perf/x86: Fix active_entry initialization
[deliverable/linux.git] / kernel / events / core.c
1 /*
2 * Performance events core code:
3 *
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8 *
9 * For licensing details see kernel-base/COPYING
10 */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/tick.h>
22 #include <linux/sysfs.h>
23 #include <linux/dcache.h>
24 #include <linux/percpu.h>
25 #include <linux/ptrace.h>
26 #include <linux/reboot.h>
27 #include <linux/vmstat.h>
28 #include <linux/device.h>
29 #include <linux/export.h>
30 #include <linux/vmalloc.h>
31 #include <linux/hardirq.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/perf_event.h>
38 #include <linux/ftrace_event.h>
39 #include <linux/hw_breakpoint.h>
40 #include <linux/mm_types.h>
41 #include <linux/cgroup.h>
42
43 #include "internal.h"
44
45 #include <asm/irq_regs.h>
46
47 struct remote_function_call {
48 struct task_struct *p;
49 int (*func)(void *info);
50 void *info;
51 int ret;
52 };
53
54 static void remote_function(void *data)
55 {
56 struct remote_function_call *tfc = data;
57 struct task_struct *p = tfc->p;
58
59 if (p) {
60 tfc->ret = -EAGAIN;
61 if (task_cpu(p) != smp_processor_id() || !task_curr(p))
62 return;
63 }
64
65 tfc->ret = tfc->func(tfc->info);
66 }
67
68 /**
69 * task_function_call - call a function on the cpu on which a task runs
70 * @p: the task to evaluate
71 * @func: the function to be called
72 * @info: the function call argument
73 *
74 * Calls the function @func when the task is currently running. This might
75 * be on the current CPU, which just calls the function directly
76 *
77 * returns: @func return value, or
78 * -ESRCH - when the process isn't running
79 * -EAGAIN - when the process moved away
80 */
81 static int
82 task_function_call(struct task_struct *p, int (*func) (void *info), void *info)
83 {
84 struct remote_function_call data = {
85 .p = p,
86 .func = func,
87 .info = info,
88 .ret = -ESRCH, /* No such (running) process */
89 };
90
91 if (task_curr(p))
92 smp_call_function_single(task_cpu(p), remote_function, &data, 1);
93
94 return data.ret;
95 }
96
97 /**
98 * cpu_function_call - call a function on the cpu
99 * @func: the function to be called
100 * @info: the function call argument
101 *
102 * Calls the function @func on the remote cpu.
103 *
104 * returns: @func return value or -ENXIO when the cpu is offline
105 */
106 static int cpu_function_call(int cpu, int (*func) (void *info), void *info)
107 {
108 struct remote_function_call data = {
109 .p = NULL,
110 .func = func,
111 .info = info,
112 .ret = -ENXIO, /* No such CPU */
113 };
114
115 smp_call_function_single(cpu, remote_function, &data, 1);
116
117 return data.ret;
118 }
119
120 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
121 PERF_FLAG_FD_OUTPUT |\
122 PERF_FLAG_PID_CGROUP)
123
124 /*
125 * branch priv levels that need permission checks
126 */
127 #define PERF_SAMPLE_BRANCH_PERM_PLM \
128 (PERF_SAMPLE_BRANCH_KERNEL |\
129 PERF_SAMPLE_BRANCH_HV)
130
131 enum event_type_t {
132 EVENT_FLEXIBLE = 0x1,
133 EVENT_PINNED = 0x2,
134 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
135 };
136
137 /*
138 * perf_sched_events : >0 events exist
139 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
140 */
141 struct static_key_deferred perf_sched_events __read_mostly;
142 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
143 static DEFINE_PER_CPU(atomic_t, perf_branch_stack_events);
144
145 static atomic_t nr_mmap_events __read_mostly;
146 static atomic_t nr_comm_events __read_mostly;
147 static atomic_t nr_task_events __read_mostly;
148 static atomic_t nr_freq_events __read_mostly;
149
150 static LIST_HEAD(pmus);
151 static DEFINE_MUTEX(pmus_lock);
152 static struct srcu_struct pmus_srcu;
153
154 /*
155 * perf event paranoia level:
156 * -1 - not paranoid at all
157 * 0 - disallow raw tracepoint access for unpriv
158 * 1 - disallow cpu events for unpriv
159 * 2 - disallow kernel profiling for unpriv
160 */
161 int sysctl_perf_event_paranoid __read_mostly = 1;
162
163 /* Minimum for 512 kiB + 1 user control page */
164 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
165
166 /*
167 * max perf event sample rate
168 */
169 #define DEFAULT_MAX_SAMPLE_RATE 100000
170 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
171 #define DEFAULT_CPU_TIME_MAX_PERCENT 25
172
173 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
174
175 static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
176 static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS;
177
178 static int perf_sample_allowed_ns __read_mostly =
179 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
180
181 void update_perf_cpu_limits(void)
182 {
183 u64 tmp = perf_sample_period_ns;
184
185 tmp *= sysctl_perf_cpu_time_max_percent;
186 do_div(tmp, 100);
187 ACCESS_ONCE(perf_sample_allowed_ns) = tmp;
188 }
189
190 static int perf_rotate_context(struct perf_cpu_context *cpuctx);
191
192 int perf_proc_update_handler(struct ctl_table *table, int write,
193 void __user *buffer, size_t *lenp,
194 loff_t *ppos)
195 {
196 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
197
198 if (ret || !write)
199 return ret;
200
201 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
202 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
203 update_perf_cpu_limits();
204
205 return 0;
206 }
207
208 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
209
210 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
211 void __user *buffer, size_t *lenp,
212 loff_t *ppos)
213 {
214 int ret = proc_dointvec(table, write, buffer, lenp, ppos);
215
216 if (ret || !write)
217 return ret;
218
219 update_perf_cpu_limits();
220
221 return 0;
222 }
223
224 /*
225 * perf samples are done in some very critical code paths (NMIs).
226 * If they take too much CPU time, the system can lock up and not
227 * get any real work done. This will drop the sample rate when
228 * we detect that events are taking too long.
229 */
230 #define NR_ACCUMULATED_SAMPLES 128
231 static DEFINE_PER_CPU(u64, running_sample_length);
232
233 void perf_sample_event_took(u64 sample_len_ns)
234 {
235 u64 avg_local_sample_len;
236 u64 local_samples_len;
237 u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
238
239 if (allowed_ns == 0)
240 return;
241
242 /* decay the counter by 1 average sample */
243 local_samples_len = __get_cpu_var(running_sample_length);
244 local_samples_len -= local_samples_len/NR_ACCUMULATED_SAMPLES;
245 local_samples_len += sample_len_ns;
246 __get_cpu_var(running_sample_length) = local_samples_len;
247
248 /*
249 * note: this will be biased artifically low until we have
250 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
251 * from having to maintain a count.
252 */
253 avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
254
255 if (avg_local_sample_len <= allowed_ns)
256 return;
257
258 if (max_samples_per_tick <= 1)
259 return;
260
261 max_samples_per_tick = DIV_ROUND_UP(max_samples_per_tick, 2);
262 sysctl_perf_event_sample_rate = max_samples_per_tick * HZ;
263 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
264
265 printk_ratelimited(KERN_WARNING
266 "perf samples too long (%lld > %lld), lowering "
267 "kernel.perf_event_max_sample_rate to %d\n",
268 avg_local_sample_len, allowed_ns,
269 sysctl_perf_event_sample_rate);
270
271 update_perf_cpu_limits();
272 }
273
274 static atomic64_t perf_event_id;
275
276 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
277 enum event_type_t event_type);
278
279 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
280 enum event_type_t event_type,
281 struct task_struct *task);
282
283 static void update_context_time(struct perf_event_context *ctx);
284 static u64 perf_event_time(struct perf_event *event);
285
286 void __weak perf_event_print_debug(void) { }
287
288 extern __weak const char *perf_pmu_name(void)
289 {
290 return "pmu";
291 }
292
293 static inline u64 perf_clock(void)
294 {
295 return local_clock();
296 }
297
298 static inline struct perf_cpu_context *
299 __get_cpu_context(struct perf_event_context *ctx)
300 {
301 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
302 }
303
304 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
305 struct perf_event_context *ctx)
306 {
307 raw_spin_lock(&cpuctx->ctx.lock);
308 if (ctx)
309 raw_spin_lock(&ctx->lock);
310 }
311
312 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
313 struct perf_event_context *ctx)
314 {
315 if (ctx)
316 raw_spin_unlock(&ctx->lock);
317 raw_spin_unlock(&cpuctx->ctx.lock);
318 }
319
320 #ifdef CONFIG_CGROUP_PERF
321
322 /*
323 * perf_cgroup_info keeps track of time_enabled for a cgroup.
324 * This is a per-cpu dynamically allocated data structure.
325 */
326 struct perf_cgroup_info {
327 u64 time;
328 u64 timestamp;
329 };
330
331 struct perf_cgroup {
332 struct cgroup_subsys_state css;
333 struct perf_cgroup_info __percpu *info;
334 };
335
336 /*
337 * Must ensure cgroup is pinned (css_get) before calling
338 * this function. In other words, we cannot call this function
339 * if there is no cgroup event for the current CPU context.
340 */
341 static inline struct perf_cgroup *
342 perf_cgroup_from_task(struct task_struct *task)
343 {
344 return container_of(task_css(task, perf_subsys_id),
345 struct perf_cgroup, css);
346 }
347
348 static inline bool
349 perf_cgroup_match(struct perf_event *event)
350 {
351 struct perf_event_context *ctx = event->ctx;
352 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
353
354 /* @event doesn't care about cgroup */
355 if (!event->cgrp)
356 return true;
357
358 /* wants specific cgroup scope but @cpuctx isn't associated with any */
359 if (!cpuctx->cgrp)
360 return false;
361
362 /*
363 * Cgroup scoping is recursive. An event enabled for a cgroup is
364 * also enabled for all its descendant cgroups. If @cpuctx's
365 * cgroup is a descendant of @event's (the test covers identity
366 * case), it's a match.
367 */
368 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
369 event->cgrp->css.cgroup);
370 }
371
372 static inline bool perf_tryget_cgroup(struct perf_event *event)
373 {
374 return css_tryget(&event->cgrp->css);
375 }
376
377 static inline void perf_put_cgroup(struct perf_event *event)
378 {
379 css_put(&event->cgrp->css);
380 }
381
382 static inline void perf_detach_cgroup(struct perf_event *event)
383 {
384 perf_put_cgroup(event);
385 event->cgrp = NULL;
386 }
387
388 static inline int is_cgroup_event(struct perf_event *event)
389 {
390 return event->cgrp != NULL;
391 }
392
393 static inline u64 perf_cgroup_event_time(struct perf_event *event)
394 {
395 struct perf_cgroup_info *t;
396
397 t = per_cpu_ptr(event->cgrp->info, event->cpu);
398 return t->time;
399 }
400
401 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
402 {
403 struct perf_cgroup_info *info;
404 u64 now;
405
406 now = perf_clock();
407
408 info = this_cpu_ptr(cgrp->info);
409
410 info->time += now - info->timestamp;
411 info->timestamp = now;
412 }
413
414 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
415 {
416 struct perf_cgroup *cgrp_out = cpuctx->cgrp;
417 if (cgrp_out)
418 __update_cgrp_time(cgrp_out);
419 }
420
421 static inline void update_cgrp_time_from_event(struct perf_event *event)
422 {
423 struct perf_cgroup *cgrp;
424
425 /*
426 * ensure we access cgroup data only when needed and
427 * when we know the cgroup is pinned (css_get)
428 */
429 if (!is_cgroup_event(event))
430 return;
431
432 cgrp = perf_cgroup_from_task(current);
433 /*
434 * Do not update time when cgroup is not active
435 */
436 if (cgrp == event->cgrp)
437 __update_cgrp_time(event->cgrp);
438 }
439
440 static inline void
441 perf_cgroup_set_timestamp(struct task_struct *task,
442 struct perf_event_context *ctx)
443 {
444 struct perf_cgroup *cgrp;
445 struct perf_cgroup_info *info;
446
447 /*
448 * ctx->lock held by caller
449 * ensure we do not access cgroup data
450 * unless we have the cgroup pinned (css_get)
451 */
452 if (!task || !ctx->nr_cgroups)
453 return;
454
455 cgrp = perf_cgroup_from_task(task);
456 info = this_cpu_ptr(cgrp->info);
457 info->timestamp = ctx->timestamp;
458 }
459
460 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
461 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
462
463 /*
464 * reschedule events based on the cgroup constraint of task.
465 *
466 * mode SWOUT : schedule out everything
467 * mode SWIN : schedule in based on cgroup for next
468 */
469 void perf_cgroup_switch(struct task_struct *task, int mode)
470 {
471 struct perf_cpu_context *cpuctx;
472 struct pmu *pmu;
473 unsigned long flags;
474
475 /*
476 * disable interrupts to avoid geting nr_cgroup
477 * changes via __perf_event_disable(). Also
478 * avoids preemption.
479 */
480 local_irq_save(flags);
481
482 /*
483 * we reschedule only in the presence of cgroup
484 * constrained events.
485 */
486 rcu_read_lock();
487
488 list_for_each_entry_rcu(pmu, &pmus, entry) {
489 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
490 if (cpuctx->unique_pmu != pmu)
491 continue; /* ensure we process each cpuctx once */
492
493 /*
494 * perf_cgroup_events says at least one
495 * context on this CPU has cgroup events.
496 *
497 * ctx->nr_cgroups reports the number of cgroup
498 * events for a context.
499 */
500 if (cpuctx->ctx.nr_cgroups > 0) {
501 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
502 perf_pmu_disable(cpuctx->ctx.pmu);
503
504 if (mode & PERF_CGROUP_SWOUT) {
505 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
506 /*
507 * must not be done before ctxswout due
508 * to event_filter_match() in event_sched_out()
509 */
510 cpuctx->cgrp = NULL;
511 }
512
513 if (mode & PERF_CGROUP_SWIN) {
514 WARN_ON_ONCE(cpuctx->cgrp);
515 /*
516 * set cgrp before ctxsw in to allow
517 * event_filter_match() to not have to pass
518 * task around
519 */
520 cpuctx->cgrp = perf_cgroup_from_task(task);
521 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
522 }
523 perf_pmu_enable(cpuctx->ctx.pmu);
524 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
525 }
526 }
527
528 rcu_read_unlock();
529
530 local_irq_restore(flags);
531 }
532
533 static inline void perf_cgroup_sched_out(struct task_struct *task,
534 struct task_struct *next)
535 {
536 struct perf_cgroup *cgrp1;
537 struct perf_cgroup *cgrp2 = NULL;
538
539 /*
540 * we come here when we know perf_cgroup_events > 0
541 */
542 cgrp1 = perf_cgroup_from_task(task);
543
544 /*
545 * next is NULL when called from perf_event_enable_on_exec()
546 * that will systematically cause a cgroup_switch()
547 */
548 if (next)
549 cgrp2 = perf_cgroup_from_task(next);
550
551 /*
552 * only schedule out current cgroup events if we know
553 * that we are switching to a different cgroup. Otherwise,
554 * do no touch the cgroup events.
555 */
556 if (cgrp1 != cgrp2)
557 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
558 }
559
560 static inline void perf_cgroup_sched_in(struct task_struct *prev,
561 struct task_struct *task)
562 {
563 struct perf_cgroup *cgrp1;
564 struct perf_cgroup *cgrp2 = NULL;
565
566 /*
567 * we come here when we know perf_cgroup_events > 0
568 */
569 cgrp1 = perf_cgroup_from_task(task);
570
571 /* prev can never be NULL */
572 cgrp2 = perf_cgroup_from_task(prev);
573
574 /*
575 * only need to schedule in cgroup events if we are changing
576 * cgroup during ctxsw. Cgroup events were not scheduled
577 * out of ctxsw out if that was not the case.
578 */
579 if (cgrp1 != cgrp2)
580 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
581 }
582
583 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
584 struct perf_event_attr *attr,
585 struct perf_event *group_leader)
586 {
587 struct perf_cgroup *cgrp;
588 struct cgroup_subsys_state *css;
589 struct fd f = fdget(fd);
590 int ret = 0;
591
592 if (!f.file)
593 return -EBADF;
594
595 rcu_read_lock();
596
597 css = css_from_dir(f.file->f_dentry, &perf_subsys);
598 if (IS_ERR(css)) {
599 ret = PTR_ERR(css);
600 goto out;
601 }
602
603 cgrp = container_of(css, struct perf_cgroup, css);
604 event->cgrp = cgrp;
605
606 /* must be done before we fput() the file */
607 if (!perf_tryget_cgroup(event)) {
608 event->cgrp = NULL;
609 ret = -ENOENT;
610 goto out;
611 }
612
613 /*
614 * all events in a group must monitor
615 * the same cgroup because a task belongs
616 * to only one perf cgroup at a time
617 */
618 if (group_leader && group_leader->cgrp != cgrp) {
619 perf_detach_cgroup(event);
620 ret = -EINVAL;
621 }
622 out:
623 rcu_read_unlock();
624 fdput(f);
625 return ret;
626 }
627
628 static inline void
629 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
630 {
631 struct perf_cgroup_info *t;
632 t = per_cpu_ptr(event->cgrp->info, event->cpu);
633 event->shadow_ctx_time = now - t->timestamp;
634 }
635
636 static inline void
637 perf_cgroup_defer_enabled(struct perf_event *event)
638 {
639 /*
640 * when the current task's perf cgroup does not match
641 * the event's, we need to remember to call the
642 * perf_mark_enable() function the first time a task with
643 * a matching perf cgroup is scheduled in.
644 */
645 if (is_cgroup_event(event) && !perf_cgroup_match(event))
646 event->cgrp_defer_enabled = 1;
647 }
648
649 static inline void
650 perf_cgroup_mark_enabled(struct perf_event *event,
651 struct perf_event_context *ctx)
652 {
653 struct perf_event *sub;
654 u64 tstamp = perf_event_time(event);
655
656 if (!event->cgrp_defer_enabled)
657 return;
658
659 event->cgrp_defer_enabled = 0;
660
661 event->tstamp_enabled = tstamp - event->total_time_enabled;
662 list_for_each_entry(sub, &event->sibling_list, group_entry) {
663 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
664 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
665 sub->cgrp_defer_enabled = 0;
666 }
667 }
668 }
669 #else /* !CONFIG_CGROUP_PERF */
670
671 static inline bool
672 perf_cgroup_match(struct perf_event *event)
673 {
674 return true;
675 }
676
677 static inline void perf_detach_cgroup(struct perf_event *event)
678 {}
679
680 static inline int is_cgroup_event(struct perf_event *event)
681 {
682 return 0;
683 }
684
685 static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
686 {
687 return 0;
688 }
689
690 static inline void update_cgrp_time_from_event(struct perf_event *event)
691 {
692 }
693
694 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
695 {
696 }
697
698 static inline void perf_cgroup_sched_out(struct task_struct *task,
699 struct task_struct *next)
700 {
701 }
702
703 static inline void perf_cgroup_sched_in(struct task_struct *prev,
704 struct task_struct *task)
705 {
706 }
707
708 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
709 struct perf_event_attr *attr,
710 struct perf_event *group_leader)
711 {
712 return -EINVAL;
713 }
714
715 static inline void
716 perf_cgroup_set_timestamp(struct task_struct *task,
717 struct perf_event_context *ctx)
718 {
719 }
720
721 void
722 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
723 {
724 }
725
726 static inline void
727 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
728 {
729 }
730
731 static inline u64 perf_cgroup_event_time(struct perf_event *event)
732 {
733 return 0;
734 }
735
736 static inline void
737 perf_cgroup_defer_enabled(struct perf_event *event)
738 {
739 }
740
741 static inline void
742 perf_cgroup_mark_enabled(struct perf_event *event,
743 struct perf_event_context *ctx)
744 {
745 }
746 #endif
747
748 /*
749 * set default to be dependent on timer tick just
750 * like original code
751 */
752 #define PERF_CPU_HRTIMER (1000 / HZ)
753 /*
754 * function must be called with interrupts disbled
755 */
756 static enum hrtimer_restart perf_cpu_hrtimer_handler(struct hrtimer *hr)
757 {
758 struct perf_cpu_context *cpuctx;
759 enum hrtimer_restart ret = HRTIMER_NORESTART;
760 int rotations = 0;
761
762 WARN_ON(!irqs_disabled());
763
764 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
765
766 rotations = perf_rotate_context(cpuctx);
767
768 /*
769 * arm timer if needed
770 */
771 if (rotations) {
772 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
773 ret = HRTIMER_RESTART;
774 }
775
776 return ret;
777 }
778
779 /* CPU is going down */
780 void perf_cpu_hrtimer_cancel(int cpu)
781 {
782 struct perf_cpu_context *cpuctx;
783 struct pmu *pmu;
784 unsigned long flags;
785
786 if (WARN_ON(cpu != smp_processor_id()))
787 return;
788
789 local_irq_save(flags);
790
791 rcu_read_lock();
792
793 list_for_each_entry_rcu(pmu, &pmus, entry) {
794 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
795
796 if (pmu->task_ctx_nr == perf_sw_context)
797 continue;
798
799 hrtimer_cancel(&cpuctx->hrtimer);
800 }
801
802 rcu_read_unlock();
803
804 local_irq_restore(flags);
805 }
806
807 static void __perf_cpu_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
808 {
809 struct hrtimer *hr = &cpuctx->hrtimer;
810 struct pmu *pmu = cpuctx->ctx.pmu;
811 int timer;
812
813 /* no multiplexing needed for SW PMU */
814 if (pmu->task_ctx_nr == perf_sw_context)
815 return;
816
817 /*
818 * check default is sane, if not set then force to
819 * default interval (1/tick)
820 */
821 timer = pmu->hrtimer_interval_ms;
822 if (timer < 1)
823 timer = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
824
825 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
826
827 hrtimer_init(hr, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
828 hr->function = perf_cpu_hrtimer_handler;
829 }
830
831 static void perf_cpu_hrtimer_restart(struct perf_cpu_context *cpuctx)
832 {
833 struct hrtimer *hr = &cpuctx->hrtimer;
834 struct pmu *pmu = cpuctx->ctx.pmu;
835
836 /* not for SW PMU */
837 if (pmu->task_ctx_nr == perf_sw_context)
838 return;
839
840 if (hrtimer_active(hr))
841 return;
842
843 if (!hrtimer_callback_running(hr))
844 __hrtimer_start_range_ns(hr, cpuctx->hrtimer_interval,
845 0, HRTIMER_MODE_REL_PINNED, 0);
846 }
847
848 void perf_pmu_disable(struct pmu *pmu)
849 {
850 int *count = this_cpu_ptr(pmu->pmu_disable_count);
851 if (!(*count)++)
852 pmu->pmu_disable(pmu);
853 }
854
855 void perf_pmu_enable(struct pmu *pmu)
856 {
857 int *count = this_cpu_ptr(pmu->pmu_disable_count);
858 if (!--(*count))
859 pmu->pmu_enable(pmu);
860 }
861
862 static DEFINE_PER_CPU(struct list_head, rotation_list);
863
864 /*
865 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
866 * because they're strictly cpu affine and rotate_start is called with IRQs
867 * disabled, while rotate_context is called from IRQ context.
868 */
869 static void perf_pmu_rotate_start(struct pmu *pmu)
870 {
871 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
872 struct list_head *head = &__get_cpu_var(rotation_list);
873
874 WARN_ON(!irqs_disabled());
875
876 if (list_empty(&cpuctx->rotation_list))
877 list_add(&cpuctx->rotation_list, head);
878 }
879
880 static void get_ctx(struct perf_event_context *ctx)
881 {
882 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
883 }
884
885 static void put_ctx(struct perf_event_context *ctx)
886 {
887 if (atomic_dec_and_test(&ctx->refcount)) {
888 if (ctx->parent_ctx)
889 put_ctx(ctx->parent_ctx);
890 if (ctx->task)
891 put_task_struct(ctx->task);
892 kfree_rcu(ctx, rcu_head);
893 }
894 }
895
896 static void unclone_ctx(struct perf_event_context *ctx)
897 {
898 if (ctx->parent_ctx) {
899 put_ctx(ctx->parent_ctx);
900 ctx->parent_ctx = NULL;
901 }
902 ctx->generation++;
903 }
904
905 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
906 {
907 /*
908 * only top level events have the pid namespace they were created in
909 */
910 if (event->parent)
911 event = event->parent;
912
913 return task_tgid_nr_ns(p, event->ns);
914 }
915
916 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
917 {
918 /*
919 * only top level events have the pid namespace they were created in
920 */
921 if (event->parent)
922 event = event->parent;
923
924 return task_pid_nr_ns(p, event->ns);
925 }
926
927 /*
928 * If we inherit events we want to return the parent event id
929 * to userspace.
930 */
931 static u64 primary_event_id(struct perf_event *event)
932 {
933 u64 id = event->id;
934
935 if (event->parent)
936 id = event->parent->id;
937
938 return id;
939 }
940
941 /*
942 * Get the perf_event_context for a task and lock it.
943 * This has to cope with with the fact that until it is locked,
944 * the context could get moved to another task.
945 */
946 static struct perf_event_context *
947 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
948 {
949 struct perf_event_context *ctx;
950
951 retry:
952 /*
953 * One of the few rules of preemptible RCU is that one cannot do
954 * rcu_read_unlock() while holding a scheduler (or nested) lock when
955 * part of the read side critical section was preemptible -- see
956 * rcu_read_unlock_special().
957 *
958 * Since ctx->lock nests under rq->lock we must ensure the entire read
959 * side critical section is non-preemptible.
960 */
961 preempt_disable();
962 rcu_read_lock();
963 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
964 if (ctx) {
965 /*
966 * If this context is a clone of another, it might
967 * get swapped for another underneath us by
968 * perf_event_task_sched_out, though the
969 * rcu_read_lock() protects us from any context
970 * getting freed. Lock the context and check if it
971 * got swapped before we could get the lock, and retry
972 * if so. If we locked the right context, then it
973 * can't get swapped on us any more.
974 */
975 raw_spin_lock_irqsave(&ctx->lock, *flags);
976 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
977 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
978 rcu_read_unlock();
979 preempt_enable();
980 goto retry;
981 }
982
983 if (!atomic_inc_not_zero(&ctx->refcount)) {
984 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
985 ctx = NULL;
986 }
987 }
988 rcu_read_unlock();
989 preempt_enable();
990 return ctx;
991 }
992
993 /*
994 * Get the context for a task and increment its pin_count so it
995 * can't get swapped to another task. This also increments its
996 * reference count so that the context can't get freed.
997 */
998 static struct perf_event_context *
999 perf_pin_task_context(struct task_struct *task, int ctxn)
1000 {
1001 struct perf_event_context *ctx;
1002 unsigned long flags;
1003
1004 ctx = perf_lock_task_context(task, ctxn, &flags);
1005 if (ctx) {
1006 ++ctx->pin_count;
1007 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1008 }
1009 return ctx;
1010 }
1011
1012 static void perf_unpin_context(struct perf_event_context *ctx)
1013 {
1014 unsigned long flags;
1015
1016 raw_spin_lock_irqsave(&ctx->lock, flags);
1017 --ctx->pin_count;
1018 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1019 }
1020
1021 /*
1022 * Update the record of the current time in a context.
1023 */
1024 static void update_context_time(struct perf_event_context *ctx)
1025 {
1026 u64 now = perf_clock();
1027
1028 ctx->time += now - ctx->timestamp;
1029 ctx->timestamp = now;
1030 }
1031
1032 static u64 perf_event_time(struct perf_event *event)
1033 {
1034 struct perf_event_context *ctx = event->ctx;
1035
1036 if (is_cgroup_event(event))
1037 return perf_cgroup_event_time(event);
1038
1039 return ctx ? ctx->time : 0;
1040 }
1041
1042 /*
1043 * Update the total_time_enabled and total_time_running fields for a event.
1044 * The caller of this function needs to hold the ctx->lock.
1045 */
1046 static void update_event_times(struct perf_event *event)
1047 {
1048 struct perf_event_context *ctx = event->ctx;
1049 u64 run_end;
1050
1051 if (event->state < PERF_EVENT_STATE_INACTIVE ||
1052 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1053 return;
1054 /*
1055 * in cgroup mode, time_enabled represents
1056 * the time the event was enabled AND active
1057 * tasks were in the monitored cgroup. This is
1058 * independent of the activity of the context as
1059 * there may be a mix of cgroup and non-cgroup events.
1060 *
1061 * That is why we treat cgroup events differently
1062 * here.
1063 */
1064 if (is_cgroup_event(event))
1065 run_end = perf_cgroup_event_time(event);
1066 else if (ctx->is_active)
1067 run_end = ctx->time;
1068 else
1069 run_end = event->tstamp_stopped;
1070
1071 event->total_time_enabled = run_end - event->tstamp_enabled;
1072
1073 if (event->state == PERF_EVENT_STATE_INACTIVE)
1074 run_end = event->tstamp_stopped;
1075 else
1076 run_end = perf_event_time(event);
1077
1078 event->total_time_running = run_end - event->tstamp_running;
1079
1080 }
1081
1082 /*
1083 * Update total_time_enabled and total_time_running for all events in a group.
1084 */
1085 static void update_group_times(struct perf_event *leader)
1086 {
1087 struct perf_event *event;
1088
1089 update_event_times(leader);
1090 list_for_each_entry(event, &leader->sibling_list, group_entry)
1091 update_event_times(event);
1092 }
1093
1094 static struct list_head *
1095 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1096 {
1097 if (event->attr.pinned)
1098 return &ctx->pinned_groups;
1099 else
1100 return &ctx->flexible_groups;
1101 }
1102
1103 /*
1104 * Add a event from the lists for its context.
1105 * Must be called with ctx->mutex and ctx->lock held.
