctx;
2345 int ctxn;
2346
2347 for_each_task_context_nr(ctxn) {
2348 ctx = task->perf_event_ctxp[ctxn];
2349 if (likely(!ctx))
2350 continue;
2351
2352 perf_event_context_sched_in(ctx, task);
2353 }
2354 /*
2355 * if cgroup events exist on this CPU, then we need
2356 * to check if we have to switch in PMU state.
2357 * cgroup event are system-wide mode only
2358 */
2359 if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2360 perf_cgroup_sched_in(prev, task);
2361
2362 /* check for system-wide branch_stack events */
2363 if (atomic_read(&__get_cpu_var(perf_branch_stack_events)))
2364 perf_branch_stack_sched_in(prev, task);
2365 }
2366
2367 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
2368 {
2369 u64 frequency = event->attr.sample_freq;
2370 u64 sec = NSEC_PER_SEC;
2371 u64 divisor, dividend;
2372
2373 int count_fls, nsec_fls, frequency_fls, sec_fls;
2374
2375 count_fls = fls64(count);
2376 nsec_fls = fls64(nsec);
2377 frequency_fls = fls64(frequency);
2378 sec_fls = 30;
2379
2380 /*
2381 * We got @count in @nsec, with a target of sample_freq HZ
2382 * the target period becomes:
2383 *
2384 * @count * 10^9
2385 * period = -------------------
2386 * @nsec * sample_freq
2387 *
2388 */
2389
2390 /*
2391 * Reduce accuracy by one bit such that @a and @b converge
2392 * to a similar magnitude.
2393 */
2394 #define REDUCE_FLS(a, b) \
2395 do { \
2396 if (a##_fls > b##_fls) { \
2397 a >>= 1; \
2398 a##_fls--; \
2399 } else { \
2400 b >>= 1; \
2401 b##_fls--; \
2402 } \
2403 } while (0)
2404
2405 /*
2406 * Reduce accuracy until either term fits in a u64, then proceed with
2407 * the other, so that finally we can do a u64/u64 division.
2408 */
2409 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
2410 REDUCE_FLS(nsec, frequency);
2411 REDUCE_FLS(sec, count);
2412 }
2413
2414 if (count_fls + sec_fls > 64) {
2415 divisor = nsec * frequency;
2416
2417 while (count_fls + sec_fls > 64) {
2418 REDUCE_FLS(count, sec);
2419 divisor >>= 1;
2420 }
2421
2422 dividend = count * sec;
2423 } else {
2424 dividend = count * sec;
2425
2426 while (nsec_fls + frequency_fls > 64) {
2427 REDUCE_FLS(nsec, frequency);
2428 dividend >>= 1;
2429 }
2430
2431 divisor = nsec * frequency;
2432 }
2433
2434 if (!divisor)
2435 return dividend;
2436
2437 return div64_u64(dividend, divisor);
2438 }
2439
2440 static DEFINE_PER_CPU(int, perf_throttled_count);
2441 static DEFINE_PER_CPU(u64, perf_throttled_seq);
2442
2443 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
2444 {
2445 struct hw_perf_event *hwc = &event->hw;
2446 s64 period, sample_period;
2447 s64 delta;
2448
2449 period = perf_calculate_period(event, nsec, count);
2450
2451 delta = (s64)(period - hwc->sample_period);
2452 delta = (delta + 7) / 8; /* low pass filter */
2453
2454 sample_period = hwc->sample_period + delta;
2455
2456 if (!sample_period)
2457 sample_period = 1;
2458
2459 hwc->sample_period = sample_period;
2460
2461 if (local64_read(&hwc->period_left) > 8*sample_period) {
2462 if (disable)
2463 event->pmu->stop(event, PERF_EF_UPDATE);
2464
2465 local64_set(&hwc->period_left, 0);
2466
2467 if (disable)
2468 event->pmu->start(event, PERF_EF_RELOAD);
2469 }
2470 }
2471
2472 /*
2473 * combine freq adjustment with unthrottling to avoid two passes over the
2474 * events. At the same time, make sure, having freq events does not change
2475 * the rate of unthrottling as that would introduce bias.
2476 */
2477 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
2478 int needs_unthr)
2479 {
2480 struct perf_event *event;
2481 struct hw_perf_event *hwc;
2482 u64 now, period = TICK_NSEC;
2483 s64 delta;
2484
2485 /*
2486 * only need to iterate over all events iff:
2487 * - context have events in frequency mode (needs freq adjust)
2488 * - there are events to unthrottle on this cpu
2489 */
2490 if (!(ctx->nr_freq || needs_unthr))
2491 return;
2492
2493 raw_spin_lock(&ctx->lock);
2494 perf_pmu_disable(ctx->pmu);
2495
2496 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
2497 if (event->state != PERF_EVENT_STATE_ACTIVE)
2498 continue;
2499
2500 if (!event_filter_match(event))
2501 continue;
2502
2503 hwc = &event->hw;
2504
2505 if (needs_unthr && hwc->interrupts == MAX_INTERRUPTS) {
2506 hwc->interrupts = 0;
2507 perf_log_throttle(event, 1);
2508 event->pmu->start(event, 0);
2509 }
2510
2511 if (!event->attr.freq || !event->attr.sample_freq)
2512 continue;
2513
2514 /*
2515 * stop the event and update event->count
2516 */
2517 event->pmu->stop(event, PERF_EF_UPDATE);
2518
2519 now = local64_read(&event->count);
2520 delta = now - hwc->freq_count_stamp;
2521 hwc->freq_count_stamp = now;
2522
2523 /*
2524 * restart the event
2525 * reload only if value has changed
2526 * we have stopped the event so tell that
2527 * to perf_adjust_period() to avoid stopping it
2528 * twice.
2529 */
2530 if (delta > 0)
2531 perf_adjust_period(event, period, delta, false);
2532
2533 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
2534 }
2535
2536 perf_pmu_enable(ctx->pmu);
2537 raw_spin_unlock(&ctx->lock);
2538 }
2539
2540 /*
2541 * Round-robin a context's events:
2542 */
2543 static void rotate_ctx(struct perf_event_context *ctx)
2544 {
2545 /*
2546 * Rotate the first entry last of non-pinned groups. Rotation might be
2547 * disabled by the inheritance code.
2548 */
2549 if (!ctx->rotate_disable)
2550 list_rotate_left(&ctx->flexible_groups);
2551 }
2552
2553 /*
2554 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
2555 * because they're strictly cpu affine and rotate_start is called with IRQs
2556 * disabled, while rotate_context is called from IRQ context.
2557 */
2558 static void perf_rotate_context(struct perf_cpu_context *cpuctx)
2559 {
2560 struct perf_event_context *ctx = NULL;
2561 int rotate = 0, remove = 1;
2562
2563 if (cpuctx->ctx.nr_events) {
2564 remove = 0;
2565 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
2566 rotate = 1;
2567 }
2568
2569 ctx = cpuctx->task_ctx;
2570 if (ctx && ctx->nr_events) {
2571 remove = 0;
2572 if (ctx->nr_events != ctx->nr_active)
2573 rotate = 1;
2574 }
2575
2576 if (!rotate)
2577 goto done;
2578
2579 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2580 perf_pmu_disable(cpuctx->ctx.pmu);
2581
2582 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2583 if (ctx)
2584 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
2585
2586 rotate_ctx(&cpuctx->ctx);
2587 if (ctx)
2588 rotate_ctx(ctx);
2589
2590 perf_event_sched_in(cpuctx, ctx, current);
2591
2592 perf_pmu_enable(cpuctx->ctx.pmu);
2593 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2594 done:
2595 if (remove)
2596 list_del_init(&cpuctx->rotation_list);
2597 }
2598
2599 #ifdef CONFIG_NO_HZ_FULL
2600 bool perf_event_can_stop_tick(void)
2601 {
2602 if (list_empty(&__get_cpu_var(rotation_list)))
2603 return true;
2604 else
2605 return false;
2606 }
2607 #endif
2608
2609 void perf_event_task_tick(void)
2610 {
2611 struct list_head *head = &__get_cpu_var(rotation_list);
2612 struct perf_cpu_context *cpuctx, *tmp;
2613 struct perf_event_context *ctx;
2614 int throttled;
2615
2616 WARN_ON(!irqs_disabled());
2617
2618 __this_cpu_inc(perf_throttled_seq);
2619 throttled = __this_cpu_xchg(perf_throttled_count, 0);
2620
2621 list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
2622 ctx = &cpuctx->ctx;
2623 perf_adjust_freq_unthr_context(ctx, throttled);
2624
2625 ctx = cpuctx->task_ctx;
2626 if (ctx)
2627 perf_adjust_freq_unthr_context(ctx, throttled);
2628
2629 if (cpuctx->jiffies_interval == 1 ||
2630 !(jiffies % cpuctx->jiffies_interval))
2631 perf_rotate_context(cpuctx);
2632 }
2633 }
2634
2635 static int event_enable_on_exec(struct perf_event *event,
2636 struct perf_event_context *ctx)
2637 {
2638 if (!event->attr.enable_on_exec)
2639 return 0;
2640
2641 event->attr.enable_on_exec = 0;
2642 if (event->state >= PERF_EVENT_STATE_INACTIVE)
2643 return 0;
2644
2645 __perf_event_mark_enabled(event);
2646
2647 return 1;
2648 }
2649
2650 /*
2651 * Enable all of a task's events that have been marked enable-on-exec.
2652 * This expects task == current.
2653 */
2654 static void perf_event_enable_on_exec(struct perf_event_context *ctx)
2655 {
2656 struct perf_event *event;
2657 unsigned long flags;
2658 int enabled = 0;
2659 int ret;
2660
2661 local_irq_save(flags);
2662 if (!ctx || !ctx->nr_events)
2663 goto out;
2664
2665 /*
2666 * We must ctxsw out cgroup events to avoid conflict
2667 * when invoking perf_task_event_sched_in() later on
2668 * in this function. Otherwise we end up trying to
2669 * ctxswin cgroup events which are already scheduled
2670 * in.
2671 */
2672 perf_cgroup_sched_out(current, NULL);
2673
2674 raw_spin_lock(&ctx->lock);
2675 task_ctx_sched_out(ctx);
2676
2677 list_for_each_entry(event, &ctx->event_list, event_entry) {
2678 ret = event_enable_on_exec(event, ctx);
2679 if (ret)
2680 enabled = 1;
2681 }
2682
2683 /*
2684 * Unclone this context if we enabled any event.
2685 */
2686 if (enabled)
2687 unclone_ctx(ctx);
2688
2689 raw_spin_unlock(&ctx->lock);
2690
2691 /*
2692 * Also calls ctxswin for cgroup events, if any:
2693 */
2694 perf_event_context_sched_in(ctx, ctx->task);
2695 out:
2696 local_irq_restore(flags);
2697 }
2698
2699 /*
2700 * Cross CPU call to read the hardware event
2701 */
2702 static void __perf_event_read(void *info)
2703 {
2704 struct perf_event *event = info;
2705 struct perf_event_context *ctx = event->ctx;
2706 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2707
2708 /*
2709 * If this is a task context, we need to check whether it is
2710 * the current task context of this cpu. If not it has been
2711 * scheduled out before the smp call arrived. In that case
2712 * event->count would have been updated to a recent sample
2713 * when the event was scheduled out.
2714 */
2715 if (ctx->task && cpuctx->task_ctx != ctx)
2716 return;
2717
2718 raw_spin_lock(&ctx->lock);
2719 if (ctx->is_active) {
2720 update_context_time(ctx);
2721 update_cgrp_time_from_event(event);
2722 }
2723 update_event_times(event);
2724 if (event->state == PERF_EVENT_STATE_ACTIVE)
2725 event->pmu->read(event);
2726 raw_spin_unlock(&ctx->lock);
2727 }
2728
2729 static inline u64 perf_event_count(struct perf_event *event)
2730 {
2731 return local64_read(&event->count) + atomic64_read(&event->child_count);
2732 }
2733
2734 static u64 perf_event_read(struct perf_event *event)
2735 {
2736 /*
2737 * If event is enabled and currently active on a CPU, update the
2738 * value in the event structure:
2739 */
2740 if (event->state == PERF_EVENT_STATE_ACTIVE) {
2741 smp_call_function_single(event->oncpu,
2742 __perf_event_read, event, 1);
2743 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
2744 struct perf_event_context *ctx = event->ctx;
2745 unsigned long flags;
2746
2747 raw_spin_lock_irqsave(&ctx->lock, flags);
2748 /*
2749 * may read while context is not active
2750 * (e.g., thread is blocked), in that case
2751 * we cannot update context time
2752 */
2753 if (ctx->is_active) {
2754 update_context_time(ctx);
2755 update_cgrp_time_from_event(event);
2756 }
2757 update_event_times(event);
2758 raw_spin_unlock_irqrestore(&ctx->lock, flags);
2759 }
2760
2761 return perf_event_count(event);
2762 }
2763
2764 /*
2765 * Initialize the perf_event context in a task_struct:
2766 */
2767 static void __perf_event_init_context(struct perf_event_context *ctx)
2768 {
2769 raw_spin_lock_init(&ctx->lock);
2770 mutex_init(&ctx->mutex);
2771 INIT_LIST_HEAD(&ctx->pinned_groups);
2772 INIT_LIST_HEAD(&ctx->flexible_groups);
2773 INIT_LIST_HEAD(&ctx->event_list);
2774 atomic_set(&ctx->refcount, 1);
2775 }
2776
2777 static struct perf_event_context *
2778 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
2779 {
2780 struct perf_event_context *ctx;
2781
2782 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
2783 if (!ctx)
2784 return NULL;
2785
2786 __perf_event_init_context(ctx);
2787 if (task) {
2788 ctx->task = task;
2789 get_task_struct(task);
2790 }
2791 ctx->pmu = pmu;
2792
2793 return ctx;
2794 }
2795
2796 static struct task_struct *
2797 find_lively_task_by_vpid(pid_t vpid)
2798 {
2799 struct task_struct *task;
2800 int err;
2801
2802 rcu_read_lock();
2803 if (!vpid)
2804 task = current;
2805 else
2806 task = find_task_by_vpid(vpid);
2807 if (task)
2808 get_task_struct(task);
2809 rcu_read_unlock();
2810
2811 if (!task)
2812 return ERR_PTR(-ESRCH);
2813
2814 /* Reuse ptrace permission checks for now. */
2815 err = -EACCES;
2816 if (!ptrace_may_access(task, PTRACE_MODE_READ))
2817 goto errout;
2818
2819 return task;
2820 errout:
2821 put_task_struct(task);
2822 return ERR_PTR(err);
2823
2824 }
2825
2826 /*
2827 * Returns a matching context with refcount and pincount.
2828 */
2829 static struct perf_event_context *
2830 find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
2831 {
2832 struct perf_event_context *ctx;
2833 struct perf_cpu_context *cpuctx;
2834 unsigned long flags;
2835 int ctxn, err;
2836
2837 if (!task) {
2838 /* Must be root to operate on a CPU event: */
2839 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
2840 return ERR_PTR(-EACCES);
2841
2842 /*
2843 * We could be clever and allow to attach a event to an
2844 * offline CPU and activate it when the CPU comes up, but
2845 * that's for later.
2846 */
2847 if (!cpu_online(cpu))
2848 return ERR_PTR(-ENODEV);
2849
2850 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
2851 ctx = &cpuctx->ctx;
2852 get_ctx(ctx);
2853 ++ctx->pin_count;
2854
2855 return ctx;
2856 }
2857
2858 err = -EINVAL;
2859 ctxn = pmu->task_ctx_nr;
2860 if (ctxn < 0)
2861 goto errout;
2862
2863 retry:
2864 ctx = perf_lock_task_context(task, ctxn, &flags);
2865 if (ctx) {
2866 unclone_ctx(ctx);
2867 ++ctx->pin_count;
2868 raw_spin_unlock_irqrestore(&ctx->lock, flags);
2869 } else {
2870 ctx = alloc_perf_context(pmu, task);
2871 err = -ENOMEM;
2872 if (!ctx)
2873 goto errout;
2874
2875 err = 0;
2876 mutex_lock(&task->perf_event_mutex);
2877 /*
2878 * If it has already passed perf_event_exit_task().
2879 * we must see PF_EXITING, it takes this mutex too.
2880 */
2881 if (task->flags & PF_EXITING)
2882 err = -ESRCH;
2883 else if (task->perf_event_ctxp[ctxn])
2884 err = -EAGAIN;
2885 else {
2886 get_ctx(ctx);
2887 ++ctx->pin_count;
2888 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
2889 }
2890 mutex_unlock(&task->perf_event_mutex);
2891
2892 if (unlikely(err)) {
2893 put_ctx(ctx);
2894
2895 if (err == -EAGAIN)
2896 goto retry;
2897 goto errout;
2898 }
2899 }
2900
2901 return ctx;
2902
2903 errout:
2904 return ERR_PTR(err);
2905 }
2906
2907 static void perf_event_free_filter(struct perf_event *event);
2908
2909 static void free_event_rcu(struct rcu_head *head)
2910 {
2911 struct perf_event *event;
2912
2913 event = container_of(head, struct perf_event, rcu_head);
2914 if (event->ns)
2915 put_pid_ns(event->ns);
2916 perf_event_free_filter(event);
2917 kfree(event);
2918 }
2919
2920 static bool ring_buffer_put(struct ring_buffer *rb);
2921
2922 static void free_event(struct perf_event *event)
2923 {
2924 irq_work_sync(&event->pending);
2925
2926 if (!event->parent) {
2927 if (event->attach_state & PERF_ATTACH_TASK)
2928 static_key_slow_dec_deferred(&perf_sched_events);
2929 if (event->attr.mmap || event->attr.mmap_data)
2930 atomic_dec(&nr_mmap_events);
2931 if (event->attr.comm)
2932 atomic_dec(&nr_comm_events);
2933 if (event->attr.task)
2934 atomic_dec(&nr_task_events);
2935 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
2936 put_callchain_buffers();
2937 if (is_cgroup_event(event)) {
2938 atomic_dec(&per_cpu(perf_cgroup_events, event->cpu));
2939 static_key_slow_dec_deferred(&perf_sched_events);
2940 }
2941
2942 if (has_branch_stack(event)) {
2943 static_key_slow_dec_deferred(&perf_sched_events);
2944 /* is system-wide event */
2945 if (!(event->attach_state & PERF_ATTACH_TASK))
2946 atomic_dec(&per_cpu(perf_branch_stack_events,
2947 event->cpu));
2948 }
2949 }
2950
2951 if (event->rb) {
2952 ring_buffer_put(event->rb);
2953 event->rb = NULL;
2954 }
2955
2956 if (is_cgroup_event(event))
2957 perf_detach_cgroup(event);
2958
2959 if (event->destroy)
2960 event->destroy(event);
2961
2962 if (event->ctx)
2963 put_ctx(event->ctx);
2964
2965 call_rcu(&event->rcu_head, free_event_rcu);
2966 }
2967
2968 int perf_event_release_kernel(struct perf_event *event)
2969 {
2970 struct perf_event_context *ctx = event->ctx;
2971
2972 WARN_ON_ONCE(ctx->parent_ctx);
2973 /*
2974 * There are two ways this annotation is useful:
2975 *
2976 * 1) there is a lock recursion from perf_event_exit_task
2977 * see the comment there.
2978 *
2979 * 2) there is a lock-inversion with mmap_sem through
2980 * perf_event_read_group(), which takes faults while
2981 * holding ctx->mutex, however this is called after
2982 * the last filedesc died, so there is no possibility
2983 * to trigger the AB-BA case.
