Merge branch 'x86-debug-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[deliverable/linux.git] / kernel / events / core.c
1 /*
2 * Performance events core code:
3 *
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8 *
9 * For licensing details see kernel-base/COPYING
10 */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/sysfs.h>
22 #include <linux/dcache.h>
23 #include <linux/percpu.h>
24 #include <linux/ptrace.h>
25 #include <linux/reboot.h>
26 #include <linux/vmstat.h>
27 #include <linux/device.h>
28 #include <linux/export.h>
29 #include <linux/vmalloc.h>
30 #include <linux/hardirq.h>
31 #include <linux/rculist.h>
32 #include <linux/uaccess.h>
33 #include <linux/syscalls.h>
34 #include <linux/anon_inodes.h>
35 #include <linux/kernel_stat.h>
36 #include <linux/perf_event.h>
37 #include <linux/ftrace_event.h>
38 #include <linux/hw_breakpoint.h>
39
40 #include "internal.h"
41
42 #include <asm/irq_regs.h>
43
44 struct remote_function_call {
45 struct task_struct *p;
46 int (*func)(void *info);
47 void *info;
48 int ret;
49 };
50
51 static void remote_function(void *data)
52 {
53 struct remote_function_call *tfc = data;
54 struct task_struct *p = tfc->p;
55
56 if (p) {
57 tfc->ret = -EAGAIN;
58 if (task_cpu(p) != smp_processor_id() || !task_curr(p))
59 return;
60 }
61
62 tfc->ret = tfc->func(tfc->info);
63 }
64
65 /**
66 * task_function_call - call a function on the cpu on which a task runs
67 * @p: the task to evaluate
68 * @func: the function to be called
69 * @info: the function call argument
70 *
71 * Calls the function @func when the task is currently running. This might
72 * be on the current CPU, which just calls the function directly
73 *
74 * returns: @func return value, or
75 * -ESRCH - when the process isn't running
76 * -EAGAIN - when the process moved away
77 */
78 static int
79 task_function_call(struct task_struct *p, int (*func) (void *info), void *info)
80 {
81 struct remote_function_call data = {
82 .p = p,
83 .func = func,
84 .info = info,
85 .ret = -ESRCH, /* No such (running) process */
86 };
87
88 if (task_curr(p))
89 smp_call_function_single(task_cpu(p), remote_function, &data, 1);
90
91 return data.ret;
92 }
93
94 /**
95 * cpu_function_call - call a function on the cpu
96 * @func: the function to be called
97 * @info: the function call argument
98 *
99 * Calls the function @func on the remote cpu.
100 *
101 * returns: @func return value or -ENXIO when the cpu is offline
102 */
103 static int cpu_function_call(int cpu, int (*func) (void *info), void *info)
104 {
105 struct remote_function_call data = {
106 .p = NULL,
107 .func = func,
108 .info = info,
109 .ret = -ENXIO, /* No such CPU */
110 };
111
112 smp_call_function_single(cpu, remote_function, &data, 1);
113
114 return data.ret;
115 }
116
117 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
118 PERF_FLAG_FD_OUTPUT |\
119 PERF_FLAG_PID_CGROUP)
120
121 /*
122 * branch priv levels that need permission checks
123 */
124 #define PERF_SAMPLE_BRANCH_PERM_PLM \
125 (PERF_SAMPLE_BRANCH_KERNEL |\
126 PERF_SAMPLE_BRANCH_HV)
127
128 enum event_type_t {
129 EVENT_FLEXIBLE = 0x1,
130 EVENT_PINNED = 0x2,
131 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
132 };
133
134 /*
135 * perf_sched_events : >0 events exist
136 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
137 */
138 struct static_key_deferred perf_sched_events __read_mostly;
139 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
140 static DEFINE_PER_CPU(atomic_t, perf_branch_stack_events);
141
142 static atomic_t nr_mmap_events __read_mostly;
143 static atomic_t nr_comm_events __read_mostly;
144 static atomic_t nr_task_events __read_mostly;
145
146 static LIST_HEAD(pmus);
147 static DEFINE_MUTEX(pmus_lock);
148 static struct srcu_struct pmus_srcu;
149
150 /*
151 * perf event paranoia level:
152 * -1 - not paranoid at all
153 * 0 - disallow raw tracepoint access for unpriv
154 * 1 - disallow cpu events for unpriv
155 * 2 - disallow kernel profiling for unpriv
156 */
157 int sysctl_perf_event_paranoid __read_mostly = 1;
158
159 /* Minimum for 512 kiB + 1 user control page */
160 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
161
162 /*
163 * max perf event sample rate
164 */
165 #define DEFAULT_MAX_SAMPLE_RATE 100000
166 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
167 static int max_samples_per_tick __read_mostly =
168 DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
169
170 int perf_proc_update_handler(struct ctl_table *table, int write,
171 void __user *buffer, size_t *lenp,
172 loff_t *ppos)
173 {
174 int ret = proc_dointvec(table, write, buffer, lenp, ppos);
175
176 if (ret || !write)
177 return ret;
178
