c09767f7db3e20e4a510c7a51fba7d662e967659
[deliverable/linux.git] / kernel / events / core.c
1 /*
2 * Performance events core code:
3 *
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8 *
9 * For licensing details see kernel-base/COPYING
10 */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/sysfs.h>
22 #include <linux/dcache.h>
23 #include <linux/percpu.h>
24 #include <linux/ptrace.h>
25 #include <linux/reboot.h>
26 #include <linux/vmstat.h>
27 #include <linux/device.h>
28 #include <linux/vmalloc.h>
29 #include <linux/hardirq.h>
30 #include <linux/rculist.h>
31 #include <linux/uaccess.h>
32 #include <linux/syscalls.h>
33 #include <linux/anon_inodes.h>
34 #include <linux/kernel_stat.h>
35 #include <linux/perf_event.h>
36 #include <linux/ftrace_event.h>
37 #include <linux/hw_breakpoint.h>
38
39 #include <asm/irq_regs.h>
40
41 struct remote_function_call {
42 struct task_struct *p;
43 int (*func)(void *info);
44 void *info;
45 int ret;
46 };
47
48 static void remote_function(void *data)
49 {
50 struct remote_function_call *tfc = data;
51 struct task_struct *p = tfc->p;
52
53 if (p) {
54 tfc->ret = -EAGAIN;
55 if (task_cpu(p) != smp_processor_id() || !task_curr(p))
56 return;
57 }
58
59 tfc->ret = tfc->func(tfc->info);
60 }
61
62 /**
63 * task_function_call - call a function on the cpu on which a task runs
64 * @p: the task to evaluate
65 * @func: the function to be called
66 * @info: the function call argument
67 *
68 * Calls the function @func when the task is currently running. This might
69 * be on the current CPU, which just calls the function directly
70 *
71 * returns: @func return value, or
72 * -ESRCH - when the process isn't running
73 * -EAGAIN - when the process moved away
74 */
75 static int
76 task_function_call(struct task_struct *p, int (*func) (void *info), void *info)
77 {
78 struct remote_function_call data = {
79 .p = p,
80 .func = func,
81 .info = info,
82 .ret = -ESRCH, /* No such (running) process */
83 };
84
85 if (task_curr(p))
86 smp_call_function_single(task_cpu(p), remote_function, &data, 1);
87
88 return data.ret;
89 }
90
91 /**
92 * cpu_function_call - call a function on the cpu
93 * @func: the function to be called
94 * @info: the function call argument
95 *
96 * Calls the function @func on the remote cpu.
97 *
98 * returns: @func return value or -ENXIO when the cpu is offline
99 */
100 static int cpu_function_call(int cpu, int (*func) (void *info), void *info)
101 {
102 struct remote_function_call data = {
103 .p = NULL,
104 .func = func,
105 .info = info,
106 .ret = -ENXIO, /* No such CPU */
107 };
108
109 smp_call_function_single(cpu, remote_function, &data, 1);
110
111 return data.ret;
112 }
113
114 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
115 PERF_FLAG_FD_OUTPUT |\
116 PERF_FLAG_PID_CGROUP)
117
118 enum event_type_t {
119 EVENT_FLEXIBLE = 0x1,
120 EVENT_PINNED = 0x2,
121 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
122 };
123
124 /*
125 * perf_sched_events : >0 events exist
126 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
127 */
128 struct jump_label_key perf_sched_events __read_mostly;
129 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
130
131 static atomic_t nr_mmap_events __read_mostly;
132 static atomic_t nr_comm_events __read_mostly;
133 static atomic_t nr_task_events __read_mostly;
134
135 static LIST_HEAD(pmus);
136 static DEFINE_MUTEX(pmus_lock);
137 static struct srcu_struct pmus_srcu;
138
139 /*
140 * perf event paranoia level:
141 * -1 - not paranoid at all
142 * 0 - disallow raw tracepoint access for unpriv
143 * 1 - disallow cpu events for unpriv
144 * 2 - disallow kernel profiling for unpriv
145 */
146 int sysctl_perf_event_paranoid __read_mostly = 1;
147
148 /* Minimum for 512 kiB + 1 user control page */
149 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
150
151 /*
152 * max perf event sample rate
153 */
154 #define DEFAULT_MAX_SAMPLE_RATE 100000
155 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
156 static int max_samples_per_tick __read_mostly =
157 DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
158
159 int perf_proc_update_handler(struct ctl_table *table, int write,
160 void __user *buffer, size_t *lenp,
161 loff_t *ppos)
162 {
163 int ret = proc_dointvec(table, write, buffer, lenp, ppos);
164
165 if (ret || !write)
166 return ret;
167
168 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
169
170 return 0;
171 }
172
173 static atomic64_t perf_event_id;
174
175 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
176 enum event_type_t event_type);
177
178 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
179 enum event_type_t event_type,
180 struct task_struct *task);
181
182 static void update_context_time(struct perf_event_context *ctx);
183 static u64 perf_event_time(struct perf_event *event);
184
185 void __weak perf_event_print_debug(void) { }
186
187 extern __weak const char *perf_pmu_name(void)
188 {
189 return "pmu";
190 }
191
192 static inline u64 perf_clock(void)
193 {
194 return local_clock();
195 }
196
197 static inline struct perf_cpu_context *
198 __get_cpu_context(struct perf_event_context *ctx)
199 {
200 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
201 }
202
203 #ifdef CONFIG_CGROUP_PERF
204
205 /*
206 * Must ensure cgroup is pinned (css_get) before calling
207 * this function. In other words, we cannot call this function
208 * if there is no cgroup event for the current CPU context.
209 */
210 static inline struct perf_cgroup *
211 perf_cgroup_from_task(struct task_struct *task)
212 {
213 return container_of(task_subsys_state(task, perf_subsys_id),
214 struct perf_cgroup, css);
215 }
216
217 static inline bool
218 perf_cgroup_match(struct perf_event *event)
219 {
220 struct perf_event_context *ctx = event->ctx;
221 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
222
223 return !event->cgrp || event->cgrp == cpuctx->cgrp;
224 }
225
226 static inline void perf_get_cgroup(struct perf_event *event)
227 {
228 css_get(&event->cgrp->css);
229 }
230
231 static inline void perf_put_cgroup(struct perf_event *event)
232 {
233 css_put(&event->cgrp->css);
234 }
235
236 static inline void perf_detach_cgroup(struct perf_event *event)
237 {
238 perf_put_cgroup(event);
239 event->cgrp = NULL;
240 }
241
242 static inline int is_cgroup_event(struct perf_event *event)
243 {
244 return event->cgrp != NULL;
245 }
246
247 static inline u64 perf_cgroup_event_time(struct perf_event *event)
248 {
249 struct perf_cgroup_info *t;
250
251 t = per_cpu_ptr(event->cgrp->info, event->cpu);
252 return t->time;
253 }
254
255 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
256 {
257 struct perf_cgroup_info *info;
258 u64 now;
259
260 now = perf_clock();
261
262 info = this_cpu_ptr(cgrp->info);
263
264 info->time += now - info->timestamp;
265 info->timestamp = now;
266 }
267
268 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
269 {
270 struct perf_cgroup *cgrp_out = cpuctx->cgrp;
271 if (cgrp_out)
272 __update_cgrp_time(cgrp_out);
273 }
274
275 static inline void update_cgrp_time_from_event(struct perf_event *event)
276 {
277 struct perf_cgroup *cgrp;
278
279 /*
280 * ensure we access cgroup data only when needed and
281 * when we know the cgroup is pinned (css_get)
282 */
283 if (!is_cgroup_event(event))
284 return;
285
286 cgrp = perf_cgroup_from_task(current);
287 /*
288 * Do not update time when cgroup is not active
289 */
290 if (cgrp == event->cgrp)
291 __update_cgrp_time(event->cgrp);
292 }
293
294 static inline void
295 perf_cgroup_set_timestamp(struct task_struct *task,
296 struct perf_event_context *ctx)
297 {
298 struct perf_cgroup *cgrp;
299 struct perf_cgroup_info *info;
300
301 /*
302 * ctx->lock held by caller
303 * ensure we do not access cgroup data
304 * unless we have the cgroup pinned (css_get)
305 */
306 if (!task || !ctx->nr_cgroups)
307 return;
308
309 cgrp = perf_cgroup_from_task(task);
310 info = this_cpu_ptr(cgrp->info);
311 info->timestamp = ctx->timestamp;
312 }
313
314 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
315 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
316
317 /*
318 * reschedule events based on the cgroup constraint of task.
319 *
320 * mode SWOUT : schedule out everything
321 * mode SWIN : schedule in based on cgroup for next
322 */
323 void perf_cgroup_switch(struct task_struct *task, int mode)
324 {
325 struct perf_cpu_context *cpuctx;
326 struct pmu *pmu;
327 unsigned long flags;
328
329 /*
330 * disable interrupts to avoid geting nr_cgroup
331 * changes via __perf_event_disable(). Also
332 * avoids preemption.
333 */
334 local_irq_save(flags);
335
336 /*
337 * we reschedule only in the presence of cgroup
338 * constrained events.
339 */
340 rcu_read_lock();
341
342 list_for_each_entry_rcu(pmu, &pmus, entry) {
343
344 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
345
346 perf_pmu_disable(cpuctx->ctx.pmu);
347
348 /*
349 * perf_cgroup_events says at least one
350 * context on this CPU has cgroup events.
351 *
352 * ctx->nr_cgroups reports the number of cgroup
353 * events for a context.
354 */
355 if (cpuctx->ctx.nr_cgroups > 0) {
356
357 if (mode & PERF_CGROUP_SWOUT) {
358 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
359 /*
360 * must not be done before ctxswout due
361 * to event_filter_match() in event_sched_out()
362 */
363 cpuctx->cgrp = NULL;
364 }
365
366 if (mode & PERF_CGROUP_SWIN) {
367 WARN_ON_ONCE(cpuctx->cgrp);
368 /* set cgrp before ctxsw in to
369 * allow event_filter_match() to not
370 * have to pass task around
371 */
372 cpuctx->cgrp = perf_cgroup_from_task(task);
373 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
374 }
375 }
376
377 perf_pmu_enable(cpuctx->ctx.pmu);
378 }
379
380 rcu_read_unlock();
381
382 local_irq_restore(flags);
383 }
384
385 static inline void perf_cgroup_sched_out(struct task_struct *task)
386 {
387 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
388 }
389
390 static inline void perf_cgroup_sched_in(struct task_struct *task)
391 {
392 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
393 }
394
395 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
396 struct perf_event_attr *attr,
397 struct perf_event *group_leader)
398 {
399 struct perf_cgroup *cgrp;
400 struct cgroup_subsys_state *css;
401 struct file *file;
402 int ret = 0, fput_needed;
403
404 file = fget_light(fd, &fput_needed);
405 if (!file)
406 return -EBADF;
407
408 css = cgroup_css_from_dir(file, perf_subsys_id);
409 if (IS_ERR(css)) {
410 ret = PTR_ERR(css);
411 goto out;
412 }
413
414 cgrp = container_of(css, struct perf_cgroup, css);
415 event->cgrp = cgrp;
416
417 /* must be done before we fput() the file */
418 perf_get_cgroup(event);
419
420 /*
421 * all events in a group must monitor
422 * the same cgroup because a task belongs
423 * to only one perf cgroup at a time
424 */
425 if (group_leader && group_leader->cgrp != cgrp) {
426 perf_detach_cgroup(event);
427 ret = -EINVAL;
428 }
429 out:
430 fput_light(file, fput_needed);
431 return ret;
432 }
433
434 static inline void
435 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
436 {
437 struct perf_cgroup_info *t;
438 t = per_cpu_ptr(event->cgrp->info, event->cpu);
439 event->shadow_ctx_time = now - t->timestamp;
440 }
441
442 static inline void
443 perf_cgroup_defer_enabled(struct perf_event *event)
444 {
445 /*
446 * when the current task's perf cgroup does not match
447 * the event's, we need to remember to call the
448 * perf_mark_enable() function the first time a task with
449 * a matching perf cgroup is scheduled in.
450 */
451 if (is_cgroup_event(event) && !perf_cgroup_match(event))
452 event->cgrp_defer_enabled = 1;
453 }
454
455 static inline void
456 perf_cgroup_mark_enabled(struct perf_event *event,
457 struct perf_event_context *ctx)
458 {
459 struct perf_event *sub;
460 u64 tstamp = perf_event_time(event);
461
462 if (!event->cgrp_defer_enabled)
463 return;
464
465 event->cgrp_defer_enabled = 0;
466
467 event->tstamp_enabled = tstamp - event->total_time_enabled;
468 list_for_each_entry(sub, &event->sibling_list, group_entry) {
469 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
470 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
471 sub->cgrp_defer_enabled = 0;
472 }
473 }
474 }
475 #else /* !CONFIG_CGROUP_PERF */
476
477 static inline bool
478 perf_cgroup_match(struct perf_event *event)
479 {
480 return true;
481 }
482
483 static inline void perf_detach_cgroup(struct perf_event *event)
484 {}
485
486 static inline int is_cgroup_event(struct perf_event *event)
487 {
488 return 0;
489 }
490
491 static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
492 {
493 return 0;
494 }
495
496 static inline void update_cgrp_time_from_event(struct perf_event *event)
497 {
498 }
499
500 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
501 {
502 }
503
504 static inline void perf_cgroup_sched_out(struct task_struct *task)
505 {
506 }
507
508 static inline void perf_cgroup_sched_in(struct task_struct *task)
509 {
510 }
511
512 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
513 struct perf_event_attr *attr,
514 struct perf_event *group_leader)
515 {
516 return -EINVAL;
517 }
518
519 static inline void
520 perf_cgroup_set_timestamp(struct task_struct *task,
521 struct perf_event_context *ctx)
522 {
523 }
524
525 void
526 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
527 {
528 }
529
530 static inline void
531 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
532 {
533 }
534
535 static inline u64 perf_cgroup_event_time(struct perf_event *event)
536 {
537 return 0;
538 }
539
540 static inline void
541 perf_cgroup_defer_enabled(struct perf_event *event)
542 {
543 }
544
545 static inline void
546 perf_cgroup_mark_enabled(struct perf_event *event,
547 struct perf_event_context *ctx)
548 {
549 }
550 #endif
551
552 void perf_pmu_disable(struct pmu *pmu)
553 {
554 int *count = this_cpu_ptr(pmu->pmu_disable_count);
555 if (!(*count)++)
556 pmu->pmu_disable(pmu);
557 }
558
559 void perf_pmu_enable(struct pmu *pmu)
560 {
561 int *count = this_cpu_ptr(pmu->pmu_disable_count);
562 if (!--(*count))
563 pmu->pmu_enable(pmu);
564 }
565
566 static DEFINE_PER_CPU(struct list_head, rotation_list);
567
568 /*
569 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
570 * because they're strictly cpu affine and rotate_start is called with IRQs
571 * disabled, while rotate_context is called from IRQ context.
572 */
573 static void perf_pmu_rotate_start(struct pmu *pmu)
574 {
575 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
576 struct list_head *head = &__get_cpu_var(rotation_list);
577
578 WARN_ON(!irqs_disabled());
579
580 if (list_empty(&cpuctx->rotation_list))
581 list_add(&cpuctx->rotation_list, head);
582 }
583
584 static void get_ctx(struct perf_event_context *ctx)
585 {
586 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
587 }
588
589 static void put_ctx(struct perf_event_context *ctx)
590 {
591 if (atomic_dec_and_test(&ctx->refcount)) {
592 if (ctx->parent_ctx)
593 put_ctx(ctx->parent_ctx);
594 if (ctx->task)
595 put_task_struct(ctx->task);
596 kfree_rcu(ctx, rcu_head);
597 }
598 }
599
600 static void unclone_ctx(struct perf_event_context *ctx)
601 {
602 if (ctx->parent_ctx) {
603 put_ctx(ctx->parent_ctx);
604 ctx->parent_ctx = NULL;
605 }
606 }
607
608 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
609 {
610 /*
611 * only top level events have the pid namespace they were created in
612 */
613 if (event->parent)
614 event = event->parent;
615
616 return task_tgid_nr_ns(p, event->ns);
617 }
618
619 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
620 {
621 /*
622 * only top level events have the pid namespace they were created in
623 */
624 if (event->parent)
625 event = event->parent;
626
627 return task_pid_nr_ns(p, event->ns);
628 }
629
630 /*
631 * If we inherit events we want to return the parent event id
632 * to userspace.
633 */
634 static u64 primary_event_id(struct perf_event *event)
635 {
636 u64 id = event->id;
637
638 if (event->parent)
639 id = event->parent->id;
640
641 return id;
642 }
643
644 /*
645 * Get the perf_event_context for a task and lock it.
646 * This has to cope with with the fact that until it is locked,
647 * the context could get moved to another task.
648 */
649 static struct perf_event_context *
650 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
651 {
652 struct perf_event_context *ctx;
653
654 rcu_read_lock();
655 retry:
656 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
657 if (ctx) {
658 /*
659 * If this context is a clone of another, it might
660 * get swapped for another underneath us by
661 * perf_event_task_sched_out, though the
662 * rcu_read_lock() protects us from any context
663 * getting freed. Lock the context and check if it
664 * got swapped before we could get the lock, and retry
665 * if so. If we locked the right context, then it
666 * can't get swapped on us any more.
667 */
668 raw_spin_lock_irqsave(&ctx->lock, *flags);
669 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
670 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
671 goto retry;
672 }
673
674 if (!atomic_inc_not_zero(&ctx->refcount)) {
675 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
676 ctx = NULL;
677 }
678 }
679 rcu_read_unlock();
680 return ctx;
681 }
682
683 /*
684 * Get the context for a task and increment its pin_count so it
685 * can't get swapped to another task. This also increments its
686 * reference count so that the context can't get freed.
687 */
688 static struct perf_event_context *
689 perf_pin_task_context(struct task_struct *task, int ctxn)
690 {
691 struct perf_event_context *ctx;
692 unsigned long flags;
693
694 ctx = perf_lock_task_context(task, ctxn, &flags);
695 if (ctx) {
696 ++ctx->pin_count;
697 raw_spin_unlock_irqrestore(&ctx->lock, flags);
698 }
699 return ctx;
700 }
701
702 static void perf_unpin_context(struct perf_event_context *ctx)
703 {
704 unsigned long flags;
705
706 raw_spin_lock_irqsave(&ctx->lock, flags);
707 --ctx->pin_count;
708 raw_spin_unlock_irqrestore(&ctx->lock, flags);
709 }
710
711 /*
712 * Update the record of the current time in a context.
713 */
714 static void update_context_time(struct perf_event_context *ctx)
715 {
716 u64 now = perf_clock();
717
718 ctx->time += now - ctx->timestamp;
719 ctx->timestamp = now;
720 }
721
722 static u64 perf_event_time(struct perf_event *event)
723 {
724 struct perf_event_context *ctx = event->ctx;
725
726 if (is_cgroup_event(event))
727 return perf_cgroup_event_time(event);
728
729 return ctx ? ctx->time : 0;
730 }
731
732 /*
733 * Update the total_time_enabled and total_time_running fields for a event.
734 */
735 static void update_event_times(struct perf_event *event)
736 {
737 struct perf_event_context *ctx = event->ctx;
738 u64 run_end;
739
740 if (event->state < PERF_EVENT_STATE_INACTIVE ||
741 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
742 return;
743 /*
744 * in cgroup mode, time_enabled represents
745 * the time the event was enabled AND active
746 * tasks were in the monitored cgroup. This is
747 * independent of the activity of the context as
748 * there may be a mix of cgroup and non-cgroup events.
749 *
750 * That is why we treat cgroup events differently
751 * here.
752 */
753 if (is_cgroup_event(event))
754 run_end = perf_event_time(event);
755 else if (ctx->is_active)
756 run_end = ctx->time;
757 else
758 run_end = event->tstamp_stopped;
759
760 event->total_time_enabled = run_end - event->tstamp_enabled;
761
762 if (event->state == PERF_EVENT_STATE_INACTIVE)
763 run_end = event->tstamp_stopped;
764 else
765 run_end = perf_event_time(event);
766
767 event->total_time_running = run_end - event->tstamp_running;
768
769 }
770
771 /*
772 * Update total_time_enabled and total_time_running for all events in a group.
773 */
774 static void update_group_times(struct perf_event *leader)
775 {
776 struct perf_event *event;
777
778 update_event_times(leader);
779 list_for_each_entry(event, &leader->sibling_list, group_entry)
780 update_event_times(event);
781 }
782
783 static struct list_head *
784 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
785 {
786 if (event->attr.pinned)
787 return &ctx->pinned_groups;
788 else
789 return &ctx->flexible_groups;
790 }
791
792 /*
793 * Add a event from the lists for its context.
794 * Must be called with ctx->mutex and ctx->lock held.
795 */
796 static void
797 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
798 {
799 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
800 event->attach_state |= PERF_ATTACH_CONTEXT;
801
802 /*
803 * If we're a stand alone event or group leader, we go to the context
804 * list, group events are kept attached to the group so that
805 * perf_group_detach can, at all times, locate all siblings.
806 */
807 if (event->group_leader == event) {
808 struct list_head *list;
809
810 if (is_software_event(event))
811 event->group_flags |= PERF_GROUP_SOFTWARE;
812
813 list = ctx_group_list(event, ctx);
814 list_add_tail(&event->group_entry, list);
815 }
816
817 if (is_cgroup_event(event))
818 ctx->nr_cgroups++;
819
820 list_add_rcu(&event->event_entry, &ctx->event_list);
821 if (!ctx->nr_events)
822 perf_pmu_rotate_start(ctx->pmu);
823 ctx->nr_events++;
824 if (event->attr.inherit_stat)
825 ctx->nr_stat++;
826 }
827
828 /*
829 * Called at perf_event creation and when events are attached/detached from a
830 * group.
831 */
832 static void perf_event__read_size(struct perf_event *event)
833 {
834 int entry = sizeof(u64); /* value */
835 int size = 0;
836 int nr = 1;
837
838 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
839 size += sizeof(u64);
840
841 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
842 size += sizeof(u64);
843
844 if (event->attr.read_format & PERF_FORMAT_ID)
845 entry += sizeof(u64);
846
847 if (event->attr.read_format & PERF_FORMAT_GROUP) {
848 nr += event->group_leader->nr_siblings;
849 size += sizeof(u64);
850 }
851
852 size += entry * nr;
853 event->read_size = size;
854 }
855
856 static void perf_event__header_size(struct perf_event *event)
857 {
858 struct perf_sample_data *data;
859 u64 sample_type = event->attr.sample_type;
860 u16 size = 0;
861
862 perf_event__read_size(event);
863
864 if (sample_type & PERF_SAMPLE_IP)
865 size += sizeof(data->ip);
866
867 if (sample_type & PERF_SAMPLE_ADDR)
868 size += sizeof(data->addr);
869
870 if (sample_type & PERF_SAMPLE_PERIOD)
871 size += sizeof(data->period);
872
873 if (sample_type & PERF_SAMPLE_READ)
874 size += event->read_size;
875
876 event->header_size = size;
877 }
878
879 static void perf_event__id_header_size(struct perf_event *event)
880 {
881 struct perf_sample_data *data;
882 u64 sample_type = event->attr.sample_type;
883 u16 size = 0;
884
885 if (sample_type & PERF_SAMPLE_TID)
886 size += sizeof(data->tid_entry);
887
888 if (sample_type & PERF_SAMPLE_TIME)
889 size += sizeof(data->time);
890
891 if (sample_type & PERF_SAMPLE_ID)
892 size += sizeof(data->id);
893
894 if (sample_type & PERF_SAMPLE_STREAM_ID)
895 size += sizeof(data->stream_id);
896
897 if (sample_type & PERF_SAMPLE_CPU)
898 size += sizeof(data->cpu_entry);
899
900 event->id_header_size = size;
901 }
902
903 static void perf_group_attach(struct perf_event *event)
904 {
905 struct perf_event *group_leader = event->group_leader, *pos;
906
907 /*
908 * We can have double attach due to group movement in perf_event_open.
909 */
910 if (event->attach_state & PERF_ATTACH_GROUP)
911 return;
912
913 event->attach_state |= PERF_ATTACH_GROUP;
914
915 if (group_leader == event)
916 return;
917
918 if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
919 !is_software_event(event))
920 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
921
922 list_add_tail(&event->group_entry, &group_leader->sibling_list);
923 group_leader->nr_siblings++;
924
925 perf_event__header_size(group_leader);
926
927 list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
928 perf_event__header_size(pos);
929 }
930
931 /*
932 * Remove a event from the lists for its context.
933 * Must be called with ctx->mutex and ctx->lock held.
934 */
935 static void
936 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
937 {
938 struct perf_cpu_context *cpuctx;
939 /*
940 * We can have double detach due to exit/hot-unplug + close.
941 */
942 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
943 return;
944
945 event->attach_state &= ~PERF_ATTACH_CONTEXT;
946
947 if (is_cgroup_event(event)) {
948 ctx->nr_cgroups--;
949 cpuctx = __get_cpu_context(ctx);
950 /*
951 * if there are no more cgroup events
952 * then cler cgrp to avoid stale pointer
953 * in update_cgrp_time_from_cpuctx()
954 */
955 if (!ctx->nr_cgroups)
956 cpuctx->cgrp = NULL;
957 }
958
959 ctx->nr_events--;
960 if (event->attr.inherit_stat)
961 ctx->nr_stat--;
962
963 list_del_rcu(&event->event_entry);
964
965 if (event->group_leader == event)
966 list_del_init(&event->group_entry);
967
968 update_group_times(event);
969
970 /*
971 * If event was in error state, then keep it
972 * that way, otherwise bogus counts will be
973 * returned on read(). The only way to get out
974 * of error state is by explicit re-enabling
975 * of the event
976 */
977 if (event->state > PERF_EVENT_STATE_OFF)
978 event->state = PERF_EVENT_STATE_OFF;
979 }
980
981 static void perf_group_detach(struct perf_event *event)
982 {
983 struct perf_event *sibling, *tmp;
984 struct list_head *list = NULL;
985
986 /*
987 * We can have double detach due to exit/hot-unplug + close.
988 */
989 if (!(event->attach_state & PERF_ATTACH_GROUP))
990 return;
991
992 event->attach_state &= ~PERF_ATTACH_GROUP;
993
994 /*
995 * If this is a sibling, remove it from its group.
996 */
997 if (event->group_leader != event) {
998 list_del_init(&event->group_entry);
999 event->group_leader->nr_siblings--;
1000 goto out;
1001 }
1002
1003 if (!list_empty(&event->group_entry))
1004 list = &event->group_entry;
1005
1006 /*
1007 * If this was a group event with sibling events then
1008 * upgrade the siblings to singleton events by adding them
1009 * to whatever list we are on.