1106 */
1107 static void
1108 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1109 {
1110 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1111 event->attach_state |= PERF_ATTACH_CONTEXT;
1112
1113 /*
1114 * If we're a stand alone event or group leader, we go to the context
1115 * list, group events are kept attached to the group so that
1116 * perf_group_detach can, at all times, locate all siblings.
1117 */
1118 if (event->group_leader == event) {
1119 struct list_head *list;
1120
1121 if (is_software_event(event))
1122 event->group_flags |= PERF_GROUP_SOFTWARE;
1123
1124 list = ctx_group_list(event, ctx);
1125 list_add_tail(&event->group_entry, list);
1126 }
1127
1128 if (is_cgroup_event(event))
1129 ctx->nr_cgroups++;
1130
1131 if (has_branch_stack(event))
1132 ctx->nr_branch_stack++;
1133
1134 list_add_rcu(&event->event_entry, &ctx->event_list);
1135 if (!ctx->nr_events)
1136 perf_pmu_rotate_start(ctx->pmu);
1137 ctx->nr_events++;
1138 if (event->attr.inherit_stat)
1139 ctx->nr_stat++;
1140
1141 ctx->generation++;
1142 }
1143
1144 /*
1145 * Initialize event state based on the perf_event_attr::disabled.
1146 */
1147 static inline void perf_event__state_init(struct perf_event *event)
1148 {
1149 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1150 PERF_EVENT_STATE_INACTIVE;
1151 }
1152
1153 /*
1154 * Called at perf_event creation and when events are attached/detached from a
1155 * group.
1156 */
1157 static void perf_event__read_size(struct perf_event *event)
1158 {
1159 int entry = sizeof(u64); /* value */
1160 int size = 0;
1161 int nr = 1;
1162
1163 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1164 size += sizeof(u64);
1165
1166 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1167 size += sizeof(u64);
1168
1169 if (event->attr.read_format & PERF_FORMAT_ID)
1170 entry += sizeof(u64);
1171
1172 if (event->attr.read_format & PERF_FORMAT_GROUP) {
1173 nr += event->group_leader->nr_siblings;
1174 size += sizeof(u64);
1175 }
1176
1177 size += entry * nr;
1178 event->read_size = size;
1179 }
1180
1181 static void perf_event__header_size(struct perf_event *event)
1182 {
1183 struct perf_sample_data *data;
1184 u64 sample_type = event->attr.sample_type;
1185 u16 size = 0;
1186
1187 perf_event__read_size(event);
1188
1189 if (sample_type & PERF_SAMPLE_IP)
1190 size += sizeof(data->ip);
1191
1192 if (sample_type & PERF_SAMPLE_ADDR)
1193 size += sizeof(data->addr);
1194
1195 if (sample_type & PERF_SAMPLE_PERIOD)
1196 size += sizeof(data->period);
1197
1198 if (sample_type & PERF_SAMPLE_WEIGHT)
1199 size += sizeof(data->weight);
1200
1201 if (sample_type & PERF_SAMPLE_READ)
1202 size += event->read_size;
1203
1204 if (sample_type & PERF_SAMPLE_DATA_SRC)
1205 size += sizeof(data->data_src.val);
1206
1207 if (sample_type & PERF_SAMPLE_TRANSACTION)
1208 size += sizeof(data->txn);
1209
1210 event->header_size = size;
1211 }
1212
1213 static void perf_event__id_header_size(struct perf_event *event)
1214 {
1215 struct perf_sample_data *data;
1216 u64 sample_type = event->attr.sample_type;
1217 u16 size = 0;
1218
1219 if (sample_type & PERF_SAMPLE_TID)
1220 size += sizeof(data->tid_entry);
1221
1222 if (sample_type & PERF_SAMPLE_TIME)
1223 size += sizeof(data->time);
1224
1225 if (sample_type & PERF_SAMPLE_IDENTIFIER)
1226 size += sizeof(data->id);
1227
1228 if (sample_type & PERF_SAMPLE_ID)
1229 size += sizeof(data->id);
1230
1231 if (sample_type & PERF_SAMPLE_STREAM_ID)
1232 size += sizeof(data->stream_id);
1233
1234 if (sample_type & PERF_SAMPLE_CPU)
1235 size += sizeof(data->cpu_entry);
1236
1237 event->id_header_size = size;
1238 }
1239
1240 static void perf_group_attach(struct perf_event *event)
1241 {
1242 struct perf_event *group_leader = event->group_leader, *pos;
1243
1244 /*
1245 * We can have double attach due to group movement in perf_event_open.
1246 */
1247 if (event->attach_state & PERF_ATTACH_GROUP)
1248 return;
1249
1250 event->attach_state |= PERF_ATTACH_GROUP;
1251
1252 if (group_leader == event)
1253 return;
1254
1255 if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
1256 !is_software_event(event))
1257 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
1258
1259 list_add_tail(&event->group_entry, &group_leader->sibling_list);
1260 group_leader->nr_siblings++;
1261
1262 perf_event__header_size(group_leader);
1263
1264 list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1265 perf_event__header_size(pos);
1266 }
1267
1268 /*
1269 * Remove a event from the lists for its context.
1270 * Must be called with ctx->mutex and ctx->lock held.
1271 */
1272 static void
1273 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1274 {
1275 struct perf_cpu_context *cpuctx;
1276 /*
1277 * We can have double detach due to exit/hot-unplug + close.
1278 */
1279 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1280 return;
1281
1282 event->attach_state &= ~PERF_ATTACH_CONTEXT;
1283
1284 if (is_cgroup_event(event)) {
1285 ctx->nr_cgroups--;
1286 cpuctx = __get_cpu_context(ctx);
1287 /*
1288 * if there are no more cgroup events
1289 * then cler cgrp to avoid stale pointer
1290 * in update_cgrp_time_from_cpuctx()
1291 */
1292 if (!ctx->nr_cgroups)
1293 cpuctx->cgrp = NULL;
1294 }
1295
1296 if (has_branch_stack(event))
1297 ctx->nr_branch_stack--;
1298
1299 ctx->nr_events--;
1300 if (event->attr.inherit_stat)
1301 ctx->nr_stat--;
1302
1303 list_del_rcu(&event->event_entry);
1304
1305 if (event->group_leader == event)
1306 list_del_init(&event->group_entry);
1307
1308 update_group_times(event);
1309
1310 /*
1311 * If event was in error state, then keep it
1312 * that way, otherwise bogus counts will be
1313 * returned on read(). The only way to get out
1314 * of error state is by explicit re-enabling
1315 * of the event
1316 */
1317 if (event->state > PERF_EVENT_STATE_OFF)
1318 event->state = PERF_EVENT_STATE_OFF;
1319
1320 ctx->generation++;
1321 }
1322
1323 static void perf_group_detach(struct perf_event *event)
1324 {
1325 struct perf_event *sibling, *tmp;
1326 struct list_head *list = NULL;
1327
1328 /*
1329 * We can have double detach due to exit/hot-unplug + close.
1330 */
1331 if (!(event->attach_state & PERF_ATTACH_GROUP))
1332 return;
1333
1334 event->attach_state &= ~PERF_ATTACH_GROUP;
1335
1336 /*
1337 * If this is a sibling, remove it from its group.
1338 */
1339 if (event->group_leader != event) {
1340 list_del_init(&event->group_entry);
1341 event->group_leader->nr_siblings--;
1342 goto out;
1343 }
1344
1345 if (!list_empty(&event->group_entry))
1346 list = &event->group_entry;
1347
1348 /*
1349 * If this was a group event with sibling events then
1350 * upgrade the siblings to singleton events by adding them
1351 * to whatever list we are on.
1352 */
1353 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1354 if (list)
1355 list_move_tail(&sibling->group_entry, list);
1356 sibling->group_leader = sibling;
1357
1358 /* Inherit group flags from the previous leader */
1359 sibling->group_flags = event->group_flags;
1360 }
1361
1362 out:
1363 perf_event__header_size(event->group_leader);
1364
1365 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1366 perf_event__header_size(tmp);
1367 }
1368
1369 static inline int
1370 event_filter_match(struct perf_event *event)
1371 {
1372 return (event->cpu == -1 || event->cpu == smp_processor_id())
1373 && perf_cgroup_match(event);
1374 }
1375
1376 static void
1377 event_sched_out(struct perf_event *event,
1378 struct perf_cpu_context *cpuctx,
1379 struct perf_event_context *ctx)
1380 {
1381 u64 tstamp = perf_event_time(event);
1382 u64 delta;
1383 /*
1384 * An event which could not be activated because of
1385 * filter mismatch still needs to have its timings
1386 * maintained, otherwise bogus information is return
1387 * via read() for time_enabled, time_running:
1388 */
1389 if (event->state == PERF_EVENT_STATE_INACTIVE
1390 && !event_filter_match(event)) {
1391 delta = tstamp - event->tstamp_stopped;
1392 event->tstamp_running += delta;
1393 event->tstamp_stopped = tstamp;
1394 }
1395
1396 if (event->state != PERF_EVENT_STATE_ACTIVE)
1397 return;
1398
1399 event->state = PERF_EVENT_STATE_INACTIVE;
1400 if (event->pending_disable) {
1401 event->pending_disable = 0;
1402 event->state = PERF_EVENT_STATE_OFF;
1403 }
1404 event->tstamp_stopped = tstamp;
1405 event->pmu->del(event, 0);
1406 event->oncpu = -1;
1407
1408 if (!is_software_event(event))
1409 cpuctx->active_oncpu--;
1410 ctx->nr_active--;
1411 if (event->attr.freq && event->attr.sample_freq)
1412 ctx->nr_freq--;
1413 if (event->attr.exclusive || !cpuctx->active_oncpu)
1414 cpuctx->exclusive = 0;
1415 }
1416
1417 static void
1418 group_sched_out(struct perf_event *group_event,
1419 struct perf_cpu_context *cpuctx,
1420 struct perf_event_context *ctx)
1421 {
1422 struct perf_event *event;
1423 int state = group_event->state;
1424
1425 event_sched_out(group_event, cpuctx, ctx);
1426
1427 /*
1428 * Schedule out siblings (if any):
1429 */
1430 list_for_each_entry(event, &group_event->sibling_list, group_entry)
1431 event_sched_out(event, cpuctx, ctx);
1432
1433 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1434 cpuctx->exclusive = 0;
1435 }
1436
1437 /*
1438 * Cross CPU call to remove a performance event
1439 *
1440 * We disable the event on the hardware level first. After that we
1441 * remove it from the context list.
1442 */
1443 static int __perf_remove_from_context(void *info)
1444 {
1445 struct perf_event *event = info;
1446 struct perf_event_context *ctx = event->ctx;
1447 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1448
1449 raw_spin_lock(&ctx->lock);
1450 event_sched_out(event, cpuctx, ctx);
1451 list_del_event(event, ctx);
1452 if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
1453 ctx->is_active = 0;
1454 cpuctx->task_ctx = NULL;
1455 }
1456 raw_spin_unlock(&ctx->lock);
1457
1458 return 0;
1459 }
1460
1461
1462 /*
1463 * Remove the event from a task's (or a CPU's) list of events.
1464 *
1465 * CPU events are removed with a smp call. For task events we only
1466 * call when the task is on a CPU.
1467 *
1468 * If event->ctx is a cloned context, callers must make sure that
1469 * every task struct that event->ctx->task could possibly point to
1470 * remains valid. This is OK when called from perf_release since
1471 * that only calls us on the top-level context, which can't be a clone.
1472 * When called from perf_event_exit_task, it's OK because the
1473 * context has been detached from its task.
1474 */
1475 static void perf_remove_from_context(struct perf_event *event)
1476 {
1477 struct perf_event_context *ctx = event->ctx;
1478 struct task_struct *task = ctx->task;
1479
1480 lockdep_assert_held(&ctx->mutex);
1481
1482 if (!task) {
1483 /*
1484 * Per cpu events are removed via an smp call and
1485 * the removal is always successful.
1486 */
1487 cpu_function_call(event->cpu, __perf_remove_from_context, event);
1488 return;
1489 }
1490
1491 retry:
1492 if (!task_function_call(task, __perf_remove_from_context, event))
1493 return;
1494
1495 raw_spin_lock_irq(&ctx->lock);
1496 /*
1497 * If we failed to find a running task, but find the context active now
1498 * that we've acquired the ctx->lock, retry.
1499 */
1500 if (ctx->is_active) {
1501 raw_spin_unlock_irq(&ctx->lock);
1502 goto retry;
1503 }
1504
1505 /*
1506 * Since the task isn't running, its safe to remove the event, us
1507 * holding the ctx->lock ensures the task won't get scheduled in.
1508 */
1509 list_del_event(event, ctx);
1510 raw_spin_unlock_irq(&ctx->lock);
1511 }
1512
1513 /*
1514 * Cross CPU call to disable a performance event
1515 */
1516 int __perf_event_disable(void *info)
1517 {
1518 struct perf_event *event = info;
1519 struct perf_event_context *ctx = event->ctx;
1520 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1521
1522 /*
1523 * If this is a per-task event, need to check whether this
1524 * event's task is the current task on this cpu.
1525 *
1526 * Can trigger due to concurrent perf_event_context_sched_out()
1527 * flipping contexts around.
1528 */
1529 if (ctx->task && cpuctx->task_ctx != ctx)
1530 return -EINVAL;
1531
1532 raw_spin_lock(&ctx->lock);
1533
1534 /*
1535 * If the event is on, turn it off.
1536 * If it is in error state, leave it in error state.
1537 */
1538 if (event->state >= PERF_EVENT_STATE_INACTIVE) {
1539 update_context_time(ctx);
1540 update_cgrp_time_from_event(event);
1541 update_group_times(event);
1542 if (event == event->group_leader)
1543 group_sched_out(event, cpuctx, ctx);
1544 else
1545 event_sched_out(event, cpuctx, ctx);
1546 event->state = PERF_EVENT_STATE_OFF;
1547 }
1548
1549 raw_spin_unlock(&ctx->lock);
1550
1551 return 0;
1552 }
1553
1554 /*
1555 * Disable a event.
1556 *
1557 * If event->ctx is a cloned context, callers must make sure that
1558 * every task struct that event->ctx->task could possibly point to
1559 * remains valid. This condition is satisifed when called through
1560 * perf_event_for_each_child or perf_event_for_each because they
1561 * hold the top-level event's child_mutex, so any descendant that
1562 * goes to exit will block in sync_child_event.
1563 * When called from perf_pending_event it's OK because event->ctx
1564 * is the current context on this CPU and preemption is disabled,
1565 * hence we can't get into perf_event_task_sched_out for this context.
1566 */
1567 void perf_event_disable(struct perf_event *event)
1568 {
1569 struct perf_event_context *ctx = event->ctx;
1570 struct task_struct *task = ctx->task;
1571
1572 if (!task) {
1573 /*
1574 * Disable the event on the cpu that it's on
1575 */
1576 cpu_function_call(event->cpu, __perf_event_disable, event);
1577 return;
1578 }
1579
1580 retry:
1581 if (!task_function_call(task, __perf_event_disable, event))
1582 return;
1583
1584 raw_spin_lock_irq(&ctx->lock);
1585 /*
1586 * If the event is still active, we need to retry the cross-call.
1587 */
1588 if (event->state == PERF_EVENT_STATE_ACTIVE) {
1589 raw_spin_unlock_irq(&ctx->lock);
1590 /*
1591 * Reload the task pointer, it might have been changed by
1592 * a concurrent perf_event_context_sched_out().
1593 */
1594 task = ctx->task;
1595 goto retry;
1596 }
1597
1598 /*
1599 * Since we have the lock this context can't be scheduled
1600 * in, so we can change the state safely.
1601 */
1602 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1603 update_group_times(event);
1604 event->state = PERF_EVENT_STATE_OFF;
1605 }
1606 raw_spin_unlock_irq(&ctx->lock);
1607 }
1608 EXPORT_SYMBOL_GPL(perf_event_disable);
1609
1610 static void perf_set_shadow_time(struct perf_event *event,
1611 struct perf_event_context *ctx,
1612 u64 tstamp)
1613 {
1614 /*
1615 * use the correct time source for the time snapshot
1616 *
1617 * We could get by without this by leveraging the
1618 * fact that to get to this function, the caller
1619 * has most likely already called update_context_time()
1620 * and update_cgrp_time_xx() and thus both timestamp
1621 * are identical (or very close). Given that tstamp is,
1622 * already adjusted for cgroup, we could say that:
1623 * tstamp - ctx->timestamp
1624 * is equivalent to
1625 * tstamp - cgrp->timestamp.
1626 *
1627 * Then, in perf_output_read(), the calculation would
1628 * work with no changes because:
1629 * - event is guaranteed scheduled in
1630 * - no scheduled out in between
1631 * - thus the timestamp would be the same
1632 *
1633 * But this is a bit hairy.
1634 *
1635 * So instead, we have an explicit cgroup call to remain
1636 * within the time time source all along. We believe it
1637 * is cleaner and simpler to understand.
1638 */
1639 if (is_cgroup_event(event))
1640 perf_cgroup_set_shadow_time(event, tstamp);
1641 else
1642 event->shadow_ctx_time = tstamp - ctx->timestamp;
1643 }
1644
1645 #define MAX_INTERRUPTS (~0ULL)
1646
1647 static void perf_log_throttle(struct perf_event *event, int enable);
1648
1649 static int
1650 event_sched_in(struct perf_event *event,
1651 struct perf_cpu_context *cpuctx,
1652 struct perf_event_context *ctx)
1653 {
1654 u64 tstamp = perf_event_time(event);
1655
1656 if (event->state <= PERF_EVENT_STATE_OFF)
1657 return 0;
1658
1659 event->state = PERF_EVENT_STATE_ACTIVE;
1660 event->oncpu = smp_processor_id();
1661
1662 /*
1663 * Unthrottle events, since we scheduled we might have missed several
1664 * ticks already, also for a heavily scheduling task there is little
1665 * guarantee it'll get a tick in a timely manner.
1666 */
1667 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
1668 perf_log_throttle(event, 1);
1669 event->hw.interrupts = 0;
1670 }
1671
1672 /*
1673 * The new state must be visible before we turn it on in the hardware:
1674 */
1675 smp_wmb();
1676
1677 if (event->pmu->add(event, PERF_EF_START)) {
1678 event->state = PERF_EVENT_STATE_INACTIVE;
1679 event->oncpu = -1;
1680 return -EAGAIN;
1681 }
1682
1683 event->tstamp_running += tstamp - event->tstamp_stopped;
1684
1685 perf_set_shadow_time(event, ctx, tstamp);
1686
1687 if (!is_software_event(event))
1688 cpuctx->active_oncpu++;
1689 ctx->nr_active++;
1690 if (event->attr.freq && event->attr.sample_freq)
1691 ctx->nr_freq++;
1692
1693 if (event->attr.exclusive)
1694 cpuctx->exclusive = 1;
1695
1696 return 0;
1697 }
1698
1699 static int
1700 group_sched_in(struct perf_event *group_event,
1701 struct perf_cpu_context *cpuctx,
1702 struct perf_event_context *ctx)
1703 {
1704 struct perf_event *event, *partial_group = NULL;
1705 struct pmu *pmu = group_event->pmu;
1706 u64 now = ctx->time;
1707 bool simulate = false;
1708
1709 if (group_event->state == PERF_EVENT_STATE_OFF)
1710 return 0;
1711
1712 pmu->start_txn(pmu);
1713
1714 if (event_sched_in(group_event, cpuctx, ctx)) {
1715 pmu->cancel_txn(pmu);
1716 perf_cpu_hrtimer_restart(cpuctx);
1717 return -EAGAIN;
1718 }
1719
1720 /*
1721 * Schedule in siblings as one group (if any):
1722 */
1723 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1724 if (event_sched_in(event, cpuctx, ctx)) {
1725 partial_group = event;
1726 goto group_error;
1727 }
1728 }
1729
1730 if (!pmu->commit_txn(pmu))
1731 return 0;
1732
1733 group_error:
1734 /*
1735 * Groups can be scheduled in as one unit only, so undo any
1736 * partial group before returning:
1737 * The events up to the failed event are scheduled out normally,
1738 * tstamp_stopped will be updated.
1739 *
1740 * The failed events and the remaining siblings need to have
1741 * their timings updated as if they had gone thru event_sched_in()
1742 * and event_sched_out(). This is required to get consistent timings
1743 * across the group. This also takes care of the case where the group
1744 * could never be scheduled by ensuring tstamp_stopped is set to mark
1745 * the time the event was actually stopped, such that time delta
1746 * calculation in update_event_times() is correct.
1747 */
1748 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1749 if (event == partial_group)
1750 simulate = true;
1751
1752 if (simulate) {
1753 event->tstamp_running += now - event->tstamp_stopped;
1754 event->tstamp_stopped = now;
1755 } else {
1756 event_sched_out(event, cpuctx, ctx);
1757 }
1758 }
1759 event_sched_out(group_event, cpuctx, ctx);
1760
1761 pmu->cancel_txn(pmu);
1762
1763 perf_cpu_hrtimer_restart(cpuctx);
1764
1765 return -EAGAIN;
1766 }
1767
1768 /*
1769 * Work out whether we can put this event group on the CPU now.
1770 */
1771 static int group_can_go_on(struct perf_event *event,
1772 struct perf_cpu_context *cpuctx,
1773 int can_add_hw)
1774 {
1775 /*
1776 * Groups consisting entirely of software events can always go on.
1777 */
1778 if (event->group_flags & PERF_GROUP_SOFTWARE)
1779 return 1;
1780 /*
1781 * If an exclusive group is already on, no other hardware
1782 * events can go on.
1783 */
1784 if (cpuctx->exclusive)
1785 return 0;
1786 /*
1787 * If this group is exclusive and there are already
1788 * events on the CPU, it can't go on.
1789 */
1790 if (event->attr.exclusive && cpuctx->active_oncpu)
1791 return 0;
1792 /*
1793 * Otherwise, try to add it if all previous groups were able
1794 * to go on.
1795 */
1796 return can_add_hw;
1797 }
1798
1799 static void add_event_to_ctx(struct perf_event *event,
1800 struct perf_event_context *ctx)
1801 {
1802 u64 tstamp = perf_event_time(event);
1803
1804 list_add_event(event, ctx);
1805 perf_group_attach(event);
1806 event->tstamp_enabled = tstamp;
1807 event->tstamp_running = tstamp;
1808 event->tstamp_stopped = tstamp;
1809 }
1810
1811 static void task_ctx_sched_out(struct perf_event_context *ctx);
1812 static void
1813 ctx_sched_in(struct perf_event_context *ctx,
1814 struct perf_cpu_context *cpuctx,
1815 enum event_type_t event_type,
1816 struct task_struct *task);
1817
1818 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
1819 struct perf_event_context *ctx,
1820 struct task_struct *task)
1821 {
1822 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
1823 if (ctx)
1824 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
1825 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
1826 if (ctx)
1827 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
1828 }
1829
1830 /*
1831 * Cross CPU call to install and enable a performance event
1832 *
1833 * Must be called with ctx->mutex held
1834 */
1835 static int __perf_install_in_context(void *info)
1836 {
1837 struct perf_event *event = info;
1838 struct perf_event_context *ctx = event->ctx;
1839 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1840 struct perf_event_context *task_ctx = cpuctx->task_ctx;
1841 struct task_struct *task = current;
1842
1843 perf_ctx_lock(cpuctx, task_ctx);
1844 perf_pmu_disable(cpuctx->ctx.pmu);
1845
1846 /*
1847 * If there was an active task_ctx schedule it out.
1848 */
1849 if (task_ctx)
1850 task_ctx_sched_out(task_ctx);
1851
1852 /*
1853 * If the context we're installing events in is not the
1854 * active task_ctx, flip them.
1855 */
1856 if (ctx->task && task_ctx != ctx) {
1857 if (task_ctx)
1858 raw_spin_unlock(&task_ctx->lock);
1859 raw_spin_lock(&ctx->lock);
1860 task_ctx = ctx;
1861 }
1862
1863 if (task_ctx) {
1864 cpuctx->task_ctx = task_ctx;
1865 task = task_ctx->task;
1866 }
1867
1868 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
1869
1870 update_context_time(ctx);
1871 /*
1872 * update cgrp time only if current cgrp
1873 * matches event->cgrp. Must be done before
1874 * calling add_event_to_ctx()
1875 */
1876 update_cgrp_time_from_event(event);
1877
1878 add_event_to_ctx(event, ctx);
1879
1880 /*
1881 * Schedule everything back in
1882 */
1883 perf_event_sched_in(cpuctx, task_ctx, task);
1884
1885 perf_pmu_enable(cpuctx->ctx.pmu);
1886 perf_ctx_unlock(cpuctx, task_ctx);
1887
1888 return 0;
1889 }
1890
1891 /*
1892 * Attach a performance event to a context
1893 *
1894 * First we add the event to the list with the hardware enable bit
1895 * in event->hw_config cleared.
1896 *
1897 * If the event is attached to a task which is on a CPU we use a smp
1898 * call to enable it in the task context. The task might have been
1899 * scheduled away, but we check this in the smp call again.
1900 */
1901 static void
1902 perf_install_in_context(struct perf_event_context *ctx,
1903 struct perf_event *event,
1904 int cpu)
1905 {
1906 struct task_struct *task = ctx->task;
1907
1908 lockdep_assert_held(&ctx->mutex);
1909
1910 event->ctx = ctx;
1911 if (event->cpu != -1)
1912 event->cpu = cpu;
1913
1914 if (!task) {
1915 /*
1916 * Per cpu events are installed via an smp call and
1917 * the install is always successful.
1918 */
1919 cpu_function_call(cpu, __perf_install_in_context, event);
1920 return;
1921 }
1922
1923 retry:
1924 if (!task_function_call(task, __perf_install_in_context, event))
1925 return;
1926
1927 raw_spin_lock_irq(&ctx->lock);
1928 /*
1929 * If we failed to find a running task, but find the context active now
1930 * that we've acquired the ctx->lock, retry.
1931 */
1932 if (ctx->is_active) {
1933 raw_spin_unlock_irq(&ctx->lock);
1934 goto retry;
1935 }
1936
1937 /*
1938 * Since the task isn't running, its safe to add the event, us holding
1939 * the ctx->lock ensures the task won't get scheduled in.
1940 */
1941 add_event_to_ctx(event, ctx);
1942 raw_spin_unlock_irq(&ctx->lock);
1943 }
1944
1945 /*
1946 * Put a event into inactive state and update time fields.
1947 * Enabling the leader of a group effectively enables all
1948 * the group members that aren't explicitly disabled, so we
1949 * have to update their ->tstamp_enabled also.
1950 * Note: this works for group members as well as group leaders
1951 * since the non-leader members' sibling_lists will be empty.
1952 */
1953 static void __perf_event_mark_enabled(struct perf_event *event)
1954 {
1955 struct perf_event *sub;
1956 u64 tstamp = perf_event_time(event);
1957
1958 event->state = PERF_EVENT_STATE_INACTIVE;
1959 event->tstamp_enabled = tstamp - event->total_time_enabled;
1960 list_for_each_entry(sub, &event->sibling_list, group_entry) {
1961 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
1962 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
1963 }
1964 }
1965
1966 /*
1967 * Cross CPU call to enable a performance event
1968 */
1969 static int __perf_event_enable(void *info)
1970 {
1971 struct perf_event *event = info;
1972 struct perf_event_context *ctx = event->ctx;
1973 struct perf_event *leader = event->group_leader;
1974 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1975 int err;
1976
1977 /*
1978 * There's a time window between 'ctx->is_active' check
1979 * in perf_event_enable function and this place having:
1980 * - IRQs on
1981 * - ctx->lock unlocked
1982 *
1983 * where the task could be killed and 'ctx' deactivated
1984 * by perf_event_exit_task.
1985 */
1986 if (!ctx->is_active)
1987 return -EINVAL;
1988
1989 raw_spin_lock(&ctx->lock);
1990 update_context_time(ctx);
1991
1992 if (event->state >= PERF_EVENT_STATE_INACTIVE)
1993 goto unlock;
1994
1995 /*
1996 * set current task's cgroup time reference point
1997 */
1998 perf_cgroup_set_timestamp(current, ctx);
1999
2000 __perf_event_mark_enabled(event);
2001
2002 if (!event_filter_match(event)) {
2003 if (is_cgroup_event(event))
2004 perf_cgroup_defer_enabled(event);
2005 goto unlock;
2006 }
2007
2008 /*
2009 * If the event is in a group and isn't the group leader,
2010 * then don't put it on unless the group is on.
2011 */
2012 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
2013 goto unlock;
2014
2015 if (!group_can_go_on(event, cpuctx, 1)) {
2016 err = -EEXIST;
2017 } else {
2018 if (event == leader)
2019 err = group_sched_in(event, cpuctx, ctx);
2020 else
2021 err = event_sched_in(event, cpuctx, ctx);
2022 }
2023
2024 if (err) {
2025 /*
2026 * If this event can't go on and it's part of a
2027 * group, then the whole group has to come off.
2028 */
2029 if (leader != event) {
2030 group_sched_out(leader, cpuctx, ctx);
2031 perf_cpu_hrtimer_restart(cpuctx);
2032 }
2033 if (leader->attr.pinned) {
2034 update_group_times(leader);
2035 leader->state = PERF_EVENT_STATE_ERROR;
2036 }
2037 }
2038
2039 unlock:
2040 raw_spin_unlock(&ctx->lock);
2041
2042 return 0;
2043 }
2044
2045 /*
2046 * Enable a event.
2047 *
2048 * If event->ctx is a cloned context, callers must make sure that
2049 * every task struct that event->ctx->task could possibly point to
2050 * remains valid. This condition is satisfied when called through
2051 * perf_event_for_each_child or perf_event_for_each as described
2052 * for perf_event_disable.