179 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
180
181 return 0;
182 }
183
184 static atomic64_t perf_event_id;
185
186 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
187 enum event_type_t event_type);
188
189 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
190 enum event_type_t event_type,
191 struct task_struct *task);
192
193 static void update_context_time(struct perf_event_context *ctx);
194 static u64 perf_event_time(struct perf_event *event);
195
196 static void ring_buffer_attach(struct perf_event *event,
197 struct ring_buffer *rb);
198
199 void __weak perf_event_print_debug(void) { }
200
201 extern __weak const char *perf_pmu_name(void)
202 {
203 return "pmu";
204 }
205
206 static inline u64 perf_clock(void)
207 {
208 return local_clock();
209 }
210
211 static inline struct perf_cpu_context *
212 __get_cpu_context(struct perf_event_context *ctx)
213 {
214 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
215 }
216
217 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
218 struct perf_event_context *ctx)
219 {
220 raw_spin_lock(&cpuctx->ctx.lock);
221 if (ctx)
222 raw_spin_lock(&ctx->lock);
223 }
224
225 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
226 struct perf_event_context *ctx)
227 {
228 if (ctx)
229 raw_spin_unlock(&ctx->lock);
230 raw_spin_unlock(&cpuctx->ctx.lock);
231 }
232
233 #ifdef CONFIG_CGROUP_PERF
234
235 /*
236 * Must ensure cgroup is pinned (css_get) before calling
237 * this function. In other words, we cannot call this function
238 * if there is no cgroup event for the current CPU context.
239 */
240 static inline struct perf_cgroup *
241 perf_cgroup_from_task(struct task_struct *task)
242 {
243 return container_of(task_subsys_state(task, perf_subsys_id),
244 struct perf_cgroup, css);
245 }
246
247 static inline bool
248 perf_cgroup_match(struct perf_event *event)
249 {
250 struct perf_event_context *ctx = event->ctx;
251 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
252
253 return !event->cgrp || event->cgrp == cpuctx->cgrp;
254 }
255
256 static inline bool perf_tryget_cgroup(struct perf_event *event)
257 {
258 return css_tryget(&event->cgrp->css);
259 }
260
261 static inline void perf_put_cgroup(struct perf_event *event)
262 {
263 css_put(&event->cgrp->css);
264 }
265
266 static inline void perf_detach_cgroup(struct perf_event *event)
267 {
268 perf_put_cgroup(event);
269 event->cgrp = NULL;
270 }
271
272 static inline int is_cgroup_event(struct perf_event *event)
273 {
274 return event->cgrp != NULL;
275 }
276
277 static inline u64 perf_cgroup_event_time(struct perf_event *event)
278 {
279 struct perf_cgroup_info *t;
280
281 t = per_cpu_ptr(event->cgrp->info, event->cpu);
282 return t->time;
283 }
284
285 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
286 {
287 struct perf_cgroup_info *info;
288 u64 now;
289
290 now = perf_clock();
291
292 info = this_cpu_ptr(cgrp->info);
293
294 info->time += now - info->timestamp;
295 info->timestamp = now;
296 }
297
298 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
299 {
300 struct perf_cgroup *cgrp_out = cpuctx->cgrp;
301 if (cgrp_out)
302 __update_cgrp_time(cgrp_out);
303 }
304
305 static inline void update_cgrp_time_from_event(struct perf_event *event)
306 {
307 struct perf_cgroup *cgrp;
308
309 /*
310 * ensure we access cgroup data only when needed and
311 * when we know the cgroup is pinned (css_get)
312 */
313 if (!is_cgroup_event(event))
314 return;
315
316 cgrp = perf_cgroup_from_task(current);
317 /*
318 * Do not update time when cgroup is not active
319 */
320 if (cgrp == event->cgrp)
321 __update_cgrp_time(event->cgrp);
322 }
323
324 static inline void
325 perf_cgroup_set_timestamp(struct task_struct *task,
326 struct perf_event_context *ctx)
327 {
328 struct perf_cgroup *cgrp;
329 struct perf_cgroup_info *info;
330
331 /*
332 * ctx->lock held by caller
333 * ensure we do not access cgroup data
334 * unless we have the cgroup pinned (css_get)
335 */
336 if (!task || !ctx->nr_cgroups)
337 return;
338
339 cgrp = perf_cgroup_from_task(task);
340 info = this_cpu_ptr(cgrp->info);
341 info->timestamp = ctx->timestamp;
342 }
343
344 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
345 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
346
347 /*
348 * reschedule events based on the cgroup constraint of task.
349 *
350 * mode SWOUT : schedule out everything
351 * mode SWIN : schedule in based on cgroup for next
352 */
353 void perf_cgroup_switch(struct task_struct *task, int mode)
354 {
355 struct perf_cpu_context *cpuctx;
356 struct pmu *pmu;
357 unsigned long flags;
358
359 /*
360 * disable interrupts to avoid geting nr_cgroup
361 * changes via __perf_event_disable(). Also
362 * avoids preemption.