2984 */
2985 mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
2986 raw_spin_lock_irq(&ctx->lock);
2987 perf_group_detach(event);
2988 raw_spin_unlock_irq(&ctx->lock);
2989 perf_remove_from_context(event);
2990 mutex_unlock(&ctx->mutex);
2991
2992 free_event(event);
2993
2994 return 0;
2995 }
2996 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
2997
2998 /*
2999 * Called when the last reference to the file is gone.
3000 */
3001 static void put_event(struct perf_event *event)
3002 {
3003 struct task_struct *owner;
3004
3005 if (!atomic_long_dec_and_test(&event->refcount))
3006 return;
3007
3008 rcu_read_lock();
3009 owner = ACCESS_ONCE(event->owner);
3010 /*
3011 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
3012 * !owner it means the list deletion is complete and we can indeed
3013 * free this event, otherwise we need to serialize on
3014 * owner->perf_event_mutex.
3015 */
3016 smp_read_barrier_depends();
3017 if (owner) {
3018 /*
3019 * Since delayed_put_task_struct() also drops the last
3020 * task reference we can safely take a new reference
3021 * while holding the rcu_read_lock().
3022 */
3023 get_task_struct(owner);
3024 }
3025 rcu_read_unlock();
3026
3027 if (owner) {
3028 mutex_lock(&owner->perf_event_mutex);
3029 /*
3030 * We have to re-check the event->owner field, if it is cleared
3031 * we raced with perf_event_exit_task(), acquiring the mutex
3032 * ensured they're done, and we can proceed with freeing the
3033 * event.
3034 */
3035 if (event->owner)
3036 list_del_init(&event->owner_entry);
3037 mutex_unlock(&owner->perf_event_mutex);
3038 put_task_struct(owner);
3039 }
3040
3041 perf_event_release_kernel(event);
3042 }
3043
3044 static int perf_release(struct inode *inode, struct file *file)
3045 {
3046 put_event(file->private_data);
3047 return 0;
3048 }
3049
3050 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
3051 {
3052 struct perf_event *child;
3053 u64 total = 0;
3054
3055 *enabled = 0;
3056 *running = 0;
3057
3058 mutex_lock(&event->child_mutex);
3059 total += perf_event_read(event);
3060 *enabled += event->total_time_enabled +
3061 atomic64_read(&event->child_total_time_enabled);
3062 *running += event->total_time_running +
3063 atomic64_read(&event->child_total_time_running);
3064
3065 list_for_each_entry(child, &event->child_list, child_list) {
3066 total += perf_event_read(child);
3067 *enabled += child->total_time_enabled;
3068 *running += child->total_time_running;
3069 }
3070 mutex_unlock(&event->child_mutex);
3071
3072 return total;
3073 }
3074 EXPORT_SYMBOL_GPL(perf_event_read_value);
3075
3076 static int perf_event_read_group(struct perf_event *event,
3077 u64 read_format, char __user *buf)
3078 {
3079 struct perf_event *leader = event->group_leader, *sub;
3080 int n = 0, size = 0, ret = -EFAULT;
3081 struct perf_event_context *ctx = leader->ctx;
3082 u64 values[5];
3083 u64 count, enabled, running;
3084
3085 mutex_lock(&ctx->mutex);
3086 count = perf_event_read_value(leader, &enabled, &running);
3087
3088 values[n++] = 1 + leader->nr_siblings;
3089 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3090 values[n++] = enabled;
3091 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3092 values[n++] = running;
3093 values[n++] = count;
3094 if (read_format & PERF_FORMAT_ID)
3095 values[n++] = primary_event_id(leader);
3096
3097 size = n * sizeof(u64);
3098
3099 if (copy_to_user(buf, values, size))
3100 goto unlock;
3101
3102 ret = size;
3103
3104 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3105 n = 0;
3106
3107 values[n++] = perf_event_read_value(sub, &enabled, &running);
3108 if (read_format & PERF_FORMAT_ID)
3109 values[n++] = primary_event_id(sub);
3110
3111 size = n * sizeof(u64);
3112
3113 if (copy_to_user(buf + ret, values, size)) {
3114 ret = -EFAULT;
3115 goto unlock;
3116 }
3117
3118 ret += size;
3119 }
3120 unlock:
3121 mutex_unlock(&ctx->mutex);
3122
3123 return ret;
3124 }
3125
3126 static int perf_event_read_one(struct perf_event *event,
3127 u64 read_format, char __user *buf)
3128 {
3129 u64 enabled, running;
3130 u64 values[4];
3131 int n = 0;
3132
3133 values[n++] = perf_event_read_value(event, &enabled, &running);
3134 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3135 values[n++] = enabled;
3136 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3137 values[n++] = running;
3138 if (read_format & PERF_FORMAT_ID)
3139 values[n++] = primary_event_id(event);
3140
3141 if (copy_to_user(buf, values, n * sizeof(u64)))
3142 return -EFAULT;
3143
3144 return n * sizeof(u64);
3145 }
3146
3147 /*
3148 * Read the performance event - simple non blocking version for now
3149 */
3150 static ssize_t
3151 perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
3152 {
3153 u64 read_format = event->attr.read_format;
3154 int ret;
3155
3156 /*
3157 * Return end-of-file for a read on a event that is in
3158 * error state (i.e. because it was pinned but it couldn't be
3159 * scheduled on to the CPU at some point).
3160 */
3161 if (event->state == PERF_EVENT_STATE_ERROR)
3162 return 0;
3163
3164 if (count < event->read_size)
3165 return -ENOSPC;
3166
3167 WARN_ON_ONCE(event->ctx->parent_ctx);
3168 if (read_format & PERF_FORMAT_GROUP)
3169 ret = perf_event_read_group(event, read_format, buf);
3170 else
3171 ret = perf_event_read_one(event, read_format, buf);
3172
3173 return ret;
3174 }
3175
3176 static ssize_t
3177 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
3178 {
3179 struct perf_event *event = file->private_data;
3180
3181 return perf_read_hw(event, buf, count);
3182 }
3183
3184 static unsigned int perf_poll(struct file *file, poll_table *wait)
3185 {
3186 struct perf_event *event = file->private_data;
3187 struct ring_buffer *rb;
3188 unsigned int events = POLL_HUP;
3189
3190 /*
3191 * Race between perf_event_set_output() and perf_poll(): perf_poll()
3192 * grabs the rb reference but perf_event_set_output() overrides it.
3193 * Here is the timeline for two threads T1, T2:
3194 * t0: T1, rb = rcu_dereference(event->rb)
3195 * t1: T2, old_rb = event->rb
3196 * t2: T2, event->rb = new rb
3197 * t3: T2, ring_buffer_detach(old_rb)
3198 * t4: T1, ring_buffer_attach(rb1)
3199 * t5: T1, poll_wait(event->waitq)
3200 *
3201 * To avoid this problem, we grab mmap_mutex in perf_poll()
3202 * thereby ensuring that the assignment of the new ring buffer
3203 * and the detachment of the old buffer appear atomic to perf_poll()
3204 */
3205 mutex_lock(&event->mmap_mutex);
3206
3207 rcu_read_lock();
3208 rb = rcu_dereference(event->rb);
3209 if (rb) {
3210 ring_buffer_attach(event, rb);
3211 events = atomic_xchg(&rb->poll, 0);
3212 }
3213 rcu_read_unlock();
3214
3215 mutex_unlock(&event->mmap_mutex);
3216
3217 poll_wait(file, &event->waitq, wait);
3218
3219 return events;
3220 }
3221
3222 static void perf_event_reset(struct perf_event *event)
3223 {
3224 (void)perf_event_read(event);
3225 local64_set(&event->count, 0);
3226 perf_event_update_userpage(event);
3227 }
3228
3229 /*
3230 * Holding the top-level event's child_mutex means that any
3231 * descendant process that has inherited this event will block
3232 * in sync_child_event if it goes to exit, thus satisfying the
3233 * task existence requirements of perf_event_enable/disable.
3234 */
3235 static void perf_event_for_each_child(struct perf_event *event,
3236 void (*func)(struct perf_event *))
3237 {
3238 struct perf_event *child;
3239
3240 WARN_ON_ONCE(event->ctx->parent_ctx);
3241 mutex_lock(&event->child_mutex);
3242 func(event);
3243 list_for_each_entry(child, &event->child_list, child_list)
3244 func(child);
3245 mutex_unlock(&event->child_mutex);
3246 }
3247
3248 static void perf_event_for_each(struct perf_event *event,
3249 void (*func)(struct perf_event *))
3250 {
3251 struct perf_event_context *ctx = event->ctx;
3252 struct perf_event *sibling;
3253
3254 WARN_ON_ONCE(ctx->parent_ctx);
3255 mutex_lock(&ctx->mutex);
3256 event = event->group_leader;
3257
3258 perf_event_for_each_child(event, func);
3259 list_for_each_entry(sibling, &event->sibling_list, group_entry)
3260 perf_event_for_each_child(sibling, func);
3261 mutex_unlock(&ctx->mutex);
3262 }
3263
3264 static int perf_event_period(struct perf_event *event, u64 __user *arg)
3265 {
3266 struct perf_event_context *ctx = event->ctx;
3267 int ret = 0;
3268 u64 value;
3269
3270 if (!is_sampling_event(event))
3271 return -EINVAL;
3272
3273 if (copy_from_user(&value, arg, sizeof(value)))
3274 return -EFAULT;
3275
3276 if (!value)
3277 return -EINVAL;
3278
3279 raw_spin_lock_irq(&ctx->lock);
3280 if (event->attr.freq) {
3281 if (value > sysctl_perf_event_sample_rate) {
3282 ret = -EINVAL;
3283 goto unlock;
3284 }
3285
3286 event->attr.sample_freq = value;
3287 } else {
3288 event->attr.sample_period = value;
3289 event->hw.sample_period = value;
3290 }
3291 unlock:
3292 raw_spin_unlock_irq(&ctx->lock);
3293
3294 return ret;
3295 }
3296
3297 static const struct file_operations perf_fops;
3298
3299 static inline int perf_fget_light(int fd, struct fd *p)
3300 {
3301 struct fd f = fdget(fd);
3302 if (!f.file)
3303 return -EBADF;
3304
3305 if (f.file->f_op != &perf_fops) {
3306 fdput(f);
3307 return -EBADF;
3308 }
3309 *p = f;
3310 return 0;
3311 }
3312
3313 static int perf_event_set_output(struct perf_event *event,
3314 struct perf_event *output_event);
3315 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
3316
3317 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
3318 {
3319 struct perf_event *event = file->private_data;
3320 void (*func)(struct perf_event *);
3321 u32 flags = arg;
3322
3323 switch (cmd) {
3324 case PERF_EVENT_IOC_ENABLE:
3325 func = perf_event_enable;
3326 break;
3327 case PERF_EVENT_IOC_DISABLE:
3328 func = perf_event_disable;
3329 break;
3330 case PERF_EVENT_IOC_RESET:
3331 func = perf_event_reset;
3332 break;
3333
3334 case PERF_EVENT_IOC_REFRESH:
3335 return perf_event_refresh(event, arg);
3336
3337 case PERF_EVENT_IOC_PERIOD:
3338 return perf_event_period(event, (u64 __user *)arg);
3339
3340 case PERF_EVENT_IOC_SET_OUTPUT:
3341 {
3342 int ret;
3343 if (arg != -1) {
3344 struct perf_event *output_event;
3345 struct fd output;
3346 ret = perf_fget_light(arg, &output);
3347 if (ret)
3348 return ret;
3349 output_event = output.file->private_data;
3350 ret = perf_event_set_output(event, output_event);
3351 fdput(output);
3352 } else {
3353 ret = perf_event_set_output(event, NULL);
3354 }
3355 return ret;
3356 }
3357
3358 case PERF_EVENT_IOC_SET_FILTER:
3359 return perf_event_set_filter(event, (void __user *)arg);
3360
3361 default:
3362 return -ENOTTY;
3363 }
3364
3365 if (flags & PERF_IOC_FLAG_GROUP)
3366 perf_event_for_each(event, func);
3367 else
3368 perf_event_for_each_child(event, func);
3369
3370 return 0;
3371 }
3372
3373 int perf_event_task_enable(void)
3374 {
3375 struct perf_event *event;
3376
3377 mutex_lock(&current->perf_event_mutex);
3378 list_for_each_entry(event, &current->perf_event_list, owner_entry)
3379 perf_event_for_each_child(event, perf_event_enable);
3380 mutex_unlock(&current->perf_event_mutex);
3381
3382 return 0;
3383 }
3384
3385 int perf_event_task_disable(void)
3386 {
3387 struct perf_event *event;
3388
3389 mutex_lock(&current->perf_event_mutex);
3390 list_for_each_entry(event, &current->perf_event_list, owner_entry)
3391 perf_event_for_each_child(event, perf_event_disable);
3392 mutex_unlock(&current->perf_event_mutex);
3393
3394 return 0;
3395 }
3396
3397 static int perf_event_index(struct perf_event *event)
3398 {
3399 if (event->hw.state & PERF_HES_STOPPED)
3400 return 0;
3401
3402 if (event->state != PERF_EVENT_STATE_ACTIVE)
3403 return 0;
3404
3405 return event->pmu->event_idx(event);
3406 }
3407
3408 static void calc_timer_values(struct perf_event *event,
3409 u64 *now,
3410 u64 *enabled,
3411 u64 *running)
3412 {
3413 u64 ctx_time;
3414
3415 *now = perf_clock();
3416 ctx_time = event->shadow_ctx_time + *now;
3417 *enabled = ctx_time - event->tstamp_enabled;
3418 *running = ctx_time - event->tstamp_running;
3419 }
3420
3421 void __weak arch_perf_update_userpage(struct perf_event_mmap_page *userpg, u64 now)
3422 {
3423 }
3424
3425 /*
3426 * Callers need to ensure there can be no nesting of this function, otherwise
3427 * the seqlock logic goes bad. We can not serialize this because the arch
3428 * code calls this from NMI context.
3429 */
3430 void perf_event_update_userpage(struct perf_event *event)
3431 {
3432 struct perf_event_mmap_page *userpg;
3433 struct ring_buffer *rb;
3434 u64 enabled, running, now;
3435
3436 rcu_read_lock();
3437 /*
3438 * compute total_time_enabled, total_time_running
3439 * based on snapshot values taken when the event
3440 * was last scheduled in.
3441 *
3442 * we cannot simply called update_context_time()
3443 * because of locking issue as we can be called in
3444 * NMI context
3445 */
3446 calc_timer_values(event, &now, &enabled, &running);
3447 rb = rcu_dereference(event->rb);
3448 if (!rb)
3449 goto unlock;
3450
3451 userpg = rb->user_page;
3452
3453 /*
3454 * Disable preemption so as to not let the corresponding user-space
3455 * spin too long if we get preempted.
3456 */
3457 preempt_disable();
3458 ++userpg->lock;
3459 barrier();
3460 userpg->index = perf_event_index(event);
3461 userpg->offset = perf_event_count(event);
3462 if (userpg->index)
3463 userpg->offset -= local64_read(&event->hw.prev_count);
3464
3465 userpg->time_enabled = enabled +
3466 atomic64_read(&event->child_total_time_enabled);
3467
3468 userpg->time_running = running +
3469 atomic64_read(&event->child_total_time_running);
3470
3471 arch_perf_update_userpage(userpg, now);
3472
3473 barrier();
3474 ++userpg->lock;
3475 preempt_enable();
3476 unlock:
3477 rcu_read_unlock();
3478 }
3479
3480 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
3481 {
3482 struct perf_event *event = vma->vm_file->private_data;
3483 struct ring_buffer *rb;
3484 int ret = VM_FAULT_SIGBUS;
3485
3486 if (vmf->flags & FAULT_FLAG_MKWRITE) {
3487 if (vmf->pgoff == 0)
3488 ret = 0;
3489 return ret;
3490 }
3491
3492 rcu_read_lock();
3493 rb = rcu_dereference(event->rb);
3494 if (!rb)
3495 goto unlock;
3496
3497 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
3498 goto unlock;
3499
3500 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
3501 if (!vmf->page)
3502 goto unlock;
3503
3504 get_page(vmf->page);
3505 vmf->page->mapping = vma->vm_file->f_mapping;
3506 vmf->page->index = vmf->pgoff;
3507
3508 ret = 0;
3509 unlock:
3510 rcu_read_unlock();
3511
3512 return ret;
3513 }
3514
3515 static void ring_buffer_attach(struct perf_event *event,
3516 struct ring_buffer *rb)
3517 {
3518 unsigned long flags;
3519
3520 if (!list_empty(&event->rb_entry))
3521 return;
3522
3523 spin_lock_irqsave(&rb->event_lock, flags);
3524 if (!list_empty(&event->rb_entry))
3525 goto unlock;
3526
3527 list_add(&event->rb_entry, &rb->event_list);
3528 unlock:
3529 spin_unlock_irqrestore(&rb->event_lock, flags);
3530 }
3531
3532 static void ring_buffer_detach(struct perf_event *event,
3533 struct ring_buffer *rb)
3534 {
3535 unsigned long flags;
3536
3537 if (list_empty(&event->rb_entry))
3538 return;
3539
3540 spin_lock_irqsave(&rb->event_lock, flags);
3541 list_del_init(&event->rb_entry);
3542 wake_up_all(&event->waitq);
3543 spin_unlock_irqrestore(&rb->event_lock, flags);
3544 }
3545
3546 static void ring_buffer_wakeup(struct perf_event *event)
3547 {
3548 struct ring_buffer *rb;
3549
3550 rcu_read_lock();
3551 rb = rcu_dereference(event->rb);
3552 if (!rb)
3553 goto unlock;
3554
3555 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
3556 wake_up_all(&event->waitq);
3557
3558 unlock:
3559 rcu_read_unlock();
3560 }
3561
3562 static void rb_free_rcu(struct rcu_head *rcu_head)
3563 {
3564 struct ring_buffer *rb;
3565
3566 rb = container_of(rcu_head, struct ring_buffer, rcu_head);
3567 rb_free(rb);
3568 }
3569
3570 static struct ring_buffer *ring_buffer_get(struct perf_event *event)
3571 {
3572 struct ring_buffer *rb;
3573
3574 rcu_read_lock();
3575 rb = rcu_dereference(event->rb);
3576 if (rb) {
3577 if (!atomic_inc_not_zero(&rb->refcount))
3578 rb = NULL;
3579 }
3580 rcu_read_unlock();
3581
3582 return rb;
3583 }
3584
3585 static bool ring_buffer_put(struct ring_buffer *rb)
3586 {
3587 struct perf_event *event, *n;
3588 unsigned long flags;
3589
3590 if (!atomic_dec_and_test(&rb->refcount))
3591 return false;
3592
3593 spin_lock_irqsave(&rb->event_lock, flags);
3594 list_for_each_entry_safe(event, n, &rb->event_list, rb_entry) {
3595 list_del_init(&event->rb_entry);
3596 wake_up_all(&event->waitq);
3597 }
3598 spin_unlock_irqrestore(&rb->event_lock, flags);
3599
3600 call_rcu(&rb->rcu_head, rb_free_rcu);
3601 return true;
3602 }
3603
3604 static void perf_mmap_open(struct vm_area_struct *vma)
3605 {
3606 struct perf_event *event = vma->vm_file->private_data;
3607
3608 atomic_inc(&event->mmap_count);
3609 }
3610
3611 static void perf_mmap_close(struct vm_area_struct *vma)
3612 {
3613 struct perf_event *event = vma->vm_file->private_data;
3614
3615 if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
3616 struct ring_buffer *rb = event->rb;
3617 struct user_struct *mmap_user = rb->mmap_user;
3618 int mmap_locked = rb->mmap_locked;
3619 unsigned long size = perf_data_size(rb);
3620
3621 rcu_assign_pointer(event->rb, NULL);
3622 ring_buffer_detach(event, rb);
3623 mutex_unlock(&event->mmap_mutex);
3624
3625 if (ring_buffer_put(rb)) {
3626 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
3627 vma->vm_mm->pinned_vm -= mmap_locked;
3628 free_uid(mmap_user);
3629 }
3630 }
3631 }
3632
3633 static const struct vm_operations_struct perf_mmap_vmops = {
3634 .open = perf_mmap_open,
3635 .close = perf_mmap_close,
3636 .fault = perf_mmap_fault,
3637 .page_mkwrite = perf_mmap_fault,
3638 };
3639
3640 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
3641 {
3642 struct perf_event *event = file->private_data;
3643 unsigned long user_locked, user_lock_limit;
3644 struct user_struct *user = current_user();
3645 unsigned long locked, lock_limit;
3646 struct ring_buffer *rb;
3647 unsigned long vma_size;
3648 unsigned long nr_pages;
3649 long user_extra, extra;
3650 int ret = 0, flags = 0;
3651
3652 /*
3653 * Don't allow mmap() of inherited per-task counters. This would
3654 * create a performance issue due to all children writing to the
3655 * same rb.