2053 */
2054 void perf_event_enable(struct perf_event *event)
2055 {
2056 struct perf_event_context *ctx = event->ctx;
2057 struct task_struct *task = ctx->task;
2058
2059 if (!task) {
2060 /*
2061 * Enable the event on the cpu that it's on
2062 */
2063 cpu_function_call(event->cpu, __perf_event_enable, event);
2064 return;
2065 }
2066
2067 raw_spin_lock_irq(&ctx->lock);
2068 if (event->state >= PERF_EVENT_STATE_INACTIVE)
2069 goto out;
2070
2071 /*
2072 * If the event is in error state, clear that first.
2073 * That way, if we see the event in error state below, we
2074 * know that it has gone back into error state, as distinct
2075 * from the task having been scheduled away before the
2076 * cross-call arrived.
2077 */
2078 if (event->state == PERF_EVENT_STATE_ERROR)
2079 event->state = PERF_EVENT_STATE_OFF;
2080
2081 retry:
2082 if (!ctx->is_active) {
2083 __perf_event_mark_enabled(event);
2084 goto out;
2085 }
2086
2087 raw_spin_unlock_irq(&ctx->lock);
2088
2089 if (!task_function_call(task, __perf_event_enable, event))
2090 return;
2091
2092 raw_spin_lock_irq(&ctx->lock);
2093
2094 /*
2095 * If the context is active and the event is still off,
2096 * we need to retry the cross-call.
2097 */
2098 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
2099 /*
2100 * task could have been flipped by a concurrent
2101 * perf_event_context_sched_out()
2102 */
2103 task = ctx->task;
2104 goto retry;
2105 }
2106
2107 out:
2108 raw_spin_unlock_irq(&ctx->lock);
2109 }
2110 EXPORT_SYMBOL_GPL(perf_event_enable);
2111
2112 int perf_event_refresh(struct perf_event *event, int refresh)
2113 {
2114 /*
2115 * not supported on inherited events
2116 */
2117 if (event->attr.inherit || !is_sampling_event(event))
2118 return -EINVAL;
2119
2120 atomic_add(refresh, &event->event_limit);
2121 perf_event_enable(event);
2122
2123 return 0;
2124 }
2125 EXPORT_SYMBOL_GPL(perf_event_refresh);
2126
2127 static void ctx_sched_out(struct perf_event_context *ctx,
2128 struct perf_cpu_context *cpuctx,
2129 enum event_type_t event_type)
2130 {
2131 struct perf_event *event;
2132 int is_active = ctx->is_active;
2133
2134 ctx->is_active &= ~event_type;
2135 if (likely(!ctx->nr_events))
2136 return;
2137
2138 update_context_time(ctx);
2139 update_cgrp_time_from_cpuctx(cpuctx);
2140 if (!ctx->nr_active)
2141 return;
2142
2143 perf_pmu_disable(ctx->pmu);
2144 if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
2145 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2146 group_sched_out(event, cpuctx, ctx);
2147 }
2148
2149 if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
2150 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2151 group_sched_out(event, cpuctx, ctx);
2152 }
2153 perf_pmu_enable(ctx->pmu);
2154 }
2155
2156 /*
2157 * Test whether two contexts are equivalent, i.e. whether they have both been
2158 * cloned from the same version of the same context.
2159 *
2160 * Equivalence is measured using a generation number in the context that is
2161 * incremented on each modification to it; see unclone_ctx(), list_add_event()
2162 * and list_del_event().
2163 */
2164 static int context_equiv(struct perf_event_context *ctx1,
2165 struct perf_event_context *ctx2)
2166 {
2167 /* Pinning disables the swap optimization */
2168 if (ctx1->pin_count || ctx2->pin_count)
2169 return 0;
2170
2171 /* If ctx1 is the parent of ctx2 */
2172 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2173 return 1;
2174
2175 /* If ctx2 is the parent of ctx1 */
2176 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2177 return 1;
2178
2179 /*
2180 * If ctx1 and ctx2 have the same parent; we flatten the parent
2181 * hierarchy, see perf_event_init_context().
2182 */
2183 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2184 ctx1->parent_gen == ctx2->parent_gen)
2185 return 1;
2186
2187 /* Unmatched */
2188 return 0;
2189 }
2190
2191 static void __perf_event_sync_stat(struct perf_event *event,
2192 struct perf_event *next_event)
2193 {
2194 u64 value;
2195
2196 if (!event->attr.inherit_stat)
2197 return;
2198
2199 /*
2200 * Update the event value, we cannot use perf_event_read()
2201 * because we're in the middle of a context switch and have IRQs
2202 * disabled, which upsets smp_call_function_single(), however
2203 * we know the event must be on the current CPU, therefore we
2204 * don't need to use it.
2205 */
2206 switch (event->state) {
2207 case PERF_EVENT_STATE_ACTIVE:
2208 event->pmu->read(event);
2209 /* fall-through */
2210
2211 case PERF_EVENT_STATE_INACTIVE:
2212 update_event_times(event);
2213 break;
2214
2215 default:
2216 break;
2217 }
2218
2219 /*
2220 * In order to keep per-task stats reliable we need to flip the event
2221 * values when we flip the contexts.
2222 */
2223 value = local64_read(&next_event->count);
2224 value = local64_xchg(&event->count, value);
2225 local64_set(&next_event->count, value);
2226
2227 swap(event->total_time_enabled, next_event->total_time_enabled);
2228 swap(event->total_time_running, next_event->total_time_running);
2229
2230 /*
2231 * Since we swizzled the values, update the user visible data too.
2232 */
2233 perf_event_update_userpage(event);
2234 perf_event_update_userpage(next_event);
2235 }
2236
2237 static void perf_event_sync_stat(struct perf_event_context *ctx,
2238 struct perf_event_context *next_ctx)
2239 {
2240 struct perf_event *event, *next_event;
2241
2242 if (!ctx->nr_stat)
2243 return;
2244
2245 update_context_time(ctx);
2246
2247 event = list_first_entry(&ctx->event_list,
2248 struct perf_event, event_entry);
2249
2250 next_event = list_first_entry(&next_ctx->event_list,
2251 struct perf_event, event_entry);
2252
2253 while (&event->event_entry != &ctx->event_list &&
2254 &next_event->event_entry != &next_ctx->event_list) {
2255
2256 __perf_event_sync_stat(event, next_event);
2257
2258 event = list_next_entry(event, event_entry);
2259 next_event = list_next_entry(next_event, event_entry);
2260 }
2261 }
2262
2263 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2264 struct task_struct *next)
2265 {
2266 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2267 struct perf_event_context *next_ctx;
2268 struct perf_event_context *parent, *next_parent;
2269 struct perf_cpu_context *cpuctx;
2270 int do_switch = 1;
2271
2272 if (likely(!ctx))
2273 return;
2274
2275 cpuctx = __get_cpu_context(ctx);
2276 if (!cpuctx->task_ctx)
2277 return;
2278
2279 rcu_read_lock();
2280 next_ctx = next->perf_event_ctxp[ctxn];
2281 if (!next_ctx)
2282 goto unlock;
2283
2284 parent = rcu_dereference(ctx->parent_ctx);
2285 next_parent = rcu_dereference(next_ctx->parent_ctx);
2286
2287 /* If neither context have a parent context; they cannot be clones. */
2288 if (!parent && !next_parent)
2289 goto unlock;
2290
2291 if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2292 /*
2293 * Looks like the two contexts are clones, so we might be
2294 * able to optimize the context switch. We lock both
2295 * contexts and check that they are clones under the
2296 * lock (including re-checking that neither has been
2297 * uncloned in the meantime). It doesn't matter which
2298 * order we take the locks because no other cpu could
2299 * be trying to lock both of these tasks.
2300 */
2301 raw_spin_lock(&ctx->lock);
2302 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2303 if (context_equiv(ctx, next_ctx)) {
2304 /*
2305 * XXX do we need a memory barrier of sorts
2306 * wrt to rcu_dereference() of perf_event_ctxp
2307 */
2308 task->perf_event_ctxp[ctxn] = next_ctx;
2309 next->perf_event_ctxp[ctxn] = ctx;
2310 ctx->task = next;
2311 next_ctx->task = task;
2312 do_switch = 0;
2313
2314 perf_event_sync_stat(ctx, next_ctx);
2315 }
2316 raw_spin_unlock(&next_ctx->lock);
2317 raw_spin_unlock(&ctx->lock);
2318 }
2319 unlock:
2320 rcu_read_unlock();
2321
2322 if (do_switch) {
2323 raw_spin_lock(&ctx->lock);
2324 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2325 cpuctx->task_ctx = NULL;
2326 raw_spin_unlock(&ctx->lock);
2327 }
2328 }
2329
2330 #define for_each_task_context_nr(ctxn) \
2331 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2332
2333 /*
2334 * Called from scheduler to remove the events of the current task,
2335 * with interrupts disabled.
2336 *
2337 * We stop each event and update the event value in event->count.
2338 *
2339 * This does not protect us against NMI, but disable()
2340 * sets the disabled bit in the control field of event _before_
2341 * accessing the event control register. If a NMI hits, then it will
2342 * not restart the event.
2343 */
2344 void __perf_event_task_sched_out(struct task_struct *task,
2345 struct task_struct *next)
2346 {
2347 int ctxn;
2348
2349 for_each_task_context_nr(ctxn)
2350 perf_event_context_sched_out(task, ctxn, next);
2351
2352 /*
2353 * if cgroup events exist on this CPU, then we need
2354 * to check if we have to switch out PMU state.
2355 * cgroup event are system-wide mode only
2356 */
2357 if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2358 perf_cgroup_sched_out(task, next);
2359 }
2360
2361 static void task_ctx_sched_out(struct perf_event_context *ctx)
2362 {
2363 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2364
2365 if (!cpuctx->task_ctx)
2366 return;
2367
2368 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2369 return;
2370
2371 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2372 cpuctx->task_ctx = NULL;
2373 }
2374
2375 /*
2376 * Called with IRQs disabled
2377 */
2378 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2379 enum event_type_t event_type)
2380 {
2381 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2382 }
2383
2384 static void
2385 ctx_pinned_sched_in(struct perf_event_context *ctx,
2386 struct perf_cpu_context *cpuctx)
2387 {
2388 struct perf_event *event;
2389
2390 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2391 if (event->state <= PERF_EVENT_STATE_OFF)
2392 continue;
2393 if (!event_filter_match(event))
2394 continue;
2395
2396 /* may need to reset tstamp_enabled */
2397 if (is_cgroup_event(event))
2398 perf_cgroup_mark_enabled(event, ctx);
2399
2400 if (group_can_go_on(event, cpuctx, 1))
2401 group_sched_in(event, cpuctx, ctx);
2402
2403 /*
2404 * If this pinned group hasn't been scheduled,
2405 * put it in error state.
2406 */
2407 if (event->state == PERF_EVENT_STATE_INACTIVE) {
2408 update_group_times(event);
2409 event->state = PERF_EVENT_STATE_ERROR;
2410 }
2411 }
2412 }
2413
2414 static void
2415 ctx_flexible_sched_in(struct perf_event_context *ctx,
2416 struct perf_cpu_context *cpuctx)
2417 {
2418 struct perf_event *event;
2419 int can_add_hw = 1;
2420
2421 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2422 /* Ignore events in OFF or ERROR state */
2423 if (event->state <= PERF_EVENT_STATE_OFF)
2424 continue;
2425 /*
2426 * Listen to the 'cpu' scheduling filter constraint
2427 * of events:
2428 */
2429 if (!event_filter_match(event))
2430 continue;
2431
2432 /* may need to reset tstamp_enabled */
2433 if (is_cgroup_event(event))
2434 perf_cgroup_mark_enabled(event, ctx);
2435
2436 if (group_can_go_on(event, cpuctx, can_add_hw)) {
2437 if (group_sched_in(event, cpuctx, ctx))
2438 can_add_hw = 0;
2439 }
2440 }
2441 }
2442
2443 static void
2444 ctx_sched_in(struct perf_event_context *ctx,
2445 struct perf_cpu_context *cpuctx,
2446 enum event_type_t event_type,
2447 struct task_struct *task)
2448 {
2449 u64 now;
2450 int is_active = ctx->is_active;
2451
2452 ctx->is_active |= event_type;
2453 if (likely(!ctx->nr_events))
2454 return;
2455
2456 now = perf_clock();
2457 ctx->timestamp = now;
2458 perf_cgroup_set_timestamp(task, ctx);
2459 /*
2460 * First go through the list and put on any pinned groups
2461 * in order to give them the best chance of going on.
2462 */
2463 if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
2464 ctx_pinned_sched_in(ctx, cpuctx);
2465
2466 /* Then walk through the lower prio flexible groups */
2467 if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
2468 ctx_flexible_sched_in(ctx, cpuctx);
2469 }
2470
2471 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
2472 enum event_type_t event_type,
2473 struct task_struct *task)
2474 {
2475 struct perf_event_context *ctx = &cpuctx->ctx;
2476
2477 ctx_sched_in(ctx, cpuctx, event_type, task);
2478 }
2479
2480 static void perf_event_context_sched_in(struct perf_event_context *ctx,
2481 struct task_struct *task)
2482 {
2483 struct perf_cpu_context *cpuctx;
2484
2485 cpuctx = __get_cpu_context(ctx);
2486 if (cpuctx->task_ctx == ctx)
2487 return;
2488
2489 perf_ctx_lock(cpuctx, ctx);
2490 perf_pmu_disable(ctx->pmu);
2491 /*
2492 * We want to keep the following priority order:
2493 * cpu pinned (that don't need to move), task pinned,
2494 * cpu flexible, task flexible.
2495 */
2496 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2497
2498 if (ctx->nr_events)
2499 cpuctx->task_ctx = ctx;
2500
2501 perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);
2502
2503 perf_pmu_enable(ctx->pmu);
2504 perf_ctx_unlock(cpuctx, ctx);
2505
2506 /*
2507 * Since these rotations are per-cpu, we need to ensure the
2508 * cpu-context we got scheduled on is actually rotating.
2509 */
2510 perf_pmu_rotate_start(ctx->pmu);
2511 }
2512
2513 /*
2514 * When sampling the branck stack in system-wide, it may be necessary
2515 * to flush the stack on context switch. This happens when the branch
2516 * stack does not tag its entries with the pid of the current task.
2517 * Otherwise it becomes impossible to associate a branch entry with a
2518 * task. This ambiguity is more likely to appear when the branch stack
2519 * supports priv level filtering and the user sets it to monitor only
2520 * at the user level (which could be a useful measurement in system-wide
2521 * mode). In that case, the risk is high of having a branch stack with
2522 * branch from multiple tasks. Flushing may mean dropping the existing
2523 * entries or stashing them somewhere in the PMU specific code layer.
2524 *
2525 * This function provides the context switch callback to the lower code
2526 * layer. It is invoked ONLY when there is at least one system-wide context
2527 * with at least one active event using taken branch sampling.
2528 */
2529 static void perf_branch_stack_sched_in(struct task_struct *prev,
2530 struct task_struct *task)
2531 {
2532 struct perf_cpu_context *cpuctx;
2533 struct pmu *pmu;
2534 unsigned long flags;
2535
2536 /* no need to flush branch stack if not changing task */
2537 if (prev == task)
2538 return;
2539
2540 local_irq_save(flags);
2541
2542 rcu_read_lock();
2543
2544 list_for_each_entry_rcu(pmu, &pmus, entry) {
2545 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2546
2547 /*
2548 * check if the context has at least one
2549 * event using PERF_SAMPLE_BRANCH_STACK
2550 */
2551 if (cpuctx->ctx.nr_branch_stack > 0
2552 && pmu->flush_branch_stack) {
2553
2554 pmu = cpuctx->ctx.pmu;
2555
2556 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2557
2558 perf_pmu_disable(pmu);
2559
2560 pmu->flush_branch_stack();
2561
2562 perf_pmu_enable(pmu);
2563
2564 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2565 }
2566 }
2567
2568 rcu_read_unlock();
2569
2570 local_irq_restore(flags);
2571 }
2572
2573 /*
2574 * Called from scheduler to add the events of the current task
2575 * with interrupts disabled.
2576 *
2577 * We restore the event value and then enable it.
2578 *
2579 * This does not protect us against NMI, but enable()
2580 * sets the enabled bit in the control field of event _before_
2581 * accessing the event control register. If a NMI hits, then it will
2582 * keep the event running.
2583 */
2584 void __perf_event_task_sched_in(struct task_struct *prev,
2585 struct task_struct *task)
2586 {
2587 struct perf_event_context *ctx;
2588 int ctxn;
2589
2590 for_each_task_context_nr(ctxn) {
2591 ctx = task->perf_event_ctxp[ctxn];
2592 if (likely(!ctx))
2593 continue;
2594
2595 perf_event_context_sched_in(ctx, task);
2596 }
2597 /*
2598 * if cgroup events exist on this CPU, then we need
2599 * to check if we have to switch in PMU state.
2600 * cgroup event are system-wide mode only
2601 */
2602 if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2603 perf_cgroup_sched_in(prev, task);
2604
2605 /* check for system-wide branch_stack events */
2606 if (atomic_read(&__get_cpu_var(perf_branch_stack_events)))
2607 perf_branch_stack_sched_in(prev, task);
2608 }
2609
2610 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
2611 {
2612 u64 frequency = event->attr.sample_freq;
2613 u64 sec = NSEC_PER_SEC;
2614 u64 divisor, dividend;
2615
2616 int count_fls, nsec_fls, frequency_fls, sec_fls;
2617
2618 count_fls = fls64(count);
2619 nsec_fls = fls64(nsec);
2620 frequency_fls = fls64(frequency);
2621 sec_fls = 30;
2622
2623 /*
2624 * We got @count in @nsec, with a target of sample_freq HZ
2625 * the target period becomes:
2626 *
2627 * @count * 10^9
2628 * period = -------------------
2629 * @nsec * sample_freq
2630 *
2631 */
2632
2633 /*
2634 * Reduce accuracy by one bit such that @a and @b converge
2635 * to a similar magnitude.
2636 */
2637 #define REDUCE_FLS(a, b) \
2638 do { \
2639 if (a##_fls > b##_fls) { \
2640 a >>= 1; \
2641 a##_fls--; \
2642 } else { \
2643 b >>= 1; \
2644 b##_fls--; \
2645 } \
2646 } while (0)
2647
2648 /*
2649 * Reduce accuracy until either term fits in a u64, then proceed with
2650 * the other, so that finally we can do a u64/u64 division.
2651 */
2652 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
2653 REDUCE_FLS(nsec, frequency);
2654 REDUCE_FLS(sec, count);
2655 }
2656
2657 if (count_fls + sec_fls > 64) {
2658 divisor = nsec * frequency;
2659
2660 while (count_fls + sec_fls > 64) {
2661 REDUCE_FLS(count, sec);
2662 divisor >>= 1;
2663 }
2664
2665 dividend = count * sec;
2666 } else {
2667 dividend = count * sec;
2668
2669 while (nsec_fls + frequency_fls > 64) {
2670 REDUCE_FLS(nsec, frequency);
2671 dividend >>= 1;
2672 }
2673
2674 divisor = nsec * frequency;
2675 }
2676
2677 if (!divisor)
2678 return dividend;
2679
2680 return div64_u64(dividend, divisor);
2681 }
2682
2683 static DEFINE_PER_CPU(int, perf_throttled_count);
2684 static DEFINE_PER_CPU(u64, perf_throttled_seq);
2685
2686 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
2687 {
2688 struct hw_perf_event *hwc = &event->hw;
2689 s64 period, sample_period;
2690 s64 delta;
2691
2692 period = perf_calculate_period(event, nsec, count);
2693
2694 delta = (s64)(period - hwc->sample_period);
2695 delta = (delta + 7) / 8; /* low pass filter */
2696
2697 sample_period = hwc->sample_period + delta;
2698
2699 if (!sample_period)
2700 sample_period = 1;
2701
2702 hwc->sample_period = sample_period;
2703
2704 if (local64_read(&hwc->period_left) > 8*sample_period) {
2705 if (disable)
2706 event->pmu->stop(event, PERF_EF_UPDATE);
2707
2708 local64_set(&hwc->period_left, 0);
2709
2710 if (disable)
2711 event->pmu->start(event, PERF_EF_RELOAD);
2712 }
2713 }
2714
2715 /*
2716 * combine freq adjustment with unthrottling to avoid two passes over the
2717 * events. At the same time, make sure, having freq events does not change
2718 * the rate of unthrottling as that would introduce bias.
2719 */
2720 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
2721 int needs_unthr)
2722 {
2723 struct perf_event *event;
2724 struct hw_perf_event *hwc;
2725 u64 now, period = TICK_NSEC;
2726 s64 delta;
2727
2728 /*
2729 * only need to iterate over all events iff:
2730 * - context have events in frequency mode (needs freq adjust)
2731 * - there are events to unthrottle on this cpu
2732 */
2733 if (!(ctx->nr_freq || needs_unthr))
2734 return;
2735
2736 raw_spin_lock(&ctx->lock);
2737 perf_pmu_disable(ctx->pmu);
2738
2739 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
2740 if (event->state != PERF_EVENT_STATE_ACTIVE)
2741 continue;
2742
2743 if (!event_filter_match(event))
2744 continue;
2745
2746 hwc = &event->hw;
2747
2748 if (hwc->interrupts == MAX_INTERRUPTS) {
2749 hwc->interrupts = 0;
2750 perf_log_throttle(event, 1);
2751 event->pmu->start(event, 0);
2752 }
2753
2754 if (!event->attr.freq || !event->attr.sample_freq)
2755 continue;
2756
2757 /*
2758 * stop the event and update event->count
2759 */
2760 event->pmu->stop(event, PERF_EF_UPDATE);
2761
2762 now = local64_read(&event->count);
2763 delta = now - hwc->freq_count_stamp;
2764 hwc->freq_count_stamp = now;
2765
2766 /*
2767 * restart the event
2768 * reload only if value has changed
2769 * we have stopped the event so tell that
2770 * to perf_adjust_period() to avoid stopping it
2771 * twice.
2772 */
2773 if (delta > 0)
2774 perf_adjust_period(event, period, delta, false);
2775
2776 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
2777 }
2778
2779 perf_pmu_enable(ctx->pmu);
2780 raw_spin_unlock(&ctx->lock);
2781 }
2782
2783 /*
2784 * Round-robin a context's events:
2785 */
2786 static void rotate_ctx(struct perf_event_context *ctx)
2787 {
2788 /*
2789 * Rotate the first entry last of non-pinned groups. Rotation might be
2790 * disabled by the inheritance code.
2791 */
2792 if (!ctx->rotate_disable)
2793 list_rotate_left(&ctx->flexible_groups);
2794 }
2795
2796 /*
2797 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
2798 * because they're strictly cpu affine and rotate_start is called with IRQs
2799 * disabled, while rotate_context is called from IRQ context.
2800 */
2801 static int perf_rotate_context(struct perf_cpu_context *cpuctx)
2802 {
2803 struct perf_event_context *ctx = NULL;
2804 int rotate = 0, remove = 1;
2805
2806 if (cpuctx->ctx.nr_events) {
2807 remove = 0;
2808 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
2809 rotate = 1;
2810 }
2811
2812 ctx = cpuctx->task_ctx;
2813 if (ctx && ctx->nr_events) {
2814 remove = 0;
2815 if (ctx->nr_events != ctx->nr_active)
2816 rotate = 1;
2817 }
2818
2819 if (!rotate)
2820 goto done;
2821
2822 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2823 perf_pmu_disable(cpuctx->ctx.pmu);
2824
2825 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2826 if (ctx)
2827 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
2828
2829 rotate_ctx(&cpuctx->ctx);
2830 if (ctx)
2831 rotate_ctx(ctx);
2832
2833 perf_event_sched_in(cpuctx, ctx, current);
2834
2835 perf_pmu_enable(cpuctx->ctx.pmu);
2836 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2837 done:
2838 if (remove)
2839 list_del_init(&cpuctx->rotation_list);
2840
2841 return rotate;
2842 }
2843
2844 #ifdef CONFIG_NO_HZ_FULL
2845 bool perf_event_can_stop_tick(void)
2846 {
2847 if (atomic_read(&nr_freq_events) ||
2848 __this_cpu_read(perf_throttled_count))
2849 return false;
2850 else
2851 return true;
2852 }
2853 #endif
2854
2855 void perf_event_task_tick(void)
2856 {
2857 struct list_head *head = &__get_cpu_var(rotation_list);
2858 struct perf_cpu_context *cpuctx, *tmp;
2859 struct perf_event_context *ctx;
2860 int throttled;
2861
2862 WARN_ON(!irqs_disabled());
2863
2864 __this_cpu_inc(perf_throttled_seq);
2865 throttled = __this_cpu_xchg(perf_throttled_count, 0);
2866
2867 list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
2868 ctx = &cpuctx->ctx;
2869 perf_adjust_freq_unthr_context(ctx, throttled);
2870
2871 ctx = cpuctx->task_ctx;
2872 if (ctx)
2873 perf_adjust_freq_unthr_context(ctx, throttled);
2874 }
2875 }
2876
2877 static int event_enable_on_exec(struct perf_event *event,
2878 struct perf_event_context *ctx)
2879 {
2880 if (!event->attr.enable_on_exec)
2881 return 0;
2882
2883 event->attr.enable_on_exec = 0;
2884 if (event->state >= PERF_EVENT_STATE_INACTIVE)
2885 return 0;
2886
2887 __perf_event_mark_enabled(event);
2888
2889 return 1;
2890 }
2891
2892 /*
2893 * Enable all of a task's events that have been marked enable-on-exec.
2894 * This expects task == current.
2895 */
2896 static void perf_event_enable_on_exec(struct perf_event_context *ctx)
2897 {
2898 struct perf_event *event;
2899 unsigned long flags;
2900 int enabled = 0;
2901 int ret;
2902
2903 local_irq_save(flags);
2904 if (!ctx || !ctx->nr_events)
2905 goto out;
2906
2907 /*
2908 * We must ctxsw out cgroup events to avoid conflict
2909 * when invoking perf_task_event_sched_in() later on
2910 * in this function. Otherwise we end up trying to
2911 * ctxswin cgroup events which are already scheduled
2912 * in.
2913 */
2914 perf_cgroup_sched_out(current, NULL);
2915
2916 raw_spin_lock(&ctx->lock);
2917 task_ctx_sched_out(ctx);
2918
2919 list_for_each_entry(event, &ctx->event_list, event_entry) {
2920 ret = event_enable_on_exec(event, ctx);
2921 if (ret)
2922 enabled = 1;
2923 }
2924
2925 /*
2926 * Unclone this context if we enabled any event.
2927 */
2928 if (enabled)
2929 unclone_ctx(ctx);
2930
2931 raw_spin_unlock(&ctx->lock);
2932
2933 /*
2934 * Also calls ctxswin for cgroup events, if any:
2935 */
2936 perf_event_context_sched_in(ctx, ctx->task);
2937 out:
2938 local_irq_restore(flags);
2939 }
2940
2941 /*
2942 * Cross CPU call to read the hardware event
2943 */
2944 static void __perf_event_read(void *info)
2945 {
2946 struct perf_event *event = info;
2947 struct perf_event_context *ctx = event->ctx;
2948 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2949
2950 /*
2951 * If this is a task context, we need to check whether it is
2952 * the current task context of this cpu. If not it has been
2953 * scheduled out before the smp call arrived. In that case
2954 * event->count would have been updated to a recent sample
2955 * when the event was scheduled out.
2956 */
2957 if (ctx->task && cpuctx->task_ctx != ctx)
2958 return;
2959
2960 raw_spin_lock(&ctx->lock);
2961 if (ctx->is_active) {
2962 update_context_time(ctx);
2963 update_cgrp_time_from_event(event);
2964 }
2965 update_event_times(event);
2966 if (event->state == PERF_EVENT_STATE_ACTIVE)
2967 event->pmu->read(event);
2968 raw_spin_unlock(&ctx->lock);
2969 }
2970
2971 static inline u64 perf_event_count(struct perf_event *event)
2972 {
2973 return local64_read(&event->count) + atomic64_read(&event->child_count);
2974 }
2975
2976 static u64 perf_event_read(struct perf_event *event)
2977 {
2978 /*
2979 * If event is enabled and currently active on a CPU, update the
2980 * value in the event structure:
2981 */
2982 if (event->state == PERF_EVENT_STATE_ACTIVE) {
2983 smp_call_function_single(event->oncpu,
2984 __perf_event_read, event, 1);
2985 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
2986 struct perf_event_context *ctx = event->ctx;
2987 unsigned long flags;
2988
2989 raw_spin_lock_irqsave(&ctx->lock, flags);
2990 /*
2991 * may read while context is not active
2992 * (e.g., thread is blocked), in that case
2993 * we cannot update context time
2994 */
2995 if (ctx->is_active) {
2996 update_context_time(ctx);
2997 update_cgrp_time_from_event(event);
2998 }
2999 update_event_times(event);
3000 raw_spin_unlock_irqrestore(&ctx->lock, flags);
3001 }
3002
3003 return perf_event_count(event);
3004 }
3005
3006 /*
3007 * Initialize the perf_event context in a task_struct:
3008 */
3009 static void __perf_event_init_context(struct perf_event_context *ctx)
3010 {
3011 raw_spin_lock_init(&ctx->lock);
3012 mutex_init(&ctx->mutex);
3013 INIT_LIST_HEAD(&ctx->pinned_groups);
3014 INIT_LIST_HEAD(&ctx->flexible_groups);
3015 INIT_LIST_HEAD(&ctx->event_list);
3016 atomic_set(&ctx->refcount, 1);
3017 }
3018
3019 static struct perf_event_context *
3020 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3021 {
3022 struct perf_event_context *ctx;
3023
3024 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3025 if (!ctx)
3026 return NULL;
3027
3028 __perf_event_init_context(ctx);
3029 if (task) {
3030 ctx->task = task;
3031 get_task_struct(task);
3032 }
3033 ctx->pmu = pmu;
3034
3035 return ctx;
3036 }
3037
3038 static struct task_struct *
3039 find_lively_task_by_vpid(pid_t vpid)
3040 {
3041 struct task_struct *task;
3042 int err;
3043
3044 rcu_read_lock();
3045 if (!vpid)
3046 task = current;
3047 else
3048 task = find_task_by_vpid(vpid);
3049 if (task)
3050 get_task_struct(task);
3051 rcu_read_unlock();
3052
3053 if (!task)
3054 return ERR_PTR(-ESRCH);
3055
3056 /* Reuse ptrace permission checks for now. */
3057 err = -EACCES;
3058 if (!ptrace_may_access(task, PTRACE_MODE_READ))
3059 goto errout;
3060
3061 return task;
3062 errout:
3063 put_task_struct(task);
3064 return ERR_PTR(err);
3065
3066 }
3067
3068 /*
3069 * Returns a matching context with refcount and pincount.