363 */
364 local_irq_save(flags);
365
366 /*
367 * we reschedule only in the presence of cgroup
368 * constrained events.
369 */
370 rcu_read_lock();
371
372 list_for_each_entry_rcu(pmu, &pmus, entry) {
373 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
374
375 /*
376 * perf_cgroup_events says at least one
377 * context on this CPU has cgroup events.
378 *
379 * ctx->nr_cgroups reports the number of cgroup
380 * events for a context.
381 */
382 if (cpuctx->ctx.nr_cgroups > 0) {
383 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
384 perf_pmu_disable(cpuctx->ctx.pmu);
385
386 if (mode & PERF_CGROUP_SWOUT) {
387 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
388 /*
389 * must not be done before ctxswout due
390 * to event_filter_match() in event_sched_out()
391 */
392 cpuctx->cgrp = NULL;
393 }
394
395 if (mode & PERF_CGROUP_SWIN) {
396 WARN_ON_ONCE(cpuctx->cgrp);
397 /* set cgrp before ctxsw in to
398 * allow event_filter_match() to not
399 * have to pass task around
400 */
401 cpuctx->cgrp = perf_cgroup_from_task(task);
402 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
403 }
404 perf_pmu_enable(cpuctx->ctx.pmu);
405 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
406 }
407 }
408
409 rcu_read_unlock();
410
411 local_irq_restore(flags);
412 }
413
414 static inline void perf_cgroup_sched_out(struct task_struct *task,
415 struct task_struct *next)
416 {
417 struct perf_cgroup *cgrp1;
418 struct perf_cgroup *cgrp2 = NULL;
419
420 /*
421 * we come here when we know perf_cgroup_events > 0
422 */
423 cgrp1 = perf_cgroup_from_task(task);
424
425 /*
426 * next is NULL when called from perf_event_enable_on_exec()
427 * that will systematically cause a cgroup_switch()
428 */
429 if (next)
430 cgrp2 = perf_cgroup_from_task(next);
431
432 /*
433 * only schedule out current cgroup events if we know
434 * that we are switching to a different cgroup. Otherwise,
435 * do no touch the cgroup events.
436 */
437 if (cgrp1 != cgrp2)
438 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
439 }
440
441 static inline void perf_cgroup_sched_in(struct task_struct *prev,
442 struct task_struct *task)
443 {
444 struct perf_cgroup *cgrp1;
445 struct perf_cgroup *cgrp2 = NULL;
446
447 /*
448 * we come here when we know perf_cgroup_events > 0
449 */
450 cgrp1 = perf_cgroup_from_task(task);
451
452 /* prev can never be NULL */
453 cgrp2 = perf_cgroup_from_task(prev);
454
455 /*
456 * only need to schedule in cgroup events if we are changing
457 * cgroup during ctxsw. Cgroup events were not scheduled
458 * out of ctxsw out if that was not the case.
459 */
460 if (cgrp1 != cgrp2)
461 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
462 }
463
464 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
465 struct perf_event_attr *attr,
466 struct perf_event *group_leader)
467 {
468 struct perf_cgroup *cgrp;
469 struct cgroup_subsys_state *css;
470 struct file *file;
471 int ret = 0, fput_needed;
472
473 file = fget_light(fd, &fput_needed);
474 if (!file)
475 return -EBADF;
476
477 css = cgroup_css_from_dir(file, perf_subsys_id);
478 if (IS_ERR(css)) {
479 ret = PTR_ERR(css);
480 goto out;
481 }
482
483 cgrp = container_of(css, struct perf_cgroup, css);
484 event->cgrp = cgrp;
485
486 /* must be done before we fput() the file */
487 if (!perf_tryget_cgroup(event)) {
488 event->cgrp = NULL;
489 ret = -ENOENT;
490 goto out;
491 }
492
493 /*
494 * all events in a group must monitor
495 * the same cgroup because a task belongs
496 * to only one perf cgroup at a time
497 */
498 if (group_leader && group_leader->cgrp != cgrp) {
499 perf_detach_cgroup(event);
500 ret = -EINVAL;
501 }
502 out:
503 fput_light(file, fput_needed);
504 return ret;
505 }
506
507 static inline void
508 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
509 {
510 struct perf_cgroup_info *t;
511 t = per_cpu_ptr(event->cgrp->info, event->cpu);
512 event->shadow_ctx_time = now - t->timestamp;
513 }
514
515 static inline void
516 perf_cgroup_defer_enabled(struct perf_event *event)
517 {
518 /*
519 * when the current task's perf cgroup does not match
520 * the event's, we need to remember to call the
521 * perf_mark_enable() function the first time a task with
522 * a matching perf cgroup is scheduled in.