1010 */
1011 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1012 if (list)
1013 list_move_tail(&sibling->group_entry, list);
1014 sibling->group_leader = sibling;
1015
1016 /* Inherit group flags from the previous leader */
1017 sibling->group_flags = event->group_flags;
1018 }
1019
1020 out:
1021 perf_event__header_size(event->group_leader);
1022
1023 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1024 perf_event__header_size(tmp);
1025 }
1026
1027 static inline int
1028 event_filter_match(struct perf_event *event)
1029 {
1030 return (event->cpu == -1 || event->cpu == smp_processor_id())
1031 && perf_cgroup_match(event);
1032 }
1033
1034 static void
1035 event_sched_out(struct perf_event *event,
1036 struct perf_cpu_context *cpuctx,
1037 struct perf_event_context *ctx)
1038 {
1039 u64 tstamp = perf_event_time(event);
1040 u64 delta;
1041 /*
1042 * An event which could not be activated because of
1043 * filter mismatch still needs to have its timings
1044 * maintained, otherwise bogus information is return
1045 * via read() for time_enabled, time_running:
1046 */
1047 if (event->state == PERF_EVENT_STATE_INACTIVE
1048 && !event_filter_match(event)) {
1049 delta = tstamp - event->tstamp_stopped;
1050 event->tstamp_running += delta;
1051 event->tstamp_stopped = tstamp;
1052 }
1053
1054 if (event->state != PERF_EVENT_STATE_ACTIVE)
1055 return;
1056
1057 event->state = PERF_EVENT_STATE_INACTIVE;
1058 if (event->pending_disable) {
1059 event->pending_disable = 0;
1060 event->state = PERF_EVENT_STATE_OFF;
1061 }
1062 event->tstamp_stopped = tstamp;
1063 event->pmu->del(event, 0);
1064 event->oncpu = -1;
1065
1066 if (!is_software_event(event))
1067 cpuctx->active_oncpu--;
1068 ctx->nr_active--;
1069 if (event->attr.exclusive || !cpuctx->active_oncpu)
1070 cpuctx->exclusive = 0;
1071 }
1072
1073 static void
1074 group_sched_out(struct perf_event *group_event,
1075 struct perf_cpu_context *cpuctx,
1076 struct perf_event_context *ctx)
1077 {
1078 struct perf_event *event;
1079 int state = group_event->state;
1080
1081 event_sched_out(group_event, cpuctx, ctx);
1082
1083 /*
1084 * Schedule out siblings (if any):
1085 */
1086 list_for_each_entry(event, &group_event->sibling_list, group_entry)
1087 event_sched_out(event, cpuctx, ctx);
1088
1089 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1090 cpuctx->exclusive = 0;
1091 }
1092
1093 /*
1094 * Cross CPU call to remove a performance event
1095 *
1096 * We disable the event on the hardware level first. After that we
1097 * remove it from the context list.
1098 */
1099 static int __perf_remove_from_context(void *info)
1100 {
1101 struct perf_event *event = info;
1102 struct perf_event_context *ctx = event->ctx;
1103 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1104
1105 raw_spin_lock(&ctx->lock);
1106 event_sched_out(event, cpuctx, ctx);
1107 list_del_event(event, ctx);
1108 raw_spin_unlock(&ctx->lock);
1109
1110 return 0;
1111 }
1112
1113
1114 /*
1115 * Remove the event from a task's (or a CPU's) list of events.
1116 *
1117 * CPU events are removed with a smp call. For task events we only
1118 * call when the task is on a CPU.
1119 *
1120 * If event->ctx is a cloned context, callers must make sure that
1121 * every task struct that event->ctx->task could possibly point to
1122 * remains valid. This is OK when called from perf_release since
1123 * that only calls us on the top-level context, which can't be a clone.
1124 * When called from perf_event_exit_task, it's OK because the
1125 * context has been detached from its task.
1126 */
1127 static void perf_remove_from_context(struct perf_event *event)
1128 {
1129 struct perf_event_context *ctx = event->ctx;
1130 struct task_struct *task = ctx->task;
1131
1132 lockdep_assert_held(&ctx->mutex);
1133
1134 if (!task) {
1135 /*
1136 * Per cpu events are removed via an smp call and
1137 * the removal is always successful.
1138 */
1139 cpu_function_call(event->cpu, __perf_remove_from_context, event);
1140 return;
1141 }
1142
1143 retry:
1144 if (!task_function_call(task, __perf_remove_from_context, event))
1145 return;
1146
1147 raw_spin_lock_irq(&ctx->lock);
1148 /*
1149 * If we failed to find a running task, but find the context active now
1150 * that we've acquired the ctx->lock, retry.
1151 */
1152 if (ctx->is_active) {
1153 raw_spin_unlock_irq(&ctx->lock);
1154 goto retry;
1155 }
1156
1157 /*
1158 * Since the task isn't running, its safe to remove the event, us
1159 * holding the ctx->lock ensures the task won't get scheduled in.
1160 */
1161 list_del_event(event, ctx);
1162 raw_spin_unlock_irq(&ctx->lock);
1163 }
1164
1165 /*
1166 * Cross CPU call to disable a performance event
1167 */
1168 static int __perf_event_disable(void *info)
1169 {
1170 struct perf_event *event = info;
1171 struct perf_event_context *ctx = event->ctx;
1172 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1173
1174 /*
1175 * If this is a per-task event, need to check whether this
1176 * event's task is the current task on this cpu.
1177 *
1178 * Can trigger due to concurrent perf_event_context_sched_out()
1179 * flipping contexts around.
1180 */
1181 if (ctx->task && cpuctx->task_ctx != ctx)
1182 return -EINVAL;
1183
1184 raw_spin_lock(&ctx->lock);
1185
1186 /*
1187 * If the event is on, turn it off.
1188 * If it is in error state, leave it in error state.
1189 */
1190 if (event->state >= PERF_EVENT_STATE_INACTIVE) {
1191 update_context_time(ctx);
1192 update_cgrp_time_from_event(event);
1193 update_group_times(event);
1194 if (event == event->group_leader)
1195 group_sched_out(event, cpuctx, ctx);
1196 else
1197 event_sched_out(event, cpuctx, ctx);
1198 event->state = PERF_EVENT_STATE_OFF;
1199 }
1200
1201 raw_spin_unlock(&ctx->lock);
1202
1203 return 0;
1204 }
1205
1206 /*
1207 * Disable a event.
1208 *
1209 * If event->ctx is a cloned context, callers must make sure that
1210 * every task struct that event->ctx->task could possibly point to
1211 * remains valid. This condition is satisifed when called through
1212 * perf_event_for_each_child or perf_event_for_each because they
1213 * hold the top-level event's child_mutex, so any descendant that
1214 * goes to exit will block in sync_child_event.
1215 * When called from perf_pending_event it's OK because event->ctx
1216 * is the current context on this CPU and preemption is disabled,
1217 * hence we can't get into perf_event_task_sched_out for this context.
1218 */
1219 void perf_event_disable(struct perf_event *event)
1220 {
1221 struct perf_event_context *ctx = event->ctx;
1222 struct task_struct *task = ctx->task;
1223
1224 if (!task) {
1225 /*
1226 * Disable the event on the cpu that it's on
1227 */
1228 cpu_function_call(event->cpu, __perf_event_disable, event);
1229 return;
1230 }
1231
1232 retry:
1233 if (!task_function_call(task, __perf_event_disable, event))
1234 return;
1235
1236 raw_spin_lock_irq(&ctx->lock);
1237 /*
1238 * If the event is still active, we need to retry the cross-call.
1239 */
1240 if (event->state == PERF_EVENT_STATE_ACTIVE) {
1241 raw_spin_unlock_irq(&ctx->lock);
1242 /*
1243 * Reload the task pointer, it might have been changed by
1244 * a concurrent perf_event_context_sched_out().
1245 */
1246 task = ctx->task;
1247 goto retry;
1248 }
1249
1250 /*
1251 * Since we have the lock this context can't be scheduled
1252 * in, so we can change the state safely.
1253 */
1254 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1255 update_group_times(event);
1256 event->state = PERF_EVENT_STATE_OFF;
1257 }
1258 raw_spin_unlock_irq(&ctx->lock);
1259 }
1260
1261 static void perf_set_shadow_time(struct perf_event *event,
1262 struct perf_event_context *ctx,
1263 u64 tstamp)
1264 {
1265 /*
1266 * use the correct time source for the time snapshot
1267 *
1268 * We could get by without this by leveraging the
1269 * fact that to get to this function, the caller
1270 * has most likely already called update_context_time()
1271 * and update_cgrp_time_xx() and thus both timestamp
1272 * are identical (or very close). Given that tstamp is,
1273 * already adjusted for cgroup, we could say that:
1274 * tstamp - ctx->timestamp
1275 * is equivalent to
1276 * tstamp - cgrp->timestamp.
1277 *
1278 * Then, in perf_output_read(), the calculation would
1279 * work with no changes because:
1280 * - event is guaranteed scheduled in
1281 * - no scheduled out in between
1282 * - thus the timestamp would be the same
1283 *
1284 * But this is a bit hairy.
1285 *
1286 * So instead, we have an explicit cgroup call to remain
1287 * within the time time source all along. We believe it
1288 * is cleaner and simpler to understand.
1289 */
1290 if (is_cgroup_event(event))
1291 perf_cgroup_set_shadow_time(event, tstamp);
1292 else
1293 event->shadow_ctx_time = tstamp - ctx->timestamp;
1294 }
1295
1296 #define MAX_INTERRUPTS (~0ULL)
1297
1298 static void perf_log_throttle(struct perf_event *event, int enable);
1299
1300 static int
1301 event_sched_in(struct perf_event *event,
1302 struct perf_cpu_context *cpuctx,
1303 struct perf_event_context *ctx)
1304 {
1305 u64 tstamp = perf_event_time(event);
1306
1307 if (event->state <= PERF_EVENT_STATE_OFF)
1308 return 0;
1309
1310 event->state = PERF_EVENT_STATE_ACTIVE;
1311 event->oncpu = smp_processor_id();
1312
1313 /*
1314 * Unthrottle events, since we scheduled we might have missed several
1315 * ticks already, also for a heavily scheduling task there is little
1316 * guarantee it'll get a tick in a timely manner.
1317 */
1318 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
1319 perf_log_throttle(event, 1);
1320 event->hw.interrupts = 0;
1321 }
1322
1323 /*
1324 * The new state must be visible before we turn it on in the hardware:
1325 */
1326 smp_wmb();
1327
1328 if (event->pmu->add(event, PERF_EF_START)) {
1329 event->state = PERF_EVENT_STATE_INACTIVE;
1330 event->oncpu = -1;
1331 return -EAGAIN;
1332 }
1333
1334 event->tstamp_running += tstamp - event->tstamp_stopped;
1335
1336 perf_set_shadow_time(event, ctx, tstamp);
1337
1338 if (!is_software_event(event))
1339 cpuctx->active_oncpu++;
1340 ctx->nr_active++;
1341
1342 if (event->attr.exclusive)
1343 cpuctx->exclusive = 1;
1344
1345 return 0;
1346 }
1347
1348 static int
1349 group_sched_in(struct perf_event *group_event,
1350 struct perf_cpu_context *cpuctx,
1351 struct perf_event_context *ctx)
1352 {
1353 struct perf_event *event, *partial_group = NULL;
1354 struct pmu *pmu = group_event->pmu;
1355 u64 now = ctx->time;
1356 bool simulate = false;
1357
1358 if (group_event->state == PERF_EVENT_STATE_OFF)
1359 return 0;
1360
1361 pmu->start_txn(pmu);
1362
1363 if (event_sched_in(group_event, cpuctx, ctx)) {
1364 pmu->cancel_txn(pmu);
1365 return -EAGAIN;
1366 }
1367
1368 /*
1369 * Schedule in siblings as one group (if any):
1370 */
1371 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1372 if (event_sched_in(event, cpuctx, ctx)) {
1373 partial_group = event;
1374 goto group_error;
1375 }
1376 }
1377
1378 if (!pmu->commit_txn(pmu))
1379 return 0;
1380
1381 group_error:
1382 /*
1383 * Groups can be scheduled in as one unit only, so undo any
1384 * partial group before returning:
1385 * The events up to the failed event are scheduled out normally,
1386 * tstamp_stopped will be updated.
1387 *
1388 * The failed events and the remaining siblings need to have
1389 * their timings updated as if they had gone thru event_sched_in()
1390 * and event_sched_out(). This is required to get consistent timings
1391 * across the group. This also takes care of the case where the group
1392 * could never be scheduled by ensuring tstamp_stopped is set to mark
1393 * the time the event was actually stopped, such that time delta
1394 * calculation in update_event_times() is correct.
1395 */
1396 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1397 if (event == partial_group)
1398 simulate = true;
1399
1400 if (simulate) {
1401 event->tstamp_running += now - event->tstamp_stopped;
1402 event->tstamp_stopped = now;
1403 } else {
1404 event_sched_out(event, cpuctx, ctx);
1405 }
1406 }
1407 event_sched_out(group_event, cpuctx, ctx);
1408
1409 pmu->cancel_txn(pmu);
1410
1411 return -EAGAIN;
1412 }
1413
1414 /*
1415 * Work out whether we can put this event group on the CPU now.
1416 */
1417 static int group_can_go_on(struct perf_event *event,
1418 struct perf_cpu_context *cpuctx,
1419 int can_add_hw)
1420 {
1421 /*
1422 * Groups consisting entirely of software events can always go on.
1423 */
1424 if (event->group_flags & PERF_GROUP_SOFTWARE)
1425 return 1;
1426 /*
1427 * If an exclusive group is already on, no other hardware
1428 * events can go on.
1429 */
1430 if (cpuctx->exclusive)
1431 return 0;
1432 /*
1433 * If this group is exclusive and there are already
1434 * events on the CPU, it can't go on.
1435 */
1436 if (event->attr.exclusive && cpuctx->active_oncpu)
1437 return 0;
1438 /*
1439 * Otherwise, try to add it if all previous groups were able
1440 * to go on.
1441 */
1442 return can_add_hw;
1443 }
1444
1445 static void add_event_to_ctx(struct perf_event *event,
1446 struct perf_event_context *ctx)
1447 {
1448 u64 tstamp = perf_event_time(event);
1449
1450 list_add_event(event, ctx);
1451 perf_group_attach(event);
1452 event->tstamp_enabled = tstamp;
1453 event->tstamp_running = tstamp;
1454 event->tstamp_stopped = tstamp;
1455 }
1456
1457 static void perf_event_context_sched_in(struct perf_event_context *ctx,
1458 struct task_struct *tsk);
1459
1460 /*
1461 * Cross CPU call to install and enable a performance event
1462 *
1463 * Must be called with ctx->mutex held
1464 */
1465 static int __perf_install_in_context(void *info)
1466 {
1467 struct perf_event *event = info;
1468 struct perf_event_context *ctx = event->ctx;
1469 struct perf_event *leader = event->group_leader;
1470 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1471 int err;
1472
1473 /*
1474 * In case we're installing a new context to an already running task,
1475 * could also happen before perf_event_task_sched_in() on architectures
1476 * which do context switches with IRQs enabled.
1477 */
1478 if (ctx->task && !cpuctx->task_ctx)
1479 perf_event_context_sched_in(ctx, ctx->task);
1480
1481 raw_spin_lock(&ctx->lock);
1482 ctx->is_active = 1;
1483 update_context_time(ctx);
1484 /*
1485 * update cgrp time only if current cgrp
1486 * matches event->cgrp. Must be done before
1487 * calling add_event_to_ctx()
1488 */
1489 update_cgrp_time_from_event(event);
1490
1491 add_event_to_ctx(event, ctx);
1492
1493 if (!event_filter_match(event))
1494 goto unlock;
1495
1496 /*
1497 * Don't put the event on if it is disabled or if
1498 * it is in a group and the group isn't on.
1499 */
1500 if (event->state != PERF_EVENT_STATE_INACTIVE ||
1501 (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE))
1502 goto unlock;
1503
1504 /*
1505 * An exclusive event can't go on if there are already active
1506 * hardware events, and no hardware event can go on if there
1507 * is already an exclusive event on.
1508 */
1509 if (!group_can_go_on(event, cpuctx, 1))
1510 err = -EEXIST;
1511 else
1512 err = event_sched_in(event, cpuctx, ctx);
1513
1514 if (err) {
1515 /*
1516 * This event couldn't go on. If it is in a group
1517 * then we have to pull the whole group off.
1518 * If the event group is pinned then put it in error state.
1519 */
1520 if (leader != event)
1521 group_sched_out(leader, cpuctx, ctx);
1522 if (leader->attr.pinned) {
1523 update_group_times(leader);
1524 leader->state = PERF_EVENT_STATE_ERROR;
1525 }
1526 }
1527
1528 unlock:
1529 raw_spin_unlock(&ctx->lock);
1530
1531 return 0;
1532 }
1533
1534 /*
1535 * Attach a performance event to a context
1536 *
1537 * First we add the event to the list with the hardware enable bit
1538 * in event->hw_config cleared.
1539 *
1540 * If the event is attached to a task which is on a CPU we use a smp
1541 * call to enable it in the task context. The task might have been
1542 * scheduled away, but we check this in the smp call again.
1543 */
1544 static void
1545 perf_install_in_context(struct perf_event_context *ctx,
1546 struct perf_event *event,
1547 int cpu)
1548 {
1549 struct task_struct *task = ctx->task;
1550
1551 lockdep_assert_held(&ctx->mutex);
1552
1553 event->ctx = ctx;
1554
1555 if (!task) {
1556 /*
1557 * Per cpu events are installed via an smp call and
1558 * the install is always successful.
1559 */
1560 cpu_function_call(cpu, __perf_install_in_context, event);
1561 return;
1562 }
1563
1564 retry:
1565 if (!task_function_call(task, __perf_install_in_context, event))
1566 return;
1567
1568 raw_spin_lock_irq(&ctx->lock);
1569 /*
1570 * If we failed to find a running task, but find the context active now
1571 * that we've acquired the ctx->lock, retry.
1572 */
1573 if (ctx->is_active) {
1574 raw_spin_unlock_irq(&ctx->lock);
1575 goto retry;
1576 }
1577
1578 /*
1579 * Since the task isn't running, its safe to add the event, us holding
1580 * the ctx->lock ensures the task won't get scheduled in.
1581 */
1582 add_event_to_ctx(event, ctx);
1583 raw_spin_unlock_irq(&ctx->lock);
1584 }
1585
1586 /*
1587 * Put a event into inactive state and update time fields.
1588 * Enabling the leader of a group effectively enables all
1589 * the group members that aren't explicitly disabled, so we
1590 * have to update their ->tstamp_enabled also.
1591 * Note: this works for group members as well as group leaders
1592 * since the non-leader members' sibling_lists will be empty.
1593 */
1594 static void __perf_event_mark_enabled(struct perf_event *event,
1595 struct perf_event_context *ctx)
1596 {
1597 struct perf_event *sub;
1598 u64 tstamp = perf_event_time(event);
1599
1600 event->state = PERF_EVENT_STATE_INACTIVE;
1601 event->tstamp_enabled = tstamp - event->total_time_enabled;
1602 list_for_each_entry(sub, &event->sibling_list, group_entry) {
1603 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
1604 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
1605 }
1606 }
1607
1608 /*
1609 * Cross CPU call to enable a performance event
1610 */
1611 static int __perf_event_enable(void *info)
1612 {
1613 struct perf_event *event = info;
1614 struct perf_event_context *ctx = event->ctx;
1615 struct perf_event *leader = event->group_leader;
1616 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1617 int err;
1618
1619 if (WARN_ON_ONCE(!ctx->is_active))
1620 return -EINVAL;
1621
1622 raw_spin_lock(&ctx->lock);
1623 update_context_time(ctx);
1624
1625 if (event->state >= PERF_EVENT_STATE_INACTIVE)
1626 goto unlock;
1627
1628 /*
1629 * set current task's cgroup time reference point
1630 */
1631 perf_cgroup_set_timestamp(current, ctx);
1632
1633 __perf_event_mark_enabled(event, ctx);
1634
1635 if (!event_filter_match(event)) {
1636 if (is_cgroup_event(event))
1637 perf_cgroup_defer_enabled(event);
1638 goto unlock;
1639 }
1640
1641 /*
1642 * If the event is in a group and isn't the group leader,
1643 * then don't put it on unless the group is on.
1644 */
1645 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
1646 goto unlock;
1647
1648 if (!group_can_go_on(event, cpuctx, 1)) {
1649 err = -EEXIST;
1650 } else {
1651 if (event == leader)
1652 err = group_sched_in(event, cpuctx, ctx);
1653 else
1654 err = event_sched_in(event, cpuctx, ctx);
1655 }
1656
1657 if (err) {
1658 /*
1659 * If this event can't go on and it's part of a
1660 * group, then the whole group has to come off.
1661 */
1662 if (leader != event)
1663 group_sched_out(leader, cpuctx, ctx);
1664 if (leader->attr.pinned) {
1665 update_group_times(leader);
1666 leader->state = PERF_EVENT_STATE_ERROR;
1667 }
1668 }
1669
1670 unlock:
1671 raw_spin_unlock(&ctx->lock);
1672
1673 return 0;
1674 }
1675
1676 /*
1677 * Enable a event.
1678 *
1679 * If event->ctx is a cloned context, callers must make sure that
1680 * every task struct that event->ctx->task could possibly point to
1681 * remains valid. This condition is satisfied when called through
1682 * perf_event_for_each_child or perf_event_for_each as described
1683 * for perf_event_disable.
1684 */
1685 void perf_event_enable(struct perf_event *event)
1686 {
1687 struct perf_event_context *ctx = event->ctx;
1688 struct task_struct *task = ctx->task;
1689
1690 if (!task) {
1691 /*
1692 * Enable the event on the cpu that it's on
1693 */
1694 cpu_function_call(event->cpu, __perf_event_enable, event);
1695 return;
1696 }
1697
1698 raw_spin_lock_irq(&ctx->lock);
1699 if (event->state >= PERF_EVENT_STATE_INACTIVE)
1700 goto out;
1701
1702 /*
1703 * If the event is in error state, clear that first.
1704 * That way, if we see the event in error state below, we
1705 * know that it has gone back into error state, as distinct
1706 * from the task having been scheduled away before the
1707 * cross-call arrived.
1708 */
1709 if (event->state == PERF_EVENT_STATE_ERROR)
1710 event->state = PERF_EVENT_STATE_OFF;
1711
1712 retry:
1713 if (!ctx->is_active) {
1714 __perf_event_mark_enabled(event, ctx);
1715 goto out;
1716 }
1717
1718 raw_spin_unlock_irq(&ctx->lock);
1719
1720 if (!task_function_call(task, __perf_event_enable, event))
1721 return;
1722
1723 raw_spin_lock_irq(&ctx->lock);
1724
1725 /*
1726 * If the context is active and the event is still off,
1727 * we need to retry the cross-call.
1728 */
1729 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
1730 /*
1731 * task could have been flipped by a concurrent
1732 * perf_event_context_sched_out()
1733 */
1734 task = ctx->task;
1735 goto retry;
1736 }
1737
1738 out:
1739 raw_spin_unlock_irq(&ctx->lock);
1740 }
1741
1742 static int perf_event_refresh(struct perf_event *event, int refresh)
1743 {
1744 /*
1745 * not supported on inherited events
1746 */
1747 if (event->attr.inherit || !is_sampling_event(event))
1748 return -EINVAL;
1749
1750 atomic_add(refresh, &event->event_limit);
1751 perf_event_enable(event);
1752
1753 return 0;
1754 }
1755
1756 static void ctx_sched_out(struct perf_event_context *ctx,
1757 struct perf_cpu_context *cpuctx,
1758 enum event_type_t event_type)
1759 {
1760 struct perf_event *event;
1761
1762 raw_spin_lock(&ctx->lock);
1763 perf_pmu_disable(ctx->pmu);
1764 ctx->is_active = 0;
1765 if (likely(!ctx->nr_events))
1766 goto out;
1767 update_context_time(ctx);
1768 update_cgrp_time_from_cpuctx(cpuctx);
1769
1770 if (!ctx->nr_active)
1771 goto out;
1772
1773 if (event_type & EVENT_PINNED) {
1774 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
1775 group_sched_out(event, cpuctx, ctx);
1776 }
1777
1778 if (event_type & EVENT_FLEXIBLE) {
1779 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
1780 group_sched_out(event, cpuctx, ctx);
1781 }
1782 out:
1783 perf_pmu_enable(ctx->pmu);
1784 raw_spin_unlock(&ctx->lock);
1785 }
1786
1787 /*
1788 * Test whether two contexts are equivalent, i.e. whether they
1789 * have both been cloned from the same version of the same context
1790 * and they both have the same number of enabled events.
1791 * If the number of enabled events is the same, then the set
1792 * of enabled events should be the same, because these are both
1793 * inherited contexts, therefore we can't access individual events
1794 * in them directly with an fd; we can only enable/disable all
1795 * events via prctl, or enable/disable all events in a family
1796 * via ioctl, which will have the same effect on both contexts.
1797 */
1798 static int context_equiv(struct perf_event_context *ctx1,
1799 struct perf_event_context *ctx2)
1800 {
1801 return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1802 && ctx1->parent_gen == ctx2->parent_gen
1803 && !ctx1->pin_count && !ctx2->pin_count;
1804 }
1805
1806 static void __perf_event_sync_stat(struct perf_event *event,
1807 struct perf_event *next_event)
1808 {
1809 u64 value;
1810
1811 if (!event->attr.inherit_stat)
1812 return;
1813
1814 /*
1815 * Update the event value, we cannot use perf_event_read()
1816 * because we're in the middle of a context switch and have IRQs
1817 * disabled, which upsets smp_call_function_single(), however
1818 * we know the event must be on the current CPU, therefore we
1819 * don't need to use it.
1820 */
1821 switch (event->state) {
1822 case PERF_EVENT_STATE_ACTIVE:
1823 event->pmu->read(event);
1824 /* fall-through */
1825
1826 case PERF_EVENT_STATE_INACTIVE:
1827 update_event_times(event);
1828 break;
1829
1830 default:
1831 break;
1832 }
1833
1834 /*
1835 * In order to keep per-task stats reliable we need to flip the event
1836 * values when we flip the contexts.
1837 */
1838 value = local64_read(&next_event->count);
1839 value = local64_xchg(&event->count, value);
1840 local64_set(&next_event->count, value);
1841
1842 swap(event->total_time_enabled, next_event->total_time_enabled);
1843 swap(event->total_time_running, next_event->total_time_running);
1844
1845 /*
1846 * Since we swizzled the values, update the user visible data too.
1847 */
1848 perf_event_update_userpage(event);
1849 perf_event_update_userpage(next_event);
1850 }
1851
1852 #define list_next_entry(pos, member) \
1853 list_entry(pos->member.next, typeof(*pos), member)
1854
1855 static void perf_event_sync_stat(struct perf_event_context *ctx,
1856 struct perf_event_context *next_ctx)
1857 {
1858 struct perf_event *event, *next_event;
1859
1860 if (!ctx->nr_stat)
1861 return;
1862
1863 update_context_time(ctx);
1864
1865 event = list_first_entry(&ctx->event_list,
1866 struct perf_event, event_entry);
1867
1868 next_event = list_first_entry(&next_ctx->event_list,
1869 struct perf_event, event_entry);
1870
1871 while (&event->event_entry != &ctx->event_list &&
1872 &next_event->event_entry != &next_ctx->event_list) {
1873
1874 __perf_event_sync_stat(event, next_event);
1875
1876 event = list_next_entry(event, event_entry);
1877 next_event = list_next_entry(next_event, event_entry);
1878 }
1879 }
1880
1881 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
1882 struct task_struct *next)
1883 {
1884 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
1885 struct perf_event_context *next_ctx;
1886 struct perf_event_context *parent;
1887 struct perf_cpu_context *cpuctx;
1888 int do_switch = 1;
1889
1890 if (likely(!ctx))
1891 return;
1892
1893 cpuctx = __get_cpu_context(ctx);
1894 if (!cpuctx->task_ctx)
1895 return;
1896
1897 rcu_read_lock();
1898 parent = rcu_dereference(ctx->parent_ctx);
1899 next_ctx = next->perf_event_ctxp[ctxn];
1900 if (parent && next_ctx &&
1901 rcu_dereference(next_ctx->parent_ctx) == parent) {
1902 /*
1903 * Looks like the two contexts are clones, so we might be
1904 * able to optimize the context switch. We lock both
1905 * contexts and check that they are clones under the
1906 * lock (including re-checking that neither has been
1907 * uncloned in the meantime). It doesn't matter which
1908 * order we take the locks because no other cpu could
1909 * be trying to lock both of these tasks.