3070 */
3071 static struct perf_event_context *
3072 find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
3073 {
3074 struct perf_event_context *ctx;
3075 struct perf_cpu_context *cpuctx;
3076 unsigned long flags;
3077 int ctxn, err;
3078
3079 if (!task) {
3080 /* Must be root to operate on a CPU event: */
3081 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
3082 return ERR_PTR(-EACCES);
3083
3084 /*
3085 * We could be clever and allow to attach a event to an
3086 * offline CPU and activate it when the CPU comes up, but
3087 * that's for later.
3088 */
3089 if (!cpu_online(cpu))
3090 return ERR_PTR(-ENODEV);
3091
3092 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
3093 ctx = &cpuctx->ctx;
3094 get_ctx(ctx);
3095 ++ctx->pin_count;
3096
3097 return ctx;
3098 }
3099
3100 err = -EINVAL;
3101 ctxn = pmu->task_ctx_nr;
3102 if (ctxn < 0)
3103 goto errout;
3104
3105 retry:
3106 ctx = perf_lock_task_context(task, ctxn, &flags);
3107 if (ctx) {
3108 unclone_ctx(ctx);
3109 ++ctx->pin_count;
3110 raw_spin_unlock_irqrestore(&ctx->lock, flags);
3111 } else {
3112 ctx = alloc_perf_context(pmu, task);
3113 err = -ENOMEM;
3114 if (!ctx)
3115 goto errout;
3116
3117 err = 0;
3118 mutex_lock(&task->perf_event_mutex);
3119 /*
3120 * If it has already passed perf_event_exit_task().
3121 * we must see PF_EXITING, it takes this mutex too.
3122 */
3123 if (task->flags & PF_EXITING)
3124 err = -ESRCH;
3125 else if (task->perf_event_ctxp[ctxn])
3126 err = -EAGAIN;
3127 else {
3128 get_ctx(ctx);
3129 ++ctx->pin_count;
3130 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3131 }
3132 mutex_unlock(&task->perf_event_mutex);
3133
3134 if (unlikely(err)) {
3135 put_ctx(ctx);
3136
3137 if (err == -EAGAIN)
3138 goto retry;
3139 goto errout;
3140 }
3141 }
3142
3143 return ctx;
3144
3145 errout:
3146 return ERR_PTR(err);
3147 }
3148
3149 static void perf_event_free_filter(struct perf_event *event);
3150
3151 static void free_event_rcu(struct rcu_head *head)
3152 {
3153 struct perf_event *event;
3154
3155 event = container_of(head, struct perf_event, rcu_head);
3156 if (event->ns)
3157 put_pid_ns(event->ns);
3158 perf_event_free_filter(event);
3159 kfree(event);
3160 }
3161
3162 static void ring_buffer_put(struct ring_buffer *rb);
3163 static void ring_buffer_detach(struct perf_event *event, struct ring_buffer *rb);
3164
3165 static void unaccount_event_cpu(struct perf_event *event, int cpu)
3166 {
3167 if (event->parent)
3168 return;
3169
3170 if (has_branch_stack(event)) {
3171 if (!(event->attach_state & PERF_ATTACH_TASK))
3172 atomic_dec(&per_cpu(perf_branch_stack_events, cpu));
3173 }
3174 if (is_cgroup_event(event))
3175 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3176 }
3177
3178 static void unaccount_event(struct perf_event *event)
3179 {
3180 if (event->parent)
3181 return;
3182
3183 if (event->attach_state & PERF_ATTACH_TASK)
3184 static_key_slow_dec_deferred(&perf_sched_events);
3185 if (event->attr.mmap || event->attr.mmap_data)
3186 atomic_dec(&nr_mmap_events);
3187 if (event->attr.comm)
3188 atomic_dec(&nr_comm_events);
3189 if (event->attr.task)
3190 atomic_dec(&nr_task_events);
3191 if (event->attr.freq)
3192 atomic_dec(&nr_freq_events);
3193 if (is_cgroup_event(event))
3194 static_key_slow_dec_deferred(&perf_sched_events);
3195 if (has_branch_stack(event))
3196 static_key_slow_dec_deferred(&perf_sched_events);
3197
3198 unaccount_event_cpu(event, event->cpu);
3199 }
3200
3201 static void __free_event(struct perf_event *event)
3202 {
3203 if (!event->parent) {
3204 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
3205 put_callchain_buffers();
3206 }
3207
3208 if (event->destroy)
3209 event->destroy(event);
3210
3211 if (event->ctx)
3212 put_ctx(event->ctx);
3213
3214 call_rcu(&event->rcu_head, free_event_rcu);
3215 }
3216 static void free_event(struct perf_event *event)
3217 {
3218 irq_work_sync(&event->pending);
3219
3220 unaccount_event(event);
3221
3222 if (event->rb) {
3223 struct ring_buffer *rb;
3224
3225 /*
3226 * Can happen when we close an event with re-directed output.
3227 *
3228 * Since we have a 0 refcount, perf_mmap_close() will skip
3229 * over us; possibly making our ring_buffer_put() the last.
3230 */
3231 mutex_lock(&event->mmap_mutex);
3232 rb = event->rb;
3233 if (rb) {
3234 rcu_assign_pointer(event->rb, NULL);
3235 ring_buffer_detach(event, rb);
3236 ring_buffer_put(rb); /* could be last */
3237 }
3238 mutex_unlock(&event->mmap_mutex);
3239 }
3240
3241 if (is_cgroup_event(event))
3242 perf_detach_cgroup(event);
3243
3244
3245 __free_event(event);
3246 }
3247
3248 int perf_event_release_kernel(struct perf_event *event)
3249 {
3250 struct perf_event_context *ctx = event->ctx;
3251
3252 WARN_ON_ONCE(ctx->parent_ctx);
3253 /*
3254 * There are two ways this annotation is useful:
3255 *
3256 * 1) there is a lock recursion from perf_event_exit_task
3257 * see the comment there.
3258 *
3259 * 2) there is a lock-inversion with mmap_sem through
3260 * perf_event_read_group(), which takes faults while
3261 * holding ctx->mutex, however this is called after
3262 * the last filedesc died, so there is no possibility
3263 * to trigger the AB-BA case.
3264 */
3265 mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
3266 raw_spin_lock_irq(&ctx->lock);
3267 perf_group_detach(event);
3268 raw_spin_unlock_irq(&ctx->lock);
3269 perf_remove_from_context(event);
3270 mutex_unlock(&ctx->mutex);
3271
3272 free_event(event);
3273
3274 return 0;
3275 }
3276 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
3277
3278 /*
3279 * Called when the last reference to the file is gone.
3280 */
3281 static void put_event(struct perf_event *event)
3282 {
3283 struct task_struct *owner;
3284
3285 if (!atomic_long_dec_and_test(&event->refcount))
3286 return;
3287
3288 rcu_read_lock();
3289 owner = ACCESS_ONCE(event->owner);
3290 /*
3291 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
3292 * !owner it means the list deletion is complete and we can indeed
3293 * free this event, otherwise we need to serialize on
3294 * owner->perf_event_mutex.
3295 */
3296 smp_read_barrier_depends();
3297 if (owner) {
3298 /*
3299 * Since delayed_put_task_struct() also drops the last
3300 * task reference we can safely take a new reference
3301 * while holding the rcu_read_lock().
3302 */
3303 get_task_struct(owner);
3304 }
3305 rcu_read_unlock();
3306
3307 if (owner) {
3308 mutex_lock(&owner->perf_event_mutex);
3309 /*
3310 * We have to re-check the event->owner field, if it is cleared
3311 * we raced with perf_event_exit_task(), acquiring the mutex
3312 * ensured they're done, and we can proceed with freeing the
3313 * event.
3314 */
3315 if (event->owner)
3316 list_del_init(&event->owner_entry);
3317 mutex_unlock(&owner->perf_event_mutex);
3318 put_task_struct(owner);
3319 }
3320
3321 perf_event_release_kernel(event);
3322 }
3323
3324 static int perf_release(struct inode *inode, struct file *file)
3325 {
3326 put_event(file->private_data);
3327 return 0;
3328 }
3329
3330 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
3331 {
3332 struct perf_event *child;
3333 u64 total = 0;
3334
3335 *enabled = 0;
3336 *running = 0;
3337
3338 mutex_lock(&event->child_mutex);
3339 total += perf_event_read(event);
3340 *enabled += event->total_time_enabled +
3341 atomic64_read(&event->child_total_time_enabled);
3342 *running += event->total_time_running +
3343 atomic64_read(&event->child_total_time_running);
3344
3345 list_for_each_entry(child, &event->child_list, child_list) {
3346 total += perf_event_read(child);
3347 *enabled += child->total_time_enabled;
3348 *running += child->total_time_running;
3349 }
3350 mutex_unlock(&event->child_mutex);
3351
3352 return total;
3353 }
3354 EXPORT_SYMBOL_GPL(perf_event_read_value);
3355
3356 static int perf_event_read_group(struct perf_event *event,
3357 u64 read_format, char __user *buf)
3358 {
3359 struct perf_event *leader = event->group_leader, *sub;
3360 int n = 0, size = 0, ret = -EFAULT;
3361 struct perf_event_context *ctx = leader->ctx;
3362 u64 values[5];
3363 u64 count, enabled, running;
3364
3365 mutex_lock(&ctx->mutex);
3366 count = perf_event_read_value(leader, &enabled, &running);
3367
3368 values[n++] = 1 + leader->nr_siblings;
3369 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3370 values[n++] = enabled;
3371 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3372 values[n++] = running;
3373 values[n++] = count;
3374 if (read_format & PERF_FORMAT_ID)
3375 values[n++] = primary_event_id(leader);
3376
3377 size = n * sizeof(u64);
3378
3379 if (copy_to_user(buf, values, size))
3380 goto unlock;
3381
3382 ret = size;
3383
3384 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3385 n = 0;
3386
3387 values[n++] = perf_event_read_value(sub, &enabled, &running);
3388 if (read_format & PERF_FORMAT_ID)
3389 values[n++] = primary_event_id(sub);
3390
3391 size = n * sizeof(u64);
3392
3393 if (copy_to_user(buf + ret, values, size)) {
3394 ret = -EFAULT;
3395 goto unlock;
3396 }
3397
3398 ret += size;
3399 }
3400 unlock:
3401 mutex_unlock(&ctx->mutex);
3402
3403 return ret;
3404 }
3405
3406 static int perf_event_read_one(struct perf_event *event,
3407 u64 read_format, char __user *buf)
3408 {
3409 u64 enabled, running;
3410 u64 values[4];
3411 int n = 0;
3412
3413 values[n++] = perf_event_read_value(event, &enabled, &running);
3414 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3415 values[n++] = enabled;
3416 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3417 values[n++] = running;
3418 if (read_format & PERF_FORMAT_ID)
3419 values[n++] = primary_event_id(event);
3420
3421 if (copy_to_user(buf, values, n * sizeof(u64)))
3422 return -EFAULT;
3423
3424 return n * sizeof(u64);
3425 }
3426
3427 /*
3428 * Read the performance event - simple non blocking version for now
3429 */
3430 static ssize_t
3431 perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
3432 {
3433 u64 read_format = event->attr.read_format;
3434 int ret;
3435
3436 /*
3437 * Return end-of-file for a read on a event that is in
3438 * error state (i.e. because it was pinned but it couldn't be
3439 * scheduled on to the CPU at some point).
3440 */
3441 if (event->state == PERF_EVENT_STATE_ERROR)
3442 return 0;
3443
3444 if (count < event->read_size)
3445 return -ENOSPC;
3446
3447 WARN_ON_ONCE(event->ctx->parent_ctx);
3448 if (read_format & PERF_FORMAT_GROUP)
3449 ret = perf_event_read_group(event, read_format, buf);
3450 else
3451 ret = perf_event_read_one(event, read_format, buf);
3452
3453 return ret;
3454 }
3455
3456 static ssize_t
3457 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
3458 {
3459 struct perf_event *event = file->private_data;
3460
3461 return perf_read_hw(event, buf, count);
3462 }
3463
3464 static unsigned int perf_poll(struct file *file, poll_table *wait)
3465 {
3466 struct perf_event *event = file->private_data;
3467 struct ring_buffer *rb;
3468 unsigned int events = POLL_HUP;
3469
3470 /*
3471 * Pin the event->rb by taking event->mmap_mutex; otherwise
3472 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
3473 */
3474 mutex_lock(&event->mmap_mutex);
3475 rb = event->rb;
3476 if (rb)
3477 events = atomic_xchg(&rb->poll, 0);
3478 mutex_unlock(&event->mmap_mutex);
3479
3480 poll_wait(file, &event->waitq, wait);
3481
3482 return events;
3483 }
3484
3485 static void perf_event_reset(struct perf_event *event)
3486 {
3487 (void)perf_event_read(event);
3488 local64_set(&event->count, 0);
3489 perf_event_update_userpage(event);
3490 }
3491
3492 /*
3493 * Holding the top-level event's child_mutex means that any
3494 * descendant process that has inherited this event will block
3495 * in sync_child_event if it goes to exit, thus satisfying the
3496 * task existence requirements of perf_event_enable/disable.
3497 */
3498 static void perf_event_for_each_child(struct perf_event *event,
3499 void (*func)(struct perf_event *))
3500 {
3501 struct perf_event *child;
3502
3503 WARN_ON_ONCE(event->ctx->parent_ctx);
3504 mutex_lock(&event->child_mutex);
3505 func(event);
3506 list_for_each_entry(child, &event->child_list, child_list)
3507 func(child);
3508 mutex_unlock(&event->child_mutex);
3509 }
3510
3511 static void perf_event_for_each(struct perf_event *event,
3512 void (*func)(struct perf_event *))
3513 {
3514 struct perf_event_context *ctx = event->ctx;
3515 struct perf_event *sibling;
3516
3517 WARN_ON_ONCE(ctx->parent_ctx);
3518 mutex_lock(&ctx->mutex);
3519 event = event->group_leader;
3520
3521 perf_event_for_each_child(event, func);
3522 list_for_each_entry(sibling, &event->sibling_list, group_entry)
3523 perf_event_for_each_child(sibling, func);
3524 mutex_unlock(&ctx->mutex);
3525 }
3526
3527 static int perf_event_period(struct perf_event *event, u64 __user *arg)
3528 {
3529 struct perf_event_context *ctx = event->ctx;
3530 int ret = 0, active;
3531 u64 value;
3532
3533 if (!is_sampling_event(event))
3534 return -EINVAL;
3535
3536 if (copy_from_user(&value, arg, sizeof(value)))
3537 return -EFAULT;
3538
3539 if (!value)
3540 return -EINVAL;
3541
3542 raw_spin_lock_irq(&ctx->lock);
3543 if (event->attr.freq) {
3544 if (value > sysctl_perf_event_sample_rate) {
3545 ret = -EINVAL;
3546 goto unlock;
3547 }
3548
3549 event->attr.sample_freq = value;
3550 } else {
3551 event->attr.sample_period = value;
3552 event->hw.sample_period = value;
3553 }
3554
3555 active = (event->state == PERF_EVENT_STATE_ACTIVE);
3556 if (active) {
3557 perf_pmu_disable(ctx->pmu);
3558 event->pmu->stop(event, PERF_EF_UPDATE);
3559 }
3560
3561 local64_set(&event->hw.period_left, 0);
3562
3563 if (active) {
3564 event->pmu->start(event, PERF_EF_RELOAD);
3565 perf_pmu_enable(ctx->pmu);
3566 }
3567
3568 unlock:
3569 raw_spin_unlock_irq(&ctx->lock);
3570
3571 return ret;
3572 }
3573
3574 static const struct file_operations perf_fops;
3575
3576 static inline int perf_fget_light(int fd, struct fd *p)
3577 {
3578 struct fd f = fdget(fd);
3579 if (!f.file)
3580 return -EBADF;
3581
3582 if (f.file->f_op != &perf_fops) {
3583 fdput(f);
3584 return -EBADF;
3585 }
3586 *p = f;
3587 return 0;
3588 }
3589
3590 static int perf_event_set_output(struct perf_event *event,
3591 struct perf_event *output_event);
3592 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
3593
3594 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
3595 {
3596 struct perf_event *event = file->private_data;
3597 void (*func)(struct perf_event *);
3598 u32 flags = arg;
3599
3600 switch (cmd) {
3601 case PERF_EVENT_IOC_ENABLE:
3602 func = perf_event_enable;
3603 break;
3604 case PERF_EVENT_IOC_DISABLE:
3605 func = perf_event_disable;
3606 break;
3607 case PERF_EVENT_IOC_RESET:
3608 func = perf_event_reset;
3609 break;
3610
3611 case PERF_EVENT_IOC_REFRESH:
3612 return perf_event_refresh(event, arg);
3613
3614 case PERF_EVENT_IOC_PERIOD:
3615 return perf_event_period(event, (u64 __user *)arg);
3616
3617 case PERF_EVENT_IOC_ID:
3618 {
3619 u64 id = primary_event_id(event);
3620
3621 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
3622 return -EFAULT;
3623 return 0;
3624 }
3625
3626 case PERF_EVENT_IOC_SET_OUTPUT:
3627 {
3628 int ret;
3629 if (arg != -1) {
3630 struct perf_event *output_event;
3631 struct fd output;
3632 ret = perf_fget_light(arg, &output);
3633 if (ret)
3634 return ret;
3635 output_event = output.file->private_data;
3636 ret = perf_event_set_output(event, output_event);
3637 fdput(output);
3638 } else {
3639 ret = perf_event_set_output(event, NULL);
3640 }
3641 return ret;
3642 }
3643
3644 case PERF_EVENT_IOC_SET_FILTER:
3645 return perf_event_set_filter(event, (void __user *)arg);
3646
3647 default:
3648 return -ENOTTY;
3649 }
3650
3651 if (flags & PERF_IOC_FLAG_GROUP)
3652 perf_event_for_each(event, func);
3653 else
3654 perf_event_for_each_child(event, func);
3655
3656 return 0;
3657 }
3658
3659 int perf_event_task_enable(void)
3660 {
3661 struct perf_event *event;
3662
3663 mutex_lock(&current->perf_event_mutex);
3664 list_for_each_entry(event, &current->perf_event_list, owner_entry)
3665 perf_event_for_each_child(event, perf_event_enable);
3666 mutex_unlock(&current->perf_event_mutex);
3667
3668 return 0;
3669 }
3670
3671 int perf_event_task_disable(void)
3672 {
3673 struct perf_event *event;
3674
3675 mutex_lock(&current->perf_event_mutex);
3676 list_for_each_entry(event, &current->perf_event_list, owner_entry)
3677 perf_event_for_each_child(event, perf_event_disable);
3678 mutex_unlock(&current->perf_event_mutex);
3679
3680 return 0;
3681 }
3682
3683 static int perf_event_index(struct perf_event *event)
3684 {
3685 if (event->hw.state & PERF_HES_STOPPED)
3686 return 0;
3687
3688 if (event->state != PERF_EVENT_STATE_ACTIVE)
3689 return 0;
3690
3691 return event->pmu->event_idx(event);
3692 }
3693
3694 static void calc_timer_values(struct perf_event *event,
3695 u64 *now,
3696 u64 *enabled,
3697 u64 *running)
3698 {
3699 u64 ctx_time;
3700
3701 *now = perf_clock();
3702 ctx_time = event->shadow_ctx_time + *now;
3703 *enabled = ctx_time - event->tstamp_enabled;
3704 *running = ctx_time - event->tstamp_running;
3705 }
3706
3707 static void perf_event_init_userpage(struct perf_event *event)
3708 {
3709 struct perf_event_mmap_page *userpg;
3710 struct ring_buffer *rb;
3711
3712 rcu_read_lock();
3713 rb = rcu_dereference(event->rb);
3714 if (!rb)
3715 goto unlock;
3716
3717 userpg = rb->user_page;
3718
3719 /* Allow new userspace to detect that bit 0 is deprecated */
3720 userpg->cap_bit0_is_deprecated = 1;
3721 userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
3722
3723 unlock:
3724 rcu_read_unlock();
3725 }
3726
3727 void __weak arch_perf_update_userpage(struct perf_event_mmap_page *userpg, u64 now)
3728 {
3729 }
3730
3731 /*
3732 * Callers need to ensure there can be no nesting of this function, otherwise
3733 * the seqlock logic goes bad. We can not serialize this because the arch
3734 * code calls this from NMI context.
3735 */
3736 void perf_event_update_userpage(struct perf_event *event)
3737 {
3738 struct perf_event_mmap_page *userpg;
3739 struct ring_buffer *rb;
3740 u64 enabled, running, now;
3741
3742 rcu_read_lock();
3743 rb = rcu_dereference(event->rb);
3744 if (!rb)
3745 goto unlock;
3746
3747 /*
3748 * compute total_time_enabled, total_time_running
3749 * based on snapshot values taken when the event
3750 * was last scheduled in.
3751 *
3752 * we cannot simply called update_context_time()
3753 * because of locking issue as we can be called in
3754 * NMI context
3755 */
3756 calc_timer_values(event, &now, &enabled, &running);
3757
3758 userpg = rb->user_page;
3759 /*
3760 * Disable preemption so as to not let the corresponding user-space
3761 * spin too long if we get preempted.
3762 */
3763 preempt_disable();
3764 ++userpg->lock;
3765 barrier();
3766 userpg->index = perf_event_index(event);
3767 userpg->offset = perf_event_count(event);
3768 if (userpg->index)
3769 userpg->offset -= local64_read(&event->hw.prev_count);
3770
3771 userpg->time_enabled = enabled +
3772 atomic64_read(&event->child_total_time_enabled);
3773
3774 userpg->time_running = running +
3775 atomic64_read(&event->child_total_time_running);
3776
3777 arch_perf_update_userpage(userpg, now);
3778
3779 barrier();
3780 ++userpg->lock;
3781 preempt_enable();
3782 unlock:
3783 rcu_read_unlock();
3784 }
3785
3786 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
3787 {
3788 struct perf_event *event = vma->vm_file->private_data;
3789 struct ring_buffer *rb;
3790 int ret = VM_FAULT_SIGBUS;
3791
3792 if (vmf->flags & FAULT_FLAG_MKWRITE) {
3793 if (vmf->pgoff == 0)
3794 ret = 0;
3795 return ret;
3796 }
3797
3798 rcu_read_lock();
3799 rb = rcu_dereference(event->rb);
3800 if (!rb)
3801 goto unlock;
3802
3803 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
3804 goto unlock;
3805
3806 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
3807 if (!vmf->page)
3808 goto unlock;
3809
3810 get_page(vmf->page);
3811 vmf->page->mapping = vma->vm_file->f_mapping;
3812 vmf->page->index = vmf->pgoff;
3813
3814 ret = 0;
3815 unlock:
3816 rcu_read_unlock();
3817
3818 return ret;
3819 }
3820
3821 static void ring_buffer_attach(struct perf_event *event,
3822 struct ring_buffer *rb)
3823 {
3824 unsigned long flags;
3825
3826 if (!list_empty(&event->rb_entry))
3827 return;
3828
3829 spin_lock_irqsave(&rb->event_lock, flags);
3830 if (list_empty(&event->rb_entry))
3831 list_add(&event->rb_entry, &rb->event_list);
3832 spin_unlock_irqrestore(&rb->event_lock, flags);
3833 }
3834
3835 static void ring_buffer_detach(struct perf_event *event, struct ring_buffer *rb)
3836 {
3837 unsigned long flags;
3838
3839 if (list_empty(&event->rb_entry))
3840 return;
3841
3842 spin_lock_irqsave(&rb->event_lock, flags);
3843 list_del_init(&event->rb_entry);
3844 wake_up_all(&event->waitq);
3845 spin_unlock_irqrestore(&rb->event_lock, flags);
3846 }
3847
3848 static void ring_buffer_wakeup(struct perf_event *event)
3849 {
3850 struct ring_buffer *rb;
3851
3852 rcu_read_lock();
3853 rb = rcu_dereference(event->rb);
3854 if (rb) {
3855 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
3856 wake_up_all(&event->waitq);
3857 }
3858 rcu_read_unlock();
3859 }
3860
3861 static void rb_free_rcu(struct rcu_head *rcu_head)
3862 {
3863 struct ring_buffer *rb;
3864
3865 rb = container_of(rcu_head, struct ring_buffer, rcu_head);
3866 rb_free(rb);
3867 }
3868
3869 static struct ring_buffer *ring_buffer_get(struct perf_event *event)
3870 {
3871 struct ring_buffer *rb;
3872
3873 rcu_read_lock();
3874 rb = rcu_dereference(event->rb);
3875 if (rb) {
3876 if (!atomic_inc_not_zero(&rb->refcount))
3877 rb = NULL;
3878 }
3879 rcu_read_unlock();
3880
3881 return rb;
3882 }
3883
3884 static void ring_buffer_put(struct ring_buffer *rb)
3885 {
3886 if (!atomic_dec_and_test(&rb->refcount))
3887 return;
3888
3889 WARN_ON_ONCE(!list_empty(&rb->event_list));
3890
3891 call_rcu(&rb->rcu_head, rb_free_rcu);
3892 }
3893
3894 static void perf_mmap_open(struct vm_area_struct *vma)
3895 {
3896 struct perf_event *event = vma->vm_file->private_data;
3897
3898 atomic_inc(&event->mmap_count);
3899 atomic_inc(&event->rb->mmap_count);
3900 }
3901
3902 /*
3903 * A buffer can be mmap()ed multiple times; either directly through the same
3904 * event, or through other events by use of perf_event_set_output().
3905 *
3906 * In order to undo the VM accounting done by perf_mmap() we need to destroy
3907 * the buffer here, where we still have a VM context. This means we need
3908 * to detach all events redirecting to us.
3909 */
3910 static void perf_mmap_close(struct vm_area_struct *vma)
3911 {
3912 struct perf_event *event = vma->vm_file->private_data;
3913
3914 struct ring_buffer *rb = event->rb;
3915 struct user_struct *mmap_user = rb->mmap_user;
3916 int mmap_locked = rb->mmap_locked;
3917 unsigned long size = perf_data_size(rb);
3918
3919 atomic_dec(&rb->mmap_count);
3920
3921 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
3922 return;
3923
3924 /* Detach current event from the buffer. */
3925 rcu_assign_pointer(event->rb, NULL);
3926 ring_buffer_detach(event, rb);
3927 mutex_unlock(&event->mmap_mutex);
3928
3929 /* If there's still other mmap()s of this buffer, we're done. */
3930 if (atomic_read(&rb->mmap_count)) {
3931 ring_buffer_put(rb); /* can't be last */
3932 return;
3933 }
3934
3935 /*
3936 * No other mmap()s, detach from all other events that might redirect
3937 * into the now unreachable buffer. Somewhat complicated by the
3938 * fact that rb::event_lock otherwise nests inside mmap_mutex.
3939 */
3940 again:
3941 rcu_read_lock();
3942 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
3943 if (!atomic_long_inc_not_zero(&event->refcount)) {
3944 /*
3945 * This event is en-route to free_event() which will
3946 * detach it and remove it from the list.
3947 */
3948 continue;
3949 }
3950 rcu_read_unlock();
3951
3952 mutex_lock(&event->mmap_mutex);
3953 /*
3954 * Check we didn't race with perf_event_set_output() which can
3955 * swizzle the rb from under us while we were waiting to
3956 * acquire mmap_mutex.
3957 *
3958 * If we find a different rb; ignore this event, a next
3959 * iteration will no longer find it on the list. We have to
3960 * still restart the iteration to make sure we're not now
3961 * iterating the wrong list.
3962 */
3963 if (event->rb == rb) {
3964 rcu_assign_pointer(event->rb, NULL);
3965 ring_buffer_detach(event, rb);
3966 ring_buffer_put(rb); /* can't be last, we still have one */
3967 }
3968 mutex_unlock(&event->mmap_mutex);
3969 put_event(event);
3970
3971 /*
3972 * Restart the iteration; either we're on the wrong list or
3973 * destroyed its integrity by doing a deletion.
3974 */
3975 goto again;
3976 }
3977 rcu_read_unlock();
3978
3979 /*
3980 * It could be there's still a few 0-ref events on the list; they'll
3981 * get cleaned up by free_event() -- they'll also still have their
3982 * ref on the rb and will free it whenever they are done with it.
3983 *
3984 * Aside from that, this buffer is 'fully' detached and unmapped,
3985 * undo the VM accounting.
3986 */
3987
3988 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
3989 vma->vm_mm->pinned_vm -= mmap_locked;
3990 free_uid(mmap_user);
3991
3992 ring_buffer_put(rb); /* could be last */
3993 }
3994
3995 static const struct vm_operations_struct perf_mmap_vmops = {
3996 .open = perf_mmap_open,
3997 .close = perf_mmap_close,
3998 .fault = perf_mmap_fault,
3999 .page_mkwrite = perf_mmap_fault,
4000 };
4001
4002 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
4003 {
4004 struct perf_event *event = file->private_data;
4005 unsigned long user_locked, user_lock_limit;
4006 struct user_struct *user = current_user();
4007 unsigned long locked, lock_limit;
4008 struct ring_buffer *rb;
4009 unsigned long vma_size;
4010 unsigned long nr_pages;
4011 long user_extra, extra;
4012 int ret = 0, flags = 0;
4013
4014 /*
4015 * Don't allow mmap() of inherited per-task counters. This would
4016 * create a performance issue due to all children writing to the
4017 * same rb.