523 */
524 if (is_cgroup_event(event) && !perf_cgroup_match(event))
525 event->cgrp_defer_enabled = 1;
526 }
527
528 static inline void
529 perf_cgroup_mark_enabled(struct perf_event *event,
530 struct perf_event_context *ctx)
531 {
532 struct perf_event *sub;
533 u64 tstamp = perf_event_time(event);
534
535 if (!event->cgrp_defer_enabled)
536 return;
537
538 event->cgrp_defer_enabled = 0;
539
540 event->tstamp_enabled = tstamp - event->total_time_enabled;
541 list_for_each_entry(sub, &event->sibling_list, group_entry) {
542 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
543 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
544 sub->cgrp_defer_enabled = 0;
545 }
546 }
547 }
548 #else /* !CONFIG_CGROUP_PERF */
549
550 static inline bool
551 perf_cgroup_match(struct perf_event *event)
552 {
553 return true;
554 }
555
556 static inline void perf_detach_cgroup(struct perf_event *event)
557 {}
558
559 static inline int is_cgroup_event(struct perf_event *event)
560 {
561 return 0;
562 }
563
564 static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
565 {
566 return 0;
567 }
568
569 static inline void update_cgrp_time_from_event(struct perf_event *event)
570 {
571 }
572
573 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
574 {
575 }
576
577 static inline void perf_cgroup_sched_out(struct task_struct *task,
578 struct task_struct *next)
579 {
580 }
581
582 static inline void perf_cgroup_sched_in(struct task_struct *prev,
583 struct task_struct *task)
584 {
585 }
586
587 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
588 struct perf_event_attr *attr,
589 struct perf_event *group_leader)
590 {
591 return -EINVAL;
592 }
593
594 static inline void
595 perf_cgroup_set_timestamp(struct task_struct *task,
596 struct perf_event_context *ctx)
597 {
598 }
599
600 void
601 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
602 {
603 }
604
605 static inline void
606 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
607 {
608 }
609
610 static inline u64 perf_cgroup_event_time(struct perf_event *event)
611 {
612 return 0;
613 }
614
615 static inline void
616 perf_cgroup_defer_enabled(struct perf_event *event)
617 {
618 }
619
620 static inline void
621 perf_cgroup_mark_enabled(struct perf_event *event,
622 struct perf_event_context *ctx)
623 {
624 }
625 #endif
626
627 void perf_pmu_disable(struct pmu *pmu)
628 {
629 int *count = this_cpu_ptr(pmu->pmu_disable_count);
630 if (!(*count)++)
631 pmu->pmu_disable(pmu);
632 }
633
634 void perf_pmu_enable(struct pmu *pmu)
635 {
636 int *count = this_cpu_ptr(pmu->pmu_disable_count);
637 if (!--(*count))
638 pmu->pmu_enable(pmu);
639 }
640
641 static DEFINE_PER_CPU(struct list_head, rotation_list);
642
643 /*
644 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
645 * because they're strictly cpu affine and rotate_start is called with IRQs
646 * disabled, while rotate_context is called from IRQ context.
647 */
648 static void perf_pmu_rotate_start(struct pmu *pmu)
649 {
650 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
651 struct list_head *head = &__get_cpu_var(rotation_list);
652
653 WARN_ON(!irqs_disabled());
654
655 if (list_empty(&cpuctx->rotation_list))
656 list_add(&cpuctx->rotation_list, head);
657 }
658
659 static void get_ctx(struct perf_event_context *ctx)
660 {
661 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
662 }
663
664 static void put_ctx(struct perf_event_context *ctx)
665 {
666 if (atomic_dec_and_test(&ctx->refcount)) {
667 if (ctx->parent_ctx)
668 put_ctx(ctx->parent_ctx);
669 if (ctx->task)
670 put_task_struct(ctx->task);
671 kfree_rcu(ctx, rcu_head);
672 }
673 }
674
675 static void unclone_ctx(struct perf_event_context *ctx)
676 {
677 if (ctx->parent_ctx) {
678 put_ctx(ctx->parent_ctx);
679 ctx->parent_ctx = NULL;
680 }
681 }
682
683 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
684 {
685 /*
686 * only top level events have the pid namespace they were created in
687 */
688 if (event->parent)
689 event = event->parent;
690
691 return task_tgid_nr_ns(p, event->ns);
692 }
693
694 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
695 {
696 /*
697 * only top level events have the pid namespace they were created in
698 */
699 if (event->parent)
700 event = event->parent;
701
702 return task_pid_nr_ns(p, event->ns);
703 }
704
705 /*
706 * If we inherit events we want to return the parent event id
707 * to userspace.
708 */
709 static u64 primary_event_id(struct perf_event *event)
710 {
711 u64 id = event->id;
712
713 if (event->parent)
714 id = event->parent->id;
715
716 return id;
717 }
718
719 /*
720 * Get the perf_event_context for a task and lock it.