3656 */
3657 if (event->cpu == -1 && event->attr.inherit)
3658 return -EINVAL;
3659
3660 if (!(vma->vm_flags & VM_SHARED))
3661 return -EINVAL;
3662
3663 vma_size = vma->vm_end - vma->vm_start;
3664 nr_pages = (vma_size / PAGE_SIZE) - 1;
3665
3666 /*
3667 * If we have rb pages ensure they're a power-of-two number, so we
3668 * can do bitmasks instead of modulo.
3669 */
3670 if (nr_pages != 0 && !is_power_of_2(nr_pages))
3671 return -EINVAL;
3672
3673 if (vma_size != PAGE_SIZE * (1 + nr_pages))
3674 return -EINVAL;
3675
3676 if (vma->vm_pgoff != 0)
3677 return -EINVAL;
3678
3679 WARN_ON_ONCE(event->ctx->parent_ctx);
3680 mutex_lock(&event->mmap_mutex);
3681 if (event->rb) {
3682 if (event->rb->nr_pages != nr_pages)
3683 ret = -EINVAL;
3684 goto unlock;
3685 }
3686
3687 user_extra = nr_pages + 1;
3688 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
3689
3690 /*
3691 * Increase the limit linearly with more CPUs:
3692 */
3693 user_lock_limit *= num_online_cpus();
3694
3695 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
3696
3697 extra = 0;
3698 if (user_locked > user_lock_limit)
3699 extra = user_locked - user_lock_limit;
3700
3701 lock_limit = rlimit(RLIMIT_MEMLOCK);
3702 lock_limit >>= PAGE_SHIFT;
3703 locked = vma->vm_mm->pinned_vm + extra;
3704
3705 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
3706 !capable(CAP_IPC_LOCK)) {
3707 ret = -EPERM;
3708 goto unlock;
3709 }
3710
3711 WARN_ON(event->rb);
3712
3713 if (vma->vm_flags & VM_WRITE)
3714 flags |= RING_BUFFER_WRITABLE;
3715
3716 rb = rb_alloc(nr_pages,
3717 event->attr.watermark ? event->attr.wakeup_watermark : 0,
3718 event->cpu, flags);
3719
3720 if (!rb) {
3721 ret = -ENOMEM;
3722 goto unlock;
3723 }
3724
3725 rb->mmap_locked = extra;
3726 rb->mmap_user = get_current_user();
3727
3728 atomic_long_add(user_extra, &user->locked_vm);
3729 vma->vm_mm->pinned_vm += extra;
3730
3731 rcu_assign_pointer(event->rb, rb);
3732
3733 perf_event_update_userpage(event);
3734
3735 unlock:
3736 if (!ret)
3737 atomic_inc(&event->mmap_count);
3738 mutex_unlock(&event->mmap_mutex);
3739
3740 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
3741 vma->vm_ops = &perf_mmap_vmops;
3742
3743 return ret;
3744 }
3745
3746 static int perf_fasync(int fd, struct file *filp, int on)
3747 {
3748 struct inode *inode = file_inode(filp);
3749 struct perf_event *event = filp->private_data;
3750 int retval;
3751
3752 mutex_lock(&inode->i_mutex);
3753 retval = fasync_helper(fd, filp, on, &event->fasync);
3754 mutex_unlock(&inode->i_mutex);
3755
3756 if (retval < 0)
3757 return retval;
3758
3759 return 0;
3760 }
3761
3762 static const struct file_operations perf_fops = {
3763 .llseek = no_llseek,
3764 .release = perf_release,
3765 .read = perf_read,
3766 .poll = perf_poll,
3767 .unlocked_ioctl = perf_ioctl,
3768 .compat_ioctl = perf_ioctl,
3769 .mmap = perf_mmap,
3770 .fasync = perf_fasync,
3771 };
3772
3773 /*
3774 * Perf event wakeup
3775 *
3776 * If there's data, ensure we set the poll() state and publish everything
3777 * to user-space before waking everybody up.
3778 */
3779
3780 void perf_event_wakeup(struct perf_event *event)
3781 {
3782 ring_buffer_wakeup(event);
3783
3784 if (event->pending_kill) {
3785 kill_fasync(&event->fasync, SIGIO, event->pending_kill);
3786 event->pending_kill = 0;
3787 }
3788 }
3789
3790 static void perf_pending_event(struct irq_work *entry)
3791 {
3792 struct perf_event *event = container_of(entry,
3793 struct perf_event, pending);
3794
3795 if (event->pending_disable) {
3796 event->pending_disable = 0;
3797 __perf_event_disable(event);
3798 }
3799
3800 if (event->pending_wakeup) {
3801 event->pending_wakeup = 0;
3802 perf_event_wakeup(event);
3803 }
3804 }
3805
3806 /*
3807 * We assume there is only KVM supporting the callbacks.
3808 * Later on, we might change it to a list if there is
3809 * another virtualization implementation supporting the callbacks.
3810 */
3811 struct perf_guest_info_callbacks *perf_guest_cbs;
3812
3813 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
3814 {
3815 perf_guest_cbs = cbs;
3816 return 0;
3817 }
3818 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
3819
3820 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
3821 {
3822 perf_guest_cbs = NULL;
3823 return 0;
3824 }
3825 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
3826
3827 static void
3828 perf_output_sample_regs(struct perf_output_handle *handle,
3829 struct pt_regs *regs, u64 mask)
3830 {
3831 int bit;
3832
3833 for_each_set_bit(bit, (const unsigned long *) &mask,
3834 sizeof(mask) * BITS_PER_BYTE) {
3835 u64 val;
3836
3837 val = perf_reg_value(regs, bit);
3838 perf_output_put(handle, val);
3839 }
3840 }
3841
3842 static void perf_sample_regs_user(struct perf_regs_user *regs_user,
3843 struct pt_regs *regs)
3844 {
3845 if (!user_mode(regs)) {
3846 if (current->mm)
3847 regs = task_pt_regs(current);
3848 else
3849 regs = NULL;
3850 }
3851
3852 if (regs) {
3853 regs_user->regs = regs;
3854 regs_user->abi = perf_reg_abi(current);
3855 }
3856 }
3857
3858 /*
3859 * Get remaining task size from user stack pointer.
3860 *
3861 * It'd be better to take stack vma map and limit this more
3862 * precisly, but there's no way to get it safely under interrupt,
3863 * so using TASK_SIZE as limit.
3864 */
3865 static u64 perf_ustack_task_size(struct pt_regs *regs)
3866 {
3867 unsigned long addr = perf_user_stack_pointer(regs);
3868
3869 if (!addr || addr >= TASK_SIZE)
3870 return 0;
3871
3872 return TASK_SIZE - addr;
3873 }
3874
3875 static u16
3876 perf_sample_ustack_size(u16 stack_size, u16 header_size,
3877 struct pt_regs *regs)
3878 {
3879 u64 task_size;
3880
3881 /* No regs, no stack pointer, no dump. */
3882 if (!regs)
3883 return 0;
3884
3885 /*
3886 * Check if we fit in with the requested stack size into the:
3887 * - TASK_SIZE
3888 * If we don't, we limit the size to the TASK_SIZE.
3889 *
3890 * - remaining sample size
3891 * If we don't, we customize the stack size to
3892 * fit in to the remaining sample size.
3893 */
3894
3895 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
3896 stack_size = min(stack_size, (u16) task_size);
3897
3898 /* Current header size plus static size and dynamic size. */
3899 header_size += 2 * sizeof(u64);
3900
3901 /* Do we fit in with the current stack dump size? */
3902 if ((u16) (header_size + stack_size) < header_size) {
3903 /*
3904 * If we overflow the maximum size for the sample,
3905 * we customize the stack dump size to fit in.
3906 */
3907 stack_size = USHRT_MAX - header_size - sizeof(u64);
3908 stack_size = round_up(stack_size, sizeof(u64));
3909 }
3910
3911 return stack_size;
3912 }
3913
3914 static void
3915 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
3916 struct pt_regs *regs)
3917 {
3918 /* Case of a kernel thread, nothing to dump */
3919 if (!regs) {
3920 u64 size = 0;
3921 perf_output_put(handle, size);
3922 } else {
3923 unsigned long sp;
3924 unsigned int rem;
3925 u64 dyn_size;
3926
3927 /*
3928 * We dump:
3929 * static size
3930 * - the size requested by user or the best one we can fit
3931 * in to the sample max size
3932 * data
3933 * - user stack dump data
3934 * dynamic size
3935 * - the actual dumped size
3936 */
3937
3938 /* Static size. */
3939 perf_output_put(handle, dump_size);
3940
3941 /* Data. */
3942 sp = perf_user_stack_pointer(regs);
3943 rem = __output_copy_user(handle, (void *) sp, dump_size);
3944 dyn_size = dump_size - rem;
3945
3946 perf_output_skip(handle, rem);
3947
3948 /* Dynamic size. */
3949 perf_output_put(handle, dyn_size);
3950 }
3951 }
3952
3953 static void __perf_event_header__init_id(struct perf_event_header *header,
3954 struct perf_sample_data *data,
3955 struct perf_event *event)
3956 {
3957 u64 sample_type = event->attr.sample_type;
3958
3959 data->type = sample_type;
3960 header->size += event->id_header_size;
3961
3962 if (sample_type & PERF_SAMPLE_TID) {
3963 /* namespace issues */
3964 data->tid_entry.pid = perf_event_pid(event, current);
3965 data->tid_entry.tid = perf_event_tid(event, current);
3966 }
3967
3968 if (sample_type & PERF_SAMPLE_TIME)
3969 data->time = perf_clock();
3970
3971 if (sample_type & PERF_SAMPLE_ID)
3972 data->id = primary_event_id(event);
3973
3974 if (sample_type & PERF_SAMPLE_STREAM_ID)
3975 data->stream_id = event->id;
3976
3977 if (sample_type & PERF_SAMPLE_CPU) {
3978 data->cpu_entry.cpu = raw_smp_processor_id();
3979 data->cpu_entry.reserved = 0;
3980 }
3981 }
3982
3983 void perf_event_header__init_id(struct perf_event_header *header,
3984 struct perf_sample_data *data,
3985 struct perf_event *event)
3986 {
3987 if (event->attr.sample_id_all)
3988 __perf_event_header__init_id(header, data, event);
3989 }
3990
3991 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
3992 struct perf_sample_data *data)
3993 {
3994 u64 sample_type = data->type;
3995
3996 if (sample_type & PERF_SAMPLE_TID)
3997 perf_output_put(handle, data->tid_entry);
3998
3999 if (sample_type & PERF_SAMPLE_TIME)
4000 perf_output_put(handle, data->time);
4001
4002 if (sample_type & PERF_SAMPLE_ID)
4003 perf_output_put(handle, data->id);
4004
4005 if (sample_type & PERF_SAMPLE_STREAM_ID)
4006 perf_output_put(handle, data->stream_id);
4007
4008 if (sample_type & PERF_SAMPLE_CPU)
4009 perf_output_put(handle, data->cpu_entry);
4010 }
4011
4012 void perf_event__output_id_sample(struct perf_event *event,
4013 struct perf_output_handle *handle,
4014 struct perf_sample_data *sample)
4015 {
4016 if (event->attr.sample_id_all)
4017 __perf_event__output_id_sample(handle, sample);
4018 }
4019
4020 static void perf_output_read_one(struct perf_output_handle *handle,
4021 struct perf_event *event,
4022 u64 enabled, u64 running)
4023 {
4024 u64 read_format = event->attr.read_format;
4025 u64 values[4];
4026 int n = 0;
4027
4028 values[n++] = perf_event_count(event);
4029 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4030 values[n++] = enabled +
4031 atomic64_read(&event->child_total_time_enabled);
4032 }
4033 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4034 values[n++] = running +
4035 atomic64_read(&event->child_total_time_running);
4036 }
4037 if (read_format & PERF_FORMAT_ID)
4038 values[n++] = primary_event_id(event);
4039
4040 __output_copy(handle, values, n * sizeof(u64));
4041 }
4042
4043 /*
4044 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
4045 */
4046 static void perf_output_read_group(struct perf_output_handle *handle,
4047 struct perf_event *event,
4048 u64 enabled, u64 running)
4049 {
4050 struct perf_event *leader = event->group_leader, *sub;
4051 u64 read_format = event->attr.read_format;
4052 u64 values[5];
4053 int n = 0;
4054
4055 values[n++] = 1 + leader->nr_siblings;
4056
4057 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4058 values[n++] = enabled;
4059
4060 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4061 values[n++] = running;
4062
4063 if (leader != event)
4064 leader->pmu->read(leader);
4065
4066 values[n++] = perf_event_count(leader);
4067 if (read_format & PERF_FORMAT_ID)
4068 values[n++] = primary_event_id(leader);
4069
4070 __output_copy(handle, values, n * sizeof(u64));
4071
4072 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4073 n = 0;
4074
4075 if (sub != event)
4076 sub->pmu->read(sub);
4077
4078 values[n++] = perf_event_count(sub);
4079 if (read_format & PERF_FORMAT_ID)
4080 values[n++] = primary_event_id(sub);
4081
4082 __output_copy(handle, values, n * sizeof(u64));
4083 }
4084 }
4085
4086 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
4087 PERF_FORMAT_TOTAL_TIME_RUNNING)
4088
4089 static void perf_output_read(struct perf_output_handle *handle,
4090 struct perf_event *event)
4091 {
4092 u64 enabled = 0, running = 0, now;
4093 u64 read_format = event->attr.read_format;
4094
4095 /*
4096 * compute total_time_enabled, total_time_running
4097 * based on snapshot values taken when the event
4098 * was last scheduled in.
4099 *
4100 * we cannot simply called update_context_time()
4101 * because of locking issue as we are called in
4102 * NMI context
4103 */
4104 if (read_format & PERF_FORMAT_TOTAL_TIMES)
4105 calc_timer_values(event, &now, &enabled, &running);
4106
4107 if (event->attr.read_format & PERF_FORMAT_GROUP)
4108 perf_output_read_group(handle, event, enabled, running);
4109 else
4110 perf_output_read_one(handle, event, enabled, running);
4111 }
4112
4113 void perf_output_sample(struct perf_output_handle *handle,
4114 struct perf_event_header *header,
4115 struct perf_sample_data *data,
4116 struct perf_event *event)
4117 {
4118 u64 sample_type = data->type;
4119
4120 perf_output_put(handle, *header);
4121
4122 if (sample_type & PERF_SAMPLE_IP)
4123 perf_output_put(handle, data->ip);
4124
4125 if (sample_type & PERF_SAMPLE_TID)
4126 perf_output_put(handle, data->tid_entry);
4127
4128 if (sample_type & PERF_SAMPLE_TIME)
4129 perf_output_put(handle, data->time);
4130
4131 if (sample_type & PERF_SAMPLE_ADDR)
4132 perf_output_put(handle, data->addr);
4133
4134 if (sample_type & PERF_SAMPLE_ID)
4135 perf_output_put(handle, data->id);
4136
4137 if (sample_type & PERF_SAMPLE_STREAM_ID)
4138 perf_output_put(handle, data->stream_id);
4139
4140 if (sample_type & PERF_SAMPLE_CPU)
4141 perf_output_put(handle, data->cpu_entry);
4142
4143 if (sample_type & PERF_SAMPLE_PERIOD)
4144 perf_output_put(handle, data->period);
4145
4146 if (sample_type & PERF_SAMPLE_READ)
4147 perf_output_read(handle, event);
4148
4149 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
4150 if (data->callchain) {
4151 int size = 1;
4152
4153 if (data->callchain)
4154 size += data->callchain->nr;
4155
4156 size *= sizeof(u64);
4157
4158 __output_copy(handle, data->callchain, size);
4159 } else {
4160 u64 nr = 0;
4161 perf_output_put(handle, nr);
4162 }
4163 }
4164
4165 if (sample_type & PERF_SAMPLE_RAW) {
4166 if (data->raw) {
4167 perf_output_put(handle, data->raw->size);
4168 __output_copy(handle, data->raw->data,
4169 data->raw->size);
4170 } else {
4171 struct {
4172 u32 size;
4173 u32 data;
4174 } raw = {
4175 .size = sizeof(u32),
4176 .data = 0,
4177 };
4178 perf_output_put(handle, raw);
4179 }
4180 }
4181
4182 if (!event->attr.watermark) {
4183 int wakeup_events = event->attr.wakeup_events;
4184
4185 if (wakeup_events) {
4186 struct ring_buffer *rb = handle->rb;
4187 int events = local_inc_return(&rb->events);
4188
4189 if (events >= wakeup_events) {
4190 local_sub(wakeup_events, &rb->events);
4191 local_inc(&rb->wakeup);
4192 }
4193 }
4194 }
4195
4196 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
4197 if (data->br_stack) {
4198 size_t size;
4199
4200 size = data->br_stack->nr
4201 * sizeof(struct perf_branch_entry);
4202
4203 perf_output_put(handle, data->br_stack->nr);
4204 perf_output_copy(handle, data->br_stack->entries, size);
4205 } else {
4206 /*
4207 * we always store at least the value of nr
4208 */
4209 u64 nr = 0;
4210 perf_output_put(handle, nr);
4211 }
4212 }
4213
4214 if (sample_type & PERF_SAMPLE_REGS_USER) {
4215 u64 abi = data->regs_user.abi;
4216
4217 /*
4218 * If there are no regs to dump, notice it through
4219 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
4220 */
4221 perf_output_put(handle, abi);
4222
4223 if (abi) {
4224 u64 mask = event->attr.sample_regs_user;
4225 perf_output_sample_regs(handle,
4226 data->regs_user.regs,
4227 mask);
4228 }
4229 }
4230
4231 if (sample_type & PERF_SAMPLE_STACK_USER)
4232 perf_output_sample_ustack(handle,
4233 data->stack_user_size,
4234 data->regs_user.regs);
4235
4236 if (sample_type & PERF_SAMPLE_WEIGHT)
4237 perf_output_put(handle, data->weight);
4238
4239 if (sample_type & PERF_SAMPLE_DATA_SRC)
4240 perf_output_put(handle, data->data_src.val);
4241 }
4242
4243 void perf_prepare_sample(struct perf_event_header *header,
4244 struct perf_sample_data *data,
4245 struct perf_event *event,
4246 struct pt_regs *regs)
4247 {
4248 u64 sample_type = event->attr.sample_type;
4249
4250 header->type = PERF_RECORD_SAMPLE;
4251 header->size = sizeof(*header) + event->header_size;
4252
4253 header->misc = 0;
4254 header->misc |= perf_misc_flags(regs);
4255
4256 __perf_event_header__init_id(header, data, event);
4257
4258 if (sample_type & PERF_SAMPLE_IP)
4259 data->ip = perf_instruction_pointer(regs);
4260
4261 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
4262 int size = 1;
4263
4264 data->callchain = perf_callchain(event, regs);
4265
4266 if (data->callchain)
4267 size += data->callchain->nr;
4268
4269 header->size += size * sizeof(u64);
4270 }
4271
4272 if (sample_type & PERF_SAMPLE_RAW) {
4273 int size = sizeof(u32);
4274
4275 if (data->raw)
4276 size += data->raw->size;
4277 else
4278 size += sizeof(u32);
4279
4280 WARN_ON_ONCE(size & (sizeof(u64)-1));
4281 header->size += size;
4282 }
4283
4284 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
4285 int size = sizeof(u64); /* nr */
4286 if (data->br_stack) {
4287 size += data->br_stack->nr
4288 * sizeof(struct perf_branch_entry);
4289 }
4290 header->size += size;
4291 }
4292
4293 if (sample_type & PERF_SAMPLE_REGS_USER) {
4294 /* regs dump ABI info */
4295 int size = sizeof(u64);
4296
4297 perf_sample_regs_user(&data->regs_user, regs);
4298
4299 if (data->regs_user.regs) {
4300 u64 mask = event->attr.sample_regs_user;
4301 size += hweight64(mask) * sizeof(u64);
4302 }
4303
4304 header->size += size;
4305 }
4306
4307 if (sample_type & PERF_SAMPLE_STACK_USER) {
4308 /*
4309 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
4310 * processed as the last one or have additional check added
4311 * in case new sample type is added, because we could eat
4312 * up the rest of the sample size.