4018 */
4019 if (event->cpu == -1 && event->attr.inherit)
4020 return -EINVAL;
4021
4022 if (!(vma->vm_flags & VM_SHARED))
4023 return -EINVAL;
4024
4025 vma_size = vma->vm_end - vma->vm_start;
4026 nr_pages = (vma_size / PAGE_SIZE) - 1;
4027
4028 /*
4029 * If we have rb pages ensure they're a power-of-two number, so we
4030 * can do bitmasks instead of modulo.
4031 */
4032 if (nr_pages != 0 && !is_power_of_2(nr_pages))
4033 return -EINVAL;
4034
4035 if (vma_size != PAGE_SIZE * (1 + nr_pages))
4036 return -EINVAL;
4037
4038 if (vma->vm_pgoff != 0)
4039 return -EINVAL;
4040
4041 WARN_ON_ONCE(event->ctx->parent_ctx);
4042 again:
4043 mutex_lock(&event->mmap_mutex);
4044 if (event->rb) {
4045 if (event->rb->nr_pages != nr_pages) {
4046 ret = -EINVAL;
4047 goto unlock;
4048 }
4049
4050 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
4051 /*
4052 * Raced against perf_mmap_close() through
4053 * perf_event_set_output(). Try again, hope for better
4054 * luck.
4055 */
4056 mutex_unlock(&event->mmap_mutex);
4057 goto again;
4058 }
4059
4060 goto unlock;
4061 }
4062
4063 user_extra = nr_pages + 1;
4064 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
4065
4066 /*
4067 * Increase the limit linearly with more CPUs:
4068 */
4069 user_lock_limit *= num_online_cpus();
4070
4071 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
4072
4073 extra = 0;
4074 if (user_locked > user_lock_limit)
4075 extra = user_locked - user_lock_limit;
4076
4077 lock_limit = rlimit(RLIMIT_MEMLOCK);
4078 lock_limit >>= PAGE_SHIFT;
4079 locked = vma->vm_mm->pinned_vm + extra;
4080
4081 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
4082 !capable(CAP_IPC_LOCK)) {
4083 ret = -EPERM;
4084 goto unlock;
4085 }
4086
4087 WARN_ON(event->rb);
4088
4089 if (vma->vm_flags & VM_WRITE)
4090 flags |= RING_BUFFER_WRITABLE;
4091
4092 rb = rb_alloc(nr_pages,
4093 event->attr.watermark ? event->attr.wakeup_watermark : 0,
4094 event->cpu, flags);
4095
4096 if (!rb) {
4097 ret = -ENOMEM;
4098 goto unlock;
4099 }
4100
4101 atomic_set(&rb->mmap_count, 1);
4102 rb->mmap_locked = extra;
4103 rb->mmap_user = get_current_user();
4104
4105 atomic_long_add(user_extra, &user->locked_vm);
4106 vma->vm_mm->pinned_vm += extra;
4107
4108 ring_buffer_attach(event, rb);
4109 rcu_assign_pointer(event->rb, rb);
4110
4111 perf_event_init_userpage(event);
4112 perf_event_update_userpage(event);
4113
4114 unlock:
4115 if (!ret)
4116 atomic_inc(&event->mmap_count);
4117 mutex_unlock(&event->mmap_mutex);
4118
4119 /*
4120 * Since pinned accounting is per vm we cannot allow fork() to copy our
4121 * vma.
4122 */
4123 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
4124 vma->vm_ops = &perf_mmap_vmops;
4125
4126 return ret;
4127 }
4128
4129 static int perf_fasync(int fd, struct file *filp, int on)
4130 {
4131 struct inode *inode = file_inode(filp);
4132 struct perf_event *event = filp->private_data;
4133 int retval;
4134
4135 mutex_lock(&inode->i_mutex);
4136 retval = fasync_helper(fd, filp, on, &event->fasync);
4137 mutex_unlock(&inode->i_mutex);
4138
4139 if (retval < 0)
4140 return retval;
4141
4142 return 0;
4143 }
4144
4145 static const struct file_operations perf_fops = {
4146 .llseek = no_llseek,
4147 .release = perf_release,
4148 .read = perf_read,
4149 .poll = perf_poll,
4150 .unlocked_ioctl = perf_ioctl,
4151 .compat_ioctl = perf_ioctl,
4152 .mmap = perf_mmap,
4153 .fasync = perf_fasync,
4154 };
4155
4156 /*
4157 * Perf event wakeup
4158 *
4159 * If there's data, ensure we set the poll() state and publish everything
4160 * to user-space before waking everybody up.
4161 */
4162
4163 void perf_event_wakeup(struct perf_event *event)
4164 {
4165 ring_buffer_wakeup(event);
4166
4167 if (event->pending_kill) {
4168 kill_fasync(&event->fasync, SIGIO, event->pending_kill);
4169 event->pending_kill = 0;
4170 }
4171 }
4172
4173 static void perf_pending_event(struct irq_work *entry)
4174 {
4175 struct perf_event *event = container_of(entry,
4176 struct perf_event, pending);
4177
4178 if (event->pending_disable) {
4179 event->pending_disable = 0;
4180 __perf_event_disable(event);
4181 }
4182
4183 if (event->pending_wakeup) {
4184 event->pending_wakeup = 0;
4185 perf_event_wakeup(event);
4186 }
4187 }
4188
4189 /*
4190 * We assume there is only KVM supporting the callbacks.
4191 * Later on, we might change it to a list if there is
4192 * another virtualization implementation supporting the callbacks.
4193 */
4194 struct perf_guest_info_callbacks *perf_guest_cbs;
4195
4196 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4197 {
4198 perf_guest_cbs = cbs;
4199 return 0;
4200 }
4201 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
4202
4203 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4204 {
4205 perf_guest_cbs = NULL;
4206 return 0;
4207 }
4208 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
4209
4210 static void
4211 perf_output_sample_regs(struct perf_output_handle *handle,
4212 struct pt_regs *regs, u64 mask)
4213 {
4214 int bit;
4215
4216 for_each_set_bit(bit, (const unsigned long *) &mask,
4217 sizeof(mask) * BITS_PER_BYTE) {
4218 u64 val;
4219
4220 val = perf_reg_value(regs, bit);
4221 perf_output_put(handle, val);
4222 }
4223 }
4224
4225 static void perf_sample_regs_user(struct perf_regs_user *regs_user,
4226 struct pt_regs *regs)
4227 {
4228 if (!user_mode(regs)) {
4229 if (current->mm)
4230 regs = task_pt_regs(current);
4231 else
4232 regs = NULL;
4233 }
4234
4235 if (regs) {
4236 regs_user->regs = regs;
4237 regs_user->abi = perf_reg_abi(current);
4238 }
4239 }
4240
4241 /*
4242 * Get remaining task size from user stack pointer.
4243 *
4244 * It'd be better to take stack vma map and limit this more
4245 * precisly, but there's no way to get it safely under interrupt,
4246 * so using TASK_SIZE as limit.
4247 */
4248 static u64 perf_ustack_task_size(struct pt_regs *regs)
4249 {
4250 unsigned long addr = perf_user_stack_pointer(regs);
4251
4252 if (!addr || addr >= TASK_SIZE)
4253 return 0;
4254
4255 return TASK_SIZE - addr;
4256 }
4257
4258 static u16
4259 perf_sample_ustack_size(u16 stack_size, u16 header_size,
4260 struct pt_regs *regs)
4261 {
4262 u64 task_size;
4263
4264 /* No regs, no stack pointer, no dump. */
4265 if (!regs)
4266 return 0;
4267
4268 /*
4269 * Check if we fit in with the requested stack size into the:
4270 * - TASK_SIZE
4271 * If we don't, we limit the size to the TASK_SIZE.
4272 *
4273 * - remaining sample size
4274 * If we don't, we customize the stack size to
4275 * fit in to the remaining sample size.
4276 */
4277
4278 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
4279 stack_size = min(stack_size, (u16) task_size);
4280
4281 /* Current header size plus static size and dynamic size. */
4282 header_size += 2 * sizeof(u64);
4283
4284 /* Do we fit in with the current stack dump size? */
4285 if ((u16) (header_size + stack_size) < header_size) {
4286 /*
4287 * If we overflow the maximum size for the sample,
4288 * we customize the stack dump size to fit in.
4289 */
4290 stack_size = USHRT_MAX - header_size - sizeof(u64);
4291 stack_size = round_up(stack_size, sizeof(u64));
4292 }
4293
4294 return stack_size;
4295 }
4296
4297 static void
4298 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
4299 struct pt_regs *regs)
4300 {
4301 /* Case of a kernel thread, nothing to dump */
4302 if (!regs) {
4303 u64 size = 0;
4304 perf_output_put(handle, size);
4305 } else {
4306 unsigned long sp;
4307 unsigned int rem;
4308 u64 dyn_size;
4309
4310 /*
4311 * We dump:
4312 * static size
4313 * - the size requested by user or the best one we can fit
4314 * in to the sample max size
4315 * data
4316 * - user stack dump data
4317 * dynamic size
4318 * - the actual dumped size
4319 */
4320
4321 /* Static size. */
4322 perf_output_put(handle, dump_size);
4323
4324 /* Data. */
4325 sp = perf_user_stack_pointer(regs);
4326 rem = __output_copy_user(handle, (void *) sp, dump_size);
4327 dyn_size = dump_size - rem;
4328
4329 perf_output_skip(handle, rem);
4330
4331 /* Dynamic size. */
4332 perf_output_put(handle, dyn_size);
4333 }
4334 }
4335
4336 static void __perf_event_header__init_id(struct perf_event_header *header,
4337 struct perf_sample_data *data,
4338 struct perf_event *event)
4339 {
4340 u64 sample_type = event->attr.sample_type;
4341
4342 data->type = sample_type;
4343 header->size += event->id_header_size;
4344
4345 if (sample_type & PERF_SAMPLE_TID) {
4346 /* namespace issues */
4347 data->tid_entry.pid = perf_event_pid(event, current);
4348 data->tid_entry.tid = perf_event_tid(event, current);
4349 }
4350
4351 if (sample_type & PERF_SAMPLE_TIME)
4352 data->time = perf_clock();
4353
4354 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
4355 data->id = primary_event_id(event);
4356
4357 if (sample_type & PERF_SAMPLE_STREAM_ID)
4358 data->stream_id = event->id;
4359
4360 if (sample_type & PERF_SAMPLE_CPU) {
4361 data->cpu_entry.cpu = raw_smp_processor_id();
4362 data->cpu_entry.reserved = 0;
4363 }
4364 }
4365
4366 void perf_event_header__init_id(struct perf_event_header *header,
4367 struct perf_sample_data *data,
4368 struct perf_event *event)
4369 {
4370 if (event->attr.sample_id_all)
4371 __perf_event_header__init_id(header, data, event);
4372 }
4373
4374 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
4375 struct perf_sample_data *data)
4376 {
4377 u64 sample_type = data->type;
4378
4379 if (sample_type & PERF_SAMPLE_TID)
4380 perf_output_put(handle, data->tid_entry);
4381
4382 if (sample_type & PERF_SAMPLE_TIME)
4383 perf_output_put(handle, data->time);
4384
4385 if (sample_type & PERF_SAMPLE_ID)
4386 perf_output_put(handle, data->id);
4387
4388 if (sample_type & PERF_SAMPLE_STREAM_ID)
4389 perf_output_put(handle, data->stream_id);
4390
4391 if (sample_type & PERF_SAMPLE_CPU)
4392 perf_output_put(handle, data->cpu_entry);
4393
4394 if (sample_type & PERF_SAMPLE_IDENTIFIER)
4395 perf_output_put(handle, data->id);
4396 }
4397
4398 void perf_event__output_id_sample(struct perf_event *event,
4399 struct perf_output_handle *handle,
4400 struct perf_sample_data *sample)
4401 {
4402 if (event->attr.sample_id_all)
4403 __perf_event__output_id_sample(handle, sample);
4404 }
4405
4406 static void perf_output_read_one(struct perf_output_handle *handle,
4407 struct perf_event *event,
4408 u64 enabled, u64 running)
4409 {
4410 u64 read_format = event->attr.read_format;
4411 u64 values[4];
4412 int n = 0;
4413
4414 values[n++] = perf_event_count(event);
4415 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4416 values[n++] = enabled +
4417 atomic64_read(&event->child_total_time_enabled);
4418 }
4419 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4420 values[n++] = running +
4421 atomic64_read(&event->child_total_time_running);
4422 }
4423 if (read_format & PERF_FORMAT_ID)
4424 values[n++] = primary_event_id(event);
4425
4426 __output_copy(handle, values, n * sizeof(u64));
4427 }
4428
4429 /*
4430 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
4431 */
4432 static void perf_output_read_group(struct perf_output_handle *handle,
4433 struct perf_event *event,
4434 u64 enabled, u64 running)
4435 {
4436 struct perf_event *leader = event->group_leader, *sub;
4437 u64 read_format = event->attr.read_format;
4438 u64 values[5];
4439 int n = 0;
4440
4441 values[n++] = 1 + leader->nr_siblings;
4442
4443 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4444 values[n++] = enabled;
4445
4446 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4447 values[n++] = running;
4448
4449 if (leader != event)
4450 leader->pmu->read(leader);
4451
4452 values[n++] = perf_event_count(leader);
4453 if (read_format & PERF_FORMAT_ID)
4454 values[n++] = primary_event_id(leader);
4455
4456 __output_copy(handle, values, n * sizeof(u64));
4457
4458 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4459 n = 0;
4460
4461 if ((sub != event) &&
4462 (sub->state == PERF_EVENT_STATE_ACTIVE))
4463 sub->pmu->read(sub);
4464
4465 values[n++] = perf_event_count(sub);
4466 if (read_format & PERF_FORMAT_ID)
4467 values[n++] = primary_event_id(sub);
4468
4469 __output_copy(handle, values, n * sizeof(u64));
4470 }
4471 }
4472
4473 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
4474 PERF_FORMAT_TOTAL_TIME_RUNNING)
4475
4476 static void perf_output_read(struct perf_output_handle *handle,
4477 struct perf_event *event)
4478 {
4479 u64 enabled = 0, running = 0, now;
4480 u64 read_format = event->attr.read_format;
4481
4482 /*
4483 * compute total_time_enabled, total_time_running
4484 * based on snapshot values taken when the event
4485 * was last scheduled in.
4486 *
4487 * we cannot simply called update_context_time()
4488 * because of locking issue as we are called in
4489 * NMI context
4490 */
4491 if (read_format & PERF_FORMAT_TOTAL_TIMES)
4492 calc_timer_values(event, &now, &enabled, &running);
4493
4494 if (event->attr.read_format & PERF_FORMAT_GROUP)
4495 perf_output_read_group(handle, event, enabled, running);
4496 else
4497 perf_output_read_one(handle, event, enabled, running);
4498 }
4499
4500 void perf_output_sample(struct perf_output_handle *handle,
4501 struct perf_event_header *header,
4502 struct perf_sample_data *data,
4503 struct perf_event *event)
4504 {
4505 u64 sample_type = data->type;
4506
4507 perf_output_put(handle, *header);
4508
4509 if (sample_type & PERF_SAMPLE_IDENTIFIER)
4510 perf_output_put(handle, data->id);
4511
4512 if (sample_type & PERF_SAMPLE_IP)
4513 perf_output_put(handle, data->ip);
4514
4515 if (sample_type & PERF_SAMPLE_TID)
4516 perf_output_put(handle, data->tid_entry);
4517
4518 if (sample_type & PERF_SAMPLE_TIME)
4519 perf_output_put(handle, data->time);
4520
4521 if (sample_type & PERF_SAMPLE_ADDR)
4522 perf_output_put(handle, data->addr);
4523
4524 if (sample_type & PERF_SAMPLE_ID)
4525 perf_output_put(handle, data->id);
4526
4527 if (sample_type & PERF_SAMPLE_STREAM_ID)
4528 perf_output_put(handle, data->stream_id);
4529
4530 if (sample_type & PERF_SAMPLE_CPU)
4531 perf_output_put(handle, data->cpu_entry);
4532
4533 if (sample_type & PERF_SAMPLE_PERIOD)
4534 perf_output_put(handle, data->period);
4535
4536 if (sample_type & PERF_SAMPLE_READ)
4537 perf_output_read(handle, event);
4538
4539 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
4540 if (data->callchain) {
4541 int size = 1;
4542
4543 if (data->callchain)
4544 size += data->callchain->nr;
4545
4546 size *= sizeof(u64);
4547
4548 __output_copy(handle, data->callchain, size);
4549 } else {
4550 u64 nr = 0;
4551 perf_output_put(handle, nr);
4552 }
4553 }
4554
4555 if (sample_type & PERF_SAMPLE_RAW) {
4556 if (data->raw) {
4557 perf_output_put(handle, data->raw->size);
4558 __output_copy(handle, data->raw->data,
4559 data->raw->size);
4560 } else {
4561 struct {
4562 u32 size;
4563 u32 data;
4564 } raw = {
4565 .size = sizeof(u32),
4566 .data = 0,
4567 };
4568 perf_output_put(handle, raw);
4569 }
4570 }
4571
4572 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
4573 if (data->br_stack) {
4574 size_t size;
4575
4576 size = data->br_stack->nr
4577 * sizeof(struct perf_branch_entry);
4578
4579 perf_output_put(handle, data->br_stack->nr);
4580 perf_output_copy(handle, data->br_stack->entries, size);
4581 } else {
4582 /*
4583 * we always store at least the value of nr
4584 */
4585 u64 nr = 0;
4586 perf_output_put(handle, nr);
4587 }
4588 }
4589
4590 if (sample_type & PERF_SAMPLE_REGS_USER) {
4591 u64 abi = data->regs_user.abi;
4592
4593 /*
4594 * If there are no regs to dump, notice it through
4595 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
4596 */
4597 perf_output_put(handle, abi);
4598
4599 if (abi) {
4600 u64 mask = event->attr.sample_regs_user;
4601 perf_output_sample_regs(handle,
4602 data->regs_user.regs,
4603 mask);
4604 }
4605 }
4606
4607 if (sample_type & PERF_SAMPLE_STACK_USER) {
4608 perf_output_sample_ustack(handle,
4609 data->stack_user_size,
4610 data->regs_user.regs);
4611 }
4612
4613 if (sample_type & PERF_SAMPLE_WEIGHT)
4614 perf_output_put(handle, data->weight);
4615
4616 if (sample_type & PERF_SAMPLE_DATA_SRC)
4617 perf_output_put(handle, data->data_src.val);
4618
4619 if (sample_type & PERF_SAMPLE_TRANSACTION)
4620 perf_output_put(handle, data->txn);
4621
4622 if (!event->attr.watermark) {
4623 int wakeup_events = event->attr.wakeup_events;
4624
4625 if (wakeup_events) {
4626 struct ring_buffer *rb = handle->rb;
4627 int events = local_inc_return(&rb->events);
4628
4629 if (events >= wakeup_events) {
4630 local_sub(wakeup_events, &rb->events);
4631 local_inc(&rb->wakeup);
4632 }
4633 }
4634 }
4635 }
4636
4637 void perf_prepare_sample(struct perf_event_header *header,
4638 struct perf_sample_data *data,
4639 struct perf_event *event,
4640 struct pt_regs *regs)
4641 {
4642 u64 sample_type = event->attr.sample_type;
4643
4644 header->type = PERF_RECORD_SAMPLE;
4645 header->size = sizeof(*header) + event->header_size;
4646
4647 header->misc = 0;
4648 header->misc |= perf_misc_flags(regs);
4649
4650 __perf_event_header__init_id(header, data, event);
4651
4652 if (sample_type & PERF_SAMPLE_IP)
4653 data->ip = perf_instruction_pointer(regs);
4654
4655 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
4656 int size = 1;
4657
4658 data->callchain = perf_callchain(event, regs);
4659
4660 if (data->callchain)
4661 size += data->callchain->nr;
4662
4663 header->size += size * sizeof(u64);
4664 }
4665
4666 if (sample_type & PERF_SAMPLE_RAW) {
4667 int size = sizeof(u32);
4668
4669 if (data->raw)
4670 size += data->raw->size;
4671 else
4672 size += sizeof(u32);
4673
4674 WARN_ON_ONCE(size & (sizeof(u64)-1));
4675 header->size += size;
4676 }
4677
4678 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
4679 int size = sizeof(u64); /* nr */
4680 if (data->br_stack) {
4681 size += data->br_stack->nr
4682 * sizeof(struct perf_branch_entry);
4683 }
4684 header->size += size;
4685 }
4686
4687 if (sample_type & PERF_SAMPLE_REGS_USER) {
4688 /* regs dump ABI info */
4689 int size = sizeof(u64);
4690
4691 perf_sample_regs_user(&data->regs_user, regs);
4692
4693 if (data->regs_user.regs) {
4694 u64 mask = event->attr.sample_regs_user;
4695 size += hweight64(mask) * sizeof(u64);
4696 }
4697
4698 header->size += size;
4699 }
4700
4701 if (sample_type & PERF_SAMPLE_STACK_USER) {
4702 /*
4703 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
4704 * processed as the last one or have additional check added
4705 * in case new sample type is added, because we could eat
4706 * up the rest of the sample size.
4707 */
4708 struct perf_regs_user *uregs = &data->regs_user;
4709 u16 stack_size = event->attr.sample_stack_user;
4710 u16 size = sizeof(u64);
4711
4712 if (!uregs->abi)
4713 perf_sample_regs_user(uregs, regs);
4714
4715 stack_size = perf_sample_ustack_size(stack_size, header->size,
4716 uregs->regs);
4717
4718 /*
4719 * If there is something to dump, add space for the dump
4720 * itself and for the field that tells the dynamic size,
4721 * which is how many have been actually dumped.
4722 */
4723 if (stack_size)
4724 size += sizeof(u64) + stack_size;
4725
4726 data->stack_user_size = stack_size;
4727 header->size += size;
4728 }
4729 }
4730
4731 static void perf_event_output(struct perf_event *event,
4732 struct perf_sample_data *data,
4733 struct pt_regs *regs)
4734 {
4735 struct perf_output_handle handle;
4736 struct perf_event_header header;
4737
4738 /* protect the callchain buffers */
4739 rcu_read_lock();
4740
4741 perf_prepare_sample(&header, data, event, regs);
4742
4743 if (perf_output_begin(&handle, event, header.size))
4744 goto exit;
4745
4746 perf_output_sample(&handle, &header, data, event);
4747
4748 perf_output_end(&handle);
4749
4750 exit:
4751 rcu_read_unlock();
4752 }
4753
4754 /*
4755 * read event_id
4756 */
4757
4758 struct perf_read_event {
4759 struct perf_event_header header;
4760
4761 u32 pid;
4762 u32 tid;
4763 };
4764
4765 static void
4766 perf_event_read_event(struct perf_event *event,
4767 struct task_struct *task)
4768 {
4769 struct perf_output_handle handle;
4770 struct perf_sample_data sample;
4771 struct perf_read_event read_event = {
4772 .header = {
4773 .type = PERF_RECORD_READ,
4774 .misc = 0,
4775 .size = sizeof(read_event) + event->read_size,
4776 },
4777 .pid = perf_event_pid(event, task),
4778 .tid = perf_event_tid(event, task),
4779 };
4780 int ret;
4781
4782 perf_event_header__init_id(&read_event.header, &sample, event);
4783 ret = perf_output_begin(&handle, event, read_event.header.size);
4784 if (ret)
4785 return;
4786
4787 perf_output_put(&handle, read_event);
4788 perf_output_read(&handle, event);
4789 perf_event__output_id_sample(event, &handle, &sample);
4790
4791 perf_output_end(&handle);
4792 }
4793
4794 typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);
4795
4796 static void
4797 perf_event_aux_ctx(struct perf_event_context *ctx,
4798 perf_event_aux_output_cb output,
4799 void *data)
4800 {
4801 struct perf_event *event;
4802
4803 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4804 if (event->state < PERF_EVENT_STATE_INACTIVE)
4805 continue;
4806 if (!event_filter_match(event))
4807 continue;
4808 output(event, data);
4809 }
4810 }
4811
4812 static void
4813 perf_event_aux(perf_event_aux_output_cb output, void *data,
4814 struct perf_event_context *task_ctx)
4815 {
4816 struct perf_cpu_context *cpuctx;
4817 struct perf_event_context *ctx;
4818 struct pmu *pmu;
4819 int ctxn;
4820
4821 rcu_read_lock();
4822 list_for_each_entry_rcu(pmu, &pmus, entry) {
4823 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4824 if (cpuctx->unique_pmu != pmu)
4825 goto next;
4826 perf_event_aux_ctx(&cpuctx->ctx, output, data);
4827 if (task_ctx)
4828 goto next;
4829 ctxn = pmu->task_ctx_nr;
4830 if (ctxn < 0)
4831 goto next;
4832 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4833 if (ctx)
4834 perf_event_aux_ctx(ctx, output, data);
4835 next:
4836 put_cpu_ptr(pmu->pmu_cpu_context);
4837 }
4838
4839 if (task_ctx) {
4840 preempt_disable();
4841 perf_event_aux_ctx(task_ctx, output, data);
4842 preempt_enable();
4843 }
4844 rcu_read_unlock();
4845 }
4846
4847 /*
4848 * task tracking -- fork/exit
4849 *
4850 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
4851 */
4852
4853 struct perf_task_event {
4854 struct task_struct *task;
4855 struct perf_event_context *task_ctx;
4856
4857 struct {
4858 struct perf_event_header header;
4859
4860 u32 pid;
4861 u32 ppid;
4862 u32 tid;
4863 u32 ptid;
4864 u64 time;
4865 } event_id;
4866 };
4867
4868 static int perf_event_task_match(struct perf_event *event)
4869 {
4870 return event->attr.comm || event->attr.mmap ||
4871 event->attr.mmap2 || event->attr.mmap_data ||
4872 event->attr.task;
4873 }
4874
4875 static void perf_event_task_output(struct perf_event *event,
4876 void *data)
4877 {
4878 struct perf_task_event *task_event = data;
4879 struct perf_output_handle handle;
4880 struct perf_sample_data sample;
4881 struct task_struct *task = task_event->task;
4882 int ret, size = task_event->event_id.header.size;
4883
4884 if (!perf_event_task_match(event))
4885 return;
4886
4887 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
4888
4889 ret = perf_output_begin(&handle, event,
4890 task_event->event_id.header.size);
4891 if (ret)
4892 goto out;
4893
4894 task_event->event_id.pid = perf_event_pid(event, task);
4895 task_event->event_id.ppid = perf_event_pid(event, current);
4896
4897 task_event->event_id.tid = perf_event_tid(event, task);
4898 task_event->event_id.ptid = perf_event_tid(event, current);
4899
4900 perf_output_put(&handle, task_event->event_id);
4901
4902 perf_event__output_id_sample(event, &handle, &sample);
4903
4904 perf_output_end(&handle);
4905 out:
4906 task_event->event_id.header.size = size;
4907 }
4908
4909 static void perf_event_task(struct task_struct *task,
4910 struct perf_event_context *task_ctx,
4911 int new)
4912 {
4913 struct perf_task_event task_event;
4914
4915 if (!atomic_read(&nr_comm_events) &&
4916 !atomic_read(&nr_mmap_events) &&
4917 !atomic_read(&nr_task_events))
4918 return;
4919
4920 task_event = (struct perf_task_event){
4921 .task = task,
4922 .task_ctx = task_ctx,
4923 .event_id = {
4924 .header = {
4925 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
4926 .misc = 0,
4927 .size = sizeof(task_event.event_id),
4928 },
4929 /* .pid */
4930 /* .ppid */
4931 /* .tid */
4932 /* .ptid */
4933 .time = perf_clock(),
4934 },
4935 };
4936
4937 perf_event_aux(perf_event_task_output,
4938 &task_event,
4939 task_ctx);
4940 }
4941
4942 void perf_event_fork(struct task_struct *task)
4943 {
4944 perf_event_task(task, NULL, 1);
4945 }
4946
4947 /*
4948 * comm tracking
4949 */
4950
4951 struct perf_comm_event {
4952 struct task_struct *task;
4953 char *comm;
4954 int comm_size;
4955
4956 struct {
4957 struct perf_event_header header;
4958
4959 u32 pid;
4960 u32 tid;
4961 } event_id;
4962 };
4963
4964 static int perf_event_comm_match(struct perf_event *event)
4965 {
4966 return event->attr.comm;
4967 }
4968
4969 static void perf_event_comm_output(struct perf_event *event,
4970 void *data)
4971 {
4972 struct perf_comm_event *comm_event = data;
4973 struct perf_output_handle handle;
4974 struct perf_sample_data sample;
4975 int size = comm_event->event_id.header.size;
4976 int ret;
4977
4978 if (!perf_event_comm_match(event))
4979 return;
4980
4981 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
4982 ret = perf_output_begin(&handle, event,
4983 comm_event->event_id.header.size);
4984
4985 if (ret)
4986 goto out;
4987
4988 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
4989 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
4990
4991 perf_output_put(&handle, comm_event->event_id);
4992 __output_copy(&handle, comm_event->comm,
4993 comm_event->comm_size);
4994
4995 perf_event__output_id_sample(event, &handle, &sample);
4996
4997 perf_output_end(&handle);
4998 out:
4999 comm_event->event_id.header.size = size;
5000 }
5001
5002 static void perf_event_comm_event(struct perf_comm_event *comm_event)
5003 {
5004 char comm[TASK_COMM_LEN];
5005 unsigned int size;
5006
5007 memset(comm, 0, sizeof(comm));
5008 strlcpy(comm, comm_event->task->comm, sizeof(comm));
5009 size = ALIGN(strlen(comm)+1, sizeof(u64));
5010
5011 comm_event->comm = comm;
5012 comm_event->comm_size = size;
5013
5014 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
5015
5016 perf_event_aux(perf_event_comm_output,
5017 comm_event,
5018 NULL);
5019 }
5020
5021 void perf_event_comm(struct task_struct *task)
5022 {
5023 struct perf_comm_event comm_event;
5024 struct perf_event_context *ctx;
5025 int ctxn;
5026
5027 rcu_read_lock();
5028 for_each_task_context_nr(ctxn) {
5029 ctx = task->perf_event_ctxp[ctxn];
5030 if (!ctx)
5031 continue;
5032
5033 perf_event_enable_on_exec(ctx);
5034 }
5035 rcu_read_unlock();
5036
5037 if (!atomic_read(&nr_comm_events))
5038 return;
5039
5040 comm_event = (struct perf_comm_event){
5041 .task = task,
5042 /* .comm */
5043 /* .comm_size */
5044 .event_id = {
5045 .header = {
5046 .type = PERF_RECORD_COMM,
5047 .misc = 0,
5048 /* .size */
5049 },
5050 /* .pid */
5051 /* .tid */
5052 },
5053 };
5054
5055 perf_event_comm_event(&comm_event);
5056 }
5057
5058 /*
5059 * mmap tracking
5060 */
5061
5062 struct perf_mmap_event {
5063 struct vm_area_struct *vma;
5064
5065 const char *file_name;
5066 int file_size;
5067 int maj, min;
5068 u64 ino;
5069 u64 ino_generation;
5070
5071 struct {
5072 struct perf_event_header header;
5073
5074 u32 pid;
5075 u32 tid;
5076 u64 start;
5077 u64 len;
5078 u64 pgoff;
5079 } event_id;
5080 };
5081
5082 static int perf_event_mmap_match(struct perf_event *event,
5083 void *data)
5084 {
5085 struct perf_mmap_event *mmap_event = data;
5086 struct vm_area_struct *vma = mmap_event->vma;
5087 int executable = vma->vm_flags & VM_EXEC;
5088
5089 return (!executable && event->attr.mmap_data) ||
5090 (executable && (event->attr.mmap || event->attr.mmap2));
5091 }
5092
5093 static void perf_event_mmap_output(struct perf_event *event,
5094 void *data)
5095 {
5096 struct perf_mmap_event *mmap_event = data;
5097 struct perf_output_handle handle;
5098 struct perf_sample_data sample;
5099 int size = mmap_event->event_id.header.size;
5100 int ret;
5101
5102 if (!perf_event_mmap_match(event, data))
5103 return;
5104
5105 if (event->attr.mmap2) {
5106 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
5107 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
5108 mmap_event->event_id.header.size += sizeof(mmap_event->min);
5109 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
5110 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
5111 }
5112
5113 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
5114 ret = perf_output_begin(&handle, event,
5115 mmap_event->event_id.header.size);
5116 if (ret)
5117 goto out;
5118
5119 mmap_event->event_id.pid = perf_event_pid(event, current);
5120 mmap_event->event_id.tid = perf_event_tid(event, current);
5121
5122 perf_output_put(&handle, mmap_event->event_id);
5123
5124 if (event->attr.mmap2) {
5125 perf_output_put(&handle, mmap_event->maj);
5126 perf_output_put(&handle, mmap_event->min);
5127 perf_output_put(&handle, mmap_event->ino);
5128 perf_output_put(&handle, mmap_event->ino_generation);
5129 }
5130
5131 __output_copy(&handle, mmap_event->file_name,
5132 mmap_event->file_size);
5133
5134 perf_event__output_id_sample(event, &handle, &sample);
5135
5136 perf_output_end(&handle);
5137 out:
5138 mmap_event->event_id.header.size = size;
5139 }
5140
5141 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
5142 {
5143 struct vm_area_struct *vma = mmap_event->vma;
5144 struct file *file = vma->vm_file;
5145 int maj = 0, min = 0;
5146 u64 ino = 0, gen = 0;
5147 unsigned int size;
5148 char tmp[16];
5149 char *buf = NULL;
5150 char *name;
5151
5152 if (file) {
5153 struct inode *inode;
5154 dev_t dev;
5155
5156 buf = kmalloc(PATH_MAX, GFP_KERNEL);
5157 if (!buf) {
5158 name = "//enomem";
5159 goto cpy_name;
5160 }
5161 /*
5162 * d_path() works from the end of the rb backwards, so we
5163 * need to add enough zero bytes after the string to handle
5164 * the 64bit alignment we do later.
