perf: Carve out callchain functionality
[deliverable/linux.git] / kernel / events / core.c
1 /*
2 * Performance events core code:
3 *
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8 *
9 * For licensing details see kernel-base/COPYING
10 */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/sysfs.h>
22 #include <linux/dcache.h>
23 #include <linux/percpu.h>
24 #include <linux/ptrace.h>
25 #include <linux/reboot.h>
26 #include <linux/vmstat.h>
27 #include <linux/device.h>
28 #include <linux/export.h>
29 #include <linux/vmalloc.h>
30 #include <linux/hardirq.h>
31 #include <linux/rculist.h>
32 #include <linux/uaccess.h>
33 #include <linux/syscalls.h>
34 #include <linux/anon_inodes.h>
35 #include <linux/kernel_stat.h>
36 #include <linux/perf_event.h>
37 #include <linux/ftrace_event.h>
38 #include <linux/hw_breakpoint.h>
39
40 #include "internal.h"
41
42 #include <asm/irq_regs.h>
43
44 struct remote_function_call {
45 struct task_struct *p;
46 int (*func)(void *info);
47 void *info;
48 int ret;
49 };
50
51 static void remote_function(void *data)
52 {
53 struct remote_function_call *tfc = data;
54 struct task_struct *p = tfc->p;
55
56 if (p) {
57 tfc->ret = -EAGAIN;
58 if (task_cpu(p) != smp_processor_id() || !task_curr(p))
59 return;
60 }
61
62 tfc->ret = tfc->func(tfc->info);
63 }
64
65 /**
66 * task_function_call - call a function on the cpu on which a task runs
67 * @p: the task to evaluate
68 * @func: the function to be called
69 * @info: the function call argument
70 *
71 * Calls the function @func when the task is currently running. This might
72 * be on the current CPU, which just calls the function directly
73 *
74 * returns: @func return value, or
75 * -ESRCH - when the process isn't running
76 * -EAGAIN - when the process moved away
77 */
78 static int
79 task_function_call(struct task_struct *p, int (*func) (void *info), void *info)
80 {
81 struct remote_function_call data = {
82 .p = p,
83 .func = func,
84 .info = info,
85 .ret = -ESRCH, /* No such (running) process */
86 };
87
88 if (task_curr(p))
89 smp_call_function_single(task_cpu(p), remote_function, &data, 1);
90
91 return data.ret;
92 }
93
94 /**
95 * cpu_function_call - call a function on the cpu
96 * @func: the function to be called
97 * @info: the function call argument
98 *
99 * Calls the function @func on the remote cpu.
100 *
101 * returns: @func return value or -ENXIO when the cpu is offline
102 */
103 static int cpu_function_call(int cpu, int (*func) (void *info), void *info)
104 {
105 struct remote_function_call data = {
106 .p = NULL,
107 .func = func,
108 .info = info,
109 .ret = -ENXIO, /* No such CPU */
110 };
111
112 smp_call_function_single(cpu, remote_function, &data, 1);
113
114 return data.ret;
115 }
116
117 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
118 PERF_FLAG_FD_OUTPUT |\
119 PERF_FLAG_PID_CGROUP)
120
121 enum event_type_t {
122 EVENT_FLEXIBLE = 0x1,
123 EVENT_PINNED = 0x2,
124 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
125 };
126
127 /*
128 * perf_sched_events : >0 events exist
129 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
130 */
131 struct jump_label_key perf_sched_events __read_mostly;
132 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
133
134 static atomic_t nr_mmap_events __read_mostly;
135 static atomic_t nr_comm_events __read_mostly;
136 static atomic_t nr_task_events __read_mostly;
137
138 static LIST_HEAD(pmus);
139 static DEFINE_MUTEX(pmus_lock);
140 static struct srcu_struct pmus_srcu;
141
142 /*
143 * perf event paranoia level:
144 * -1 - not paranoid at all
145 * 0 - disallow raw tracepoint access for unpriv
146 * 1 - disallow cpu events for unpriv
147 * 2 - disallow kernel profiling for unpriv
148 */
149 int sysctl_perf_event_paranoid __read_mostly = 1;
150
151 /* Minimum for 512 kiB + 1 user control page */
152 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
153
154 /*
155 * max perf event sample rate
156 */
157 #define DEFAULT_MAX_SAMPLE_RATE 100000
158 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
159 static int max_samples_per_tick __read_mostly =
160 DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
161
162 int perf_proc_update_handler(struct ctl_table *table, int write,
163 void __user *buffer, size_t *lenp,
164 loff_t *ppos)
165 {
166 int ret = proc_dointvec(table, write, buffer, lenp, ppos);
167
168 if (ret || !write)
169 return ret;
170
171 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
172
173 return 0;
174 }
175
176 static atomic64_t perf_event_id;
177
178 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
179 enum event_type_t event_type);
180
181 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
182 enum event_type_t event_type,
183 struct task_struct *task);
184
185 static void update_context_time(struct perf_event_context *ctx);
186 static u64 perf_event_time(struct perf_event *event);
187
188 void __weak perf_event_print_debug(void) { }
189
190 extern __weak const char *perf_pmu_name(void)
191 {
192 return "pmu";
193 }
194
195 static inline u64 perf_clock(void)
196 {
197 return local_clock();
198 }
199
200 static inline struct perf_cpu_context *
201 __get_cpu_context(struct perf_event_context *ctx)
202 {
203 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
204 }
205
206 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
207 struct perf_event_context *ctx)
208 {
209 raw_spin_lock(&cpuctx->ctx.lock);
210 if (ctx)
211 raw_spin_lock(&ctx->lock);
212 }
213
214 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
215 struct perf_event_context *ctx)
216 {
217 if (ctx)
218 raw_spin_unlock(&ctx->lock);
219 raw_spin_unlock(&cpuctx->ctx.lock);
220 }
221
222 #ifdef CONFIG_CGROUP_PERF
223
224 /*
225 * Must ensure cgroup is pinned (css_get) before calling
226 * this function. In other words, we cannot call this function
227 * if there is no cgroup event for the current CPU context.
228 */
229 static inline struct perf_cgroup *
230 perf_cgroup_from_task(struct task_struct *task)
231 {
232 return container_of(task_subsys_state(task, perf_subsys_id),
233 struct perf_cgroup, css);
234 }
235
236 static inline bool
237 perf_cgroup_match(struct perf_event *event)
238 {
239 struct perf_event_context *ctx = event->ctx;
240 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
241
242 return !event->cgrp || event->cgrp == cpuctx->cgrp;
243 }
244
245 static inline void perf_get_cgroup(struct perf_event *event)
246 {
247 css_get(&event->cgrp->css);
248 }
249
250 static inline void perf_put_cgroup(struct perf_event *event)
251 {
252 css_put(&event->cgrp->css);
253 }
254
255 static inline void perf_detach_cgroup(struct perf_event *event)
256 {
257 perf_put_cgroup(event);
258 event->cgrp = NULL;
259 }
260
261 static inline int is_cgroup_event(struct perf_event *event)
262 {
263 return event->cgrp != NULL;
264 }
265
266 static inline u64 perf_cgroup_event_time(struct perf_event *event)
267 {
268 struct perf_cgroup_info *t;
269
270 t = per_cpu_ptr(event->cgrp->info, event->cpu);
271 return t->time;
272 }
273
274 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
275 {
276 struct perf_cgroup_info *info;
277 u64 now;
278
279 now = perf_clock();
280
281 info = this_cpu_ptr(cgrp->info);
282
283 info->time += now - info->timestamp;
284 info->timestamp = now;
285 }
286
287 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
288 {
289 struct perf_cgroup *cgrp_out = cpuctx->cgrp;
290 if (cgrp_out)
291 __update_cgrp_time(cgrp_out);
292 }
293
294 static inline void update_cgrp_time_from_event(struct perf_event *event)
295 {
296 struct perf_cgroup *cgrp;
297
298 /*
299 * ensure we access cgroup data only when needed and
300 * when we know the cgroup is pinned (css_get)
301 */
302 if (!is_cgroup_event(event))
303 return;
304
305 cgrp = perf_cgroup_from_task(current);
306 /*
307 * Do not update time when cgroup is not active
308 */
309 if (cgrp == event->cgrp)
310 __update_cgrp_time(event->cgrp);
311 }
312
313 static inline void
314 perf_cgroup_set_timestamp(struct task_struct *task,
315 struct perf_event_context *ctx)
316 {
317 struct perf_cgroup *cgrp;
318 struct perf_cgroup_info *info;
319
320 /*
321 * ctx->lock held by caller
322 * ensure we do not access cgroup data
323 * unless we have the cgroup pinned (css_get)
324 */
325 if (!task || !ctx->nr_cgroups)
326 return;
327
328 cgrp = perf_cgroup_from_task(task);
329 info = this_cpu_ptr(cgrp->info);
330 info->timestamp = ctx->timestamp;
331 }
332
333 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
334 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
335
336 /*
337 * reschedule events based on the cgroup constraint of task.
338 *
339 * mode SWOUT : schedule out everything
340 * mode SWIN : schedule in based on cgroup for next
341 */
342 void perf_cgroup_switch(struct task_struct *task, int mode)
343 {
344 struct perf_cpu_context *cpuctx;
345 struct pmu *pmu;
346 unsigned long flags;
347
348 /*
349 * disable interrupts to avoid geting nr_cgroup
350 * changes via __perf_event_disable(). Also
351 * avoids preemption.
352 */
353 local_irq_save(flags);
354
355 /*
356 * we reschedule only in the presence of cgroup
357 * constrained events.
358 */
359 rcu_read_lock();
360
361 list_for_each_entry_rcu(pmu, &pmus, entry) {
362 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
363
364 /*
365 * perf_cgroup_events says at least one
366 * context on this CPU has cgroup events.
367 *
368 * ctx->nr_cgroups reports the number of cgroup
369 * events for a context.
370 */
371 if (cpuctx->ctx.nr_cgroups > 0) {
372 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
373 perf_pmu_disable(cpuctx->ctx.pmu);
374
375 if (mode & PERF_CGROUP_SWOUT) {
376 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
377 /*
378 * must not be done before ctxswout due
379 * to event_filter_match() in event_sched_out()
380 */
381 cpuctx->cgrp = NULL;
382 }
383
384 if (mode & PERF_CGROUP_SWIN) {
385 WARN_ON_ONCE(cpuctx->cgrp);
386 /* set cgrp before ctxsw in to
387 * allow event_filter_match() to not
388 * have to pass task around
389 */
390 cpuctx->cgrp = perf_cgroup_from_task(task);
391 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
392 }
393 perf_pmu_enable(cpuctx->ctx.pmu);
394 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
395 }
396 }
397
398 rcu_read_unlock();
399
400 local_irq_restore(flags);
401 }
402
403 static inline void perf_cgroup_sched_out(struct task_struct *task,
404 struct task_struct *next)
405 {
406 struct perf_cgroup *cgrp1;
407 struct perf_cgroup *cgrp2 = NULL;
408
409 /*
410 * we come here when we know perf_cgroup_events > 0
411 */
412 cgrp1 = perf_cgroup_from_task(task);
413
414 /*
415 * next is NULL when called from perf_event_enable_on_exec()
416 * that will systematically cause a cgroup_switch()
417 */
418 if (next)
419 cgrp2 = perf_cgroup_from_task(next);
420
421 /*
422 * only schedule out current cgroup events if we know
423 * that we are switching to a different cgroup. Otherwise,
424 * do no touch the cgroup events.
425 */
426 if (cgrp1 != cgrp2)
427 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
428 }
429
430 static inline void perf_cgroup_sched_in(struct task_struct *prev,
431 struct task_struct *task)
432 {
433 struct perf_cgroup *cgrp1;
434 struct perf_cgroup *cgrp2 = NULL;
435
436 /*
437 * we come here when we know perf_cgroup_events > 0
438 */
439 cgrp1 = perf_cgroup_from_task(task);
440
441 /* prev can never be NULL */
442 cgrp2 = perf_cgroup_from_task(prev);
443
444 /*
445 * only need to schedule in cgroup events if we are changing
446 * cgroup during ctxsw. Cgroup events were not scheduled
447 * out of ctxsw out if that was not the case.
448 */
449 if (cgrp1 != cgrp2)
450 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
451 }
452
453 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
454 struct perf_event_attr *attr,
455 struct perf_event *group_leader)
456 {
457 struct perf_cgroup *cgrp;
458 struct cgroup_subsys_state *css;
459 struct file *file;
460 int ret = 0, fput_needed;
461
462 file = fget_light(fd, &fput_needed);
463 if (!file)
464 return -EBADF;
465
466 css = cgroup_css_from_dir(file, perf_subsys_id);
467 if (IS_ERR(css)) {
468 ret = PTR_ERR(css);
469 goto out;
470 }
471
472 cgrp = container_of(css, struct perf_cgroup, css);
473 event->cgrp = cgrp;
474
475 /* must be done before we fput() the file */
476 perf_get_cgroup(event);
477
478 /*
479 * all events in a group must monitor
480 * the same cgroup because a task belongs
481 * to only one perf cgroup at a time
482 */
483 if (group_leader && group_leader->cgrp != cgrp) {
484 perf_detach_cgroup(event);
485 ret = -EINVAL;
486 }
487 out:
488 fput_light(file, fput_needed);
489 return ret;
490 }
491
492 static inline void
493 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
494 {
495 struct perf_cgroup_info *t;
496 t = per_cpu_ptr(event->cgrp->info, event->cpu);
497 event->shadow_ctx_time = now - t->timestamp;
498 }
499
500 static inline void
501 perf_cgroup_defer_enabled(struct perf_event *event)
502 {
503 /*
504 * when the current task's perf cgroup does not match
505 * the event's, we need to remember to call the
506 * perf_mark_enable() function the first time a task with
507 * a matching perf cgroup is scheduled in.
508 */
509 if (is_cgroup_event(event) && !perf_cgroup_match(event))
510 event->cgrp_defer_enabled = 1;
511 }
512
513 static inline void
514 perf_cgroup_mark_enabled(struct perf_event *event,
515 struct perf_event_context *ctx)
516 {
517 struct perf_event *sub;
518 u64 tstamp = perf_event_time(event);
519
520 if (!event->cgrp_defer_enabled)
521 return;
522
523 event->cgrp_defer_enabled = 0;
524
525 event->tstamp_enabled = tstamp - event->total_time_enabled;
526 list_for_each_entry(sub, &event->sibling_list, group_entry) {
527 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
528 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
529 sub->cgrp_defer_enabled = 0;
530 }
531 }
532 }
533 #else /* !CONFIG_CGROUP_PERF */
534
535 static inline bool
536 perf_cgroup_match(struct perf_event *event)
537 {
538 return true;
539 }
540
541 static inline void perf_detach_cgroup(struct perf_event *event)
542 {}
543
544 static inline int is_cgroup_event(struct perf_event *event)
545 {
546 return 0;
547 }
548
549 static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
550 {
551 return 0;
552 }
553
554 static inline void update_cgrp_time_from_event(struct perf_event *event)
555 {
556 }
557
558 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
559 {
560 }
561
562 static inline void perf_cgroup_sched_out(struct task_struct *task,
563 struct task_struct *next)
564 {
565 }
566
567 static inline void perf_cgroup_sched_in(struct task_struct *prev,
568 struct task_struct *task)
569 {
570 }
571
572 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
573 struct perf_event_attr *attr,
574 struct perf_event *group_leader)
575 {
576 return -EINVAL;
577 }
578
579 static inline void
580 perf_cgroup_set_timestamp(struct task_struct *task,
581 struct perf_event_context *ctx)
582 {
583 }
584
585 void
586 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
587 {
588 }
589
590 static inline void
591 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
592 {
593 }
594
595 static inline u64 perf_cgroup_event_time(struct perf_event *event)
596 {
597 return 0;
598 }
599
600 static inline void
601 perf_cgroup_defer_enabled(struct perf_event *event)
602 {
603 }
604
605 static inline void
606 perf_cgroup_mark_enabled(struct perf_event *event,
607 struct perf_event_context *ctx)
608 {
609 }
610 #endif
611
612 void perf_pmu_disable(struct pmu *pmu)
613 {
614 int *count = this_cpu_ptr(pmu->pmu_disable_count);
615 if (!(*count)++)
616 pmu->pmu_disable(pmu);
617 }
618
619 void perf_pmu_enable(struct pmu *pmu)
620 {
621 int *count = this_cpu_ptr(pmu->pmu_disable_count);
622 if (!--(*count))
623 pmu->pmu_enable(pmu);
624 }
625
626 static DEFINE_PER_CPU(struct list_head, rotation_list);
627
628 /*
629 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
630 * because they're strictly cpu affine and rotate_start is called with IRQs
631 * disabled, while rotate_context is called from IRQ context.
632 */
633 static void perf_pmu_rotate_start(struct pmu *pmu)
634 {
635 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
636 struct list_head *head = &__get_cpu_var(rotation_list);
637
638 WARN_ON(!irqs_disabled());
639
640 if (list_empty(&cpuctx->rotation_list))
641 list_add(&cpuctx->rotation_list, head);
642 }
643
644 static void get_ctx(struct perf_event_context *ctx)
645 {
646 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
647 }
648
649 static void put_ctx(struct perf_event_context *ctx)
650 {
651 if (atomic_dec_and_test(&ctx->refcount)) {
652 if (ctx->parent_ctx)
653 put_ctx(ctx->parent_ctx);
654 if (ctx->task)
655 put_task_struct(ctx->task);
656 kfree_rcu(ctx, rcu_head);
657 }
658 }
659
660 static void unclone_ctx(struct perf_event_context *ctx)
661 {
662 if (ctx->parent_ctx) {
663 put_ctx(ctx->parent_ctx);
664 ctx->parent_ctx = NULL;
665 }
666 }
667
668 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
669 {
670 /*
671 * only top level events have the pid namespace they were created in
672 */
673 if (event->parent)
674 event = event->parent;
675
676 return task_tgid_nr_ns(p, event->ns);
677 }
678
679 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
680 {
681 /*
682 * only top level events have the pid namespace they were created in
683 */
684 if (event->parent)
685 event = event->parent;
686
687 return task_pid_nr_ns(p, event->ns);
688 }
689
690 /*
691 * If we inherit events we want to return the parent event id
692 * to userspace.
693 */
694 static u64 primary_event_id(struct perf_event *event)
695 {
696 u64 id = event->id;
697
698 if (event->parent)
699 id = event->parent->id;
700
701 return id;
702 }
703
704 /*
705 * Get the perf_event_context for a task and lock it.
706 * This has to cope with with the fact that until it is locked,
707 * the context could get moved to another task.
708 */
709 static struct perf_event_context *
710 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
711 {
712 struct perf_event_context *ctx;
713
714 rcu_read_lock();
715 retry:
716 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
717 if (ctx) {
718 /*
719 * If this context is a clone of another, it might
720 * get swapped for another underneath us by
721 * perf_event_task_sched_out, though the
722 * rcu_read_lock() protects us from any context
723 * getting freed. Lock the context and check if it
724 * got swapped before we could get the lock, and retry
725 * if so. If we locked the right context, then it
726 * can't get swapped on us any more.
727 */
728 raw_spin_lock_irqsave(&ctx->lock, *flags);
729 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
730 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
731 goto retry;
732 }
733
734 if (!atomic_inc_not_zero(&ctx->refcount)) {
735 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
736 ctx = NULL;
737 }
738 }
739 rcu_read_unlock();
740 return ctx;
741 }
742
743 /*
744 * Get the context for a task and increment its pin_count so it
745 * can't get swapped to another task. This also increments its
746 * reference count so that the context can't get freed.
747 */
748 static struct perf_event_context *
749 perf_pin_task_context(struct task_struct *task, int ctxn)
750 {
751 struct perf_event_context *ctx;
752 unsigned long flags;
753
754 ctx = perf_lock_task_context(task, ctxn, &flags);
755 if (ctx) {
756 ++ctx->pin_count;
757 raw_spin_unlock_irqrestore(&ctx->lock, flags);
758 }
759 return ctx;
760 }
761
762 static void perf_unpin_context(struct perf_event_context *ctx)
763 {
764 unsigned long flags;
765
766 raw_spin_lock_irqsave(&ctx->lock, flags);
767 --ctx->pin_count;
768 raw_spin_unlock_irqrestore(&ctx->lock, flags);
769 }
770
771 /*
772 * Update the record of the current time in a context.
773 */
774 static void update_context_time(struct perf_event_context *ctx)
775 {
776 u64 now = perf_clock();
777
778 ctx->time += now - ctx->timestamp;
779 ctx->timestamp = now;
780 }
781
782 static u64 perf_event_time(struct perf_event *event)
783 {
784 struct perf_event_context *ctx = event->ctx;
785
786 if (is_cgroup_event(event))
787 return perf_cgroup_event_time(event);
788
789 return ctx ? ctx->time : 0;
790 }
791
792 /*
793 * Update the total_time_enabled and total_time_running fields for a event.
794 * The caller of this function needs to hold the ctx->lock.
795 */
796 static void update_event_times(struct perf_event *event)
797 {
798 struct perf_event_context *ctx = event->ctx;
799 u64 run_end;
800
801 if (event->state < PERF_EVENT_STATE_INACTIVE ||
802 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
803 return;
804 /*
805 * in cgroup mode, time_enabled represents
806 * the time the event was enabled AND active
807 * tasks were in the monitored cgroup. This is
808 * independent of the activity of the context as
809 * there may be a mix of cgroup and non-cgroup events.
810 *
811 * That is why we treat cgroup events differently
812 * here.
813 */
814 if (is_cgroup_event(event))
815 run_end = perf_event_time(event);
816 else if (ctx->is_active)
817 run_end = ctx->time;
818 else
819 run_end = event->tstamp_stopped;
820
821 event->total_time_enabled = run_end - event->tstamp_enabled;
822
823 if (event->state == PERF_EVENT_STATE_INACTIVE)
824 run_end = event->tstamp_stopped;
825 else
826 run_end = perf_event_time(event);
827
828 event->total_time_running = run_end - event->tstamp_running;
829
830 }
831
832 /*
833 * Update total_time_enabled and total_time_running for all events in a group.
834 */
835 static void update_group_times(struct perf_event *leader)
836 {
837 struct perf_event *event;
838
839 update_event_times(leader);
840 list_for_each_entry(event, &leader->sibling_list, group_entry)
841 update_event_times(event);
842 }
843
844 static struct list_head *
845 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
846 {
847 if (event->attr.pinned)
848 return &ctx->pinned_groups;
849 else
850 return &ctx->flexible_groups;
851 }
852
853 /*
854 * Add a event from the lists for its context.
855 * Must be called with ctx->mutex and ctx->lock held.
856 */
857 static void
858 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
859 {
860 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
861 event->attach_state |= PERF_ATTACH_CONTEXT;
862
863 /*
864 * If we're a stand alone event or group leader, we go to the context
865 * list, group events are kept attached to the group so that
866 * perf_group_detach can, at all times, locate all siblings.
867 */
868 if (event->group_leader == event) {
869 struct list_head *list;
870
871 if (is_software_event(event))
872 event->group_flags |= PERF_GROUP_SOFTWARE;
873
874 list = ctx_group_list(event, ctx);
875 list_add_tail(&event->group_entry, list);
876 }
877
878 if (is_cgroup_event(event))
879 ctx->nr_cgroups++;
880
881 list_add_rcu(&event->event_entry, &ctx->event_list);
882 if (!ctx->nr_events)
883 perf_pmu_rotate_start(ctx->pmu);
884 ctx->nr_events++;
885 if (event->attr.inherit_stat)
886 ctx->nr_stat++;
887 }
888
889 /*
890 * Called at perf_event creation and when events are attached/detached from a
891 * group.
892 */
893 static void perf_event__read_size(struct perf_event *event)
894 {
895 int entry = sizeof(u64); /* value */
896 int size = 0;
897 int nr = 1;
898
899 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
900 size += sizeof(u64);
901
902 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
903 size += sizeof(u64);
904
905 if (event->attr.read_format & PERF_FORMAT_ID)
906 entry += sizeof(u64);
907
908 if (event->attr.read_format & PERF_FORMAT_GROUP) {
909 nr += event->group_leader->nr_siblings;
910 size += sizeof(u64);
911 }
912
913 size += entry * nr;
914 event->read_size = size;
915 }
916
917 static void perf_event__header_size(struct perf_event *event)
918 {
919 struct perf_sample_data *data;
920 u64 sample_type = event->attr.sample_type;
921 u16 size = 0;
922
923 perf_event__read_size(event);
924
925 if (sample_type & PERF_SAMPLE_IP)
926 size += sizeof(data->ip);
927
928 if (sample_type & PERF_SAMPLE_ADDR)
929 size += sizeof(data->addr);
930
931 if (sample_type & PERF_SAMPLE_PERIOD)
932 size += sizeof(data->period);
933
934 if (sample_type & PERF_SAMPLE_READ)
935 size += event->read_size;
936
937 event->header_size = size;
938 }
939
940 static void perf_event__id_header_size(struct perf_event *event)
941 {
942 struct perf_sample_data *data;
943 u64 sample_type = event->attr.sample_type;
944 u16 size = 0;
945
946 if (sample_type & PERF_SAMPLE_TID)
947 size += sizeof(data->tid_entry);
948
949 if (sample_type & PERF_SAMPLE_TIME)
950 size += sizeof(data->time);
951
952 if (sample_type & PERF_SAMPLE_ID)
953 size += sizeof(data->id);
954
955 if (sample_type & PERF_SAMPLE_STREAM_ID)
956 size += sizeof(data->stream_id);
957
958 if (sample_type & PERF_SAMPLE_CPU)
959 size += sizeof(data->cpu_entry);
960
961 event->id_header_size = size;
962 }
963
964 static void perf_group_attach(struct perf_event *event)
965 {
966 struct perf_event *group_leader = event->group_leader, *pos;
967
968 /*
969 * We can have double attach due to group movement in perf_event_open.