4313 */
4314 struct perf_regs_user *uregs = &data->regs_user;
4315 u16 stack_size = event->attr.sample_stack_user;
4316 u16 size = sizeof(u64);
4317
4318 if (!uregs->abi)
4319 perf_sample_regs_user(uregs, regs);
4320
4321 stack_size = perf_sample_ustack_size(stack_size, header->size,
4322 uregs->regs);
4323
4324 /*
4325 * If there is something to dump, add space for the dump
4326 * itself and for the field that tells the dynamic size,
4327 * which is how many have been actually dumped.
4328 */
4329 if (stack_size)
4330 size += sizeof(u64) + stack_size;
4331
4332 data->stack_user_size = stack_size;
4333 header->size += size;
4334 }
4335 }
4336
4337 static void perf_event_output(struct perf_event *event,
4338 struct perf_sample_data *data,
4339 struct pt_regs *regs)
4340 {
4341 struct perf_output_handle handle;
4342 struct perf_event_header header;
4343
4344 /* protect the callchain buffers */
4345 rcu_read_lock();
4346
4347 perf_prepare_sample(&header, data, event, regs);
4348
4349 if (perf_output_begin(&handle, event, header.size))
4350 goto exit;
4351
4352 perf_output_sample(&handle, &header, data, event);
4353
4354 perf_output_end(&handle);
4355
4356 exit:
4357 rcu_read_unlock();
4358 }
4359
4360 /*
4361 * read event_id
4362 */
4363
4364 struct perf_read_event {
4365 struct perf_event_header header;
4366
4367 u32 pid;
4368 u32 tid;
4369 };
4370
4371 static void
4372 perf_event_read_event(struct perf_event *event,
4373 struct task_struct *task)
4374 {
4375 struct perf_output_handle handle;
4376 struct perf_sample_data sample;
4377 struct perf_read_event read_event = {
4378 .header = {
4379 .type = PERF_RECORD_READ,
4380 .misc = 0,
4381 .size = sizeof(read_event) + event->read_size,
4382 },
4383 .pid = perf_event_pid(event, task),
4384 .tid = perf_event_tid(event, task),
4385 };
4386 int ret;
4387
4388 perf_event_header__init_id(&read_event.header, &sample, event);
4389 ret = perf_output_begin(&handle, event, read_event.header.size);
4390 if (ret)
4391 return;
4392
4393 perf_output_put(&handle, read_event);
4394 perf_output_read(&handle, event);
4395 perf_event__output_id_sample(event, &handle, &sample);
4396
4397 perf_output_end(&handle);
4398 }
4399
4400 typedef int (perf_event_aux_match_cb)(struct perf_event *event, void *data);
4401 typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);
4402
4403 static void
4404 perf_event_aux_ctx(struct perf_event_context *ctx,
4405 perf_event_aux_match_cb match,
4406 perf_event_aux_output_cb output,
4407 void *data)
4408 {
4409 struct perf_event *event;
4410
4411 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4412 if (event->state < PERF_EVENT_STATE_INACTIVE)
4413 continue;
4414 if (!event_filter_match(event))
4415 continue;
4416 if (match(event, data))
4417 output(event, data);
4418 }
4419 }
4420
4421 static void
4422 perf_event_aux(perf_event_aux_match_cb match,
4423 perf_event_aux_output_cb output,
4424 void *data,
4425 struct perf_event_context *task_ctx)
4426 {
4427 struct perf_cpu_context *cpuctx;
4428 struct perf_event_context *ctx;
4429 struct pmu *pmu;
4430 int ctxn;
4431
4432 rcu_read_lock();
4433 list_for_each_entry_rcu(pmu, &pmus, entry) {
4434 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4435 if (cpuctx->unique_pmu != pmu)
4436 goto next;
4437 perf_event_aux_ctx(&cpuctx->ctx, match, output, data);
4438 if (task_ctx)
4439 goto next;
4440 ctxn = pmu->task_ctx_nr;
4441 if (ctxn < 0)
4442 goto next;
4443 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4444 if (ctx)
4445 perf_event_aux_ctx(ctx, match, output, data);
4446 next:
4447 put_cpu_ptr(pmu->pmu_cpu_context);
4448 }
4449
4450 if (task_ctx) {
4451 preempt_disable();
4452 perf_event_aux_ctx(task_ctx, match, output, data);
4453 preempt_enable();
4454 }
4455 rcu_read_unlock();
4456 }
4457
4458 /*
4459 * task tracking -- fork/exit
4460 *
4461 * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task
4462 */
4463
4464 struct perf_task_event {
4465 struct task_struct *task;
4466 struct perf_event_context *task_ctx;
4467
4468 struct {
4469 struct perf_event_header header;
4470
4471 u32 pid;
4472 u32 ppid;
4473 u32 tid;
4474 u32 ptid;
4475 u64 time;
4476 } event_id;
4477 };
4478
4479 static void perf_event_task_output(struct perf_event *event,
4480 void *data)
4481 {
4482 struct perf_task_event *task_event = data;
4483 struct perf_output_handle handle;
4484 struct perf_sample_data sample;
4485 struct task_struct *task = task_event->task;
4486 int ret, size = task_event->event_id.header.size;
4487
4488 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
4489
4490 ret = perf_output_begin(&handle, event,
4491 task_event->event_id.header.size);
4492 if (ret)
4493 goto out;
4494
4495 task_event->event_id.pid = perf_event_pid(event, task);
4496 task_event->event_id.ppid = perf_event_pid(event, current);
4497
4498 task_event->event_id.tid = perf_event_tid(event, task);
4499 task_event->event_id.ptid = perf_event_tid(event, current);
4500
4501 perf_output_put(&handle, task_event->event_id);
4502
4503 perf_event__output_id_sample(event, &handle, &sample);
4504
4505 perf_output_end(&handle);
4506 out:
4507 task_event->event_id.header.size = size;
4508 }
4509
4510 static int perf_event_task_match(struct perf_event *event,
4511 void *data __maybe_unused)
4512 {
4513 return event->attr.comm || event->attr.mmap ||
4514 event->attr.mmap_data || event->attr.task;
4515 }
4516
4517 static void perf_event_task(struct task_struct *task,
4518 struct perf_event_context *task_ctx,
4519 int new)
4520 {
4521 struct perf_task_event task_event;
4522
4523 if (!atomic_read(&nr_comm_events) &&
4524 !atomic_read(&nr_mmap_events) &&
4525 !atomic_read(&nr_task_events))
4526 return;
4527
4528 task_event = (struct perf_task_event){
4529 .task = task,
4530 .task_ctx = task_ctx,
4531 .event_id = {
4532 .header = {
4533 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
4534 .misc = 0,
4535 .size = sizeof(task_event.event_id),
4536 },
4537 /* .pid */
4538 /* .ppid */
4539 /* .tid */
4540 /* .ptid */
4541 .time = perf_clock(),
4542 },
4543 };
4544
4545 perf_event_aux(perf_event_task_match,
4546 perf_event_task_output,
4547 &task_event,
4548 task_ctx);
4549 }
4550
4551 void perf_event_fork(struct task_struct *task)
4552 {
4553 perf_event_task(task, NULL, 1);
4554 }
4555
4556 /*
4557 * comm tracking
4558 */
4559
4560 struct perf_comm_event {
4561 struct task_struct *task;
4562 char *comm;
4563 int comm_size;
4564
4565 struct {
4566 struct perf_event_header header;
4567
4568 u32 pid;
4569 u32 tid;
4570 } event_id;
4571 };
4572
4573 static void perf_event_comm_output(struct perf_event *event,
4574 void *data)
4575 {
4576 struct perf_comm_event *comm_event = data;
4577 struct perf_output_handle handle;
4578 struct perf_sample_data sample;
4579 int size = comm_event->event_id.header.size;
4580 int ret;
4581
4582 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
4583 ret = perf_output_begin(&handle, event,
4584 comm_event->event_id.header.size);
4585
4586 if (ret)
4587 goto out;
4588
4589 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
4590 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
4591
4592 perf_output_put(&handle, comm_event->event_id);
4593 __output_copy(&handle, comm_event->comm,
4594 comm_event->comm_size);
4595
4596 perf_event__output_id_sample(event, &handle, &sample);
4597
4598 perf_output_end(&handle);
4599 out:
4600 comm_event->event_id.header.size = size;
4601 }
4602
4603 static int perf_event_comm_match(struct perf_event *event,
4604 void *data __maybe_unused)
4605 {
4606 return event->attr.comm;
4607 }
4608
4609 static void perf_event_comm_event(struct perf_comm_event *comm_event)
4610 {
4611 char comm[TASK_COMM_LEN];
4612 unsigned int size;
4613
4614 memset(comm, 0, sizeof(comm));
4615 strlcpy(comm, comm_event->task->comm, sizeof(comm));
4616 size = ALIGN(strlen(comm)+1, sizeof(u64));
4617
4618 comm_event->comm = comm;
4619 comm_event->comm_size = size;
4620
4621 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
4622
4623 perf_event_aux(perf_event_comm_match,
4624 perf_event_comm_output,
4625 comm_event,
4626 NULL);
4627 }
4628
4629 void perf_event_comm(struct task_struct *task)
4630 {
4631 struct perf_comm_event comm_event;
4632 struct perf_event_context *ctx;
4633 int ctxn;
4634
4635 rcu_read_lock();
4636 for_each_task_context_nr(ctxn) {
4637 ctx = task->perf_event_ctxp[ctxn];
4638 if (!ctx)
4639 continue;
4640
4641 perf_event_enable_on_exec(ctx);
4642 }
4643 rcu_read_unlock();
4644
4645 if (!atomic_read(&nr_comm_events))
4646 return;
4647
4648 comm_event = (struct perf_comm_event){
4649 .task = task,
4650 /* .comm */
4651 /* .comm_size */
4652 .event_id = {
4653 .header = {
4654 .type = PERF_RECORD_COMM,
4655 .misc = 0,
4656 /* .size */
4657 },
4658 /* .pid */
4659 /* .tid */
4660 },
4661 };
4662
4663 perf_event_comm_event(&comm_event);
4664 }
4665
4666 /*
4667 * mmap tracking
4668 */
4669
4670 struct perf_mmap_event {
4671 struct vm_area_struct *vma;
4672
4673 const char *file_name;
4674 int file_size;
4675
4676 struct {
4677 struct perf_event_header header;
4678
4679 u32 pid;
4680 u32 tid;
4681 u64 start;
4682 u64 len;
4683 u64 pgoff;
4684 } event_id;
4685 };
4686
4687 static void perf_event_mmap_output(struct perf_event *event,
4688 void *data)
4689 {
4690 struct perf_mmap_event *mmap_event = data;
4691 struct perf_output_handle handle;
4692 struct perf_sample_data sample;
4693 int size = mmap_event->event_id.header.size;
4694 int ret;
4695
4696 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
4697 ret = perf_output_begin(&handle, event,
4698 mmap_event->event_id.header.size);
4699 if (ret)
4700 goto out;
4701
4702 mmap_event->event_id.pid = perf_event_pid(event, current);
4703 mmap_event->event_id.tid = perf_event_tid(event, current);
4704
4705 perf_output_put(&handle, mmap_event->event_id);
4706 __output_copy(&handle, mmap_event->file_name,
4707 mmap_event->file_size);
4708
4709 perf_event__output_id_sample(event, &handle, &sample);
4710
4711 perf_output_end(&handle);
4712 out:
4713 mmap_event->event_id.header.size = size;
4714 }
4715
4716 static int perf_event_mmap_match(struct perf_event *event,
4717 void *data)
4718 {
4719 struct perf_mmap_event *mmap_event = data;
4720 struct vm_area_struct *vma = mmap_event->vma;
4721 int executable = vma->vm_flags & VM_EXEC;
4722
4723 return (!executable && event->attr.mmap_data) ||
4724 (executable && event->attr.mmap);
4725 }
4726
4727 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
4728 {
4729 struct vm_area_struct *vma = mmap_event->vma;
4730 struct file *file = vma->vm_file;
4731 unsigned int size;
4732 char tmp[16];
4733 char *buf = NULL;
4734 const char *name;
4735
4736 memset(tmp, 0, sizeof(tmp));
4737
4738 if (file) {
4739 /*
4740 * d_path works from the end of the rb backwards, so we
4741 * need to add enough zero bytes after the string to handle
4742 * the 64bit alignment we do later.
4743 */
4744 buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
4745 if (!buf) {
4746 name = strncpy(tmp, "//enomem", sizeof(tmp));
4747 goto got_name;
4748 }
4749 name = d_path(&file->f_path, buf, PATH_MAX);
4750 if (IS_ERR(name)) {
4751 name = strncpy(tmp, "//toolong", sizeof(tmp));
4752 goto got_name;
4753 }
4754 } else {
4755 if (arch_vma_name(mmap_event->vma)) {
4756 name = strncpy(tmp, arch_vma_name(mmap_event->vma),
4757 sizeof(tmp) - 1);
4758 tmp[sizeof(tmp) - 1] = '\0';
4759 goto got_name;
4760 }
4761
4762 if (!vma->vm_mm) {
4763 name = strncpy(tmp, "[vdso]", sizeof(tmp));
4764 goto got_name;
4765 } else if (vma->vm_start <= vma->vm_mm->start_brk &&
4766 vma->vm_end >= vma->vm_mm->brk) {
4767 name = strncpy(tmp, "[heap]", sizeof(tmp));
4768 goto got_name;
4769 } else if (vma->vm_start <= vma->vm_mm->start_stack &&
4770 vma->vm_end >= vma->vm_mm->start_stack) {
4771 name = strncpy(tmp, "[stack]", sizeof(tmp));
4772 goto got_name;
4773 }
4774
4775 name = strncpy(tmp, "//anon", sizeof(tmp));
4776 goto got_name;
4777 }
4778
4779 got_name:
4780 size = ALIGN(strlen(name)+1, sizeof(u64));
4781
4782 mmap_event->file_name = name;
4783 mmap_event->file_size = size;
4784
4785 if (!(vma->vm_flags & VM_EXEC))
4786 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
4787
4788 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
4789
4790 perf_event_aux(perf_event_mmap_match,
4791 perf_event_mmap_output,
4792 mmap_event,
4793 NULL);
4794
4795 kfree(buf);
4796 }
4797
4798 void perf_event_mmap(struct vm_area_struct *vma)
4799 {
4800 struct perf_mmap_event mmap_event;
4801
4802 if (!atomic_read(&nr_mmap_events))
4803 return;
4804
4805 mmap_event = (struct perf_mmap_event){
4806 .vma = vma,
4807 /* .file_name */
4808 /* .file_size */
4809 .event_id = {
4810 .header = {
4811 .type = PERF_RECORD_MMAP,
4812 .misc = PERF_RECORD_MISC_USER,
4813 /* .size */
4814 },
4815 /* .pid */
4816 /* .tid */
4817 .start = vma->vm_start,
4818 .len = vma->vm_end - vma->vm_start,
4819 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
4820 },
4821 };
4822
4823 perf_event_mmap_event(&mmap_event);
4824 }
4825
4826 /*
4827 * IRQ throttle logging
4828 */
4829
4830 static void perf_log_throttle(struct perf_event *event, int enable)
4831 {
4832 struct perf_output_handle handle;
4833 struct perf_sample_data sample;
4834 int ret;
4835
4836 struct {
4837 struct perf_event_header header;
4838 u64 time;
4839 u64 id;
4840 u64 stream_id;
4841 } throttle_event = {
4842 .header = {
4843 .type = PERF_RECORD_THROTTLE,
4844 .misc = 0,
4845 .size = sizeof(throttle_event),
4846 },
4847 .time = perf_clock(),
4848 .id = primary_event_id(event),
4849 .stream_id = event->id,
4850 };
4851
4852 if (enable)
4853 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
4854
4855 perf_event_header__init_id(&throttle_event.header, &sample, event);
4856
4857 ret = perf_output_begin(&handle, event,
4858 throttle_event.header.size);
4859 if (ret)
4860 return;
4861
4862 perf_output_put(&handle, throttle_event);
4863 perf_event__output_id_sample(event, &handle, &sample);
4864 perf_output_end(&handle);
4865 }
4866
4867 /*
4868 * Generic event overflow handling, sampling.
4869 */
4870
4871 static int __perf_event_overflow(struct perf_event *event,
4872 int throttle, struct perf_sample_data *data,
4873 struct pt_regs *regs)
4874 {
4875 int events = atomic_read(&event->event_limit);
4876 struct hw_perf_event *hwc = &event->hw;
4877 u64 seq;
4878 int ret = 0;
4879
4880 /*
4881 * Non-sampling counters might still use the PMI to fold short
4882 * hardware counters, ignore those.