5165 */
5166 name = d_path(&file->f_path, buf, PATH_MAX - sizeof(u64));
5167 if (IS_ERR(name)) {
5168 name = "//toolong";
5169 goto cpy_name;
5170 }
5171 inode = file_inode(vma->vm_file);
5172 dev = inode->i_sb->s_dev;
5173 ino = inode->i_ino;
5174 gen = inode->i_generation;
5175 maj = MAJOR(dev);
5176 min = MINOR(dev);
5177 goto got_name;
5178 } else {
5179 name = (char *)arch_vma_name(vma);
5180 if (name)
5181 goto cpy_name;
5182
5183 if (vma->vm_start <= vma->vm_mm->start_brk &&
5184 vma->vm_end >= vma->vm_mm->brk) {
5185 name = "[heap]";
5186 goto cpy_name;
5187 }
5188 if (vma->vm_start <= vma->vm_mm->start_stack &&
5189 vma->vm_end >= vma->vm_mm->start_stack) {
5190 name = "[stack]";
5191 goto cpy_name;
5192 }
5193
5194 name = "//anon";
5195 goto cpy_name;
5196 }
5197
5198 cpy_name:
5199 strlcpy(tmp, name, sizeof(tmp));
5200 name = tmp;
5201 got_name:
5202 /*
5203 * Since our buffer works in 8 byte units we need to align our string
5204 * size to a multiple of 8. However, we must guarantee the tail end is
5205 * zero'd out to avoid leaking random bits to userspace.
5206 */
5207 size = strlen(name)+1;
5208 while (!IS_ALIGNED(size, sizeof(u64)))
5209 name[size++] = '\0';
5210
5211 mmap_event->file_name = name;
5212 mmap_event->file_size = size;
5213 mmap_event->maj = maj;
5214 mmap_event->min = min;
5215 mmap_event->ino = ino;
5216 mmap_event->ino_generation = gen;
5217
5218 if (!(vma->vm_flags & VM_EXEC))
5219 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
5220
5221 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
5222
5223 perf_event_aux(perf_event_mmap_output,
5224 mmap_event,
5225 NULL);
5226
5227 kfree(buf);
5228 }
5229
5230 void perf_event_mmap(struct vm_area_struct *vma)
5231 {
5232 struct perf_mmap_event mmap_event;
5233
5234 if (!atomic_read(&nr_mmap_events))
5235 return;
5236
5237 mmap_event = (struct perf_mmap_event){
5238 .vma = vma,
5239 /* .file_name */
5240 /* .file_size */
5241 .event_id = {
5242 .header = {
5243 .type = PERF_RECORD_MMAP,
5244 .misc = PERF_RECORD_MISC_USER,
5245 /* .size */
5246 },
5247 /* .pid */
5248 /* .tid */
5249 .start = vma->vm_start,
5250 .len = vma->vm_end - vma->vm_start,
5251 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
5252 },
5253 /* .maj (attr_mmap2 only) */
5254 /* .min (attr_mmap2 only) */
5255 /* .ino (attr_mmap2 only) */
5256 /* .ino_generation (attr_mmap2 only) */
5257 };
5258
5259 perf_event_mmap_event(&mmap_event);
5260 }
5261
5262 /*
5263 * IRQ throttle logging
5264 */
5265
5266 static void perf_log_throttle(struct perf_event *event, int enable)
5267 {
5268 struct perf_output_handle handle;
5269 struct perf_sample_data sample;
5270 int ret;
5271
5272 struct {
5273 struct perf_event_header header;
5274 u64 time;
5275 u64 id;
5276 u64 stream_id;
5277 } throttle_event = {
5278 .header = {
5279 .type = PERF_RECORD_THROTTLE,
5280 .misc = 0,
5281 .size = sizeof(throttle_event),
5282 },
5283 .time = perf_clock(),
5284 .id = primary_event_id(event),
5285 .stream_id = event->id,
5286 };
5287
5288 if (enable)
5289 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
5290
5291 perf_event_header__init_id(&throttle_event.header, &sample, event);
5292
5293 ret = perf_output_begin(&handle, event,
5294 throttle_event.header.size);
5295 if (ret)
5296 return;
5297
5298 perf_output_put(&handle, throttle_event);
5299 perf_event__output_id_sample(event, &handle, &sample);
5300 perf_output_end(&handle);
5301 }
5302
5303 /*
5304 * Generic event overflow handling, sampling.
5305 */
5306
5307 static int __perf_event_overflow(struct perf_event *event,
5308 int throttle, struct perf_sample_data *data,
5309 struct pt_regs *regs)
5310 {
5311 int events = atomic_read(&event->event_limit);
5312 struct hw_perf_event *hwc = &event->hw;
5313 u64 seq;
5314 int ret = 0;
5315
5316 /*
5317 * Non-sampling counters might still use the PMI to fold short
5318 * hardware counters, ignore those.
5319 */
5320 if (unlikely(!is_sampling_event(event)))
5321 return 0;
5322
5323 seq = __this_cpu_read(perf_throttled_seq);
5324 if (seq != hwc->interrupts_seq) {
5325 hwc->interrupts_seq = seq;
5326 hwc->interrupts = 1;
5327 } else {
5328 hwc->interrupts++;
5329 if (unlikely(throttle
5330 && hwc->interrupts >= max_samples_per_tick)) {
5331 __this_cpu_inc(perf_throttled_count);
5332 hwc->interrupts = MAX_INTERRUPTS;
5333 perf_log_throttle(event, 0);
5334 tick_nohz_full_kick();
5335 ret = 1;
5336 }
5337 }
5338
5339 if (event->attr.freq) {
5340 u64 now = perf_clock();
5341 s64 delta = now - hwc->freq_time_stamp;
5342
5343 hwc->freq_time_stamp = now;
5344
5345 if (delta > 0 && delta < 2*TICK_NSEC)
5346 perf_adjust_period(event, delta, hwc->last_period, true);
5347 }
5348
5349 /*
5350 * XXX event_limit might not quite work as expected on inherited
5351 * events
5352 */
5353
5354 event->pending_kill = POLL_IN;
5355 if (events && atomic_dec_and_test(&event->event_limit)) {
5356 ret = 1;
5357 event->pending_kill = POLL_HUP;
5358 event->pending_disable = 1;
5359 irq_work_queue(&event->pending);
5360 }
5361
5362 if (event->overflow_handler)
5363 event->overflow_handler(event, data, regs);
5364 else
5365 perf_event_output(event, data, regs);
5366
5367 if (event->fasync && event->pending_kill) {
5368 event->pending_wakeup = 1;
5369 irq_work_queue(&event->pending);
5370 }
5371
5372 return ret;
5373 }
5374
5375 int perf_event_overflow(struct perf_event *event,
5376 struct perf_sample_data *data,
5377 struct pt_regs *regs)
5378 {
5379 return __perf_event_overflow(event, 1, data, regs);
5380 }
5381
5382 /*
5383 * Generic software event infrastructure
5384 */
5385
5386 struct swevent_htable {
5387 struct swevent_hlist *swevent_hlist;
5388 struct mutex hlist_mutex;
5389 int hlist_refcount;
5390
5391 /* Recursion avoidance in each contexts */
5392 int recursion[PERF_NR_CONTEXTS];
5393 };
5394
5395 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
5396
5397 /*
5398 * We directly increment event->count and keep a second value in
5399 * event->hw.period_left to count intervals. This period event
5400 * is kept in the range [-sample_period, 0] so that we can use the
5401 * sign as trigger.
5402 */
5403
5404 u64 perf_swevent_set_period(struct perf_event *event)
5405 {
5406 struct hw_perf_event *hwc = &event->hw;
5407 u64 period = hwc->last_period;
5408 u64 nr, offset;
5409 s64 old, val;
5410
5411 hwc->last_period = hwc->sample_period;
5412
5413 again:
5414 old = val = local64_read(&hwc->period_left);
5415 if (val < 0)
5416 return 0;
5417
5418 nr = div64_u64(period + val, period);
5419 offset = nr * period;
5420 val -= offset;
5421 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
5422 goto again;
5423
5424 return nr;
5425 }
5426
5427 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
5428 struct perf_sample_data *data,
5429 struct pt_regs *regs)
5430 {
5431 struct hw_perf_event *hwc = &event->hw;
5432 int throttle = 0;
5433
5434 if (!overflow)
5435 overflow = perf_swevent_set_period(event);
5436
5437 if (hwc->interrupts == MAX_INTERRUPTS)
5438 return;
5439
5440 for (; overflow; overflow--) {
5441 if (__perf_event_overflow(event, throttle,
5442 data, regs)) {
5443 /*
5444 * We inhibit the overflow from happening when
5445 * hwc->interrupts == MAX_INTERRUPTS.
5446 */
5447 break;
5448 }
5449 throttle = 1;
5450 }
5451 }
5452
5453 static void perf_swevent_event(struct perf_event *event, u64 nr,
5454 struct perf_sample_data *data,
5455 struct pt_regs *regs)
5456 {
5457 struct hw_perf_event *hwc = &event->hw;
5458
5459 local64_add(nr, &event->count);
5460
5461 if (!regs)
5462 return;
5463
5464 if (!is_sampling_event(event))
5465 return;
5466
5467 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
5468 data->period = nr;
5469 return perf_swevent_overflow(event, 1, data, regs);
5470 } else
5471 data->period = event->hw.last_period;
5472
5473 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
5474 return perf_swevent_overflow(event, 1, data, regs);
5475
5476 if (local64_add_negative(nr, &hwc->period_left))
5477 return;
5478
5479 perf_swevent_overflow(event, 0, data, regs);
5480 }
5481
5482 static int perf_exclude_event(struct perf_event *event,
5483 struct pt_regs *regs)
5484 {
5485 if (event->hw.state & PERF_HES_STOPPED)
5486 return 1;
5487
5488 if (regs) {
5489 if (event->attr.exclude_user && user_mode(regs))
5490 return 1;
5491
5492 if (event->attr.exclude_kernel && !user_mode(regs))
5493 return 1;
5494 }
5495
5496 return 0;
5497 }
5498
5499 static int perf_swevent_match(struct perf_event *event,
5500 enum perf_type_id type,
5501 u32 event_id,
5502 struct perf_sample_data *data,
5503 struct pt_regs *regs)
5504 {
5505 if (event->attr.type != type)
5506 return 0;
5507
5508 if (event->attr.config != event_id)
5509 return 0;
5510
5511 if (perf_exclude_event(event, regs))
5512 return 0;
5513
5514 return 1;
5515 }
5516
5517 static inline u64 swevent_hash(u64 type, u32 event_id)
5518 {
5519 u64 val = event_id | (type << 32);
5520
5521 return hash_64(val, SWEVENT_HLIST_BITS);
5522 }
5523
5524 static inline struct hlist_head *
5525 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
5526 {
5527 u64 hash = swevent_hash(type, event_id);
5528
5529 return &hlist->heads[hash];
5530 }
5531
5532 /* For the read side: events when they trigger */
5533 static inline struct hlist_head *
5534 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
5535 {
5536 struct swevent_hlist *hlist;
5537
5538 hlist = rcu_dereference(swhash->swevent_hlist);
5539 if (!hlist)
5540 return NULL;
5541
5542 return __find_swevent_head(hlist, type, event_id);
5543 }
5544
5545 /* For the event head insertion and removal in the hlist */
5546 static inline struct hlist_head *
5547 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
5548 {
5549 struct swevent_hlist *hlist;
5550 u32 event_id = event->attr.config;
5551 u64 type = event->attr.type;
5552
5553 /*
5554 * Event scheduling is always serialized against hlist allocation
5555 * and release. Which makes the protected version suitable here.
5556 * The context lock guarantees that.
5557 */
5558 hlist = rcu_dereference_protected(swhash->swevent_hlist,
5559 lockdep_is_held(&event->ctx->lock));
5560 if (!hlist)
5561 return NULL;
5562
5563 return __find_swevent_head(hlist, type, event_id);
5564 }
5565
5566 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
5567 u64 nr,
5568 struct perf_sample_data *data,
5569 struct pt_regs *regs)
5570 {
5571 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5572 struct perf_event *event;
5573 struct hlist_head *head;
5574
5575 rcu_read_lock();
5576 head = find_swevent_head_rcu(swhash, type, event_id);
5577 if (!head)
5578 goto end;
5579
5580 hlist_for_each_entry_rcu(event, head, hlist_entry) {
5581 if (perf_swevent_match(event, type, event_id, data, regs))
5582 perf_swevent_event(event, nr, data, regs);
5583 }
5584 end:
5585 rcu_read_unlock();
5586 }
5587
5588 int perf_swevent_get_recursion_context(void)
5589 {
5590 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5591
5592 return get_recursion_context(swhash->recursion);
5593 }
5594 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
5595
5596 inline void perf_swevent_put_recursion_context(int rctx)
5597 {
5598 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5599
5600 put_recursion_context(swhash->recursion, rctx);
5601 }
5602
5603 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
5604 {
5605 struct perf_sample_data data;
5606 int rctx;
5607
5608 preempt_disable_notrace();
5609 rctx = perf_swevent_get_recursion_context();
5610 if (rctx < 0)
5611 return;
5612
5613 perf_sample_data_init(&data, addr, 0);
5614
5615 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
5616
5617 perf_swevent_put_recursion_context(rctx);
5618 preempt_enable_notrace();
5619 }
5620
5621 static void perf_swevent_read(struct perf_event *event)
5622 {
5623 }
5624
5625 static int perf_swevent_add(struct perf_event *event, int flags)
5626 {
5627 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5628 struct hw_perf_event *hwc = &event->hw;
5629 struct hlist_head *head;
5630
5631 if (is_sampling_event(event)) {
5632 hwc->last_period = hwc->sample_period;
5633 perf_swevent_set_period(event);
5634 }
5635
5636 hwc->state = !(flags & PERF_EF_START);
5637
5638 head = find_swevent_head(swhash, event);
5639 if (WARN_ON_ONCE(!head))
5640 return -EINVAL;
5641
5642 hlist_add_head_rcu(&event->hlist_entry, head);
5643
5644 return 0;
5645 }
5646
5647 static void perf_swevent_del(struct perf_event *event, int flags)
5648 {
5649 hlist_del_rcu(&event->hlist_entry);
5650 }
5651
5652 static void perf_swevent_start(struct perf_event *event, int flags)
5653 {
5654 event->hw.state = 0;
5655 }
5656
5657 static void perf_swevent_stop(struct perf_event *event, int flags)
5658 {
5659 event->hw.state = PERF_HES_STOPPED;
5660 }
5661
5662 /* Deref the hlist from the update side */
5663 static inline struct swevent_hlist *
5664 swevent_hlist_deref(struct swevent_htable *swhash)
5665 {
5666 return rcu_dereference_protected(swhash->swevent_hlist,
5667 lockdep_is_held(&swhash->hlist_mutex));
5668 }
5669
5670 static void swevent_hlist_release(struct swevent_htable *swhash)
5671 {
5672 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
5673
5674 if (!hlist)
5675 return;
5676
5677 rcu_assign_pointer(swhash->swevent_hlist, NULL);
5678 kfree_rcu(hlist, rcu_head);
5679 }
5680
5681 static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
5682 {
5683 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5684
5685 mutex_lock(&swhash->hlist_mutex);
5686
5687 if (!--swhash->hlist_refcount)
5688 swevent_hlist_release(swhash);
5689
5690 mutex_unlock(&swhash->hlist_mutex);
5691 }
5692
5693 static void swevent_hlist_put(struct perf_event *event)
5694 {
5695 int cpu;
5696
5697 for_each_possible_cpu(cpu)
5698 swevent_hlist_put_cpu(event, cpu);
5699 }
5700
5701 static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
5702 {
5703 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5704 int err = 0;
5705
5706 mutex_lock(&swhash->hlist_mutex);
5707
5708 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
5709 struct swevent_hlist *hlist;
5710
5711 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
5712 if (!hlist) {
5713 err = -ENOMEM;
5714 goto exit;
5715 }
5716 rcu_assign_pointer(swhash->swevent_hlist, hlist);
5717 }
5718 swhash->hlist_refcount++;
5719 exit:
5720 mutex_unlock(&swhash->hlist_mutex);
5721
5722 return err;
5723 }
5724
5725 static int swevent_hlist_get(struct perf_event *event)
5726 {
5727 int err;
5728 int cpu, failed_cpu;
5729
5730 get_online_cpus();
5731 for_each_possible_cpu(cpu) {
5732 err = swevent_hlist_get_cpu(event, cpu);
5733 if (err) {
5734 failed_cpu = cpu;
5735 goto fail;
5736 }
5737 }
5738 put_online_cpus();
5739
5740 return 0;
5741 fail:
5742 for_each_possible_cpu(cpu) {
5743 if (cpu == failed_cpu)
5744 break;
5745 swevent_hlist_put_cpu(event, cpu);
5746 }
5747
5748 put_online_cpus();
5749 return err;
5750 }
5751
5752 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
5753
5754 static void sw_perf_event_destroy(struct perf_event *event)
5755 {
5756 u64 event_id = event->attr.config;
5757
5758 WARN_ON(event->parent);
5759
5760 static_key_slow_dec(&perf_swevent_enabled[event_id]);
5761 swevent_hlist_put(event);
5762 }
5763
5764 static int perf_swevent_init(struct perf_event *event)
5765 {
5766 u64 event_id = event->attr.config;
5767
5768 if (event->attr.type != PERF_TYPE_SOFTWARE)
5769 return -ENOENT;
5770
5771 /*
5772 * no branch sampling for software events
5773 */
5774 if (has_branch_stack(event))
5775 return -EOPNOTSUPP;
5776
5777 switch (event_id) {
5778 case PERF_COUNT_SW_CPU_CLOCK:
5779 case PERF_COUNT_SW_TASK_CLOCK:
5780 return -ENOENT;
5781
5782 default:
5783 break;
5784 }
5785
5786 if (event_id >= PERF_COUNT_SW_MAX)
5787 return -ENOENT;
5788
5789 if (!event->parent) {
5790 int err;
5791
5792 err = swevent_hlist_get(event);
5793 if (err)
5794 return err;
5795
5796 static_key_slow_inc(&perf_swevent_enabled[event_id]);
5797 event->destroy = sw_perf_event_destroy;
5798 }
5799
5800 return 0;
5801 }
5802
5803 static int perf_swevent_event_idx(struct perf_event *event)
5804 {
5805 return 0;
5806 }
5807
5808 static struct pmu perf_swevent = {
5809 .task_ctx_nr = perf_sw_context,
5810
5811 .event_init = perf_swevent_init,
5812 .add = perf_swevent_add,
5813 .del = perf_swevent_del,
5814 .start = perf_swevent_start,
5815 .stop = perf_swevent_stop,
5816 .read = perf_swevent_read,
5817
5818 .event_idx = perf_swevent_event_idx,
5819 };
5820
5821 #ifdef CONFIG_EVENT_TRACING
5822
5823 static int perf_tp_filter_match(struct perf_event *event,
5824 struct perf_sample_data *data)
5825 {
5826 void *record = data->raw->data;
5827
5828 if (likely(!event->filter) || filter_match_preds(event->filter, record))
5829 return 1;
5830 return 0;
5831 }
5832
5833 static int perf_tp_event_match(struct perf_event *event,
5834 struct perf_sample_data *data,
5835 struct pt_regs *regs)
5836 {
5837 if (event->hw.state & PERF_HES_STOPPED)
5838 return 0;
5839 /*
5840 * All tracepoints are from kernel-space.
5841 */
5842 if (event->attr.exclude_kernel)
5843 return 0;
5844
5845 if (!perf_tp_filter_match(event, data))
5846 return 0;
5847
5848 return 1;
5849 }
5850
5851 void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
5852 struct pt_regs *regs, struct hlist_head *head, int rctx,
5853 struct task_struct *task)
5854 {
5855 struct perf_sample_data data;
5856 struct perf_event *event;
5857
5858 struct perf_raw_record raw = {
5859 .size = entry_size,
5860 .data = record,
5861 };
5862
5863 perf_sample_data_init(&data, addr, 0);
5864 data.raw = &raw;
5865
5866 hlist_for_each_entry_rcu(event, head, hlist_entry) {
5867 if (perf_tp_event_match(event, &data, regs))
5868 perf_swevent_event(event, count, &data, regs);
5869 }
5870
5871 /*
5872 * If we got specified a target task, also iterate its context and
5873 * deliver this event there too.
5874 */
5875 if (task && task != current) {
5876 struct perf_event_context *ctx;
5877 struct trace_entry *entry = record;
5878
5879 rcu_read_lock();
5880 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
5881 if (!ctx)
5882 goto unlock;
5883
5884 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
5885 if (event->attr.type != PERF_TYPE_TRACEPOINT)
5886 continue;
5887 if (event->attr.config != entry->type)
5888 continue;
5889 if (perf_tp_event_match(event, &data, regs))
5890 perf_swevent_event(event, count, &data, regs);
5891 }
5892 unlock:
5893 rcu_read_unlock();
5894 }
5895
5896 perf_swevent_put_recursion_context(rctx);
5897 }
5898 EXPORT_SYMBOL_GPL(perf_tp_event);
5899
5900 static void tp_perf_event_destroy(struct perf_event *event)
5901 {
5902 perf_trace_destroy(event);
5903 }
5904
5905 static int perf_tp_event_init(struct perf_event *event)
5906 {
5907 int err;
5908
5909 if (event->attr.type != PERF_TYPE_TRACEPOINT)
5910 return -ENOENT;
5911
5912 /*
5913 * no branch sampling for tracepoint events
5914 */
5915 if (has_branch_stack(event))
5916 return -EOPNOTSUPP;
5917
5918 err = perf_trace_init(event);
5919 if (err)
5920 return err;
5921
5922 event->destroy = tp_perf_event_destroy;
5923
5924 return 0;
5925 }
5926
5927 static struct pmu perf_tracepoint = {
5928 .task_ctx_nr = perf_sw_context,
5929
5930 .event_init = perf_tp_event_init,
5931 .add = perf_trace_add,
5932 .del = perf_trace_del,
5933 .start = perf_swevent_start,
5934 .stop = perf_swevent_stop,
5935 .read = perf_swevent_read,
5936
5937 .event_idx = perf_swevent_event_idx,
5938 };
5939
5940 static inline void perf_tp_register(void)
5941 {
5942 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
5943 }
5944
5945 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
5946 {
5947 char *filter_str;
5948 int ret;
5949
5950 if (event->attr.type != PERF_TYPE_TRACEPOINT)
5951 return -EINVAL;
5952
5953 filter_str = strndup_user(arg, PAGE_SIZE);
5954 if (IS_ERR(filter_str))
5955 return PTR_ERR(filter_str);
5956
5957 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
5958
5959 kfree(filter_str);
5960 return ret;
5961 }
5962
5963 static void perf_event_free_filter(struct perf_event *event)
5964 {
5965 ftrace_profile_free_filter(event);
5966 }
5967
5968 #else
5969
5970 static inline void perf_tp_register(void)
5971 {
5972 }
5973
5974 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
5975 {
5976 return -ENOENT;
5977 }
5978
5979 static void perf_event_free_filter(struct perf_event *event)
5980 {
5981 }
5982
5983 #endif /* CONFIG_EVENT_TRACING */
5984
5985 #ifdef CONFIG_HAVE_HW_BREAKPOINT
5986 void perf_bp_event(struct perf_event *bp, void *data)
5987 {
5988 struct perf_sample_data sample;
5989 struct pt_regs *regs = data;
5990
5991 perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
5992
5993 if (!bp->hw.state && !perf_exclude_event(bp, regs))
5994 perf_swevent_event(bp, 1, &sample, regs);
5995 }
5996 #endif
5997
5998 /*
5999 * hrtimer based swevent callback
6000 */
6001
6002 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
6003 {
6004 enum hrtimer_restart ret = HRTIMER_RESTART;
6005 struct perf_sample_data data;
6006 struct pt_regs *regs;
6007 struct perf_event *event;
6008 u64 period;
6009
6010 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
6011
6012 if (event->state != PERF_EVENT_STATE_ACTIVE)
6013 return HRTIMER_NORESTART;
6014
6015 event->pmu->read(event);
6016
6017 perf_sample_data_init(&data, 0, event->hw.last_period);
6018 regs = get_irq_regs();
6019
6020 if (regs && !perf_exclude_event(event, regs)) {
6021 if (!(event->attr.exclude_idle && is_idle_task(current)))
6022 if (__perf_event_overflow(event, 1, &data, regs))
6023 ret = HRTIMER_NORESTART;
6024 }
6025
6026 period = max_t(u64, 10000, event->hw.sample_period);
6027 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
6028
6029 return ret;
6030 }
6031
6032 static void perf_swevent_start_hrtimer(struct perf_event *event)
6033 {
6034 struct hw_perf_event *hwc = &event->hw;
6035 s64 period;
6036
6037 if (!is_sampling_event(event))
6038 return;
6039
6040 period = local64_read(&hwc->period_left);
6041 if (period) {
6042 if (period < 0)
6043 period = 10000;
6044
6045 local64_set(&hwc->period_left, 0);
6046 } else {
6047 period = max_t(u64, 10000, hwc->sample_period);
6048 }
6049 __hrtimer_start_range_ns(&hwc->hrtimer,
6050 ns_to_ktime(period), 0,
6051 HRTIMER_MODE_REL_PINNED, 0);
6052 }
6053
6054 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
6055 {
6056 struct hw_perf_event *hwc = &event->hw;
6057
6058 if (is_sampling_event(event)) {
6059 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
6060 local64_set(&hwc->period_left, ktime_to_ns(remaining));
6061
6062 hrtimer_cancel(&hwc->hrtimer);
6063 }
6064 }
6065
6066 static void perf_swevent_init_hrtimer(struct perf_event *event)
6067 {
6068 struct hw_perf_event *hwc = &event->hw;
6069
6070 if (!is_sampling_event(event))
6071 return;
6072
6073 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
6074 hwc->hrtimer.function = perf_swevent_hrtimer;
6075
6076 /*
6077 * Since hrtimers have a fixed rate, we can do a static freq->period
6078 * mapping and avoid the whole period adjust feedback stuff.