970 */
971 if (event->attach_state & PERF_ATTACH_GROUP)
972 return;
973
974 event->attach_state |= PERF_ATTACH_GROUP;
975
976 if (group_leader == event)
977 return;
978
979 if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
980 !is_software_event(event))
981 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
982
983 list_add_tail(&event->group_entry, &group_leader->sibling_list);
984 group_leader->nr_siblings++;
985
986 perf_event__header_size(group_leader);
987
988 list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
989 perf_event__header_size(pos);
990 }
991
992 /*
993 * Remove a event from the lists for its context.
994 * Must be called with ctx->mutex and ctx->lock held.
995 */
996 static void
997 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
998 {
999 struct perf_cpu_context *cpuctx;
1000 /*
1001 * We can have double detach due to exit/hot-unplug + close.
1002 */
1003 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1004 return;
1005
1006 event->attach_state &= ~PERF_ATTACH_CONTEXT;
1007
1008 if (is_cgroup_event(event)) {
1009 ctx->nr_cgroups--;
1010 cpuctx = __get_cpu_context(ctx);
1011 /*
1012 * if there are no more cgroup events
1013 * then cler cgrp to avoid stale pointer
1014 * in update_cgrp_time_from_cpuctx()
1015 */
1016 if (!ctx->nr_cgroups)
1017 cpuctx->cgrp = NULL;
1018 }
1019
1020 ctx->nr_events--;
1021 if (event->attr.inherit_stat)
1022 ctx->nr_stat--;
1023
1024 list_del_rcu(&event->event_entry);
1025
1026 if (event->group_leader == event)
1027 list_del_init(&event->group_entry);
1028
1029 update_group_times(event);
1030
1031 /*
1032 * If event was in error state, then keep it
1033 * that way, otherwise bogus counts will be
1034 * returned on read(). The only way to get out
1035 * of error state is by explicit re-enabling
1036 * of the event
1037 */
1038 if (event->state > PERF_EVENT_STATE_OFF)
1039 event->state = PERF_EVENT_STATE_OFF;
1040 }
1041
1042 static void perf_group_detach(struct perf_event *event)
1043 {
1044 struct perf_event *sibling, *tmp;
1045 struct list_head *list = NULL;
1046
1047 /*
1048 * We can have double detach due to exit/hot-unplug + close.
1049 */
1050 if (!(event->attach_state & PERF_ATTACH_GROUP))
1051 return;
1052
1053 event->attach_state &= ~PERF_ATTACH_GROUP;
1054
1055 /*
1056 * If this is a sibling, remove it from its group.
1057 */
1058 if (event->group_leader != event) {
1059 list_del_init(&event->group_entry);
1060 event->group_leader->nr_siblings--;
1061 goto out;
1062 }
1063
1064 if (!list_empty(&event->group_entry))
1065 list = &event->group_entry;
1066
1067 /*
1068 * If this was a group event with sibling events then
1069 * upgrade the siblings to singleton events by adding them
1070 * to whatever list we are on.
1071 */
1072 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1073 if (list)
1074 list_move_tail(&sibling->group_entry, list);
1075 sibling->group_leader = sibling;
1076
1077 /* Inherit group flags from the previous leader */
1078 sibling->group_flags = event->group_flags;
1079 }
1080
1081 out:
1082 perf_event__header_size(event->group_leader);
1083
1084 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1085 perf_event__header_size(tmp);
1086 }
1087
1088 static inline int
1089 event_filter_match(struct perf_event *event)
1090 {
1091 return (event->cpu == -1 || event->cpu == smp_processor_id())
1092 && perf_cgroup_match(event);
1093 }
1094
1095 static void
1096 event_sched_out(struct perf_event *event,
1097 struct perf_cpu_context *cpuctx,
1098 struct perf_event_context *ctx)
1099 {
1100 u64 tstamp = perf_event_time(event);
1101 u64 delta;
1102 /*
1103 * An event which could not be activated because of
1104 * filter mismatch still needs to have its timings
1105 * maintained, otherwise bogus information is return
1106 * via read() for time_enabled, time_running:
1107 */
1108 if (event->state == PERF_EVENT_STATE_INACTIVE
1109 && !event_filter_match(event)) {
1110 delta = tstamp - event->tstamp_stopped;
1111 event->tstamp_running += delta;
1112 event->tstamp_stopped = tstamp;
1113 }
1114
1115 if (event->state != PERF_EVENT_STATE_ACTIVE)
1116 return;
1117
1118 event->state = PERF_EVENT_STATE_INACTIVE;
1119 if (event->pending_disable) {
1120 event->pending_disable = 0;
1121 event->state = PERF_EVENT_STATE_OFF;
1122 }
1123 event->tstamp_stopped = tstamp;
1124 event->pmu->del(event, 0);
1125 event->oncpu = -1;
1126
1127 if (!is_software_event(event))
1128 cpuctx->active_oncpu--;
1129 ctx->nr_active--;
1130 if (event->attr.exclusive || !cpuctx->active_oncpu)
1131 cpuctx->exclusive = 0;
1132 }
1133
1134 static void
1135 group_sched_out(struct perf_event *group_event,
1136 struct perf_cpu_context *cpuctx,
1137 struct perf_event_context *ctx)
1138 {
1139 struct perf_event *event;
1140 int state = group_event->state;
1141
1142 event_sched_out(group_event, cpuctx, ctx);
1143
1144 /*
1145 * Schedule out siblings (if any):
1146 */
1147 list_for_each_entry(event, &group_event->sibling_list, group_entry)
1148 event_sched_out(event, cpuctx, ctx);
1149
1150 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1151 cpuctx->exclusive = 0;
1152 }
1153
1154 /*
1155 * Cross CPU call to remove a performance event
1156 *
1157 * We disable the event on the hardware level first. After that we
1158 * remove it from the context list.
1159 */
1160 static int __perf_remove_from_context(void *info)
1161 {
1162 struct perf_event *event = info;
1163 struct perf_event_context *ctx = event->ctx;
1164 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1165
1166 raw_spin_lock(&ctx->lock);
1167 event_sched_out(event, cpuctx, ctx);
1168 list_del_event(event, ctx);
1169 if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
1170 ctx->is_active = 0;
1171 cpuctx->task_ctx = NULL;
1172 }
1173 raw_spin_unlock(&ctx->lock);
1174
1175 return 0;
1176 }
1177
1178
1179 /*
1180 * Remove the event from a task's (or a CPU's) list of events.
1181 *
1182 * CPU events are removed with a smp call. For task events we only
1183 * call when the task is on a CPU.
1184 *
1185 * If event->ctx is a cloned context, callers must make sure that
1186 * every task struct that event->ctx->task could possibly point to
1187 * remains valid. This is OK when called from perf_release since
1188 * that only calls us on the top-level context, which can't be a clone.
1189 * When called from perf_event_exit_task, it's OK because the
1190 * context has been detached from its task.
1191 */
1192 static void perf_remove_from_context(struct perf_event *event)
1193 {
1194 struct perf_event_context *ctx = event->ctx;
1195 struct task_struct *task = ctx->task;
1196
1197 lockdep_assert_held(&ctx->mutex);
1198
1199 if (!task) {
1200 /*
1201 * Per cpu events are removed via an smp call and
1202 * the removal is always successful.
1203 */
1204 cpu_function_call(event->cpu, __perf_remove_from_context, event);
1205 return;
1206 }
1207
1208 retry:
1209 if (!task_function_call(task, __perf_remove_from_context, event))
1210 return;
1211
1212 raw_spin_lock_irq(&ctx->lock);
1213 /*
1214 * If we failed to find a running task, but find the context active now
1215 * that we've acquired the ctx->lock, retry.
1216 */
1217 if (ctx->is_active) {
1218 raw_spin_unlock_irq(&ctx->lock);
1219 goto retry;
1220 }
1221
1222 /*
1223 * Since the task isn't running, its safe to remove the event, us
1224 * holding the ctx->lock ensures the task won't get scheduled in.
1225 */
1226 list_del_event(event, ctx);
1227 raw_spin_unlock_irq(&ctx->lock);
1228 }
1229
1230 /*
1231 * Cross CPU call to disable a performance event
1232 */
1233 static int __perf_event_disable(void *info)
1234 {
1235 struct perf_event *event = info;
1236 struct perf_event_context *ctx = event->ctx;
1237 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1238
1239 /*
1240 * If this is a per-task event, need to check whether this
1241 * event's task is the current task on this cpu.
1242 *
1243 * Can trigger due to concurrent perf_event_context_sched_out()
1244 * flipping contexts around.
1245 */
1246 if (ctx->task && cpuctx->task_ctx != ctx)
1247 return -EINVAL;
1248
1249 raw_spin_lock(&ctx->lock);
1250
1251 /*
1252 * If the event is on, turn it off.
1253 * If it is in error state, leave it in error state.
1254 */
1255 if (event->state >= PERF_EVENT_STATE_INACTIVE) {
1256 update_context_time(ctx);
1257 update_cgrp_time_from_event(event);
1258 update_group_times(event);
1259 if (event == event->group_leader)
1260 group_sched_out(event, cpuctx, ctx);
1261 else
1262 event_sched_out(event, cpuctx, ctx);
1263 event->state = PERF_EVENT_STATE_OFF;
1264 }
1265
1266 raw_spin_unlock(&ctx->lock);
1267
1268 return 0;
1269 }
1270
1271 /*
1272 * Disable a event.
1273 *
1274 * If event->ctx is a cloned context, callers must make sure that
1275 * every task struct that event->ctx->task could possibly point to
1276 * remains valid. This condition is satisifed when called through
1277 * perf_event_for_each_child or perf_event_for_each because they
1278 * hold the top-level event's child_mutex, so any descendant that
1279 * goes to exit will block in sync_child_event.
1280 * When called from perf_pending_event it's OK because event->ctx
1281 * is the current context on this CPU and preemption is disabled,
1282 * hence we can't get into perf_event_task_sched_out for this context.
1283 */
1284 void perf_event_disable(struct perf_event *event)
1285 {
1286 struct perf_event_context *ctx = event->ctx;
1287 struct task_struct *task = ctx->task;
1288
1289 if (!task) {
1290 /*
1291 * Disable the event on the cpu that it's on
1292 */
1293 cpu_function_call(event->cpu, __perf_event_disable, event);
1294 return;
1295 }
1296
1297 retry:
1298 if (!task_function_call(task, __perf_event_disable, event))
1299 return;
1300
1301 raw_spin_lock_irq(&ctx->lock);
1302 /*
1303 * If the event is still active, we need to retry the cross-call.
1304 */
1305 if (event->state == PERF_EVENT_STATE_ACTIVE) {
1306 raw_spin_unlock_irq(&ctx->lock);
1307 /*
1308 * Reload the task pointer, it might have been changed by
1309 * a concurrent perf_event_context_sched_out().
1310 */
1311 task = ctx->task;
1312 goto retry;
1313 }
1314
1315 /*
1316 * Since we have the lock this context can't be scheduled
1317 * in, so we can change the state safely.
1318 */
1319 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1320 update_group_times(event);
1321 event->state = PERF_EVENT_STATE_OFF;
1322 }
1323 raw_spin_unlock_irq(&ctx->lock);
1324 }
1325
1326 static void perf_set_shadow_time(struct perf_event *event,
1327 struct perf_event_context *ctx,
1328 u64 tstamp)
1329 {
1330 /*
1331 * use the correct time source for the time snapshot
1332 *
1333 * We could get by without this by leveraging the
1334 * fact that to get to this function, the caller
1335 * has most likely already called update_context_time()
1336 * and update_cgrp_time_xx() and thus both timestamp
1337 * are identical (or very close). Given that tstamp is,
1338 * already adjusted for cgroup, we could say that:
1339 * tstamp - ctx->timestamp
1340 * is equivalent to
1341 * tstamp - cgrp->timestamp.
1342 *
1343 * Then, in perf_output_read(), the calculation would
1344 * work with no changes because:
1345 * - event is guaranteed scheduled in
1346 * - no scheduled out in between
1347 * - thus the timestamp would be the same
1348 *
1349 * But this is a bit hairy.
1350 *
1351 * So instead, we have an explicit cgroup call to remain
1352 * within the time time source all along. We believe it
1353 * is cleaner and simpler to understand.
1354 */
1355 if (is_cgroup_event(event))
1356 perf_cgroup_set_shadow_time(event, tstamp);
1357 else
1358 event->shadow_ctx_time = tstamp - ctx->timestamp;
1359 }
1360
1361 #define MAX_INTERRUPTS (~0ULL)
1362
1363 static void perf_log_throttle(struct perf_event *event, int enable);
1364
1365 static int
1366 event_sched_in(struct perf_event *event,
1367 struct perf_cpu_context *cpuctx,
1368 struct perf_event_context *ctx)
1369 {
1370 u64 tstamp = perf_event_time(event);
1371
1372 if (event->state <= PERF_EVENT_STATE_OFF)
1373 return 0;
1374
1375 event->state = PERF_EVENT_STATE_ACTIVE;
1376 event->oncpu = smp_processor_id();
1377
1378 /*
1379 * Unthrottle events, since we scheduled we might have missed several
1380 * ticks already, also for a heavily scheduling task there is little
1381 * guarantee it'll get a tick in a timely manner.
1382 */
1383 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
1384 perf_log_throttle(event, 1);
1385 event->hw.interrupts = 0;
1386 }
1387
1388 /*
1389 * The new state must be visible before we turn it on in the hardware:
1390 */
1391 smp_wmb();
1392
1393 if (event->pmu->add(event, PERF_EF_START)) {
1394 event->state = PERF_EVENT_STATE_INACTIVE;
1395 event->oncpu = -1;
1396 return -EAGAIN;
1397 }
1398
1399 event->tstamp_running += tstamp - event->tstamp_stopped;
1400
1401 perf_set_shadow_time(event, ctx, tstamp);
1402
1403 if (!is_software_event(event))
1404 cpuctx->active_oncpu++;
1405 ctx->nr_active++;
1406
1407 if (event->attr.exclusive)
1408 cpuctx->exclusive = 1;
1409
1410 return 0;
1411 }
1412
1413 static int
1414 group_sched_in(struct perf_event *group_event,
1415 struct perf_cpu_context *cpuctx,
1416 struct perf_event_context *ctx)
1417 {
1418 struct perf_event *event, *partial_group = NULL;
1419 struct pmu *pmu = group_event->pmu;
1420 u64 now = ctx->time;
1421 bool simulate = false;
1422
1423 if (group_event->state == PERF_EVENT_STATE_OFF)
1424 return 0;
1425
1426 pmu->start_txn(pmu);
1427
1428 if (event_sched_in(group_event, cpuctx, ctx)) {
1429 pmu->cancel_txn(pmu);
1430 return -EAGAIN;
1431 }
1432
1433 /*
1434 * Schedule in siblings as one group (if any):
1435 */
1436 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1437 if (event_sched_in(event, cpuctx, ctx)) {
1438 partial_group = event;
1439 goto group_error;
1440 }
1441 }
1442
1443 if (!pmu->commit_txn(pmu))
1444 return 0;
1445
1446 group_error:
1447 /*
1448 * Groups can be scheduled in as one unit only, so undo any
1449 * partial group before returning:
1450 * The events up to the failed event are scheduled out normally,
1451 * tstamp_stopped will be updated.
1452 *
1453 * The failed events and the remaining siblings need to have
1454 * their timings updated as if they had gone thru event_sched_in()
1455 * and event_sched_out(). This is required to get consistent timings
1456 * across the group. This also takes care of the case where the group
1457 * could never be scheduled by ensuring tstamp_stopped is set to mark
1458 * the time the event was actually stopped, such that time delta
1459 * calculation in update_event_times() is correct.
1460 */
1461 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1462 if (event == partial_group)
1463 simulate = true;
1464
1465 if (simulate) {
1466 event->tstamp_running += now - event->tstamp_stopped;
1467 event->tstamp_stopped = now;
1468 } else {
1469 event_sched_out(event, cpuctx, ctx);
1470 }
1471 }
1472 event_sched_out(group_event, cpuctx, ctx);
1473
1474 pmu->cancel_txn(pmu);
1475
1476 return -EAGAIN;
1477 }
1478
1479 /*
1480 * Work out whether we can put this event group on the CPU now.
1481 */
1482 static int group_can_go_on(struct perf_event *event,
1483 struct perf_cpu_context *cpuctx,
1484 int can_add_hw)
1485 {
1486 /*
1487 * Groups consisting entirely of software events can always go on.
1488 */
1489 if (event->group_flags & PERF_GROUP_SOFTWARE)
1490 return 1;
1491 /*
1492 * If an exclusive group is already on, no other hardware
1493 * events can go on.
1494 */
1495 if (cpuctx->exclusive)
1496 return 0;
1497 /*
1498 * If this group is exclusive and there are already
1499 * events on the CPU, it can't go on.
1500 */
1501 if (event->attr.exclusive && cpuctx->active_oncpu)
1502 return 0;
1503 /*
1504 * Otherwise, try to add it if all previous groups were able
1505 * to go on.
1506 */
1507 return can_add_hw;
1508 }
1509
1510 static void add_event_to_ctx(struct perf_event *event,
1511 struct perf_event_context *ctx)
1512 {
1513 u64 tstamp = perf_event_time(event);
1514
1515 list_add_event(event, ctx);
1516 perf_group_attach(event);
1517 event->tstamp_enabled = tstamp;
1518 event->tstamp_running = tstamp;
1519 event->tstamp_stopped = tstamp;
1520 }
1521
1522 static void task_ctx_sched_out(struct perf_event_context *ctx);
1523 static void
1524 ctx_sched_in(struct perf_event_context *ctx,
1525 struct perf_cpu_context *cpuctx,
1526 enum event_type_t event_type,
1527 struct task_struct *task);
1528
1529 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
1530 struct perf_event_context *ctx,
1531 struct task_struct *task)
1532 {
1533 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
1534 if (ctx)
1535 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
1536 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
1537 if (ctx)
1538 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
1539 }
1540
1541 /*
1542 * Cross CPU call to install and enable a performance event
1543 *
1544 * Must be called with ctx->mutex held
1545 */
1546 static int __perf_install_in_context(void *info)
1547 {
1548 struct perf_event *event = info;
1549 struct perf_event_context *ctx = event->ctx;
1550 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1551 struct perf_event_context *task_ctx = cpuctx->task_ctx;
1552 struct task_struct *task = current;
1553
1554 perf_ctx_lock(cpuctx, task_ctx);
1555 perf_pmu_disable(cpuctx->ctx.pmu);
1556
1557 /*
1558 * If there was an active task_ctx schedule it out.
1559 */
1560 if (task_ctx)
1561 task_ctx_sched_out(task_ctx);
1562
1563 /*
1564 * If the context we're installing events in is not the
1565 * active task_ctx, flip them.
1566 */
1567 if (ctx->task && task_ctx != ctx) {
1568 if (task_ctx)
1569 raw_spin_unlock(&task_ctx->lock);
1570 raw_spin_lock(&ctx->lock);
1571 task_ctx = ctx;
1572 }
1573
1574 if (task_ctx) {
1575 cpuctx->task_ctx = task_ctx;
1576 task = task_ctx->task;
1577 }
1578
1579 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
1580
1581 update_context_time(ctx);
1582 /*
1583 * update cgrp time only if current cgrp
1584 * matches event->cgrp. Must be done before
1585 * calling add_event_to_ctx()
1586 */
1587 update_cgrp_time_from_event(event);
1588
1589 add_event_to_ctx(event, ctx);
1590
1591 /*
1592 * Schedule everything back in
1593 */
1594 perf_event_sched_in(cpuctx, task_ctx, task);
1595
1596 perf_pmu_enable(cpuctx->ctx.pmu);
1597 perf_ctx_unlock(cpuctx, task_ctx);
1598
1599 return 0;
1600 }
1601
1602 /*
1603 * Attach a performance event to a context
1604 *
1605 * First we add the event to the list with the hardware enable bit
1606 * in event->hw_config cleared.
1607 *
1608 * If the event is attached to a task which is on a CPU we use a smp
1609 * call to enable it in the task context. The task might have been
1610 * scheduled away, but we check this in the smp call again.
1611 */
1612 static void
1613 perf_install_in_context(struct perf_event_context *ctx,
1614 struct perf_event *event,
1615 int cpu)
1616 {
1617 struct task_struct *task = ctx->task;
1618
1619 lockdep_assert_held(&ctx->mutex);
1620
1621 event->ctx = ctx;
1622
1623 if (!task) {
1624 /*
1625 * Per cpu events are installed via an smp call and
1626 * the install is always successful.
1627 */
1628 cpu_function_call(cpu, __perf_install_in_context, event);
1629 return;
1630 }
1631
1632 retry:
1633 if (!task_function_call(task, __perf_install_in_context, event))
1634 return;
1635
1636 raw_spin_lock_irq(&ctx->lock);
1637 /*
1638 * If we failed to find a running task, but find the context active now
1639 * that we've acquired the ctx->lock, retry.
1640 */
1641 if (ctx->is_active) {
1642 raw_spin_unlock_irq(&ctx->lock);
1643 goto retry;
1644 }
1645
1646 /*
1647 * Since the task isn't running, its safe to add the event, us holding
1648 * the ctx->lock ensures the task won't get scheduled in.
1649 */
1650 add_event_to_ctx(event, ctx);
1651 raw_spin_unlock_irq(&ctx->lock);
1652 }
1653
1654 /*
1655 * Put a event into inactive state and update time fields.
1656 * Enabling the leader of a group effectively enables all
1657 * the group members that aren't explicitly disabled, so we
1658 * have to update their ->tstamp_enabled also.
1659 * Note: this works for group members as well as group leaders
1660 * since the non-leader members' sibling_lists will be empty.
1661 */
1662 static void __perf_event_mark_enabled(struct perf_event *event,
1663 struct perf_event_context *ctx)
1664 {
1665 struct perf_event *sub;
1666 u64 tstamp = perf_event_time(event);
1667
1668 event->state = PERF_EVENT_STATE_INACTIVE;
1669 event->tstamp_enabled = tstamp - event->total_time_enabled;
1670 list_for_each_entry(sub, &event->sibling_list, group_entry) {
1671 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
1672 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
1673 }
1674 }
1675
1676 /*
1677 * Cross CPU call to enable a performance event
1678 */
1679 static int __perf_event_enable(void *info)
1680 {
1681 struct perf_event *event = info;
1682 struct perf_event_context *ctx = event->ctx;
1683 struct perf_event *leader = event->group_leader;
1684 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1685 int err;
1686
1687 if (WARN_ON_ONCE(!ctx->is_active))
1688 return -EINVAL;
1689
1690 raw_spin_lock(&ctx->lock);
1691 update_context_time(ctx);
1692
1693 if (event->state >= PERF_EVENT_STATE_INACTIVE)
1694 goto unlock;
1695
1696 /*
1697 * set current task's cgroup time reference point
1698 */
1699 perf_cgroup_set_timestamp(current, ctx);
1700
1701 __perf_event_mark_enabled(event, ctx);
1702
1703 if (!event_filter_match(event)) {
1704 if (is_cgroup_event(event))
1705 perf_cgroup_defer_enabled(event);
1706 goto unlock;
1707 }
1708
1709 /*
1710 * If the event is in a group and isn't the group leader,
1711 * then don't put it on unless the group is on.
1712 */
1713 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
1714 goto unlock;
1715
1716 if (!group_can_go_on(event, cpuctx, 1)) {
1717 err = -EEXIST;
1718 } else {
1719 if (event == leader)
1720 err = group_sched_in(event, cpuctx, ctx);
1721 else
1722 err = event_sched_in(event, cpuctx, ctx);
1723 }
1724
1725 if (err) {
1726 /*
1727 * If this event can't go on and it's part of a
1728 * group, then the whole group has to come off.
1729 */
1730 if (leader != event)
1731 group_sched_out(leader, cpuctx, ctx);
1732 if (leader->attr.pinned) {
1733 update_group_times(leader);
1734 leader->state = PERF_EVENT_STATE_ERROR;
1735 }
1736 }
1737
1738 unlock:
1739 raw_spin_unlock(&ctx->lock);
1740
1741 return 0;
1742 }
1743
1744 /*
1745 * Enable a event.
1746 *
1747 * If event->ctx is a cloned context, callers must make sure that
1748 * every task struct that event->ctx->task could possibly point to
1749 * remains valid. This condition is satisfied when called through
1750 * perf_event_for_each_child or perf_event_for_each as described
1751 * for perf_event_disable.
1752 */
1753 void perf_event_enable(struct perf_event *event)
1754 {
1755 struct perf_event_context *ctx = event->ctx;
1756 struct task_struct *task = ctx->task;
1757
1758 if (!task) {
1759 /*
1760 * Enable the event on the cpu that it's on
1761 */
1762 cpu_function_call(event->cpu, __perf_event_enable, event);
1763 return;
1764 }
1765
1766 raw_spin_lock_irq(&ctx->lock);
1767 if (event->state >= PERF_EVENT_STATE_INACTIVE)
1768 goto out;
1769
1770 /*
1771 * If the event is in error state, clear that first.