4883 */
4884 if (unlikely(!is_sampling_event(event)))
4885 return 0;
4886
4887 seq = __this_cpu_read(perf_throttled_seq);
4888 if (seq != hwc->interrupts_seq) {
4889 hwc->interrupts_seq = seq;
4890 hwc->interrupts = 1;
4891 } else {
4892 hwc->interrupts++;
4893 if (unlikely(throttle
4894 && hwc->interrupts >= max_samples_per_tick)) {
4895 __this_cpu_inc(perf_throttled_count);
4896 hwc->interrupts = MAX_INTERRUPTS;
4897 perf_log_throttle(event, 0);
4898 ret = 1;
4899 }
4900 }
4901
4902 if (event->attr.freq) {
4903 u64 now = perf_clock();
4904 s64 delta = now - hwc->freq_time_stamp;
4905
4906 hwc->freq_time_stamp = now;
4907
4908 if (delta > 0 && delta < 2*TICK_NSEC)
4909 perf_adjust_period(event, delta, hwc->last_period, true);
4910 }
4911
4912 /*
4913 * XXX event_limit might not quite work as expected on inherited
4914 * events
4915 */
4916
4917 event->pending_kill = POLL_IN;
4918 if (events && atomic_dec_and_test(&event->event_limit)) {
4919 ret = 1;
4920 event->pending_kill = POLL_HUP;
4921 event->pending_disable = 1;
4922 irq_work_queue(&event->pending);
4923 }
4924
4925 if (event->overflow_handler)
4926 event->overflow_handler(event, data, regs);
4927 else
4928 perf_event_output(event, data, regs);
4929
4930 if (event->fasync && event->pending_kill) {
4931 event->pending_wakeup = 1;
4932 irq_work_queue(&event->pending);
4933 }
4934
4935 return ret;
4936 }
4937
4938 int perf_event_overflow(struct perf_event *event,
4939 struct perf_sample_data *data,
4940 struct pt_regs *regs)
4941 {
4942 return __perf_event_overflow(event, 1, data, regs);
4943 }
4944
4945 /*
4946 * Generic software event infrastructure
4947 */
4948
4949 struct swevent_htable {
4950 struct swevent_hlist *swevent_hlist;
4951 struct mutex hlist_mutex;
4952 int hlist_refcount;
4953
4954 /* Recursion avoidance in each contexts */
4955 int recursion[PERF_NR_CONTEXTS];
4956 };
4957
4958 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
4959
4960 /*
4961 * We directly increment event->count and keep a second value in
4962 * event->hw.period_left to count intervals. This period event
4963 * is kept in the range [-sample_period, 0] so that we can use the
4964 * sign as trigger.
4965 */
4966
4967 static u64 perf_swevent_set_period(struct perf_event *event)
4968 {
4969 struct hw_perf_event *hwc = &event->hw;
4970 u64 period = hwc->last_period;
4971 u64 nr, offset;
4972 s64 old, val;
4973
4974 hwc->last_period = hwc->sample_period;
4975
4976 again:
4977 old = val = local64_read(&hwc->period_left);
4978 if (val < 0)
4979 return 0;
4980
4981 nr = div64_u64(period + val, period);
4982 offset = nr * period;
4983 val -= offset;
4984 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
4985 goto again;
4986
4987 return nr;
4988 }
4989
4990 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
4991 struct perf_sample_data *data,
4992 struct pt_regs *regs)
4993 {
4994 struct hw_perf_event *hwc = &event->hw;
4995 int throttle = 0;
4996
4997 if (!overflow)
4998 overflow = perf_swevent_set_period(event);
4999
5000 if (hwc->interrupts == MAX_INTERRUPTS)
5001 return;
5002
5003 for (; overflow; overflow--) {
5004 if (__perf_event_overflow(event, throttle,
5005 data, regs)) {
5006 /*
5007 * We inhibit the overflow from happening when
5008 * hwc->interrupts == MAX_INTERRUPTS.
5009 */
5010 break;
5011 }
5012 throttle = 1;
5013 }
5014 }
5015
5016 static void perf_swevent_event(struct perf_event *event, u64 nr,
5017 struct perf_sample_data *data,
5018 struct pt_regs *regs)
5019 {
5020 struct hw_perf_event *hwc = &event->hw;
5021
5022 local64_add(nr, &event->count);
5023
5024 if (!regs)
5025 return;
5026
5027 if (!is_sampling_event(event))
5028 return;
5029
5030 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
5031 data->period = nr;
5032 return perf_swevent_overflow(event, 1, data, regs);
5033 } else
5034 data->period = event->hw.last_period;
5035
5036 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
5037 return perf_swevent_overflow(event, 1, data, regs);
5038
5039 if (local64_add_negative(nr, &hwc->period_left))
5040 return;
5041
5042 perf_swevent_overflow(event, 0, data, regs);
5043 }
5044
5045 static int perf_exclude_event(struct perf_event *event,
5046 struct pt_regs *regs)
5047 {
5048 if (event->hw.state & PERF_HES_STOPPED)
5049 return 1;
5050
5051 if (regs) {
5052 if (event->attr.exclude_user && user_mode(regs))
5053 return 1;
5054
5055 if (event->attr.exclude_kernel && !user_mode(regs))
5056 return 1;
5057 }
5058
5059 return 0;
5060 }
5061
5062 static int perf_swevent_match(struct perf_event *event,
5063 enum perf_type_id type,
5064 u32 event_id,
5065 struct perf_sample_data *data,
5066 struct pt_regs *regs)
5067 {
5068 if (event->attr.type != type)
5069 return 0;
5070
5071 if (event->attr.config != event_id)
5072 return 0;
5073
5074 if (perf_exclude_event(event, regs))
5075 return 0;
5076
5077 return 1;
5078 }
5079
5080 static inline u64 swevent_hash(u64 type, u32 event_id)
5081 {
5082 u64 val = event_id | (type << 32);
5083
5084 return hash_64(val, SWEVENT_HLIST_BITS);
5085 }
5086
5087 static inline struct hlist_head *
5088 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
5089 {
5090 u64 hash = swevent_hash(type, event_id);
5091
5092 return &hlist->heads[hash];
5093 }
5094
5095 /* For the read side: events when they trigger */
5096 static inline struct hlist_head *
5097 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
5098 {
5099 struct swevent_hlist *hlist;
5100
5101 hlist = rcu_dereference(swhash->swevent_hlist);
5102 if (!hlist)
5103 return NULL;
5104
5105 return __find_swevent_head(hlist, type, event_id);
5106 }
5107
5108 /* For the event head insertion and removal in the hlist */
5109 static inline struct hlist_head *
5110 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
5111 {
5112 struct swevent_hlist *hlist;
5113 u32 event_id = event->attr.config;
5114 u64 type = event->attr.type;
5115
5116 /*
5117 * Event scheduling is always serialized against hlist allocation
5118 * and release. Which makes the protected version suitable here.
5119 * The context lock guarantees that.
5120 */
5121 hlist = rcu_dereference_protected(swhash->swevent_hlist,
5122 lockdep_is_held(&event->ctx->lock));
5123 if (!hlist)
5124 return NULL;
5125
5126 return __find_swevent_head(hlist, type, event_id);
5127 }
5128
5129 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
5130 u64 nr,
5131 struct perf_sample_data *data,
5132 struct pt_regs *regs)
5133 {
5134 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5135 struct perf_event *event;
5136 struct hlist_head *head;
5137
5138 rcu_read_lock();
5139 head = find_swevent_head_rcu(swhash, type, event_id);
5140 if (!head)
5141 goto end;
5142
5143 hlist_for_each_entry_rcu(event, head, hlist_entry) {
5144 if (perf_swevent_match(event, type, event_id, data, regs))
5145 perf_swevent_event(event, nr, data, regs);
5146 }
5147 end:
5148 rcu_read_unlock();
5149 }
5150
5151 int perf_swevent_get_recursion_context(void)
5152 {
5153 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5154
5155 return get_recursion_context(swhash->recursion);
5156 }
5157 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
5158
5159 inline void perf_swevent_put_recursion_context(int rctx)
5160 {
5161 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5162
5163 put_recursion_context(swhash->recursion, rctx);
5164 }
5165
5166 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
5167 {
5168 struct perf_sample_data data;
5169 int rctx;
5170
5171 preempt_disable_notrace();
5172 rctx = perf_swevent_get_recursion_context();
5173 if (rctx < 0)
5174 return;
5175
5176 perf_sample_data_init(&data, addr, 0);
5177
5178 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
5179
5180 perf_swevent_put_recursion_context(rctx);
5181 preempt_enable_notrace();
5182 }
5183
5184 static void perf_swevent_read(struct perf_event *event)
5185 {
5186 }
5187
5188 static int perf_swevent_add(struct perf_event *event, int flags)
5189 {
5190 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5191 struct hw_perf_event *hwc = &event->hw;
5192 struct hlist_head *head;
5193
5194 if (is_sampling_event(event)) {
5195 hwc->last_period = hwc->sample_period;
5196 perf_swevent_set_period(event);
5197 }
5198
5199 hwc->state = !(flags & PERF_EF_START);
5200
5201 head = find_swevent_head(swhash, event);
5202 if (WARN_ON_ONCE(!head))
5203 return -EINVAL;
5204
5205 hlist_add_head_rcu(&event->hlist_entry, head);
5206
5207 return 0;
5208 }
5209
5210 static void perf_swevent_del(struct perf_event *event, int flags)
5211 {
5212 hlist_del_rcu(&event->hlist_entry);
5213 }
5214
5215 static void perf_swevent_start(struct perf_event *event, int flags)
5216 {
5217 event->hw.state = 0;
5218 }
5219
5220 static void perf_swevent_stop(struct perf_event *event, int flags)
5221 {
5222 event->hw.state = PERF_HES_STOPPED;
5223 }
5224
5225 /* Deref the hlist from the update side */
5226 static inline struct swevent_hlist *
5227 swevent_hlist_deref(struct swevent_htable *swhash)
5228 {
5229 return rcu_dereference_protected(swhash->swevent_hlist,
5230 lockdep_is_held(&swhash->hlist_mutex));
5231 }
5232
5233 static void swevent_hlist_release(struct swevent_htable *swhash)
5234 {
5235 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
5236
5237 if (!hlist)
5238 return;
5239
5240 rcu_assign_pointer(swhash->swevent_hlist, NULL);
5241 kfree_rcu(hlist, rcu_head);
5242 }
5243
5244 static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
5245 {
5246 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5247
5248 mutex_lock(&swhash->hlist_mutex);
5249
5250 if (!--swhash->hlist_refcount)
5251 swevent_hlist_release(swhash);
5252
5253 mutex_unlock(&swhash->hlist_mutex);
5254 }
5255
5256 static void swevent_hlist_put(struct perf_event *event)
5257 {
5258 int cpu;
5259
5260 if (event->cpu != -1) {
5261 swevent_hlist_put_cpu(event, event->cpu);
5262 return;
5263 }
5264
5265 for_each_possible_cpu(cpu)
5266 swevent_hlist_put_cpu(event, cpu);
5267 }
5268
5269 static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
5270 {
5271 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5272 int err = 0;
5273
5274 mutex_lock(&swhash->hlist_mutex);
5275
5276 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
5277 struct swevent_hlist *hlist;
5278
5279 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
5280 if (!hlist) {
5281 err = -ENOMEM;
5282 goto exit;
5283 }
5284 rcu_assign_pointer(swhash->swevent_hlist, hlist);
5285 }
5286 swhash->hlist_refcount++;
5287 exit:
5288 mutex_unlock(&swhash->hlist_mutex);
5289
5290 return err;
5291 }
5292
5293 static int swevent_hlist_get(struct perf_event *event)
5294 {
5295 int err;
5296 int cpu, failed_cpu;
5297
5298 if (event->cpu != -1)
5299 return swevent_hlist_get_cpu(event, event->cpu);
5300
5301 get_online_cpus();
5302 for_each_possible_cpu(cpu) {
5303 err = swevent_hlist_get_cpu(event, cpu);
5304 if (err) {
5305 failed_cpu = cpu;
5306 goto fail;
5307 }
5308 }
5309 put_online_cpus();
5310
5311 return 0;
5312 fail:
5313 for_each_possible_cpu(cpu) {
5314 if (cpu == failed_cpu)
5315 break;
5316 swevent_hlist_put_cpu(event, cpu);
5317 }
5318
5319 put_online_cpus();
5320 return err;
5321 }
5322
5323 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
5324
5325 static void sw_perf_event_destroy(struct perf_event *event)
5326 {
5327 u64 event_id = event->attr.config;
5328
5329 WARN_ON(event->parent);
5330
5331 static_key_slow_dec(&perf_swevent_enabled[event_id]);
5332 swevent_hlist_put(event);
5333 }
5334
5335 static int perf_swevent_init(struct perf_event *event)
5336 {
5337 u64 event_id = event->attr.config;
5338
5339 if (event->attr.type != PERF_TYPE_SOFTWARE)
5340 return -ENOENT;
5341
5342 /*
5343 * no branch sampling for software events
5344 */
5345 if (has_branch_stack(event))
5346 return -EOPNOTSUPP;
5347
5348 switch (event_id) {
5349 case PERF_COUNT_SW_CPU_CLOCK:
5350 case PERF_COUNT_SW_TASK_CLOCK:
5351 return -ENOENT;
5352
5353 default:
5354 break;
5355 }
5356
5357 if (event_id >= PERF_COUNT_SW_MAX)
5358 return -ENOENT;
5359
5360 if (!event->parent) {
5361 int err;
5362
5363 err = swevent_hlist_get(event);
5364 if (err)
5365 return err;
5366
5367 static_key_slow_inc(&perf_swevent_enabled[event_id]);
5368 event->destroy = sw_perf_event_destroy;
5369 }
5370
5371 return 0;
5372 }
5373
5374 static int perf_swevent_event_idx(struct perf_event *event)
5375 {
5376 return 0;
5377 }
5378
5379 static struct pmu perf_swevent = {
5380 .task_ctx_nr = perf_sw_context,
5381
5382 .event_init = perf_swevent_init,
5383 .add = perf_swevent_add,
5384 .del = perf_swevent_del,
5385 .start = perf_swevent_start,
5386 .stop = perf_swevent_stop,
5387 .read = perf_swevent_read,
5388
5389 .event_idx = perf_swevent_event_idx,
5390 };
5391
5392 #ifdef CONFIG_EVENT_TRACING
5393
5394 static int perf_tp_filter_match(struct perf_event *event,
5395 struct perf_sample_data *data)
5396 {
5397 void *record = data->raw->data;
5398
5399 if (likely(!event->filter) || filter_match_preds(event->filter, record))
5400 return 1;
5401 return 0;
5402 }
5403
5404 static int perf_tp_event_match(struct perf_event *event,
5405 struct perf_sample_data *data,
5406 struct pt_regs *regs)
5407 {
5408 if (event->hw.state & PERF_HES_STOPPED)
5409 return 0;
5410 /*
5411 * All tracepoints are from kernel-space.
5412 */
5413 if (event->attr.exclude_kernel)
5414 return 0;
5415
5416 if (!perf_tp_filter_match(event, data))
5417 return 0;
5418
5419 return 1;
5420 }
5421
5422 void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
5423 struct pt_regs *regs, struct hlist_head *head, int rctx,
5424 struct task_struct *task)
5425 {
5426 struct perf_sample_data data;
5427 struct perf_event *event;
5428
5429 struct perf_raw_record raw = {
5430 .size = entry_size,
5431 .data = record,
5432 };
5433
5434 perf_sample_data_init(&data, addr, 0);
5435 data.raw = &raw;
5436
5437 hlist_for_each_entry_rcu(event, head, hlist_entry) {
5438 if (perf_tp_event_match(event, &data, regs))
5439 perf_swevent_event(event, count, &data, regs);
5440 }
5441
5442 /*
5443 * If we got specified a target task, also iterate its context and
5444 * deliver this event there too.
5445 */
5446 if (task && task != current) {
5447 struct perf_event_context *ctx;
5448 struct trace_entry *entry = record;
5449
5450 rcu_read_lock();
5451 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
5452 if (!ctx)
5453 goto unlock;
5454
5455 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
5456 if (event->attr.type != PERF_TYPE_TRACEPOINT)
5457 continue;
5458 if (event->attr.config != entry->type)
5459 continue;
5460 if (perf_tp_event_match(event, &data, regs))
5461 perf_swevent_event(event, count, &data, regs);
5462 }
5463 unlock:
5464 rcu_read_unlock();
5465 }
5466
5467 perf_swevent_put_recursion_context(rctx);
5468 }
5469 EXPORT_SYMBOL_GPL(perf_tp_event);
5470
5471 static void tp_perf_event_destroy(struct perf_event *event)
5472 {
5473 perf_trace_destroy(event);
5474 }
5475
5476 static int perf_tp_event_init(struct perf_event *event)
5477 {
5478 int err;
5479
5480 if (event->attr.type != PERF_TYPE_TRACEPOINT)
5481 return -ENOENT;
5482
5483 /*
5484 * no branch sampling for tracepoint events
5485 */
5486 if (has_branch_stack(event))
5487 return -EOPNOTSUPP;
5488
5489 err = perf_trace_init(event);
5490 if (err)
5491 return err;
5492
5493 event->destroy = tp_perf_event_destroy;
5494
5495 return 0;
5496 }
5497
5498 static struct pmu perf_tracepoint = {
5499 .task_ctx_nr = perf_sw_context,
5500
5501 .event_init = perf_tp_event_init,
5502 .add = perf_trace_add,
5503 .del = perf_trace_del,
5504 .start = perf_swevent_start,
5505 .stop = perf_swevent_stop,
5506 .read = perf_swevent_read,
5507
5508 .event_idx = perf_swevent_event_idx,
5509 };
5510
5511 static inline void perf_tp_register(void)
5512 {
5513 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
5514 }
5515
5516 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
5517 {
5518 char *filter_str;
5519 int ret;
5520
5521 if (event->attr.type != PERF_TYPE_TRACEPOINT)
5522 return -EINVAL;
5523
5524 filter_str = strndup_user(arg, PAGE_SIZE);
5525 if (IS_ERR(filter_str))
5526 return PTR_ERR(filter_str);
5527
5528 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
5529
5530 kfree(filter_str);
5531 return ret;
5532 }
5533
5534 static void perf_event_free_filter(struct perf_event *event)
5535 {
5536 ftrace_profile_free_filter(event);
5537 }
5538
5539 #else
5540
5541 static inline void perf_tp_register(void)
5542 {
5543 }
5544
5545 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
5546 {
5547 return -ENOENT;
5548 }
5549
5550 static void perf_event_free_filter(struct perf_event *event)
5551 {
5552 }
5553
5554 #endif /* CONFIG_EVENT_TRACING */
5555
5556 #ifdef CONFIG_HAVE_HW_BREAKPOINT
5557 void perf_bp_event(struct perf_event *bp, void *data)
5558 {
5559 struct perf_sample_data sample;
5560 struct pt_regs *regs = data;
5561
5562 perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
5563
5564 if (!bp->hw.state && !perf_exclude_event(bp, regs))
5565 perf_swevent_event(bp, 1, &sample, regs);
5566 }
5567 #endif
5568
5569 /*
5570 * hrtimer based swevent callback
5571 */
5572
5573 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
5574 {
5575 enum hrtimer_restart ret = HRTIMER_RESTART;
5576 struct perf_sample_data data;
5577 struct pt_regs *regs;
5578 struct perf_event *event;
5579 u64 period;
5580
5581 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
5582
5583 if (event->state != PERF_EVENT_STATE_ACTIVE)
5584 return HRTIMER_NORESTART;
5585
5586 event->pmu->read(event);
5587
5588 perf_sample_data_init(&data, 0, event->hw.last_period);
5589 regs = get_irq_regs();
5590
5591 if (regs && !perf_exclude_event(event, regs)) {
5592 if (!(event->attr.exclude_idle && is_idle_task(current)))
5593 if (__perf_event_overflow(event, 1, &data, regs))
5594 ret = HRTIMER_NORESTART;
5595 }
5596
5597 period = max_t(u64, 10000, event->hw.sample_period);
5598 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
5599
5600 return ret;
5601 }
5602
5603 static void perf_swevent_start_hrtimer(struct perf_event *event)
5604 {
5605 struct hw_perf_event *hwc = &event->hw;
5606 s64 period;
5607
5608 if (!is_sampling_event(event))
5609 return;
5610
5611 period = local64_read(&hwc->period_left);
5612 if (period) {
5613 if (period < 0)
5614 period = 10000;
5615
5616 local64_set(&hwc->period_left, 0);
5617 } else {
5618 period = max_t(u64, 10000, hwc->sample_period);
5619 }
5620 __hrtimer_start_range_ns(&hwc->hrtimer,
5621 ns_to_ktime(period), 0,
5622 HRTIMER_MODE_REL_PINNED, 0);
5623 }
5624
5625 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
5626 {
5627 struct hw_perf_event *hwc = &event->hw;
5628
5629 if (is_sampling_event(event)) {
5630 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
5631 local64_set(&hwc->period_left, ktime_to_ns(remaining));
5632
5633 hrtimer_cancel(&hwc->hrtimer);
5634 }
5635 }
5636
5637 static void perf_swevent_init_hrtimer(struct perf_event *event)
5638 {
5639 struct hw_perf_event *hwc = &event->hw;
5640
5641 if (!is_sampling_event(event))
5642 return;
5643
5644 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
5645 hwc->hrtimer.function = perf_swevent_hrtimer;
5646
5647 /*
5648 * Since hrtimers have a fixed rate, we can do a static freq->period
5649 * mapping and avoid the whole period adjust feedback stuff.