1910 */
1911 raw_spin_lock(&ctx->lock);
1912 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1913 if (context_equiv(ctx, next_ctx)) {
1914 /*
1915 * XXX do we need a memory barrier of sorts
1916 * wrt to rcu_dereference() of perf_event_ctxp
1917 */
1918 task->perf_event_ctxp[ctxn] = next_ctx;
1919 next->perf_event_ctxp[ctxn] = ctx;
1920 ctx->task = next;
1921 next_ctx->task = task;
1922 do_switch = 0;
1923
1924 perf_event_sync_stat(ctx, next_ctx);
1925 }
1926 raw_spin_unlock(&next_ctx->lock);
1927 raw_spin_unlock(&ctx->lock);
1928 }
1929 rcu_read_unlock();
1930
1931 if (do_switch) {
1932 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
1933 cpuctx->task_ctx = NULL;
1934 }
1935 }
1936
1937 #define for_each_task_context_nr(ctxn) \
1938 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
1939
1940 /*
1941 * Called from scheduler to remove the events of the current task,
1942 * with interrupts disabled.
1943 *
1944 * We stop each event and update the event value in event->count.
1945 *
1946 * This does not protect us against NMI, but disable()
1947 * sets the disabled bit in the control field of event _before_
1948 * accessing the event control register. If a NMI hits, then it will
1949 * not restart the event.
1950 */
1951 void __perf_event_task_sched_out(struct task_struct *task,
1952 struct task_struct *next)
1953 {
1954 int ctxn;
1955
1956 for_each_task_context_nr(ctxn)
1957 perf_event_context_sched_out(task, ctxn, next);
1958
1959 /*
1960 * if cgroup events exist on this CPU, then we need
1961 * to check if we have to switch out PMU state.
1962 * cgroup event are system-wide mode only
1963 */
1964 if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
1965 perf_cgroup_sched_out(task);
1966 }
1967
1968 static void task_ctx_sched_out(struct perf_event_context *ctx,
1969 enum event_type_t event_type)
1970 {
1971 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1972
1973 if (!cpuctx->task_ctx)
1974 return;
1975
1976 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
1977 return;
1978
1979 ctx_sched_out(ctx, cpuctx, event_type);
1980 cpuctx->task_ctx = NULL;
1981 }
1982
1983 /*
1984 * Called with IRQs disabled
1985 */
1986 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
1987 enum event_type_t event_type)
1988 {
1989 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
1990 }
1991
1992 static void
1993 ctx_pinned_sched_in(struct perf_event_context *ctx,
1994 struct perf_cpu_context *cpuctx)
1995 {
1996 struct perf_event *event;
1997
1998 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
1999 if (event->state <= PERF_EVENT_STATE_OFF)
2000 continue;
2001 if (!event_filter_match(event))
2002 continue;
2003
2004 /* may need to reset tstamp_enabled */
2005 if (is_cgroup_event(event))
2006 perf_cgroup_mark_enabled(event, ctx);
2007
2008 if (group_can_go_on(event, cpuctx, 1))
2009 group_sched_in(event, cpuctx, ctx);
2010
2011 /*
2012 * If this pinned group hasn't been scheduled,
2013 * put it in error state.
2014 */
2015 if (event->state == PERF_EVENT_STATE_INACTIVE) {
2016 update_group_times(event);
2017 event->state = PERF_EVENT_STATE_ERROR;
2018 }
2019 }
2020 }
2021
2022 static void
2023 ctx_flexible_sched_in(struct perf_event_context *ctx,
2024 struct perf_cpu_context *cpuctx)
2025 {
2026 struct perf_event *event;
2027 int can_add_hw = 1;
2028
2029 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2030 /* Ignore events in OFF or ERROR state */
2031 if (event->state <= PERF_EVENT_STATE_OFF)
2032 continue;
2033 /*
2034 * Listen to the 'cpu' scheduling filter constraint
2035 * of events:
2036 */
2037 if (!event_filter_match(event))
2038 continue;
2039
2040 /* may need to reset tstamp_enabled */
2041 if (is_cgroup_event(event))
2042 perf_cgroup_mark_enabled(event, ctx);
2043
2044 if (group_can_go_on(event, cpuctx, can_add_hw)) {
2045 if (group_sched_in(event, cpuctx, ctx))
2046 can_add_hw = 0;
2047 }
2048 }
2049 }
2050
2051 static void
2052 ctx_sched_in(struct perf_event_context *ctx,
2053 struct perf_cpu_context *cpuctx,
2054 enum event_type_t event_type,
2055 struct task_struct *task)
2056 {
2057 u64 now;
2058
2059 raw_spin_lock(&ctx->lock);
2060 ctx->is_active = 1;
2061 if (likely(!ctx->nr_events))
2062 goto out;
2063
2064 now = perf_clock();
2065 ctx->timestamp = now;
2066 perf_cgroup_set_timestamp(task, ctx);
2067 /*
2068 * First go through the list and put on any pinned groups
2069 * in order to give them the best chance of going on.
2070 */
2071 if (event_type & EVENT_PINNED)
2072 ctx_pinned_sched_in(ctx, cpuctx);
2073
2074 /* Then walk through the lower prio flexible groups */
2075 if (event_type & EVENT_FLEXIBLE)
2076 ctx_flexible_sched_in(ctx, cpuctx);
2077
2078 out:
2079 raw_spin_unlock(&ctx->lock);
2080 }
2081
2082 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
2083 enum event_type_t event_type,
2084 struct task_struct *task)
2085 {
2086 struct perf_event_context *ctx = &cpuctx->ctx;
2087
2088 ctx_sched_in(ctx, cpuctx, event_type, task);
2089 }
2090
2091 static void task_ctx_sched_in(struct perf_event_context *ctx,
2092 enum event_type_t event_type)
2093 {
2094 struct perf_cpu_context *cpuctx;
2095
2096 cpuctx = __get_cpu_context(ctx);
2097 if (cpuctx->task_ctx == ctx)
2098 return;
2099
2100 ctx_sched_in(ctx, cpuctx, event_type, NULL);
2101 cpuctx->task_ctx = ctx;
2102 }
2103
2104 static void perf_event_context_sched_in(struct perf_event_context *ctx,
2105 struct task_struct *task)
2106 {
2107 struct perf_cpu_context *cpuctx;
2108
2109 cpuctx = __get_cpu_context(ctx);
2110 if (cpuctx->task_ctx == ctx)
2111 return;
2112
2113 perf_pmu_disable(ctx->pmu);
2114 /*
2115 * We want to keep the following priority order:
2116 * cpu pinned (that don't need to move), task pinned,
2117 * cpu flexible, task flexible.
2118 */
2119 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2120
2121 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2122 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2123 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2124
2125 cpuctx->task_ctx = ctx;
2126
2127 /*
2128 * Since these rotations are per-cpu, we need to ensure the
2129 * cpu-context we got scheduled on is actually rotating.
2130 */
2131 perf_pmu_rotate_start(ctx->pmu);
2132 perf_pmu_enable(ctx->pmu);
2133 }
2134
2135 /*
2136 * Called from scheduler to add the events of the current task
2137 * with interrupts disabled.
2138 *
2139 * We restore the event value and then enable it.
2140 *
2141 * This does not protect us against NMI, but enable()
2142 * sets the enabled bit in the control field of event _before_
2143 * accessing the event control register. If a NMI hits, then it will
2144 * keep the event running.
2145 */
2146 void __perf_event_task_sched_in(struct task_struct *task)
2147 {
2148 struct perf_event_context *ctx;
2149 int ctxn;
2150
2151 for_each_task_context_nr(ctxn) {
2152 ctx = task->perf_event_ctxp[ctxn];
2153 if (likely(!ctx))
2154 continue;
2155
2156 perf_event_context_sched_in(ctx, task);
2157 }
2158 /*
2159 * if cgroup events exist on this CPU, then we need
2160 * to check if we have to switch in PMU state.
2161 * cgroup event are system-wide mode only
2162 */
2163 if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2164 perf_cgroup_sched_in(task);
2165 }
2166
2167 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
2168 {
2169 u64 frequency = event->attr.sample_freq;
2170 u64 sec = NSEC_PER_SEC;
2171 u64 divisor, dividend;
2172
2173 int count_fls, nsec_fls, frequency_fls, sec_fls;
2174
2175 count_fls = fls64(count);
2176 nsec_fls = fls64(nsec);
2177 frequency_fls = fls64(frequency);
2178 sec_fls = 30;
2179
2180 /*
2181 * We got @count in @nsec, with a target of sample_freq HZ
2182 * the target period becomes:
2183 *
2184 * @count * 10^9
2185 * period = -------------------
2186 * @nsec * sample_freq
2187 *
2188 */
2189
2190 /*
2191 * Reduce accuracy by one bit such that @a and @b converge
2192 * to a similar magnitude.
2193 */
2194 #define REDUCE_FLS(a, b) \
2195 do { \
2196 if (a##_fls > b##_fls) { \
2197 a >>= 1; \
2198 a##_fls--; \
2199 } else { \
2200 b >>= 1; \
2201 b##_fls--; \
2202 } \
2203 } while (0)
2204
2205 /*
2206 * Reduce accuracy until either term fits in a u64, then proceed with
2207 * the other, so that finally we can do a u64/u64 division.
2208 */
2209 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
2210 REDUCE_FLS(nsec, frequency);
2211 REDUCE_FLS(sec, count);
2212 }
2213
2214 if (count_fls + sec_fls > 64) {
2215 divisor = nsec * frequency;
2216
2217 while (count_fls + sec_fls > 64) {
2218 REDUCE_FLS(count, sec);
2219 divisor >>= 1;
2220 }
2221
2222 dividend = count * sec;
2223 } else {
2224 dividend = count * sec;
2225
2226 while (nsec_fls + frequency_fls > 64) {
2227 REDUCE_FLS(nsec, frequency);
2228 dividend >>= 1;
2229 }
2230
2231 divisor = nsec * frequency;
2232 }
2233
2234 if (!divisor)
2235 return dividend;
2236
2237 return div64_u64(dividend, divisor);
2238 }
2239
2240 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count)
2241 {
2242 struct hw_perf_event *hwc = &event->hw;
2243 s64 period, sample_period;
2244 s64 delta;
2245
2246 period = perf_calculate_period(event, nsec, count);
2247
2248 delta = (s64)(period - hwc->sample_period);
2249 delta = (delta + 7) / 8; /* low pass filter */
2250
2251 sample_period = hwc->sample_period + delta;
2252
2253 if (!sample_period)
2254 sample_period = 1;
2255
2256 hwc->sample_period = sample_period;
2257
2258 if (local64_read(&hwc->period_left) > 8*sample_period) {
2259 event->pmu->stop(event, PERF_EF_UPDATE);
2260 local64_set(&hwc->period_left, 0);
2261 event->pmu->start(event, PERF_EF_RELOAD);
2262 }
2263 }
2264
2265 static void perf_ctx_adjust_freq(struct perf_event_context *ctx, u64 period)
2266 {
2267 struct perf_event *event;
2268 struct hw_perf_event *hwc;
2269 u64 interrupts, now;
2270 s64 delta;
2271
2272 raw_spin_lock(&ctx->lock);
2273 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
2274 if (event->state != PERF_EVENT_STATE_ACTIVE)
2275 continue;
2276
2277 if (!event_filter_match(event))
2278 continue;
2279
2280 hwc = &event->hw;
2281
2282 interrupts = hwc->interrupts;
2283 hwc->interrupts = 0;
2284
2285 /*
2286 * unthrottle events on the tick
2287 */
2288 if (interrupts == MAX_INTERRUPTS) {
2289 perf_log_throttle(event, 1);
2290 event->pmu->start(event, 0);
2291 }
2292
2293 if (!event->attr.freq || !event->attr.sample_freq)
2294 continue;
2295
2296 event->pmu->read(event);
2297 now = local64_read(&event->count);
2298 delta = now - hwc->freq_count_stamp;
2299 hwc->freq_count_stamp = now;
2300
2301 if (delta > 0)
2302 perf_adjust_period(event, period, delta);
2303 }
2304 raw_spin_unlock(&ctx->lock);
2305 }
2306
2307 /*
2308 * Round-robin a context's events:
2309 */
2310 static void rotate_ctx(struct perf_event_context *ctx)
2311 {
2312 raw_spin_lock(&ctx->lock);
2313
2314 /*
2315 * Rotate the first entry last of non-pinned groups. Rotation might be
2316 * disabled by the inheritance code.
2317 */
2318 if (!ctx->rotate_disable)
2319 list_rotate_left(&ctx->flexible_groups);
2320
2321 raw_spin_unlock(&ctx->lock);
2322 }
2323
2324 /*
2325 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
2326 * because they're strictly cpu affine and rotate_start is called with IRQs
2327 * disabled, while rotate_context is called from IRQ context.
2328 */
2329 static void perf_rotate_context(struct perf_cpu_context *cpuctx)
2330 {
2331 u64 interval = (u64)cpuctx->jiffies_interval * TICK_NSEC;
2332 struct perf_event_context *ctx = NULL;
2333 int rotate = 0, remove = 1;
2334
2335 if (cpuctx->ctx.nr_events) {
2336 remove = 0;
2337 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
2338 rotate = 1;
2339 }
2340
2341 ctx = cpuctx->task_ctx;
2342 if (ctx && ctx->nr_events) {
2343 remove = 0;
2344 if (ctx->nr_events != ctx->nr_active)
2345 rotate = 1;
2346 }
2347
2348 perf_pmu_disable(cpuctx->ctx.pmu);
2349 perf_ctx_adjust_freq(&cpuctx->ctx, interval);
2350 if (ctx)
2351 perf_ctx_adjust_freq(ctx, interval);
2352
2353 if (!rotate)
2354 goto done;
2355
2356 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2357 if (ctx)
2358 task_ctx_sched_out(ctx, EVENT_FLEXIBLE);
2359
2360 rotate_ctx(&cpuctx->ctx);
2361 if (ctx)
2362 rotate_ctx(ctx);
2363
2364 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, current);
2365 if (ctx)
2366 task_ctx_sched_in(ctx, EVENT_FLEXIBLE);
2367
2368 done:
2369 if (remove)
2370 list_del_init(&cpuctx->rotation_list);
2371
2372 perf_pmu_enable(cpuctx->ctx.pmu);
2373 }
2374
2375 void perf_event_task_tick(void)
2376 {
2377 struct list_head *head = &__get_cpu_var(rotation_list);
2378 struct perf_cpu_context *cpuctx, *tmp;
2379
2380 WARN_ON(!irqs_disabled());
2381
2382 list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
2383 if (cpuctx->jiffies_interval == 1 ||
2384 !(jiffies % cpuctx->jiffies_interval))
2385 perf_rotate_context(cpuctx);
2386 }
2387 }
2388
2389 static int event_enable_on_exec(struct perf_event *event,
2390 struct perf_event_context *ctx)
2391 {
2392 if (!event->attr.enable_on_exec)
2393 return 0;
2394
2395 event->attr.enable_on_exec = 0;
2396 if (event->state >= PERF_EVENT_STATE_INACTIVE)
2397 return 0;
2398
2399 __perf_event_mark_enabled(event, ctx);
2400
2401 return 1;
2402 }
2403
2404 /*
2405 * Enable all of a task's events that have been marked enable-on-exec.
2406 * This expects task == current.
2407 */
2408 static void perf_event_enable_on_exec(struct perf_event_context *ctx)
2409 {
2410 struct perf_event *event;
2411 unsigned long flags;
2412 int enabled = 0;
2413 int ret;
2414
2415 local_irq_save(flags);
2416 if (!ctx || !ctx->nr_events)
2417 goto out;
2418
2419 /*
2420 * We must ctxsw out cgroup events to avoid conflict
2421 * when invoking perf_task_event_sched_in() later on
2422 * in this function. Otherwise we end up trying to
2423 * ctxswin cgroup events which are already scheduled
2424 * in.
2425 */
2426 perf_cgroup_sched_out(current);
2427 task_ctx_sched_out(ctx, EVENT_ALL);
2428
2429 raw_spin_lock(&ctx->lock);
2430
2431 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2432 ret = event_enable_on_exec(event, ctx);
2433 if (ret)
2434 enabled = 1;
2435 }
2436
2437 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2438 ret = event_enable_on_exec(event, ctx);
2439 if (ret)
2440 enabled = 1;
2441 }
2442
2443 /*
2444 * Unclone this context if we enabled any event.
2445 */
2446 if (enabled)
2447 unclone_ctx(ctx);
2448
2449 raw_spin_unlock(&ctx->lock);
2450
2451 /*
2452 * Also calls ctxswin for cgroup events, if any:
2453 */
2454 perf_event_context_sched_in(ctx, ctx->task);
2455 out:
2456 local_irq_restore(flags);
2457 }
2458
2459 /*
2460 * Cross CPU call to read the hardware event
2461 */
2462 static void __perf_event_read(void *info)
2463 {
2464 struct perf_event *event = info;
2465 struct perf_event_context *ctx = event->ctx;
2466 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2467
2468 /*
2469 * If this is a task context, we need to check whether it is
2470 * the current task context of this cpu. If not it has been
2471 * scheduled out before the smp call arrived. In that case
2472 * event->count would have been updated to a recent sample
2473 * when the event was scheduled out.
2474 */
2475 if (ctx->task && cpuctx->task_ctx != ctx)
2476 return;
2477
2478 raw_spin_lock(&ctx->lock);
2479 if (ctx->is_active) {
2480 update_context_time(ctx);
2481 update_cgrp_time_from_event(event);
2482 }
2483 update_event_times(event);
2484 if (event->state == PERF_EVENT_STATE_ACTIVE)
2485 event->pmu->read(event);
2486 raw_spin_unlock(&ctx->lock);
2487 }
2488
2489 static inline u64 perf_event_count(struct perf_event *event)
2490 {
2491 return local64_read(&event->count) + atomic64_read(&event->child_count);
2492 }
2493
2494 static u64 perf_event_read(struct perf_event *event)
2495 {
2496 /*
2497 * If event is enabled and currently active on a CPU, update the
2498 * value in the event structure:
2499 */
2500 if (event->state == PERF_EVENT_STATE_ACTIVE) {
2501 smp_call_function_single(event->oncpu,
2502 __perf_event_read, event, 1);
2503 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
2504 struct perf_event_context *ctx = event->ctx;
2505 unsigned long flags;
2506
2507 raw_spin_lock_irqsave(&ctx->lock, flags);
2508 /*
2509 * may read while context is not active
2510 * (e.g., thread is blocked), in that case
2511 * we cannot update context time
2512 */
2513 if (ctx->is_active) {
2514 update_context_time(ctx);
2515 update_cgrp_time_from_event(event);
2516 }
2517 update_event_times(event);
2518 raw_spin_unlock_irqrestore(&ctx->lock, flags);
2519 }
2520
2521 return perf_event_count(event);
2522 }
2523
2524 /*
2525 * Callchain support
2526 */
2527
2528 struct callchain_cpus_entries {
2529 struct rcu_head rcu_head;
2530 struct perf_callchain_entry *cpu_entries[0];
2531 };
2532
2533 static DEFINE_PER_CPU(int, callchain_recursion[PERF_NR_CONTEXTS]);
2534 static atomic_t nr_callchain_events;
2535 static DEFINE_MUTEX(callchain_mutex);
2536 struct callchain_cpus_entries *callchain_cpus_entries;
2537
2538
2539 __weak void perf_callchain_kernel(struct perf_callchain_entry *entry,
2540 struct pt_regs *regs)
2541 {
2542 }
2543
2544 __weak void perf_callchain_user(struct perf_callchain_entry *entry,
2545 struct pt_regs *regs)
2546 {
2547 }
2548
2549 static void release_callchain_buffers_rcu(struct rcu_head *head)
2550 {
2551 struct callchain_cpus_entries *entries;
2552 int cpu;
2553
2554 entries = container_of(head, struct callchain_cpus_entries, rcu_head);
2555
2556 for_each_possible_cpu(cpu)
2557 kfree(entries->cpu_entries[cpu]);
2558
2559 kfree(entries);
2560 }
2561
2562 static void release_callchain_buffers(void)
2563 {
2564 struct callchain_cpus_entries *entries;
2565
2566 entries = callchain_cpus_entries;
2567 rcu_assign_pointer(callchain_cpus_entries, NULL);
2568 call_rcu(&entries->rcu_head, release_callchain_buffers_rcu);
2569 }
2570
2571 static int alloc_callchain_buffers(void)
2572 {
2573 int cpu;
2574 int size;
2575 struct callchain_cpus_entries *entries;
2576
2577 /*
2578 * We can't use the percpu allocation API for data that can be
2579 * accessed from NMI. Use a temporary manual per cpu allocation
2580 * until that gets sorted out.
2581 */
2582 size = offsetof(struct callchain_cpus_entries, cpu_entries[nr_cpu_ids]);
2583
2584 entries = kzalloc(size, GFP_KERNEL);
2585 if (!entries)
2586 return -ENOMEM;
2587
2588 size = sizeof(struct perf_callchain_entry) * PERF_NR_CONTEXTS;
2589
2590 for_each_possible_cpu(cpu) {
2591 entries->cpu_entries[cpu] = kmalloc_node(size, GFP_KERNEL,
2592 cpu_to_node(cpu));
2593 if (!entries->cpu_entries[cpu])
2594 goto fail;
2595 }
2596
2597 rcu_assign_pointer(callchain_cpus_entries, entries);
2598
2599 return 0;
2600
2601 fail:
2602 for_each_possible_cpu(cpu)
2603 kfree(entries->cpu_entries[cpu]);
2604 kfree(entries);
2605
2606 return -ENOMEM;
2607 }
2608
2609 static int get_callchain_buffers(void)
2610 {
2611 int err = 0;
2612 int count;
2613
2614 mutex_lock(&callchain_mutex);
2615
2616 count = atomic_inc_return(&nr_callchain_events);
2617 if (WARN_ON_ONCE(count < 1)) {
2618 err = -EINVAL;
2619 goto exit;
2620 }
2621
2622 if (count > 1) {
2623 /* If the allocation failed, give up */
2624 if (!callchain_cpus_entries)
2625 err = -ENOMEM;
2626 goto exit;
2627 }
2628
2629 err = alloc_callchain_buffers();
2630 if (err)
2631 release_callchain_buffers();
2632 exit:
2633 mutex_unlock(&callchain_mutex);
2634
2635 return err;
2636 }
2637
2638 static void put_callchain_buffers(void)
2639 {
2640 if (atomic_dec_and_mutex_lock(&nr_callchain_events, &callchain_mutex)) {
2641 release_callchain_buffers();
2642 mutex_unlock(&callchain_mutex);
2643 }
2644 }
2645
2646 static int get_recursion_context(int *recursion)
2647 {
2648 int rctx;
2649
2650 if (in_nmi())
2651 rctx = 3;
2652 else if (in_irq())
2653 rctx = 2;
2654 else if (in_softirq())
2655 rctx = 1;
2656 else
2657 rctx = 0;
2658
2659 if (recursion[rctx])
2660 return -1;
2661
2662 recursion[rctx]++;
2663 barrier();
2664
2665 return rctx;
2666 }
2667
2668 static inline void put_recursion_context(int *recursion, int rctx)
2669 {
2670 barrier();
2671 recursion[rctx]--;
2672 }
2673
2674 static struct perf_callchain_entry *get_callchain_entry(int *rctx)
2675 {
2676 int cpu;
2677 struct callchain_cpus_entries *entries;
2678
2679 *rctx = get_recursion_context(__get_cpu_var(callchain_recursion));
2680 if (*rctx == -1)
2681 return NULL;
2682
2683 entries = rcu_dereference(callchain_cpus_entries);
2684 if (!entries)
2685 return NULL;
2686
2687 cpu = smp_processor_id();
2688
2689 return &entries->cpu_entries[cpu][*rctx];
2690 }
2691
2692 static void
2693 put_callchain_entry(int rctx)
2694 {
2695 put_recursion_context(__get_cpu_var(callchain_recursion), rctx);
2696 }
2697
2698 static struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
2699 {
2700 int rctx;
2701 struct perf_callchain_entry *entry;
2702
2703
2704 entry = get_callchain_entry(&rctx);
2705 if (rctx == -1)
2706 return NULL;
2707
2708 if (!entry)
2709 goto exit_put;
2710
2711 entry->nr = 0;
2712
2713 if (!user_mode(regs)) {
2714 perf_callchain_store(entry, PERF_CONTEXT_KERNEL);
2715 perf_callchain_kernel(entry, regs);
2716 if (current->mm)
2717 regs = task_pt_regs(current);
2718 else
2719 regs = NULL;
2720 }
2721
2722 if (regs) {
2723 perf_callchain_store(entry, PERF_CONTEXT_USER);
2724 perf_callchain_user(entry, regs);
2725 }
2726
2727 exit_put:
2728 put_callchain_entry(rctx);
2729
2730 return entry;
2731 }
2732
2733 /*
2734 * Initialize the perf_event context in a task_struct:
2735 */
2736 static void __perf_event_init_context(struct perf_event_context *ctx)
2737 {
2738 raw_spin_lock_init(&ctx->lock);
2739 mutex_init(&ctx->mutex);
2740 INIT_LIST_HEAD(&ctx->pinned_groups);
2741 INIT_LIST_HEAD(&ctx->flexible_groups);
2742 INIT_LIST_HEAD(&ctx->event_list);
2743 atomic_set(&ctx->refcount, 1);
2744 }
2745
2746 static struct perf_event_context *
2747 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
2748 {
2749 struct perf_event_context *ctx;
2750
2751 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
2752 if (!ctx)
2753 return NULL;
2754
2755 __perf_event_init_context(ctx);
2756 if (task) {
2757 ctx->task = task;
2758 get_task_struct(task);
2759 }
2760 ctx->pmu = pmu;
2761
2762 return ctx;
2763 }
2764
2765 static struct task_struct *
2766 find_lively_task_by_vpid(pid_t vpid)
2767 {
2768 struct task_struct *task;
2769 int err;
2770
2771 rcu_read_lock();
2772 if (!vpid)
2773 task = current;
2774 else
2775 task = find_task_by_vpid(vpid);
2776 if (task)
2777 get_task_struct(task);
2778 rcu_read_unlock();
2779
2780 if (!task)
2781 return ERR_PTR(-ESRCH);
2782
2783 /* Reuse ptrace permission checks for now. */
2784 err = -EACCES;
2785 if (!ptrace_may_access(task, PTRACE_MODE_READ))
2786 goto errout;
2787
2788 return task;
2789 errout:
2790 put_task_struct(task);
2791 return ERR_PTR(err);
2792
2793 }
2794
2795 /*
2796 * Returns a matching context with refcount and pincount.
2797 */
2798 static struct perf_event_context *
2799 find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
2800 {
2801 struct perf_event_context *ctx;
2802 struct perf_cpu_context *cpuctx;
2803 unsigned long flags;
2804 int ctxn, err;
2805
2806 if (!task) {
2807 /* Must be root to operate on a CPU event: */
2808 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
2809 return ERR_PTR(-EACCES);
2810
2811 /*
2812 * We could be clever and allow to attach a event to an
2813 * offline CPU and activate it when the CPU comes up, but
2814 * that's for later.