721 * This has to cope with with the fact that until it is locked,
722 * the context could get moved to another task.
723 */
724 static struct perf_event_context *
725 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
726 {
727 struct perf_event_context *ctx;
728
729 rcu_read_lock();
730 retry:
731 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
732 if (ctx) {
733 /*
734 * If this context is a clone of another, it might
735 * get swapped for another underneath us by
736 * perf_event_task_sched_out, though the
737 * rcu_read_lock() protects us from any context
738 * getting freed. Lock the context and check if it
739 * got swapped before we could get the lock, and retry
740 * if so. If we locked the right context, then it
741 * can't get swapped on us any more.
742 */
743 raw_spin_lock_irqsave(&ctx->lock, *flags);
744 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
745 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
746 goto retry;
747 }
748
749 if (!atomic_inc_not_zero(&ctx->refcount)) {
750 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
751 ctx = NULL;
752 }
753 }
754 rcu_read_unlock();
755 return ctx;
756 }
757
758 /*
759 * Get the context for a task and increment its pin_count so it
760 * can't get swapped to another task. This also increments its
761 * reference count so that the context can't get freed.
762 */
763 static struct perf_event_context *
764 perf_pin_task_context(struct task_struct *task, int ctxn)
765 {
766 struct perf_event_context *ctx;
767 unsigned long flags;
768
769 ctx = perf_lock_task_context(task, ctxn, &flags);
770 if (ctx) {
771 ++ctx->pin_count;
772 raw_spin_unlock_irqrestore(&ctx->lock, flags);
773 }
774 return ctx;
775 }
776
777 static void perf_unpin_context(struct perf_event_context *ctx)
778 {
779 unsigned long flags;
780
781 raw_spin_lock_irqsave(&ctx->lock, flags);
782 --ctx->pin_count;
783 raw_spin_unlock_irqrestore(&ctx->lock, flags);
784 }
785
786 /*
787 * Update the record of the current time in a context.
788 */
789 static void update_context_time(struct perf_event_context *ctx)
790 {
791 u64 now = perf_clock();
792
793 ctx->time += now - ctx->timestamp;
794 ctx->timestamp = now;
795 }
796
797 static u64 perf_event_time(struct perf_event *event)
798 {
799 struct perf_event_context *ctx = event->ctx;
800
801 if (is_cgroup_event(event))
802 return perf_cgroup_event_time(event);
803
804 return ctx ? ctx->time : 0;
805 }
806
807 /*
808 * Update the total_time_enabled and total_time_running fields for a event.
809 * The caller of this function needs to hold the ctx->lock.
810 */
811 static void update_event_times(struct perf_event *event)
812 {
813 struct perf_event_context *ctx = event->ctx;
814 u64 run_end;
815
816 if (event->state < PERF_EVENT_STATE_INACTIVE ||
817 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
818 return;
819 /*
820 * in cgroup mode, time_enabled represents
821 * the time the event was enabled AND active
822 * tasks were in the monitored cgroup. This is
823 * independent of the activity of the context as
824 * there may be a mix of cgroup and non-cgroup events.
825 *
826 * That is why we treat cgroup events differently
827 * here.
828 */
829 if (is_cgroup_event(event))
830 run_end = perf_cgroup_event_time(event);
831 else if (ctx->is_active)
832 run_end = ctx->time;
833 else
834 run_end = event->tstamp_stopped;
835
836 event->total_time_enabled = run_end - event->tstamp_enabled;
837
838 if (event->state == PERF_EVENT_STATE_INACTIVE)
839 run_end = event->tstamp_stopped;
840 else
841 run_end = perf_event_time(event);
842
843 event->total_time_running = run_end - event->tstamp_running;
844
845 }
846
847 /*
848 * Update total_time_enabled and total_time_running for all events in a group.
849 */
850 static void update_group_times(struct perf_event *leader)
851 {
852 struct perf_event *event;
853
854 update_event_times(leader);
855 list_for_each_entry(event, &leader->sibling_list, group_entry)
856 update_event_times(event);
857 }
858
859 static struct list_head *
860 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
861 {
862 if (event->attr.pinned)
863 return &ctx->pinned_groups;
864 else
865 return &ctx->flexible_groups;
866 }
867
868 /*
869 * Add a event from the lists for its context.
870 * Must be called with ctx->mutex and ctx->lock held.
871 */
872 static void
873 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
874 {
875 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
876 event->attach_state |= PERF_ATTACH_CONTEXT;
877
878 /*
879 * If we're a stand alone event or group leader, we go to the context
880 * list, group events are kept attached to the group so that
881 * perf_group_detach can, at all times, locate all siblings.