1772 * That way, if we see the event in error state below, we
1773 * know that it has gone back into error state, as distinct
1774 * from the task having been scheduled away before the
1775 * cross-call arrived.
1776 */
1777 if (event->state == PERF_EVENT_STATE_ERROR)
1778 event->state = PERF_EVENT_STATE_OFF;
1779
1780 retry:
1781 if (!ctx->is_active) {
1782 __perf_event_mark_enabled(event, ctx);
1783 goto out;
1784 }
1785
1786 raw_spin_unlock_irq(&ctx->lock);
1787
1788 if (!task_function_call(task, __perf_event_enable, event))
1789 return;
1790
1791 raw_spin_lock_irq(&ctx->lock);
1792
1793 /*
1794 * If the context is active and the event is still off,
1795 * we need to retry the cross-call.
1796 */
1797 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
1798 /*
1799 * task could have been flipped by a concurrent
1800 * perf_event_context_sched_out()
1801 */
1802 task = ctx->task;
1803 goto retry;
1804 }
1805
1806 out:
1807 raw_spin_unlock_irq(&ctx->lock);
1808 }
1809
1810 int perf_event_refresh(struct perf_event *event, int refresh)
1811 {
1812 /*
1813 * not supported on inherited events
1814 */
1815 if (event->attr.inherit || !is_sampling_event(event))
1816 return -EINVAL;
1817
1818 atomic_add(refresh, &event->event_limit);
1819 perf_event_enable(event);
1820
1821 return 0;
1822 }
1823 EXPORT_SYMBOL_GPL(perf_event_refresh);
1824
1825 static void ctx_sched_out(struct perf_event_context *ctx,
1826 struct perf_cpu_context *cpuctx,
1827 enum event_type_t event_type)
1828 {
1829 struct perf_event *event;
1830 int is_active = ctx->is_active;
1831
1832 ctx->is_active &= ~event_type;
1833 if (likely(!ctx->nr_events))
1834 return;
1835
1836 update_context_time(ctx);
1837 update_cgrp_time_from_cpuctx(cpuctx);
1838 if (!ctx->nr_active)
1839 return;
1840
1841 perf_pmu_disable(ctx->pmu);
1842 if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
1843 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
1844 group_sched_out(event, cpuctx, ctx);
1845 }
1846
1847 if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
1848 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
1849 group_sched_out(event, cpuctx, ctx);
1850 }
1851 perf_pmu_enable(ctx->pmu);
1852 }
1853
1854 /*
1855 * Test whether two contexts are equivalent, i.e. whether they
1856 * have both been cloned from the same version of the same context
1857 * and they both have the same number of enabled events.
1858 * If the number of enabled events is the same, then the set
1859 * of enabled events should be the same, because these are both
1860 * inherited contexts, therefore we can't access individual events
1861 * in them directly with an fd; we can only enable/disable all
1862 * events via prctl, or enable/disable all events in a family
1863 * via ioctl, which will have the same effect on both contexts.
1864 */
1865 static int context_equiv(struct perf_event_context *ctx1,
1866 struct perf_event_context *ctx2)
1867 {
1868 return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1869 && ctx1->parent_gen == ctx2->parent_gen
1870 && !ctx1->pin_count && !ctx2->pin_count;
1871 }
1872
1873 static void __perf_event_sync_stat(struct perf_event *event,
1874 struct perf_event *next_event)
1875 {
1876 u64 value;
1877
1878 if (!event->attr.inherit_stat)
1879 return;
1880
1881 /*
1882 * Update the event value, we cannot use perf_event_read()
1883 * because we're in the middle of a context switch and have IRQs
1884 * disabled, which upsets smp_call_function_single(), however
1885 * we know the event must be on the current CPU, therefore we
1886 * don't need to use it.
1887 */
1888 switch (event->state) {
1889 case PERF_EVENT_STATE_ACTIVE:
1890 event->pmu->read(event);
1891 /* fall-through */
1892
1893 case PERF_EVENT_STATE_INACTIVE:
1894 update_event_times(event);
1895 break;
1896
1897 default:
1898 break;
1899 }
1900
1901 /*
1902 * In order to keep per-task stats reliable we need to flip the event
1903 * values when we flip the contexts.
1904 */
1905 value = local64_read(&next_event->count);
1906 value = local64_xchg(&event->count, value);
1907 local64_set(&next_event->count, value);
1908
1909 swap(event->total_time_enabled, next_event->total_time_enabled);
1910 swap(event->total_time_running, next_event->total_time_running);
1911
1912 /*
1913 * Since we swizzled the values, update the user visible data too.
1914 */
1915 perf_event_update_userpage(event);
1916 perf_event_update_userpage(next_event);
1917 }
1918
1919 #define list_next_entry(pos, member) \
1920 list_entry(pos->member.next, typeof(*pos), member)
1921
1922 static void perf_event_sync_stat(struct perf_event_context *ctx,
1923 struct perf_event_context *next_ctx)
1924 {
1925 struct perf_event *event, *next_event;
1926
1927 if (!ctx->nr_stat)
1928 return;
1929
1930 update_context_time(ctx);
1931
1932 event = list_first_entry(&ctx->event_list,
1933 struct perf_event, event_entry);
1934
1935 next_event = list_first_entry(&next_ctx->event_list,
1936 struct perf_event, event_entry);
1937
1938 while (&event->event_entry != &ctx->event_list &&
1939 &next_event->event_entry != &next_ctx->event_list) {
1940
1941 __perf_event_sync_stat(event, next_event);
1942
1943 event = list_next_entry(event, event_entry);
1944 next_event = list_next_entry(next_event, event_entry);
1945 }
1946 }
1947
1948 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
1949 struct task_struct *next)
1950 {
1951 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
1952 struct perf_event_context *next_ctx;
1953 struct perf_event_context *parent;
1954 struct perf_cpu_context *cpuctx;
1955 int do_switch = 1;
1956
1957 if (likely(!ctx))
1958 return;
1959
1960 cpuctx = __get_cpu_context(ctx);
1961 if (!cpuctx->task_ctx)
1962 return;
1963
1964 rcu_read_lock();
1965 parent = rcu_dereference(ctx->parent_ctx);
1966 next_ctx = next->perf_event_ctxp[ctxn];
1967 if (parent && next_ctx &&
1968 rcu_dereference(next_ctx->parent_ctx) == parent) {
1969 /*
1970 * Looks like the two contexts are clones, so we might be
1971 * able to optimize the context switch. We lock both
1972 * contexts and check that they are clones under the
1973 * lock (including re-checking that neither has been
1974 * uncloned in the meantime). It doesn't matter which
1975 * order we take the locks because no other cpu could
1976 * be trying to lock both of these tasks.
1977 */
1978 raw_spin_lock(&ctx->lock);
1979 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1980 if (context_equiv(ctx, next_ctx)) {
1981 /*
1982 * XXX do we need a memory barrier of sorts
1983 * wrt to rcu_dereference() of perf_event_ctxp
1984 */
1985 task->perf_event_ctxp[ctxn] = next_ctx;
1986 next->perf_event_ctxp[ctxn] = ctx;
1987 ctx->task = next;
1988 next_ctx->task = task;
1989 do_switch = 0;
1990
1991 perf_event_sync_stat(ctx, next_ctx);
1992 }
1993 raw_spin_unlock(&next_ctx->lock);
1994 raw_spin_unlock(&ctx->lock);
1995 }
1996 rcu_read_unlock();
1997
1998 if (do_switch) {
1999 raw_spin_lock(&ctx->lock);
2000 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2001 cpuctx->task_ctx = NULL;
2002 raw_spin_unlock(&ctx->lock);
2003 }
2004 }
2005
2006 #define for_each_task_context_nr(ctxn) \
2007 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2008
2009 /*
2010 * Called from scheduler to remove the events of the current task,
2011 * with interrupts disabled.
2012 *
2013 * We stop each event and update the event value in event->count.
2014 *
2015 * This does not protect us against NMI, but disable()
2016 * sets the disabled bit in the control field of event _before_
2017 * accessing the event control register. If a NMI hits, then it will
2018 * not restart the event.
2019 */
2020 void __perf_event_task_sched_out(struct task_struct *task,
2021 struct task_struct *next)
2022 {
2023 int ctxn;
2024
2025 for_each_task_context_nr(ctxn)
2026 perf_event_context_sched_out(task, ctxn, next);
2027
2028 /*
2029 * if cgroup events exist on this CPU, then we need
2030 * to check if we have to switch out PMU state.
2031 * cgroup event are system-wide mode only
2032 */
2033 if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2034 perf_cgroup_sched_out(task, next);
2035 }
2036
2037 static void task_ctx_sched_out(struct perf_event_context *ctx)
2038 {
2039 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2040
2041 if (!cpuctx->task_ctx)
2042 return;
2043
2044 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2045 return;
2046
2047 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2048 cpuctx->task_ctx = NULL;
2049 }
2050
2051 /*
2052 * Called with IRQs disabled
2053 */
2054 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2055 enum event_type_t event_type)
2056 {
2057 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2058 }
2059
2060 static void
2061 ctx_pinned_sched_in(struct perf_event_context *ctx,
2062 struct perf_cpu_context *cpuctx)
2063 {
2064 struct perf_event *event;
2065
2066 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2067 if (event->state <= PERF_EVENT_STATE_OFF)
2068 continue;
2069 if (!event_filter_match(event))
2070 continue;
2071
2072 /* may need to reset tstamp_enabled */
2073 if (is_cgroup_event(event))
2074 perf_cgroup_mark_enabled(event, ctx);
2075
2076 if (group_can_go_on(event, cpuctx, 1))
2077 group_sched_in(event, cpuctx, ctx);
2078
2079 /*
2080 * If this pinned group hasn't been scheduled,
2081 * put it in error state.
2082 */
2083 if (event->state == PERF_EVENT_STATE_INACTIVE) {
2084 update_group_times(event);
2085 event->state = PERF_EVENT_STATE_ERROR;
2086 }
2087 }
2088 }
2089
2090 static void
2091 ctx_flexible_sched_in(struct perf_event_context *ctx,
2092 struct perf_cpu_context *cpuctx)
2093 {
2094 struct perf_event *event;
2095 int can_add_hw = 1;
2096
2097 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2098 /* Ignore events in OFF or ERROR state */
2099 if (event->state <= PERF_EVENT_STATE_OFF)
2100 continue;
2101 /*
2102 * Listen to the 'cpu' scheduling filter constraint
2103 * of events:
2104 */
2105 if (!event_filter_match(event))
2106 continue;
2107
2108 /* may need to reset tstamp_enabled */
2109 if (is_cgroup_event(event))
2110 perf_cgroup_mark_enabled(event, ctx);
2111
2112 if (group_can_go_on(event, cpuctx, can_add_hw)) {
2113 if (group_sched_in(event, cpuctx, ctx))
2114 can_add_hw = 0;
2115 }
2116 }
2117 }
2118
2119 static void
2120 ctx_sched_in(struct perf_event_context *ctx,
2121 struct perf_cpu_context *cpuctx,
2122 enum event_type_t event_type,
2123 struct task_struct *task)
2124 {
2125 u64 now;
2126 int is_active = ctx->is_active;
2127
2128 ctx->is_active |= event_type;
2129 if (likely(!ctx->nr_events))
2130 return;
2131
2132 now = perf_clock();
2133 ctx->timestamp = now;
2134 perf_cgroup_set_timestamp(task, ctx);
2135 /*
2136 * First go through the list and put on any pinned groups
2137 * in order to give them the best chance of going on.
2138 */
2139 if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
2140 ctx_pinned_sched_in(ctx, cpuctx);
2141
2142 /* Then walk through the lower prio flexible groups */
2143 if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
2144 ctx_flexible_sched_in(ctx, cpuctx);
2145 }
2146
2147 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
2148 enum event_type_t event_type,
2149 struct task_struct *task)
2150 {
2151 struct perf_event_context *ctx = &cpuctx->ctx;
2152
2153 ctx_sched_in(ctx, cpuctx, event_type, task);
2154 }
2155
2156 static void perf_event_context_sched_in(struct perf_event_context *ctx,
2157 struct task_struct *task)
2158 {
2159 struct perf_cpu_context *cpuctx;
2160
2161 cpuctx = __get_cpu_context(ctx);
2162 if (cpuctx->task_ctx == ctx)
2163 return;
2164
2165 perf_ctx_lock(cpuctx, ctx);
2166 perf_pmu_disable(ctx->pmu);
2167 /*
2168 * We want to keep the following priority order:
2169 * cpu pinned (that don't need to move), task pinned,
2170 * cpu flexible, task flexible.
2171 */
2172 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2173
2174 perf_event_sched_in(cpuctx, ctx, task);
2175
2176 cpuctx->task_ctx = ctx;
2177
2178 perf_pmu_enable(ctx->pmu);
2179 perf_ctx_unlock(cpuctx, ctx);
2180
2181 /*
2182 * Since these rotations are per-cpu, we need to ensure the
2183 * cpu-context we got scheduled on is actually rotating.
2184 */
2185 perf_pmu_rotate_start(ctx->pmu);
2186 }
2187
2188 /*
2189 * Called from scheduler to add the events of the current task
2190 * with interrupts disabled.
2191 *
2192 * We restore the event value and then enable it.
2193 *
2194 * This does not protect us against NMI, but enable()
2195 * sets the enabled bit in the control field of event _before_
2196 * accessing the event control register. If a NMI hits, then it will
2197 * keep the event running.
2198 */
2199 void __perf_event_task_sched_in(struct task_struct *prev,
2200 struct task_struct *task)
2201 {
2202 struct perf_event_context *ctx;
2203 int ctxn;
2204
2205 for_each_task_context_nr(ctxn) {
2206 ctx = task->perf_event_ctxp[ctxn];
2207 if (likely(!ctx))
2208 continue;
2209
2210 perf_event_context_sched_in(ctx, task);
2211 }
2212 /*
2213 * if cgroup events exist on this CPU, then we need
2214 * to check if we have to switch in PMU state.
2215 * cgroup event are system-wide mode only
2216 */
2217 if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2218 perf_cgroup_sched_in(prev, task);
2219 }
2220
2221 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
2222 {
2223 u64 frequency = event->attr.sample_freq;
2224 u64 sec = NSEC_PER_SEC;
2225 u64 divisor, dividend;
2226
2227 int count_fls, nsec_fls, frequency_fls, sec_fls;
2228
2229 count_fls = fls64(count);
2230 nsec_fls = fls64(nsec);
2231 frequency_fls = fls64(frequency);
2232 sec_fls = 30;
2233
2234 /*
2235 * We got @count in @nsec, with a target of sample_freq HZ
2236 * the target period becomes:
2237 *
2238 * @count * 10^9
2239 * period = -------------------
2240 * @nsec * sample_freq
2241 *
2242 */
2243
2244 /*
2245 * Reduce accuracy by one bit such that @a and @b converge
2246 * to a similar magnitude.
2247 */
2248 #define REDUCE_FLS(a, b) \
2249 do { \
2250 if (a##_fls > b##_fls) { \
2251 a >>= 1; \
2252 a##_fls--; \
2253 } else { \
2254 b >>= 1; \
2255 b##_fls--; \
2256 } \
2257 } while (0)
2258
2259 /*
2260 * Reduce accuracy until either term fits in a u64, then proceed with
2261 * the other, so that finally we can do a u64/u64 division.
2262 */
2263 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
2264 REDUCE_FLS(nsec, frequency);
2265 REDUCE_FLS(sec, count);
2266 }
2267
2268 if (count_fls + sec_fls > 64) {
2269 divisor = nsec * frequency;
2270
2271 while (count_fls + sec_fls > 64) {
2272 REDUCE_FLS(count, sec);
2273 divisor >>= 1;
2274 }
2275
2276 dividend = count * sec;
2277 } else {
2278 dividend = count * sec;
2279
2280 while (nsec_fls + frequency_fls > 64) {
2281 REDUCE_FLS(nsec, frequency);
2282 dividend >>= 1;
2283 }
2284
2285 divisor = nsec * frequency;
2286 }
2287
2288 if (!divisor)
2289 return dividend;
2290
2291 return div64_u64(dividend, divisor);
2292 }
2293
2294 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count)
2295 {
2296 struct hw_perf_event *hwc = &event->hw;
2297 s64 period, sample_period;
2298 s64 delta;
2299
2300 period = perf_calculate_period(event, nsec, count);
2301
2302 delta = (s64)(period - hwc->sample_period);
2303 delta = (delta + 7) / 8; /* low pass filter */
2304
2305 sample_period = hwc->sample_period + delta;
2306
2307 if (!sample_period)
2308 sample_period = 1;
2309
2310 hwc->sample_period = sample_period;
2311
2312 if (local64_read(&hwc->period_left) > 8*sample_period) {
2313 event->pmu->stop(event, PERF_EF_UPDATE);
2314 local64_set(&hwc->period_left, 0);
2315 event->pmu->start(event, PERF_EF_RELOAD);
2316 }
2317 }
2318
2319 static void perf_ctx_adjust_freq(struct perf_event_context *ctx, u64 period)
2320 {
2321 struct perf_event *event;
2322 struct hw_perf_event *hwc;
2323 u64 interrupts, now;
2324 s64 delta;
2325
2326 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
2327 if (event->state != PERF_EVENT_STATE_ACTIVE)
2328 continue;
2329
2330 if (!event_filter_match(event))
2331 continue;
2332
2333 hwc = &event->hw;
2334
2335 interrupts = hwc->interrupts;
2336 hwc->interrupts = 0;
2337
2338 /*
2339 * unthrottle events on the tick
2340 */
2341 if (interrupts == MAX_INTERRUPTS) {
2342 perf_log_throttle(event, 1);
2343 event->pmu->start(event, 0);
2344 }
2345
2346 if (!event->attr.freq || !event->attr.sample_freq)
2347 continue;
2348
2349 event->pmu->read(event);
2350 now = local64_read(&event->count);
2351 delta = now - hwc->freq_count_stamp;
2352 hwc->freq_count_stamp = now;
2353
2354 if (delta > 0)
2355 perf_adjust_period(event, period, delta);
2356 }
2357 }
2358
2359 /*
2360 * Round-robin a context's events:
2361 */
2362 static void rotate_ctx(struct perf_event_context *ctx)
2363 {
2364 /*
2365 * Rotate the first entry last of non-pinned groups. Rotation might be
2366 * disabled by the inheritance code.
2367 */
2368 if (!ctx->rotate_disable)
2369 list_rotate_left(&ctx->flexible_groups);
2370 }
2371
2372 /*
2373 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
2374 * because they're strictly cpu affine and rotate_start is called with IRQs
2375 * disabled, while rotate_context is called from IRQ context.
2376 */
2377 static void perf_rotate_context(struct perf_cpu_context *cpuctx)
2378 {
2379 u64 interval = (u64)cpuctx->jiffies_interval * TICK_NSEC;
2380 struct perf_event_context *ctx = NULL;
2381 int rotate = 0, remove = 1;
2382
2383 if (cpuctx->ctx.nr_events) {
2384 remove = 0;
2385 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
2386 rotate = 1;
2387 }
2388
2389 ctx = cpuctx->task_ctx;
2390 if (ctx && ctx->nr_events) {
2391 remove = 0;
2392 if (ctx->nr_events != ctx->nr_active)
2393 rotate = 1;
2394 }
2395
2396 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2397 perf_pmu_disable(cpuctx->ctx.pmu);
2398 perf_ctx_adjust_freq(&cpuctx->ctx, interval);
2399 if (ctx)
2400 perf_ctx_adjust_freq(ctx, interval);
2401
2402 if (!rotate)
2403 goto done;
2404
2405 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2406 if (ctx)
2407 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
2408
2409 rotate_ctx(&cpuctx->ctx);
2410 if (ctx)
2411 rotate_ctx(ctx);
2412
2413 perf_event_sched_in(cpuctx, ctx, current);
2414
2415 done:
2416 if (remove)
2417 list_del_init(&cpuctx->rotation_list);
2418
2419 perf_pmu_enable(cpuctx->ctx.pmu);
2420 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2421 }
2422
2423 void perf_event_task_tick(void)
2424 {
2425 struct list_head *head = &__get_cpu_var(rotation_list);
2426 struct perf_cpu_context *cpuctx, *tmp;
2427
2428 WARN_ON(!irqs_disabled());
2429
2430 list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
2431 if (cpuctx->jiffies_interval == 1 ||
2432 !(jiffies % cpuctx->jiffies_interval))
2433 perf_rotate_context(cpuctx);
2434 }
2435 }
2436
2437 static int event_enable_on_exec(struct perf_event *event,
2438 struct perf_event_context *ctx)
2439 {
2440 if (!event->attr.enable_on_exec)
2441 return 0;
2442
2443 event->attr.enable_on_exec = 0;
2444 if (event->state >= PERF_EVENT_STATE_INACTIVE)
2445 return 0;
2446
2447 __perf_event_mark_enabled(event, ctx);
2448
2449 return 1;
2450 }
2451
2452 /*
2453 * Enable all of a task's events that have been marked enable-on-exec.
2454 * This expects task == current.
2455 */
2456 static void perf_event_enable_on_exec(struct perf_event_context *ctx)
2457 {
2458 struct perf_event *event;
2459 unsigned long flags;
2460 int enabled = 0;
2461 int ret;
2462
2463 local_irq_save(flags);
2464 if (!ctx || !ctx->nr_events)
2465 goto out;
2466
2467 /*
2468 * We must ctxsw out cgroup events to avoid conflict
2469 * when invoking perf_task_event_sched_in() later on
2470 * in this function. Otherwise we end up trying to
2471 * ctxswin cgroup events which are already scheduled
2472 * in.
2473 */
2474 perf_cgroup_sched_out(current, NULL);
2475
2476 raw_spin_lock(&ctx->lock);
2477 task_ctx_sched_out(ctx);
2478
2479 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2480 ret = event_enable_on_exec(event, ctx);
2481 if (ret)
2482 enabled = 1;
2483 }
2484
2485 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2486 ret = event_enable_on_exec(event, ctx);
2487 if (ret)
2488 enabled = 1;
2489 }
2490
2491 /*
2492 * Unclone this context if we enabled any event.
2493 */
2494 if (enabled)
2495 unclone_ctx(ctx);
2496
2497 raw_spin_unlock(&ctx->lock);
2498
2499 /*
2500 * Also calls ctxswin for cgroup events, if any:
2501 */
2502 perf_event_context_sched_in(ctx, ctx->task);
2503 out:
2504 local_irq_restore(flags);
2505 }
2506
2507 /*
2508 * Cross CPU call to read the hardware event
2509 */
2510 static void __perf_event_read(void *info)
2511 {
2512 struct perf_event *event = info;
2513 struct perf_event_context *ctx = event->ctx;
2514 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2515
2516 /*
2517 * If this is a task context, we need to check whether it is
2518 * the current task context of this cpu. If not it has been
2519 * scheduled out before the smp call arrived. In that case
2520 * event->count would have been updated to a recent sample
2521 * when the event was scheduled out.
2522 */
2523 if (ctx->task && cpuctx->task_ctx != ctx)
2524 return;
2525
2526 raw_spin_lock(&ctx->lock);
2527 if (ctx->is_active) {
2528 update_context_time(ctx);
2529 update_cgrp_time_from_event(event);
2530 }
2531 update_event_times(event);
2532 if (event->state == PERF_EVENT_STATE_ACTIVE)
2533 event->pmu->read(event);
2534 raw_spin_unlock(&ctx->lock);
2535 }
2536
2537 static inline u64 perf_event_count(struct perf_event *event)
2538 {
2539 return local64_read(&event->count) + atomic64_read(&event->child_count);
2540 }
2541
2542 static u64 perf_event_read(struct perf_event *event)
2543 {
2544 /*
2545 * If event is enabled and currently active on a CPU, update the
2546 * value in the event structure:
2547 */
2548 if (event->state == PERF_EVENT_STATE_ACTIVE) {
2549 smp_call_function_single(event->oncpu,
2550 __perf_event_read, event, 1);
2551 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
2552 struct perf_event_context *ctx = event->ctx;
2553 unsigned long flags;
2554
2555 raw_spin_lock_irqsave(&ctx->lock, flags);
2556 /*
2557 * may read while context is not active
2558 * (e.g., thread is blocked), in that case
2559 * we cannot update context time
2560 */
2561 if (ctx->is_active) {
2562 update_context_time(ctx);
2563 update_cgrp_time_from_event(event);
2564 }
2565 update_event_times(event);
2566 raw_spin_unlock_irqrestore(&ctx->lock, flags);
2567 }
2568
2569 return perf_event_count(event);
2570 }
2571
2572 /*
2573 * Initialize the perf_event context in a task_struct:
2574 */
2575 static void __perf_event_init_context(struct perf_event_context *ctx)
2576 {
2577 raw_spin_lock_init(&ctx->lock);
2578 mutex_init(&ctx->mutex);
2579 INIT_LIST_HEAD(&ctx->pinned_groups);
2580 INIT_LIST_HEAD(&ctx->flexible_groups);
2581 INIT_LIST_HEAD(&ctx->event_list);
2582 atomic_set(&ctx->refcount, 1);
2583 }
2584
2585 static struct perf_event_context *
2586 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
2587 {
2588 struct perf_event_context *ctx;
2589
2590 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
2591 if (!ctx)
2592 return NULL;
2593
2594 __perf_event_init_context(ctx);
2595 if (task) {
2596 ctx->task = task;
2597 get_task_struct(task);
2598 }
2599 ctx->pmu = pmu;
2600
2601 return ctx;
2602 }
2603
2604 static struct task_struct *
2605 find_lively_task_by_vpid(pid_t vpid)
2606 {
2607 struct task_struct *task;
2608 int err;
2609
2610 rcu_read_lock();
2611 if (!vpid)
2612 task = current;
2613 else
2614 task = find_task_by_vpid(vpid);
2615 if (task)
2616 get_task_struct(task);
2617 rcu_read_unlock();
2618
2619 if (!task)
2620 return ERR_PTR(-ESRCH);
2621
2622 /* Reuse ptrace permission checks for now. */
2623 err = -EACCES;
2624 if (!ptrace_may_access(task, PTRACE_MODE_READ))
2625 goto errout;
2626
2627 return task;
2628 errout:
2629 put_task_struct(task);
2630 return ERR_PTR(err);
2631
2632 }
2633
2634 /*
2635 * Returns a matching context with refcount and pincount.