2815 */
2816 if (!cpu_online(cpu))
2817 return ERR_PTR(-ENODEV);
2818
2819 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
2820 ctx = &cpuctx->ctx;
2821 get_ctx(ctx);
2822 ++ctx->pin_count;
2823
2824 return ctx;
2825 }
2826
2827 err = -EINVAL;
2828 ctxn = pmu->task_ctx_nr;
2829 if (ctxn < 0)
2830 goto errout;
2831
2832 retry:
2833 ctx = perf_lock_task_context(task, ctxn, &flags);
2834 if (ctx) {
2835 unclone_ctx(ctx);
2836 ++ctx->pin_count;
2837 raw_spin_unlock_irqrestore(&ctx->lock, flags);
2838 }
2839
2840 if (!ctx) {
2841 ctx = alloc_perf_context(pmu, task);
2842 err = -ENOMEM;
2843 if (!ctx)
2844 goto errout;
2845
2846 get_ctx(ctx);
2847
2848 err = 0;
2849 mutex_lock(&task->perf_event_mutex);
2850 /*
2851 * If it has already passed perf_event_exit_task().
2852 * we must see PF_EXITING, it takes this mutex too.
2853 */
2854 if (task->flags & PF_EXITING)
2855 err = -ESRCH;
2856 else if (task->perf_event_ctxp[ctxn])
2857 err = -EAGAIN;
2858 else {
2859 ++ctx->pin_count;
2860 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
2861 }
2862 mutex_unlock(&task->perf_event_mutex);
2863
2864 if (unlikely(err)) {
2865 put_task_struct(task);
2866 kfree(ctx);
2867
2868 if (err == -EAGAIN)
2869 goto retry;
2870 goto errout;
2871 }
2872 }
2873
2874 return ctx;
2875
2876 errout:
2877 return ERR_PTR(err);
2878 }
2879
2880 static void perf_event_free_filter(struct perf_event *event);
2881
2882 static void free_event_rcu(struct rcu_head *head)
2883 {
2884 struct perf_event *event;
2885
2886 event = container_of(head, struct perf_event, rcu_head);
2887 if (event->ns)
2888 put_pid_ns(event->ns);
2889 perf_event_free_filter(event);
2890 kfree(event);
2891 }
2892
2893 static void perf_buffer_put(struct perf_buffer *buffer);
2894
2895 static void free_event(struct perf_event *event)
2896 {
2897 irq_work_sync(&event->pending);
2898
2899 if (!event->parent) {
2900 if (event->attach_state & PERF_ATTACH_TASK)
2901 jump_label_dec(&perf_sched_events);
2902 if (event->attr.mmap || event->attr.mmap_data)
2903 atomic_dec(&nr_mmap_events);
2904 if (event->attr.comm)
2905 atomic_dec(&nr_comm_events);
2906 if (event->attr.task)
2907 atomic_dec(&nr_task_events);
2908 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
2909 put_callchain_buffers();
2910 if (is_cgroup_event(event)) {
2911 atomic_dec(&per_cpu(perf_cgroup_events, event->cpu));
2912 jump_label_dec(&perf_sched_events);
2913 }
2914 }
2915
2916 if (event->buffer) {
2917 perf_buffer_put(event->buffer);
2918 event->buffer = NULL;
2919 }
2920
2921 if (is_cgroup_event(event))
2922 perf_detach_cgroup(event);
2923
2924 if (event->destroy)
2925 event->destroy(event);
2926
2927 if (event->ctx)
2928 put_ctx(event->ctx);
2929
2930 call_rcu(&event->rcu_head, free_event_rcu);
2931 }
2932
2933 int perf_event_release_kernel(struct perf_event *event)
2934 {
2935 struct perf_event_context *ctx = event->ctx;
2936
2937 /*
2938 * Remove from the PMU, can't get re-enabled since we got
2939 * here because the last ref went.
2940 */
2941 perf_event_disable(event);
2942
2943 WARN_ON_ONCE(ctx->parent_ctx);
2944 /*
2945 * There are two ways this annotation is useful:
2946 *
2947 * 1) there is a lock recursion from perf_event_exit_task
2948 * see the comment there.
2949 *
2950 * 2) there is a lock-inversion with mmap_sem through
2951 * perf_event_read_group(), which takes faults while
2952 * holding ctx->mutex, however this is called after
2953 * the last filedesc died, so there is no possibility
2954 * to trigger the AB-BA case.
2955 */
2956 mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
2957 raw_spin_lock_irq(&ctx->lock);
2958 perf_group_detach(event);
2959 list_del_event(event, ctx);
2960 raw_spin_unlock_irq(&ctx->lock);
2961 mutex_unlock(&ctx->mutex);
2962
2963 free_event(event);
2964
2965 return 0;
2966 }
2967 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
2968
2969 /*
2970 * Called when the last reference to the file is gone.
2971 */
2972 static int perf_release(struct inode *inode, struct file *file)
2973 {
2974 struct perf_event *event = file->private_data;
2975 struct task_struct *owner;
2976
2977 file->private_data = NULL;
2978
2979 rcu_read_lock();
2980 owner = ACCESS_ONCE(event->owner);
2981 /*
2982 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
2983 * !owner it means the list deletion is complete and we can indeed
2984 * free this event, otherwise we need to serialize on
2985 * owner->perf_event_mutex.
2986 */
2987 smp_read_barrier_depends();
2988 if (owner) {
2989 /*
2990 * Since delayed_put_task_struct() also drops the last
2991 * task reference we can safely take a new reference
2992 * while holding the rcu_read_lock().
2993 */
2994 get_task_struct(owner);
2995 }
2996 rcu_read_unlock();
2997
2998 if (owner) {
2999 mutex_lock(&owner->perf_event_mutex);
3000 /*
3001 * We have to re-check the event->owner field, if it is cleared
3002 * we raced with perf_event_exit_task(), acquiring the mutex
3003 * ensured they're done, and we can proceed with freeing the
3004 * event.
3005 */
3006 if (event->owner)
3007 list_del_init(&event->owner_entry);
3008 mutex_unlock(&owner->perf_event_mutex);
3009 put_task_struct(owner);
3010 }
3011
3012 return perf_event_release_kernel(event);
3013 }
3014
3015 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
3016 {
3017 struct perf_event *child;
3018 u64 total = 0;
3019
3020 *enabled = 0;
3021 *running = 0;
3022
3023 mutex_lock(&event->child_mutex);
3024 total += perf_event_read(event);
3025 *enabled += event->total_time_enabled +
3026 atomic64_read(&event->child_total_time_enabled);
3027 *running += event->total_time_running +
3028 atomic64_read(&event->child_total_time_running);
3029
3030 list_for_each_entry(child, &event->child_list, child_list) {
3031 total += perf_event_read(child);
3032 *enabled += child->total_time_enabled;
3033 *running += child->total_time_running;
3034 }
3035 mutex_unlock(&event->child_mutex);
3036
3037 return total;
3038 }
3039 EXPORT_SYMBOL_GPL(perf_event_read_value);
3040
3041 static int perf_event_read_group(struct perf_event *event,
3042 u64 read_format, char __user *buf)
3043 {
3044 struct perf_event *leader = event->group_leader, *sub;
3045 int n = 0, size = 0, ret = -EFAULT;
3046 struct perf_event_context *ctx = leader->ctx;
3047 u64 values[5];
3048 u64 count, enabled, running;
3049
3050 mutex_lock(&ctx->mutex);
3051 count = perf_event_read_value(leader, &enabled, &running);
3052
3053 values[n++] = 1 + leader->nr_siblings;
3054 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3055 values[n++] = enabled;
3056 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3057 values[n++] = running;
3058 values[n++] = count;
3059 if (read_format & PERF_FORMAT_ID)
3060 values[n++] = primary_event_id(leader);
3061
3062 size = n * sizeof(u64);
3063
3064 if (copy_to_user(buf, values, size))
3065 goto unlock;
3066
3067 ret = size;
3068
3069 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3070 n = 0;
3071
3072 values[n++] = perf_event_read_value(sub, &enabled, &running);
3073 if (read_format & PERF_FORMAT_ID)
3074 values[n++] = primary_event_id(sub);
3075
3076 size = n * sizeof(u64);
3077
3078 if (copy_to_user(buf + ret, values, size)) {
3079 ret = -EFAULT;
3080 goto unlock;
3081 }
3082
3083 ret += size;
3084 }
3085 unlock:
3086 mutex_unlock(&ctx->mutex);
3087
3088 return ret;
3089 }
3090
3091 static int perf_event_read_one(struct perf_event *event,
3092 u64 read_format, char __user *buf)
3093 {
3094 u64 enabled, running;
3095 u64 values[4];
3096 int n = 0;
3097
3098 values[n++] = perf_event_read_value(event, &enabled, &running);
3099 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3100 values[n++] = enabled;
3101 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3102 values[n++] = running;
3103 if (read_format & PERF_FORMAT_ID)
3104 values[n++] = primary_event_id(event);
3105
3106 if (copy_to_user(buf, values, n * sizeof(u64)))
3107 return -EFAULT;
3108
3109 return n * sizeof(u64);
3110 }
3111
3112 /*
3113 * Read the performance event - simple non blocking version for now
3114 */
3115 static ssize_t
3116 perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
3117 {
3118 u64 read_format = event->attr.read_format;
3119 int ret;
3120
3121 /*
3122 * Return end-of-file for a read on a event that is in
3123 * error state (i.e. because it was pinned but it couldn't be
3124 * scheduled on to the CPU at some point).
3125 */
3126 if (event->state == PERF_EVENT_STATE_ERROR)
3127 return 0;
3128
3129 if (count < event->read_size)
3130 return -ENOSPC;
3131
3132 WARN_ON_ONCE(event->ctx->parent_ctx);
3133 if (read_format & PERF_FORMAT_GROUP)
3134 ret = perf_event_read_group(event, read_format, buf);
3135 else
3136 ret = perf_event_read_one(event, read_format, buf);
3137
3138 return ret;
3139 }
3140
3141 static ssize_t
3142 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
3143 {
3144 struct perf_event *event = file->private_data;
3145
3146 return perf_read_hw(event, buf, count);
3147 }
3148
3149 static unsigned int perf_poll(struct file *file, poll_table *wait)
3150 {
3151 struct perf_event *event = file->private_data;
3152 struct perf_buffer *buffer;
3153 unsigned int events = POLL_HUP;
3154
3155 rcu_read_lock();
3156 buffer = rcu_dereference(event->buffer);
3157 if (buffer)
3158 events = atomic_xchg(&buffer->poll, 0);
3159 rcu_read_unlock();
3160
3161 poll_wait(file, &event->waitq, wait);
3162
3163 return events;
3164 }
3165
3166 static void perf_event_reset(struct perf_event *event)
3167 {
3168 (void)perf_event_read(event);
3169 local64_set(&event->count, 0);
3170 perf_event_update_userpage(event);
3171 }
3172
3173 /*
3174 * Holding the top-level event's child_mutex means that any
3175 * descendant process that has inherited this event will block
3176 * in sync_child_event if it goes to exit, thus satisfying the
3177 * task existence requirements of perf_event_enable/disable.
3178 */
3179 static void perf_event_for_each_child(struct perf_event *event,
3180 void (*func)(struct perf_event *))
3181 {
3182 struct perf_event *child;
3183
3184 WARN_ON_ONCE(event->ctx->parent_ctx);
3185 mutex_lock(&event->child_mutex);
3186 func(event);
3187 list_for_each_entry(child, &event->child_list, child_list)
3188 func(child);
3189 mutex_unlock(&event->child_mutex);
3190 }
3191
3192 static void perf_event_for_each(struct perf_event *event,
3193 void (*func)(struct perf_event *))
3194 {
3195 struct perf_event_context *ctx = event->ctx;
3196 struct perf_event *sibling;
3197
3198 WARN_ON_ONCE(ctx->parent_ctx);
3199 mutex_lock(&ctx->mutex);
3200 event = event->group_leader;
3201
3202 perf_event_for_each_child(event, func);
3203 func(event);
3204 list_for_each_entry(sibling, &event->sibling_list, group_entry)
3205 perf_event_for_each_child(event, func);
3206 mutex_unlock(&ctx->mutex);
3207 }
3208
3209 static int perf_event_period(struct perf_event *event, u64 __user *arg)
3210 {
3211 struct perf_event_context *ctx = event->ctx;
3212 int ret = 0;
3213 u64 value;
3214
3215 if (!is_sampling_event(event))
3216 return -EINVAL;
3217
3218 if (copy_from_user(&value, arg, sizeof(value)))
3219 return -EFAULT;
3220
3221 if (!value)
3222 return -EINVAL;
3223
3224 raw_spin_lock_irq(&ctx->lock);
3225 if (event->attr.freq) {
3226 if (value > sysctl_perf_event_sample_rate) {
3227 ret = -EINVAL;
3228 goto unlock;
3229 }
3230
3231 event->attr.sample_freq = value;
3232 } else {
3233 event->attr.sample_period = value;
3234 event->hw.sample_period = value;
3235 }
3236 unlock:
3237 raw_spin_unlock_irq(&ctx->lock);
3238
3239 return ret;
3240 }
3241
3242 static const struct file_operations perf_fops;
3243
3244 static struct perf_event *perf_fget_light(int fd, int *fput_needed)
3245 {
3246 struct file *file;
3247
3248 file = fget_light(fd, fput_needed);
3249 if (!file)
3250 return ERR_PTR(-EBADF);
3251
3252 if (file->f_op != &perf_fops) {
3253 fput_light(file, *fput_needed);
3254 *fput_needed = 0;
3255 return ERR_PTR(-EBADF);
3256 }
3257
3258 return file->private_data;
3259 }
3260
3261 static int perf_event_set_output(struct perf_event *event,
3262 struct perf_event *output_event);
3263 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
3264
3265 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
3266 {
3267 struct perf_event *event = file->private_data;
3268 void (*func)(struct perf_event *);
3269 u32 flags = arg;
3270
3271 switch (cmd) {
3272 case PERF_EVENT_IOC_ENABLE:
3273 func = perf_event_enable;
3274 break;
3275 case PERF_EVENT_IOC_DISABLE:
3276 func = perf_event_disable;
3277 break;
3278 case PERF_EVENT_IOC_RESET:
3279 func = perf_event_reset;
3280 break;
3281
3282 case PERF_EVENT_IOC_REFRESH:
3283 return perf_event_refresh(event, arg);
3284
3285 case PERF_EVENT_IOC_PERIOD:
3286 return perf_event_period(event, (u64 __user *)arg);
3287
3288 case PERF_EVENT_IOC_SET_OUTPUT:
3289 {
3290 struct perf_event *output_event = NULL;
3291 int fput_needed = 0;
3292 int ret;
3293
3294 if (arg != -1) {
3295 output_event = perf_fget_light(arg, &fput_needed);
3296 if (IS_ERR(output_event))
3297 return PTR_ERR(output_event);
3298 }
3299
3300 ret = perf_event_set_output(event, output_event);
3301 if (output_event)
3302 fput_light(output_event->filp, fput_needed);
3303
3304 return ret;
3305 }
3306
3307 case PERF_EVENT_IOC_SET_FILTER:
3308 return perf_event_set_filter(event, (void __user *)arg);
3309
3310 default:
3311 return -ENOTTY;
3312 }
3313
3314 if (flags & PERF_IOC_FLAG_GROUP)
3315 perf_event_for_each(event, func);
3316 else
3317 perf_event_for_each_child(event, func);
3318
3319 return 0;
3320 }
3321
3322 int perf_event_task_enable(void)
3323 {
3324 struct perf_event *event;
3325
3326 mutex_lock(&current->perf_event_mutex);
3327 list_for_each_entry(event, &current->perf_event_list, owner_entry)
3328 perf_event_for_each_child(event, perf_event_enable);
3329 mutex_unlock(&current->perf_event_mutex);
3330
3331 return 0;
3332 }
3333
3334 int perf_event_task_disable(void)
3335 {
3336 struct perf_event *event;
3337
3338 mutex_lock(&current->perf_event_mutex);
3339 list_for_each_entry(event, &current->perf_event_list, owner_entry)
3340 perf_event_for_each_child(event, perf_event_disable);
3341 mutex_unlock(&current->perf_event_mutex);
3342
3343 return 0;
3344 }
3345
3346 #ifndef PERF_EVENT_INDEX_OFFSET
3347 # define PERF_EVENT_INDEX_OFFSET 0
3348 #endif
3349
3350 static int perf_event_index(struct perf_event *event)
3351 {
3352 if (event->hw.state & PERF_HES_STOPPED)
3353 return 0;
3354
3355 if (event->state != PERF_EVENT_STATE_ACTIVE)
3356 return 0;
3357
3358 return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
3359 }
3360
3361 /*
3362 * Callers need to ensure there can be no nesting of this function, otherwise
3363 * the seqlock logic goes bad. We can not serialize this because the arch
3364 * code calls this from NMI context.
3365 */
3366 void perf_event_update_userpage(struct perf_event *event)
3367 {
3368 struct perf_event_mmap_page *userpg;
3369 struct perf_buffer *buffer;
3370
3371 rcu_read_lock();
3372 buffer = rcu_dereference(event->buffer);
3373 if (!buffer)
3374 goto unlock;
3375
3376 userpg = buffer->user_page;
3377
3378 /*
3379 * Disable preemption so as to not let the corresponding user-space
3380 * spin too long if we get preempted.
3381 */
3382 preempt_disable();
3383 ++userpg->lock;
3384 barrier();
3385 userpg->index = perf_event_index(event);
3386 userpg->offset = perf_event_count(event);
3387 if (event->state == PERF_EVENT_STATE_ACTIVE)
3388 userpg->offset -= local64_read(&event->hw.prev_count);
3389
3390 userpg->time_enabled = event->total_time_enabled +
3391 atomic64_read(&event->child_total_time_enabled);
3392
3393 userpg->time_running = event->total_time_running +
3394 atomic64_read(&event->child_total_time_running);
3395
3396 barrier();
3397 ++userpg->lock;
3398 preempt_enable();
3399 unlock:
3400 rcu_read_unlock();
3401 }
3402
3403 static unsigned long perf_data_size(struct perf_buffer *buffer);
3404
3405 static void
3406 perf_buffer_init(struct perf_buffer *buffer, long watermark, int flags)
3407 {
3408 long max_size = perf_data_size(buffer);
3409
3410 if (watermark)
3411 buffer->watermark = min(max_size, watermark);
3412
3413 if (!buffer->watermark)
3414 buffer->watermark = max_size / 2;
3415
3416 if (flags & PERF_BUFFER_WRITABLE)
3417 buffer->writable = 1;
3418
3419 atomic_set(&buffer->refcount, 1);
3420 }
3421
3422 #ifndef CONFIG_PERF_USE_VMALLOC
3423
3424 /*
3425 * Back perf_mmap() with regular GFP_KERNEL-0 pages.
3426 */
3427
3428 static struct page *
3429 perf_mmap_to_page(struct perf_buffer *buffer, unsigned long pgoff)
3430 {
3431 if (pgoff > buffer->nr_pages)
3432 return NULL;
3433
3434 if (pgoff == 0)
3435 return virt_to_page(buffer->user_page);
3436
3437 return virt_to_page(buffer->data_pages[pgoff - 1]);
3438 }
3439
3440 static void *perf_mmap_alloc_page(int cpu)
3441 {
3442 struct page *page;
3443 int node;
3444
3445 node = (cpu == -1) ? cpu : cpu_to_node(cpu);
3446 page = alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0);
3447 if (!page)
3448 return NULL;
3449
3450 return page_address(page);
3451 }
3452
3453 static struct perf_buffer *
3454 perf_buffer_alloc(int nr_pages, long watermark, int cpu, int flags)
3455 {
3456 struct perf_buffer *buffer;
3457 unsigned long size;
3458 int i;
3459
3460 size = sizeof(struct perf_buffer);
3461 size += nr_pages * sizeof(void *);
3462
3463 buffer = kzalloc(size, GFP_KERNEL);
3464 if (!buffer)
3465 goto fail;
3466
3467 buffer->user_page = perf_mmap_alloc_page(cpu);
3468 if (!buffer->user_page)
3469 goto fail_user_page;
3470
3471 for (i = 0; i < nr_pages; i++) {
3472 buffer->data_pages[i] = perf_mmap_alloc_page(cpu);
3473 if (!buffer->data_pages[i])
3474 goto fail_data_pages;
3475 }
3476
3477 buffer->nr_pages = nr_pages;
3478
3479 perf_buffer_init(buffer, watermark, flags);
3480
3481 return buffer;
3482
3483 fail_data_pages:
3484 for (i--; i >= 0; i--)
3485 free_page((unsigned long)buffer->data_pages[i]);
3486
3487 free_page((unsigned long)buffer->user_page);
3488
3489 fail_user_page:
3490 kfree(buffer);
3491
3492 fail:
3493 return NULL;
3494 }
3495
3496 static void perf_mmap_free_page(unsigned long addr)
3497 {
3498 struct page *page = virt_to_page((void *)addr);
3499
3500 page->mapping = NULL;
3501 __free_page(page);
3502 }
3503
3504 static void perf_buffer_free(struct perf_buffer *buffer)
3505 {
3506 int i;
3507
3508 perf_mmap_free_page((unsigned long)buffer->user_page);
3509 for (i = 0; i < buffer->nr_pages; i++)
3510 perf_mmap_free_page((unsigned long)buffer->data_pages[i]);
3511 kfree(buffer);
3512 }
3513
3514 static inline int page_order(struct perf_buffer *buffer)
3515 {
3516 return 0;
3517 }
3518
3519 #else
3520
3521 /*
3522 * Back perf_mmap() with vmalloc memory.
3523 *
3524 * Required for architectures that have d-cache aliasing issues.
3525 */
3526
3527 static inline int page_order(struct perf_buffer *buffer)
3528 {
3529 return buffer->page_order;
3530 }
3531
3532 static struct page *
3533 perf_mmap_to_page(struct perf_buffer *buffer, unsigned long pgoff)
3534 {
3535 if (pgoff > (1UL << page_order(buffer)))
3536 return NULL;
3537
3538 return vmalloc_to_page((void *)buffer->user_page + pgoff * PAGE_SIZE);
3539 }
3540
3541 static void perf_mmap_unmark_page(void *addr)
3542 {
3543 struct page *page = vmalloc_to_page(addr);
3544
3545 page->mapping = NULL;
3546 }
3547
3548 static void perf_buffer_free_work(struct work_struct *work)
3549 {
3550 struct perf_buffer *buffer;
3551 void *base;
3552 int i, nr;
3553
3554 buffer = container_of(work, struct perf_buffer, work);
3555 nr = 1 << page_order(buffer);
3556
3557 base = buffer->user_page;
3558 for (i = 0; i < nr + 1; i++)
3559 perf_mmap_unmark_page(base + (i * PAGE_SIZE));
3560
3561 vfree(base);
3562 kfree(buffer);
3563 }
3564
3565 static void perf_buffer_free(struct perf_buffer *buffer)
3566 {
3567 schedule_work(&buffer->work);
3568 }
3569
3570 static struct perf_buffer *
3571 perf_buffer_alloc(int nr_pages, long watermark, int cpu, int flags)
3572 {
3573 struct perf_buffer *buffer;
3574 unsigned long size;
3575 void *all_buf;
3576
3577 size = sizeof(struct perf_buffer);
3578 size += sizeof(void *);
3579
3580 buffer = kzalloc(size, GFP_KERNEL);
3581 if (!buffer)
3582 goto fail;
3583
3584 INIT_WORK(&buffer->work, perf_buffer_free_work);
3585
3586 all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
3587 if (!all_buf)
3588 goto fail_all_buf;
3589
3590 buffer->user_page = all_buf;
3591 buffer->data_pages[0] = all_buf + PAGE_SIZE;
3592 buffer->page_order = ilog2(nr_pages);
3593 buffer->nr_pages = 1;
3594
3595 perf_buffer_init(buffer, watermark, flags);
3596
3597 return buffer;
3598
3599 fail_all_buf:
3600 kfree(buffer);
3601
3602 fail:
3603 return NULL;
3604 }
3605
3606 #endif
3607
3608 static unsigned long perf_data_size(struct perf_buffer *buffer)
3609 {
3610 return buffer->nr_pages << (PAGE_SHIFT + page_order(buffer));
3611 }
3612
3613 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
3614 {
3615 struct perf_event *event = vma->vm_file->private_data;
3616 struct perf_buffer *buffer;
3617 int ret = VM_FAULT_SIGBUS;
3618
3619 if (vmf->flags & FAULT_FLAG_MKWRITE) {
3620 if (vmf->pgoff == 0)
3621 ret = 0;
3622 return ret;
3623 }
3624
3625 rcu_read_lock();
3626 buffer = rcu_dereference(event->buffer);
3627 if (!buffer)
3628 goto unlock;
3629
3630 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
3631 goto unlock;
3632
3633 vmf->page = perf_mmap_to_page(buffer, vmf->pgoff);
3634 if (!vmf->page)
3635 goto unlock;
3636
3637 get_page(vmf->page);
3638 vmf->page->mapping = vma->vm_file->f_mapping;
3639 vmf->page->index = vmf->pgoff;
3640
3641 ret = 0;
3642 unlock:
3643 rcu_read_unlock();
3644
3645 return ret;
3646 }
3647
3648 static void perf_buffer_free_rcu(struct rcu_head *rcu_head)
3649 {
3650 struct perf_buffer *buffer;
3651
3652 buffer = container_of(rcu_head, struct perf_buffer, rcu_head);
3653 perf_buffer_free(buffer);
3654 }
3655
3656 static struct perf_buffer *perf_buffer_get(struct perf_event *event)
3657 {
3658 struct perf_buffer *buffer;
3659
3660 rcu_read_lock();
3661 buffer = rcu_dereference(event->buffer);
3662 if (buffer) {
3663 if (!atomic_inc_not_zero(&buffer->refcount))
3664 buffer = NULL;
3665 }
3666 rcu_read_unlock();
3667
3668 return buffer;
3669 }
3670
3671 static void perf_buffer_put(struct perf_buffer *buffer)
3672 {
3673 if (!atomic_dec_and_test(&buffer->refcount))
3674 return;
3675
3676 call_rcu(&buffer->rcu_head, perf_buffer_free_rcu);
3677 }
3678
3679 static void perf_mmap_open(struct vm_area_struct *vma)
3680 {
3681 struct perf_event *event = vma->vm_file->private_data;
3682
3683 atomic_inc(&event->mmap_count);
3684 }
3685
3686 static void perf_mmap_close(struct vm_area_struct *vma)
3687 {
3688 struct perf_event *event = vma->vm_file->private_data;
3689
3690 if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
3691 unsigned long size = perf_data_size(event->buffer);
3692 struct user_struct *user = event->mmap_user;
3693 struct perf_buffer *buffer = event->buffer;
3694
3695 atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
3696 vma->vm_mm->locked_vm -= event->mmap_locked;
3697 rcu_assign_pointer(event->buffer, NULL);
3698 mutex_unlock(&event->mmap_mutex);
3699
3700 perf_buffer_put(buffer);
3701 free_uid(user);
3702 }
3703 }
3704
3705 static const struct vm_operations_struct perf_mmap_vmops = {
3706 .open = perf_mmap_open,
3707 .close = perf_mmap_close,
3708 .fault = perf_mmap_fault,
3709 .page_mkwrite = perf_mmap_fault,
3710 };
3711
3712 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
3713 {
3714 struct perf_event *event = file->private_data;
3715 unsigned long user_locked, user_lock_limit;
3716 struct user_struct *user = current_user();
3717 unsigned long locked, lock_limit;
3718 struct perf_buffer *buffer;
3719 unsigned long vma_size;
3720 unsigned long nr_pages;
3721 long user_extra, extra;
3722 int ret = 0, flags = 0;
3723
3724 /*
3725 * Don't allow mmap() of inherited per-task counters. This would
3726 * create a performance issue due to all children writing to the
3727 * same buffer.
3728 */
3729 if (event->cpu == -1 && event->attr.inherit)
3730 return -EINVAL;
3731
3732 if (!(vma->vm_flags & VM_SHARED))
3733 return -EINVAL;
3734
3735 vma_size = vma->vm_end - vma->vm_start;
3736 nr_pages = (vma_size / PAGE_SIZE) - 1;
3737
3738 /*
3739 * If we have buffer pages ensure they're a power-of-two number, so we
3740 * can do bitmasks instead of modulo.