882 */
883 if (event->group_leader == event) {
884 struct list_head *list;
885
886 if (is_software_event(event))
887 event->group_flags |= PERF_GROUP_SOFTWARE;
888
889 list = ctx_group_list(event, ctx);
890 list_add_tail(&event->group_entry, list);
891 }
892
893 if (is_cgroup_event(event))
894 ctx->nr_cgroups++;
895
896 if (has_branch_stack(event))
897 ctx->nr_branch_stack++;
898
899 list_add_rcu(&event->event_entry, &ctx->event_list);
900 if (!ctx->nr_events)
901 perf_pmu_rotate_start(ctx->pmu);
902 ctx->nr_events++;
903 if (event->attr.inherit_stat)
904 ctx->nr_stat++;
905 }
906
907 /*
908 * Called at perf_event creation and when events are attached/detached from a
909 * group.
910 */
911 static void perf_event__read_size(struct perf_event *event)
912 {
913 int entry = sizeof(u64); /* value */
914 int size = 0;
915 int nr = 1;
916
917 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
918 size += sizeof(u64);
919
920 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
921 size += sizeof(u64);
922
923 if (event->attr.read_format & PERF_FORMAT_ID)
924 entry += sizeof(u64);
925
926 if (event->attr.read_format & PERF_FORMAT_GROUP) {
927 nr += event->group_leader->nr_siblings;
928 size += sizeof(u64);
929 }
930
931 size += entry * nr;
932 event->read_size = size;
933 }
934
935 static void perf_event__header_size(struct perf_event *event)
936 {
937 struct perf_sample_data *data;
938 u64 sample_type = event->attr.sample_type;
939 u16 size = 0;
940
941 perf_event__read_size(event);
942
943 if (sample_type & PERF_SAMPLE_IP)
944 size += sizeof(data->ip);
945
946 if (sample_type & PERF_SAMPLE_ADDR)
947 size += sizeof(data->addr);
948
949 if (sample_type & PERF_SAMPLE_PERIOD)
950 size += sizeof(data->period);
951
952 if (sample_type & PERF_SAMPLE_READ)
953 size += event->read_size;
954
955 event->header_size = size;
956 }
957
958 static void perf_event__id_header_size(struct perf_event *event)
959 {
960 struct perf_sample_data *data;
961 u64 sample_type = event->attr.sample_type;
962 u16 size = 0;
963
964 if (sample_type & PERF_SAMPLE_TID)
965 size += sizeof(data->tid_entry);
966
967 if (sample_type & PERF_SAMPLE_TIME)
968 size += sizeof(data->time);
969
970 if (sample_type & PERF_SAMPLE_ID)
971 size += sizeof(data->id);
972
973 if (sample_type & PERF_SAMPLE_STREAM_ID)
974 size += sizeof(data->stream_id);
975
976 if (sample_type & PERF_SAMPLE_CPU)
977 size += sizeof(data->cpu_entry);
978
979 event->id_header_size = size;
980 }
981
982 static void perf_group_attach(struct perf_event *event)
983 {
984 struct perf_event *group_leader = event->group_leader, *pos;
985
986 /*
987 * We can have double attach due to group movement in perf_event_open.
988 */
989 if (event->attach_state & PERF_ATTACH_GROUP)
990 return;
991
992 event->attach_state |= PERF_ATTACH_GROUP;
993
994 if (group_leader == event)
995 return;
996
997 if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
998 !is_software_event(event))
999 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
1000
1001 list_add_tail(&event->group_entry, &group_leader->sibling_list);
1002 group_leader->nr_siblings++;
1003
1004 perf_event__header_size(group_leader);
1005
1006 list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1007 perf_event__header_size(pos);
1008 }
1009
1010 /*
1011 * Remove a event from the lists for its context.
1012 * Must be called with ctx->mutex and ctx->lock held.
1013 */
1014 static void
1015 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1016 {
1017 struct perf_cpu_context *cpuctx;
1018 /*
1019 * We can have double detach due to exit/hot-unplug + close.
1020 */
1021 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1022 return;
1023
1024 event->attach_state &= ~PERF_ATTACH_CONTEXT;
1025
1026 if (is_cgroup_event(event)) {
1027 ctx->nr_cgroups--;
1028 cpuctx = __get_cpu_context(ctx);
1029 /*
1030 * if there are no more cgroup events
1031 * then cler cgrp to avoid stale pointer
1032 * in update_cgrp_time_from_cpuctx()
1033 */
1034 if (!ctx->nr_cgroups)
1035 cpuctx->cgrp = NULL;
1036 }
1037
1038 if (has_branch_stack(event))
1039 ctx->nr_branch_stack--;
1040
1041 ctx->nr_events--;
1042 if (event->attr.inherit_stat)
1043 ctx->nr_stat--;
1044
1045 list_del_rcu(&event->event_entry);
1046
1047 if (event->group_leader == event)
1048 list_del_init(&event->group_entry);
1049
1050 update_group_times(event);
1051
1052 /*
1053 * If event was in error state, then keep it
1054 * that way, otherwise bogus counts will be
1055 * returned on read(). The only way to get out
1056 * of error state is by explicit re-enabling
1057 * of the event
1058 */
1059 if (event->state > PERF_EVENT_STATE_OFF)
1060 event->state = PERF_EVENT_STATE_OFF;
1061 }
1062
1063 static void perf_group_detach(struct perf_event *event)
1064 {
1065 struct perf_event *sibling, *tmp;
1066 struct list_head *list = NULL;
1067
1068 /*
1069 * We can have double detach due to exit/hot-unplug + close.