2636 */
2637 static struct perf_event_context *
2638 find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
2639 {
2640 struct perf_event_context *ctx;
2641 struct perf_cpu_context *cpuctx;
2642 unsigned long flags;
2643 int ctxn, err;
2644
2645 if (!task) {
2646 /* Must be root to operate on a CPU event: */
2647 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
2648 return ERR_PTR(-EACCES);
2649
2650 /*
2651 * We could be clever and allow to attach a event to an
2652 * offline CPU and activate it when the CPU comes up, but
2653 * that's for later.
2654 */
2655 if (!cpu_online(cpu))
2656 return ERR_PTR(-ENODEV);
2657
2658 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
2659 ctx = &cpuctx->ctx;
2660 get_ctx(ctx);
2661 ++ctx->pin_count;
2662
2663 return ctx;
2664 }
2665
2666 err = -EINVAL;
2667 ctxn = pmu->task_ctx_nr;
2668 if (ctxn < 0)
2669 goto errout;
2670
2671 retry:
2672 ctx = perf_lock_task_context(task, ctxn, &flags);
2673 if (ctx) {
2674 unclone_ctx(ctx);
2675 ++ctx->pin_count;
2676 raw_spin_unlock_irqrestore(&ctx->lock, flags);
2677 } else {
2678 ctx = alloc_perf_context(pmu, task);
2679 err = -ENOMEM;
2680 if (!ctx)
2681 goto errout;
2682
2683 err = 0;
2684 mutex_lock(&task->perf_event_mutex);
2685 /*
2686 * If it has already passed perf_event_exit_task().
2687 * we must see PF_EXITING, it takes this mutex too.
2688 */
2689 if (task->flags & PF_EXITING)
2690 err = -ESRCH;
2691 else if (task->perf_event_ctxp[ctxn])
2692 err = -EAGAIN;
2693 else {
2694 get_ctx(ctx);
2695 ++ctx->pin_count;
2696 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
2697 }
2698 mutex_unlock(&task->perf_event_mutex);
2699
2700 if (unlikely(err)) {
2701 put_ctx(ctx);
2702
2703 if (err == -EAGAIN)
2704 goto retry;
2705 goto errout;
2706 }
2707 }
2708
2709 return ctx;
2710
2711 errout:
2712 return ERR_PTR(err);
2713 }
2714
2715 static void perf_event_free_filter(struct perf_event *event);
2716
2717 static void free_event_rcu(struct rcu_head *head)
2718 {
2719 struct perf_event *event;
2720
2721 event = container_of(head, struct perf_event, rcu_head);
2722 if (event->ns)
2723 put_pid_ns(event->ns);
2724 perf_event_free_filter(event);
2725 kfree(event);
2726 }
2727
2728 static void ring_buffer_put(struct ring_buffer *rb);
2729
2730 static void free_event(struct perf_event *event)
2731 {
2732 irq_work_sync(&event->pending);
2733
2734 if (!event->parent) {
2735 if (event->attach_state & PERF_ATTACH_TASK)
2736 jump_label_dec(&perf_sched_events);
2737 if (event->attr.mmap || event->attr.mmap_data)
2738 atomic_dec(&nr_mmap_events);
2739 if (event->attr.comm)
2740 atomic_dec(&nr_comm_events);
2741 if (event->attr.task)
2742 atomic_dec(&nr_task_events);
2743 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
2744 put_callchain_buffers();
2745 if (is_cgroup_event(event)) {
2746 atomic_dec(&per_cpu(perf_cgroup_events, event->cpu));
2747 jump_label_dec(&perf_sched_events);
2748 }
2749 }
2750
2751 if (event->rb) {
2752 ring_buffer_put(event->rb);
2753 event->rb = NULL;
2754 }
2755
2756 if (is_cgroup_event(event))
2757 perf_detach_cgroup(event);
2758
2759 if (event->destroy)
2760 event->destroy(event);
2761
2762 if (event->ctx)
2763 put_ctx(event->ctx);
2764
2765 call_rcu(&event->rcu_head, free_event_rcu);
2766 }
2767
2768 int perf_event_release_kernel(struct perf_event *event)
2769 {
2770 struct perf_event_context *ctx = event->ctx;
2771
2772 WARN_ON_ONCE(ctx->parent_ctx);
2773 /*
2774 * There are two ways this annotation is useful:
2775 *
2776 * 1) there is a lock recursion from perf_event_exit_task
2777 * see the comment there.
2778 *
2779 * 2) there is a lock-inversion with mmap_sem through
2780 * perf_event_read_group(), which takes faults while
2781 * holding ctx->mutex, however this is called after
2782 * the last filedesc died, so there is no possibility
2783 * to trigger the AB-BA case.
2784 */
2785 mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
2786 raw_spin_lock_irq(&ctx->lock);
2787 perf_group_detach(event);
2788 raw_spin_unlock_irq(&ctx->lock);
2789 perf_remove_from_context(event);
2790 mutex_unlock(&ctx->mutex);
2791
2792 free_event(event);
2793
2794 return 0;
2795 }
2796 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
2797
2798 /*
2799 * Called when the last reference to the file is gone.
2800 */
2801 static int perf_release(struct inode *inode, struct file *file)
2802 {
2803 struct perf_event *event = file->private_data;
2804 struct task_struct *owner;
2805
2806 file->private_data = NULL;
2807
2808 rcu_read_lock();
2809 owner = ACCESS_ONCE(event->owner);
2810 /*
2811 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
2812 * !owner it means the list deletion is complete and we can indeed
2813 * free this event, otherwise we need to serialize on
2814 * owner->perf_event_mutex.
2815 */
2816 smp_read_barrier_depends();
2817 if (owner) {
2818 /*
2819 * Since delayed_put_task_struct() also drops the last
2820 * task reference we can safely take a new reference
2821 * while holding the rcu_read_lock().
2822 */
2823 get_task_struct(owner);
2824 }
2825 rcu_read_unlock();
2826
2827 if (owner) {
2828 mutex_lock(&owner->perf_event_mutex);
2829 /*
2830 * We have to re-check the event->owner field, if it is cleared
2831 * we raced with perf_event_exit_task(), acquiring the mutex
2832 * ensured they're done, and we can proceed with freeing the
2833 * event.
2834 */
2835 if (event->owner)
2836 list_del_init(&event->owner_entry);
2837 mutex_unlock(&owner->perf_event_mutex);
2838 put_task_struct(owner);
2839 }
2840
2841 return perf_event_release_kernel(event);
2842 }
2843
2844 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
2845 {
2846 struct perf_event *child;
2847 u64 total = 0;
2848
2849 *enabled = 0;
2850 *running = 0;
2851
2852 mutex_lock(&event->child_mutex);
2853 total += perf_event_read(event);
2854 *enabled += event->total_time_enabled +
2855 atomic64_read(&event->child_total_time_enabled);
2856 *running += event->total_time_running +
2857 atomic64_read(&event->child_total_time_running);
2858
2859 list_for_each_entry(child, &event->child_list, child_list) {
2860 total += perf_event_read(child);
2861 *enabled += child->total_time_enabled;
2862 *running += child->total_time_running;
2863 }
2864 mutex_unlock(&event->child_mutex);
2865
2866 return total;
2867 }
2868 EXPORT_SYMBOL_GPL(perf_event_read_value);
2869
2870 static int perf_event_read_group(struct perf_event *event,
2871 u64 read_format, char __user *buf)
2872 {
2873 struct perf_event *leader = event->group_leader, *sub;
2874 int n = 0, size = 0, ret = -EFAULT;
2875 struct perf_event_context *ctx = leader->ctx;
2876 u64 values[5];
2877 u64 count, enabled, running;
2878
2879 mutex_lock(&ctx->mutex);
2880 count = perf_event_read_value(leader, &enabled, &running);
2881
2882 values[n++] = 1 + leader->nr_siblings;
2883 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2884 values[n++] = enabled;
2885 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2886 values[n++] = running;
2887 values[n++] = count;
2888 if (read_format & PERF_FORMAT_ID)
2889 values[n++] = primary_event_id(leader);
2890
2891 size = n * sizeof(u64);
2892
2893 if (copy_to_user(buf, values, size))
2894 goto unlock;
2895
2896 ret = size;
2897
2898 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
2899 n = 0;
2900
2901 values[n++] = perf_event_read_value(sub, &enabled, &running);
2902 if (read_format & PERF_FORMAT_ID)
2903 values[n++] = primary_event_id(sub);
2904
2905 size = n * sizeof(u64);
2906
2907 if (copy_to_user(buf + ret, values, size)) {
2908 ret = -EFAULT;
2909 goto unlock;
2910 }
2911
2912 ret += size;
2913 }
2914 unlock:
2915 mutex_unlock(&ctx->mutex);
2916
2917 return ret;
2918 }
2919
2920 static int perf_event_read_one(struct perf_event *event,
2921 u64 read_format, char __user *buf)
2922 {
2923 u64 enabled, running;
2924 u64 values[4];
2925 int n = 0;
2926
2927 values[n++] = perf_event_read_value(event, &enabled, &running);
2928 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2929 values[n++] = enabled;
2930 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2931 values[n++] = running;
2932 if (read_format & PERF_FORMAT_ID)
2933 values[n++] = primary_event_id(event);
2934
2935 if (copy_to_user(buf, values, n * sizeof(u64)))
2936 return -EFAULT;
2937
2938 return n * sizeof(u64);
2939 }
2940
2941 /*
2942 * Read the performance event - simple non blocking version for now
2943 */
2944 static ssize_t
2945 perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
2946 {
2947 u64 read_format = event->attr.read_format;
2948 int ret;
2949
2950 /*
2951 * Return end-of-file for a read on a event that is in
2952 * error state (i.e. because it was pinned but it couldn't be
2953 * scheduled on to the CPU at some point).
2954 */
2955 if (event->state == PERF_EVENT_STATE_ERROR)
2956 return 0;
2957
2958 if (count < event->read_size)
2959 return -ENOSPC;
2960
2961 WARN_ON_ONCE(event->ctx->parent_ctx);
2962 if (read_format & PERF_FORMAT_GROUP)
2963 ret = perf_event_read_group(event, read_format, buf);
2964 else
2965 ret = perf_event_read_one(event, read_format, buf);
2966
2967 return ret;
2968 }
2969
2970 static ssize_t
2971 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
2972 {
2973 struct perf_event *event = file->private_data;
2974
2975 return perf_read_hw(event, buf, count);
2976 }
2977
2978 static unsigned int perf_poll(struct file *file, poll_table *wait)
2979 {
2980 struct perf_event *event = file->private_data;
2981 struct ring_buffer *rb;
2982 unsigned int events = POLL_HUP;
2983
2984 rcu_read_lock();
2985 rb = rcu_dereference(event->rb);
2986 if (rb)
2987 events = atomic_xchg(&rb->poll, 0);
2988 rcu_read_unlock();
2989
2990 poll_wait(file, &event->waitq, wait);
2991
2992 return events;
2993 }
2994
2995 static void perf_event_reset(struct perf_event *event)
2996 {
2997 (void)perf_event_read(event);
2998 local64_set(&event->count, 0);
2999 perf_event_update_userpage(event);
3000 }
3001
3002 /*
3003 * Holding the top-level event's child_mutex means that any
3004 * descendant process that has inherited this event will block
3005 * in sync_child_event if it goes to exit, thus satisfying the
3006 * task existence requirements of perf_event_enable/disable.
3007 */
3008 static void perf_event_for_each_child(struct perf_event *event,
3009 void (*func)(struct perf_event *))
3010 {
3011 struct perf_event *child;
3012
3013 WARN_ON_ONCE(event->ctx->parent_ctx);
3014 mutex_lock(&event->child_mutex);
3015 func(event);
3016 list_for_each_entry(child, &event->child_list, child_list)
3017 func(child);
3018 mutex_unlock(&event->child_mutex);
3019 }
3020
3021 static void perf_event_for_each(struct perf_event *event,
3022 void (*func)(struct perf_event *))
3023 {
3024 struct perf_event_context *ctx = event->ctx;
3025 struct perf_event *sibling;
3026
3027 WARN_ON_ONCE(ctx->parent_ctx);
3028 mutex_lock(&ctx->mutex);
3029 event = event->group_leader;
3030
3031 perf_event_for_each_child(event, func);
3032 func(event);
3033 list_for_each_entry(sibling, &event->sibling_list, group_entry)
3034 perf_event_for_each_child(event, func);
3035 mutex_unlock(&ctx->mutex);
3036 }
3037
3038 static int perf_event_period(struct perf_event *event, u64 __user *arg)
3039 {
3040 struct perf_event_context *ctx = event->ctx;
3041 int ret = 0;
3042 u64 value;
3043
3044 if (!is_sampling_event(event))
3045 return -EINVAL;
3046
3047 if (copy_from_user(&value, arg, sizeof(value)))
3048 return -EFAULT;
3049
3050 if (!value)
3051 return -EINVAL;
3052
3053 raw_spin_lock_irq(&ctx->lock);
3054 if (event->attr.freq) {
3055 if (value > sysctl_perf_event_sample_rate) {
3056 ret = -EINVAL;
3057 goto unlock;
3058 }
3059
3060 event->attr.sample_freq = value;
3061 } else {
3062 event->attr.sample_period = value;
3063 event->hw.sample_period = value;
3064 }
3065 unlock:
3066 raw_spin_unlock_irq(&ctx->lock);
3067
3068 return ret;
3069 }
3070
3071 static const struct file_operations perf_fops;
3072
3073 static struct perf_event *perf_fget_light(int fd, int *fput_needed)
3074 {
3075 struct file *file;
3076
3077 file = fget_light(fd, fput_needed);
3078 if (!file)
3079 return ERR_PTR(-EBADF);
3080
3081 if (file->f_op != &perf_fops) {
3082 fput_light(file, *fput_needed);
3083 *fput_needed = 0;
3084 return ERR_PTR(-EBADF);
3085 }
3086
3087 return file->private_data;
3088 }
3089
3090 static int perf_event_set_output(struct perf_event *event,
3091 struct perf_event *output_event);
3092 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
3093
3094 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
3095 {
3096 struct perf_event *event = file->private_data;
3097 void (*func)(struct perf_event *);
3098 u32 flags = arg;
3099
3100 switch (cmd) {
3101 case PERF_EVENT_IOC_ENABLE:
3102 func = perf_event_enable;
3103 break;
3104 case PERF_EVENT_IOC_DISABLE:
3105 func = perf_event_disable;
3106 break;
3107 case PERF_EVENT_IOC_RESET:
3108 func = perf_event_reset;
3109 break;
3110
3111 case PERF_EVENT_IOC_REFRESH:
3112 return perf_event_refresh(event, arg);
3113
3114 case PERF_EVENT_IOC_PERIOD:
3115 return perf_event_period(event, (u64 __user *)arg);
3116
3117 case PERF_EVENT_IOC_SET_OUTPUT:
3118 {
3119 struct perf_event *output_event = NULL;
3120 int fput_needed = 0;
3121 int ret;
3122
3123 if (arg != -1) {
3124 output_event = perf_fget_light(arg, &fput_needed);
3125 if (IS_ERR(output_event))
3126 return PTR_ERR(output_event);
3127 }
3128
3129 ret = perf_event_set_output(event, output_event);
3130 if (output_event)
3131 fput_light(output_event->filp, fput_needed);
3132
3133 return ret;
3134 }
3135
3136 case PERF_EVENT_IOC_SET_FILTER:
3137 return perf_event_set_filter(event, (void __user *)arg);
3138
3139 default:
3140 return -ENOTTY;
3141 }
3142
3143 if (flags & PERF_IOC_FLAG_GROUP)
3144 perf_event_for_each(event, func);
3145 else
3146 perf_event_for_each_child(event, func);
3147
3148 return 0;
3149 }
3150
3151 int perf_event_task_enable(void)
3152 {
3153 struct perf_event *event;
3154
3155 mutex_lock(&current->perf_event_mutex);
3156 list_for_each_entry(event, &current->perf_event_list, owner_entry)
3157 perf_event_for_each_child(event, perf_event_enable);
3158 mutex_unlock(&current->perf_event_mutex);
3159
3160 return 0;
3161 }
3162
3163 int perf_event_task_disable(void)
3164 {
3165 struct perf_event *event;
3166
3167 mutex_lock(&current->perf_event_mutex);
3168 list_for_each_entry(event, &current->perf_event_list, owner_entry)
3169 perf_event_for_each_child(event, perf_event_disable);
3170 mutex_unlock(&current->perf_event_mutex);
3171
3172 return 0;
3173 }
3174
3175 #ifndef PERF_EVENT_INDEX_OFFSET
3176 # define PERF_EVENT_INDEX_OFFSET 0
3177 #endif
3178
3179 static int perf_event_index(struct perf_event *event)
3180 {
3181 if (event->hw.state & PERF_HES_STOPPED)
3182 return 0;
3183
3184 if (event->state != PERF_EVENT_STATE_ACTIVE)
3185 return 0;
3186
3187 return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
3188 }
3189
3190 static void calc_timer_values(struct perf_event *event,
3191 u64 *enabled,
3192 u64 *running)
3193 {
3194 u64 now, ctx_time;
3195
3196 now = perf_clock();
3197 ctx_time = event->shadow_ctx_time + now;
3198 *enabled = ctx_time - event->tstamp_enabled;
3199 *running = ctx_time - event->tstamp_running;
3200 }
3201
3202 /*
3203 * Callers need to ensure there can be no nesting of this function, otherwise
3204 * the seqlock logic goes bad. We can not serialize this because the arch
3205 * code calls this from NMI context.
3206 */
3207 void perf_event_update_userpage(struct perf_event *event)
3208 {
3209 struct perf_event_mmap_page *userpg;
3210 struct ring_buffer *rb;
3211 u64 enabled, running;
3212
3213 rcu_read_lock();
3214 /*
3215 * compute total_time_enabled, total_time_running
3216 * based on snapshot values taken when the event
3217 * was last scheduled in.
3218 *
3219 * we cannot simply called update_context_time()
3220 * because of locking issue as we can be called in
3221 * NMI context
3222 */
3223 calc_timer_values(event, &enabled, &running);
3224 rb = rcu_dereference(event->rb);
3225 if (!rb)
3226 goto unlock;
3227
3228 userpg = rb->user_page;
3229
3230 /*
3231 * Disable preemption so as to not let the corresponding user-space
3232 * spin too long if we get preempted.
3233 */
3234 preempt_disable();
3235 ++userpg->lock;
3236 barrier();
3237 userpg->index = perf_event_index(event);
3238 userpg->offset = perf_event_count(event);
3239 if (event->state == PERF_EVENT_STATE_ACTIVE)
3240 userpg->offset -= local64_read(&event->hw.prev_count);
3241
3242 userpg->time_enabled = enabled +
3243 atomic64_read(&event->child_total_time_enabled);
3244
3245 userpg->time_running = running +
3246 atomic64_read(&event->child_total_time_running);
3247
3248 barrier();
3249 ++userpg->lock;
3250 preempt_enable();
3251 unlock:
3252 rcu_read_unlock();
3253 }
3254
3255 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
3256 {
3257 struct perf_event *event = vma->vm_file->private_data;
3258 struct ring_buffer *rb;
3259 int ret = VM_FAULT_SIGBUS;
3260
3261 if (vmf->flags & FAULT_FLAG_MKWRITE) {
3262 if (vmf->pgoff == 0)
3263 ret = 0;
3264 return ret;
3265 }
3266
3267 rcu_read_lock();
3268 rb = rcu_dereference(event->rb);
3269 if (!rb)
3270 goto unlock;
3271
3272 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
3273 goto unlock;
3274
3275 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
3276 if (!vmf->page)
3277 goto unlock;
3278
3279 get_page(vmf->page);
3280 vmf->page->mapping = vma->vm_file->f_mapping;
3281 vmf->page->index = vmf->pgoff;
3282
3283 ret = 0;
3284 unlock:
3285 rcu_read_unlock();
3286
3287 return ret;
3288 }
3289
3290 static void rb_free_rcu(struct rcu_head *rcu_head)
3291 {
3292 struct ring_buffer *rb;
3293
3294 rb = container_of(rcu_head, struct ring_buffer, rcu_head);
3295 rb_free(rb);
3296 }
3297
3298 static struct ring_buffer *ring_buffer_get(struct perf_event *event)
3299 {
3300 struct ring_buffer *rb;
3301
3302 rcu_read_lock();
3303 rb = rcu_dereference(event->rb);
3304 if (rb) {
3305 if (!atomic_inc_not_zero(&rb->refcount))
3306 rb = NULL;
3307 }
3308 rcu_read_unlock();
3309
3310 return rb;
3311 }
3312
3313 static void ring_buffer_put(struct ring_buffer *rb)
3314 {
3315 if (!atomic_dec_and_test(&rb->refcount))
3316 return;
3317
3318 call_rcu(&rb->rcu_head, rb_free_rcu);
3319 }
3320
3321 static void perf_mmap_open(struct vm_area_struct *vma)
3322 {
3323 struct perf_event *event = vma->vm_file->private_data;
3324
3325 atomic_inc(&event->mmap_count);
3326 }
3327
3328 static void perf_mmap_close(struct vm_area_struct *vma)
3329 {
3330 struct perf_event *event = vma->vm_file->private_data;
3331
3332 if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
3333 unsigned long size = perf_data_size(event->rb);
3334 struct user_struct *user = event->mmap_user;
3335 struct ring_buffer *rb = event->rb;
3336
3337 atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
3338 vma->vm_mm->pinned_vm -= event->mmap_locked;
3339 rcu_assign_pointer(event->rb, NULL);
3340 mutex_unlock(&event->mmap_mutex);
3341
3342 ring_buffer_put(rb);
3343 free_uid(user);
3344 }
3345 }
3346
3347 static const struct vm_operations_struct perf_mmap_vmops = {
3348 .open = perf_mmap_open,
3349 .close = perf_mmap_close,
3350 .fault = perf_mmap_fault,
3351 .page_mkwrite = perf_mmap_fault,
3352 };
3353
3354 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
3355 {
3356 struct perf_event *event = file->private_data;
3357 unsigned long user_locked, user_lock_limit;
3358 struct user_struct *user = current_user();
3359 unsigned long locked, lock_limit;
3360 struct ring_buffer *rb;
3361 unsigned long vma_size;
3362 unsigned long nr_pages;
3363 long user_extra, extra;
3364 int ret = 0, flags = 0;
3365
3366 /*
3367 * Don't allow mmap() of inherited per-task counters. This would
3368 * create a performance issue due to all children writing to the
3369 * same rb.
3370 */
3371 if (event->cpu == -1 && event->attr.inherit)
3372 return -EINVAL;
3373
3374 if (!(vma->vm_flags & VM_SHARED))
3375 return -EINVAL;
3376
3377 vma_size = vma->vm_end - vma->vm_start;
3378 nr_pages = (vma_size / PAGE_SIZE) - 1;
3379
3380 /*
3381 * If we have rb pages ensure they're a power-of-two number, so we
3382 * can do bitmasks instead of modulo.