3741 */
3742 if (nr_pages != 0 && !is_power_of_2(nr_pages))
3743 return -EINVAL;
3744
3745 if (vma_size != PAGE_SIZE * (1 + nr_pages))
3746 return -EINVAL;
3747
3748 if (vma->vm_pgoff != 0)
3749 return -EINVAL;
3750
3751 WARN_ON_ONCE(event->ctx->parent_ctx);
3752 mutex_lock(&event->mmap_mutex);
3753 if (event->buffer) {
3754 if (event->buffer->nr_pages == nr_pages)
3755 atomic_inc(&event->buffer->refcount);
3756 else
3757 ret = -EINVAL;
3758 goto unlock;
3759 }
3760
3761 user_extra = nr_pages + 1;
3762 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
3763
3764 /*
3765 * Increase the limit linearly with more CPUs:
3766 */
3767 user_lock_limit *= num_online_cpus();
3768
3769 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
3770
3771 extra = 0;
3772 if (user_locked > user_lock_limit)
3773 extra = user_locked - user_lock_limit;
3774
3775 lock_limit = rlimit(RLIMIT_MEMLOCK);
3776 lock_limit >>= PAGE_SHIFT;
3777 locked = vma->vm_mm->locked_vm + extra;
3778
3779 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
3780 !capable(CAP_IPC_LOCK)) {
3781 ret = -EPERM;
3782 goto unlock;
3783 }
3784
3785 WARN_ON(event->buffer);
3786
3787 if (vma->vm_flags & VM_WRITE)
3788 flags |= PERF_BUFFER_WRITABLE;
3789
3790 buffer = perf_buffer_alloc(nr_pages, event->attr.wakeup_watermark,
3791 event->cpu, flags);
3792 if (!buffer) {
3793 ret = -ENOMEM;
3794 goto unlock;
3795 }
3796 rcu_assign_pointer(event->buffer, buffer);
3797
3798 atomic_long_add(user_extra, &user->locked_vm);
3799 event->mmap_locked = extra;
3800 event->mmap_user = get_current_user();
3801 vma->vm_mm->locked_vm += event->mmap_locked;
3802
3803 unlock:
3804 if (!ret)
3805 atomic_inc(&event->mmap_count);
3806 mutex_unlock(&event->mmap_mutex);
3807
3808 vma->vm_flags |= VM_RESERVED;
3809 vma->vm_ops = &perf_mmap_vmops;
3810
3811 return ret;
3812 }
3813
3814 static int perf_fasync(int fd, struct file *filp, int on)
3815 {
3816 struct inode *inode = filp->f_path.dentry->d_inode;
3817 struct perf_event *event = filp->private_data;
3818 int retval;
3819
3820 mutex_lock(&inode->i_mutex);
3821 retval = fasync_helper(fd, filp, on, &event->fasync);
3822 mutex_unlock(&inode->i_mutex);
3823
3824 if (retval < 0)
3825 return retval;
3826
3827 return 0;
3828 }
3829
3830 static const struct file_operations perf_fops = {
3831 .llseek = no_llseek,
3832 .release = perf_release,
3833 .read = perf_read,
3834 .poll = perf_poll,
3835 .unlocked_ioctl = perf_ioctl,
3836 .compat_ioctl = perf_ioctl,
3837 .mmap = perf_mmap,
3838 .fasync = perf_fasync,
3839 };
3840
3841 /*
3842 * Perf event wakeup
3843 *
3844 * If there's data, ensure we set the poll() state and publish everything
3845 * to user-space before waking everybody up.
3846 */
3847
3848 void perf_event_wakeup(struct perf_event *event)
3849 {
3850 wake_up_all(&event->waitq);
3851
3852 if (event->pending_kill) {
3853 kill_fasync(&event->fasync, SIGIO, event->pending_kill);
3854 event->pending_kill = 0;
3855 }
3856 }
3857
3858 static void perf_pending_event(struct irq_work *entry)
3859 {
3860 struct perf_event *event = container_of(entry,
3861 struct perf_event, pending);
3862
3863 if (event->pending_disable) {
3864 event->pending_disable = 0;
3865 __perf_event_disable(event);
3866 }
3867
3868 if (event->pending_wakeup) {
3869 event->pending_wakeup = 0;
3870 perf_event_wakeup(event);
3871 }
3872 }
3873
3874 /*
3875 * We assume there is only KVM supporting the callbacks.
3876 * Later on, we might change it to a list if there is
3877 * another virtualization implementation supporting the callbacks.
3878 */
3879 struct perf_guest_info_callbacks *perf_guest_cbs;
3880
3881 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
3882 {
3883 perf_guest_cbs = cbs;
3884 return 0;
3885 }
3886 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
3887
3888 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
3889 {
3890 perf_guest_cbs = NULL;
3891 return 0;
3892 }
3893 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
3894
3895 /*
3896 * Output
3897 */
3898 static bool perf_output_space(struct perf_buffer *buffer, unsigned long tail,
3899 unsigned long offset, unsigned long head)
3900 {
3901 unsigned long mask;
3902
3903 if (!buffer->writable)
3904 return true;
3905
3906 mask = perf_data_size(buffer) - 1;
3907
3908 offset = (offset - tail) & mask;
3909 head = (head - tail) & mask;
3910
3911 if ((int)(head - offset) < 0)
3912 return false;
3913
3914 return true;
3915 }
3916
3917 static void perf_output_wakeup(struct perf_output_handle *handle)
3918 {
3919 atomic_set(&handle->buffer->poll, POLL_IN);
3920
3921 if (handle->nmi) {
3922 handle->event->pending_wakeup = 1;
3923 irq_work_queue(&handle->event->pending);
3924 } else
3925 perf_event_wakeup(handle->event);
3926 }
3927
3928 /*
3929 * We need to ensure a later event_id doesn't publish a head when a former
3930 * event isn't done writing. However since we need to deal with NMIs we
3931 * cannot fully serialize things.
3932 *
3933 * We only publish the head (and generate a wakeup) when the outer-most
3934 * event completes.
3935 */
3936 static void perf_output_get_handle(struct perf_output_handle *handle)
3937 {
3938 struct perf_buffer *buffer = handle->buffer;
3939
3940 preempt_disable();
3941 local_inc(&buffer->nest);
3942 handle->wakeup = local_read(&buffer->wakeup);
3943 }
3944
3945 static void perf_output_put_handle(struct perf_output_handle *handle)
3946 {
3947 struct perf_buffer *buffer = handle->buffer;
3948 unsigned long head;
3949
3950 again:
3951 head = local_read(&buffer->head);
3952
3953 /*
3954 * IRQ/NMI can happen here, which means we can miss a head update.
3955 */
3956
3957 if (!local_dec_and_test(&buffer->nest))
3958 goto out;
3959
3960 /*
3961 * Publish the known good head. Rely on the full barrier implied
3962 * by atomic_dec_and_test() order the buffer->head read and this
3963 * write.
3964 */
3965 buffer->user_page->data_head = head;
3966
3967 /*
3968 * Now check if we missed an update, rely on the (compiler)
3969 * barrier in atomic_dec_and_test() to re-read buffer->head.
3970 */
3971 if (unlikely(head != local_read(&buffer->head))) {
3972 local_inc(&buffer->nest);
3973 goto again;
3974 }
3975
3976 if (handle->wakeup != local_read(&buffer->wakeup))
3977 perf_output_wakeup(handle);
3978
3979 out:
3980 preempt_enable();
3981 }
3982
3983 __always_inline void perf_output_copy(struct perf_output_handle *handle,
3984 const void *buf, unsigned int len)
3985 {
3986 do {
3987 unsigned long size = min_t(unsigned long, handle->size, len);
3988
3989 memcpy(handle->addr, buf, size);
3990
3991 len -= size;
3992 handle->addr += size;
3993 buf += size;
3994 handle->size -= size;
3995 if (!handle->size) {
3996 struct perf_buffer *buffer = handle->buffer;
3997
3998 handle->page++;
3999 handle->page &= buffer->nr_pages - 1;
4000 handle->addr = buffer->data_pages[handle->page];
4001 handle->size = PAGE_SIZE << page_order(buffer);
4002 }
4003 } while (len);
4004 }
4005
4006 static void __perf_event_header__init_id(struct perf_event_header *header,
4007 struct perf_sample_data *data,
4008 struct perf_event *event)
4009 {
4010 u64 sample_type = event->attr.sample_type;
4011
4012 data->type = sample_type;
4013 header->size += event->id_header_size;
4014
4015 if (sample_type & PERF_SAMPLE_TID) {
4016 /* namespace issues */
4017 data->tid_entry.pid = perf_event_pid(event, current);
4018 data->tid_entry.tid = perf_event_tid(event, current);
4019 }
4020
4021 if (sample_type & PERF_SAMPLE_TIME)
4022 data->time = perf_clock();
4023
4024 if (sample_type & PERF_SAMPLE_ID)
4025 data->id = primary_event_id(event);
4026
4027 if (sample_type & PERF_SAMPLE_STREAM_ID)
4028 data->stream_id = event->id;
4029
4030 if (sample_type & PERF_SAMPLE_CPU) {
4031 data->cpu_entry.cpu = raw_smp_processor_id();
4032 data->cpu_entry.reserved = 0;
4033 }
4034 }
4035
4036 static void perf_event_header__init_id(struct perf_event_header *header,
4037 struct perf_sample_data *data,
4038 struct perf_event *event)
4039 {
4040 if (event->attr.sample_id_all)
4041 __perf_event_header__init_id(header, data, event);
4042 }
4043
4044 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
4045 struct perf_sample_data *data)
4046 {
4047 u64 sample_type = data->type;
4048
4049 if (sample_type & PERF_SAMPLE_TID)
4050 perf_output_put(handle, data->tid_entry);
4051
4052 if (sample_type & PERF_SAMPLE_TIME)
4053 perf_output_put(handle, data->time);
4054
4055 if (sample_type & PERF_SAMPLE_ID)
4056 perf_output_put(handle, data->id);
4057
4058 if (sample_type & PERF_SAMPLE_STREAM_ID)
4059 perf_output_put(handle, data->stream_id);
4060
4061 if (sample_type & PERF_SAMPLE_CPU)
4062 perf_output_put(handle, data->cpu_entry);
4063 }
4064
4065 static void perf_event__output_id_sample(struct perf_event *event,
4066 struct perf_output_handle *handle,
4067 struct perf_sample_data *sample)
4068 {
4069 if (event->attr.sample_id_all)
4070 __perf_event__output_id_sample(handle, sample);
4071 }
4072
4073 int perf_output_begin(struct perf_output_handle *handle,
4074 struct perf_event *event, unsigned int size,
4075 int nmi, int sample)
4076 {
4077 struct perf_buffer *buffer;
4078 unsigned long tail, offset, head;
4079 int have_lost;
4080 struct perf_sample_data sample_data;
4081 struct {
4082 struct perf_event_header header;
4083 u64 id;
4084 u64 lost;
4085 } lost_event;
4086
4087 rcu_read_lock();
4088 /*
4089 * For inherited events we send all the output towards the parent.
4090 */
4091 if (event->parent)
4092 event = event->parent;
4093
4094 buffer = rcu_dereference(event->buffer);
4095 if (!buffer)
4096 goto out;
4097
4098 handle->buffer = buffer;
4099 handle->event = event;
4100 handle->nmi = nmi;
4101 handle->sample = sample;
4102
4103 if (!buffer->nr_pages)
4104 goto out;
4105
4106 have_lost = local_read(&buffer->lost);
4107 if (have_lost) {
4108 lost_event.header.size = sizeof(lost_event);
4109 perf_event_header__init_id(&lost_event.header, &sample_data,
4110 event);
4111 size += lost_event.header.size;
4112 }
4113
4114 perf_output_get_handle(handle);
4115
4116 do {
4117 /*
4118 * Userspace could choose to issue a mb() before updating the
4119 * tail pointer. So that all reads will be completed before the
4120 * write is issued.
4121 */
4122 tail = ACCESS_ONCE(buffer->user_page->data_tail);
4123 smp_rmb();
4124 offset = head = local_read(&buffer->head);
4125 head += size;
4126 if (unlikely(!perf_output_space(buffer, tail, offset, head)))
4127 goto fail;
4128 } while (local_cmpxchg(&buffer->head, offset, head) != offset);
4129
4130 if (head - local_read(&buffer->wakeup) > buffer->watermark)
4131 local_add(buffer->watermark, &buffer->wakeup);
4132
4133 handle->page = offset >> (PAGE_SHIFT + page_order(buffer));
4134 handle->page &= buffer->nr_pages - 1;
4135 handle->size = offset & ((PAGE_SIZE << page_order(buffer)) - 1);
4136 handle->addr = buffer->data_pages[handle->page];
4137 handle->addr += handle->size;
4138 handle->size = (PAGE_SIZE << page_order(buffer)) - handle->size;
4139
4140 if (have_lost) {
4141 lost_event.header.type = PERF_RECORD_LOST;
4142 lost_event.header.misc = 0;
4143 lost_event.id = event->id;
4144 lost_event.lost = local_xchg(&buffer->lost, 0);
4145
4146 perf_output_put(handle, lost_event);
4147 perf_event__output_id_sample(event, handle, &sample_data);
4148 }
4149
4150 return 0;
4151
4152 fail:
4153 local_inc(&buffer->lost);
4154 perf_output_put_handle(handle);
4155 out:
4156 rcu_read_unlock();
4157
4158 return -ENOSPC;
4159 }
4160
4161 void perf_output_end(struct perf_output_handle *handle)
4162 {
4163 struct perf_event *event = handle->event;
4164 struct perf_buffer *buffer = handle->buffer;
4165
4166 int wakeup_events = event->attr.wakeup_events;
4167
4168 if (handle->sample && wakeup_events) {
4169 int events = local_inc_return(&buffer->events);
4170 if (events >= wakeup_events) {
4171 local_sub(wakeup_events, &buffer->events);
4172 local_inc(&buffer->wakeup);
4173 }
4174 }
4175
4176 perf_output_put_handle(handle);
4177 rcu_read_unlock();
4178 }
4179
4180 static void perf_output_read_one(struct perf_output_handle *handle,
4181 struct perf_event *event,
4182 u64 enabled, u64 running)
4183 {
4184 u64 read_format = event->attr.read_format;
4185 u64 values[4];
4186 int n = 0;
4187
4188 values[n++] = perf_event_count(event);
4189 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4190 values[n++] = enabled +
4191 atomic64_read(&event->child_total_time_enabled);
4192 }
4193 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4194 values[n++] = running +
4195 atomic64_read(&event->child_total_time_running);
4196 }
4197 if (read_format & PERF_FORMAT_ID)
4198 values[n++] = primary_event_id(event);
4199
4200 perf_output_copy(handle, values, n * sizeof(u64));
4201 }
4202
4203 /*
4204 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
4205 */
4206 static void perf_output_read_group(struct perf_output_handle *handle,
4207 struct perf_event *event,
4208 u64 enabled, u64 running)
4209 {
4210 struct perf_event *leader = event->group_leader, *sub;
4211 u64 read_format = event->attr.read_format;
4212 u64 values[5];
4213 int n = 0;
4214
4215 values[n++] = 1 + leader->nr_siblings;
4216
4217 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4218 values[n++] = enabled;
4219
4220 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4221 values[n++] = running;
4222
4223 if (leader != event)
4224 leader->pmu->read(leader);
4225
4226 values[n++] = perf_event_count(leader);
4227 if (read_format & PERF_FORMAT_ID)
4228 values[n++] = primary_event_id(leader);
4229
4230 perf_output_copy(handle, values, n * sizeof(u64));
4231
4232 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4233 n = 0;
4234
4235 if (sub != event)
4236 sub->pmu->read(sub);
4237
4238 values[n++] = perf_event_count(sub);
4239 if (read_format & PERF_FORMAT_ID)
4240 values[n++] = primary_event_id(sub);
4241
4242 perf_output_copy(handle, values, n * sizeof(u64));
4243 }
4244 }
4245
4246 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
4247 PERF_FORMAT_TOTAL_TIME_RUNNING)
4248
4249 static void perf_output_read(struct perf_output_handle *handle,
4250 struct perf_event *event)
4251 {
4252 u64 enabled = 0, running = 0, now, ctx_time;
4253 u64 read_format = event->attr.read_format;
4254
4255 /*
4256 * compute total_time_enabled, total_time_running
4257 * based on snapshot values taken when the event
4258 * was last scheduled in.
4259 *
4260 * we cannot simply called update_context_time()
4261 * because of locking issue as we are called in
4262 * NMI context
4263 */
4264 if (read_format & PERF_FORMAT_TOTAL_TIMES) {
4265 now = perf_clock();
4266 ctx_time = event->shadow_ctx_time + now;
4267 enabled = ctx_time - event->tstamp_enabled;
4268 running = ctx_time - event->tstamp_running;
4269 }
4270
4271 if (event->attr.read_format & PERF_FORMAT_GROUP)
4272 perf_output_read_group(handle, event, enabled, running);
4273 else
4274 perf_output_read_one(handle, event, enabled, running);
4275 }
4276
4277 void perf_output_sample(struct perf_output_handle *handle,
4278 struct perf_event_header *header,
4279 struct perf_sample_data *data,
4280 struct perf_event *event)
4281 {
4282 u64 sample_type = data->type;
4283
4284 perf_output_put(handle, *header);
4285
4286 if (sample_type & PERF_SAMPLE_IP)
4287 perf_output_put(handle, data->ip);
4288
4289 if (sample_type & PERF_SAMPLE_TID)
4290 perf_output_put(handle, data->tid_entry);
4291
4292 if (sample_type & PERF_SAMPLE_TIME)
4293 perf_output_put(handle, data->time);
4294
4295 if (sample_type & PERF_SAMPLE_ADDR)
4296 perf_output_put(handle, data->addr);
4297
4298 if (sample_type & PERF_SAMPLE_ID)
4299 perf_output_put(handle, data->id);
4300
4301 if (sample_type & PERF_SAMPLE_STREAM_ID)
4302 perf_output_put(handle, data->stream_id);
4303
4304 if (sample_type & PERF_SAMPLE_CPU)
4305 perf_output_put(handle, data->cpu_entry);
4306
4307 if (sample_type & PERF_SAMPLE_PERIOD)
4308 perf_output_put(handle, data->period);
4309
4310 if (sample_type & PERF_SAMPLE_READ)
4311 perf_output_read(handle, event);
4312
4313 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
4314 if (data->callchain) {
4315 int size = 1;
4316
4317 if (data->callchain)
4318 size += data->callchain->nr;
4319
4320 size *= sizeof(u64);
4321
4322 perf_output_copy(handle, data->callchain, size);
4323 } else {
4324 u64 nr = 0;
4325 perf_output_put(handle, nr);
4326 }
4327 }
4328
4329 if (sample_type & PERF_SAMPLE_RAW) {
4330 if (data->raw) {
4331 perf_output_put(handle, data->raw->size);
4332 perf_output_copy(handle, data->raw->data,
4333 data->raw->size);
4334 } else {
4335 struct {
4336 u32 size;
4337 u32 data;
4338 } raw = {
4339 .size = sizeof(u32),
4340 .data = 0,
4341 };
4342 perf_output_put(handle, raw);
4343 }
4344 }
4345 }
4346
4347 void perf_prepare_sample(struct perf_event_header *header,
4348 struct perf_sample_data *data,
4349 struct perf_event *event,
4350 struct pt_regs *regs)
4351 {
4352 u64 sample_type = event->attr.sample_type;
4353
4354 header->type = PERF_RECORD_SAMPLE;
4355 header->size = sizeof(*header) + event->header_size;
4356
4357 header->misc = 0;
4358 header->misc |= perf_misc_flags(regs);
4359
4360 __perf_event_header__init_id(header, data, event);
4361
4362 if (sample_type & PERF_SAMPLE_IP)
4363 data->ip = perf_instruction_pointer(regs);
4364
4365 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
4366 int size = 1;
4367
4368 data->callchain = perf_callchain(regs);
4369
4370 if (data->callchain)
4371 size += data->callchain->nr;
4372
4373 header->size += size * sizeof(u64);
4374 }
4375
4376 if (sample_type & PERF_SAMPLE_RAW) {
4377 int size = sizeof(u32);
4378
4379 if (data->raw)
4380 size += data->raw->size;
4381 else
4382 size += sizeof(u32);
4383
4384 WARN_ON_ONCE(size & (sizeof(u64)-1));
4385 header->size += size;
4386 }
4387 }
4388
4389 static void perf_event_output(struct perf_event *event, int nmi,
4390 struct perf_sample_data *data,
4391 struct pt_regs *regs)
4392 {
4393 struct perf_output_handle handle;
4394 struct perf_event_header header;
4395
4396 /* protect the callchain buffers */
4397 rcu_read_lock();
4398
4399 perf_prepare_sample(&header, data, event, regs);
4400
4401 if (perf_output_begin(&handle, event, header.size, nmi, 1))
4402 goto exit;
4403
4404 perf_output_sample(&handle, &header, data, event);
4405
4406 perf_output_end(&handle);
4407
4408 exit:
4409 rcu_read_unlock();
4410 }
4411
4412 /*
4413 * read event_id
4414 */
4415
4416 struct perf_read_event {
4417 struct perf_event_header header;
4418
4419 u32 pid;
4420 u32 tid;
4421 };
4422
4423 static void
4424 perf_event_read_event(struct perf_event *event,
4425 struct task_struct *task)
4426 {
4427 struct perf_output_handle handle;
4428 struct perf_sample_data sample;
4429 struct perf_read_event read_event = {
4430 .header = {
4431 .type = PERF_RECORD_READ,
4432 .misc = 0,
4433 .size = sizeof(read_event) + event->read_size,
4434 },
4435 .pid = perf_event_pid(event, task),
4436 .tid = perf_event_tid(event, task),
4437 };
4438 int ret;
4439
4440 perf_event_header__init_id(&read_event.header, &sample, event);
4441 ret = perf_output_begin(&handle, event, read_event.header.size, 0, 0);
4442 if (ret)
4443 return;
4444
4445 perf_output_put(&handle, read_event);
4446 perf_output_read(&handle, event);
4447 perf_event__output_id_sample(event, &handle, &sample);
4448
4449 perf_output_end(&handle);
4450 }
4451
4452 /*
4453 * task tracking -- fork/exit
4454 *
4455 * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task
4456 */
4457
4458 struct perf_task_event {
4459 struct task_struct *task;
4460 struct perf_event_context *task_ctx;
4461
4462 struct {
4463 struct perf_event_header header;
4464
4465 u32 pid;
4466 u32 ppid;
4467 u32 tid;
4468 u32 ptid;
4469 u64 time;
4470 } event_id;
4471 };
4472
4473 static void perf_event_task_output(struct perf_event *event,
4474 struct perf_task_event *task_event)
4475 {
4476 struct perf_output_handle handle;
4477 struct perf_sample_data sample;
4478 struct task_struct *task = task_event->task;
4479 int ret, size = task_event->event_id.header.size;
4480
4481 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
4482
4483 ret = perf_output_begin(&handle, event,
4484 task_event->event_id.header.size, 0, 0);
4485 if (ret)
4486 goto out;
4487
4488 task_event->event_id.pid = perf_event_pid(event, task);
4489 task_event->event_id.ppid = perf_event_pid(event, current);
4490
4491 task_event->event_id.tid = perf_event_tid(event, task);
4492 task_event->event_id.ptid = perf_event_tid(event, current);
4493
4494 perf_output_put(&handle, task_event->event_id);
4495
4496 perf_event__output_id_sample(event, &handle, &sample);
4497
4498 perf_output_end(&handle);
4499 out:
4500 task_event->event_id.header.size = size;
4501 }
4502
4503 static int perf_event_task_match(struct perf_event *event)
4504 {
4505 if (event->state < PERF_EVENT_STATE_INACTIVE)
4506 return 0;
4507
4508 if (!event_filter_match(event))
4509 return 0;
4510
4511 if (event->attr.comm || event->attr.mmap ||
4512 event->attr.mmap_data || event->attr.task)
4513 return 1;
4514
4515 return 0;
4516 }
4517
4518 static void perf_event_task_ctx(struct perf_event_context *ctx,
4519 struct perf_task_event *task_event)
4520 {
4521 struct perf_event *event;
4522
4523 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4524 if (perf_event_task_match(event))
4525 perf_event_task_output(event, task_event);
4526 }
4527 }
4528
4529 static void perf_event_task_event(struct perf_task_event *task_event)
4530 {
4531 struct perf_cpu_context *cpuctx;
4532 struct perf_event_context *ctx;
4533 struct pmu *pmu;
4534 int ctxn;
4535
4536 rcu_read_lock();
4537 list_for_each_entry_rcu(pmu, &pmus, entry) {
4538 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4539 if (cpuctx->active_pmu != pmu)
4540 goto next;
4541 perf_event_task_ctx(&cpuctx->ctx, task_event);
4542
4543 ctx = task_event->task_ctx;
4544 if (!ctx) {
4545 ctxn = pmu->task_ctx_nr;
4546 if (ctxn < 0)
4547 goto next;
4548 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4549 }
4550 if (ctx)
4551 perf_event_task_ctx(ctx, task_event);
4552 next:
4553 put_cpu_ptr(pmu->pmu_cpu_context);
4554 }
4555 rcu_read_unlock();
4556 }
4557
4558 static void perf_event_task(struct task_struct *task,
4559 struct perf_event_context *task_ctx,
4560 int new)
4561 {
4562 struct perf_task_event task_event;
4563
4564 if (!atomic_read(&nr_comm_events) &&
4565 !atomic_read(&nr_mmap_events) &&
4566 !atomic_read(&nr_task_events))
4567 return;
4568
4569 task_event = (struct perf_task_event){
4570 .task = task,
4571 .task_ctx = task_ctx,
4572 .event_id = {
4573 .header = {
4574 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
4575 .misc = 0,
4576 .size = sizeof(task_event.event_id),
4577 },
4578 /* .pid */
4579 /* .ppid */
4580 /* .tid */
4581 /* .ptid */
4582 .time = perf_clock(),
4583 },
4584 };
4585
4586 perf_event_task_event(&task_event);
4587 }
4588
4589 void perf_event_fork(struct task_struct *task)
4590 {
4591 perf_event_task(task, NULL, 1);
4592 }
4593
4594 /*
4595 * comm tracking
4596 */
4597
4598 struct perf_comm_event {
4599 struct task_struct *task;
4600 char *comm;
4601 int comm_size;
4602
4603 struct {
4604 struct perf_event_header header;
4605
4606 u32 pid;
4607 u32 tid;
4608 } event_id;
4609 };
4610
4611 static void perf_event_comm_output(struct perf_event *event,
4612 struct perf_comm_event *comm_event)
4613 {
4614 struct perf_output_handle handle;
4615 struct perf_sample_data sample;
4616 int size = comm_event->event_id.header.size;
4617 int ret;
4618
4619 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
4620 ret = perf_output_begin(&handle, event,
4621 comm_event->event_id.header.size, 0, 0);
4622
4623 if (ret)
4624 goto out;
4625
4626 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
4627 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
4628
4629 perf_output_put(&handle, comm_event->event_id);
4630 perf_output_copy(&handle, comm_event->comm,
4631 comm_event->comm_size);
4632
4633 perf_event__output_id_sample(event, &handle, &sample);
4634
4635 perf_output_end(&handle);
4636 out:
4637 comm_event->event_id.header.size = size;
4638 }
4639
4640 static int perf_event_comm_match(struct perf_event *event)
4641 {
4642 if (event->state < PERF_EVENT_STATE_INACTIVE)
4643 return 0;
4644
4645 if (!event_filter_match(event))
4646 return 0;
4647
4648 if (event->attr.comm)
4649 return 1;
4650
4651 return 0;
4652 }
4653
4654 static void perf_event_comm_ctx(struct perf_event_context *ctx,
4655 struct perf_comm_event *comm_event)
4656 {
4657 struct perf_event *event;
4658
4659 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4660 if (perf_event_comm_match(event))
4661 perf_event_comm_output(event, comm_event);
4662 }
4663 }
4664
4665 static void perf_event_comm_event(struct perf_comm_event *comm_event)
4666 {
4667 struct perf_cpu_context *cpuctx;
4668 struct perf_event_context *ctx;
4669 char comm[TASK_COMM_LEN];
4670 unsigned int size;
4671 struct pmu *pmu;
4672 int ctxn;
4673
4674 memset(comm, 0, sizeof(comm));
4675 strlcpy(comm, comm_event->task->comm, sizeof(comm));
4676 size = ALIGN(strlen(comm)+1, sizeof(u64));
4677
4678 comm_event->comm = comm;
4679 comm_event->comm_size = size;
4680
4681 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
4682 rcu_read_lock();
4683 list_for_each_entry_rcu(pmu, &pmus, entry) {
4684 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4685 if (cpuctx->active_pmu != pmu)
4686 goto next;
4687 perf_event_comm_ctx(&cpuctx->ctx, comm_event);
4688
4689 ctxn = pmu->task_ctx_nr;
4690 if (ctxn < 0)
4691 goto next;
4692
4693 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4694 if (ctx)
4695 perf_event_comm_ctx(ctx, comm_event);
4696 next:
4697 put_cpu_ptr(pmu->pmu_cpu_context);
4698 }
4699 rcu_read_unlock();
4700 }
4701
4702 void perf_event_comm(struct task_struct *task)
4703 {
4704 struct perf_comm_event comm_event;
4705 struct perf_event_context *ctx;
4706 int ctxn;
4707
4708 for_each_task_context_nr(ctxn) {
4709 ctx = task->perf_event_ctxp[ctxn];
4710 if (!ctx)
4711 continue;
4712
4713 perf_event_enable_on_exec(ctx);
4714 }
4715
4716 if (!atomic_read(&nr_comm_events))
4717 return;
4718
4719 comm_event = (struct perf_comm_event){
4720 .task = task,
4721 /* .comm */
4722 /* .comm_size */
4723 .event_id = {
4724 .header = {
4725 .type = PERF_RECORD_COMM,
4726 .misc = 0,
4727 /* .size */
4728 },
4729 /* .pid */
4730 /* .tid */
4731 },
4732 };
4733
4734 perf_event_comm_event(&comm_event);
4735 }
4736
4737 /*
4738 * mmap tracking
4739 */
4740
4741 struct perf_mmap_event {
4742 struct vm_area_struct *vma;
4743
4744 const char *file_name;
4745 int file_size;
4746
4747 struct {
4748 struct perf_event_header header;
4749
4750 u32 pid;
4751 u32 tid;
4752 u64 start;
4753 u64 len;
4754 u64 pgoff;
4755 } event_id;
4756 };
4757
4758 static void perf_event_mmap_output(struct perf_event *event,
4759 struct perf_mmap_event *mmap_event)
4760 {
4761 struct perf_output_handle handle;
4762 struct perf_sample_data sample;
4763 int size = mmap_event->event_id.header.size;
4764 int ret;
4765
4766 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
4767 ret = perf_output_begin(&handle, event,
4768 mmap_event->event_id.header.size, 0, 0);
4769 if (ret)
4770 goto out;
4771
4772 mmap_event->event_id.pid = perf_event_pid(event, current);
4773 mmap_event->event_id.tid = perf_event_tid(event, current);
4774
4775 perf_output_put(&handle, mmap_event->event_id);
4776 perf_output_copy(&handle, mmap_event->file_name,
4777 mmap_event->file_size);
4778
4779 perf_event__output_id_sample(event, &handle, &sample);
4780
4781 perf_output_end(&handle);
4782 out:
4783 mmap_event->event_id.header.size = size;
4784 }
4785
4786 static int perf_event_mmap_match(struct perf_event *event,
4787 struct perf_mmap_event *mmap_event,
4788 int executable)
4789 {
4790 if (event->state < PERF_EVENT_STATE_INACTIVE)
4791 return 0;
4792
4793 if (!event_filter_match(event))
4794 return 0;
4795
4796 if ((!executable && event->attr.mmap_data) ||
4797 (executable && event->attr.mmap))
4798 return 1;
4799
4800 return 0;
4801 }
4802
4803 static void perf_event_mmap_ctx(struct perf_event_context *ctx,
4804 struct perf_mmap_event *mmap_event,
4805 int executable)
4806 {
4807 struct perf_event *event;
4808
4809 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4810 if (perf_event_mmap_match(event, mmap_event, executable))
4811 perf_event_mmap_output(event, mmap_event);
4812 }
4813 }
4814
4815 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
4816 {
4817 struct perf_cpu_context *cpuctx;
4818 struct perf_event_context *ctx;
4819 struct vm_area_struct *vma = mmap_event->vma;
4820 struct file *file = vma->vm_file;
4821 unsigned int size;
4822 char tmp[16];
4823 char *buf = NULL;
4824 const char *name;
4825 struct pmu *pmu;
4826 int ctxn;
4827
4828 memset(tmp, 0, sizeof(tmp));
4829
4830 if (file) {
4831 /*
4832 * d_path works from the end of the buffer backwards, so we
4833 * need to add enough zero bytes after the string to handle
4834 * the 64bit alignment we do later.