5650 */
5651 if (event->attr.freq) {
5652 long freq = event->attr.sample_freq;
5653
5654 event->attr.sample_period = NSEC_PER_SEC / freq;
5655 hwc->sample_period = event->attr.sample_period;
5656 local64_set(&hwc->period_left, hwc->sample_period);
5657 hwc->last_period = hwc->sample_period;
5658 event->attr.freq = 0;
5659 }
5660 }
5661
5662 /*
5663 * Software event: cpu wall time clock
5664 */
5665
5666 static void cpu_clock_event_update(struct perf_event *event)
5667 {
5668 s64 prev;
5669 u64 now;
5670
5671 now = local_clock();
5672 prev = local64_xchg(&event->hw.prev_count, now);
5673 local64_add(now - prev, &event->count);
5674 }
5675
5676 static void cpu_clock_event_start(struct perf_event *event, int flags)
5677 {
5678 local64_set(&event->hw.prev_count, local_clock());
5679 perf_swevent_start_hrtimer(event);
5680 }
5681
5682 static void cpu_clock_event_stop(struct perf_event *event, int flags)
5683 {
5684 perf_swevent_cancel_hrtimer(event);
5685 cpu_clock_event_update(event);
5686 }
5687
5688 static int cpu_clock_event_add(struct perf_event *event, int flags)
5689 {
5690 if (flags & PERF_EF_START)
5691 cpu_clock_event_start(event, flags);
5692
5693 return 0;
5694 }
5695
5696 static void cpu_clock_event_del(struct perf_event *event, int flags)
5697 {
5698 cpu_clock_event_stop(event, flags);
5699 }
5700
5701 static void cpu_clock_event_read(struct perf_event *event)
5702 {
5703 cpu_clock_event_update(event);
5704 }
5705
5706 static int cpu_clock_event_init(struct perf_event *event)
5707 {
5708 if (event->attr.type != PERF_TYPE_SOFTWARE)
5709 return -ENOENT;
5710
5711 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
5712 return -ENOENT;
5713
5714 /*
5715 * no branch sampling for software events
5716 */
5717 if (has_branch_stack(event))
5718 return -EOPNOTSUPP;
5719
5720 perf_swevent_init_hrtimer(event);
5721
5722 return 0;
5723 }
5724
5725 static struct pmu perf_cpu_clock = {
5726 .task_ctx_nr = perf_sw_context,
5727
5728 .event_init = cpu_clock_event_init,
5729 .add = cpu_clock_event_add,
5730 .del = cpu_clock_event_del,
5731 .start = cpu_clock_event_start,
5732 .stop = cpu_clock_event_stop,
5733 .read = cpu_clock_event_read,
5734
5735 .event_idx = perf_swevent_event_idx,
5736 };
5737
5738 /*
5739 * Software event: task time clock
5740 */
5741
5742 static void task_clock_event_update(struct perf_event *event, u64 now)
5743 {
5744 u64 prev;
5745 s64 delta;
5746
5747 prev = local64_xchg(&event->hw.prev_count, now);
5748 delta = now - prev;
5749 local64_add(delta, &event->count);
5750 }
5751
5752 static void task_clock_event_start(struct perf_event *event, int flags)
5753 {
5754 local64_set(&event->hw.prev_count, event->ctx->time);
5755 perf_swevent_start_hrtimer(event);
5756 }
5757
5758 static void task_clock_event_stop(struct perf_event *event, int flags)
5759 {
5760 perf_swevent_cancel_hrtimer(event);
5761 task_clock_event_update(event, event->ctx->time);
5762 }
5763
5764 static int task_clock_event_add(struct perf_event *event, int flags)
5765 {
5766 if (flags & PERF_EF_START)
5767 task_clock_event_start(event, flags);
5768
5769 return 0;
5770 }
5771
5772 static void task_clock_event_del(struct perf_event *event, int flags)
5773 {
5774 task_clock_event_stop(event, PERF_EF_UPDATE);
5775 }
5776
5777 static void task_clock_event_read(struct perf_event *event)
5778 {
5779 u64 now = perf_clock();
5780 u64 delta = now - event->ctx->timestamp;
5781 u64 time = event->ctx->time + delta;
5782
5783 task_clock_event_update(event, time);
5784 }
5785
5786 static int task_clock_event_init(struct perf_event *event)
5787 {
5788 if (event->attr.type != PERF_TYPE_SOFTWARE)
5789 return -ENOENT;
5790
5791 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
5792 return -ENOENT;
5793
5794 /*
5795 * no branch sampling for software events
5796 */
5797 if (has_branch_stack(event))
5798 return -EOPNOTSUPP;
5799
5800 perf_swevent_init_hrtimer(event);
5801
5802 return 0;
5803 }
5804
5805 static struct pmu perf_task_clock = {
5806 .task_ctx_nr = perf_sw_context,
5807
5808 .event_init = task_clock_event_init,
5809 .add = task_clock_event_add,
5810 .del = task_clock_event_del,
5811 .start = task_clock_event_start,
5812 .stop = task_clock_event_stop,
5813 .read = task_clock_event_read,
5814
5815 .event_idx = perf_swevent_event_idx,
5816 };
5817
5818 static void perf_pmu_nop_void(struct pmu *pmu)
5819 {
5820 }
5821
5822 static int perf_pmu_nop_int(struct pmu *pmu)
5823 {
5824 return 0;
5825 }
5826
5827 static void perf_pmu_start_txn(struct pmu *pmu)
5828 {
5829 perf_pmu_disable(pmu);
5830 }
5831
5832 static int perf_pmu_commit_txn(struct pmu *pmu)
5833 {
5834 perf_pmu_enable(pmu);
5835 return 0;
5836 }
5837
5838 static void perf_pmu_cancel_txn(struct pmu *pmu)
5839 {
5840 perf_pmu_enable(pmu);
5841 }
5842
5843 static int perf_event_idx_default(struct perf_event *event)
5844 {
5845 return event->hw.idx + 1;
5846 }
5847
5848 /*
5849 * Ensures all contexts with the same task_ctx_nr have the same
5850 * pmu_cpu_context too.
5851 */
5852 static void *find_pmu_context(int ctxn)
5853 {
5854 struct pmu *pmu;
5855
5856 if (ctxn < 0)
5857 return NULL;
5858
5859 list_for_each_entry(pmu, &pmus, entry) {
5860 if (pmu->task_ctx_nr == ctxn)
5861 return pmu->pmu_cpu_context;
5862 }
5863
5864 return NULL;
5865 }
5866
5867 static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
5868 {
5869 int cpu;
5870
5871 for_each_possible_cpu(cpu) {
5872 struct perf_cpu_context *cpuctx;
5873
5874 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
5875
5876 if (cpuctx->unique_pmu == old_pmu)
5877 cpuctx->unique_pmu = pmu;
5878 }
5879 }
5880
5881 static void free_pmu_context(struct pmu *pmu)
5882 {
5883 struct pmu *i;
5884
5885 mutex_lock(&pmus_lock);
5886 /*
5887 * Like a real lame refcount.
5888 */
5889 list_for_each_entry(i, &pmus, entry) {
5890 if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
5891 update_pmu_context(i, pmu);
5892 goto out;
5893 }
5894 }
5895
5896 free_percpu(pmu->pmu_cpu_context);
5897 out:
5898 mutex_unlock(&pmus_lock);
5899 }
5900 static struct idr pmu_idr;
5901
5902 static ssize_t
5903 type_show(struct device *dev, struct device_attribute *attr, char *page)
5904 {
5905 struct pmu *pmu = dev_get_drvdata(dev);
5906
5907 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
5908 }
5909
5910 static struct device_attribute pmu_dev_attrs[] = {
5911 __ATTR_RO(type),
5912 __ATTR_NULL,
5913 };
5914
5915 static int pmu_bus_running;
5916 static struct bus_type pmu_bus = {
5917 .name = "event_source",
5918 .dev_attrs = pmu_dev_attrs,
5919 };
5920
5921 static void pmu_dev_release(struct device *dev)
5922 {
5923 kfree(dev);
5924 }
5925
5926 static int pmu_dev_alloc(struct pmu *pmu)
5927 {
5928 int ret = -ENOMEM;
5929
5930 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
5931 if (!pmu->dev)
5932 goto out;
5933
5934 pmu->dev->groups = pmu->attr_groups;
5935 device_initialize(pmu->dev);
5936 ret = dev_set_name(pmu->dev, "%s", pmu->name);
5937 if (ret)
5938 goto free_dev;
5939
5940 dev_set_drvdata(pmu->dev, pmu);
5941 pmu->dev->bus = &pmu_bus;
5942 pmu->dev->release = pmu_dev_release;
5943 ret = device_add(pmu->dev);
5944 if (ret)
5945 goto free_dev;
5946
5947 out:
5948 return ret;
5949
5950 free_dev:
5951 put_device(pmu->dev);
5952 goto out;
5953 }
5954
5955 static struct lock_class_key cpuctx_mutex;
5956 static struct lock_class_key cpuctx_lock;
5957
5958 int perf_pmu_register(struct pmu *pmu, char *name, int type)
5959 {
5960 int cpu, ret;
5961
5962 mutex_lock(&pmus_lock);
5963 ret = -ENOMEM;
5964 pmu->pmu_disable_count = alloc_percpu(int);
5965 if (!pmu->pmu_disable_count)
5966 goto unlock;
5967
5968 pmu->type = -1;
5969 if (!name)
5970 goto skip_type;
5971 pmu->name = name;
5972
5973 if (type < 0) {
5974 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
5975 if (type < 0) {
5976 ret = type;
5977 goto free_pdc;
5978 }
5979 }
5980 pmu->type = type;
5981
5982 if (pmu_bus_running) {
5983 ret = pmu_dev_alloc(pmu);
5984 if (ret)
5985 goto free_idr;
5986 }
5987
5988 skip_type:
5989 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
5990 if (pmu->pmu_cpu_context)
5991 goto got_cpu_context;
5992
5993 ret = -ENOMEM;
5994 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
5995 if (!pmu->pmu_cpu_context)
5996 goto free_dev;
5997
5998 for_each_possible_cpu(cpu) {
5999 struct perf_cpu_context *cpuctx;
6000
6001 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6002 __perf_event_init_context(&cpuctx->ctx);
6003 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
6004 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
6005 cpuctx->ctx.type = cpu_context;
6006 cpuctx->ctx.pmu = pmu;
6007 cpuctx->jiffies_interval = 1;
6008 INIT_LIST_HEAD(&cpuctx->rotation_list);
6009 cpuctx->unique_pmu = pmu;
6010 }
6011
6012 got_cpu_context:
6013 if (!pmu->start_txn) {
6014 if (pmu->pmu_enable) {
6015 /*
6016 * If we have pmu_enable/pmu_disable calls, install
6017 * transaction stubs that use that to try and batch
6018 * hardware accesses.
6019 */
6020 pmu->start_txn = perf_pmu_start_txn;
6021 pmu->commit_txn = perf_pmu_commit_txn;
6022 pmu->cancel_txn = perf_pmu_cancel_txn;
6023 } else {
6024 pmu->start_txn = perf_pmu_nop_void;
6025 pmu->commit_txn = perf_pmu_nop_int;
6026 pmu->cancel_txn = perf_pmu_nop_void;
6027 }
6028 }
6029
6030 if (!pmu->pmu_enable) {
6031 pmu->pmu_enable = perf_pmu_nop_void;
6032 pmu->pmu_disable = perf_pmu_nop_void;
6033 }
6034
6035 if (!pmu->event_idx)
6036 pmu->event_idx = perf_event_idx_default;
6037
6038 list_add_rcu(&pmu->entry, &pmus);
6039 ret = 0;
6040 unlock:
6041 mutex_unlock(&pmus_lock);
6042
6043 return ret;
6044
6045 free_dev:
6046 device_del(pmu->dev);
6047 put_device(pmu->dev);
6048
6049 free_idr:
6050 if (pmu->type >= PERF_TYPE_MAX)
6051 idr_remove(&pmu_idr, pmu->type);
6052
6053 free_pdc:
6054 free_percpu(pmu->pmu_disable_count);
6055 goto unlock;
6056 }
6057
6058 void perf_pmu_unregister(struct pmu *pmu)
6059 {
6060 mutex_lock(&pmus_lock);
6061 list_del_rcu(&pmu->entry);
6062 mutex_unlock(&pmus_lock);
6063
6064 /*
6065 * We dereference the pmu list under both SRCU and regular RCU, so
6066 * synchronize against both of those.
6067 */
6068 synchronize_srcu(&pmus_srcu);
6069 synchronize_rcu();
6070
6071 free_percpu(pmu->pmu_disable_count);
6072 if (pmu->type >= PERF_TYPE_MAX)
6073 idr_remove(&pmu_idr, pmu->type);
6074 device_del(pmu->dev);
6075 put_device(pmu->dev);
6076 free_pmu_context(pmu);
6077 }
6078
6079 struct pmu *perf_init_event(struct perf_event *event)
6080 {
6081 struct pmu *pmu = NULL;
6082 int idx;
6083 int ret;
6084
6085 idx = srcu_read_lock(&pmus_srcu);
6086
6087 rcu_read_lock();
6088 pmu = idr_find(&pmu_idr, event->attr.type);
6089 rcu_read_unlock();
6090 if (pmu) {
6091 event->pmu = pmu;
6092 ret = pmu->event_init(event);
6093 if (ret)
6094 pmu = ERR_PTR(ret);
6095 goto unlock;
6096 }
6097
6098 list_for_each_entry_rcu(pmu, &pmus, entry) {
6099 event->pmu = pmu;
6100 ret = pmu->event_init(event);
6101 if (!ret)
6102 goto unlock;
6103
6104 if (ret != -ENOENT) {
6105 pmu = ERR_PTR(ret);
6106 goto unlock;
6107 }
6108 }
6109 pmu = ERR_PTR(-ENOENT);
6110 unlock:
6111 srcu_read_unlock(&pmus_srcu, idx);
6112
6113 return pmu;
6114 }
6115
6116 /*
6117 * Allocate and initialize a event structure
6118 */
6119 static struct perf_event *
6120 perf_event_alloc(struct perf_event_attr *attr, int cpu,
6121 struct task_struct *task,
6122 struct perf_event *group_leader,
6123 struct perf_event *parent_event,
6124 perf_overflow_handler_t overflow_handler,
6125 void *context)
6126 {
6127 struct pmu *pmu;
6128 struct perf_event *event;
6129 struct hw_perf_event *hwc;
6130 long err;
6131
6132 if ((unsigned)cpu >= nr_cpu_ids) {
6133 if (!task || cpu != -1)
6134 return ERR_PTR(-EINVAL);
6135 }
6136
6137 event = kzalloc(sizeof(*event), GFP_KERNEL);
6138 if (!event)
6139 return ERR_PTR(-ENOMEM);
6140
6141 /*
6142 * Single events are their own group leaders, with an
6143 * empty sibling list:
6144 */
6145 if (!group_leader)
6146 group_leader = event;
6147
6148 mutex_init(&event->child_mutex);
6149 INIT_LIST_HEAD(&event->child_list);
6150
6151 INIT_LIST_HEAD(&event->group_entry);
6152 INIT_LIST_HEAD(&event->event_entry);
6153 INIT_LIST_HEAD(&event->sibling_list);
6154 INIT_LIST_HEAD(&event->rb_entry);
6155
6156 init_waitqueue_head(&event->waitq);
6157 init_irq_work(&event->pending, perf_pending_event);
6158
6159 mutex_init(&event->mmap_mutex);
6160
6161 atomic_long_set(&event->refcount, 1);
6162 event->cpu = cpu;
6163 event->attr = *attr;
6164 event->group_leader = group_leader;
6165 event->pmu = NULL;
6166 event->oncpu = -1;
6167
6168 event->parent = parent_event;
6169
6170 event->ns = get_pid_ns(task_active_pid_ns(current));
6171 event->id = atomic64_inc_return(&perf_event_id);
6172
6173 event->state = PERF_EVENT_STATE_INACTIVE;
6174
6175 if (task) {
6176 event->attach_state = PERF_ATTACH_TASK;
6177
6178 if (attr->type == PERF_TYPE_TRACEPOINT)
6179 event->hw.tp_target = task;
6180 #ifdef CONFIG_HAVE_HW_BREAKPOINT
6181 /*
6182 * hw_breakpoint is a bit difficult here..
6183 */
6184 else if (attr->type == PERF_TYPE_BREAKPOINT)
6185 event->hw.bp_target = task;
6186 #endif
6187 }
6188
6189 if (!overflow_handler && parent_event) {
6190 overflow_handler = parent_event->overflow_handler;
6191 context = parent_event->overflow_handler_context;
6192 }
6193
6194 event->overflow_handler = overflow_handler;
6195 event->overflow_handler_context = context;
6196
6197 perf_event__state_init(event);
6198
6199 pmu = NULL;
6200
6201 hwc = &event->hw;
6202 hwc->sample_period = attr->sample_period;
6203 if (attr->freq && attr->sample_freq)
6204 hwc->sample_period = 1;
6205 hwc->last_period = hwc->sample_period;
6206
6207 local64_set(&hwc->period_left, hwc->sample_period);
6208
6209 /*
6210 * we currently do not support PERF_FORMAT_GROUP on inherited events
6211 */
6212 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
6213 goto done;
6214
6215 pmu = perf_init_event(event);
6216
6217 done:
6218 err = 0;
6219 if (!pmu)
6220 err = -EINVAL;
6221 else if (IS_ERR(pmu))
6222 err = PTR_ERR(pmu);
6223
6224 if (err) {
6225 if (event->ns)
6226 put_pid_ns(event->ns);
6227 kfree(event);
6228 return ERR_PTR(err);
6229 }
6230
6231 if (!event->parent) {
6232 if (event->attach_state & PERF_ATTACH_TASK)
6233 static_key_slow_inc(&perf_sched_events.key);
6234 if (event->attr.mmap || event->attr.mmap_data)
6235 atomic_inc(&nr_mmap_events);
6236 if (event->attr.comm)
6237 atomic_inc(&nr_comm_events);
6238 if (event->attr.task)
6239 atomic_inc(&nr_task_events);
6240 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
6241 err = get_callchain_buffers();
6242 if (err) {
6243 free_event(event);
6244 return ERR_PTR(err);
6245 }
6246 }
6247 if (has_branch_stack(event)) {
6248 static_key_slow_inc(&perf_sched_events.key);
6249 if (!(event->attach_state & PERF_ATTACH_TASK))
6250 atomic_inc(&per_cpu(perf_branch_stack_events,
6251 event->cpu));
6252 }
6253 }
6254
6255 return event;
6256 }
6257
6258 static int perf_copy_attr(struct perf_event_attr __user *uattr,
6259 struct perf_event_attr *attr)
6260 {
6261 u32 size;
6262 int ret;
6263
6264 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
6265 return -EFAULT;
6266
6267 /*
6268 * zero the full structure, so that a short copy will be nice.