1070 */
1071 if (!(event->attach_state & PERF_ATTACH_GROUP))
1072 return;
1073
1074 event->attach_state &= ~PERF_ATTACH_GROUP;
1075
1076 /*
1077 * If this is a sibling, remove it from its group.
1078 */
1079 if (event->group_leader != event) {
1080 list_del_init(&event->group_entry);
1081 event->group_leader->nr_siblings--;
1082 goto out;
1083 }
1084
1085 if (!list_empty(&event->group_entry))
1086 list = &event->group_entry;
1087
1088 /*
1089 * If this was a group event with sibling events then
1090 * upgrade the siblings to singleton events by adding them
1091 * to whatever list we are on.
1092 */
1093 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1094 if (list)
1095 list_move_tail(&sibling->group_entry, list);
1096 sibling->group_leader = sibling;
1097
1098 /* Inherit group flags from the previous leader */
1099 sibling->group_flags = event->group_flags;
1100 }
1101
1102 out:
1103 perf_event__header_size(event->group_leader);
1104
1105 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1106 perf_event__header_size(tmp);
1107 }
1108
1109 static inline int
1110 event_filter_match(struct perf_event *event)
1111 {
1112 return (event->cpu == -1 || event->cpu == smp_processor_id())
1113 && perf_cgroup_match(event);
1114 }
1115
1116 static void
1117 event_sched_out(struct perf_event *event,
1118 struct perf_cpu_context *cpuctx,
1119 struct perf_event_context *ctx)
1120 {
1121 u64 tstamp = perf_event_time(event);
1122 u64 delta;
1123 /*
1124 * An event which could not be activated because of
1125 * filter mismatch still needs to have its timings
1126 * maintained, otherwise bogus information is return
1127 * via read() for time_enabled, time_running:
1128 */
1129 if (event->state == PERF_EVENT_STATE_INACTIVE
1130 && !event_filter_match(event)) {
1131 delta = tstamp - event->tstamp_stopped;
1132 event->tstamp_running += delta;
1133 event->tstamp_stopped = tstamp;
1134 }
1135
1136 if (event->state != PERF_EVENT_STATE_ACTIVE)
1137 return;
1138
1139 event->state = PERF_EVENT_STATE_INACTIVE;
1140 if (event->pending_disable) {
1141 event->pending_disable = 0;
1142 event->state = PERF_EVENT_STATE_OFF;
1143 }
1144 event->tstamp_stopped = tstamp;
1145 event->pmu->del(event, 0);
1146 event->oncpu = -1;
1147
1148 if (!is_software_event(event))
1149 cpuctx->active_oncpu--;
1150 ctx->nr_active--;
1151 if (event->attr.freq && event->attr.sample_freq)
1152 ctx->nr_freq--;
1153 if (event->attr.exclusive || !cpuctx->active_oncpu)
1154 cpuctx->exclusive = 0;
1155 }
1156
1157 static void
1158 group_sched_out(struct perf_event *group_event,
1159 struct perf_cpu_context *cpuctx,
1160 struct perf_event_context *ctx)
1161 {
1162 struct perf_event *event;
1163 int state = group_event->state;
1164
1165 event_sched_out(group_event, cpuctx, ctx);
1166
1167 /*
1168 * Schedule out siblings (if any):
1169 */
1170 list_for_each_entry(event, &group_event->sibling_list, group_entry)
1171 event_sched_out(event, cpuctx, ctx);
1172
1173 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1174 cpuctx->exclusive = 0;
1175 }
1176
1177 /*
1178 * Cross CPU call to remove a performance event
1179 *
1180 * We disable the event on the hardware level first. After that we
1181 * remove it from the context list.
1182 */
1183 static int __perf_remove_from_context(void *info)
1184 {
1185 struct perf_event *event = info;
1186 struct perf_event_context *ctx = event->ctx;
1187 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1188
1189 raw_spin_lock(&ctx->lock);
1190 event_sched_out(event, cpuctx, ctx);
1191 list_del_event(event, ctx);
1192 if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
1193 ctx->is_active = 0;
1194 cpuctx->task_ctx = NULL;
1195 }
1196 raw_spin_unlock(&ctx->lock);
1197
1198 return 0;
1199 }
1200
1201
1202 /*
1203 * Remove the event from a task's (or a CPU's) list of events.
1204 *
1205 * CPU events are removed with a smp call. For task events we only
1206 * call when the task is on a CPU.
1207 *
1208 * If event->ctx is a cloned context, callers must make sure that
1209 * every task struct that event->ctx->task could possibly point to
1210 * remains valid. This is OK when called from perf_release since
1211 * that only calls us on the top-level context, which can't be a clone.