4835 */
4836 buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
4837 if (!buf) {
4838 name = strncpy(tmp, "//enomem", sizeof(tmp));
4839 goto got_name;
4840 }
4841 name = d_path(&file->f_path, buf, PATH_MAX);
4842 if (IS_ERR(name)) {
4843 name = strncpy(tmp, "//toolong", sizeof(tmp));
4844 goto got_name;
4845 }
4846 } else {
4847 if (arch_vma_name(mmap_event->vma)) {
4848 name = strncpy(tmp, arch_vma_name(mmap_event->vma),
4849 sizeof(tmp));
4850 goto got_name;
4851 }
4852
4853 if (!vma->vm_mm) {
4854 name = strncpy(tmp, "[vdso]", sizeof(tmp));
4855 goto got_name;
4856 } else if (vma->vm_start <= vma->vm_mm->start_brk &&
4857 vma->vm_end >= vma->vm_mm->brk) {
4858 name = strncpy(tmp, "[heap]", sizeof(tmp));
4859 goto got_name;
4860 } else if (vma->vm_start <= vma->vm_mm->start_stack &&
4861 vma->vm_end >= vma->vm_mm->start_stack) {
4862 name = strncpy(tmp, "[stack]", sizeof(tmp));
4863 goto got_name;
4864 }
4865
4866 name = strncpy(tmp, "//anon", sizeof(tmp));
4867 goto got_name;
4868 }
4869
4870 got_name:
4871 size = ALIGN(strlen(name)+1, sizeof(u64));
4872
4873 mmap_event->file_name = name;
4874 mmap_event->file_size = size;
4875
4876 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
4877
4878 rcu_read_lock();
4879 list_for_each_entry_rcu(pmu, &pmus, entry) {
4880 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4881 if (cpuctx->active_pmu != pmu)
4882 goto next;
4883 perf_event_mmap_ctx(&cpuctx->ctx, mmap_event,
4884 vma->vm_flags & VM_EXEC);
4885
4886 ctxn = pmu->task_ctx_nr;
4887 if (ctxn < 0)
4888 goto next;
4889
4890 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4891 if (ctx) {
4892 perf_event_mmap_ctx(ctx, mmap_event,
4893 vma->vm_flags & VM_EXEC);
4894 }
4895 next:
4896 put_cpu_ptr(pmu->pmu_cpu_context);
4897 }
4898 rcu_read_unlock();
4899
4900 kfree(buf);
4901 }
4902
4903 void perf_event_mmap(struct vm_area_struct *vma)
4904 {
4905 struct perf_mmap_event mmap_event;
4906
4907 if (!atomic_read(&nr_mmap_events))
4908 return;
4909
4910 mmap_event = (struct perf_mmap_event){
4911 .vma = vma,
4912 /* .file_name */
4913 /* .file_size */
4914 .event_id = {
4915 .header = {
4916 .type = PERF_RECORD_MMAP,
4917 .misc = PERF_RECORD_MISC_USER,
4918 /* .size */
4919 },
4920 /* .pid */
4921 /* .tid */
4922 .start = vma->vm_start,
4923 .len = vma->vm_end - vma->vm_start,
4924 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
4925 },
4926 };
4927
4928 perf_event_mmap_event(&mmap_event);
4929 }
4930
4931 /*
4932 * IRQ throttle logging
4933 */
4934
4935 static void perf_log_throttle(struct perf_event *event, int enable)
4936 {
4937 struct perf_output_handle handle;
4938 struct perf_sample_data sample;
4939 int ret;
4940
4941 struct {
4942 struct perf_event_header header;
4943 u64 time;
4944 u64 id;
4945 u64 stream_id;
4946 } throttle_event = {
4947 .header = {
4948 .type = PERF_RECORD_THROTTLE,
4949 .misc = 0,
4950 .size = sizeof(throttle_event),
4951 },
4952 .time = perf_clock(),
4953 .id = primary_event_id(event),
4954 .stream_id = event->id,
4955 };
4956
4957 if (enable)
4958 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
4959
4960 perf_event_header__init_id(&throttle_event.header, &sample, event);
4961
4962 ret = perf_output_begin(&handle, event,
4963 throttle_event.header.size, 1, 0);
4964 if (ret)
4965 return;
4966
4967 perf_output_put(&handle, throttle_event);
4968 perf_event__output_id_sample(event, &handle, &sample);
4969 perf_output_end(&handle);
4970 }
4971
4972 /*
4973 * Generic event overflow handling, sampling.
4974 */
4975
4976 static int __perf_event_overflow(struct perf_event *event, int nmi,
4977 int throttle, struct perf_sample_data *data,
4978 struct pt_regs *regs)
4979 {
4980 int events = atomic_read(&event->event_limit);
4981 struct hw_perf_event *hwc = &event->hw;
4982 int ret = 0;
4983
4984 /*
4985 * Non-sampling counters might still use the PMI to fold short
4986 * hardware counters, ignore those.
4987 */
4988 if (unlikely(!is_sampling_event(event)))
4989 return 0;
4990
4991 if (unlikely(hwc->interrupts >= max_samples_per_tick)) {
4992 if (throttle) {
4993 hwc->interrupts = MAX_INTERRUPTS;
4994 perf_log_throttle(event, 0);
4995 ret = 1;
4996 }
4997 } else
4998 hwc->interrupts++;
4999
5000 if (event->attr.freq) {
5001 u64 now = perf_clock();
5002 s64 delta = now - hwc->freq_time_stamp;
5003
5004 hwc->freq_time_stamp = now;
5005
5006 if (delta > 0 && delta < 2*TICK_NSEC)
5007 perf_adjust_period(event, delta, hwc->last_period);
5008 }
5009
5010 /*
5011 * XXX event_limit might not quite work as expected on inherited
5012 * events
5013 */
5014
5015 event->pending_kill = POLL_IN;
5016 if (events && atomic_dec_and_test(&event->event_limit)) {
5017 ret = 1;
5018 event->pending_kill = POLL_HUP;
5019 if (nmi) {
5020 event->pending_disable = 1;
5021 irq_work_queue(&event->pending);
5022 } else
5023 perf_event_disable(event);
5024 }
5025
5026 if (event->overflow_handler)
5027 event->overflow_handler(event, nmi, data, regs);
5028 else
5029 perf_event_output(event, nmi, data, regs);
5030
5031 return ret;
5032 }
5033
5034 int perf_event_overflow(struct perf_event *event, int nmi,
5035 struct perf_sample_data *data,
5036 struct pt_regs *regs)
5037 {
5038 return __perf_event_overflow(event, nmi, 1, data, regs);
5039 }
5040
5041 /*
5042 * Generic software event infrastructure
5043 */
5044
5045 struct swevent_htable {
5046 struct swevent_hlist *swevent_hlist;
5047 struct mutex hlist_mutex;
5048 int hlist_refcount;
5049
5050 /* Recursion avoidance in each contexts */
5051 int recursion[PERF_NR_CONTEXTS];
5052 };
5053
5054 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
5055
5056 /*
5057 * We directly increment event->count and keep a second value in
5058 * event->hw.period_left to count intervals. This period event
5059 * is kept in the range [-sample_period, 0] so that we can use the
5060 * sign as trigger.
5061 */
5062
5063 static u64 perf_swevent_set_period(struct perf_event *event)
5064 {
5065 struct hw_perf_event *hwc = &event->hw;
5066 u64 period = hwc->last_period;
5067 u64 nr, offset;
5068 s64 old, val;
5069
5070 hwc->last_period = hwc->sample_period;
5071
5072 again:
5073 old = val = local64_read(&hwc->period_left);
5074 if (val < 0)
5075 return 0;
5076
5077 nr = div64_u64(period + val, period);
5078 offset = nr * period;
5079 val -= offset;
5080 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
5081 goto again;
5082
5083 return nr;
5084 }
5085
5086 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
5087 int nmi, struct perf_sample_data *data,
5088 struct pt_regs *regs)
5089 {
5090 struct hw_perf_event *hwc = &event->hw;
5091 int throttle = 0;
5092
5093 data->period = event->hw.last_period;
5094 if (!overflow)
5095 overflow = perf_swevent_set_period(event);
5096
5097 if (hwc->interrupts == MAX_INTERRUPTS)
5098 return;
5099
5100 for (; overflow; overflow--) {
5101 if (__perf_event_overflow(event, nmi, throttle,
5102 data, regs)) {
5103 /*
5104 * We inhibit the overflow from happening when
5105 * hwc->interrupts == MAX_INTERRUPTS.
5106 */
5107 break;
5108 }
5109 throttle = 1;
5110 }
5111 }
5112
5113 static void perf_swevent_event(struct perf_event *event, u64 nr,
5114 int nmi, struct perf_sample_data *data,
5115 struct pt_regs *regs)
5116 {
5117 struct hw_perf_event *hwc = &event->hw;
5118
5119 local64_add(nr, &event->count);
5120
5121 if (!regs)
5122 return;
5123
5124 if (!is_sampling_event(event))
5125 return;
5126
5127 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
5128 return perf_swevent_overflow(event, 1, nmi, data, regs);
5129
5130 if (local64_add_negative(nr, &hwc->period_left))
5131 return;
5132
5133 perf_swevent_overflow(event, 0, nmi, data, regs);
5134 }
5135
5136 static int perf_exclude_event(struct perf_event *event,
5137 struct pt_regs *regs)
5138 {
5139 if (event->hw.state & PERF_HES_STOPPED)
5140 return 1;
5141
5142 if (regs) {
5143 if (event->attr.exclude_user && user_mode(regs))
5144 return 1;
5145
5146 if (event->attr.exclude_kernel && !user_mode(regs))
5147 return 1;
5148 }
5149
5150 return 0;
5151 }
5152
5153 static int perf_swevent_match(struct perf_event *event,
5154 enum perf_type_id type,
5155 u32 event_id,
5156 struct perf_sample_data *data,
5157 struct pt_regs *regs)
5158 {
5159 if (event->attr.type != type)
5160 return 0;
5161
5162 if (event->attr.config != event_id)
5163 return 0;
5164
5165 if (perf_exclude_event(event, regs))
5166 return 0;
5167
5168 return 1;
5169 }
5170
5171 static inline u64 swevent_hash(u64 type, u32 event_id)
5172 {
5173 u64 val = event_id | (type << 32);
5174
5175 return hash_64(val, SWEVENT_HLIST_BITS);
5176 }
5177
5178 static inline struct hlist_head *
5179 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
5180 {
5181 u64 hash = swevent_hash(type, event_id);
5182
5183 return &hlist->heads[hash];
5184 }
5185
5186 /* For the read side: events when they trigger */
5187 static inline struct hlist_head *
5188 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
5189 {
5190 struct swevent_hlist *hlist;
5191
5192 hlist = rcu_dereference(swhash->swevent_hlist);
5193 if (!hlist)
5194 return NULL;
5195
5196 return __find_swevent_head(hlist, type, event_id);
5197 }
5198
5199 /* For the event head insertion and removal in the hlist */
5200 static inline struct hlist_head *
5201 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
5202 {
5203 struct swevent_hlist *hlist;
5204 u32 event_id = event->attr.config;
5205 u64 type = event->attr.type;
5206
5207 /*
5208 * Event scheduling is always serialized against hlist allocation
5209 * and release. Which makes the protected version suitable here.
5210 * The context lock guarantees that.
5211 */
5212 hlist = rcu_dereference_protected(swhash->swevent_hlist,
5213 lockdep_is_held(&event->ctx->lock));
5214 if (!hlist)
5215 return NULL;
5216
5217 return __find_swevent_head(hlist, type, event_id);
5218 }
5219
5220 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
5221 u64 nr, int nmi,
5222 struct perf_sample_data *data,
5223 struct pt_regs *regs)
5224 {
5225 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5226 struct perf_event *event;
5227 struct hlist_node *node;
5228 struct hlist_head *head;
5229
5230 rcu_read_lock();
5231 head = find_swevent_head_rcu(swhash, type, event_id);
5232 if (!head)
5233 goto end;
5234
5235 hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
5236 if (perf_swevent_match(event, type, event_id, data, regs))
5237 perf_swevent_event(event, nr, nmi, data, regs);
5238 }
5239 end:
5240 rcu_read_unlock();
5241 }
5242
5243 int perf_swevent_get_recursion_context(void)
5244 {
5245 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5246
5247 return get_recursion_context(swhash->recursion);
5248 }
5249 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
5250
5251 inline void perf_swevent_put_recursion_context(int rctx)
5252 {
5253 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5254
5255 put_recursion_context(swhash->recursion, rctx);
5256 }
5257
5258 void __perf_sw_event(u32 event_id, u64 nr, int nmi,
5259 struct pt_regs *regs, u64 addr)
5260 {
5261 struct perf_sample_data data;
5262 int rctx;
5263
5264 preempt_disable_notrace();
5265 rctx = perf_swevent_get_recursion_context();
5266 if (rctx < 0)
5267 return;
5268
5269 perf_sample_data_init(&data, addr);
5270
5271 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, nmi, &data, regs);
5272
5273 perf_swevent_put_recursion_context(rctx);
5274 preempt_enable_notrace();
5275 }
5276
5277 static void perf_swevent_read(struct perf_event *event)
5278 {
5279 }
5280
5281 static int perf_swevent_add(struct perf_event *event, int flags)
5282 {
5283 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5284 struct hw_perf_event *hwc = &event->hw;
5285 struct hlist_head *head;
5286
5287 if (is_sampling_event(event)) {
5288 hwc->last_period = hwc->sample_period;
5289 perf_swevent_set_period(event);
5290 }
5291
5292 hwc->state = !(flags & PERF_EF_START);
5293
5294 head = find_swevent_head(swhash, event);
5295 if (WARN_ON_ONCE(!head))
5296 return -EINVAL;
5297
5298 hlist_add_head_rcu(&event->hlist_entry, head);
5299
5300 return 0;
5301 }
5302
5303 static void perf_swevent_del(struct perf_event *event, int flags)
5304 {
5305 hlist_del_rcu(&event->hlist_entry);
5306 }
5307
5308 static void perf_swevent_start(struct perf_event *event, int flags)
5309 {
5310 event->hw.state = 0;
5311 }
5312
5313 static void perf_swevent_stop(struct perf_event *event, int flags)
5314 {
5315 event->hw.state = PERF_HES_STOPPED;
5316 }
5317
5318 /* Deref the hlist from the update side */
5319 static inline struct swevent_hlist *
5320 swevent_hlist_deref(struct swevent_htable *swhash)
5321 {
5322 return rcu_dereference_protected(swhash->swevent_hlist,
5323 lockdep_is_held(&swhash->hlist_mutex));
5324 }
5325
5326 static void swevent_hlist_release(struct swevent_htable *swhash)
5327 {
5328 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
5329
5330 if (!hlist)
5331 return;
5332
5333 rcu_assign_pointer(swhash->swevent_hlist, NULL);
5334 kfree_rcu(hlist, rcu_head);
5335 }
5336
5337 static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
5338 {
5339 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5340
5341 mutex_lock(&swhash->hlist_mutex);
5342
5343 if (!--swhash->hlist_refcount)
5344 swevent_hlist_release(swhash);
5345
5346 mutex_unlock(&swhash->hlist_mutex);
5347 }
5348
5349 static void swevent_hlist_put(struct perf_event *event)
5350 {
5351 int cpu;
5352
5353 if (event->cpu != -1) {
5354 swevent_hlist_put_cpu(event, event->cpu);
5355 return;
5356 }
5357
5358 for_each_possible_cpu(cpu)
5359 swevent_hlist_put_cpu(event, cpu);
5360 }
5361
5362 static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
5363 {
5364 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5365 int err = 0;
5366
5367 mutex_lock(&swhash->hlist_mutex);
5368
5369 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
5370 struct swevent_hlist *hlist;
5371
5372 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
5373 if (!hlist) {
5374 err = -ENOMEM;
5375 goto exit;
5376 }
5377 rcu_assign_pointer(swhash->swevent_hlist, hlist);
5378 }
5379 swhash->hlist_refcount++;
5380 exit:
5381 mutex_unlock(&swhash->hlist_mutex);
5382
5383 return err;
5384 }
5385
5386 static int swevent_hlist_get(struct perf_event *event)
5387 {
5388 int err;
5389 int cpu, failed_cpu;
5390
5391 if (event->cpu != -1)
5392 return swevent_hlist_get_cpu(event, event->cpu);
5393
5394 get_online_cpus();
5395 for_each_possible_cpu(cpu) {
5396 err = swevent_hlist_get_cpu(event, cpu);
5397 if (err) {
5398 failed_cpu = cpu;
5399 goto fail;
5400 }
5401 }
5402 put_online_cpus();
5403
5404 return 0;
5405 fail:
5406 for_each_possible_cpu(cpu) {
5407 if (cpu == failed_cpu)
5408 break;
5409 swevent_hlist_put_cpu(event, cpu);
5410 }
5411
5412 put_online_cpus();
5413 return err;
5414 }
5415
5416 struct jump_label_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
5417
5418 static void sw_perf_event_destroy(struct perf_event *event)
5419 {
5420 u64 event_id = event->attr.config;
5421
5422 WARN_ON(event->parent);
5423
5424 jump_label_dec(&perf_swevent_enabled[event_id]);
5425 swevent_hlist_put(event);
5426 }
5427
5428 static int perf_swevent_init(struct perf_event *event)
5429 {
5430 int event_id = event->attr.config;
5431
5432 if (event->attr.type != PERF_TYPE_SOFTWARE)
5433 return -ENOENT;
5434
5435 switch (event_id) {
5436 case PERF_COUNT_SW_CPU_CLOCK:
5437 case PERF_COUNT_SW_TASK_CLOCK:
5438 return -ENOENT;
5439
5440 default:
5441 break;
5442 }
5443
5444 if (event_id >= PERF_COUNT_SW_MAX)
5445 return -ENOENT;
5446
5447 if (!event->parent) {
5448 int err;
5449
5450 err = swevent_hlist_get(event);
5451 if (err)
5452 return err;
5453
5454 jump_label_inc(&perf_swevent_enabled[event_id]);
5455 event->destroy = sw_perf_event_destroy;
5456 }
5457
5458 return 0;
5459 }
5460
5461 static struct pmu perf_swevent = {
5462 .task_ctx_nr = perf_sw_context,
5463
5464 .event_init = perf_swevent_init,
5465 .add = perf_swevent_add,
5466 .del = perf_swevent_del,
5467 .start = perf_swevent_start,
5468 .stop = perf_swevent_stop,
5469 .read = perf_swevent_read,
5470 };
5471
5472 #ifdef CONFIG_EVENT_TRACING
5473
5474 static int perf_tp_filter_match(struct perf_event *event,
5475 struct perf_sample_data *data)
5476 {
5477 void *record = data->raw->data;
5478
5479 if (likely(!event->filter) || filter_match_preds(event->filter, record))
5480 return 1;
5481 return 0;
5482 }
5483
5484 static int perf_tp_event_match(struct perf_event *event,
5485 struct perf_sample_data *data,
5486 struct pt_regs *regs)
5487 {
5488 if (event->hw.state & PERF_HES_STOPPED)
5489 return 0;
5490 /*
5491 * All tracepoints are from kernel-space.
5492 */
5493 if (event->attr.exclude_kernel)
5494 return 0;
5495
5496 if (!perf_tp_filter_match(event, data))
5497 return 0;
5498
5499 return 1;
5500 }
5501
5502 void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
5503 struct pt_regs *regs, struct hlist_head *head, int rctx)
5504 {
5505 struct perf_sample_data data;
5506 struct perf_event *event;
5507 struct hlist_node *node;
5508
5509 struct perf_raw_record raw = {
5510 .size = entry_size,
5511 .data = record,
5512 };
5513
5514 perf_sample_data_init(&data, addr);
5515 data.raw = &raw;
5516
5517 hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
5518 if (perf_tp_event_match(event, &data, regs))
5519 perf_swevent_event(event, count, 1, &data, regs);
5520 }
5521
5522 perf_swevent_put_recursion_context(rctx);
5523 }
5524 EXPORT_SYMBOL_GPL(perf_tp_event);
5525
5526 static void tp_perf_event_destroy(struct perf_event *event)
5527 {
5528 perf_trace_destroy(event);
5529 }
5530
5531 static int perf_tp_event_init(struct perf_event *event)
5532 {
5533 int err;
5534
5535 if (event->attr.type != PERF_TYPE_TRACEPOINT)
5536 return -ENOENT;
5537
5538 err = perf_trace_init(event);
5539 if (err)
5540 return err;
5541
5542 event->destroy = tp_perf_event_destroy;
5543
5544 return 0;
5545 }
5546
5547 static struct pmu perf_tracepoint = {
5548 .task_ctx_nr = perf_sw_context,
5549
5550 .event_init = perf_tp_event_init,
5551 .add = perf_trace_add,
5552 .del = perf_trace_del,
5553 .start = perf_swevent_start,
5554 .stop = perf_swevent_stop,
5555 .read = perf_swevent_read,
5556 };
5557
5558 static inline void perf_tp_register(void)
5559 {
5560 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
5561 }
5562
5563 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
5564 {
5565 char *filter_str;
5566 int ret;
5567
5568 if (event->attr.type != PERF_TYPE_TRACEPOINT)
5569 return -EINVAL;
5570
5571 filter_str = strndup_user(arg, PAGE_SIZE);
5572 if (IS_ERR(filter_str))
5573 return PTR_ERR(filter_str);
5574
5575 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
5576
5577 kfree(filter_str);
5578 return ret;
5579 }
5580
5581 static void perf_event_free_filter(struct perf_event *event)
5582 {
5583 ftrace_profile_free_filter(event);
5584 }
5585
5586 #else
5587
5588 static inline void perf_tp_register(void)
5589 {
5590 }
5591
5592 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
5593 {
5594 return -ENOENT;
5595 }
5596
5597 static void perf_event_free_filter(struct perf_event *event)
5598 {
5599 }
5600
5601 #endif /* CONFIG_EVENT_TRACING */
5602
5603 #ifdef CONFIG_HAVE_HW_BREAKPOINT
5604 void perf_bp_event(struct perf_event *bp, void *data)
5605 {
5606 struct perf_sample_data sample;
5607 struct pt_regs *regs = data;
5608
5609 perf_sample_data_init(&sample, bp->attr.bp_addr);
5610
5611 if (!bp->hw.state && !perf_exclude_event(bp, regs))
5612 perf_swevent_event(bp, 1, 1, &sample, regs);
5613 }
5614 #endif
5615
5616 /*
5617 * hrtimer based swevent callback
5618 */
5619
5620 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
5621 {
5622 enum hrtimer_restart ret = HRTIMER_RESTART;
5623 struct perf_sample_data data;
5624 struct pt_regs *regs;
5625 struct perf_event *event;
5626 u64 period;
5627
5628 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
5629
5630 if (event->state != PERF_EVENT_STATE_ACTIVE)
5631 return HRTIMER_NORESTART;
5632
5633 event->pmu->read(event);
5634
5635 perf_sample_data_init(&data, 0);
5636 data.period = event->hw.last_period;
5637 regs = get_irq_regs();
5638
5639 if (regs && !perf_exclude_event(event, regs)) {
5640 if (!(event->attr.exclude_idle && current->pid == 0))
5641 if (perf_event_overflow(event, 0, &data, regs))
5642 ret = HRTIMER_NORESTART;
5643 }
5644
5645 period = max_t(u64, 10000, event->hw.sample_period);
5646 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
5647
5648 return ret;
5649 }
5650
5651 static void perf_swevent_start_hrtimer(struct perf_event *event)
5652 {
5653 struct hw_perf_event *hwc = &event->hw;
5654 s64 period;
5655
5656 if (!is_sampling_event(event))
5657 return;
5658
5659 period = local64_read(&hwc->period_left);
5660 if (period) {
5661 if (period < 0)
5662 period = 10000;
5663
5664 local64_set(&hwc->period_left, 0);
5665 } else {
5666 period = max_t(u64, 10000, hwc->sample_period);
5667 }
5668 __hrtimer_start_range_ns(&hwc->hrtimer,
5669 ns_to_ktime(period), 0,
5670 HRTIMER_MODE_REL_PINNED, 0);
5671 }
5672
5673 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
5674 {
5675 struct hw_perf_event *hwc = &event->hw;
5676
5677 if (is_sampling_event(event)) {
5678 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
5679 local64_set(&hwc->period_left, ktime_to_ns(remaining));
5680
5681 hrtimer_cancel(&hwc->hrtimer);
5682 }
5683 }
5684
5685 static void perf_swevent_init_hrtimer(struct perf_event *event)
5686 {
5687 struct hw_perf_event *hwc = &event->hw;
5688
5689 if (!is_sampling_event(event))
5690 return;
5691
5692 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
5693 hwc->hrtimer.function = perf_swevent_hrtimer;
5694
5695 /*
5696 * Since hrtimers have a fixed rate, we can do a static freq->period
5697 * mapping and avoid the whole period adjust feedback stuff.