6269 */
6270 memset(attr, 0, sizeof(*attr));
6271
6272 ret = get_user(size, &uattr->size);
6273 if (ret)
6274 return ret;
6275
6276 if (size > PAGE_SIZE) /* silly large */
6277 goto err_size;
6278
6279 if (!size) /* abi compat */
6280 size = PERF_ATTR_SIZE_VER0;
6281
6282 if (size < PERF_ATTR_SIZE_VER0)
6283 goto err_size;
6284
6285 /*
6286 * If we're handed a bigger struct than we know of,
6287 * ensure all the unknown bits are 0 - i.e. new
6288 * user-space does not rely on any kernel feature
6289 * extensions we dont know about yet.
6290 */
6291 if (size > sizeof(*attr)) {
6292 unsigned char __user *addr;
6293 unsigned char __user *end;
6294 unsigned char val;
6295
6296 addr = (void __user *)uattr + sizeof(*attr);
6297 end = (void __user *)uattr + size;
6298
6299 for (; addr < end; addr++) {
6300 ret = get_user(val, addr);
6301 if (ret)
6302 return ret;
6303 if (val)
6304 goto err_size;
6305 }
6306 size = sizeof(*attr);
6307 }
6308
6309 ret = copy_from_user(attr, uattr, size);
6310 if (ret)
6311 return -EFAULT;
6312
6313 if (attr->__reserved_1)
6314 return -EINVAL;
6315
6316 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
6317 return -EINVAL;
6318
6319 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
6320 return -EINVAL;
6321
6322 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
6323 u64 mask = attr->branch_sample_type;
6324
6325 /* only using defined bits */
6326 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
6327 return -EINVAL;
6328
6329 /* at least one branch bit must be set */
6330 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
6331 return -EINVAL;
6332
6333 /* kernel level capture: check permissions */
6334 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
6335 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
6336 return -EACCES;
6337
6338 /* propagate priv level, when not set for branch */
6339 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
6340
6341 /* exclude_kernel checked on syscall entry */
6342 if (!attr->exclude_kernel)
6343 mask |= PERF_SAMPLE_BRANCH_KERNEL;
6344
6345 if (!attr->exclude_user)
6346 mask |= PERF_SAMPLE_BRANCH_USER;
6347
6348 if (!attr->exclude_hv)
6349 mask |= PERF_SAMPLE_BRANCH_HV;
6350 /*
6351 * adjust user setting (for HW filter setup)
6352 */
6353 attr->branch_sample_type = mask;
6354 }
6355 }
6356
6357 if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
6358 ret = perf_reg_validate(attr->sample_regs_user);
6359 if (ret)
6360 return ret;
6361 }
6362
6363 if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
6364 if (!arch_perf_have_user_stack_dump())
6365 return -ENOSYS;
6366
6367 /*
6368 * We have __u32 type for the size, but so far
6369 * we can only use __u16 as maximum due to the
6370 * __u16 sample size limit.
6371 */
6372 if (attr->sample_stack_user >= USHRT_MAX)
6373 ret = -EINVAL;
6374 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
6375 ret = -EINVAL;
6376 }
6377
6378 out:
6379 return ret;
6380
6381 err_size:
6382 put_user(sizeof(*attr), &uattr->size);
6383 ret = -E2BIG;
6384 goto out;
6385 }
6386
6387 static int
6388 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
6389 {
6390 struct ring_buffer *rb = NULL, *old_rb = NULL;
6391 int ret = -EINVAL;
6392
6393 if (!output_event)
6394 goto set;
6395
6396 /* don't allow circular references */
6397 if (event == output_event)
6398 goto out;
6399
6400 /*
6401 * Don't allow cross-cpu buffers
6402 */
6403 if (output_event->cpu != event->cpu)
6404 goto out;
6405
6406 /*
6407 * If its not a per-cpu rb, it must be the same task.
6408 */
6409 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
6410 goto out;
6411
6412 set:
6413 mutex_lock(&event->mmap_mutex);
6414 /* Can't redirect output if we've got an active mmap() */
6415 if (atomic_read(&event->mmap_count))
6416 goto unlock;
6417
6418 if (output_event) {
6419 /* get the rb we want to redirect to */
6420 rb = ring_buffer_get(output_event);
6421 if (!rb)
6422 goto unlock;
6423 }
6424
6425 old_rb = event->rb;
6426 rcu_assign_pointer(event->rb, rb);
6427 if (old_rb)
6428 ring_buffer_detach(event, old_rb);
6429 ret = 0;
6430 unlock:
6431 mutex_unlock(&event->mmap_mutex);
6432
6433 if (old_rb)
6434 ring_buffer_put(old_rb);
6435 out:
6436 return ret;
6437 }
6438
6439 /**
6440 * sys_perf_event_open - open a performance event, associate it to a task/cpu
6441 *
6442 * @attr_uptr: event_id type attributes for monitoring/sampling
6443 * @pid: target pid
6444 * @cpu: target cpu
6445 * @group_fd: group leader event fd
6446 */
6447 SYSCALL_DEFINE5(perf_event_open,
6448 struct perf_event_attr __user *, attr_uptr,
6449 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
6450 {
6451 struct perf_event *group_leader = NULL, *output_event = NULL;
6452 struct perf_event *event, *sibling;
6453 struct perf_event_attr attr;
6454 struct perf_event_context *ctx;
6455 struct file *event_file = NULL;
6456 struct fd group = {NULL, 0};
6457 struct task_struct *task = NULL;
6458 struct pmu *pmu;
6459 int event_fd;
6460 int move_group = 0;
6461 int err;
6462
6463 /* for future expandability... */
6464 if (flags & ~PERF_FLAG_ALL)
6465 return -EINVAL;
6466
6467 err = perf_copy_attr(attr_uptr, &attr);
6468 if (err)
6469 return err;
6470
6471 if (!attr.exclude_kernel) {
6472 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
6473 return -EACCES;
6474 }
6475
6476 if (attr.freq) {
6477 if (attr.sample_freq > sysctl_perf_event_sample_rate)
6478 return -EINVAL;
6479 }
6480
6481 /*
6482 * In cgroup mode, the pid argument is used to pass the fd
6483 * opened to the cgroup directory in cgroupfs. The cpu argument
6484 * designates the cpu on which to monitor threads from that
6485 * cgroup.
6486 */
6487 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
6488 return -EINVAL;
6489
6490 event_fd = get_unused_fd();
6491 if (event_fd < 0)
6492 return event_fd;
6493
6494 if (group_fd != -1) {
6495 err = perf_fget_light(group_fd, &group);
6496 if (err)
6497 goto err_fd;
6498 group_leader = group.file->private_data;
6499 if (flags & PERF_FLAG_FD_OUTPUT)
6500 output_event = group_leader;
6501 if (flags & PERF_FLAG_FD_NO_GROUP)
6502 group_leader = NULL;
6503 }
6504
6505 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
6506 task = find_lively_task_by_vpid(pid);
6507 if (IS_ERR(task)) {
6508 err = PTR_ERR(task);
6509 goto err_group_fd;
6510 }
6511 }
6512
6513 get_online_cpus();
6514
6515 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
6516 NULL, NULL);
6517 if (IS_ERR(event)) {
6518 err = PTR_ERR(event);
6519 goto err_task;
6520 }
6521
6522 if (flags & PERF_FLAG_PID_CGROUP) {
6523 err = perf_cgroup_connect(pid, event, &attr, group_leader);
6524 if (err)
6525 goto err_alloc;
6526 /*
6527 * one more event:
6528 * - that has cgroup constraint on event->cpu
6529 * - that may need work on context switch
6530 */
6531 atomic_inc(&per_cpu(perf_cgroup_events, event->cpu));
6532 static_key_slow_inc(&perf_sched_events.key);
6533 }
6534
6535 /*
6536 * Special case software events and allow them to be part of
6537 * any hardware group.
6538 */
6539 pmu = event->pmu;
6540
6541 if (group_leader &&
6542 (is_software_event(event) != is_software_event(group_leader))) {
6543 if (is_software_event(event)) {
6544 /*
6545 * If event and group_leader are not both a software
6546 * event, and event is, then group leader is not.
6547 *
6548 * Allow the addition of software events to !software
6549 * groups, this is safe because software events never
6550 * fail to schedule.
6551 */
6552 pmu = group_leader->pmu;
6553 } else if (is_software_event(group_leader) &&
6554 (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
6555 /*
6556 * In case the group is a pure software group, and we
6557 * try to add a hardware event, move the whole group to
6558 * the hardware context.
6559 */
6560 move_group = 1;
6561 }
6562 }
6563
6564 /*
6565 * Get the target context (task or percpu):
6566 */
6567 ctx = find_get_context(pmu, task, event->cpu);
6568 if (IS_ERR(ctx)) {
6569 err = PTR_ERR(ctx);
6570 goto err_alloc;
6571 }
6572
6573 if (task) {
6574 put_task_struct(task);
6575 task = NULL;
6576 }
6577
6578 /*
6579 * Look up the group leader (we will attach this event to it):
6580 */
6581 if (group_leader) {
6582 err = -EINVAL;
6583
6584 /*
6585 * Do not allow a recursive hierarchy (this new sibling
6586 * becoming part of another group-sibling):
6587 */
6588 if (group_leader->group_leader != group_leader)
6589 goto err_context;
6590 /*
6591 * Do not allow to attach to a group in a different
6592 * task or CPU context:
6593 */
6594 if (move_group) {
6595 if (group_leader->ctx->type != ctx->type)
6596 goto err_context;
6597 } else {
6598 if (group_leader->ctx != ctx)
6599 goto err_context;
6600 }
6601
6602 /*
6603 * Only a group leader can be exclusive or pinned
6604 */
6605 if (attr.exclusive || attr.pinned)
6606 goto err_context;
6607 }
6608
6609 if (output_event) {
6610 err = perf_event_set_output(event, output_event);
6611 if (err)
6612 goto err_context;
6613 }
6614
6615 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
6616 if (IS_ERR(event_file)) {
6617 err = PTR_ERR(event_file);
6618 goto err_context;
6619 }
6620
6621 if (move_group) {
6622 struct perf_event_context *gctx = group_leader->ctx;
6623
6624 mutex_lock(&gctx->mutex);
6625 perf_remove_from_context(group_leader);
6626
6627 /*
6628 * Removing from the context ends up with disabled
6629 * event. What we want here is event in the initial
6630 * startup state, ready to be add into new context.
6631 */
6632 perf_event__state_init(group_leader);
6633 list_for_each_entry(sibling, &group_leader->sibling_list,
6634 group_entry) {
6635 perf_remove_from_context(sibling);
6636 perf_event__state_init(sibling);
6637 put_ctx(gctx);
6638 }
6639 mutex_unlock(&gctx->mutex);
6640 put_ctx(gctx);
6641 }
6642
6643 WARN_ON_ONCE(ctx->parent_ctx);
6644 mutex_lock(&ctx->mutex);
6645
6646 if (move_group) {
6647 synchronize_rcu();
6648 perf_install_in_context(ctx, group_leader, event->cpu);
6649 get_ctx(ctx);
6650 list_for_each_entry(sibling, &group_leader->sibling_list,
6651 group_entry) {
6652 perf_install_in_context(ctx, sibling, event->cpu);
6653 get_ctx(ctx);
6654 }
6655 }
6656
6657 perf_install_in_context(ctx, event, event->cpu);
6658 ++ctx->generation;
6659 perf_unpin_context(ctx);
6660 mutex_unlock(&ctx->mutex);
6661
6662 put_online_cpus();
6663
6664 event->owner = current;
6665
6666 mutex_lock(&current->perf_event_mutex);
6667 list_add_tail(&event->owner_entry, &current->perf_event_list);
6668 mutex_unlock(&current->perf_event_mutex);
6669
6670 /*
6671 * Precalculate sample_data sizes
6672 */
6673 perf_event__header_size(event);
6674 perf_event__id_header_size(event);
6675
6676 /*
6677 * Drop the reference on the group_event after placing the
6678 * new event on the sibling_list. This ensures destruction
6679 * of the group leader will find the pointer to itself in
6680 * perf_group_detach().
6681 */
6682 fdput(group);
6683 fd_install(event_fd, event_file);
6684 return event_fd;
6685
6686 err_context:
6687 perf_unpin_context(ctx);
6688 put_ctx(ctx);
6689 err_alloc:
6690 free_event(event);
6691 err_task:
6692 put_online_cpus();
6693 if (task)
6694 put_task_struct(task);
6695 err_group_fd:
6696 fdput(group);
6697 err_fd:
6698 put_unused_fd(event_fd);
6699 return err;
6700 }
6701
6702 /**
6703 * perf_event_create_kernel_counter
6704 *
6705 * @attr: attributes of the counter to create
6706 * @cpu: cpu in which the counter is bound
6707 * @task: task to profile (NULL for percpu)
6708 */
6709 struct perf_event *
6710 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
6711 struct task_struct *task,
6712 perf_overflow_handler_t overflow_handler,
6713 void *context)
6714 {
6715 struct perf_event_context *ctx;
6716 struct perf_event *event;
6717 int err;
6718
6719 /*
6720 * Get the target context (task or percpu):
6721 */
6722
6723 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
6724 overflow_handler, context);
6725 if (IS_ERR(event)) {
6726 err = PTR_ERR(event);
6727 goto err;
6728 }
6729
6730 ctx = find_get_context(event->pmu, task, cpu);
6731 if (IS_ERR(ctx)) {
6732 err = PTR_ERR(ctx);
6733 goto err_free;
6734 }
6735
6736 WARN_ON_ONCE(ctx->parent_ctx);
6737 mutex_lock(&ctx->mutex);
6738 perf_install_in_context(ctx, event, cpu);
6739 ++ctx->generation;
6740 perf_unpin_context(ctx);
6741 mutex_unlock(&ctx->mutex);
6742
6743 return event;
6744
6745 err_free:
6746 free_event(event);
6747 err:
6748 return ERR_PTR(err);
6749 }
6750 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
6751
6752 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
6753 {
6754 struct perf_event_context *src_ctx;
6755 struct perf_event_context *dst_ctx;
6756 struct perf_event *event, *tmp;
6757 LIST_HEAD(events);
6758
6759 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
6760 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
6761
6762 mutex_lock(&src_ctx->mutex);
6763 list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
6764 event_entry) {
6765 perf_remove_from_context(event);
6766 put_ctx(src_ctx);
6767 list_add(&event->event_entry, &events);
6768 }
6769 mutex_unlock(&src_ctx->mutex);
6770
6771 synchronize_rcu();
6772
6773 mutex_lock(&dst_ctx->mutex);
6774 list_for_each_entry_safe(event, tmp, &events, event_entry) {
6775 list_del(&event->event_entry);
6776 if (event->state >= PERF_EVENT_STATE_OFF)
6777 event->state = PERF_EVENT_STATE_INACTIVE;
6778 perf_install_in_context(dst_ctx, event, dst_cpu);
6779 get_ctx(dst_ctx);
6780 }
6781 mutex_unlock(&dst_ctx->mutex);
6782 }
6783 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
6784
6785 static void sync_child_event(struct perf_event *child_event,
6786 struct task_struct *child)
6787 {
6788 struct perf_event *parent_event = child_event->parent;
6789 u64 child_val;
6790
6791 if (child_event->attr.inherit_stat)
6792 perf_event_read_event(child_event, child);
6793
6794 child_val = perf_event_count(child_event);
6795
6796 /*
6797 * Add back the child's count to the parent's count:
6798 */
6799 atomic64_add(child_val, &parent_event->child_count);
6800 atomic64_add(child_event->total_time_enabled,
6801 &parent_event->child_total_time_enabled);
6802 atomic64_add(child_event->total_time_running,
6803 &parent_event->child_total_time_running);
6804
6805 /*
6806 * Remove this event from the parent's list
6807 */
6808 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
6809 mutex_lock(&parent_event->child_mutex);
6810 list_del_init(&child_event->child_list);
6811 mutex_unlock(&parent_event->child_mutex);
6812
6813 /*
6814 * Release the parent event, if this was the last
6815 * reference to it.
6816 */
6817 put_event(parent_event);
6818 }
6819
6820 static void
6821 __perf_event_exit_task(struct perf_event *child_event,
6822 struct perf_event_context *child_ctx,
6823 struct task_struct *child)
6824 {
6825 if (child_event->parent) {
6826 raw_spin_lock_irq(&child_ctx->lock);
6827 perf_group_detach(child_event);
6828 raw_spin_unlock_irq(&child_ctx->lock);
6829 }
6830
6831 perf_remove_from_context(child_event);
6832
6833 /*
6834 * It can happen that the parent exits first, and has events
6835 * that are still around due to the child reference. These
6836 * events need to be zapped.
6837 */
6838 if (child_event->parent) {
6839 sync_child_event(child_event, child);
6840 free_event(child_event);
6841 }
6842 }
6843
6844 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
6845 {
6846 struct perf_event *child_event, *tmp;
6847 struct perf_event_context *child_ctx;
6848 unsigned long flags;
6849
6850 if (likely(!child->perf_event_ctxp[ctxn])) {
6851 perf_event_task(child, NULL, 0);
6852 return;
6853 }
6854
6855 local_irq_save(flags);
6856 /*
6857 * We can't reschedule here because interrupts are disabled,
6858 * and either child is current or it is a task that can't be
6859 * scheduled, so we are now safe from rescheduling changing
6860 * our context.
6861 */
6862 child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
6863
6864 /*
6865 * Take the context lock here so that if find_get_context is
6866 * reading child->perf_event_ctxp, we wait until it has
6867 * incremented the context's refcount before we do put_ctx below.
6868 */
6869 raw_spin_lock(&child_ctx->lock);
6870 task_ctx_sched_out(child_ctx);
6871 child->perf_event_ctxp[ctxn] = NULL;
6872 /*
6873 * If this context is a clone; unclone it so it can't get
6874 * swapped to another process while we're removing all
6875 * the events from it.
6876 */
6877 unclone_ctx(child_ctx);
6878 update_context_time(child_ctx);
6879 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
6880
6881 /*
6882 * Report the task dead after unscheduling the events so that we
6883 * won't get any samples after PERF_RECORD_EXIT. We can however still
6884 * get a few PERF_RECORD_READ events.