6079 */
6080 if (event->attr.freq) {
6081 long freq = event->attr.sample_freq;
6082
6083 event->attr.sample_period = NSEC_PER_SEC / freq;
6084 hwc->sample_period = event->attr.sample_period;
6085 local64_set(&hwc->period_left, hwc->sample_period);
6086 hwc->last_period = hwc->sample_period;
6087 event->attr.freq = 0;
6088 }
6089 }
6090
6091 /*
6092 * Software event: cpu wall time clock
6093 */
6094
6095 static void cpu_clock_event_update(struct perf_event *event)
6096 {
6097 s64 prev;
6098 u64 now;
6099
6100 now = local_clock();
6101 prev = local64_xchg(&event->hw.prev_count, now);
6102 local64_add(now - prev, &event->count);
6103 }
6104
6105 static void cpu_clock_event_start(struct perf_event *event, int flags)
6106 {
6107 local64_set(&event->hw.prev_count, local_clock());
6108 perf_swevent_start_hrtimer(event);
6109 }
6110
6111 static void cpu_clock_event_stop(struct perf_event *event, int flags)
6112 {
6113 perf_swevent_cancel_hrtimer(event);
6114 cpu_clock_event_update(event);
6115 }
6116
6117 static int cpu_clock_event_add(struct perf_event *event, int flags)
6118 {
6119 if (flags & PERF_EF_START)
6120 cpu_clock_event_start(event, flags);
6121
6122 return 0;
6123 }
6124
6125 static void cpu_clock_event_del(struct perf_event *event, int flags)
6126 {
6127 cpu_clock_event_stop(event, flags);
6128 }
6129
6130 static void cpu_clock_event_read(struct perf_event *event)
6131 {
6132 cpu_clock_event_update(event);
6133 }
6134
6135 static int cpu_clock_event_init(struct perf_event *event)
6136 {
6137 if (event->attr.type != PERF_TYPE_SOFTWARE)
6138 return -ENOENT;
6139
6140 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
6141 return -ENOENT;
6142
6143 /*
6144 * no branch sampling for software events
6145 */
6146 if (has_branch_stack(event))
6147 return -EOPNOTSUPP;
6148
6149 perf_swevent_init_hrtimer(event);
6150
6151 return 0;
6152 }
6153
6154 static struct pmu perf_cpu_clock = {
6155 .task_ctx_nr = perf_sw_context,
6156
6157 .event_init = cpu_clock_event_init,
6158 .add = cpu_clock_event_add,
6159 .del = cpu_clock_event_del,
6160 .start = cpu_clock_event_start,
6161 .stop = cpu_clock_event_stop,
6162 .read = cpu_clock_event_read,
6163
6164 .event_idx = perf_swevent_event_idx,
6165 };
6166
6167 /*
6168 * Software event: task time clock
6169 */
6170
6171 static void task_clock_event_update(struct perf_event *event, u64 now)
6172 {
6173 u64 prev;
6174 s64 delta;
6175
6176 prev = local64_xchg(&event->hw.prev_count, now);
6177 delta = now - prev;
6178 local64_add(delta, &event->count);
6179 }
6180
6181 static void task_clock_event_start(struct perf_event *event, int flags)
6182 {
6183 local64_set(&event->hw.prev_count, event->ctx->time);
6184 perf_swevent_start_hrtimer(event);
6185 }
6186
6187 static void task_clock_event_stop(struct perf_event *event, int flags)
6188 {
6189 perf_swevent_cancel_hrtimer(event);
6190 task_clock_event_update(event, event->ctx->time);
6191 }
6192
6193 static int task_clock_event_add(struct perf_event *event, int flags)
6194 {
6195 if (flags & PERF_EF_START)
6196 task_clock_event_start(event, flags);
6197
6198 return 0;
6199 }
6200
6201 static void task_clock_event_del(struct perf_event *event, int flags)
6202 {
6203 task_clock_event_stop(event, PERF_EF_UPDATE);
6204 }
6205
6206 static void task_clock_event_read(struct perf_event *event)
6207 {
6208 u64 now = perf_clock();
6209 u64 delta = now - event->ctx->timestamp;
6210 u64 time = event->ctx->time + delta;
6211
6212 task_clock_event_update(event, time);
6213 }
6214
6215 static int task_clock_event_init(struct perf_event *event)
6216 {
6217 if (event->attr.type != PERF_TYPE_SOFTWARE)
6218 return -ENOENT;
6219
6220 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
6221 return -ENOENT;
6222
6223 /*
6224 * no branch sampling for software events
6225 */
6226 if (has_branch_stack(event))
6227 return -EOPNOTSUPP;
6228
6229 perf_swevent_init_hrtimer(event);
6230
6231 return 0;
6232 }
6233
6234 static struct pmu perf_task_clock = {
6235 .task_ctx_nr = perf_sw_context,
6236
6237 .event_init = task_clock_event_init,
6238 .add = task_clock_event_add,
6239 .del = task_clock_event_del,
6240 .start = task_clock_event_start,
6241 .stop = task_clock_event_stop,
6242 .read = task_clock_event_read,
6243
6244 .event_idx = perf_swevent_event_idx,
6245 };
6246
6247 static void perf_pmu_nop_void(struct pmu *pmu)
6248 {
6249 }
6250
6251 static int perf_pmu_nop_int(struct pmu *pmu)
6252 {
6253 return 0;
6254 }
6255
6256 static void perf_pmu_start_txn(struct pmu *pmu)
6257 {
6258 perf_pmu_disable(pmu);
6259 }
6260
6261 static int perf_pmu_commit_txn(struct pmu *pmu)
6262 {
6263 perf_pmu_enable(pmu);
6264 return 0;
6265 }
6266
6267 static void perf_pmu_cancel_txn(struct pmu *pmu)
6268 {
6269 perf_pmu_enable(pmu);
6270 }
6271
6272 static int perf_event_idx_default(struct perf_event *event)
6273 {
6274 return event->hw.idx + 1;
6275 }
6276
6277 /*
6278 * Ensures all contexts with the same task_ctx_nr have the same
6279 * pmu_cpu_context too.
6280 */
6281 static void *find_pmu_context(int ctxn)
6282 {
6283 struct pmu *pmu;
6284
6285 if (ctxn < 0)
6286 return NULL;
6287
6288 list_for_each_entry(pmu, &pmus, entry) {
6289 if (pmu->task_ctx_nr == ctxn)
6290 return pmu->pmu_cpu_context;
6291 }
6292
6293 return NULL;
6294 }
6295
6296 static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
6297 {
6298 int cpu;
6299
6300 for_each_possible_cpu(cpu) {
6301 struct perf_cpu_context *cpuctx;
6302
6303 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6304
6305 if (cpuctx->unique_pmu == old_pmu)
6306 cpuctx->unique_pmu = pmu;
6307 }
6308 }
6309
6310 static void free_pmu_context(struct pmu *pmu)
6311 {
6312 struct pmu *i;
6313
6314 mutex_lock(&pmus_lock);
6315 /*
6316 * Like a real lame refcount.
6317 */
6318 list_for_each_entry(i, &pmus, entry) {
6319 if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
6320 update_pmu_context(i, pmu);
6321 goto out;
6322 }
6323 }
6324
6325 free_percpu(pmu->pmu_cpu_context);
6326 out:
6327 mutex_unlock(&pmus_lock);
6328 }
6329 static struct idr pmu_idr;
6330
6331 static ssize_t
6332 type_show(struct device *dev, struct device_attribute *attr, char *page)
6333 {
6334 struct pmu *pmu = dev_get_drvdata(dev);
6335
6336 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
6337 }
6338 static DEVICE_ATTR_RO(type);
6339
6340 static ssize_t
6341 perf_event_mux_interval_ms_show(struct device *dev,
6342 struct device_attribute *attr,
6343 char *page)
6344 {
6345 struct pmu *pmu = dev_get_drvdata(dev);
6346
6347 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
6348 }
6349
6350 static ssize_t
6351 perf_event_mux_interval_ms_store(struct device *dev,
6352 struct device_attribute *attr,
6353 const char *buf, size_t count)
6354 {
6355 struct pmu *pmu = dev_get_drvdata(dev);
6356 int timer, cpu, ret;
6357
6358 ret = kstrtoint(buf, 0, &timer);
6359 if (ret)
6360 return ret;
6361
6362 if (timer < 1)
6363 return -EINVAL;
6364
6365 /* same value, noting to do */
6366 if (timer == pmu->hrtimer_interval_ms)
6367 return count;
6368
6369 pmu->hrtimer_interval_ms = timer;
6370
6371 /* update all cpuctx for this PMU */
6372 for_each_possible_cpu(cpu) {
6373 struct perf_cpu_context *cpuctx;
6374 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6375 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
6376
6377 if (hrtimer_active(&cpuctx->hrtimer))
6378 hrtimer_forward_now(&cpuctx->hrtimer, cpuctx->hrtimer_interval);
6379 }
6380
6381 return count;
6382 }
6383 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
6384
6385 static struct attribute *pmu_dev_attrs[] = {
6386 &dev_attr_type.attr,
6387 &dev_attr_perf_event_mux_interval_ms.attr,
6388 NULL,
6389 };
6390 ATTRIBUTE_GROUPS(pmu_dev);
6391
6392 static int pmu_bus_running;
6393 static struct bus_type pmu_bus = {
6394 .name = "event_source",
6395 .dev_groups = pmu_dev_groups,
6396 };
6397
6398 static void pmu_dev_release(struct device *dev)
6399 {
6400 kfree(dev);
6401 }
6402
6403 static int pmu_dev_alloc(struct pmu *pmu)
6404 {
6405 int ret = -ENOMEM;
6406
6407 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
6408 if (!pmu->dev)
6409 goto out;
6410
6411 pmu->dev->groups = pmu->attr_groups;
6412 device_initialize(pmu->dev);
6413 ret = dev_set_name(pmu->dev, "%s", pmu->name);
6414 if (ret)
6415 goto free_dev;
6416
6417 dev_set_drvdata(pmu->dev, pmu);
6418 pmu->dev->bus = &pmu_bus;
6419 pmu->dev->release = pmu_dev_release;
6420 ret = device_add(pmu->dev);
6421 if (ret)
6422 goto free_dev;
6423
6424 out:
6425 return ret;
6426
6427 free_dev:
6428 put_device(pmu->dev);
6429 goto out;
6430 }
6431
6432 static struct lock_class_key cpuctx_mutex;
6433 static struct lock_class_key cpuctx_lock;
6434
6435 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
6436 {
6437 int cpu, ret;
6438
6439 mutex_lock(&pmus_lock);
6440 ret = -ENOMEM;
6441 pmu->pmu_disable_count = alloc_percpu(int);
6442 if (!pmu->pmu_disable_count)
6443 goto unlock;
6444
6445 pmu->type = -1;
6446 if (!name)
6447 goto skip_type;
6448 pmu->name = name;
6449
6450 if (type < 0) {
6451 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
6452 if (type < 0) {
6453 ret = type;
6454 goto free_pdc;
6455 }
6456 }
6457 pmu->type = type;
6458
6459 if (pmu_bus_running) {
6460 ret = pmu_dev_alloc(pmu);
6461 if (ret)
6462 goto free_idr;
6463 }
6464
6465 skip_type:
6466 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
6467 if (pmu->pmu_cpu_context)
6468 goto got_cpu_context;
6469
6470 ret = -ENOMEM;
6471 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
6472 if (!pmu->pmu_cpu_context)
6473 goto free_dev;
6474
6475 for_each_possible_cpu(cpu) {
6476 struct perf_cpu_context *cpuctx;
6477
6478 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6479 __perf_event_init_context(&cpuctx->ctx);
6480 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
6481 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
6482 cpuctx->ctx.type = cpu_context;
6483 cpuctx->ctx.pmu = pmu;
6484
6485 __perf_cpu_hrtimer_init(cpuctx, cpu);
6486
6487 INIT_LIST_HEAD(&cpuctx->rotation_list);
6488 cpuctx->unique_pmu = pmu;
6489 }
6490
6491 got_cpu_context:
6492 if (!pmu->start_txn) {
6493 if (pmu->pmu_enable) {
6494 /*
6495 * If we have pmu_enable/pmu_disable calls, install
6496 * transaction stubs that use that to try and batch
6497 * hardware accesses.
6498 */
6499 pmu->start_txn = perf_pmu_start_txn;
6500 pmu->commit_txn = perf_pmu_commit_txn;
6501 pmu->cancel_txn = perf_pmu_cancel_txn;
6502 } else {
6503 pmu->start_txn = perf_pmu_nop_void;
6504 pmu->commit_txn = perf_pmu_nop_int;
6505 pmu->cancel_txn = perf_pmu_nop_void;
6506 }
6507 }
6508
6509 if (!pmu->pmu_enable) {
6510 pmu->pmu_enable = perf_pmu_nop_void;
6511 pmu->pmu_disable = perf_pmu_nop_void;
6512 }
6513
6514 if (!pmu->event_idx)
6515 pmu->event_idx = perf_event_idx_default;
6516
6517 list_add_rcu(&pmu->entry, &pmus);
6518 ret = 0;
6519 unlock:
6520 mutex_unlock(&pmus_lock);
6521
6522 return ret;
6523
6524 free_dev:
6525 device_del(pmu->dev);
6526 put_device(pmu->dev);
6527
6528 free_idr:
6529 if (pmu->type >= PERF_TYPE_MAX)
6530 idr_remove(&pmu_idr, pmu->type);
6531
6532 free_pdc:
6533 free_percpu(pmu->pmu_disable_count);
6534 goto unlock;
6535 }
6536
6537 void perf_pmu_unregister(struct pmu *pmu)
6538 {
6539 mutex_lock(&pmus_lock);
6540 list_del_rcu(&pmu->entry);
6541 mutex_unlock(&pmus_lock);
6542
6543 /*
6544 * We dereference the pmu list under both SRCU and regular RCU, so
6545 * synchronize against both of those.
6546 */
6547 synchronize_srcu(&pmus_srcu);
6548 synchronize_rcu();
6549
6550 free_percpu(pmu->pmu_disable_count);
6551 if (pmu->type >= PERF_TYPE_MAX)
6552 idr_remove(&pmu_idr, pmu->type);
6553 device_del(pmu->dev);
6554 put_device(pmu->dev);
6555 free_pmu_context(pmu);
6556 }
6557
6558 struct pmu *perf_init_event(struct perf_event *event)
6559 {
6560 struct pmu *pmu = NULL;
6561 int idx;
6562 int ret;
6563
6564 idx = srcu_read_lock(&pmus_srcu);
6565
6566 rcu_read_lock();
6567 pmu = idr_find(&pmu_idr, event->attr.type);
6568 rcu_read_unlock();
6569 if (pmu) {
6570 event->pmu = pmu;
6571 ret = pmu->event_init(event);
6572 if (ret)
6573 pmu = ERR_PTR(ret);
6574 goto unlock;
6575 }
6576
6577 list_for_each_entry_rcu(pmu, &pmus, entry) {
6578 event->pmu = pmu;
6579 ret = pmu->event_init(event);
6580 if (!ret)
6581 goto unlock;
6582
6583 if (ret != -ENOENT) {
6584 pmu = ERR_PTR(ret);
6585 goto unlock;
6586 }
6587 }
6588 pmu = ERR_PTR(-ENOENT);
6589 unlock:
6590 srcu_read_unlock(&pmus_srcu, idx);
6591
6592 return pmu;
6593 }
6594
6595 static void account_event_cpu(struct perf_event *event, int cpu)
6596 {
6597 if (event->parent)
6598 return;
6599
6600 if (has_branch_stack(event)) {
6601 if (!(event->attach_state & PERF_ATTACH_TASK))
6602 atomic_inc(&per_cpu(perf_branch_stack_events, cpu));
6603 }
6604 if (is_cgroup_event(event))
6605 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
6606 }
6607
6608 static void account_event(struct perf_event *event)
6609 {
6610 if (event->parent)
6611 return;
6612
6613 if (event->attach_state & PERF_ATTACH_TASK)
6614 static_key_slow_inc(&perf_sched_events.key);
6615 if (event->attr.mmap || event->attr.mmap_data)
6616 atomic_inc(&nr_mmap_events);
6617 if (event->attr.comm)
6618 atomic_inc(&nr_comm_events);
6619 if (event->attr.task)
6620 atomic_inc(&nr_task_events);
6621 if (event->attr.freq) {
6622 if (atomic_inc_return(&nr_freq_events) == 1)
6623 tick_nohz_full_kick_all();
6624 }
6625 if (has_branch_stack(event))
6626 static_key_slow_inc(&perf_sched_events.key);
6627 if (is_cgroup_event(event))
6628 static_key_slow_inc(&perf_sched_events.key);
6629
6630 account_event_cpu(event, event->cpu);
6631 }
6632
6633 /*
6634 * Allocate and initialize a event structure
6635 */
6636 static struct perf_event *
6637 perf_event_alloc(struct perf_event_attr *attr, int cpu,
6638 struct task_struct *task,
6639 struct perf_event *group_leader,
6640 struct perf_event *parent_event,
6641 perf_overflow_handler_t overflow_handler,
6642 void *context)
6643 {
6644 struct pmu *pmu;
6645 struct perf_event *event;
6646 struct hw_perf_event *hwc;
6647 long err = -EINVAL;
6648
6649 if ((unsigned)cpu >= nr_cpu_ids) {
6650 if (!task || cpu != -1)
6651 return ERR_PTR(-EINVAL);
6652 }
6653
6654 event = kzalloc(sizeof(*event), GFP_KERNEL);
6655 if (!event)
6656 return ERR_PTR(-ENOMEM);
6657
6658 /*
6659 * Single events are their own group leaders, with an
6660 * empty sibling list:
6661 */
6662 if (!group_leader)
6663 group_leader = event;
6664
6665 mutex_init(&event->child_mutex);
6666 INIT_LIST_HEAD(&event->child_list);
6667
6668 INIT_LIST_HEAD(&event->group_entry);
6669 INIT_LIST_HEAD(&event->event_entry);
6670 INIT_LIST_HEAD(&event->sibling_list);
6671 INIT_LIST_HEAD(&event->rb_entry);
6672 INIT_LIST_HEAD(&event->active_entry);
6673 INIT_HLIST_NODE(&event->hlist_entry);
6674
6675
6676 init_waitqueue_head(&event->waitq);
6677 init_irq_work(&event->pending, perf_pending_event);
6678
6679 mutex_init(&event->mmap_mutex);
6680
6681 atomic_long_set(&event->refcount, 1);
6682 event->cpu = cpu;
6683 event->attr = *attr;
6684 event->group_leader = group_leader;
6685 event->pmu = NULL;
6686 event->oncpu = -1;
6687
6688 event->parent = parent_event;
6689
6690 event->ns = get_pid_ns(task_active_pid_ns(current));
6691 event->id = atomic64_inc_return(&perf_event_id);
6692
6693 event->state = PERF_EVENT_STATE_INACTIVE;
6694
6695 if (task) {
6696 event->attach_state = PERF_ATTACH_TASK;
6697
6698 if (attr->type == PERF_TYPE_TRACEPOINT)
6699 event->hw.tp_target = task;
6700 #ifdef CONFIG_HAVE_HW_BREAKPOINT
6701 /*
6702 * hw_breakpoint is a bit difficult here..
6703 */
6704 else if (attr->type == PERF_TYPE_BREAKPOINT)
6705 event->hw.bp_target = task;
6706 #endif
6707 }
6708
6709 if (!overflow_handler && parent_event) {
6710 overflow_handler = parent_event->overflow_handler;
6711 context = parent_event->overflow_handler_context;
6712 }
6713
6714 event->overflow_handler = overflow_handler;
6715 event->overflow_handler_context = context;
6716
6717 perf_event__state_init(event);
6718
6719 pmu = NULL;
6720
6721 hwc = &event->hw;
6722 hwc->sample_period = attr->sample_period;
6723 if (attr->freq && attr->sample_freq)
6724 hwc->sample_period = 1;
6725 hwc->last_period = hwc->sample_period;
6726
6727 local64_set(&hwc->period_left, hwc->sample_period);
6728
6729 /*
6730 * we currently do not support PERF_FORMAT_GROUP on inherited events
6731 */
6732 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
6733 goto err_ns;
6734
6735 pmu = perf_init_event(event);
6736 if (!pmu)
6737 goto err_ns;
6738 else if (IS_ERR(pmu)) {
6739 err = PTR_ERR(pmu);
6740 goto err_ns;
6741 }
6742
6743 if (!event->parent) {
6744 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
6745 err = get_callchain_buffers();
6746 if (err)
6747 goto err_pmu;
6748 }
6749 }
6750
6751 return event;
6752
6753 err_pmu:
6754 if (event->destroy)
6755 event->destroy(event);
6756 err_ns:
6757 if (event->ns)
6758 put_pid_ns(event->ns);
6759 kfree(event);
6760
6761 return ERR_PTR(err);
6762 }
6763
6764 static int perf_copy_attr(struct perf_event_attr __user *uattr,
6765 struct perf_event_attr *attr)
6766 {
6767 u32 size;
6768 int ret;
6769
6770 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
6771 return -EFAULT;
6772
6773 /*
6774 * zero the full structure, so that a short copy will be nice.
6775 */
6776 memset(attr, 0, sizeof(*attr));
6777
6778 ret = get_user(size, &uattr->size);
6779 if (ret)
6780 return ret;
6781
6782 if (size > PAGE_SIZE) /* silly large */
6783 goto err_size;
6784
6785 if (!size) /* abi compat */
6786 size = PERF_ATTR_SIZE_VER0;
6787
6788 if (size < PERF_ATTR_SIZE_VER0)
6789 goto err_size;
6790
6791 /*
6792 * If we're handed a bigger struct than we know of,
6793 * ensure all the unknown bits are 0 - i.e. new
6794 * user-space does not rely on any kernel feature
6795 * extensions we dont know about yet.
6796 */
6797 if (size > sizeof(*attr)) {
6798 unsigned char __user *addr;
6799 unsigned char __user *end;
6800 unsigned char val;
6801
6802 addr = (void __user *)uattr + sizeof(*attr);
6803 end = (void __user *)uattr + size;
6804
6805 for (; addr < end; addr++) {
6806 ret = get_user(val, addr);
6807 if (ret)
6808 return ret;
6809 if (val)
6810 goto err_size;
6811 }
6812 size = sizeof(*attr);
6813 }
6814
6815 ret = copy_from_user(attr, uattr, size);
6816 if (ret)
6817 return -EFAULT;
6818
6819 /* disabled for now */
6820 if (attr->mmap2)
6821 return -EINVAL;
6822
6823 if (attr->__reserved_1)
6824 return -EINVAL;
6825
6826 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
6827 return -EINVAL;
6828
6829 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
6830 return -EINVAL;
6831
6832 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
6833 u64 mask = attr->branch_sample_type;
6834
6835 /* only using defined bits */
6836 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
6837 return -EINVAL;
6838
6839 /* at least one branch bit must be set */
6840 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
6841 return -EINVAL;
6842
6843 /* propagate priv level, when not set for branch */
6844 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
6845
6846 /* exclude_kernel checked on syscall entry */
6847 if (!attr->exclude_kernel)
6848 mask |= PERF_SAMPLE_BRANCH_KERNEL;
6849
6850 if (!attr->exclude_user)
6851 mask |= PERF_SAMPLE_BRANCH_USER;
6852
6853 if (!attr->exclude_hv)
6854 mask |= PERF_SAMPLE_BRANCH_HV;
6855 /*
6856 * adjust user setting (for HW filter setup)
6857 */
6858 attr->branch_sample_type = mask;
6859 }
6860 /* privileged levels capture (kernel, hv): check permissions */
6861 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
6862 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
6863 return -EACCES;
6864 }
6865
6866 if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
6867 ret = perf_reg_validate(attr->sample_regs_user);
6868 if (ret)
6869 return ret;
6870 }
6871
6872 if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
6873 if (!arch_perf_have_user_stack_dump())
6874 return -ENOSYS;
6875
6876 /*
6877 * We have __u32 type for the size, but so far
6878 * we can only use __u16 as maximum due to the
6879 * __u16 sample size limit.
6880 */
6881 if (attr->sample_stack_user >= USHRT_MAX)
6882 ret = -EINVAL;
6883 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
6884 ret = -EINVAL;
6885 }
6886
6887 out:
6888 return ret;
6889
6890 err_size:
6891 put_user(sizeof(*attr), &uattr->size);
6892 ret = -E2BIG;
6893 goto out;
6894 }
6895
6896 static int
6897 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
6898 {
6899 struct ring_buffer *rb = NULL, *old_rb = NULL;
6900 int ret = -EINVAL;
6901
6902 if (!output_event)
6903 goto set;
6904
6905 /* don't allow circular references */
6906 if (event == output_event)
6907 goto out;
6908
6909 /*
6910 * Don't allow cross-cpu buffers
6911 */
6912 if (output_event->cpu != event->cpu)
6913 goto out;
6914
6915 /*
6916 * If its not a per-cpu rb, it must be the same task.
6917 */
6918 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
6919 goto out;
6920
6921 set:
6922 mutex_lock(&event->mmap_mutex);
6923 /* Can't redirect output if we've got an active mmap() */
6924 if (atomic_read(&event->mmap_count))
6925 goto unlock;
6926
6927 old_rb = event->rb;
6928
6929 if (output_event) {
6930 /* get the rb we want to redirect to */
6931 rb = ring_buffer_get(output_event);
6932 if (!rb)
6933 goto unlock;
6934 }
6935
6936 if (old_rb)
6937 ring_buffer_detach(event, old_rb);
6938
6939 if (rb)
6940 ring_buffer_attach(event, rb);
6941
6942 rcu_assign_pointer(event->rb, rb);
6943
6944 if (old_rb) {
6945 ring_buffer_put(old_rb);
6946 /*
6947 * Since we detached before setting the new rb, so that we
6948 * could attach the new rb, we could have missed a wakeup.
6949 * Provide it now.
6950 */
6951 wake_up_all(&event->waitq);
6952 }
6953
6954 ret = 0;
6955 unlock:
6956 mutex_unlock(&event->mmap_mutex);
6957
6958 out:
6959 return ret;
6960 }
6961
6962 /**
6963 * sys_perf_event_open - open a performance event, associate it to a task/cpu
6964 *
6965 * @attr_uptr: event_id type attributes for monitoring/sampling
6966 * @pid: target pid
6967 * @cpu: target cpu
6968 * @group_fd: group leader event fd
6969 */
6970 SYSCALL_DEFINE5(perf_event_open,
6971 struct perf_event_attr __user *, attr_uptr,
6972 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
6973 {
6974 struct perf_event *group_leader = NULL, *output_event = NULL;
6975 struct perf_event *event, *sibling;
6976 struct perf_event_attr attr;
6977 struct perf_event_context *ctx;
6978 struct file *event_file = NULL;
6979 struct fd group = {NULL, 0};
6980 struct task_struct *task = NULL;
6981 struct pmu *pmu;
6982 int event_fd;
6983 int move_group = 0;
6984 int err;
6985
6986 /* for future expandability... */
6987 if (flags & ~PERF_FLAG_ALL)
6988 return -EINVAL;
6989
6990 err = perf_copy_attr(attr_uptr, &attr);
6991 if (err)
6992 return err;
6993
6994 if (!attr.exclude_kernel) {
6995 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
6996 return -EACCES;
6997 }
6998
6999 if (attr.freq) {
7000 if (attr.sample_freq > sysctl_perf_event_sample_rate)
7001 return -EINVAL;
7002 }
7003
7004 /*
7005 * In cgroup mode, the pid argument is used to pass the fd
7006 * opened to the cgroup directory in cgroupfs. The cpu argument
7007 * designates the cpu on which to monitor threads from that
7008 * cgroup.
7009 */
7010 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
7011 return -EINVAL;
7012
7013 event_fd = get_unused_fd();
7014 if (event_fd < 0)
7015 return event_fd;
7016
7017 if (group_fd != -1) {
7018 err = perf_fget_light(group_fd, &group);
7019 if (err)
7020 goto err_fd;
7021 group_leader = group.file->private_data;
7022 if (flags & PERF_FLAG_FD_OUTPUT)
7023 output_event = group_leader;
7024 if (flags & PERF_FLAG_FD_NO_GROUP)
7025 group_leader = NULL;
7026 }
7027
7028 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
7029 task = find_lively_task_by_vpid(pid);
7030 if (IS_ERR(task)) {
7031 err = PTR_ERR(task);
7032 goto err_group_fd;
7033 }
7034 }
7035
7036 get_online_cpus();
7037
7038 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
7039 NULL, NULL);
7040 if (IS_ERR(event)) {
7041 err = PTR_ERR(event);
7042 goto err_task;
7043 }
7044
7045 if (flags & PERF_FLAG_PID_CGROUP) {
7046 err = perf_cgroup_connect(pid, event, &attr, group_leader);
7047 if (err) {
7048 __free_event(event);
7049 goto err_task;
7050 }
7051 }
7052
7053 account_event(event);
7054
7055 /*
7056 * Special case software events and allow them to be part of
7057 * any hardware group.