3383 */
3384 if (nr_pages != 0 && !is_power_of_2(nr_pages))
3385 return -EINVAL;
3386
3387 if (vma_size != PAGE_SIZE * (1 + nr_pages))
3388 return -EINVAL;
3389
3390 if (vma->vm_pgoff != 0)
3391 return -EINVAL;
3392
3393 WARN_ON_ONCE(event->ctx->parent_ctx);
3394 mutex_lock(&event->mmap_mutex);
3395 if (event->rb) {
3396 if (event->rb->nr_pages == nr_pages)
3397 atomic_inc(&event->rb->refcount);
3398 else
3399 ret = -EINVAL;
3400 goto unlock;
3401 }
3402
3403 user_extra = nr_pages + 1;
3404 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
3405
3406 /*
3407 * Increase the limit linearly with more CPUs:
3408 */
3409 user_lock_limit *= num_online_cpus();
3410
3411 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
3412
3413 extra = 0;
3414 if (user_locked > user_lock_limit)
3415 extra = user_locked - user_lock_limit;
3416
3417 lock_limit = rlimit(RLIMIT_MEMLOCK);
3418 lock_limit >>= PAGE_SHIFT;
3419 locked = vma->vm_mm->pinned_vm + extra;
3420
3421 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
3422 !capable(CAP_IPC_LOCK)) {
3423 ret = -EPERM;
3424 goto unlock;
3425 }
3426
3427 WARN_ON(event->rb);
3428
3429 if (vma->vm_flags & VM_WRITE)
3430 flags |= RING_BUFFER_WRITABLE;
3431
3432 rb = rb_alloc(nr_pages,
3433 event->attr.watermark ? event->attr.wakeup_watermark : 0,
3434 event->cpu, flags);
3435
3436 if (!rb) {
3437 ret = -ENOMEM;
3438 goto unlock;
3439 }
3440 rcu_assign_pointer(event->rb, rb);
3441
3442 atomic_long_add(user_extra, &user->locked_vm);
3443 event->mmap_locked = extra;
3444 event->mmap_user = get_current_user();
3445 vma->vm_mm->pinned_vm += event->mmap_locked;
3446
3447 unlock:
3448 if (!ret)
3449 atomic_inc(&event->mmap_count);
3450 mutex_unlock(&event->mmap_mutex);
3451
3452 vma->vm_flags |= VM_RESERVED;
3453 vma->vm_ops = &perf_mmap_vmops;
3454
3455 return ret;
3456 }
3457
3458 static int perf_fasync(int fd, struct file *filp, int on)
3459 {
3460 struct inode *inode = filp->f_path.dentry->d_inode;
3461 struct perf_event *event = filp->private_data;
3462 int retval;
3463
3464 mutex_lock(&inode->i_mutex);
3465 retval = fasync_helper(fd, filp, on, &event->fasync);
3466 mutex_unlock(&inode->i_mutex);
3467
3468 if (retval < 0)
3469 return retval;
3470
3471 return 0;
3472 }
3473
3474 static const struct file_operations perf_fops = {
3475 .llseek = no_llseek,
3476 .release = perf_release,
3477 .read = perf_read,
3478 .poll = perf_poll,
3479 .unlocked_ioctl = perf_ioctl,
3480 .compat_ioctl = perf_ioctl,
3481 .mmap = perf_mmap,
3482 .fasync = perf_fasync,
3483 };
3484
3485 /*
3486 * Perf event wakeup
3487 *
3488 * If there's data, ensure we set the poll() state and publish everything
3489 * to user-space before waking everybody up.
3490 */
3491
3492 void perf_event_wakeup(struct perf_event *event)
3493 {
3494 wake_up_all(&event->waitq);
3495
3496 if (event->pending_kill) {
3497 kill_fasync(&event->fasync, SIGIO, event->pending_kill);
3498 event->pending_kill = 0;
3499 }
3500 }
3501
3502 static void perf_pending_event(struct irq_work *entry)
3503 {
3504 struct perf_event *event = container_of(entry,
3505 struct perf_event, pending);
3506
3507 if (event->pending_disable) {
3508 event->pending_disable = 0;
3509 __perf_event_disable(event);
3510 }
3511
3512 if (event->pending_wakeup) {
3513 event->pending_wakeup = 0;
3514 perf_event_wakeup(event);
3515 }
3516 }
3517
3518 /*
3519 * We assume there is only KVM supporting the callbacks.
3520 * Later on, we might change it to a list if there is
3521 * another virtualization implementation supporting the callbacks.
3522 */
3523 struct perf_guest_info_callbacks *perf_guest_cbs;
3524
3525 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
3526 {
3527 perf_guest_cbs = cbs;
3528 return 0;
3529 }
3530 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
3531
3532 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
3533 {
3534 perf_guest_cbs = NULL;
3535 return 0;
3536 }
3537 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
3538
3539 static void __perf_event_header__init_id(struct perf_event_header *header,
3540 struct perf_sample_data *data,
3541 struct perf_event *event)
3542 {
3543 u64 sample_type = event->attr.sample_type;
3544
3545 data->type = sample_type;
3546 header->size += event->id_header_size;
3547
3548 if (sample_type & PERF_SAMPLE_TID) {
3549 /* namespace issues */
3550 data->tid_entry.pid = perf_event_pid(event, current);
3551 data->tid_entry.tid = perf_event_tid(event, current);
3552 }
3553
3554 if (sample_type & PERF_SAMPLE_TIME)
3555 data->time = perf_clock();
3556
3557 if (sample_type & PERF_SAMPLE_ID)
3558 data->id = primary_event_id(event);
3559
3560 if (sample_type & PERF_SAMPLE_STREAM_ID)
3561 data->stream_id = event->id;
3562
3563 if (sample_type & PERF_SAMPLE_CPU) {
3564 data->cpu_entry.cpu = raw_smp_processor_id();
3565 data->cpu_entry.reserved = 0;
3566 }
3567 }
3568
3569 void perf_event_header__init_id(struct perf_event_header *header,
3570 struct perf_sample_data *data,
3571 struct perf_event *event)
3572 {
3573 if (event->attr.sample_id_all)
3574 __perf_event_header__init_id(header, data, event);
3575 }
3576
3577 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
3578 struct perf_sample_data *data)
3579 {
3580 u64 sample_type = data->type;
3581
3582 if (sample_type & PERF_SAMPLE_TID)
3583 perf_output_put(handle, data->tid_entry);
3584
3585 if (sample_type & PERF_SAMPLE_TIME)
3586 perf_output_put(handle, data->time);
3587
3588 if (sample_type & PERF_SAMPLE_ID)
3589 perf_output_put(handle, data->id);
3590
3591 if (sample_type & PERF_SAMPLE_STREAM_ID)
3592 perf_output_put(handle, data->stream_id);
3593
3594 if (sample_type & PERF_SAMPLE_CPU)
3595 perf_output_put(handle, data->cpu_entry);
3596 }
3597
3598 void perf_event__output_id_sample(struct perf_event *event,
3599 struct perf_output_handle *handle,
3600 struct perf_sample_data *sample)
3601 {
3602 if (event->attr.sample_id_all)
3603 __perf_event__output_id_sample(handle, sample);
3604 }
3605
3606 static void perf_output_read_one(struct perf_output_handle *handle,
3607 struct perf_event *event,
3608 u64 enabled, u64 running)
3609 {
3610 u64 read_format = event->attr.read_format;
3611 u64 values[4];
3612 int n = 0;
3613
3614 values[n++] = perf_event_count(event);
3615 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3616 values[n++] = enabled +
3617 atomic64_read(&event->child_total_time_enabled);
3618 }
3619 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3620 values[n++] = running +
3621 atomic64_read(&event->child_total_time_running);
3622 }
3623 if (read_format & PERF_FORMAT_ID)
3624 values[n++] = primary_event_id(event);
3625
3626 __output_copy(handle, values, n * sizeof(u64));
3627 }
3628
3629 /*
3630 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3631 */
3632 static void perf_output_read_group(struct perf_output_handle *handle,
3633 struct perf_event *event,
3634 u64 enabled, u64 running)
3635 {
3636 struct perf_event *leader = event->group_leader, *sub;
3637 u64 read_format = event->attr.read_format;
3638 u64 values[5];
3639 int n = 0;
3640
3641 values[n++] = 1 + leader->nr_siblings;
3642
3643 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3644 values[n++] = enabled;
3645
3646 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3647 values[n++] = running;
3648
3649 if (leader != event)
3650 leader->pmu->read(leader);
3651
3652 values[n++] = perf_event_count(leader);
3653 if (read_format & PERF_FORMAT_ID)
3654 values[n++] = primary_event_id(leader);
3655
3656 __output_copy(handle, values, n * sizeof(u64));
3657
3658 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3659 n = 0;
3660
3661 if (sub != event)
3662 sub->pmu->read(sub);
3663
3664 values[n++] = perf_event_count(sub);
3665 if (read_format & PERF_FORMAT_ID)
3666 values[n++] = primary_event_id(sub);
3667
3668 __output_copy(handle, values, n * sizeof(u64));
3669 }
3670 }
3671
3672 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
3673 PERF_FORMAT_TOTAL_TIME_RUNNING)
3674
3675 static void perf_output_read(struct perf_output_handle *handle,
3676 struct perf_event *event)
3677 {
3678 u64 enabled = 0, running = 0;
3679 u64 read_format = event->attr.read_format;
3680
3681 /*
3682 * compute total_time_enabled, total_time_running
3683 * based on snapshot values taken when the event
3684 * was last scheduled in.
3685 *
3686 * we cannot simply called update_context_time()
3687 * because of locking issue as we are called in
3688 * NMI context
3689 */
3690 if (read_format & PERF_FORMAT_TOTAL_TIMES)
3691 calc_timer_values(event, &enabled, &running);
3692
3693 if (event->attr.read_format & PERF_FORMAT_GROUP)
3694 perf_output_read_group(handle, event, enabled, running);
3695 else
3696 perf_output_read_one(handle, event, enabled, running);
3697 }
3698
3699 void perf_output_sample(struct perf_output_handle *handle,
3700 struct perf_event_header *header,
3701 struct perf_sample_data *data,
3702 struct perf_event *event)
3703 {
3704 u64 sample_type = data->type;
3705
3706 perf_output_put(handle, *header);
3707
3708 if (sample_type & PERF_SAMPLE_IP)
3709 perf_output_put(handle, data->ip);
3710
3711 if (sample_type & PERF_SAMPLE_TID)
3712 perf_output_put(handle, data->tid_entry);
3713
3714 if (sample_type & PERF_SAMPLE_TIME)
3715 perf_output_put(handle, data->time);
3716
3717 if (sample_type & PERF_SAMPLE_ADDR)
3718 perf_output_put(handle, data->addr);
3719
3720 if (sample_type & PERF_SAMPLE_ID)
3721 perf_output_put(handle, data->id);
3722
3723 if (sample_type & PERF_SAMPLE_STREAM_ID)
3724 perf_output_put(handle, data->stream_id);
3725
3726 if (sample_type & PERF_SAMPLE_CPU)
3727 perf_output_put(handle, data->cpu_entry);
3728
3729 if (sample_type & PERF_SAMPLE_PERIOD)
3730 perf_output_put(handle, data->period);
3731
3732 if (sample_type & PERF_SAMPLE_READ)
3733 perf_output_read(handle, event);
3734
3735 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3736 if (data->callchain) {
3737 int size = 1;
3738
3739 if (data->callchain)
3740 size += data->callchain->nr;
3741
3742 size *= sizeof(u64);
3743
3744 __output_copy(handle, data->callchain, size);
3745 } else {
3746 u64 nr = 0;
3747 perf_output_put(handle, nr);
3748 }
3749 }
3750
3751 if (sample_type & PERF_SAMPLE_RAW) {
3752 if (data->raw) {
3753 perf_output_put(handle, data->raw->size);
3754 __output_copy(handle, data->raw->data,
3755 data->raw->size);
3756 } else {
3757 struct {
3758 u32 size;
3759 u32 data;
3760 } raw = {
3761 .size = sizeof(u32),
3762 .data = 0,
3763 };
3764 perf_output_put(handle, raw);
3765 }
3766 }
3767
3768 if (!event->attr.watermark) {
3769 int wakeup_events = event->attr.wakeup_events;
3770
3771 if (wakeup_events) {
3772 struct ring_buffer *rb = handle->rb;
3773 int events = local_inc_return(&rb->events);
3774
3775 if (events >= wakeup_events) {
3776 local_sub(wakeup_events, &rb->events);
3777 local_inc(&rb->wakeup);
3778 }
3779 }
3780 }
3781 }
3782
3783 void perf_prepare_sample(struct perf_event_header *header,
3784 struct perf_sample_data *data,
3785 struct perf_event *event,
3786 struct pt_regs *regs)
3787 {
3788 u64 sample_type = event->attr.sample_type;
3789
3790 header->type = PERF_RECORD_SAMPLE;
3791 header->size = sizeof(*header) + event->header_size;
3792
3793 header->misc = 0;
3794 header->misc |= perf_misc_flags(regs);
3795
3796 __perf_event_header__init_id(header, data, event);
3797
3798 if (sample_type & PERF_SAMPLE_IP)
3799 data->ip = perf_instruction_pointer(regs);
3800
3801 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3802 int size = 1;
3803
3804 data->callchain = perf_callchain(regs);
3805
3806 if (data->callchain)
3807 size += data->callchain->nr;
3808
3809 header->size += size * sizeof(u64);
3810 }
3811
3812 if (sample_type & PERF_SAMPLE_RAW) {
3813 int size = sizeof(u32);
3814
3815 if (data->raw)
3816 size += data->raw->size;
3817 else
3818 size += sizeof(u32);
3819
3820 WARN_ON_ONCE(size & (sizeof(u64)-1));
3821 header->size += size;
3822 }
3823 }
3824
3825 static void perf_event_output(struct perf_event *event,
3826 struct perf_sample_data *data,
3827 struct pt_regs *regs)
3828 {
3829 struct perf_output_handle handle;
3830 struct perf_event_header header;
3831
3832 /* protect the callchain buffers */
3833 rcu_read_lock();
3834
3835 perf_prepare_sample(&header, data, event, regs);
3836
3837 if (perf_output_begin(&handle, event, header.size))
3838 goto exit;
3839
3840 perf_output_sample(&handle, &header, data, event);
3841
3842 perf_output_end(&handle);
3843
3844 exit:
3845 rcu_read_unlock();
3846 }
3847
3848 /*
3849 * read event_id
3850 */
3851
3852 struct perf_read_event {
3853 struct perf_event_header header;
3854
3855 u32 pid;
3856 u32 tid;
3857 };
3858
3859 static void
3860 perf_event_read_event(struct perf_event *event,
3861 struct task_struct *task)
3862 {
3863 struct perf_output_handle handle;
3864 struct perf_sample_data sample;
3865 struct perf_read_event read_event = {
3866 .header = {
3867 .type = PERF_RECORD_READ,
3868 .misc = 0,
3869 .size = sizeof(read_event) + event->read_size,
3870 },
3871 .pid = perf_event_pid(event, task),
3872 .tid = perf_event_tid(event, task),
3873 };
3874 int ret;
3875
3876 perf_event_header__init_id(&read_event.header, &sample, event);
3877 ret = perf_output_begin(&handle, event, read_event.header.size);
3878 if (ret)
3879 return;
3880
3881 perf_output_put(&handle, read_event);
3882 perf_output_read(&handle, event);
3883 perf_event__output_id_sample(event, &handle, &sample);
3884
3885 perf_output_end(&handle);
3886 }
3887
3888 /*
3889 * task tracking -- fork/exit
3890 *
3891 * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task
3892 */
3893
3894 struct perf_task_event {
3895 struct task_struct *task;
3896 struct perf_event_context *task_ctx;
3897
3898 struct {
3899 struct perf_event_header header;
3900
3901 u32 pid;
3902 u32 ppid;
3903 u32 tid;
3904 u32 ptid;
3905 u64 time;
3906 } event_id;
3907 };
3908
3909 static void perf_event_task_output(struct perf_event *event,
3910 struct perf_task_event *task_event)
3911 {
3912 struct perf_output_handle handle;
3913 struct perf_sample_data sample;
3914 struct task_struct *task = task_event->task;
3915 int ret, size = task_event->event_id.header.size;
3916
3917 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
3918
3919 ret = perf_output_begin(&handle, event,
3920 task_event->event_id.header.size);
3921 if (ret)
3922 goto out;
3923
3924 task_event->event_id.pid = perf_event_pid(event, task);
3925 task_event->event_id.ppid = perf_event_pid(event, current);
3926
3927 task_event->event_id.tid = perf_event_tid(event, task);
3928 task_event->event_id.ptid = perf_event_tid(event, current);
3929
3930 perf_output_put(&handle, task_event->event_id);
3931
3932 perf_event__output_id_sample(event, &handle, &sample);
3933
3934 perf_output_end(&handle);
3935 out:
3936 task_event->event_id.header.size = size;
3937 }
3938
3939 static int perf_event_task_match(struct perf_event *event)
3940 {
3941 if (event->state < PERF_EVENT_STATE_INACTIVE)
3942 return 0;
3943
3944 if (!event_filter_match(event))
3945 return 0;
3946
3947 if (event->attr.comm || event->attr.mmap ||
3948 event->attr.mmap_data || event->attr.task)
3949 return 1;
3950
3951 return 0;
3952 }
3953
3954 static void perf_event_task_ctx(struct perf_event_context *ctx,
3955 struct perf_task_event *task_event)
3956 {
3957 struct perf_event *event;
3958
3959 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3960 if (perf_event_task_match(event))
3961 perf_event_task_output(event, task_event);
3962 }
3963 }
3964
3965 static void perf_event_task_event(struct perf_task_event *task_event)
3966 {
3967 struct perf_cpu_context *cpuctx;
3968 struct perf_event_context *ctx;
3969 struct pmu *pmu;
3970 int ctxn;
3971
3972 rcu_read_lock();
3973 list_for_each_entry_rcu(pmu, &pmus, entry) {
3974 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
3975 if (cpuctx->active_pmu != pmu)
3976 goto next;
3977 perf_event_task_ctx(&cpuctx->ctx, task_event);
3978
3979 ctx = task_event->task_ctx;
3980 if (!ctx) {
3981 ctxn = pmu->task_ctx_nr;
3982 if (ctxn < 0)
3983 goto next;
3984 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
3985 }
3986 if (ctx)
3987 perf_event_task_ctx(ctx, task_event);
3988 next:
3989 put_cpu_ptr(pmu->pmu_cpu_context);
3990 }
3991 rcu_read_unlock();
3992 }
3993
3994 static void perf_event_task(struct task_struct *task,
3995 struct perf_event_context *task_ctx,
3996 int new)
3997 {
3998 struct perf_task_event task_event;
3999
4000 if (!atomic_read(&nr_comm_events) &&
4001 !atomic_read(&nr_mmap_events) &&
4002 !atomic_read(&nr_task_events))
4003 return;
4004
4005 task_event = (struct perf_task_event){
4006 .task = task,
4007 .task_ctx = task_ctx,
4008 .event_id = {
4009 .header = {
4010 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
4011 .misc = 0,
4012 .size = sizeof(task_event.event_id),
4013 },
4014 /* .pid */
4015 /* .ppid */
4016 /* .tid */
4017 /* .ptid */
4018 .time = perf_clock(),
4019 },
4020 };
4021
4022 perf_event_task_event(&task_event);
4023 }
4024
4025 void perf_event_fork(struct task_struct *task)
4026 {
4027 perf_event_task(task, NULL, 1);
4028 }
4029
4030 /*
4031 * comm tracking
4032 */
4033
4034 struct perf_comm_event {
4035 struct task_struct *task;
4036 char *comm;
4037 int comm_size;
4038
4039 struct {
4040 struct perf_event_header header;
4041
4042 u32 pid;
4043 u32 tid;
4044 } event_id;
4045 };
4046
4047 static void perf_event_comm_output(struct perf_event *event,
4048 struct perf_comm_event *comm_event)
4049 {
4050 struct perf_output_handle handle;
4051 struct perf_sample_data sample;
4052 int size = comm_event->event_id.header.size;
4053 int ret;
4054
4055 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
4056 ret = perf_output_begin(&handle, event,
4057 comm_event->event_id.header.size);
4058
4059 if (ret)
4060 goto out;
4061
4062 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
4063 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
4064
4065 perf_output_put(&handle, comm_event->event_id);
4066 __output_copy(&handle, comm_event->comm,
4067 comm_event->comm_size);
4068
4069 perf_event__output_id_sample(event, &handle, &sample);
4070
4071 perf_output_end(&handle);
4072 out:
4073 comm_event->event_id.header.size = size;
4074 }
4075
4076 static int perf_event_comm_match(struct perf_event *event)
4077 {
4078 if (event->state < PERF_EVENT_STATE_INACTIVE)
4079 return 0;
4080
4081 if (!event_filter_match(event))
4082 return 0;
4083
4084 if (event->attr.comm)
4085 return 1;
4086
4087 return 0;
4088 }
4089
4090 static void perf_event_comm_ctx(struct perf_event_context *ctx,
4091 struct perf_comm_event *comm_event)
4092 {
4093 struct perf_event *event;
4094
4095 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4096 if (perf_event_comm_match(event))
4097 perf_event_comm_output(event, comm_event);
4098 }
4099 }
4100
4101 static void perf_event_comm_event(struct perf_comm_event *comm_event)
4102 {
4103 struct perf_cpu_context *cpuctx;
4104 struct perf_event_context *ctx;
4105 char comm[TASK_COMM_LEN];
4106 unsigned int size;
4107 struct pmu *pmu;
4108 int ctxn;
4109
4110 memset(comm, 0, sizeof(comm));
4111 strlcpy(comm, comm_event->task->comm, sizeof(comm));
4112 size = ALIGN(strlen(comm)+1, sizeof(u64));
4113
4114 comm_event->comm = comm;
4115 comm_event->comm_size = size;
4116
4117 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
4118 rcu_read_lock();
4119 list_for_each_entry_rcu(pmu, &pmus, entry) {
4120 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4121 if (cpuctx->active_pmu != pmu)
4122 goto next;
4123 perf_event_comm_ctx(&cpuctx->ctx, comm_event);
4124
4125 ctxn = pmu->task_ctx_nr;
4126 if (ctxn < 0)
4127 goto next;
4128
4129 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4130 if (ctx)
4131 perf_event_comm_ctx(ctx, comm_event);
4132 next:
4133 put_cpu_ptr(pmu->pmu_cpu_context);
4134 }
4135 rcu_read_unlock();
4136 }
4137
4138 void perf_event_comm(struct task_struct *task)
4139 {
4140 struct perf_comm_event comm_event;
4141 struct perf_event_context *ctx;
4142 int ctxn;
4143
4144 for_each_task_context_nr(ctxn) {
4145 ctx = task->perf_event_ctxp[ctxn];
4146 if (!ctx)
4147 continue;
4148
4149 perf_event_enable_on_exec(ctx);
4150 }
4151
4152 if (!atomic_read(&nr_comm_events))
4153 return;
4154
4155 comm_event = (struct perf_comm_event){
4156 .task = task,
4157 /* .comm */
4158 /* .comm_size */
4159 .event_id = {
4160 .header = {
4161 .type = PERF_RECORD_COMM,
4162 .misc = 0,
4163 /* .size */
4164 },
4165 /* .pid */
4166 /* .tid */
4167 },
4168 };
4169
4170 perf_event_comm_event(&comm_event);
4171 }
4172
4173 /*
4174 * mmap tracking
4175 */
4176
4177 struct perf_mmap_event {
4178 struct vm_area_struct *vma;
4179
4180 const char *file_name;
4181 int file_size;
4182
4183 struct {
4184 struct perf_event_header header;
4185
4186 u32 pid;
4187 u32 tid;
4188 u64 start;
4189 u64 len;
4190 u64 pgoff;
4191 } event_id;
4192 };
4193
4194 static void perf_event_mmap_output(struct perf_event *event,
4195 struct perf_mmap_event *mmap_event)
4196 {
4197 struct perf_output_handle handle;
4198 struct perf_sample_data sample;
4199 int size = mmap_event->event_id.header.size;
4200 int ret;
4201
4202 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
4203 ret = perf_output_begin(&handle, event,
4204 mmap_event->event_id.header.size);
4205 if (ret)
4206 goto out;
4207
4208 mmap_event->event_id.pid = perf_event_pid(event, current);
4209 mmap_event->event_id.tid = perf_event_tid(event, current);
4210
4211 perf_output_put(&handle, mmap_event->event_id);
4212 __output_copy(&handle, mmap_event->file_name,
4213 mmap_event->file_size);
4214
4215 perf_event__output_id_sample(event, &handle, &sample);
4216
4217 perf_output_end(&handle);
4218 out:
4219 mmap_event->event_id.header.size = size;
4220 }
4221
4222 static int perf_event_mmap_match(struct perf_event *event,
4223 struct perf_mmap_event *mmap_event,
4224 int executable)
4225 {
4226 if (event->state < PERF_EVENT_STATE_INACTIVE)
4227 return 0;
4228
4229 if (!event_filter_match(event))
4230 return 0;
4231
4232 if ((!executable && event->attr.mmap_data) ||
4233 (executable && event->attr.mmap))
4234 return 1;
4235
4236 return 0;
4237 }
4238
4239 static void perf_event_mmap_ctx(struct perf_event_context *ctx,
4240 struct perf_mmap_event *mmap_event,
4241 int executable)
4242 {
4243 struct perf_event *event;
4244
4245 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4246 if (perf_event_mmap_match(event, mmap_event, executable))
4247 perf_event_mmap_output(event, mmap_event);
4248 }
4249 }
4250
4251 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
4252 {
4253 struct perf_cpu_context *cpuctx;
4254 struct perf_event_context *ctx;
4255 struct vm_area_struct *vma = mmap_event->vma;
4256 struct file *file = vma->vm_file;
4257 unsigned int size;
4258 char tmp[16];
4259 char *buf = NULL;
4260 const char *name;
4261 struct pmu *pmu;
4262 int ctxn;
4263
4264 memset(tmp, 0, sizeof(tmp));
4265
4266 if (file) {
4267 /*
4268 * d_path works from the end of the rb backwards, so we
4269 * need to add enough zero bytes after the string to handle
4270 * the 64bit alignment we do later.