6885 */
6886 perf_event_task(child, child_ctx, 0);
6887
6888 /*
6889 * We can recurse on the same lock type through:
6890 *
6891 * __perf_event_exit_task()
6892 * sync_child_event()
6893 * put_event()
6894 * mutex_lock(&ctx->mutex)
6895 *
6896 * But since its the parent context it won't be the same instance.
6897 */
6898 mutex_lock(&child_ctx->mutex);
6899
6900 again:
6901 list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
6902 group_entry)
6903 __perf_event_exit_task(child_event, child_ctx, child);
6904
6905 list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
6906 group_entry)
6907 __perf_event_exit_task(child_event, child_ctx, child);
6908
6909 /*
6910 * If the last event was a group event, it will have appended all
6911 * its siblings to the list, but we obtained 'tmp' before that which
6912 * will still point to the list head terminating the iteration.
6913 */
6914 if (!list_empty(&child_ctx->pinned_groups) ||
6915 !list_empty(&child_ctx->flexible_groups))
6916 goto again;
6917
6918 mutex_unlock(&child_ctx->mutex);
6919
6920 put_ctx(child_ctx);
6921 }
6922
6923 /*
6924 * When a child task exits, feed back event values to parent events.
6925 */
6926 void perf_event_exit_task(struct task_struct *child)
6927 {
6928 struct perf_event *event, *tmp;
6929 int ctxn;
6930
6931 mutex_lock(&child->perf_event_mutex);
6932 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
6933 owner_entry) {
6934 list_del_init(&event->owner_entry);
6935
6936 /*
6937 * Ensure the list deletion is visible before we clear
6938 * the owner, closes a race against perf_release() where
6939 * we need to serialize on the owner->perf_event_mutex.
6940 */
6941 smp_wmb();
6942 event->owner = NULL;
6943 }
6944 mutex_unlock(&child->perf_event_mutex);
6945
6946 for_each_task_context_nr(ctxn)
6947 perf_event_exit_task_context(child, ctxn);
6948 }
6949
6950 static void perf_free_event(struct perf_event *event,
6951 struct perf_event_context *ctx)
6952 {
6953 struct perf_event *parent = event->parent;
6954
6955 if (WARN_ON_ONCE(!parent))
6956 return;
6957
6958 mutex_lock(&parent->child_mutex);
6959 list_del_init(&event->child_list);
6960 mutex_unlock(&parent->child_mutex);
6961
6962 put_event(parent);
6963
6964 perf_group_detach(event);
6965 list_del_event(event, ctx);
6966 free_event(event);
6967 }
6968
6969 /*
6970 * free an unexposed, unused context as created by inheritance by
6971 * perf_event_init_task below, used by fork() in case of fail.
6972 */
6973 void perf_event_free_task(struct task_struct *task)
6974 {
6975 struct perf_event_context *ctx;
6976 struct perf_event *event, *tmp;
6977 int ctxn;
6978
6979 for_each_task_context_nr(ctxn) {
6980 ctx = task->perf_event_ctxp[ctxn];
6981 if (!ctx)
6982 continue;
6983
6984 mutex_lock(&ctx->mutex);
6985 again:
6986 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
6987 group_entry)
6988 perf_free_event(event, ctx);
6989
6990 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
6991 group_entry)
6992 perf_free_event(event, ctx);
6993
6994 if (!list_empty(&ctx->pinned_groups) ||
6995 !list_empty(&ctx->flexible_groups))
6996 goto again;
6997
6998 mutex_unlock(&ctx->mutex);
6999
7000 put_ctx(ctx);
7001 }
7002 }
7003
7004 void perf_event_delayed_put(struct task_struct *task)
7005 {
7006 int ctxn;
7007
7008 for_each_task_context_nr(ctxn)
7009 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
7010 }
7011
7012 /*
7013 * inherit a event from parent task to child task:
7014 */
7015 static struct perf_event *
7016 inherit_event(struct perf_event *parent_event,
7017 struct task_struct *parent,
7018 struct perf_event_context *parent_ctx,
7019 struct task_struct *child,
7020 struct perf_event *group_leader,
7021 struct perf_event_context *child_ctx)
7022 {
7023 struct perf_event *child_event;
7024 unsigned long flags;
7025
7026 /*
7027 * Instead of creating recursive hierarchies of events,
7028 * we link inherited events back to the original parent,
7029 * which has a filp for sure, which we use as the reference
7030 * count:
7031 */
7032 if (parent_event->parent)
7033 parent_event = parent_event->parent;
7034
7035 child_event = perf_event_alloc(&parent_event->attr,
7036 parent_event->cpu,
7037 child,
7038 group_leader, parent_event,
7039 NULL, NULL);
7040 if (IS_ERR(child_event))
7041 return child_event;
7042
7043 if (!atomic_long_inc_not_zero(&parent_event->refcount)) {
7044 free_event(child_event);
7045 return NULL;
7046 }
7047
7048 get_ctx(child_ctx);
7049
7050 /*
7051 * Make the child state follow the state of the parent event,
7052 * not its attr.disabled bit. We hold the parent's mutex,
7053 * so we won't race with perf_event_{en, dis}able_family.
7054 */
7055 if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
7056 child_event->state = PERF_EVENT_STATE_INACTIVE;
7057 else
7058 child_event->state = PERF_EVENT_STATE_OFF;
7059
7060 if (parent_event->attr.freq) {
7061 u64 sample_period = parent_event->hw.sample_period;
7062 struct hw_perf_event *hwc = &child_event->hw;
7063
7064 hwc->sample_period = sample_period;
7065 hwc->last_period = sample_period;
7066
7067 local64_set(&hwc->period_left, sample_period);
7068 }
7069
7070 child_event->ctx = child_ctx;
7071 child_event->overflow_handler = parent_event->overflow_handler;
7072 child_event->overflow_handler_context
7073 = parent_event->overflow_handler_context;
7074
7075 /*
7076 * Precalculate sample_data sizes
7077 */
7078 perf_event__header_size(child_event);
7079 perf_event__id_header_size(child_event);
7080
7081 /*
7082 * Link it up in the child's context:
7083 */
7084 raw_spin_lock_irqsave(&child_ctx->lock, flags);
7085 add_event_to_ctx(child_event, child_ctx);
7086 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
7087
7088 /*
7089 * Link this into the parent event's child list
7090 */
7091 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
7092 mutex_lock(&parent_event->child_mutex);
7093 list_add_tail(&child_event->child_list, &parent_event->child_list);
7094 mutex_unlock(&parent_event->child_mutex);
7095
7096 return child_event;
7097 }
7098
7099 static int inherit_group(struct perf_event *parent_event,
7100 struct task_struct *parent,
7101 struct perf_event_context *parent_ctx,
7102 struct task_struct *child,
7103 struct perf_event_context *child_ctx)
7104 {
7105 struct perf_event *leader;
7106 struct perf_event *sub;
7107 struct perf_event *child_ctr;
7108
7109 leader = inherit_event(parent_event, parent, parent_ctx,
7110 child, NULL, child_ctx);
7111 if (IS_ERR(leader))
7112 return PTR_ERR(leader);
7113 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
7114 child_ctr = inherit_event(sub, parent, parent_ctx,
7115 child, leader, child_ctx);
7116 if (IS_ERR(child_ctr))
7117 return PTR_ERR(child_ctr);
7118 }
7119 return 0;
7120 }
7121
7122 static int
7123 inherit_task_group(struct perf_event *event, struct task_struct *parent,
7124 struct perf_event_context *parent_ctx,
7125 struct task_struct *child, int ctxn,
7126 int *inherited_all)
7127 {
7128 int ret;
7129 struct perf_event_context *child_ctx;
7130
7131 if (!event->attr.inherit) {
7132 *inherited_all = 0;
7133 return 0;
7134 }
7135
7136 child_ctx = child->perf_event_ctxp[ctxn];
7137 if (!child_ctx) {
7138 /*
7139 * This is executed from the parent task context, so
7140 * inherit events that have been marked for cloning.
7141 * First allocate and initialize a context for the
7142 * child.
7143 */
7144
7145 child_ctx = alloc_perf_context(event->pmu, child);
7146 if (!child_ctx)
7147 return -ENOMEM;
7148
7149 child->perf_event_ctxp[ctxn] = child_ctx;
7150 }
7151
7152 ret = inherit_group(event, parent, parent_ctx,
7153 child, child_ctx);
7154
7155 if (ret)
7156 *inherited_all = 0;
7157
7158 return ret;
7159 }
7160
7161 /*
7162 * Initialize the perf_event context in task_struct
7163 */
7164 int perf_event_init_context(struct task_struct *child, int ctxn)
7165 {
7166 struct perf_event_context *child_ctx, *parent_ctx;
7167 struct perf_event_context *cloned_ctx;
7168 struct perf_event *event;
7169 struct task_struct *parent = current;
7170 int inherited_all = 1;
7171 unsigned long flags;
7172 int ret = 0;
7173
7174 if (likely(!parent->perf_event_ctxp[ctxn]))
7175 return 0;
7176
7177 /*
7178 * If the parent's context is a clone, pin it so it won't get
7179 * swapped under us.
7180 */
7181 parent_ctx = perf_pin_task_context(parent, ctxn);
7182
7183 /*
7184 * No need to check if parent_ctx != NULL here; since we saw
7185 * it non-NULL earlier, the only reason for it to become NULL
7186 * is if we exit, and since we're currently in the middle of
7187 * a fork we can't be exiting at the same time.
7188 */
7189
7190 /*
7191 * Lock the parent list. No need to lock the child - not PID
7192 * hashed yet and not running, so nobody can access it.
7193 */
7194 mutex_lock(&parent_ctx->mutex);
7195
7196 /*
7197 * We dont have to disable NMIs - we are only looking at
7198 * the list, not manipulating it:
7199 */
7200 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
7201 ret = inherit_task_group(event, parent, parent_ctx,
7202 child, ctxn, &inherited_all);
7203 if (ret)
7204 break;
7205 }
7206
7207 /*
7208 * We can't hold ctx->lock when iterating the ->flexible_group list due
7209 * to allocations, but we need to prevent rotation because
7210 * rotate_ctx() will change the list from interrupt context.
7211 */
7212 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
7213 parent_ctx->rotate_disable = 1;
7214 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
7215
7216 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
7217 ret = inherit_task_group(event, parent, parent_ctx,
7218 child, ctxn, &inherited_all);
7219 if (ret)
7220 break;
7221 }
7222
7223 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
7224 parent_ctx->rotate_disable = 0;
7225
7226 child_ctx = child->perf_event_ctxp[ctxn];
7227
7228 if (child_ctx && inherited_all) {
7229 /*
7230 * Mark the child context as a clone of the parent
7231 * context, or of whatever the parent is a clone of.
7232 *
7233 * Note that if the parent is a clone, the holding of
7234 * parent_ctx->lock avoids it from being uncloned.
7235 */
7236 cloned_ctx = parent_ctx->parent_ctx;
7237 if (cloned_ctx) {
7238 child_ctx->parent_ctx = cloned_ctx;
7239 child_ctx->parent_gen = parent_ctx->parent_gen;
7240 } else {
7241 child_ctx->parent_ctx = parent_ctx;
7242 child_ctx->parent_gen = parent_ctx->generation;
7243 }
7244 get_ctx(child_ctx->parent_ctx);
7245 }
7246
7247 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
7248 mutex_unlock(&parent_ctx->mutex);
7249
7250 perf_unpin_context(parent_ctx);
7251 put_ctx(parent_ctx);
7252
7253 return ret;
7254 }
7255
7256 /*
7257 * Initialize the perf_event context in task_struct
7258 */
7259 int perf_event_init_task(struct task_struct *child)
7260 {
7261 int ctxn, ret;
7262
7263 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
7264 mutex_init(&child->perf_event_mutex);
7265 INIT_LIST_HEAD(&child->perf_event_list);
7266
7267 for_each_task_context_nr(ctxn) {
7268 ret = perf_event_init_context(child, ctxn);
7269 if (ret)
7270 return ret;
7271 }
7272
7273 return 0;
7274 }
7275
7276 static void __init perf_event_init_all_cpus(void)
7277 {
7278 struct swevent_htable *swhash;
7279 int cpu;
7280
7281 for_each_possible_cpu(cpu) {
7282 swhash = &per_cpu(swevent_htable, cpu);
7283 mutex_init(&swhash->hlist_mutex);
7284 INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
7285 }
7286 }
7287
7288 static void __cpuinit perf_event_init_cpu(int cpu)
7289 {
7290 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7291
7292 mutex_lock(&swhash->hlist_mutex);
7293 if (swhash->hlist_refcount > 0) {
7294 struct swevent_hlist *hlist;
7295
7296 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
7297 WARN_ON(!hlist);
7298 rcu_assign_pointer(swhash->swevent_hlist, hlist);
7299 }
7300 mutex_unlock(&swhash->hlist_mutex);
7301 }
7302
7303 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
7304 static void perf_pmu_rotate_stop(struct pmu *pmu)
7305 {
7306 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
7307
7308 WARN_ON(!irqs_disabled());
7309
7310 list_del_init(&cpuctx->rotation_list);
7311 }
7312
7313 static void __perf_event_exit_context(void *__info)
7314 {
7315 struct perf_event_context *ctx = __info;
7316 struct perf_event *event, *tmp;
7317
7318 perf_pmu_rotate_stop(ctx->pmu);
7319
7320 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
7321 __perf_remove_from_context(event);
7322 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
7323 __perf_remove_from_context(event);
7324 }
7325
7326 static void perf_event_exit_cpu_context(int cpu)
7327 {
7328 struct perf_event_context *ctx;
7329 struct pmu *pmu;
7330 int idx;
7331
7332 idx = srcu_read_lock(&pmus_srcu);
7333 list_for_each_entry_rcu(pmu, &pmus, entry) {
7334 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
7335
7336 mutex_lock(&ctx->mutex);
7337 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
7338 mutex_unlock(&ctx->mutex);
7339 }
7340 srcu_read_unlock(&pmus_srcu, idx);
7341 }
7342
7343 static void perf_event_exit_cpu(int cpu)
7344 {
7345 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7346
7347 mutex_lock(&swhash->hlist_mutex);
7348 swevent_hlist_release(swhash);
7349 mutex_unlock(&swhash->hlist_mutex);
7350
7351 perf_event_exit_cpu_context(cpu);
7352 }
7353 #else
7354 static inline void perf_event_exit_cpu(int cpu) { }
7355 #endif
7356
7357 static int
7358 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
7359 {
7360 int cpu;
7361
7362 for_each_online_cpu(cpu)
7363 perf_event_exit_cpu(cpu);
7364
7365 return NOTIFY_OK;
7366 }
7367
7368 /*
7369 * Run the perf reboot notifier at the very last possible moment so that
7370 * the generic watchdog code runs as long as possible.
7371 */
7372 static struct notifier_block perf_reboot_notifier = {
7373 .notifier_call = perf_reboot,
7374 .priority = INT_MIN,
7375 };
7376
7377 static int __cpuinit
7378 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
7379 {
7380 unsigned int cpu = (long)hcpu;
7381
7382 switch (action & ~CPU_TASKS_FROZEN) {
7383
7384 case CPU_UP_PREPARE:
7385 case CPU_DOWN_FAILED:
7386 perf_event_init_cpu(cpu);
7387 break;
7388
7389 case CPU_UP_CANCELED:
7390 case CPU_DOWN_PREPARE:
7391 perf_event_exit_cpu(cpu);
7392 break;
7393
7394 default:
7395 break;
7396 }
7397
7398 return NOTIFY_OK;
7399 }
7400
7401 void __init perf_event_init(void)
7402 {
7403 int ret;
7404
7405 idr_init(&pmu_idr);
7406
7407 perf_event_init_all_cpus();
7408 init_srcu_struct(&pmus_srcu);
7409 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
7410 perf_pmu_register(&perf_cpu_clock, NULL, -1);
7411 perf_pmu_register(&perf_task_clock, NULL, -1);
7412 perf_tp_register();
7413 perf_cpu_notifier(perf_cpu_notify);
7414 register_reboot_notifier(&perf_reboot_notifier);
7415
7416 ret = init_hw_breakpoint();
7417 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
7418
7419 /* do not patch jump label more than once per second */
7420 jump_label_rate_limit(&perf_sched_events, HZ);
7421
7422 /*
7423 * Build time assertion that we keep the data_head at the intended
7424 * location. IOW, validation we got the __reserved[] size right.
7425 */
7426 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
7427 != 1024);
7428 }
7429
7430 static int __init perf_event_sysfs_init(void)
7431 {
7432 struct pmu *pmu;
7433 int ret;
7434
7435 mutex_lock(&pmus_lock);
7436
7437 ret = bus_register(&pmu_bus);
7438 if (ret)
7439 goto unlock;
7440
7441 list_for_each_entry(pmu, &pmus, entry) {
7442 if (!pmu->name || pmu->type < 0)
7443 continue;
7444
7445 ret = pmu_dev_alloc(pmu);
7446 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
7447 }
7448 pmu_bus_running = 1;
7449 ret = 0;
7450
7451 unlock:
7452 mutex_unlock(&pmus_lock);
7453
7454 return ret;
7455 }
7456 device_initcall(perf_event_sysfs_init);
7457
7458 #ifdef CONFIG_CGROUP_PERF
7459 static struct cgroup_subsys_state *perf_cgroup_css_alloc(struct cgroup *cont)
7460 {
7461 struct perf_cgroup *jc;
7462
7463 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
7464 if (!jc)
7465 return ERR_PTR(-ENOMEM);
7466
7467 jc->info = alloc_percpu(struct perf_cgroup_info);
7468 if (!jc->info) {
7469 kfree(jc);
7470 return ERR_PTR(-ENOMEM);
7471 }
7472
7473 return &jc->css;
7474 }
7475
7476 static void perf_cgroup_css_free(struct cgroup *cont)
7477 {
7478 struct perf_cgroup *jc;
7479 jc = container_of(cgroup_subsys_state(cont, perf_subsys_id),
7480 struct perf_cgroup, css);
7481 free_percpu(jc->info);
7482 kfree(jc);
7483 }
7484
7485 static int __perf_cgroup_move(void *info)
7486 {
7487 struct task_struct *task = info;
7488 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
7489 return 0;
7490 }
7491
7492 static void perf_cgroup_attach(struct cgroup *cgrp, struct cgroup_taskset *tset)
7493 {
7494 struct task_struct *task;
7495
7496 cgroup_taskset_for_each(task, cgrp, tset)
7497 task_function_call(task, __perf_cgroup_move, task);
7498 }
7499
7500 static void perf_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp,
7501 struct task_struct *task)
7502 {
7503 /*
7504 * cgroup_exit() is called in the copy_process() failure path.
7505 * Ignore this case since the task hasn't ran yet, this avoids
7506 * trying to poke a half freed task state from generic code.
7507 */
7508 if (!(task->flags & PF_EXITING))
7509 return;
7510
7511 task_function_call(task, __perf_cgroup_move, task);
7512 }
7513
7514 struct cgroup_subsys perf_subsys = {
7515 .name = "perf_event",
7516 .subsys_id = perf_subsys_id,
7517 .css_alloc = perf_cgroup_css_alloc,
7518 .css_free = perf_cgroup_css_free,
7519 .exit = perf_cgroup_exit,
7520 .attach = perf_cgroup_attach,
7521 };
7522 #endif /* CONFIG_CGROUP_PERF */
This page took 0.26632 seconds and 5 git commands to generate.