5698 */
5699 if (event->attr.freq) {
5700 long freq = event->attr.sample_freq;
5701
5702 event->attr.sample_period = NSEC_PER_SEC / freq;
5703 hwc->sample_period = event->attr.sample_period;
5704 local64_set(&hwc->period_left, hwc->sample_period);
5705 event->attr.freq = 0;
5706 }
5707 }
5708
5709 /*
5710 * Software event: cpu wall time clock
5711 */
5712
5713 static void cpu_clock_event_update(struct perf_event *event)
5714 {
5715 s64 prev;
5716 u64 now;
5717
5718 now = local_clock();
5719 prev = local64_xchg(&event->hw.prev_count, now);
5720 local64_add(now - prev, &event->count);
5721 }
5722
5723 static void cpu_clock_event_start(struct perf_event *event, int flags)
5724 {
5725 local64_set(&event->hw.prev_count, local_clock());
5726 perf_swevent_start_hrtimer(event);
5727 }
5728
5729 static void cpu_clock_event_stop(struct perf_event *event, int flags)
5730 {
5731 perf_swevent_cancel_hrtimer(event);
5732 cpu_clock_event_update(event);
5733 }
5734
5735 static int cpu_clock_event_add(struct perf_event *event, int flags)
5736 {
5737 if (flags & PERF_EF_START)
5738 cpu_clock_event_start(event, flags);
5739
5740 return 0;
5741 }
5742
5743 static void cpu_clock_event_del(struct perf_event *event, int flags)
5744 {
5745 cpu_clock_event_stop(event, flags);
5746 }
5747
5748 static void cpu_clock_event_read(struct perf_event *event)
5749 {
5750 cpu_clock_event_update(event);
5751 }
5752
5753 static int cpu_clock_event_init(struct perf_event *event)
5754 {
5755 if (event->attr.type != PERF_TYPE_SOFTWARE)
5756 return -ENOENT;
5757
5758 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
5759 return -ENOENT;
5760
5761 perf_swevent_init_hrtimer(event);
5762
5763 return 0;
5764 }
5765
5766 static struct pmu perf_cpu_clock = {
5767 .task_ctx_nr = perf_sw_context,
5768
5769 .event_init = cpu_clock_event_init,
5770 .add = cpu_clock_event_add,
5771 .del = cpu_clock_event_del,
5772 .start = cpu_clock_event_start,
5773 .stop = cpu_clock_event_stop,
5774 .read = cpu_clock_event_read,
5775 };
5776
5777 /*
5778 * Software event: task time clock
5779 */
5780
5781 static void task_clock_event_update(struct perf_event *event, u64 now)
5782 {
5783 u64 prev;
5784 s64 delta;
5785
5786 prev = local64_xchg(&event->hw.prev_count, now);
5787 delta = now - prev;
5788 local64_add(delta, &event->count);
5789 }
5790
5791 static void task_clock_event_start(struct perf_event *event, int flags)
5792 {
5793 local64_set(&event->hw.prev_count, event->ctx->time);
5794 perf_swevent_start_hrtimer(event);
5795 }
5796
5797 static void task_clock_event_stop(struct perf_event *event, int flags)
5798 {
5799 perf_swevent_cancel_hrtimer(event);
5800 task_clock_event_update(event, event->ctx->time);
5801 }
5802
5803 static int task_clock_event_add(struct perf_event *event, int flags)
5804 {
5805 if (flags & PERF_EF_START)
5806 task_clock_event_start(event, flags);
5807
5808 return 0;
5809 }
5810
5811 static void task_clock_event_del(struct perf_event *event, int flags)
5812 {
5813 task_clock_event_stop(event, PERF_EF_UPDATE);
5814 }
5815
5816 static void task_clock_event_read(struct perf_event *event)
5817 {
5818 u64 now = perf_clock();
5819 u64 delta = now - event->ctx->timestamp;
5820 u64 time = event->ctx->time + delta;
5821
5822 task_clock_event_update(event, time);
5823 }
5824
5825 static int task_clock_event_init(struct perf_event *event)
5826 {
5827 if (event->attr.type != PERF_TYPE_SOFTWARE)
5828 return -ENOENT;
5829
5830 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
5831 return -ENOENT;
5832
5833 perf_swevent_init_hrtimer(event);
5834
5835 return 0;
5836 }
5837
5838 static struct pmu perf_task_clock = {
5839 .task_ctx_nr = perf_sw_context,
5840
5841 .event_init = task_clock_event_init,
5842 .add = task_clock_event_add,
5843 .del = task_clock_event_del,
5844 .start = task_clock_event_start,
5845 .stop = task_clock_event_stop,
5846 .read = task_clock_event_read,
5847 };
5848
5849 static void perf_pmu_nop_void(struct pmu *pmu)
5850 {
5851 }
5852
5853 static int perf_pmu_nop_int(struct pmu *pmu)
5854 {
5855 return 0;
5856 }
5857
5858 static void perf_pmu_start_txn(struct pmu *pmu)
5859 {
5860 perf_pmu_disable(pmu);
5861 }
5862
5863 static int perf_pmu_commit_txn(struct pmu *pmu)
5864 {
5865 perf_pmu_enable(pmu);
5866 return 0;
5867 }
5868
5869 static void perf_pmu_cancel_txn(struct pmu *pmu)
5870 {
5871 perf_pmu_enable(pmu);
5872 }
5873
5874 /*
5875 * Ensures all contexts with the same task_ctx_nr have the same
5876 * pmu_cpu_context too.
5877 */
5878 static void *find_pmu_context(int ctxn)
5879 {
5880 struct pmu *pmu;
5881
5882 if (ctxn < 0)
5883 return NULL;
5884
5885 list_for_each_entry(pmu, &pmus, entry) {
5886 if (pmu->task_ctx_nr == ctxn)
5887 return pmu->pmu_cpu_context;
5888 }
5889
5890 return NULL;
5891 }
5892
5893 static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
5894 {
5895 int cpu;
5896
5897 for_each_possible_cpu(cpu) {
5898 struct perf_cpu_context *cpuctx;
5899
5900 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
5901
5902 if (cpuctx->active_pmu == old_pmu)
5903 cpuctx->active_pmu = pmu;
5904 }
5905 }
5906
5907 static void free_pmu_context(struct pmu *pmu)
5908 {
5909 struct pmu *i;
5910
5911 mutex_lock(&pmus_lock);
5912 /*
5913 * Like a real lame refcount.
5914 */
5915 list_for_each_entry(i, &pmus, entry) {
5916 if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
5917 update_pmu_context(i, pmu);
5918 goto out;
5919 }
5920 }
5921
5922 free_percpu(pmu->pmu_cpu_context);
5923 out:
5924 mutex_unlock(&pmus_lock);
5925 }
5926 static struct idr pmu_idr;
5927
5928 static ssize_t
5929 type_show(struct device *dev, struct device_attribute *attr, char *page)
5930 {
5931 struct pmu *pmu = dev_get_drvdata(dev);
5932
5933 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
5934 }
5935
5936 static struct device_attribute pmu_dev_attrs[] = {
5937 __ATTR_RO(type),
5938 __ATTR_NULL,
5939 };
5940
5941 static int pmu_bus_running;
5942 static struct bus_type pmu_bus = {
5943 .name = "event_source",
5944 .dev_attrs = pmu_dev_attrs,
5945 };
5946
5947 static void pmu_dev_release(struct device *dev)
5948 {
5949 kfree(dev);
5950 }
5951
5952 static int pmu_dev_alloc(struct pmu *pmu)
5953 {
5954 int ret = -ENOMEM;
5955
5956 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
5957 if (!pmu->dev)
5958 goto out;
5959
5960 device_initialize(pmu->dev);
5961 ret = dev_set_name(pmu->dev, "%s", pmu->name);
5962 if (ret)
5963 goto free_dev;
5964
5965 dev_set_drvdata(pmu->dev, pmu);
5966 pmu->dev->bus = &pmu_bus;
5967 pmu->dev->release = pmu_dev_release;
5968 ret = device_add(pmu->dev);
5969 if (ret)
5970 goto free_dev;
5971
5972 out:
5973 return ret;
5974
5975 free_dev:
5976 put_device(pmu->dev);
5977 goto out;
5978 }
5979
5980 static struct lock_class_key cpuctx_mutex;
5981
5982 int perf_pmu_register(struct pmu *pmu, char *name, int type)
5983 {
5984 int cpu, ret;
5985
5986 mutex_lock(&pmus_lock);
5987 ret = -ENOMEM;
5988 pmu->pmu_disable_count = alloc_percpu(int);
5989 if (!pmu->pmu_disable_count)
5990 goto unlock;
5991
5992 pmu->type = -1;
5993 if (!name)
5994 goto skip_type;
5995 pmu->name = name;
5996
5997 if (type < 0) {
5998 int err = idr_pre_get(&pmu_idr, GFP_KERNEL);
5999 if (!err)
6000 goto free_pdc;
6001
6002 err = idr_get_new_above(&pmu_idr, pmu, PERF_TYPE_MAX, &type);
6003 if (err) {
6004 ret = err;
6005 goto free_pdc;
6006 }
6007 }
6008 pmu->type = type;
6009
6010 if (pmu_bus_running) {
6011 ret = pmu_dev_alloc(pmu);
6012 if (ret)
6013 goto free_idr;
6014 }
6015
6016 skip_type:
6017 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
6018 if (pmu->pmu_cpu_context)
6019 goto got_cpu_context;
6020
6021 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
6022 if (!pmu->pmu_cpu_context)
6023 goto free_dev;
6024
6025 for_each_possible_cpu(cpu) {
6026 struct perf_cpu_context *cpuctx;
6027
6028 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6029 __perf_event_init_context(&cpuctx->ctx);
6030 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
6031 cpuctx->ctx.type = cpu_context;
6032 cpuctx->ctx.pmu = pmu;
6033 cpuctx->jiffies_interval = 1;
6034 INIT_LIST_HEAD(&cpuctx->rotation_list);
6035 cpuctx->active_pmu = pmu;
6036 }
6037
6038 got_cpu_context:
6039 if (!pmu->start_txn) {
6040 if (pmu->pmu_enable) {
6041 /*
6042 * If we have pmu_enable/pmu_disable calls, install
6043 * transaction stubs that use that to try and batch
6044 * hardware accesses.
6045 */
6046 pmu->start_txn = perf_pmu_start_txn;
6047 pmu->commit_txn = perf_pmu_commit_txn;
6048 pmu->cancel_txn = perf_pmu_cancel_txn;
6049 } else {
6050 pmu->start_txn = perf_pmu_nop_void;
6051 pmu->commit_txn = perf_pmu_nop_int;
6052 pmu->cancel_txn = perf_pmu_nop_void;
6053 }
6054 }
6055
6056 if (!pmu->pmu_enable) {
6057 pmu->pmu_enable = perf_pmu_nop_void;
6058 pmu->pmu_disable = perf_pmu_nop_void;
6059 }
6060
6061 list_add_rcu(&pmu->entry, &pmus);
6062 ret = 0;
6063 unlock:
6064 mutex_unlock(&pmus_lock);
6065
6066 return ret;
6067
6068 free_dev:
6069 device_del(pmu->dev);
6070 put_device(pmu->dev);
6071
6072 free_idr:
6073 if (pmu->type >= PERF_TYPE_MAX)
6074 idr_remove(&pmu_idr, pmu->type);
6075
6076 free_pdc:
6077 free_percpu(pmu->pmu_disable_count);
6078 goto unlock;
6079 }
6080
6081 void perf_pmu_unregister(struct pmu *pmu)
6082 {
6083 mutex_lock(&pmus_lock);
6084 list_del_rcu(&pmu->entry);
6085 mutex_unlock(&pmus_lock);
6086
6087 /*
6088 * We dereference the pmu list under both SRCU and regular RCU, so
6089 * synchronize against both of those.
6090 */
6091 synchronize_srcu(&pmus_srcu);
6092 synchronize_rcu();
6093
6094 free_percpu(pmu->pmu_disable_count);
6095 if (pmu->type >= PERF_TYPE_MAX)
6096 idr_remove(&pmu_idr, pmu->type);
6097 device_del(pmu->dev);
6098 put_device(pmu->dev);
6099 free_pmu_context(pmu);
6100 }
6101
6102 struct pmu *perf_init_event(struct perf_event *event)
6103 {
6104 struct pmu *pmu = NULL;
6105 int idx;
6106 int ret;
6107
6108 idx = srcu_read_lock(&pmus_srcu);
6109
6110 rcu_read_lock();
6111 pmu = idr_find(&pmu_idr, event->attr.type);
6112 rcu_read_unlock();
6113 if (pmu) {
6114 ret = pmu->event_init(event);
6115 if (ret)
6116 pmu = ERR_PTR(ret);
6117 goto unlock;
6118 }
6119
6120 list_for_each_entry_rcu(pmu, &pmus, entry) {
6121 ret = pmu->event_init(event);
6122 if (!ret)
6123 goto unlock;
6124
6125 if (ret != -ENOENT) {
6126 pmu = ERR_PTR(ret);
6127 goto unlock;
6128 }
6129 }
6130 pmu = ERR_PTR(-ENOENT);
6131 unlock:
6132 srcu_read_unlock(&pmus_srcu, idx);
6133
6134 return pmu;
6135 }
6136
6137 /*
6138 * Allocate and initialize a event structure
6139 */
6140 static struct perf_event *
6141 perf_event_alloc(struct perf_event_attr *attr, int cpu,
6142 struct task_struct *task,
6143 struct perf_event *group_leader,
6144 struct perf_event *parent_event,
6145 perf_overflow_handler_t overflow_handler)
6146 {
6147 struct pmu *pmu;
6148 struct perf_event *event;
6149 struct hw_perf_event *hwc;
6150 long err;
6151
6152 if ((unsigned)cpu >= nr_cpu_ids) {
6153 if (!task || cpu != -1)
6154 return ERR_PTR(-EINVAL);
6155 }
6156
6157 event = kzalloc(sizeof(*event), GFP_KERNEL);
6158 if (!event)
6159 return ERR_PTR(-ENOMEM);
6160
6161 /*
6162 * Single events are their own group leaders, with an
6163 * empty sibling list:
6164 */
6165 if (!group_leader)
6166 group_leader = event;
6167
6168 mutex_init(&event->child_mutex);
6169 INIT_LIST_HEAD(&event->child_list);
6170
6171 INIT_LIST_HEAD(&event->group_entry);
6172 INIT_LIST_HEAD(&event->event_entry);
6173 INIT_LIST_HEAD(&event->sibling_list);
6174 init_waitqueue_head(&event->waitq);
6175 init_irq_work(&event->pending, perf_pending_event);
6176
6177 mutex_init(&event->mmap_mutex);
6178
6179 event->cpu = cpu;
6180 event->attr = *attr;
6181 event->group_leader = group_leader;
6182 event->pmu = NULL;
6183 event->oncpu = -1;
6184
6185 event->parent = parent_event;
6186
6187 event->ns = get_pid_ns(current->nsproxy->pid_ns);
6188 event->id = atomic64_inc_return(&perf_event_id);
6189
6190 event->state = PERF_EVENT_STATE_INACTIVE;
6191
6192 if (task) {
6193 event->attach_state = PERF_ATTACH_TASK;
6194 #ifdef CONFIG_HAVE_HW_BREAKPOINT
6195 /*
6196 * hw_breakpoint is a bit difficult here..
6197 */
6198 if (attr->type == PERF_TYPE_BREAKPOINT)
6199 event->hw.bp_target = task;
6200 #endif
6201 }
6202
6203 if (!overflow_handler && parent_event)
6204 overflow_handler = parent_event->overflow_handler;
6205
6206 event->overflow_handler = overflow_handler;
6207
6208 if (attr->disabled)
6209 event->state = PERF_EVENT_STATE_OFF;
6210
6211 pmu = NULL;
6212
6213 hwc = &event->hw;
6214 hwc->sample_period = attr->sample_period;
6215 if (attr->freq && attr->sample_freq)
6216 hwc->sample_period = 1;
6217 hwc->last_period = hwc->sample_period;
6218
6219 local64_set(&hwc->period_left, hwc->sample_period);
6220
6221 /*
6222 * we currently do not support PERF_FORMAT_GROUP on inherited events
6223 */
6224 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
6225 goto done;
6226
6227 pmu = perf_init_event(event);
6228
6229 done:
6230 err = 0;
6231 if (!pmu)
6232 err = -EINVAL;
6233 else if (IS_ERR(pmu))
6234 err = PTR_ERR(pmu);
6235
6236 if (err) {
6237 if (event->ns)
6238 put_pid_ns(event->ns);
6239 kfree(event);
6240 return ERR_PTR(err);
6241 }
6242
6243 event->pmu = pmu;
6244
6245 if (!event->parent) {
6246 if (event->attach_state & PERF_ATTACH_TASK)
6247 jump_label_inc(&perf_sched_events);
6248 if (event->attr.mmap || event->attr.mmap_data)
6249 atomic_inc(&nr_mmap_events);
6250 if (event->attr.comm)
6251 atomic_inc(&nr_comm_events);
6252 if (event->attr.task)
6253 atomic_inc(&nr_task_events);
6254 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
6255 err = get_callchain_buffers();
6256 if (err) {
6257 free_event(event);
6258 return ERR_PTR(err);
6259 }
6260 }
6261 }
6262
6263 return event;
6264 }
6265
6266 static int perf_copy_attr(struct perf_event_attr __user *uattr,
6267 struct perf_event_attr *attr)
6268 {
6269 u32 size;
6270 int ret;
6271
6272 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
6273 return -EFAULT;
6274
6275 /*
6276 * zero the full structure, so that a short copy will be nice.
6277 */
6278 memset(attr, 0, sizeof(*attr));
6279
6280 ret = get_user(size, &uattr->size);
6281 if (ret)
6282 return ret;
6283
6284 if (size > PAGE_SIZE) /* silly large */
6285 goto err_size;
6286
6287 if (!size) /* abi compat */
6288 size = PERF_ATTR_SIZE_VER0;
6289
6290 if (size < PERF_ATTR_SIZE_VER0)
6291 goto err_size;
6292
6293 /*
6294 * If we're handed a bigger struct than we know of,
6295 * ensure all the unknown bits are 0 - i.e. new
6296 * user-space does not rely on any kernel feature
6297 * extensions we dont know about yet.
6298 */
6299 if (size > sizeof(*attr)) {
6300 unsigned char __user *addr;
6301 unsigned char __user *end;
6302 unsigned char val;
6303
6304 addr = (void __user *)uattr + sizeof(*attr);
6305 end = (void __user *)uattr + size;
6306
6307 for (; addr < end; addr++) {
6308 ret = get_user(val, addr);
6309 if (ret)
6310 return ret;
6311 if (val)
6312 goto err_size;
6313 }
6314 size = sizeof(*attr);
6315 }
6316
6317 ret = copy_from_user(attr, uattr, size);
6318 if (ret)
6319 return -EFAULT;
6320
6321 /*
6322 * If the type exists, the corresponding creation will verify
6323 * the attr->config.
6324 */
6325 if (attr->type >= PERF_TYPE_MAX)
6326 return -EINVAL;
6327
6328 if (attr->__reserved_1)
6329 return -EINVAL;
6330
6331 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
6332 return -EINVAL;
6333
6334 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
6335 return -EINVAL;
6336
6337 out:
6338 return ret;
6339
6340 err_size:
6341 put_user(sizeof(*attr), &uattr->size);
6342 ret = -E2BIG;
6343 goto out;
6344 }
6345
6346 static int
6347 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
6348 {
6349 struct perf_buffer *buffer = NULL, *old_buffer = NULL;
6350 int ret = -EINVAL;
6351
6352 if (!output_event)
6353 goto set;
6354
6355 /* don't allow circular references */
6356 if (event == output_event)
6357 goto out;
6358
6359 /*
6360 * Don't allow cross-cpu buffers
6361 */
6362 if (output_event->cpu != event->cpu)
6363 goto out;
6364
6365 /*
6366 * If its not a per-cpu buffer, it must be the same task.
6367 */
6368 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
6369 goto out;
6370
6371 set:
6372 mutex_lock(&event->mmap_mutex);
6373 /* Can't redirect output if we've got an active mmap() */
6374 if (atomic_read(&event->mmap_count))
6375 goto unlock;
6376
6377 if (output_event) {
6378 /* get the buffer we want to redirect to */
6379 buffer = perf_buffer_get(output_event);
6380 if (!buffer)
6381 goto unlock;
6382 }
6383
6384 old_buffer = event->buffer;
6385 rcu_assign_pointer(event->buffer, buffer);
6386 ret = 0;
6387 unlock:
6388 mutex_unlock(&event->mmap_mutex);
6389
6390 if (old_buffer)
6391 perf_buffer_put(old_buffer);
6392 out:
6393 return ret;
6394 }
6395
6396 /**
6397 * sys_perf_event_open - open a performance event, associate it to a task/cpu
6398 *
6399 * @attr_uptr: event_id type attributes for monitoring/sampling
6400 * @pid: target pid
6401 * @cpu: target cpu
6402 * @group_fd: group leader event fd
6403 */
6404 SYSCALL_DEFINE5(perf_event_open,
6405 struct perf_event_attr __user *, attr_uptr,
6406 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
6407 {
6408 struct perf_event *group_leader = NULL, *output_event = NULL;
6409 struct perf_event *event, *sibling;
6410 struct perf_event_attr attr;
6411 struct perf_event_context *ctx;
6412 struct file *event_file = NULL;
6413 struct file *group_file = NULL;
6414 struct task_struct *task = NULL;
6415 struct pmu *pmu;
6416 int event_fd;
6417 int move_group = 0;
6418 int fput_needed = 0;
6419 int err;
6420
6421 /* for future expandability... */
6422 if (flags & ~PERF_FLAG_ALL)
6423 return -EINVAL;
6424
6425 err = perf_copy_attr(attr_uptr, &attr);
6426 if (err)
6427 return err;
6428
6429 if (!attr.exclude_kernel) {
6430 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
6431 return -EACCES;
6432 }
6433
6434 if (attr.freq) {
6435 if (attr.sample_freq > sysctl_perf_event_sample_rate)
6436 return -EINVAL;
6437 }
6438
6439 /*
6440 * In cgroup mode, the pid argument is used to pass the fd
6441 * opened to the cgroup directory in cgroupfs. The cpu argument
6442 * designates the cpu on which to monitor threads from that
6443 * cgroup.
6444 */
6445 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
6446 return -EINVAL;
6447
6448 event_fd = get_unused_fd_flags(O_RDWR);
6449 if (event_fd < 0)
6450 return event_fd;
6451
6452 if (group_fd != -1) {
6453 group_leader = perf_fget_light(group_fd, &fput_needed);
6454 if (IS_ERR(group_leader)) {
6455 err = PTR_ERR(group_leader);
6456 goto err_fd;
6457 }
6458 group_file = group_leader->filp;
6459 if (flags & PERF_FLAG_FD_OUTPUT)
6460 output_event = group_leader;
6461 if (flags & PERF_FLAG_FD_NO_GROUP)
6462 group_leader = NULL;
6463 }
6464
6465 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
6466 task = find_lively_task_by_vpid(pid);
6467 if (IS_ERR(task)) {
6468 err = PTR_ERR(task);
6469 goto err_group_fd;
6470 }
6471 }
6472
6473 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL, NULL);
6474 if (IS_ERR(event)) {
6475 err = PTR_ERR(event);
6476 goto err_task;
6477 }
6478
6479 if (flags & PERF_FLAG_PID_CGROUP) {
6480 err = perf_cgroup_connect(pid, event, &attr, group_leader);
6481 if (err)
6482 goto err_alloc;
6483 /*
6484 * one more event:
6485 * - that has cgroup constraint on event->cpu
6486 * - that may need work on context switch
6487 */
6488 atomic_inc(&per_cpu(perf_cgroup_events, event->cpu));
6489 jump_label_inc(&perf_sched_events);
6490 }
6491
6492 /*
6493 * Special case software events and allow them to be part of
6494 * any hardware group.
6495 */
6496 pmu = event->pmu;
6497
6498 if (group_leader &&
6499 (is_software_event(event) != is_software_event(group_leader))) {
6500 if (is_software_event(event)) {
6501 /*
6502 * If event and group_leader are not both a software
6503 * event, and event is, then group leader is not.
6504 *
6505 * Allow the addition of software events to !software
6506 * groups, this is safe because software events never
6507 * fail to schedule.
6508 */
6509 pmu = group_leader->pmu;
6510 } else if (is_software_event(group_leader) &&
6511 (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
6512 /*
6513 * In case the group is a pure software group, and we
6514 * try to add a hardware event, move the whole group to
6515 * the hardware context.