4271 */
4272 buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
4273 if (!buf) {
4274 name = strncpy(tmp, "//enomem", sizeof(tmp));
4275 goto got_name;
4276 }
4277 name = d_path(&file->f_path, buf, PATH_MAX);
4278 if (IS_ERR(name)) {
4279 name = strncpy(tmp, "//toolong", sizeof(tmp));
4280 goto got_name;
4281 }
4282 } else {
4283 if (arch_vma_name(mmap_event->vma)) {
4284 name = strncpy(tmp, arch_vma_name(mmap_event->vma),
4285 sizeof(tmp));
4286 goto got_name;
4287 }
4288
4289 if (!vma->vm_mm) {
4290 name = strncpy(tmp, "[vdso]", sizeof(tmp));
4291 goto got_name;
4292 } else if (vma->vm_start <= vma->vm_mm->start_brk &&
4293 vma->vm_end >= vma->vm_mm->brk) {
4294 name = strncpy(tmp, "[heap]", sizeof(tmp));
4295 goto got_name;
4296 } else if (vma->vm_start <= vma->vm_mm->start_stack &&
4297 vma->vm_end >= vma->vm_mm->start_stack) {
4298 name = strncpy(tmp, "[stack]", sizeof(tmp));
4299 goto got_name;
4300 }
4301
4302 name = strncpy(tmp, "//anon", sizeof(tmp));
4303 goto got_name;
4304 }
4305
4306 got_name:
4307 size = ALIGN(strlen(name)+1, sizeof(u64));
4308
4309 mmap_event->file_name = name;
4310 mmap_event->file_size = size;
4311
4312 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
4313
4314 rcu_read_lock();
4315 list_for_each_entry_rcu(pmu, &pmus, entry) {
4316 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4317 if (cpuctx->active_pmu != pmu)
4318 goto next;
4319 perf_event_mmap_ctx(&cpuctx->ctx, mmap_event,
4320 vma->vm_flags & VM_EXEC);
4321
4322 ctxn = pmu->task_ctx_nr;
4323 if (ctxn < 0)
4324 goto next;
4325
4326 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4327 if (ctx) {
4328 perf_event_mmap_ctx(ctx, mmap_event,
4329 vma->vm_flags & VM_EXEC);
4330 }
4331 next:
4332 put_cpu_ptr(pmu->pmu_cpu_context);
4333 }
4334 rcu_read_unlock();
4335
4336 kfree(buf);
4337 }
4338
4339 void perf_event_mmap(struct vm_area_struct *vma)
4340 {
4341 struct perf_mmap_event mmap_event;
4342
4343 if (!atomic_read(&nr_mmap_events))
4344 return;
4345
4346 mmap_event = (struct perf_mmap_event){
4347 .vma = vma,
4348 /* .file_name */
4349 /* .file_size */
4350 .event_id = {
4351 .header = {
4352 .type = PERF_RECORD_MMAP,
4353 .misc = PERF_RECORD_MISC_USER,
4354 /* .size */
4355 },
4356 /* .pid */
4357 /* .tid */
4358 .start = vma->vm_start,
4359 .len = vma->vm_end - vma->vm_start,
4360 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
4361 },
4362 };
4363
4364 perf_event_mmap_event(&mmap_event);
4365 }
4366
4367 /*
4368 * IRQ throttle logging
4369 */
4370
4371 static void perf_log_throttle(struct perf_event *event, int enable)
4372 {
4373 struct perf_output_handle handle;
4374 struct perf_sample_data sample;
4375 int ret;
4376
4377 struct {
4378 struct perf_event_header header;
4379 u64 time;
4380 u64 id;
4381 u64 stream_id;
4382 } throttle_event = {
4383 .header = {
4384 .type = PERF_RECORD_THROTTLE,
4385 .misc = 0,
4386 .size = sizeof(throttle_event),
4387 },
4388 .time = perf_clock(),
4389 .id = primary_event_id(event),
4390 .stream_id = event->id,
4391 };
4392
4393 if (enable)
4394 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
4395
4396 perf_event_header__init_id(&throttle_event.header, &sample, event);
4397
4398 ret = perf_output_begin(&handle, event,
4399 throttle_event.header.size);
4400 if (ret)
4401 return;
4402
4403 perf_output_put(&handle, throttle_event);
4404 perf_event__output_id_sample(event, &handle, &sample);
4405 perf_output_end(&handle);
4406 }
4407
4408 /*
4409 * Generic event overflow handling, sampling.
4410 */
4411
4412 static int __perf_event_overflow(struct perf_event *event,
4413 int throttle, struct perf_sample_data *data,
4414 struct pt_regs *regs)
4415 {
4416 int events = atomic_read(&event->event_limit);
4417 struct hw_perf_event *hwc = &event->hw;
4418 int ret = 0;
4419
4420 /*
4421 * Non-sampling counters might still use the PMI to fold short
4422 * hardware counters, ignore those.
4423 */
4424 if (unlikely(!is_sampling_event(event)))
4425 return 0;
4426
4427 if (unlikely(hwc->interrupts >= max_samples_per_tick)) {
4428 if (throttle) {
4429 hwc->interrupts = MAX_INTERRUPTS;
4430 perf_log_throttle(event, 0);
4431 ret = 1;
4432 }
4433 } else
4434 hwc->interrupts++;
4435
4436 if (event->attr.freq) {
4437 u64 now = perf_clock();
4438 s64 delta = now - hwc->freq_time_stamp;
4439
4440 hwc->freq_time_stamp = now;
4441
4442 if (delta > 0 && delta < 2*TICK_NSEC)
4443 perf_adjust_period(event, delta, hwc->last_period);
4444 }
4445
4446 /*
4447 * XXX event_limit might not quite work as expected on inherited
4448 * events
4449 */
4450
4451 event->pending_kill = POLL_IN;
4452 if (events && atomic_dec_and_test(&event->event_limit)) {
4453 ret = 1;
4454 event->pending_kill = POLL_HUP;
4455 event->pending_disable = 1;
4456 irq_work_queue(&event->pending);
4457 }
4458
4459 if (event->overflow_handler)
4460 event->overflow_handler(event, data, regs);
4461 else
4462 perf_event_output(event, data, regs);
4463
4464 if (event->fasync && event->pending_kill) {
4465 event->pending_wakeup = 1;
4466 irq_work_queue(&event->pending);
4467 }
4468
4469 return ret;
4470 }
4471
4472 int perf_event_overflow(struct perf_event *event,
4473 struct perf_sample_data *data,
4474 struct pt_regs *regs)
4475 {
4476 return __perf_event_overflow(event, 1, data, regs);
4477 }
4478
4479 /*
4480 * Generic software event infrastructure
4481 */
4482
4483 struct swevent_htable {
4484 struct swevent_hlist *swevent_hlist;
4485 struct mutex hlist_mutex;
4486 int hlist_refcount;
4487
4488 /* Recursion avoidance in each contexts */
4489 int recursion[PERF_NR_CONTEXTS];
4490 };
4491
4492 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
4493
4494 /*
4495 * We directly increment event->count and keep a second value in
4496 * event->hw.period_left to count intervals. This period event
4497 * is kept in the range [-sample_period, 0] so that we can use the
4498 * sign as trigger.
4499 */
4500
4501 static u64 perf_swevent_set_period(struct perf_event *event)
4502 {
4503 struct hw_perf_event *hwc = &event->hw;
4504 u64 period = hwc->last_period;
4505 u64 nr, offset;
4506 s64 old, val;
4507
4508 hwc->last_period = hwc->sample_period;
4509
4510 again:
4511 old = val = local64_read(&hwc->period_left);
4512 if (val < 0)
4513 return 0;
4514
4515 nr = div64_u64(period + val, period);
4516 offset = nr * period;
4517 val -= offset;
4518 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
4519 goto again;
4520
4521 return nr;
4522 }
4523
4524 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
4525 struct perf_sample_data *data,
4526 struct pt_regs *regs)
4527 {
4528 struct hw_perf_event *hwc = &event->hw;
4529 int throttle = 0;
4530
4531 data->period = event->hw.last_period;
4532 if (!overflow)
4533 overflow = perf_swevent_set_period(event);
4534
4535 if (hwc->interrupts == MAX_INTERRUPTS)
4536 return;
4537
4538 for (; overflow; overflow--) {
4539 if (__perf_event_overflow(event, throttle,
4540 data, regs)) {
4541 /*
4542 * We inhibit the overflow from happening when
4543 * hwc->interrupts == MAX_INTERRUPTS.
4544 */
4545 break;
4546 }
4547 throttle = 1;
4548 }
4549 }
4550
4551 static void perf_swevent_event(struct perf_event *event, u64 nr,
4552 struct perf_sample_data *data,
4553 struct pt_regs *regs)
4554 {
4555 struct hw_perf_event *hwc = &event->hw;
4556
4557 local64_add(nr, &event->count);
4558
4559 if (!regs)
4560 return;
4561
4562 if (!is_sampling_event(event))
4563 return;
4564
4565 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
4566 return perf_swevent_overflow(event, 1, data, regs);
4567
4568 if (local64_add_negative(nr, &hwc->period_left))
4569 return;
4570
4571 perf_swevent_overflow(event, 0, data, regs);
4572 }
4573
4574 static int perf_exclude_event(struct perf_event *event,
4575 struct pt_regs *regs)
4576 {
4577 if (event->hw.state & PERF_HES_STOPPED)
4578 return 1;
4579
4580 if (regs) {
4581 if (event->attr.exclude_user && user_mode(regs))
4582 return 1;
4583
4584 if (event->attr.exclude_kernel && !user_mode(regs))
4585 return 1;
4586 }
4587
4588 return 0;
4589 }
4590
4591 static int perf_swevent_match(struct perf_event *event,
4592 enum perf_type_id type,
4593 u32 event_id,
4594 struct perf_sample_data *data,
4595 struct pt_regs *regs)
4596 {
4597 if (event->attr.type != type)
4598 return 0;
4599
4600 if (event->attr.config != event_id)
4601 return 0;
4602
4603 if (perf_exclude_event(event, regs))
4604 return 0;
4605
4606 return 1;
4607 }
4608
4609 static inline u64 swevent_hash(u64 type, u32 event_id)
4610 {
4611 u64 val = event_id | (type << 32);
4612
4613 return hash_64(val, SWEVENT_HLIST_BITS);
4614 }
4615
4616 static inline struct hlist_head *
4617 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
4618 {
4619 u64 hash = swevent_hash(type, event_id);
4620
4621 return &hlist->heads[hash];
4622 }
4623
4624 /* For the read side: events when they trigger */
4625 static inline struct hlist_head *
4626 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
4627 {
4628 struct swevent_hlist *hlist;
4629
4630 hlist = rcu_dereference(swhash->swevent_hlist);
4631 if (!hlist)
4632 return NULL;
4633
4634 return __find_swevent_head(hlist, type, event_id);
4635 }
4636
4637 /* For the event head insertion and removal in the hlist */
4638 static inline struct hlist_head *
4639 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
4640 {
4641 struct swevent_hlist *hlist;
4642 u32 event_id = event->attr.config;
4643 u64 type = event->attr.type;
4644
4645 /*
4646 * Event scheduling is always serialized against hlist allocation
4647 * and release. Which makes the protected version suitable here.
4648 * The context lock guarantees that.
4649 */
4650 hlist = rcu_dereference_protected(swhash->swevent_hlist,
4651 lockdep_is_held(&event->ctx->lock));
4652 if (!hlist)
4653 return NULL;
4654
4655 return __find_swevent_head(hlist, type, event_id);
4656 }
4657
4658 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
4659 u64 nr,
4660 struct perf_sample_data *data,
4661 struct pt_regs *regs)
4662 {
4663 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4664 struct perf_event *event;
4665 struct hlist_node *node;
4666 struct hlist_head *head;
4667
4668 rcu_read_lock();
4669 head = find_swevent_head_rcu(swhash, type, event_id);
4670 if (!head)
4671 goto end;
4672
4673 hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
4674 if (perf_swevent_match(event, type, event_id, data, regs))
4675 perf_swevent_event(event, nr, data, regs);
4676 }
4677 end:
4678 rcu_read_unlock();
4679 }
4680
4681 int perf_swevent_get_recursion_context(void)
4682 {
4683 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4684
4685 return get_recursion_context(swhash->recursion);
4686 }
4687 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
4688
4689 inline void perf_swevent_put_recursion_context(int rctx)
4690 {
4691 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4692
4693 put_recursion_context(swhash->recursion, rctx);
4694 }
4695
4696 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
4697 {
4698 struct perf_sample_data data;
4699 int rctx;
4700
4701 preempt_disable_notrace();
4702 rctx = perf_swevent_get_recursion_context();
4703 if (rctx < 0)
4704 return;
4705
4706 perf_sample_data_init(&data, addr);
4707
4708 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
4709
4710 perf_swevent_put_recursion_context(rctx);
4711 preempt_enable_notrace();
4712 }
4713
4714 static void perf_swevent_read(struct perf_event *event)
4715 {
4716 }
4717
4718 static int perf_swevent_add(struct perf_event *event, int flags)
4719 {
4720 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4721 struct hw_perf_event *hwc = &event->hw;
4722 struct hlist_head *head;
4723
4724 if (is_sampling_event(event)) {
4725 hwc->last_period = hwc->sample_period;
4726 perf_swevent_set_period(event);
4727 }
4728
4729 hwc->state = !(flags & PERF_EF_START);
4730
4731 head = find_swevent_head(swhash, event);
4732 if (WARN_ON_ONCE(!head))
4733 return -EINVAL;
4734
4735 hlist_add_head_rcu(&event->hlist_entry, head);
4736
4737 return 0;
4738 }
4739
4740 static void perf_swevent_del(struct perf_event *event, int flags)
4741 {
4742 hlist_del_rcu(&event->hlist_entry);
4743 }
4744
4745 static void perf_swevent_start(struct perf_event *event, int flags)
4746 {
4747 event->hw.state = 0;
4748 }
4749
4750 static void perf_swevent_stop(struct perf_event *event, int flags)
4751 {
4752 event->hw.state = PERF_HES_STOPPED;
4753 }
4754
4755 /* Deref the hlist from the update side */
4756 static inline struct swevent_hlist *
4757 swevent_hlist_deref(struct swevent_htable *swhash)
4758 {
4759 return rcu_dereference_protected(swhash->swevent_hlist,
4760 lockdep_is_held(&swhash->hlist_mutex));
4761 }
4762
4763 static void swevent_hlist_release(struct swevent_htable *swhash)
4764 {
4765 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
4766
4767 if (!hlist)
4768 return;
4769
4770 rcu_assign_pointer(swhash->swevent_hlist, NULL);
4771 kfree_rcu(hlist, rcu_head);
4772 }
4773
4774 static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
4775 {
4776 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
4777
4778 mutex_lock(&swhash->hlist_mutex);
4779
4780 if (!--swhash->hlist_refcount)
4781 swevent_hlist_release(swhash);
4782
4783 mutex_unlock(&swhash->hlist_mutex);
4784 }
4785
4786 static void swevent_hlist_put(struct perf_event *event)
4787 {
4788 int cpu;
4789
4790 if (event->cpu != -1) {
4791 swevent_hlist_put_cpu(event, event->cpu);
4792 return;
4793 }
4794
4795 for_each_possible_cpu(cpu)
4796 swevent_hlist_put_cpu(event, cpu);
4797 }
4798
4799 static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
4800 {
4801 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
4802 int err = 0;
4803
4804 mutex_lock(&swhash->hlist_mutex);
4805
4806 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
4807 struct swevent_hlist *hlist;
4808
4809 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
4810 if (!hlist) {
4811 err = -ENOMEM;
4812 goto exit;
4813 }
4814 rcu_assign_pointer(swhash->swevent_hlist, hlist);
4815 }
4816 swhash->hlist_refcount++;
4817 exit:
4818 mutex_unlock(&swhash->hlist_mutex);
4819
4820 return err;
4821 }
4822
4823 static int swevent_hlist_get(struct perf_event *event)
4824 {
4825 int err;
4826 int cpu, failed_cpu;
4827
4828 if (event->cpu != -1)
4829 return swevent_hlist_get_cpu(event, event->cpu);
4830
4831 get_online_cpus();
4832 for_each_possible_cpu(cpu) {
4833 err = swevent_hlist_get_cpu(event, cpu);
4834 if (err) {
4835 failed_cpu = cpu;
4836 goto fail;
4837 }
4838 }
4839 put_online_cpus();
4840
4841 return 0;
4842 fail:
4843 for_each_possible_cpu(cpu) {
4844 if (cpu == failed_cpu)
4845 break;
4846 swevent_hlist_put_cpu(event, cpu);
4847 }
4848
4849 put_online_cpus();
4850 return err;
4851 }
4852
4853 struct jump_label_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
4854
4855 static void sw_perf_event_destroy(struct perf_event *event)
4856 {
4857 u64 event_id = event->attr.config;
4858
4859 WARN_ON(event->parent);
4860
4861 jump_label_dec(&perf_swevent_enabled[event_id]);
4862 swevent_hlist_put(event);
4863 }
4864
4865 static int perf_swevent_init(struct perf_event *event)
4866 {
4867 int event_id = event->attr.config;
4868
4869 if (event->attr.type != PERF_TYPE_SOFTWARE)
4870 return -ENOENT;
4871
4872 switch (event_id) {
4873 case PERF_COUNT_SW_CPU_CLOCK:
4874 case PERF_COUNT_SW_TASK_CLOCK:
4875 return -ENOENT;
4876
4877 default:
4878 break;
4879 }
4880
4881 if (event_id >= PERF_COUNT_SW_MAX)
4882 return -ENOENT;
4883
4884 if (!event->parent) {
4885 int err;
4886
4887 err = swevent_hlist_get(event);
4888 if (err)
4889 return err;
4890
4891 jump_label_inc(&perf_swevent_enabled[event_id]);
4892 event->destroy = sw_perf_event_destroy;
4893 }
4894
4895 return 0;
4896 }
4897
4898 static struct pmu perf_swevent = {
4899 .task_ctx_nr = perf_sw_context,
4900
4901 .event_init = perf_swevent_init,
4902 .add = perf_swevent_add,
4903 .del = perf_swevent_del,
4904 .start = perf_swevent_start,
4905 .stop = perf_swevent_stop,
4906 .read = perf_swevent_read,
4907 };
4908
4909 #ifdef CONFIG_EVENT_TRACING
4910
4911 static int perf_tp_filter_match(struct perf_event *event,
4912 struct perf_sample_data *data)
4913 {
4914 void *record = data->raw->data;
4915
4916 if (likely(!event->filter) || filter_match_preds(event->filter, record))
4917 return 1;
4918 return 0;
4919 }
4920
4921 static int perf_tp_event_match(struct perf_event *event,
4922 struct perf_sample_data *data,
4923 struct pt_regs *regs)
4924 {
4925 if (event->hw.state & PERF_HES_STOPPED)
4926 return 0;
4927 /*
4928 * All tracepoints are from kernel-space.
4929 */
4930 if (event->attr.exclude_kernel)
4931 return 0;
4932
4933 if (!perf_tp_filter_match(event, data))
4934 return 0;
4935
4936 return 1;
4937 }
4938
4939 void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
4940 struct pt_regs *regs, struct hlist_head *head, int rctx)
4941 {
4942 struct perf_sample_data data;
4943 struct perf_event *event;
4944 struct hlist_node *node;
4945
4946 struct perf_raw_record raw = {
4947 .size = entry_size,
4948 .data = record,
4949 };
4950
4951 perf_sample_data_init(&data, addr);
4952 data.raw = &raw;
4953
4954 hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
4955 if (perf_tp_event_match(event, &data, regs))
4956 perf_swevent_event(event, count, &data, regs);
4957 }
4958
4959 perf_swevent_put_recursion_context(rctx);
4960 }
4961 EXPORT_SYMBOL_GPL(perf_tp_event);
4962
4963 static void tp_perf_event_destroy(struct perf_event *event)
4964 {
4965 perf_trace_destroy(event);
4966 }
4967
4968 static int perf_tp_event_init(struct perf_event *event)
4969 {
4970 int err;
4971
4972 if (event->attr.type != PERF_TYPE_TRACEPOINT)
4973 return -ENOENT;
4974
4975 err = perf_trace_init(event);
4976 if (err)
4977 return err;
4978
4979 event->destroy = tp_perf_event_destroy;
4980
4981 return 0;
4982 }
4983
4984 static struct pmu perf_tracepoint = {
4985 .task_ctx_nr = perf_sw_context,
4986
4987 .event_init = perf_tp_event_init,
4988 .add = perf_trace_add,
4989 .del = perf_trace_del,
4990 .start = perf_swevent_start,
4991 .stop = perf_swevent_stop,
4992 .read = perf_swevent_read,
4993 };
4994
4995 static inline void perf_tp_register(void)
4996 {
4997 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
4998 }
4999
5000 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
5001 {
5002 char *filter_str;
5003 int ret;
5004
5005 if (event->attr.type != PERF_TYPE_TRACEPOINT)
5006 return -EINVAL;
5007
5008 filter_str = strndup_user(arg, PAGE_SIZE);
5009 if (IS_ERR(filter_str))
5010 return PTR_ERR(filter_str);
5011
5012 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
5013
5014 kfree(filter_str);
5015 return ret;
5016 }
5017
5018 static void perf_event_free_filter(struct perf_event *event)
5019 {
5020 ftrace_profile_free_filter(event);
5021 }
5022
5023 #else
5024
5025 static inline void perf_tp_register(void)
5026 {
5027 }
5028
5029 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
5030 {
5031 return -ENOENT;
5032 }
5033
5034 static void perf_event_free_filter(struct perf_event *event)
5035 {
5036 }
5037
5038 #endif /* CONFIG_EVENT_TRACING */
5039
5040 #ifdef CONFIG_HAVE_HW_BREAKPOINT
5041 void perf_bp_event(struct perf_event *bp, void *data)
5042 {
5043 struct perf_sample_data sample;
5044 struct pt_regs *regs = data;
5045
5046 perf_sample_data_init(&sample, bp->attr.bp_addr);
5047
5048 if (!bp->hw.state && !perf_exclude_event(bp, regs))
5049 perf_swevent_event(bp, 1, &sample, regs);
5050 }
5051 #endif
5052
5053 /*
5054 * hrtimer based swevent callback
5055 */
5056
5057 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
5058 {
5059 enum hrtimer_restart ret = HRTIMER_RESTART;
5060 struct perf_sample_data data;
5061 struct pt_regs *regs;
5062 struct perf_event *event;
5063 u64 period;
5064
5065 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
5066
5067 if (event->state != PERF_EVENT_STATE_ACTIVE)
5068 return HRTIMER_NORESTART;
5069
5070 event->pmu->read(event);
5071
5072 perf_sample_data_init(&data, 0);
5073 data.period = event->hw.last_period;
5074 regs = get_irq_regs();
5075
5076 if (regs && !perf_exclude_event(event, regs)) {
5077 if (!(event->attr.exclude_idle && current->pid == 0))
5078 if (perf_event_overflow(event, &data, regs))
5079 ret = HRTIMER_NORESTART;
5080 }
5081
5082 period = max_t(u64, 10000, event->hw.sample_period);
5083 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
5084
5085 return ret;
5086 }
5087
5088 static void perf_swevent_start_hrtimer(struct perf_event *event)
5089 {
5090 struct hw_perf_event *hwc = &event->hw;
5091 s64 period;
5092
5093 if (!is_sampling_event(event))
5094 return;
5095
5096 period = local64_read(&hwc->period_left);
5097 if (period) {
5098 if (period < 0)
5099 period = 10000;
5100
5101 local64_set(&hwc->period_left, 0);
5102 } else {
5103 period = max_t(u64, 10000, hwc->sample_period);
5104 }
5105 __hrtimer_start_range_ns(&hwc->hrtimer,
5106 ns_to_ktime(period), 0,
5107 HRTIMER_MODE_REL_PINNED, 0);
5108 }
5109
5110 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
5111 {
5112 struct hw_perf_event *hwc = &event->hw;
5113
5114 if (is_sampling_event(event)) {
5115 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
5116 local64_set(&hwc->period_left, ktime_to_ns(remaining));
5117
5118 hrtimer_cancel(&hwc->hrtimer);
5119 }
5120 }
5121
5122 static void perf_swevent_init_hrtimer(struct perf_event *event)
5123 {
5124 struct hw_perf_event *hwc = &event->hw;
5125
5126 if (!is_sampling_event(event))
5127 return;
5128
5129 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
5130 hwc->hrtimer.function = perf_swevent_hrtimer;
5131
5132 /*
5133 * Since hrtimers have a fixed rate, we can do a static freq->period
5134 * mapping and avoid the whole period adjust feedback stuff.