7058 */
7059 pmu = event->pmu;
7060
7061 if (group_leader &&
7062 (is_software_event(event) != is_software_event(group_leader))) {
7063 if (is_software_event(event)) {
7064 /*
7065 * If event and group_leader are not both a software
7066 * event, and event is, then group leader is not.
7067 *
7068 * Allow the addition of software events to !software
7069 * groups, this is safe because software events never
7070 * fail to schedule.
7071 */
7072 pmu = group_leader->pmu;
7073 } else if (is_software_event(group_leader) &&
7074 (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
7075 /*
7076 * In case the group is a pure software group, and we
7077 * try to add a hardware event, move the whole group to
7078 * the hardware context.
7079 */
7080 move_group = 1;
7081 }
7082 }
7083
7084 /*
7085 * Get the target context (task or percpu):
7086 */
7087 ctx = find_get_context(pmu, task, event->cpu);
7088 if (IS_ERR(ctx)) {
7089 err = PTR_ERR(ctx);
7090 goto err_alloc;
7091 }
7092
7093 if (task) {
7094 put_task_struct(task);
7095 task = NULL;
7096 }
7097
7098 /*
7099 * Look up the group leader (we will attach this event to it):
7100 */
7101 if (group_leader) {
7102 err = -EINVAL;
7103
7104 /*
7105 * Do not allow a recursive hierarchy (this new sibling
7106 * becoming part of another group-sibling):
7107 */
7108 if (group_leader->group_leader != group_leader)
7109 goto err_context;
7110 /*
7111 * Do not allow to attach to a group in a different
7112 * task or CPU context:
7113 */
7114 if (move_group) {
7115 if (group_leader->ctx->type != ctx->type)
7116 goto err_context;
7117 } else {
7118 if (group_leader->ctx != ctx)
7119 goto err_context;
7120 }
7121
7122 /*
7123 * Only a group leader can be exclusive or pinned
7124 */
7125 if (attr.exclusive || attr.pinned)
7126 goto err_context;
7127 }
7128
7129 if (output_event) {
7130 err = perf_event_set_output(event, output_event);
7131 if (err)
7132 goto err_context;
7133 }
7134
7135 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
7136 if (IS_ERR(event_file)) {
7137 err = PTR_ERR(event_file);
7138 goto err_context;
7139 }
7140
7141 if (move_group) {
7142 struct perf_event_context *gctx = group_leader->ctx;
7143
7144 mutex_lock(&gctx->mutex);
7145 perf_remove_from_context(group_leader);
7146
7147 /*
7148 * Removing from the context ends up with disabled
7149 * event. What we want here is event in the initial
7150 * startup state, ready to be add into new context.
7151 */
7152 perf_event__state_init(group_leader);
7153 list_for_each_entry(sibling, &group_leader->sibling_list,
7154 group_entry) {
7155 perf_remove_from_context(sibling);
7156 perf_event__state_init(sibling);
7157 put_ctx(gctx);
7158 }
7159 mutex_unlock(&gctx->mutex);
7160 put_ctx(gctx);
7161 }
7162
7163 WARN_ON_ONCE(ctx->parent_ctx);
7164 mutex_lock(&ctx->mutex);
7165
7166 if (move_group) {
7167 synchronize_rcu();
7168 perf_install_in_context(ctx, group_leader, event->cpu);
7169 get_ctx(ctx);
7170 list_for_each_entry(sibling, &group_leader->sibling_list,
7171 group_entry) {
7172 perf_install_in_context(ctx, sibling, event->cpu);
7173 get_ctx(ctx);
7174 }
7175 }
7176
7177 perf_install_in_context(ctx, event, event->cpu);
7178 perf_unpin_context(ctx);
7179 mutex_unlock(&ctx->mutex);
7180
7181 put_online_cpus();
7182
7183 event->owner = current;
7184
7185 mutex_lock(&current->perf_event_mutex);
7186 list_add_tail(&event->owner_entry, &current->perf_event_list);
7187 mutex_unlock(&current->perf_event_mutex);
7188
7189 /*
7190 * Precalculate sample_data sizes
7191 */
7192 perf_event__header_size(event);
7193 perf_event__id_header_size(event);
7194
7195 /*
7196 * Drop the reference on the group_event after placing the
7197 * new event on the sibling_list. This ensures destruction
7198 * of the group leader will find the pointer to itself in
7199 * perf_group_detach().
7200 */
7201 fdput(group);
7202 fd_install(event_fd, event_file);
7203 return event_fd;
7204
7205 err_context:
7206 perf_unpin_context(ctx);
7207 put_ctx(ctx);
7208 err_alloc:
7209 free_event(event);
7210 err_task:
7211 put_online_cpus();
7212 if (task)
7213 put_task_struct(task);
7214 err_group_fd:
7215 fdput(group);
7216 err_fd:
7217 put_unused_fd(event_fd);
7218 return err;
7219 }
7220
7221 /**
7222 * perf_event_create_kernel_counter
7223 *
7224 * @attr: attributes of the counter to create
7225 * @cpu: cpu in which the counter is bound
7226 * @task: task to profile (NULL for percpu)
7227 */
7228 struct perf_event *
7229 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
7230 struct task_struct *task,
7231 perf_overflow_handler_t overflow_handler,
7232 void *context)
7233 {
7234 struct perf_event_context *ctx;
7235 struct perf_event *event;
7236 int err;
7237
7238 /*
7239 * Get the target context (task or percpu):
7240 */
7241
7242 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
7243 overflow_handler, context);
7244 if (IS_ERR(event)) {
7245 err = PTR_ERR(event);
7246 goto err;
7247 }
7248
7249 account_event(event);
7250
7251 ctx = find_get_context(event->pmu, task, cpu);
7252 if (IS_ERR(ctx)) {
7253 err = PTR_ERR(ctx);
7254 goto err_free;
7255 }
7256
7257 WARN_ON_ONCE(ctx->parent_ctx);
7258 mutex_lock(&ctx->mutex);
7259 perf_install_in_context(ctx, event, cpu);
7260 perf_unpin_context(ctx);
7261 mutex_unlock(&ctx->mutex);
7262
7263 return event;
7264
7265 err_free:
7266 free_event(event);
7267 err:
7268 return ERR_PTR(err);
7269 }
7270 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
7271
7272 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
7273 {
7274 struct perf_event_context *src_ctx;
7275 struct perf_event_context *dst_ctx;
7276 struct perf_event *event, *tmp;
7277 LIST_HEAD(events);
7278
7279 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
7280 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
7281
7282 mutex_lock(&src_ctx->mutex);
7283 list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
7284 event_entry) {
7285 perf_remove_from_context(event);
7286 unaccount_event_cpu(event, src_cpu);
7287 put_ctx(src_ctx);
7288 list_add(&event->migrate_entry, &events);
7289 }
7290 mutex_unlock(&src_ctx->mutex);
7291
7292 synchronize_rcu();
7293
7294 mutex_lock(&dst_ctx->mutex);
7295 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
7296 list_del(&event->migrate_entry);
7297 if (event->state >= PERF_EVENT_STATE_OFF)
7298 event->state = PERF_EVENT_STATE_INACTIVE;
7299 account_event_cpu(event, dst_cpu);
7300 perf_install_in_context(dst_ctx, event, dst_cpu);
7301 get_ctx(dst_ctx);
7302 }
7303 mutex_unlock(&dst_ctx->mutex);
7304 }
7305 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
7306
7307 static void sync_child_event(struct perf_event *child_event,
7308 struct task_struct *child)
7309 {
7310 struct perf_event *parent_event = child_event->parent;
7311 u64 child_val;
7312
7313 if (child_event->attr.inherit_stat)
7314 perf_event_read_event(child_event, child);
7315
7316 child_val = perf_event_count(child_event);
7317
7318 /*
7319 * Add back the child's count to the parent's count:
7320 */
7321 atomic64_add(child_val, &parent_event->child_count);
7322 atomic64_add(child_event->total_time_enabled,
7323 &parent_event->child_total_time_enabled);
7324 atomic64_add(child_event->total_time_running,
7325 &parent_event->child_total_time_running);
7326
7327 /*
7328 * Remove this event from the parent's list
7329 */
7330 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
7331 mutex_lock(&parent_event->child_mutex);
7332 list_del_init(&child_event->child_list);
7333 mutex_unlock(&parent_event->child_mutex);
7334
7335 /*
7336 * Release the parent event, if this was the last
7337 * reference to it.
7338 */
7339 put_event(parent_event);
7340 }
7341
7342 static void
7343 __perf_event_exit_task(struct perf_event *child_event,
7344 struct perf_event_context *child_ctx,
7345 struct task_struct *child)
7346 {
7347 if (child_event->parent) {
7348 raw_spin_lock_irq(&child_ctx->lock);
7349 perf_group_detach(child_event);
7350 raw_spin_unlock_irq(&child_ctx->lock);
7351 }
7352
7353 perf_remove_from_context(child_event);
7354
7355 /*
7356 * It can happen that the parent exits first, and has events
7357 * that are still around due to the child reference. These
7358 * events need to be zapped.
7359 */
7360 if (child_event->parent) {
7361 sync_child_event(child_event, child);
7362 free_event(child_event);
7363 }
7364 }
7365
7366 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
7367 {
7368 struct perf_event *child_event, *tmp;
7369 struct perf_event_context *child_ctx;
7370 unsigned long flags;
7371
7372 if (likely(!child->perf_event_ctxp[ctxn])) {
7373 perf_event_task(child, NULL, 0);
7374 return;
7375 }
7376
7377 local_irq_save(flags);
7378 /*
7379 * We can't reschedule here because interrupts are disabled,
7380 * and either child is current or it is a task that can't be
7381 * scheduled, so we are now safe from rescheduling changing
7382 * our context.
7383 */
7384 child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
7385
7386 /*
7387 * Take the context lock here so that if find_get_context is
7388 * reading child->perf_event_ctxp, we wait until it has
7389 * incremented the context's refcount before we do put_ctx below.
7390 */
7391 raw_spin_lock(&child_ctx->lock);
7392 task_ctx_sched_out(child_ctx);
7393 child->perf_event_ctxp[ctxn] = NULL;
7394 /*
7395 * If this context is a clone; unclone it so it can't get
7396 * swapped to another process while we're removing all
7397 * the events from it.
7398 */
7399 unclone_ctx(child_ctx);
7400 update_context_time(child_ctx);
7401 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
7402
7403 /*
7404 * Report the task dead after unscheduling the events so that we
7405 * won't get any samples after PERF_RECORD_EXIT. We can however still
7406 * get a few PERF_RECORD_READ events.
7407 */
7408 perf_event_task(child, child_ctx, 0);
7409
7410 /*
7411 * We can recurse on the same lock type through:
7412 *
7413 * __perf_event_exit_task()
7414 * sync_child_event()
7415 * put_event()
7416 * mutex_lock(&ctx->mutex)
7417 *
7418 * But since its the parent context it won't be the same instance.
7419 */
7420 mutex_lock(&child_ctx->mutex);
7421
7422 again:
7423 list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
7424 group_entry)
7425 __perf_event_exit_task(child_event, child_ctx, child);
7426
7427 list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
7428 group_entry)
7429 __perf_event_exit_task(child_event, child_ctx, child);
7430
7431 /*
7432 * If the last event was a group event, it will have appended all
7433 * its siblings to the list, but we obtained 'tmp' before that which
7434 * will still point to the list head terminating the iteration.
7435 */
7436 if (!list_empty(&child_ctx->pinned_groups) ||
7437 !list_empty(&child_ctx->flexible_groups))
7438 goto again;
7439
7440 mutex_unlock(&child_ctx->mutex);
7441
7442 put_ctx(child_ctx);
7443 }
7444
7445 /*
7446 * When a child task exits, feed back event values to parent events.
7447 */
7448 void perf_event_exit_task(struct task_struct *child)
7449 {
7450 struct perf_event *event, *tmp;
7451 int ctxn;
7452
7453 mutex_lock(&child->perf_event_mutex);
7454 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
7455 owner_entry) {
7456 list_del_init(&event->owner_entry);
7457
7458 /*
7459 * Ensure the list deletion is visible before we clear
7460 * the owner, closes a race against perf_release() where
7461 * we need to serialize on the owner->perf_event_mutex.
7462 */
7463 smp_wmb();
7464 event->owner = NULL;
7465 }
7466 mutex_unlock(&child->perf_event_mutex);
7467
7468 for_each_task_context_nr(ctxn)
7469 perf_event_exit_task_context(child, ctxn);
7470 }
7471
7472 static void perf_free_event(struct perf_event *event,
7473 struct perf_event_context *ctx)
7474 {
7475 struct perf_event *parent = event->parent;
7476
7477 if (WARN_ON_ONCE(!parent))
7478 return;
7479
7480 mutex_lock(&parent->child_mutex);
7481 list_del_init(&event->child_list);
7482 mutex_unlock(&parent->child_mutex);
7483
7484 put_event(parent);
7485
7486 perf_group_detach(event);
7487 list_del_event(event, ctx);
7488 free_event(event);
7489 }
7490
7491 /*
7492 * free an unexposed, unused context as created by inheritance by
7493 * perf_event_init_task below, used by fork() in case of fail.
7494 */
7495 void perf_event_free_task(struct task_struct *task)
7496 {
7497 struct perf_event_context *ctx;
7498 struct perf_event *event, *tmp;
7499 int ctxn;
7500
7501 for_each_task_context_nr(ctxn) {
7502 ctx = task->perf_event_ctxp[ctxn];
7503 if (!ctx)
7504 continue;
7505
7506 mutex_lock(&ctx->mutex);
7507 again:
7508 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
7509 group_entry)
7510 perf_free_event(event, ctx);
7511
7512 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
7513 group_entry)
7514 perf_free_event(event, ctx);
7515
7516 if (!list_empty(&ctx->pinned_groups) ||
7517 !list_empty(&ctx->flexible_groups))
7518 goto again;
7519
7520 mutex_unlock(&ctx->mutex);
7521
7522 put_ctx(ctx);
7523 }
7524 }
7525
7526 void perf_event_delayed_put(struct task_struct *task)
7527 {
7528 int ctxn;
7529
7530 for_each_task_context_nr(ctxn)
7531 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
7532 }
7533
7534 /*
7535 * inherit a event from parent task to child task:
7536 */
7537 static struct perf_event *
7538 inherit_event(struct perf_event *parent_event,
7539 struct task_struct *parent,
7540 struct perf_event_context *parent_ctx,
7541 struct task_struct *child,
7542 struct perf_event *group_leader,
7543 struct perf_event_context *child_ctx)
7544 {
7545 struct perf_event *child_event;
7546 unsigned long flags;
7547
7548 /*
7549 * Instead of creating recursive hierarchies of events,
7550 * we link inherited events back to the original parent,
7551 * which has a filp for sure, which we use as the reference
7552 * count:
7553 */
7554 if (parent_event->parent)
7555 parent_event = parent_event->parent;
7556
7557 child_event = perf_event_alloc(&parent_event->attr,
7558 parent_event->cpu,
7559 child,
7560 group_leader, parent_event,
7561 NULL, NULL);
7562 if (IS_ERR(child_event))
7563 return child_event;
7564
7565 if (!atomic_long_inc_not_zero(&parent_event->refcount)) {
7566 free_event(child_event);
7567 return NULL;
7568 }
7569
7570 get_ctx(child_ctx);
7571
7572 /*
7573 * Make the child state follow the state of the parent event,
7574 * not its attr.disabled bit. We hold the parent's mutex,
7575 * so we won't race with perf_event_{en, dis}able_family.
7576 */
7577 if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
7578 child_event->state = PERF_EVENT_STATE_INACTIVE;
7579 else
7580 child_event->state = PERF_EVENT_STATE_OFF;
7581
7582 if (parent_event->attr.freq) {
7583 u64 sample_period = parent_event->hw.sample_period;
7584 struct hw_perf_event *hwc = &child_event->hw;
7585
7586 hwc->sample_period = sample_period;
7587 hwc->last_period = sample_period;
7588
7589 local64_set(&hwc->period_left, sample_period);
7590 }
7591
7592 child_event->ctx = child_ctx;
7593 child_event->overflow_handler = parent_event->overflow_handler;
7594 child_event->overflow_handler_context
7595 = parent_event->overflow_handler_context;
7596
7597 /*
7598 * Precalculate sample_data sizes
7599 */
7600 perf_event__header_size(child_event);
7601 perf_event__id_header_size(child_event);
7602
7603 /*
7604 * Link it up in the child's context:
7605 */
7606 raw_spin_lock_irqsave(&child_ctx->lock, flags);
7607 add_event_to_ctx(child_event, child_ctx);
7608 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
7609
7610 /*
7611 * Link this into the parent event's child list
7612 */
7613 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
7614 mutex_lock(&parent_event->child_mutex);
7615 list_add_tail(&child_event->child_list, &parent_event->child_list);
7616 mutex_unlock(&parent_event->child_mutex);
7617
7618 return child_event;
7619 }
7620
7621 static int inherit_group(struct perf_event *parent_event,
7622 struct task_struct *parent,
7623 struct perf_event_context *parent_ctx,
7624 struct task_struct *child,
7625 struct perf_event_context *child_ctx)
7626 {
7627 struct perf_event *leader;
7628 struct perf_event *sub;
7629 struct perf_event *child_ctr;
7630
7631 leader = inherit_event(parent_event, parent, parent_ctx,
7632 child, NULL, child_ctx);
7633 if (IS_ERR(leader))
7634 return PTR_ERR(leader);
7635 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
7636 child_ctr = inherit_event(sub, parent, parent_ctx,
7637 child, leader, child_ctx);
7638 if (IS_ERR(child_ctr))
7639 return PTR_ERR(child_ctr);
7640 }
7641 return 0;
7642 }
7643
7644 static int
7645 inherit_task_group(struct perf_event *event, struct task_struct *parent,
7646 struct perf_event_context *parent_ctx,
7647 struct task_struct *child, int ctxn,
7648 int *inherited_all)
7649 {
7650 int ret;
7651 struct perf_event_context *child_ctx;
7652
7653 if (!event->attr.inherit) {
7654 *inherited_all = 0;
7655 return 0;
7656 }
7657
7658 child_ctx = child->perf_event_ctxp[ctxn];
7659 if (!child_ctx) {
7660 /*
7661 * This is executed from the parent task context, so
7662 * inherit events that have been marked for cloning.
7663 * First allocate and initialize a context for the
7664 * child.
7665 */
7666
7667 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
7668 if (!child_ctx)
7669 return -ENOMEM;
7670
7671 child->perf_event_ctxp[ctxn] = child_ctx;
7672 }
7673
7674 ret = inherit_group(event, parent, parent_ctx,
7675 child, child_ctx);
7676
7677 if (ret)
7678 *inherited_all = 0;
7679
7680 return ret;
7681 }
7682
7683 /*
7684 * Initialize the perf_event context in task_struct
7685 */
7686 int perf_event_init_context(struct task_struct *child, int ctxn)
7687 {
7688 struct perf_event_context *child_ctx, *parent_ctx;
7689 struct perf_event_context *cloned_ctx;
7690 struct perf_event *event;
7691 struct task_struct *parent = current;
7692 int inherited_all = 1;
7693 unsigned long flags;
7694 int ret = 0;
7695
7696 if (likely(!parent->perf_event_ctxp[ctxn]))
7697 return 0;
7698
7699 /*
7700 * If the parent's context is a clone, pin it so it won't get
7701 * swapped under us.
7702 */
7703 parent_ctx = perf_pin_task_context(parent, ctxn);
7704
7705 /*
7706 * No need to check if parent_ctx != NULL here; since we saw
7707 * it non-NULL earlier, the only reason for it to become NULL
7708 * is if we exit, and since we're currently in the middle of
7709 * a fork we can't be exiting at the same time.
7710 */
7711
7712 /*
7713 * Lock the parent list. No need to lock the child - not PID
7714 * hashed yet and not running, so nobody can access it.
7715 */
7716 mutex_lock(&parent_ctx->mutex);
7717
7718 /*
7719 * We dont have to disable NMIs - we are only looking at
7720 * the list, not manipulating it:
7721 */
7722 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
7723 ret = inherit_task_group(event, parent, parent_ctx,
7724 child, ctxn, &inherited_all);
7725 if (ret)
7726 break;
7727 }
7728
7729 /*
7730 * We can't hold ctx->lock when iterating the ->flexible_group list due
7731 * to allocations, but we need to prevent rotation because
7732 * rotate_ctx() will change the list from interrupt context.
7733 */
7734 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
7735 parent_ctx->rotate_disable = 1;
7736 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
7737
7738 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
7739 ret = inherit_task_group(event, parent, parent_ctx,
7740 child, ctxn, &inherited_all);
7741 if (ret)
7742 break;
7743 }
7744
7745 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
7746 parent_ctx->rotate_disable = 0;
7747
7748 child_ctx = child->perf_event_ctxp[ctxn];
7749
7750 if (child_ctx && inherited_all) {
7751 /*
7752 * Mark the child context as a clone of the parent
7753 * context, or of whatever the parent is a clone of.
7754 *
7755 * Note that if the parent is a clone, the holding of
7756 * parent_ctx->lock avoids it from being uncloned.
7757 */
7758 cloned_ctx = parent_ctx->parent_ctx;
7759 if (cloned_ctx) {
7760 child_ctx->parent_ctx = cloned_ctx;
7761 child_ctx->parent_gen = parent_ctx->parent_gen;
7762 } else {
7763 child_ctx->parent_ctx = parent_ctx;
7764 child_ctx->parent_gen = parent_ctx->generation;
7765 }
7766 get_ctx(child_ctx->parent_ctx);
7767 }
7768
7769 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
7770 mutex_unlock(&parent_ctx->mutex);
7771
7772 perf_unpin_context(parent_ctx);
7773 put_ctx(parent_ctx);
7774
7775 return ret;
7776 }
7777
7778 /*
7779 * Initialize the perf_event context in task_struct
7780 */
7781 int perf_event_init_task(struct task_struct *child)
7782 {
7783 int ctxn, ret;
7784
7785 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
7786 mutex_init(&child->perf_event_mutex);
7787 INIT_LIST_HEAD(&child->perf_event_list);
7788
7789 for_each_task_context_nr(ctxn) {
7790 ret = perf_event_init_context(child, ctxn);
7791 if (ret)
7792 return ret;
7793 }
7794
7795 return 0;
7796 }
7797
7798 static void __init perf_event_init_all_cpus(void)
7799 {
7800 struct swevent_htable *swhash;
7801 int cpu;
7802
7803 for_each_possible_cpu(cpu) {
7804 swhash = &per_cpu(swevent_htable, cpu);
7805 mutex_init(&swhash->hlist_mutex);
7806 INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
7807 }
7808 }
7809
7810 static void perf_event_init_cpu(int cpu)
7811 {
7812 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7813
7814 mutex_lock(&swhash->hlist_mutex);
7815 if (swhash->hlist_refcount > 0) {
7816 struct swevent_hlist *hlist;
7817
7818 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
7819 WARN_ON(!hlist);
7820 rcu_assign_pointer(swhash->swevent_hlist, hlist);
7821 }
7822 mutex_unlock(&swhash->hlist_mutex);
7823 }
7824
7825 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
7826 static void perf_pmu_rotate_stop(struct pmu *pmu)
7827 {
7828 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
7829
7830 WARN_ON(!irqs_disabled());
7831
7832 list_del_init(&cpuctx->rotation_list);
7833 }
7834
7835 static void __perf_event_exit_context(void *__info)
7836 {
7837 struct perf_event_context *ctx = __info;
7838 struct perf_event *event, *tmp;
7839
7840 perf_pmu_rotate_stop(ctx->pmu);
7841
7842 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
7843 __perf_remove_from_context(event);
7844 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
7845 __perf_remove_from_context(event);
7846 }
7847
7848 static void perf_event_exit_cpu_context(int cpu)
7849 {
7850 struct perf_event_context *ctx;
7851 struct pmu *pmu;
7852 int idx;
7853
7854 idx = srcu_read_lock(&pmus_srcu);
7855 list_for_each_entry_rcu(pmu, &pmus, entry) {
7856 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
7857
7858 mutex_lock(&ctx->mutex);
7859 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
7860 mutex_unlock(&ctx->mutex);
7861 }
7862 srcu_read_unlock(&pmus_srcu, idx);
7863 }
7864
7865 static void perf_event_exit_cpu(int cpu)
7866 {
7867 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7868
7869 mutex_lock(&swhash->hlist_mutex);
7870 swevent_hlist_release(swhash);
7871 mutex_unlock(&swhash->hlist_mutex);
7872
7873 perf_event_exit_cpu_context(cpu);
7874 }
7875 #else
7876 static inline void perf_event_exit_cpu(int cpu) { }
7877 #endif
7878
7879 static int
7880 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
7881 {
7882 int cpu;
7883
7884 for_each_online_cpu(cpu)
7885 perf_event_exit_cpu(cpu);
7886
7887 return NOTIFY_OK;
7888 }
7889
7890 /*
7891 * Run the perf reboot notifier at the very last possible moment so that
7892 * the generic watchdog code runs as long as possible.
7893 */
7894 static struct notifier_block perf_reboot_notifier = {
7895 .notifier_call = perf_reboot,
7896 .priority = INT_MIN,
7897 };
7898
7899 static int
7900 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
7901 {
7902 unsigned int cpu = (long)hcpu;
7903
7904 switch (action & ~CPU_TASKS_FROZEN) {
7905
7906 case CPU_UP_PREPARE:
7907 case CPU_DOWN_FAILED:
7908 perf_event_init_cpu(cpu);
7909 break;
7910
7911 case CPU_UP_CANCELED:
7912 case CPU_DOWN_PREPARE:
7913 perf_event_exit_cpu(cpu);
7914 break;
7915 default:
7916 break;
7917 }
7918
7919 return NOTIFY_OK;
7920 }
7921
7922 void __init perf_event_init(void)
7923 {
7924 int ret;
7925
7926 idr_init(&pmu_idr);
7927
7928 perf_event_init_all_cpus();
7929 init_srcu_struct(&pmus_srcu);
7930 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
7931 perf_pmu_register(&perf_cpu_clock, NULL, -1);
7932 perf_pmu_register(&perf_task_clock, NULL, -1);
7933 perf_tp_register();
7934 perf_cpu_notifier(perf_cpu_notify);
7935 register_reboot_notifier(&perf_reboot_notifier);
7936
7937 ret = init_hw_breakpoint();
7938 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
7939
7940 /* do not patch jump label more than once per second */
7941 jump_label_rate_limit(&perf_sched_events, HZ);
7942
7943 /*
7944 * Build time assertion that we keep the data_head at the intended
7945 * location. IOW, validation we got the __reserved[] size right.
7946 */
7947 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
7948 != 1024);
7949 }
7950
7951 static int __init perf_event_sysfs_init(void)
7952 {
7953 struct pmu *pmu;
7954 int ret;
7955
7956 mutex_lock(&pmus_lock);
7957
7958 ret = bus_register(&pmu_bus);
7959 if (ret)
7960 goto unlock;
7961
7962 list_for_each_entry(pmu, &pmus, entry) {
7963 if (!pmu->name || pmu->type < 0)
7964 continue;
7965
7966 ret = pmu_dev_alloc(pmu);
7967 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
7968 }
7969 pmu_bus_running = 1;
7970 ret = 0;
7971
7972 unlock:
7973 mutex_unlock(&pmus_lock);
7974
7975 return ret;
7976 }
7977 device_initcall(perf_event_sysfs_init);
7978
7979 #ifdef CONFIG_CGROUP_PERF
7980 static struct cgroup_subsys_state *
7981 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
7982 {
7983 struct perf_cgroup *jc;
7984
7985 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
7986 if (!jc)
7987 return ERR_PTR(-ENOMEM);
7988
7989 jc->info = alloc_percpu(struct perf_cgroup_info);
7990 if (!jc->info) {
7991 kfree(jc);
7992 return ERR_PTR(-ENOMEM);
7993 }
7994
7995 return &jc->css;
7996 }
7997
7998 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
7999 {
8000 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
8001
8002 free_percpu(jc->info);
8003 kfree(jc);
8004 }
8005
8006 static int __perf_cgroup_move(void *info)
8007 {
8008 struct task_struct *task = info;
8009 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
8010 return 0;
8011 }
8012
8013 static void perf_cgroup_attach(struct cgroup_subsys_state *css,
8014 struct cgroup_taskset *tset)
8015 {
8016 struct task_struct *task;
8017
8018 cgroup_taskset_for_each(task, css, tset)
8019 task_function_call(task, __perf_cgroup_move, task);
8020 }
8021
8022 static void perf_cgroup_exit(struct cgroup_subsys_state *css,
8023 struct cgroup_subsys_state *old_css,
8024 struct task_struct *task)
8025 {
8026 /*
8027 * cgroup_exit() is called in the copy_process() failure path.
8028 * Ignore this case since the task hasn't ran yet, this avoids
8029 * trying to poke a half freed task state from generic code.
8030 */
8031 if (!(task->flags & PF_EXITING))
8032 return;
8033
8034 task_function_call(task, __perf_cgroup_move, task);
8035 }
8036
8037 struct cgroup_subsys perf_subsys = {
8038 .name = "perf_event",
8039 .subsys_id = perf_subsys_id,
8040 .css_alloc = perf_cgroup_css_alloc,
8041 .css_free = perf_cgroup_css_free,
8042 .exit = perf_cgroup_exit,
8043 .attach = perf_cgroup_attach,
8044 };
8045 #endif /* CONFIG_CGROUP_PERF */
This page took 0.282636 seconds and 5 git commands to generate.