6516 */
6517 move_group = 1;
6518 }
6519 }
6520
6521 /*
6522 * Get the target context (task or percpu):
6523 */
6524 ctx = find_get_context(pmu, task, cpu);
6525 if (IS_ERR(ctx)) {
6526 err = PTR_ERR(ctx);
6527 goto err_alloc;
6528 }
6529
6530 if (task) {
6531 put_task_struct(task);
6532 task = NULL;
6533 }
6534
6535 /*
6536 * Look up the group leader (we will attach this event to it):
6537 */
6538 if (group_leader) {
6539 err = -EINVAL;
6540
6541 /*
6542 * Do not allow a recursive hierarchy (this new sibling
6543 * becoming part of another group-sibling):
6544 */
6545 if (group_leader->group_leader != group_leader)
6546 goto err_context;
6547 /*
6548 * Do not allow to attach to a group in a different
6549 * task or CPU context:
6550 */
6551 if (move_group) {
6552 if (group_leader->ctx->type != ctx->type)
6553 goto err_context;
6554 } else {
6555 if (group_leader->ctx != ctx)
6556 goto err_context;
6557 }
6558
6559 /*
6560 * Only a group leader can be exclusive or pinned
6561 */
6562 if (attr.exclusive || attr.pinned)
6563 goto err_context;
6564 }
6565
6566 if (output_event) {
6567 err = perf_event_set_output(event, output_event);
6568 if (err)
6569 goto err_context;
6570 }
6571
6572 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
6573 if (IS_ERR(event_file)) {
6574 err = PTR_ERR(event_file);
6575 goto err_context;
6576 }
6577
6578 if (move_group) {
6579 struct perf_event_context *gctx = group_leader->ctx;
6580
6581 mutex_lock(&gctx->mutex);
6582 perf_remove_from_context(group_leader);
6583 list_for_each_entry(sibling, &group_leader->sibling_list,
6584 group_entry) {
6585 perf_remove_from_context(sibling);
6586 put_ctx(gctx);
6587 }
6588 mutex_unlock(&gctx->mutex);
6589 put_ctx(gctx);
6590 }
6591
6592 event->filp = event_file;
6593 WARN_ON_ONCE(ctx->parent_ctx);
6594 mutex_lock(&ctx->mutex);
6595
6596 if (move_group) {
6597 perf_install_in_context(ctx, group_leader, cpu);
6598 get_ctx(ctx);
6599 list_for_each_entry(sibling, &group_leader->sibling_list,
6600 group_entry) {
6601 perf_install_in_context(ctx, sibling, cpu);
6602 get_ctx(ctx);
6603 }
6604 }
6605
6606 perf_install_in_context(ctx, event, cpu);
6607 ++ctx->generation;
6608 perf_unpin_context(ctx);
6609 mutex_unlock(&ctx->mutex);
6610
6611 event->owner = current;
6612
6613 mutex_lock(&current->perf_event_mutex);
6614 list_add_tail(&event->owner_entry, &current->perf_event_list);
6615 mutex_unlock(&current->perf_event_mutex);
6616
6617 /*
6618 * Precalculate sample_data sizes
6619 */
6620 perf_event__header_size(event);
6621 perf_event__id_header_size(event);
6622
6623 /*
6624 * Drop the reference on the group_event after placing the
6625 * new event on the sibling_list. This ensures destruction
6626 * of the group leader will find the pointer to itself in
6627 * perf_group_detach().
6628 */
6629 fput_light(group_file, fput_needed);
6630 fd_install(event_fd, event_file);
6631 return event_fd;
6632
6633 err_context:
6634 perf_unpin_context(ctx);
6635 put_ctx(ctx);
6636 err_alloc:
6637 free_event(event);
6638 err_task:
6639 if (task)
6640 put_task_struct(task);
6641 err_group_fd:
6642 fput_light(group_file, fput_needed);
6643 err_fd:
6644 put_unused_fd(event_fd);
6645 return err;
6646 }
6647
6648 /**
6649 * perf_event_create_kernel_counter
6650 *
6651 * @attr: attributes of the counter to create
6652 * @cpu: cpu in which the counter is bound
6653 * @task: task to profile (NULL for percpu)
6654 */
6655 struct perf_event *
6656 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
6657 struct task_struct *task,
6658 perf_overflow_handler_t overflow_handler)
6659 {
6660 struct perf_event_context *ctx;
6661 struct perf_event *event;
6662 int err;
6663
6664 /*
6665 * Get the target context (task or percpu):
6666 */
6667
6668 event = perf_event_alloc(attr, cpu, task, NULL, NULL, overflow_handler);
6669 if (IS_ERR(event)) {
6670 err = PTR_ERR(event);
6671 goto err;
6672 }
6673
6674 ctx = find_get_context(event->pmu, task, cpu);
6675 if (IS_ERR(ctx)) {
6676 err = PTR_ERR(ctx);
6677 goto err_free;
6678 }
6679
6680 event->filp = NULL;
6681 WARN_ON_ONCE(ctx->parent_ctx);
6682 mutex_lock(&ctx->mutex);
6683 perf_install_in_context(ctx, event, cpu);
6684 ++ctx->generation;
6685 perf_unpin_context(ctx);
6686 mutex_unlock(&ctx->mutex);
6687
6688 return event;
6689
6690 err_free:
6691 free_event(event);
6692 err:
6693 return ERR_PTR(err);
6694 }
6695 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
6696
6697 static void sync_child_event(struct perf_event *child_event,
6698 struct task_struct *child)
6699 {
6700 struct perf_event *parent_event = child_event->parent;
6701 u64 child_val;
6702
6703 if (child_event->attr.inherit_stat)
6704 perf_event_read_event(child_event, child);
6705
6706 child_val = perf_event_count(child_event);
6707
6708 /*
6709 * Add back the child's count to the parent's count:
6710 */
6711 atomic64_add(child_val, &parent_event->child_count);
6712 atomic64_add(child_event->total_time_enabled,
6713 &parent_event->child_total_time_enabled);
6714 atomic64_add(child_event->total_time_running,
6715 &parent_event->child_total_time_running);
6716
6717 /*
6718 * Remove this event from the parent's list
6719 */
6720 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
6721 mutex_lock(&parent_event->child_mutex);
6722 list_del_init(&child_event->child_list);
6723 mutex_unlock(&parent_event->child_mutex);
6724
6725 /*
6726 * Release the parent event, if this was the last
6727 * reference to it.
6728 */
6729 fput(parent_event->filp);
6730 }
6731
6732 static void
6733 __perf_event_exit_task(struct perf_event *child_event,
6734 struct perf_event_context *child_ctx,
6735 struct task_struct *child)
6736 {
6737 if (child_event->parent) {
6738 raw_spin_lock_irq(&child_ctx->lock);
6739 perf_group_detach(child_event);
6740 raw_spin_unlock_irq(&child_ctx->lock);
6741 }
6742
6743 perf_remove_from_context(child_event);
6744
6745 /*
6746 * It can happen that the parent exits first, and has events
6747 * that are still around due to the child reference. These
6748 * events need to be zapped.
6749 */
6750 if (child_event->parent) {
6751 sync_child_event(child_event, child);
6752 free_event(child_event);
6753 }
6754 }
6755
6756 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
6757 {
6758 struct perf_event *child_event, *tmp;
6759 struct perf_event_context *child_ctx;
6760 unsigned long flags;
6761
6762 if (likely(!child->perf_event_ctxp[ctxn])) {
6763 perf_event_task(child, NULL, 0);
6764 return;
6765 }
6766
6767 local_irq_save(flags);
6768 /*
6769 * We can't reschedule here because interrupts are disabled,
6770 * and either child is current or it is a task that can't be
6771 * scheduled, so we are now safe from rescheduling changing
6772 * our context.
6773 */
6774 child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
6775 task_ctx_sched_out(child_ctx, EVENT_ALL);
6776
6777 /*
6778 * Take the context lock here so that if find_get_context is
6779 * reading child->perf_event_ctxp, we wait until it has
6780 * incremented the context's refcount before we do put_ctx below.
6781 */
6782 raw_spin_lock(&child_ctx->lock);
6783 child->perf_event_ctxp[ctxn] = NULL;
6784 /*
6785 * If this context is a clone; unclone it so it can't get
6786 * swapped to another process while we're removing all
6787 * the events from it.
6788 */
6789 unclone_ctx(child_ctx);
6790 update_context_time(child_ctx);
6791 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
6792
6793 /*
6794 * Report the task dead after unscheduling the events so that we
6795 * won't get any samples after PERF_RECORD_EXIT. We can however still
6796 * get a few PERF_RECORD_READ events.
6797 */
6798 perf_event_task(child, child_ctx, 0);
6799
6800 /*
6801 * We can recurse on the same lock type through:
6802 *
6803 * __perf_event_exit_task()
6804 * sync_child_event()
6805 * fput(parent_event->filp)
6806 * perf_release()
6807 * mutex_lock(&ctx->mutex)
6808 *
6809 * But since its the parent context it won't be the same instance.
6810 */
6811 mutex_lock(&child_ctx->mutex);
6812
6813 again:
6814 list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
6815 group_entry)
6816 __perf_event_exit_task(child_event, child_ctx, child);
6817
6818 list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
6819 group_entry)
6820 __perf_event_exit_task(child_event, child_ctx, child);
6821
6822 /*
6823 * If the last event was a group event, it will have appended all
6824 * its siblings to the list, but we obtained 'tmp' before that which
6825 * will still point to the list head terminating the iteration.
6826 */
6827 if (!list_empty(&child_ctx->pinned_groups) ||
6828 !list_empty(&child_ctx->flexible_groups))
6829 goto again;
6830
6831 mutex_unlock(&child_ctx->mutex);
6832
6833 put_ctx(child_ctx);
6834 }
6835
6836 /*
6837 * When a child task exits, feed back event values to parent events.
6838 */
6839 void perf_event_exit_task(struct task_struct *child)
6840 {
6841 struct perf_event *event, *tmp;
6842 int ctxn;
6843
6844 mutex_lock(&child->perf_event_mutex);
6845 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
6846 owner_entry) {
6847 list_del_init(&event->owner_entry);
6848
6849 /*
6850 * Ensure the list deletion is visible before we clear
6851 * the owner, closes a race against perf_release() where
6852 * we need to serialize on the owner->perf_event_mutex.
6853 */
6854 smp_wmb();
6855 event->owner = NULL;
6856 }
6857 mutex_unlock(&child->perf_event_mutex);
6858
6859 for_each_task_context_nr(ctxn)
6860 perf_event_exit_task_context(child, ctxn);
6861 }
6862
6863 static void perf_free_event(struct perf_event *event,
6864 struct perf_event_context *ctx)
6865 {
6866 struct perf_event *parent = event->parent;
6867
6868 if (WARN_ON_ONCE(!parent))
6869 return;
6870
6871 mutex_lock(&parent->child_mutex);
6872 list_del_init(&event->child_list);
6873 mutex_unlock(&parent->child_mutex);
6874
6875 fput(parent->filp);
6876
6877 perf_group_detach(event);
6878 list_del_event(event, ctx);
6879 free_event(event);
6880 }
6881
6882 /*
6883 * free an unexposed, unused context as created by inheritance by
6884 * perf_event_init_task below, used by fork() in case of fail.
6885 */
6886 void perf_event_free_task(struct task_struct *task)
6887 {
6888 struct perf_event_context *ctx;
6889 struct perf_event *event, *tmp;
6890 int ctxn;
6891
6892 for_each_task_context_nr(ctxn) {
6893 ctx = task->perf_event_ctxp[ctxn];
6894 if (!ctx)
6895 continue;
6896
6897 mutex_lock(&ctx->mutex);
6898 again:
6899 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
6900 group_entry)
6901 perf_free_event(event, ctx);
6902
6903 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
6904 group_entry)
6905 perf_free_event(event, ctx);
6906
6907 if (!list_empty(&ctx->pinned_groups) ||
6908 !list_empty(&ctx->flexible_groups))
6909 goto again;
6910
6911 mutex_unlock(&ctx->mutex);
6912
6913 put_ctx(ctx);
6914 }
6915 }
6916
6917 void perf_event_delayed_put(struct task_struct *task)
6918 {
6919 int ctxn;
6920
6921 for_each_task_context_nr(ctxn)
6922 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
6923 }
6924
6925 /*
6926 * inherit a event from parent task to child task:
6927 */
6928 static struct perf_event *
6929 inherit_event(struct perf_event *parent_event,
6930 struct task_struct *parent,
6931 struct perf_event_context *parent_ctx,
6932 struct task_struct *child,
6933 struct perf_event *group_leader,
6934 struct perf_event_context *child_ctx)
6935 {
6936 struct perf_event *child_event;
6937 unsigned long flags;
6938
6939 /*
6940 * Instead of creating recursive hierarchies of events,
6941 * we link inherited events back to the original parent,
6942 * which has a filp for sure, which we use as the reference
6943 * count:
6944 */
6945 if (parent_event->parent)
6946 parent_event = parent_event->parent;
6947
6948 child_event = perf_event_alloc(&parent_event->attr,
6949 parent_event->cpu,
6950 child,
6951 group_leader, parent_event,
6952 NULL);
6953 if (IS_ERR(child_event))
6954 return child_event;
6955 get_ctx(child_ctx);
6956
6957 /*
6958 * Make the child state follow the state of the parent event,
6959 * not its attr.disabled bit. We hold the parent's mutex,
6960 * so we won't race with perf_event_{en, dis}able_family.
6961 */
6962 if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
6963 child_event->state = PERF_EVENT_STATE_INACTIVE;
6964 else
6965 child_event->state = PERF_EVENT_STATE_OFF;
6966
6967 if (parent_event->attr.freq) {
6968 u64 sample_period = parent_event->hw.sample_period;
6969 struct hw_perf_event *hwc = &child_event->hw;
6970
6971 hwc->sample_period = sample_period;
6972 hwc->last_period = sample_period;
6973
6974 local64_set(&hwc->period_left, sample_period);
6975 }
6976
6977 child_event->ctx = child_ctx;
6978 child_event->overflow_handler = parent_event->overflow_handler;
6979
6980 /*
6981 * Precalculate sample_data sizes
6982 */
6983 perf_event__header_size(child_event);
6984 perf_event__id_header_size(child_event);
6985
6986 /*
6987 * Link it up in the child's context:
6988 */
6989 raw_spin_lock_irqsave(&child_ctx->lock, flags);
6990 add_event_to_ctx(child_event, child_ctx);
6991 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
6992
6993 /*
6994 * Get a reference to the parent filp - we will fput it
6995 * when the child event exits. This is safe to do because
6996 * we are in the parent and we know that the filp still
6997 * exists and has a nonzero count:
6998 */
6999 atomic_long_inc(&parent_event->filp->f_count);
7000
7001 /*
7002 * Link this into the parent event's child list
7003 */
7004 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
7005 mutex_lock(&parent_event->child_mutex);
7006 list_add_tail(&child_event->child_list, &parent_event->child_list);
7007 mutex_unlock(&parent_event->child_mutex);
7008
7009 return child_event;
7010 }
7011
7012 static int inherit_group(struct perf_event *parent_event,
7013 struct task_struct *parent,
7014 struct perf_event_context *parent_ctx,
7015 struct task_struct *child,
7016 struct perf_event_context *child_ctx)
7017 {
7018 struct perf_event *leader;
7019 struct perf_event *sub;
7020 struct perf_event *child_ctr;
7021
7022 leader = inherit_event(parent_event, parent, parent_ctx,
7023 child, NULL, child_ctx);
7024 if (IS_ERR(leader))
7025 return PTR_ERR(leader);
7026 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
7027 child_ctr = inherit_event(sub, parent, parent_ctx,
7028 child, leader, child_ctx);
7029 if (IS_ERR(child_ctr))
7030 return PTR_ERR(child_ctr);
7031 }
7032 return 0;
7033 }
7034
7035 static int
7036 inherit_task_group(struct perf_event *event, struct task_struct *parent,
7037 struct perf_event_context *parent_ctx,
7038 struct task_struct *child, int ctxn,
7039 int *inherited_all)
7040 {
7041 int ret;
7042 struct perf_event_context *child_ctx;
7043
7044 if (!event->attr.inherit) {
7045 *inherited_all = 0;
7046 return 0;
7047 }
7048
7049 child_ctx = child->perf_event_ctxp[ctxn];
7050 if (!child_ctx) {
7051 /*
7052 * This is executed from the parent task context, so
7053 * inherit events that have been marked for cloning.
7054 * First allocate and initialize a context for the
7055 * child.
7056 */
7057
7058 child_ctx = alloc_perf_context(event->pmu, child);
7059 if (!child_ctx)
7060 return -ENOMEM;
7061
7062 child->perf_event_ctxp[ctxn] = child_ctx;
7063 }
7064
7065 ret = inherit_group(event, parent, parent_ctx,
7066 child, child_ctx);
7067
7068 if (ret)
7069 *inherited_all = 0;
7070
7071 return ret;
7072 }
7073
7074 /*
7075 * Initialize the perf_event context in task_struct
7076 */
7077 int perf_event_init_context(struct task_struct *child, int ctxn)
7078 {
7079 struct perf_event_context *child_ctx, *parent_ctx;
7080 struct perf_event_context *cloned_ctx;
7081 struct perf_event *event;
7082 struct task_struct *parent = current;
7083 int inherited_all = 1;
7084 unsigned long flags;
7085 int ret = 0;
7086
7087 if (likely(!parent->perf_event_ctxp[ctxn]))
7088 return 0;
7089
7090 /*
7091 * If the parent's context is a clone, pin it so it won't get
7092 * swapped under us.
7093 */
7094 parent_ctx = perf_pin_task_context(parent, ctxn);
7095
7096 /*
7097 * No need to check if parent_ctx != NULL here; since we saw
7098 * it non-NULL earlier, the only reason for it to become NULL
7099 * is if we exit, and since we're currently in the middle of
7100 * a fork we can't be exiting at the same time.
7101 */
7102
7103 /*
7104 * Lock the parent list. No need to lock the child - not PID
7105 * hashed yet and not running, so nobody can access it.
7106 */
7107 mutex_lock(&parent_ctx->mutex);
7108
7109 /*
7110 * We dont have to disable NMIs - we are only looking at
7111 * the list, not manipulating it:
7112 */
7113 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
7114 ret = inherit_task_group(event, parent, parent_ctx,
7115 child, ctxn, &inherited_all);
7116 if (ret)
7117 break;
7118 }
7119
7120 /*
7121 * We can't hold ctx->lock when iterating the ->flexible_group list due
7122 * to allocations, but we need to prevent rotation because
7123 * rotate_ctx() will change the list from interrupt context.
7124 */
7125 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
7126 parent_ctx->rotate_disable = 1;
7127 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
7128
7129 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
7130 ret = inherit_task_group(event, parent, parent_ctx,
7131 child, ctxn, &inherited_all);
7132 if (ret)
7133 break;
7134 }
7135
7136 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
7137 parent_ctx->rotate_disable = 0;
7138
7139 child_ctx = child->perf_event_ctxp[ctxn];
7140
7141 if (child_ctx && inherited_all) {
7142 /*
7143 * Mark the child context as a clone of the parent
7144 * context, or of whatever the parent is a clone of.
7145 *
7146 * Note that if the parent is a clone, the holding of
7147 * parent_ctx->lock avoids it from being uncloned.
7148 */
7149 cloned_ctx = parent_ctx->parent_ctx;
7150 if (cloned_ctx) {
7151 child_ctx->parent_ctx = cloned_ctx;
7152 child_ctx->parent_gen = parent_ctx->parent_gen;
7153 } else {
7154 child_ctx->parent_ctx = parent_ctx;
7155 child_ctx->parent_gen = parent_ctx->generation;
7156 }
7157 get_ctx(child_ctx->parent_ctx);
7158 }
7159
7160 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
7161 mutex_unlock(&parent_ctx->mutex);
7162
7163 perf_unpin_context(parent_ctx);
7164 put_ctx(parent_ctx);
7165
7166 return ret;
7167 }
7168
7169 /*
7170 * Initialize the perf_event context in task_struct
7171 */
7172 int perf_event_init_task(struct task_struct *child)
7173 {
7174 int ctxn, ret;
7175
7176 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
7177 mutex_init(&child->perf_event_mutex);
7178 INIT_LIST_HEAD(&child->perf_event_list);
7179
7180 for_each_task_context_nr(ctxn) {
7181 ret = perf_event_init_context(child, ctxn);
7182 if (ret)
7183 return ret;
7184 }
7185
7186 return 0;
7187 }
7188
7189 static void __init perf_event_init_all_cpus(void)
7190 {
7191 struct swevent_htable *swhash;
7192 int cpu;
7193
7194 for_each_possible_cpu(cpu) {
7195 swhash = &per_cpu(swevent_htable, cpu);
7196 mutex_init(&swhash->hlist_mutex);
7197 INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
7198 }
7199 }
7200
7201 static void __cpuinit perf_event_init_cpu(int cpu)
7202 {
7203 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7204
7205 mutex_lock(&swhash->hlist_mutex);
7206 if (swhash->hlist_refcount > 0) {
7207 struct swevent_hlist *hlist;
7208
7209 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
7210 WARN_ON(!hlist);
7211 rcu_assign_pointer(swhash->swevent_hlist, hlist);
7212 }
7213 mutex_unlock(&swhash->hlist_mutex);
7214 }
7215
7216 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
7217 static void perf_pmu_rotate_stop(struct pmu *pmu)
7218 {
7219 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
7220
7221 WARN_ON(!irqs_disabled());
7222
7223 list_del_init(&cpuctx->rotation_list);
7224 }
7225
7226 static void __perf_event_exit_context(void *__info)
7227 {
7228 struct perf_event_context *ctx = __info;
7229 struct perf_event *event, *tmp;
7230
7231 perf_pmu_rotate_stop(ctx->pmu);
7232
7233 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
7234 __perf_remove_from_context(event);
7235 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
7236 __perf_remove_from_context(event);
7237 }
7238
7239 static void perf_event_exit_cpu_context(int cpu)
7240 {
7241 struct perf_event_context *ctx;
7242 struct pmu *pmu;
7243 int idx;
7244
7245 idx = srcu_read_lock(&pmus_srcu);
7246 list_for_each_entry_rcu(pmu, &pmus, entry) {
7247 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
7248
7249 mutex_lock(&ctx->mutex);
7250 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
7251 mutex_unlock(&ctx->mutex);
7252 }
7253 srcu_read_unlock(&pmus_srcu, idx);
7254 }
7255
7256 static void perf_event_exit_cpu(int cpu)
7257 {
7258 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7259
7260 mutex_lock(&swhash->hlist_mutex);
7261 swevent_hlist_release(swhash);
7262 mutex_unlock(&swhash->hlist_mutex);
7263
7264 perf_event_exit_cpu_context(cpu);
7265 }
7266 #else
7267 static inline void perf_event_exit_cpu(int cpu) { }
7268 #endif
7269
7270 static int
7271 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
7272 {
7273 int cpu;
7274
7275 for_each_online_cpu(cpu)
7276 perf_event_exit_cpu(cpu);
7277
7278 return NOTIFY_OK;
7279 }
7280
7281 /*
7282 * Run the perf reboot notifier at the very last possible moment so that
7283 * the generic watchdog code runs as long as possible.
7284 */
7285 static struct notifier_block perf_reboot_notifier = {
7286 .notifier_call = perf_reboot,
7287 .priority = INT_MIN,
7288 };
7289
7290 static int __cpuinit
7291 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
7292 {
7293 unsigned int cpu = (long)hcpu;
7294
7295 switch (action & ~CPU_TASKS_FROZEN) {
7296
7297 case CPU_UP_PREPARE:
7298 case CPU_DOWN_FAILED:
7299 perf_event_init_cpu(cpu);
7300 break;
7301
7302 case CPU_UP_CANCELED:
7303 case CPU_DOWN_PREPARE:
7304 perf_event_exit_cpu(cpu);
7305 break;
7306
7307 default:
7308 break;
7309 }
7310
7311 return NOTIFY_OK;
7312 }
7313
7314 void __init perf_event_init(void)
7315 {
7316 int ret;
7317
7318 idr_init(&pmu_idr);
7319
7320 perf_event_init_all_cpus();
7321 init_srcu_struct(&pmus_srcu);
7322 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
7323 perf_pmu_register(&perf_cpu_clock, NULL, -1);
7324 perf_pmu_register(&perf_task_clock, NULL, -1);
7325 perf_tp_register();
7326 perf_cpu_notifier(perf_cpu_notify);
7327 register_reboot_notifier(&perf_reboot_notifier);
7328
7329 ret = init_hw_breakpoint();
7330 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
7331 }
7332
7333 static int __init perf_event_sysfs_init(void)
7334 {
7335 struct pmu *pmu;
7336 int ret;
7337
7338 mutex_lock(&pmus_lock);
7339
7340 ret = bus_register(&pmu_bus);
7341 if (ret)
7342 goto unlock;
7343
7344 list_for_each_entry(pmu, &pmus, entry) {
7345 if (!pmu->name || pmu->type < 0)
7346 continue;
7347
7348 ret = pmu_dev_alloc(pmu);
7349 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
7350 }
7351 pmu_bus_running = 1;
7352 ret = 0;
7353
7354 unlock:
7355 mutex_unlock(&pmus_lock);
7356
7357 return ret;
7358 }
7359 device_initcall(perf_event_sysfs_init);
7360
7361 #ifdef CONFIG_CGROUP_PERF
7362 static struct cgroup_subsys_state *perf_cgroup_create(
7363 struct cgroup_subsys *ss, struct cgroup *cont)
7364 {
7365 struct perf_cgroup *jc;
7366
7367 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
7368 if (!jc)
7369 return ERR_PTR(-ENOMEM);
7370
7371 jc->info = alloc_percpu(struct perf_cgroup_info);
7372 if (!jc->info) {
7373 kfree(jc);
7374 return ERR_PTR(-ENOMEM);
7375 }
7376
7377 return &jc->css;
7378 }
7379
7380 static void perf_cgroup_destroy(struct cgroup_subsys *ss,
7381 struct cgroup *cont)
7382 {
7383 struct perf_cgroup *jc;
7384 jc = container_of(cgroup_subsys_state(cont, perf_subsys_id),
7385 struct perf_cgroup, css);
7386 free_percpu(jc->info);
7387 kfree(jc);
7388 }
7389
7390 static int __perf_cgroup_move(void *info)
7391 {
7392 struct task_struct *task = info;
7393 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
7394 return 0;
7395 }
7396
7397 static void perf_cgroup_move(struct task_struct *task)
7398 {
7399 task_function_call(task, __perf_cgroup_move, task);
7400 }
7401
7402 static void perf_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
7403 struct cgroup *old_cgrp, struct task_struct *task,
7404 bool threadgroup)
7405 {
7406 perf_cgroup_move(task);
7407 if (threadgroup) {
7408 struct task_struct *c;
7409 rcu_read_lock();
7410 list_for_each_entry_rcu(c, &task->thread_group, thread_group) {
7411 perf_cgroup_move(c);
7412 }
7413 rcu_read_unlock();
7414 }
7415 }
7416
7417 static void perf_cgroup_exit(struct cgroup_subsys *ss, struct cgroup *cgrp,
7418 struct cgroup *old_cgrp, struct task_struct *task)
7419 {
7420 /*
7421 * cgroup_exit() is called in the copy_process() failure path.
7422 * Ignore this case since the task hasn't ran yet, this avoids
7423 * trying to poke a half freed task state from generic code.
7424 */
7425 if (!(task->flags & PF_EXITING))
7426 return;
7427
7428 perf_cgroup_move(task);
7429 }
7430
7431 struct cgroup_subsys perf_subsys = {
7432 .name = "perf_event",
7433 .subsys_id = perf_subsys_id,
7434 .create = perf_cgroup_create,
7435 .destroy = perf_cgroup_destroy,
7436 .exit = perf_cgroup_exit,
7437 .attach = perf_cgroup_attach,
7438 };
7439 #endif /* CONFIG_CGROUP_PERF */
This page took 0.182077 seconds and 4 git commands to generate.