5135 */
5136 if (event->attr.freq) {
5137 long freq = event->attr.sample_freq;
5138
5139 event->attr.sample_period = NSEC_PER_SEC / freq;
5140 hwc->sample_period = event->attr.sample_period;
5141 local64_set(&hwc->period_left, hwc->sample_period);
5142 event->attr.freq = 0;
5143 }
5144 }
5145
5146 /*
5147 * Software event: cpu wall time clock
5148 */
5149
5150 static void cpu_clock_event_update(struct perf_event *event)
5151 {
5152 s64 prev;
5153 u64 now;
5154
5155 now = local_clock();
5156 prev = local64_xchg(&event->hw.prev_count, now);
5157 local64_add(now - prev, &event->count);
5158 }
5159
5160 static void cpu_clock_event_start(struct perf_event *event, int flags)
5161 {
5162 local64_set(&event->hw.prev_count, local_clock());
5163 perf_swevent_start_hrtimer(event);
5164 }
5165
5166 static void cpu_clock_event_stop(struct perf_event *event, int flags)
5167 {
5168 perf_swevent_cancel_hrtimer(event);
5169 cpu_clock_event_update(event);
5170 }
5171
5172 static int cpu_clock_event_add(struct perf_event *event, int flags)
5173 {
5174 if (flags & PERF_EF_START)
5175 cpu_clock_event_start(event, flags);
5176
5177 return 0;
5178 }
5179
5180 static void cpu_clock_event_del(struct perf_event *event, int flags)
5181 {
5182 cpu_clock_event_stop(event, flags);
5183 }
5184
5185 static void cpu_clock_event_read(struct perf_event *event)
5186 {
5187 cpu_clock_event_update(event);
5188 }
5189
5190 static int cpu_clock_event_init(struct perf_event *event)
5191 {
5192 if (event->attr.type != PERF_TYPE_SOFTWARE)
5193 return -ENOENT;
5194
5195 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
5196 return -ENOENT;
5197
5198 perf_swevent_init_hrtimer(event);
5199
5200 return 0;
5201 }
5202
5203 static struct pmu perf_cpu_clock = {
5204 .task_ctx_nr = perf_sw_context,
5205
5206 .event_init = cpu_clock_event_init,
5207 .add = cpu_clock_event_add,
5208 .del = cpu_clock_event_del,
5209 .start = cpu_clock_event_start,
5210 .stop = cpu_clock_event_stop,
5211 .read = cpu_clock_event_read,
5212 };
5213
5214 /*
5215 * Software event: task time clock
5216 */
5217
5218 static void task_clock_event_update(struct perf_event *event, u64 now)
5219 {
5220 u64 prev;
5221 s64 delta;
5222
5223 prev = local64_xchg(&event->hw.prev_count, now);
5224 delta = now - prev;
5225 local64_add(delta, &event->count);
5226 }
5227
5228 static void task_clock_event_start(struct perf_event *event, int flags)
5229 {
5230 local64_set(&event->hw.prev_count, event->ctx->time);
5231 perf_swevent_start_hrtimer(event);
5232 }
5233
5234 static void task_clock_event_stop(struct perf_event *event, int flags)
5235 {
5236 perf_swevent_cancel_hrtimer(event);
5237 task_clock_event_update(event, event->ctx->time);
5238 }
5239
5240 static int task_clock_event_add(struct perf_event *event, int flags)
5241 {
5242 if (flags & PERF_EF_START)
5243 task_clock_event_start(event, flags);
5244
5245 return 0;
5246 }
5247
5248 static void task_clock_event_del(struct perf_event *event, int flags)
5249 {
5250 task_clock_event_stop(event, PERF_EF_UPDATE);
5251 }
5252
5253 static void task_clock_event_read(struct perf_event *event)
5254 {
5255 u64 now = perf_clock();
5256 u64 delta = now - event->ctx->timestamp;
5257 u64 time = event->ctx->time + delta;
5258
5259 task_clock_event_update(event, time);
5260 }
5261
5262 static int task_clock_event_init(struct perf_event *event)
5263 {
5264 if (event->attr.type != PERF_TYPE_SOFTWARE)
5265 return -ENOENT;
5266
5267 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
5268 return -ENOENT;
5269
5270 perf_swevent_init_hrtimer(event);
5271
5272 return 0;
5273 }
5274
5275 static struct pmu perf_task_clock = {
5276 .task_ctx_nr = perf_sw_context,
5277
5278 .event_init = task_clock_event_init,
5279 .add = task_clock_event_add,
5280 .del = task_clock_event_del,
5281 .start = task_clock_event_start,
5282 .stop = task_clock_event_stop,
5283 .read = task_clock_event_read,
5284 };
5285
5286 static void perf_pmu_nop_void(struct pmu *pmu)
5287 {
5288 }
5289
5290 static int perf_pmu_nop_int(struct pmu *pmu)
5291 {
5292 return 0;
5293 }
5294
5295 static void perf_pmu_start_txn(struct pmu *pmu)
5296 {
5297 perf_pmu_disable(pmu);
5298 }
5299
5300 static int perf_pmu_commit_txn(struct pmu *pmu)
5301 {
5302 perf_pmu_enable(pmu);
5303 return 0;
5304 }
5305
5306 static void perf_pmu_cancel_txn(struct pmu *pmu)
5307 {
5308 perf_pmu_enable(pmu);
5309 }
5310
5311 /*
5312 * Ensures all contexts with the same task_ctx_nr have the same
5313 * pmu_cpu_context too.
5314 */
5315 static void *find_pmu_context(int ctxn)
5316 {
5317 struct pmu *pmu;
5318
5319 if (ctxn < 0)
5320 return NULL;
5321
5322 list_for_each_entry(pmu, &pmus, entry) {
5323 if (pmu->task_ctx_nr == ctxn)
5324 return pmu->pmu_cpu_context;
5325 }
5326
5327 return NULL;
5328 }
5329
5330 static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
5331 {
5332 int cpu;
5333
5334 for_each_possible_cpu(cpu) {
5335 struct perf_cpu_context *cpuctx;
5336
5337 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
5338
5339 if (cpuctx->active_pmu == old_pmu)
5340 cpuctx->active_pmu = pmu;
5341 }
5342 }
5343
5344 static void free_pmu_context(struct pmu *pmu)
5345 {
5346 struct pmu *i;
5347
5348 mutex_lock(&pmus_lock);
5349 /*
5350 * Like a real lame refcount.
5351 */
5352 list_for_each_entry(i, &pmus, entry) {
5353 if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
5354 update_pmu_context(i, pmu);
5355 goto out;
5356 }
5357 }
5358
5359 free_percpu(pmu->pmu_cpu_context);
5360 out:
5361 mutex_unlock(&pmus_lock);
5362 }
5363 static struct idr pmu_idr;
5364
5365 static ssize_t
5366 type_show(struct device *dev, struct device_attribute *attr, char *page)
5367 {
5368 struct pmu *pmu = dev_get_drvdata(dev);
5369
5370 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
5371 }
5372
5373 static struct device_attribute pmu_dev_attrs[] = {
5374 __ATTR_RO(type),
5375 __ATTR_NULL,
5376 };
5377
5378 static int pmu_bus_running;
5379 static struct bus_type pmu_bus = {
5380 .name = "event_source",
5381 .dev_attrs = pmu_dev_attrs,
5382 };
5383
5384 static void pmu_dev_release(struct device *dev)
5385 {
5386 kfree(dev);
5387 }
5388
5389 static int pmu_dev_alloc(struct pmu *pmu)
5390 {
5391 int ret = -ENOMEM;
5392
5393 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
5394 if (!pmu->dev)
5395 goto out;
5396
5397 device_initialize(pmu->dev);
5398 ret = dev_set_name(pmu->dev, "%s", pmu->name);
5399 if (ret)
5400 goto free_dev;
5401
5402 dev_set_drvdata(pmu->dev, pmu);
5403 pmu->dev->bus = &pmu_bus;
5404 pmu->dev->release = pmu_dev_release;
5405 ret = device_add(pmu->dev);
5406 if (ret)
5407 goto free_dev;
5408
5409 out:
5410 return ret;
5411
5412 free_dev:
5413 put_device(pmu->dev);
5414 goto out;
5415 }
5416
5417 static struct lock_class_key cpuctx_mutex;
5418 static struct lock_class_key cpuctx_lock;
5419
5420 int perf_pmu_register(struct pmu *pmu, char *name, int type)
5421 {
5422 int cpu, ret;
5423
5424 mutex_lock(&pmus_lock);
5425 ret = -ENOMEM;
5426 pmu->pmu_disable_count = alloc_percpu(int);
5427 if (!pmu->pmu_disable_count)
5428 goto unlock;
5429
5430 pmu->type = -1;
5431 if (!name)
5432 goto skip_type;
5433 pmu->name = name;
5434
5435 if (type < 0) {
5436 int err = idr_pre_get(&pmu_idr, GFP_KERNEL);
5437 if (!err)
5438 goto free_pdc;
5439
5440 err = idr_get_new_above(&pmu_idr, pmu, PERF_TYPE_MAX, &type);
5441 if (err) {
5442 ret = err;
5443 goto free_pdc;
5444 }
5445 }
5446 pmu->type = type;
5447
5448 if (pmu_bus_running) {
5449 ret = pmu_dev_alloc(pmu);
5450 if (ret)
5451 goto free_idr;
5452 }
5453
5454 skip_type:
5455 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
5456 if (pmu->pmu_cpu_context)
5457 goto got_cpu_context;
5458
5459 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
5460 if (!pmu->pmu_cpu_context)
5461 goto free_dev;
5462
5463 for_each_possible_cpu(cpu) {
5464 struct perf_cpu_context *cpuctx;
5465
5466 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
5467 __perf_event_init_context(&cpuctx->ctx);
5468 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
5469 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
5470 cpuctx->ctx.type = cpu_context;
5471 cpuctx->ctx.pmu = pmu;
5472 cpuctx->jiffies_interval = 1;
5473 INIT_LIST_HEAD(&cpuctx->rotation_list);
5474 cpuctx->active_pmu = pmu;
5475 }
5476
5477 got_cpu_context:
5478 if (!pmu->start_txn) {
5479 if (pmu->pmu_enable) {
5480 /*
5481 * If we have pmu_enable/pmu_disable calls, install
5482 * transaction stubs that use that to try and batch
5483 * hardware accesses.
5484 */
5485 pmu->start_txn = perf_pmu_start_txn;
5486 pmu->commit_txn = perf_pmu_commit_txn;
5487 pmu->cancel_txn = perf_pmu_cancel_txn;
5488 } else {
5489 pmu->start_txn = perf_pmu_nop_void;
5490 pmu->commit_txn = perf_pmu_nop_int;
5491 pmu->cancel_txn = perf_pmu_nop_void;
5492 }
5493 }
5494
5495 if (!pmu->pmu_enable) {
5496 pmu->pmu_enable = perf_pmu_nop_void;
5497 pmu->pmu_disable = perf_pmu_nop_void;
5498 }
5499
5500 list_add_rcu(&pmu->entry, &pmus);
5501 ret = 0;
5502 unlock:
5503 mutex_unlock(&pmus_lock);
5504
5505 return ret;
5506
5507 free_dev:
5508 device_del(pmu->dev);
5509 put_device(pmu->dev);
5510
5511 free_idr:
5512 if (pmu->type >= PERF_TYPE_MAX)
5513 idr_remove(&pmu_idr, pmu->type);
5514
5515 free_pdc:
5516 free_percpu(pmu->pmu_disable_count);
5517 goto unlock;
5518 }
5519
5520 void perf_pmu_unregister(struct pmu *pmu)
5521 {
5522 mutex_lock(&pmus_lock);
5523 list_del_rcu(&pmu->entry);
5524 mutex_unlock(&pmus_lock);
5525
5526 /*
5527 * We dereference the pmu list under both SRCU and regular RCU, so
5528 * synchronize against both of those.
5529 */
5530 synchronize_srcu(&pmus_srcu);
5531 synchronize_rcu();
5532
5533 free_percpu(pmu->pmu_disable_count);
5534 if (pmu->type >= PERF_TYPE_MAX)
5535 idr_remove(&pmu_idr, pmu->type);
5536 device_del(pmu->dev);
5537 put_device(pmu->dev);
5538 free_pmu_context(pmu);
5539 }
5540
5541 struct pmu *perf_init_event(struct perf_event *event)
5542 {
5543 struct pmu *pmu = NULL;
5544 int idx;
5545 int ret;
5546
5547 idx = srcu_read_lock(&pmus_srcu);
5548
5549 rcu_read_lock();
5550 pmu = idr_find(&pmu_idr, event->attr.type);
5551 rcu_read_unlock();
5552 if (pmu) {
5553 event->pmu = pmu;
5554 ret = pmu->event_init(event);
5555 if (ret)
5556 pmu = ERR_PTR(ret);
5557 goto unlock;
5558 }
5559
5560 list_for_each_entry_rcu(pmu, &pmus, entry) {
5561 event->pmu = pmu;
5562 ret = pmu->event_init(event);
5563 if (!ret)
5564 goto unlock;
5565
5566 if (ret != -ENOENT) {
5567 pmu = ERR_PTR(ret);
5568 goto unlock;
5569 }
5570 }
5571 pmu = ERR_PTR(-ENOENT);
5572 unlock:
5573 srcu_read_unlock(&pmus_srcu, idx);
5574
5575 return pmu;
5576 }
5577
5578 /*
5579 * Allocate and initialize a event structure
5580 */
5581 static struct perf_event *
5582 perf_event_alloc(struct perf_event_attr *attr, int cpu,
5583 struct task_struct *task,
5584 struct perf_event *group_leader,
5585 struct perf_event *parent_event,
5586 perf_overflow_handler_t overflow_handler,
5587 void *context)
5588 {
5589 struct pmu *pmu;
5590 struct perf_event *event;
5591 struct hw_perf_event *hwc;
5592 long err;
5593
5594 if ((unsigned)cpu >= nr_cpu_ids) {
5595 if (!task || cpu != -1)
5596 return ERR_PTR(-EINVAL);
5597 }
5598
5599 event = kzalloc(sizeof(*event), GFP_KERNEL);
5600 if (!event)
5601 return ERR_PTR(-ENOMEM);
5602
5603 /*
5604 * Single events are their own group leaders, with an
5605 * empty sibling list:
5606 */
5607 if (!group_leader)
5608 group_leader = event;
5609
5610 mutex_init(&event->child_mutex);
5611 INIT_LIST_HEAD(&event->child_list);
5612
5613 INIT_LIST_HEAD(&event->group_entry);
5614 INIT_LIST_HEAD(&event->event_entry);
5615 INIT_LIST_HEAD(&event->sibling_list);
5616 init_waitqueue_head(&event->waitq);
5617 init_irq_work(&event->pending, perf_pending_event);
5618
5619 mutex_init(&event->mmap_mutex);
5620
5621 event->cpu = cpu;
5622 event->attr = *attr;
5623 event->group_leader = group_leader;
5624 event->pmu = NULL;
5625 event->oncpu = -1;
5626
5627 event->parent = parent_event;
5628
5629 event->ns = get_pid_ns(current->nsproxy->pid_ns);
5630 event->id = atomic64_inc_return(&perf_event_id);
5631
5632 event->state = PERF_EVENT_STATE_INACTIVE;
5633
5634 if (task) {
5635 event->attach_state = PERF_ATTACH_TASK;
5636 #ifdef CONFIG_HAVE_HW_BREAKPOINT
5637 /*
5638 * hw_breakpoint is a bit difficult here..
5639 */
5640 if (attr->type == PERF_TYPE_BREAKPOINT)
5641 event->hw.bp_target = task;
5642 #endif
5643 }
5644
5645 if (!overflow_handler && parent_event) {
5646 overflow_handler = parent_event->overflow_handler;
5647 context = parent_event->overflow_handler_context;
5648 }
5649
5650 event->overflow_handler = overflow_handler;
5651 event->overflow_handler_context = context;
5652
5653 if (attr->disabled)
5654 event->state = PERF_EVENT_STATE_OFF;
5655
5656 pmu = NULL;
5657
5658 hwc = &event->hw;
5659 hwc->sample_period = attr->sample_period;
5660 if (attr->freq && attr->sample_freq)
5661 hwc->sample_period = 1;
5662 hwc->last_period = hwc->sample_period;
5663
5664 local64_set(&hwc->period_left, hwc->sample_period);
5665
5666 /*
5667 * we currently do not support PERF_FORMAT_GROUP on inherited events
5668 */
5669 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
5670 goto done;
5671
5672 pmu = perf_init_event(event);
5673
5674 done:
5675 err = 0;
5676 if (!pmu)
5677 err = -EINVAL;
5678 else if (IS_ERR(pmu))
5679 err = PTR_ERR(pmu);
5680
5681 if (err) {
5682 if (event->ns)
5683 put_pid_ns(event->ns);
5684 kfree(event);
5685 return ERR_PTR(err);
5686 }
5687
5688 if (!event->parent) {
5689 if (event->attach_state & PERF_ATTACH_TASK)
5690 jump_label_inc(&perf_sched_events);
5691 if (event->attr.mmap || event->attr.mmap_data)
5692 atomic_inc(&nr_mmap_events);
5693 if (event->attr.comm)
5694 atomic_inc(&nr_comm_events);
5695 if (event->attr.task)
5696 atomic_inc(&nr_task_events);
5697 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
5698 err = get_callchain_buffers();
5699 if (err) {
5700 free_event(event);
5701 return ERR_PTR(err);
5702 }
5703 }
5704 }
5705
5706 return event;
5707 }
5708
5709 static int perf_copy_attr(struct perf_event_attr __user *uattr,
5710 struct perf_event_attr *attr)
5711 {
5712 u32 size;
5713 int ret;
5714
5715 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
5716 return -EFAULT;
5717
5718 /*
5719 * zero the full structure, so that a short copy will be nice.
5720 */
5721 memset(attr, 0, sizeof(*attr));
5722
5723 ret = get_user(size, &uattr->size);
5724 if (ret)
5725 return ret;
5726
5727 if (size > PAGE_SIZE) /* silly large */
5728 goto err_size;
5729
5730 if (!size) /* abi compat */
5731 size = PERF_ATTR_SIZE_VER0;
5732
5733 if (size < PERF_ATTR_SIZE_VER0)
5734 goto err_size;
5735
5736 /*
5737 * If we're handed a bigger struct than we know of,
5738 * ensure all the unknown bits are 0 - i.e. new
5739 * user-space does not rely on any kernel feature
5740 * extensions we dont know about yet.
5741 */
5742 if (size > sizeof(*attr)) {
5743 unsigned char __user *addr;
5744 unsigned char __user *end;
5745 unsigned char val;
5746
5747 addr = (void __user *)uattr + sizeof(*attr);
5748 end = (void __user *)uattr + size;
5749
5750 for (; addr < end; addr++) {
5751 ret = get_user(val, addr);
5752 if (ret)
5753 return ret;
5754 if (val)
5755 goto err_size;
5756 }
5757 size = sizeof(*attr);
5758 }
5759
5760 ret = copy_from_user(attr, uattr, size);
5761 if (ret)
5762 return -EFAULT;
5763
5764 if (attr->__reserved_1)
5765 return -EINVAL;
5766
5767 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
5768 return -EINVAL;
5769
5770 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
5771 return -EINVAL;
5772
5773 out:
5774 return ret;
5775
5776 err_size:
5777 put_user(sizeof(*attr), &uattr->size);
5778 ret = -E2BIG;
5779 goto out;
5780 }
5781
5782 static int
5783 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
5784 {
5785 struct ring_buffer *rb = NULL, *old_rb = NULL;
5786 int ret = -EINVAL;
5787
5788 if (!output_event)
5789 goto set;
5790
5791 /* don't allow circular references */
5792 if (event == output_event)
5793 goto out;
5794
5795 /*
5796 * Don't allow cross-cpu buffers
5797 */
5798 if (output_event->cpu != event->cpu)
5799 goto out;
5800
5801 /*
5802 * If its not a per-cpu rb, it must be the same task.
5803 */
5804 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
5805 goto out;
5806
5807 set:
5808 mutex_lock(&event->mmap_mutex);
5809 /* Can't redirect output if we've got an active mmap() */
5810 if (atomic_read(&event->mmap_count))
5811 goto unlock;
5812
5813 if (output_event) {
5814 /* get the rb we want to redirect to */
5815 rb = ring_buffer_get(output_event);
5816 if (!rb)
5817 goto unlock;
5818 }
5819
5820 old_rb = event->rb;
5821 rcu_assign_pointer(event->rb, rb);
5822 ret = 0;
5823 unlock:
5824 mutex_unlock(&event->mmap_mutex);
5825
5826 if (old_rb)
5827 ring_buffer_put(old_rb);
5828 out:
5829 return ret;
5830 }
5831
5832 /**
5833 * sys_perf_event_open - open a performance event, associate it to a task/cpu
5834 *
5835 * @attr_uptr: event_id type attributes for monitoring/sampling
5836 * @pid: target pid
5837 * @cpu: target cpu
5838 * @group_fd: group leader event fd
5839 */
5840 SYSCALL_DEFINE5(perf_event_open,
5841 struct perf_event_attr __user *, attr_uptr,
5842 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
5843 {
5844 struct perf_event *group_leader = NULL, *output_event = NULL;
5845 struct perf_event *event, *sibling;
5846 struct perf_event_attr attr;
5847 struct perf_event_context *ctx;
5848 struct file *event_file = NULL;
5849 struct file *group_file = NULL;
5850 struct task_struct *task = NULL;
5851 struct pmu *pmu;
5852 int event_fd;
5853 int move_group = 0;
5854 int fput_needed = 0;
5855 int err;
5856
5857 /* for future expandability... */
5858 if (flags & ~PERF_FLAG_ALL)
5859 return -EINVAL;
5860
5861 err = perf_copy_attr(attr_uptr, &attr);
5862 if (err)
5863 return err;
5864
5865 if (!attr.exclude_kernel) {
5866 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
5867 return -EACCES;
5868 }
5869
5870 if (attr.freq) {
5871 if (attr.sample_freq > sysctl_perf_event_sample_rate)
5872 return -EINVAL;
5873 }
5874
5875 /*
5876 * In cgroup mode, the pid argument is used to pass the fd
5877 * opened to the cgroup directory in cgroupfs. The cpu argument
5878 * designates the cpu on which to monitor threads from that
5879 * cgroup.
5880 */
5881 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
5882 return -EINVAL;
5883
5884 event_fd = get_unused_fd_flags(O_RDWR);
5885 if (event_fd < 0)
5886 return event_fd;
5887
5888 if (group_fd != -1) {
5889 group_leader = perf_fget_light(group_fd, &fput_needed);
5890 if (IS_ERR(group_leader)) {
5891 err = PTR_ERR(group_leader);
5892 goto err_fd;
5893 }
5894 group_file = group_leader->filp;
5895 if (flags & PERF_FLAG_FD_OUTPUT)
5896 output_event = group_leader;
5897 if (flags & PERF_FLAG_FD_NO_GROUP)
5898 group_leader = NULL;
5899 }
5900
5901 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
5902 task = find_lively_task_by_vpid(pid);
5903 if (IS_ERR(task)) {
5904 err = PTR_ERR(task);
5905 goto err_group_fd;
5906 }
5907 }
5908
5909 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
5910 NULL, NULL);
5911 if (IS_ERR(event)) {
5912 err = PTR_ERR(event);
5913 goto err_task;
5914 }
5915
5916 if (flags & PERF_FLAG_PID_CGROUP) {
5917 err = perf_cgroup_connect(pid, event, &attr, group_leader);
5918 if (err)
5919 goto err_alloc;
5920 /*
5921 * one more event:
5922 * - that has cgroup constraint on event->cpu
5923 * - that may need work on context switch
5924 */
5925 atomic_inc(&per_cpu(perf_cgroup_events, event->cpu));
5926 jump_label_inc(&perf_sched_events);
5927 }
5928
5929 /*
5930 * Special case software events and allow them to be part of
5931 * any hardware group.
5932 */
5933 pmu = event->pmu;
5934
5935 if (group_leader &&
5936 (is_software_event(event) != is_software_event(group_leader))) {
5937 if (is_software_event(event)) {
5938 /*
5939 * If event and group_leader are not both a software
5940 * event, and event is, then group leader is not.
5941 *
5942 * Allow the addition of software events to !software
5943 * groups, this is safe because software events never
5944 * fail to schedule.
5945 */
5946 pmu = group_leader->pmu;
5947 } else if (is_software_event(group_leader) &&
5948 (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
5949 /*
5950 * In case the group is a pure software group, and we
5951 * try to add a hardware event, move the whole group to
5952 * the hardware context.
5953 */
5954 move_group = 1;
5955 }
5956 }
5957
5958 /*
5959 * Get the target context (task or percpu):
5960 */
5961 ctx = find_get_context(pmu, task, cpu);
5962 if (IS_ERR(ctx)) {
5963 err = PTR_ERR(ctx);
5964 goto err_alloc;
5965 }
5966
5967 if (task) {
5968 put_task_struct(task);
5969 task = NULL;
5970 }
5971
5972 /*
5973 * Look up the group leader (we will attach this event to it):
5974 */
5975 if (group_leader) {
5976 err = -EINVAL;
5977
5978 /*
5979 * Do not allow a recursive hierarchy (this new sibling
5980 * becoming part of another group-sibling):
5981 */
5982 if (group_leader->group_leader != group_leader)
5983 goto err_context;
5984 /*
5985 * Do not allow to attach to a group in a different
5986 * task or CPU context:
5987 */
5988 if (move_group) {
5989 if (group_leader->ctx->type != ctx->type)
5990 goto err_context;
5991 } else {
5992 if (group_leader->ctx != ctx)
5993 goto err_context;
5994 }
5995
5996 /*
5997 * Only a group leader can be exclusive or pinned
5998 */
5999 if (attr.exclusive || attr.pinned)
6000 goto err_context;
6001 }
6002
6003 if (output_event) {
6004 err = perf_event_set_output(event, output_event);
6005 if (err)
6006 goto err_context;
6007 }
6008
6009 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
6010 if (IS_ERR(event_file)) {
6011 err = PTR_ERR(event_file);
6012 goto err_context;
6013 }
6014
6015 if (move_group) {
6016 struct perf_event_context *gctx = group_leader->ctx;
6017
6018 mutex_lock(&gctx->mutex);
6019 perf_remove_from_context(group_leader);
6020 list_for_each_entry(sibling, &group_leader->sibling_list,
6021 group_entry) {
6022 perf_remove_from_context(sibling);
6023 put_ctx(gctx);
6024 }
6025 mutex_unlock(&gctx->mutex);
6026 put_ctx(gctx);
6027 }
6028
6029 event->filp = event_file;
6030 WARN_ON_ONCE(ctx->parent_ctx);
6031 mutex_lock(&ctx->mutex);
6032
6033 if (move_group) {
6034 perf_install_in_context(ctx, group_leader, cpu);
6035 get_ctx(ctx);
6036 list_for_each_entry(sibling, &group_leader->sibling_list,
6037 group_entry) {
6038 perf_install_in_context(ctx, sibling, cpu);
6039 get_ctx(ctx);
6040 }
6041 }
6042
6043 perf_install_in_context(ctx, event, cpu);
6044 ++ctx->generation;
6045 perf_unpin_context(ctx);
6046 mutex_unlock(&ctx->mutex);
6047
6048 event->owner = current;
6049
6050 mutex_lock(&current->perf_event_mutex);
6051 list_add_tail(&event->owner_entry, &current->perf_event_list);
6052 mutex_unlock(&current->perf_event_mutex);
6053
6054 /*
6055 * Precalculate sample_data sizes
6056 */
6057 perf_event__header_size(event);
6058 perf_event__id_header_size(event);
6059
6060 /*
6061 * Drop the reference on the group_event after placing the
6062 * new event on the sibling_list. This ensures destruction
6063 * of the group leader will find the pointer to itself in
6064 * perf_group_detach().
6065 */
6066 fput_light(group_file, fput_needed);
6067 fd_install(event_fd, event_file);
6068 return event_fd;
6069
6070 err_context:
6071 perf_unpin_context(ctx);
6072 put_ctx(ctx);
6073 err_alloc:
6074 free_event(event);
6075 err_task:
6076 if (task)
6077 put_task_struct(task);
6078 err_group_fd:
6079 fput_light(group_file, fput_needed);
6080 err_fd:
6081 put_unused_fd(event_fd);
6082 return err;
6083 }
6084
6085 /**
6086 * perf_event_create_kernel_counter
6087 *
6088 * @attr: attributes of the counter to create
6089 * @cpu: cpu in which the counter is bound
6090 * @task: task to profile (NULL for percpu)
6091 */
6092 struct perf_event *
6093 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
6094 struct task_struct *task,
6095 perf_overflow_handler_t overflow_handler,
6096 void *context)
6097 {
6098 struct perf_event_context *ctx;
6099 struct perf_event *event;
6100 int err;
6101
6102 /*
6103 * Get the target context (task or percpu):
6104 */
6105
6106 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
6107 overflow_handler, context);
6108 if (IS_ERR(event)) {
6109 err = PTR_ERR(event);
6110 goto err;
6111 }
6112
6113 ctx = find_get_context(event->pmu, task, cpu);
6114 if (IS_ERR(ctx)) {
6115 err = PTR_ERR(ctx);
6116 goto err_free;
6117 }
6118
6119 event->filp = NULL;
6120 WARN_ON_ONCE(ctx->parent_ctx);
6121 mutex_lock(&ctx->mutex);
6122 perf_install_in_context(ctx, event, cpu);
6123 ++ctx->generation;
6124 perf_unpin_context(ctx);
6125 mutex_unlock(&ctx->mutex);
6126
6127 return event;
6128
6129 err_free:
6130 free_event(event);
6131 err:
6132 return ERR_PTR(err);
6133 }
6134 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
6135
6136 static void sync_child_event(struct perf_event *child_event,
6137 struct task_struct *child)
6138 {
6139 struct perf_event *parent_event = child_event->parent;
6140 u64 child_val;
6141
6142 if (child_event->attr.inherit_stat)
6143 perf_event_read_event(child_event, child);
6144
6145 child_val = perf_event_count(child_event);
6146
6147 /*
6148 * Add back the child's count to the parent's count:
6149 */
6150 atomic64_add(child_val, &parent_event->child_count);
6151 atomic64_add(child_event->total_time_enabled,
6152 &parent_event->child_total_time_enabled);
6153 atomic64_add(child_event->total_time_running,
6154 &parent_event->child_total_time_running);
6155
6156 /*
6157 * Remove this event from the parent's list
6158 */
6159 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
6160 mutex_lock(&parent_event->child_mutex);
6161 list_del_init(&child_event->child_list);
6162 mutex_unlock(&parent_event->child_mutex);
6163
6164 /*
6165 * Release the parent event, if this was the last
6166 * reference to it.
6167 */
6168 fput(parent_event->filp);
6169 }
6170
6171 static void
6172 __perf_event_exit_task(struct perf_event *child_event,
6173 struct perf_event_context *child_ctx,
6174 struct task_struct *child)
6175 {
6176 if (child_event->parent) {
6177 raw_spin_lock_irq(&child_ctx->lock);
6178 perf_group_detach(child_event);
6179 raw_spin_unlock_irq(&child_ctx->lock);
6180 }
6181
6182 perf_remove_from_context(child_event);
6183
6184 /*
6185 * It can happen that the parent exits first, and has events
6186 * that are still around due to the child reference. These
6187 * events need to be zapped.
6188 */
6189 if (child_event->parent) {
6190 sync_child_event(child_event, child);
6191 free_event(child_event);
6192 }
6193 }
6194
6195 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
6196 {
6197 struct perf_event *child_event, *tmp;
6198 struct perf_event_context *child_ctx;
6199 unsigned long flags;
6200
6201 if (likely(!child->perf_event_ctxp[ctxn])) {
6202 perf_event_task(child, NULL, 0);
6203 return;
6204 }
6205
6206 local_irq_save(flags);
6207 /*
6208 * We can't reschedule here because interrupts are disabled,
6209 * and either child is current or it is a task that can't be
6210 * scheduled, so we are now safe from rescheduling changing
6211 * our context.
6212 */
6213 child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
6214
6215 /*
6216 * Take the context lock here so that if find_get_context is
6217 * reading child->perf_event_ctxp, we wait until it has
6218 * incremented the context's refcount before we do put_ctx below.
6219 */
6220 raw_spin_lock(&child_ctx->lock);
6221 task_ctx_sched_out(child_ctx);
6222 child->perf_event_ctxp[ctxn] = NULL;
6223 /*
6224 * If this context is a clone; unclone it so it can't get
6225 * swapped to another process while we're removing all
6226 * the events from it.
6227 */
6228 unclone_ctx(child_ctx);
6229 update_context_time(child_ctx);
6230 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
6231
6232 /*
6233 * Report the task dead after unscheduling the events so that we
6234 * won't get any samples after PERF_RECORD_EXIT. We can however still
6235 * get a few PERF_RECORD_READ events.
6236 */
6237 perf_event_task(child, child_ctx, 0);
6238
6239 /*
6240 * We can recurse on the same lock type through:
6241 *
6242 * __perf_event_exit_task()
6243 * sync_child_event()
6244 * fput(parent_event->filp)
6245 * perf_release()
6246 * mutex_lock(&ctx->mutex)
6247 *
6248 * But since its the parent context it won't be the same instance.
6249 */
6250 mutex_lock(&child_ctx->mutex);
6251
6252 again:
6253 list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
6254 group_entry)
6255 __perf_event_exit_task(child_event, child_ctx, child);
6256
6257 list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
6258 group_entry)
6259 __perf_event_exit_task(child_event, child_ctx, child);
6260
6261 /*
6262 * If the last event was a group event, it will have appended all
6263 * its siblings to the list, but we obtained 'tmp' before that which
6264 * will still point to the list head terminating the iteration.
6265 */
6266 if (!list_empty(&child_ctx->pinned_groups) ||
6267 !list_empty(&child_ctx->flexible_groups))
6268 goto again;
6269
6270 mutex_unlock(&child_ctx->mutex);
6271
6272 put_ctx(child_ctx);
6273 }
6274
6275 /*
6276 * When a child task exits, feed back event values to parent events.
6277 */
6278 void perf_event_exit_task(struct task_struct *child)
6279 {
6280 struct perf_event *event, *tmp;
6281 int ctxn;
6282
6283 mutex_lock(&child->perf_event_mutex);
6284 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
6285 owner_entry) {
6286 list_del_init(&event->owner_entry);
6287
6288 /*
6289 * Ensure the list deletion is visible before we clear
6290 * the owner, closes a race against perf_release() where
6291 * we need to serialize on the owner->perf_event_mutex.
6292 */
6293 smp_wmb();
6294 event->owner = NULL;
6295 }
6296 mutex_unlock(&child->perf_event_mutex);
6297
6298 for_each_task_context_nr(ctxn)
6299 perf_event_exit_task_context(child, ctxn);
6300 }
6301
6302 static void perf_free_event(struct perf_event *event,
6303 struct perf_event_context *ctx)
6304 {
6305 struct perf_event *parent = event->parent;
6306
6307 if (WARN_ON_ONCE(!parent))
6308 return;
6309
6310 mutex_lock(&parent->child_mutex);
6311 list_del_init(&event->child_list);
6312 mutex_unlock(&parent->child_mutex);
6313
6314 fput(parent->filp);
6315
6316 perf_group_detach(event);
6317 list_del_event(event, ctx);
6318 free_event(event);
6319 }
6320
6321 /*
6322 * free an unexposed, unused context as created by inheritance by
6323 * perf_event_init_task below, used by fork() in case of fail.
6324 */
6325 void perf_event_free_task(struct task_struct *task)
6326 {
6327 struct perf_event_context *ctx;
6328 struct perf_event *event, *tmp;
6329 int ctxn;
6330
6331 for_each_task_context_nr(ctxn) {
6332 ctx = task->perf_event_ctxp[ctxn];
6333 if (!ctx)
6334 continue;
6335
6336 mutex_lock(&ctx->mutex);
6337 again:
6338 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
6339 group_entry)
6340 perf_free_event(event, ctx);
6341
6342 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
6343 group_entry)
6344 perf_free_event(event, ctx);
6345
6346 if (!list_empty(&ctx->pinned_groups) ||
6347 !list_empty(&ctx->flexible_groups))
6348 goto again;
6349
6350 mutex_unlock(&ctx->mutex);
6351
6352 put_ctx(ctx);
6353 }
6354 }
6355
6356 void perf_event_delayed_put(struct task_struct *task)
6357 {
6358 int ctxn;
6359
6360 for_each_task_context_nr(ctxn)
6361 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
6362 }
6363
6364 /*
6365 * inherit a event from parent task to child task:
6366 */
6367 static struct perf_event *
6368 inherit_event(struct perf_event *parent_event,
6369 struct task_struct *parent,
6370 struct perf_event_context *parent_ctx,
6371 struct task_struct *child,
6372 struct perf_event *group_leader,
6373 struct perf_event_context *child_ctx)
6374 {
6375 struct perf_event *child_event;
6376 unsigned long flags;
6377
6378 /*
6379 * Instead of creating recursive hierarchies of events,
6380 * we link inherited events back to the original parent,
6381 * which has a filp for sure, which we use as the reference
6382 * count:
6383 */
6384 if (parent_event->parent)
6385 parent_event = parent_event->parent;
6386
6387 child_event = perf_event_alloc(&parent_event->attr,
6388 parent_event->cpu,
6389 child,
6390 group_leader, parent_event,
6391 NULL, NULL);
6392 if (IS_ERR(child_event))
6393 return child_event;
6394 get_ctx(child_ctx);
6395
6396 /*
6397 * Make the child state follow the state of the parent event,
6398 * not its attr.disabled bit. We hold the parent's mutex,
6399 * so we won't race with perf_event_{en, dis}able_family.
6400 */
6401 if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
6402 child_event->state = PERF_EVENT_STATE_INACTIVE;
6403 else
6404 child_event->state = PERF_EVENT_STATE_OFF;
6405
6406 if (parent_event->attr.freq) {
6407 u64 sample_period = parent_event->hw.sample_period;
6408 struct hw_perf_event *hwc = &child_event->hw;
6409
6410 hwc->sample_period = sample_period;
6411 hwc->last_period = sample_period;
6412
6413 local64_set(&hwc->period_left, sample_period);
6414 }
6415
6416 child_event->ctx = child_ctx;
6417 child_event->overflow_handler = parent_event->overflow_handler;
6418 child_event->overflow_handler_context
6419 = parent_event->overflow_handler_context;
6420
6421 /*
6422 * Precalculate sample_data sizes
6423 */
6424 perf_event__header_size(child_event);
6425 perf_event__id_header_size(child_event);
6426
6427 /*
6428 * Link it up in the child's context:
6429 */
6430 raw_spin_lock_irqsave(&child_ctx->lock, flags);
6431 add_event_to_ctx(child_event, child_ctx);
6432 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
6433
6434 /*
6435 * Get a reference to the parent filp - we will fput it
6436 * when the child event exits. This is safe to do because
6437 * we are in the parent and we know that the filp still
6438 * exists and has a nonzero count:
6439 */
6440 atomic_long_inc(&parent_event->filp->f_count);
6441
6442 /*
6443 * Link this into the parent event's child list
6444 */
6445 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
6446 mutex_lock(&parent_event->child_mutex);
6447 list_add_tail(&child_event->child_list, &parent_event->child_list);
6448 mutex_unlock(&parent_event->child_mutex);
6449
6450 return child_event;
6451 }
6452
6453 static int inherit_group(struct perf_event *parent_event,
6454 struct task_struct *parent,
6455 struct perf_event_context *parent_ctx,
6456 struct task_struct *child,
6457 struct perf_event_context *child_ctx)
6458 {
6459 struct perf_event *leader;
6460 struct perf_event *sub;
6461 struct perf_event *child_ctr;
6462
6463 leader = inherit_event(parent_event, parent, parent_ctx,
6464 child, NULL, child_ctx);
6465 if (IS_ERR(leader))
6466 return PTR_ERR(leader);
6467 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
6468 child_ctr = inherit_event(sub, parent, parent_ctx,
6469 child, leader, child_ctx);
6470 if (IS_ERR(child_ctr))
6471 return PTR_ERR(child_ctr);
6472 }
6473 return 0;
6474 }
6475
6476 static int
6477 inherit_task_group(struct perf_event *event, struct task_struct *parent,
6478 struct perf_event_context *parent_ctx,
6479 struct task_struct *child, int ctxn,
6480 int *inherited_all)
6481 {
6482 int ret;
6483 struct perf_event_context *child_ctx;
6484
6485 if (!event->attr.inherit) {
6486 *inherited_all = 0;
6487 return 0;
6488 }
6489
6490 child_ctx = child->perf_event_ctxp[ctxn];
6491 if (!child_ctx) {
6492 /*
6493 * This is executed from the parent task context, so
6494 * inherit events that have been marked for cloning.
6495 * First allocate and initialize a context for the
6496 * child.
6497 */
6498
6499 child_ctx = alloc_perf_context(event->pmu, child);
6500 if (!child_ctx)
6501 return -ENOMEM;
6502
6503 child->perf_event_ctxp[ctxn] = child_ctx;
6504 }
6505
6506 ret = inherit_group(event, parent, parent_ctx,
6507 child, child_ctx);
6508
6509 if (ret)
6510 *inherited_all = 0;
6511
6512 return ret;
6513 }
6514
6515 /*
6516 * Initialize the perf_event context in task_struct
6517 */
6518 int perf_event_init_context(struct task_struct *child, int ctxn)
6519 {
6520 struct perf_event_context *child_ctx, *parent_ctx;
6521 struct perf_event_context *cloned_ctx;
6522 struct perf_event *event;
6523 struct task_struct *parent = current;
6524 int inherited_all = 1;
6525 unsigned long flags;
6526 int ret = 0;
6527
6528 if (likely(!parent->perf_event_ctxp[ctxn]))
6529 return 0;
6530
6531 /*
6532 * If the parent's context is a clone, pin it so it won't get
6533 * swapped under us.
6534 */
6535 parent_ctx = perf_pin_task_context(parent, ctxn);
6536
6537 /*
6538 * No need to check if parent_ctx != NULL here; since we saw
6539 * it non-NULL earlier, the only reason for it to become NULL
6540 * is if we exit, and since we're currently in the middle of
6541 * a fork we can't be exiting at the same time.
6542 */
6543
6544 /*
6545 * Lock the parent list. No need to lock the child - not PID
6546 * hashed yet and not running, so nobody can access it.
6547 */
6548 mutex_lock(&parent_ctx->mutex);
6549
6550 /*
6551 * We dont have to disable NMIs - we are only looking at
6552 * the list, not manipulating it:
6553 */
6554 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
6555 ret = inherit_task_group(event, parent, parent_ctx,
6556 child, ctxn, &inherited_all);
6557 if (ret)
6558 break;
6559 }
6560
6561 /*
6562 * We can't hold ctx->lock when iterating the ->flexible_group list due
6563 * to allocations, but we need to prevent rotation because
6564 * rotate_ctx() will change the list from interrupt context.
6565 */
6566 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
6567 parent_ctx->rotate_disable = 1;
6568 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
6569
6570 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
6571 ret = inherit_task_group(event, parent, parent_ctx,
6572 child, ctxn, &inherited_all);
6573 if (ret)
6574 break;
6575 }
6576
6577 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
6578 parent_ctx->rotate_disable = 0;
6579
6580 child_ctx = child->perf_event_ctxp[ctxn];
6581
6582 if (child_ctx && inherited_all) {
6583 /*
6584 * Mark the child context as a clone of the parent
6585 * context, or of whatever the parent is a clone of.
6586 *
6587 * Note that if the parent is a clone, the holding of
6588 * parent_ctx->lock avoids it from being uncloned.
6589 */
6590 cloned_ctx = parent_ctx->parent_ctx;
6591 if (cloned_ctx) {
6592 child_ctx->parent_ctx = cloned_ctx;
6593 child_ctx->parent_gen = parent_ctx->parent_gen;
6594 } else {
6595 child_ctx->parent_ctx = parent_ctx;
6596 child_ctx->parent_gen = parent_ctx->generation;
6597 }
6598 get_ctx(child_ctx->parent_ctx);
6599 }
6600
6601 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
6602 mutex_unlock(&parent_ctx->mutex);
6603
6604 perf_unpin_context(parent_ctx);
6605 put_ctx(parent_ctx);
6606
6607 return ret;
6608 }
6609
6610 /*
6611 * Initialize the perf_event context in task_struct
6612 */
6613 int perf_event_init_task(struct task_struct *child)
6614 {
6615 int ctxn, ret;
6616
6617 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
6618 mutex_init(&child->perf_event_mutex);
6619 INIT_LIST_HEAD(&child->perf_event_list);
6620
6621 for_each_task_context_nr(ctxn) {
6622 ret = perf_event_init_context(child, ctxn);
6623 if (ret)
6624 return ret;
6625 }
6626
6627 return 0;
6628 }
6629
6630 static void __init perf_event_init_all_cpus(void)
6631 {
6632 struct swevent_htable *swhash;
6633 int cpu;
6634
6635 for_each_possible_cpu(cpu) {
6636 swhash = &per_cpu(swevent_htable, cpu);
6637 mutex_init(&swhash->hlist_mutex);
6638 INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
6639 }
6640 }
6641
6642 static void __cpuinit perf_event_init_cpu(int cpu)
6643 {
6644 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6645
6646 mutex_lock(&swhash->hlist_mutex);
6647 if (swhash->hlist_refcount > 0) {
6648 struct swevent_hlist *hlist;
6649
6650 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
6651 WARN_ON(!hlist);
6652 rcu_assign_pointer(swhash->swevent_hlist, hlist);
6653 }
6654 mutex_unlock(&swhash->hlist_mutex);
6655 }
6656
6657 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
6658 static void perf_pmu_rotate_stop(struct pmu *pmu)
6659 {
6660 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
6661
6662 WARN_ON(!irqs_disabled());
6663
6664 list_del_init(&cpuctx->rotation_list);
6665 }
6666
6667 static void __perf_event_exit_context(void *__info)
6668 {
6669 struct perf_event_context *ctx = __info;
6670 struct perf_event *event, *tmp;
6671
6672 perf_pmu_rotate_stop(ctx->pmu);
6673
6674 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
6675 __perf_remove_from_context(event);
6676 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
6677 __perf_remove_from_context(event);
6678 }
6679
6680 static void perf_event_exit_cpu_context(int cpu)
6681 {
6682 struct perf_event_context *ctx;
6683 struct pmu *pmu;
6684 int idx;
6685
6686 idx = srcu_read_lock(&pmus_srcu);
6687 list_for_each_entry_rcu(pmu, &pmus, entry) {
6688 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
6689
6690 mutex_lock(&ctx->mutex);
6691 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
6692 mutex_unlock(&ctx->mutex);
6693 }
6694 srcu_read_unlock(&pmus_srcu, idx);
6695 }
6696
6697 static void perf_event_exit_cpu(int cpu)
6698 {
6699 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6700
6701 mutex_lock(&swhash->hlist_mutex);
6702 swevent_hlist_release(swhash);
6703 mutex_unlock(&swhash->hlist_mutex);
6704
6705 perf_event_exit_cpu_context(cpu);
6706 }
6707 #else
6708 static inline void perf_event_exit_cpu(int cpu) { }
6709 #endif
6710
6711 static int
6712 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
6713 {
6714 int cpu;
6715
6716 for_each_online_cpu(cpu)
6717 perf_event_exit_cpu(cpu);
6718
6719 return NOTIFY_OK;
6720 }
6721
6722 /*
6723 * Run the perf reboot notifier at the very last possible moment so that
6724 * the generic watchdog code runs as long as possible.
6725 */
6726 static struct notifier_block perf_reboot_notifier = {
6727 .notifier_call = perf_reboot,
6728 .priority = INT_MIN,
6729 };
6730
6731 static int __cpuinit
6732 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
6733 {
6734 unsigned int cpu = (long)hcpu;
6735
6736 switch (action & ~CPU_TASKS_FROZEN) {
6737
6738 case CPU_UP_PREPARE:
6739 case CPU_DOWN_FAILED:
6740 perf_event_init_cpu(cpu);
6741 break;
6742
6743 case CPU_UP_CANCELED:
6744 case CPU_DOWN_PREPARE:
6745 perf_event_exit_cpu(cpu);
6746 break;
6747
6748 default:
6749 break;
6750 }
6751
6752 return NOTIFY_OK;
6753 }
6754
6755 void __init perf_event_init(void)
6756 {
6757 int ret;
6758
6759 idr_init(&pmu_idr);
6760
6761 perf_event_init_all_cpus();
6762 init_srcu_struct(&pmus_srcu);
6763 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
6764 perf_pmu_register(&perf_cpu_clock, NULL, -1);
6765 perf_pmu_register(&perf_task_clock, NULL, -1);
6766 perf_tp_register();
6767 perf_cpu_notifier(perf_cpu_notify);
6768 register_reboot_notifier(&perf_reboot_notifier);
6769
6770 ret = init_hw_breakpoint();
6771 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
6772 }
6773
6774 static int __init perf_event_sysfs_init(void)
6775 {
6776 struct pmu *pmu;
6777 int ret;
6778
6779 mutex_lock(&pmus_lock);
6780
6781 ret = bus_register(&pmu_bus);
6782 if (ret)
6783 goto unlock;
6784
6785 list_for_each_entry(pmu, &pmus, entry) {
6786 if (!pmu->name || pmu->type < 0)
6787 continue;
6788
6789 ret = pmu_dev_alloc(pmu);
6790 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
6791 }
6792 pmu_bus_running = 1;
6793 ret = 0;
6794
6795 unlock:
6796 mutex_unlock(&pmus_lock);
6797
6798 return ret;
6799 }
6800 device_initcall(perf_event_sysfs_init);
6801
6802 #ifdef CONFIG_CGROUP_PERF
6803 static struct cgroup_subsys_state *perf_cgroup_create(
6804 struct cgroup_subsys *ss, struct cgroup *cont)
6805 {
6806 struct perf_cgroup *jc;
6807
6808 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
6809 if (!jc)
6810 return ERR_PTR(-ENOMEM);
6811
6812 jc->info = alloc_percpu(struct perf_cgroup_info);
6813 if (!jc->info) {
6814 kfree(jc);
6815 return ERR_PTR(-ENOMEM);
6816 }
6817
6818 return &jc->css;
6819 }
6820
6821 static void perf_cgroup_destroy(struct cgroup_subsys *ss,
6822 struct cgroup *cont)
6823 {
6824 struct perf_cgroup *jc;
6825 jc = container_of(cgroup_subsys_state(cont, perf_subsys_id),
6826 struct perf_cgroup, css);
6827 free_percpu(jc->info);
6828 kfree(jc);
6829 }
6830
6831 static int __perf_cgroup_move(void *info)
6832 {
6833 struct task_struct *task = info;
6834 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
6835 return 0;
6836 }
6837
6838 static void
6839 perf_cgroup_attach_task(struct cgroup *cgrp, struct task_struct *task)
6840 {
6841 task_function_call(task, __perf_cgroup_move, task);
6842 }
6843
6844 static void perf_cgroup_exit(struct cgroup_subsys *ss, struct cgroup *cgrp,
6845 struct cgroup *old_cgrp, struct task_struct *task)
6846 {
6847 /*
6848 * cgroup_exit() is called in the copy_process() failure path.
6849 * Ignore this case since the task hasn't ran yet, this avoids
6850 * trying to poke a half freed task state from generic code.
6851 */
6852 if (!(task->flags & PF_EXITING))
6853 return;
6854
6855 perf_cgroup_attach_task(cgrp, task);
6856 }
6857
6858 struct cgroup_subsys perf_subsys = {
6859 .name = "perf_event",
6860 .subsys_id = perf_subsys_id,
6861 .create = perf_cgroup_create,
6862 .destroy = perf_cgroup_destroy,
6863 .exit = perf_cgroup_exit,
6864 .attach_task = perf_cgroup_attach_task,
6865 };
6866 #endif /* CONFIG_CGROUP_PERF */
This page took 0.220443 seconds and 5 git commands to generate.