1212 * When called from perf_event_exit_task, it's OK because the
1213 * context has been detached from its task.
1214 */
1215 static void perf_remove_from_context(struct perf_event *event)
1216 {
1217 struct perf_event_context *ctx = event->ctx;
1218 struct task_struct *task = ctx->task;
1219
1220 lockdep_assert_held(&ctx->mutex);
1221
1222 if (!task) {
1223 /*
1224 * Per cpu events are removed via an smp call and
1225 * the removal is always successful.
1226 */
1227 cpu_function_call(event->cpu, __perf_remove_from_context, event);
1228 return;
1229 }
1230
1231 retry:
1232 if (!task_function_call(task, __perf_remove_from_context, event))
1233 return;
1234
1235 raw_spin_lock_irq(&ctx->lock);
1236 /*
1237 * If we failed to find a running task, but find the context active now
1238 * that we've acquired the ctx->lock, retry.
1239 */
1240 if (ctx->is_active) {
1241 raw_spin_unlock_irq(&ctx->lock);
1242 goto retry;
1243 }
1244
1245 /*
1246 * Since the task isn't running, its safe to remove the event, us
1247 * holding the ctx->lock ensures the task won't get scheduled in.
1248 */
1249 list_del_event(event, ctx);
1250 raw_spin_unlock_irq(&ctx->lock);
1251 }
1252
1253 /*
1254 * Cross CPU call to disable a performance event
1255 */
1256 static int __perf_event_disable(void *info)
1257 {
1258 struct perf_event *event = info;
1259 struct perf_event_context *ctx = event->ctx;
1260 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1261
1262 /*
1263 * If this is a per-task event, need to check whether this
1264 * event's task is the current task on this cpu.
1265 *
1266 * Can trigger due to concurrent perf_event_context_sched_out()
1267 * flipping contexts around.
1268 */
1269 if (ctx->task && cpuctx->task_ctx != ctx)
1270 return -EINVAL;
1271
1272 raw_spin_lock(&ctx->lock);
1273
1274 /*
1275 * If the event is on, turn it off.
1276 * If it is in error state, leave it in error state.
1277 */
1278 if (event->state >= PERF_EVENT_STATE_INACTIVE) {
1279 update_context_time(ctx);
1280 update_cgrp_time_from_event(event);
1281 update_group_times(event);
1282 if (event == event->group_leader)
1283 group_sched_out(event, cpuctx, ctx);
1284 else
1285 event_sched_out(event, cpuctx, ctx);
1286 event->state = PERF_EVENT_STATE_OFF;
1287 }
1288
1289 raw_spin_unlock(&ctx->lock);
1290
1291 return 0;
1292 }
1293
1294 /*
1295 * Disable a event.
1296 *
1297 * If event->ctx is a cloned context, callers must make sure that
1298 * every task struct that event->ctx->task could possibly point to
1299 * remains valid. This condition is satisifed when called through
1300 * perf_event_for_each_child or perf_event_for_each because they
1301 * hold the top-level event's child_mutex, so any descendant that
1302 * goes to exit will block in sync_child_event.
1303 * When called from perf_pending_event it's OK because event->ctx
1304 * is the current context on this CPU and preemption is disabled,
1305 * hence we can't get into perf_event_task_sched_out for this context.
1306 */
1307 void perf_event_disable(struct perf_event *event)
1308 {
1309 struct perf_event_context *ctx = event->ctx;
1310 struct task_struct *task = ctx->task;
1311
1312 if (!task) {
1313 /*
1314 * Disable the event on the cpu that it's on
1315 */
1316 cpu_function_call(event->cpu, __perf_event_disable, event);
1317 return;
1318 }
1319
1320 retry:
1321 if (!task_function_call(task, __perf_event_disable, event))
1322 return;
1323
1324 raw_spin_lock_irq(&ctx->lock);
1325 /*
1326 * If the event is still active, we need to retry the cross-call.
1327 */
1328 if (event->state == PERF_EVENT_STATE_ACTIVE) {
1329 raw_spin_unlock_irq(&ctx->lock);
1330 /*
1331 * Reload the task pointer, it might have been changed by
1332 * a concurrent perf_event_context_sched_out().
1333 */
1334 task = ctx->task;
1335 goto retry;
1336 }
1337
1338 /*
1339 * Since we have the lock this context can't be scheduled
1340 * in, so we can change the state safely.
1341 */
1342 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1343 update_group_times(event);
1344 event->state = PERF_EVENT_STATE_OFF;
1345 }
1346 raw_spin_unlock_irq(&ctx->lock);
1347 }
1348 EXPORT_SYMBOL_GPL(perf_event_disable);
1349
1350 static void perf_set_shadow_time(struct perf_event *event,
1351 struct perf_event_context *ctx,
1352 u64 tstamp)
1353 {
1354 /*
1355 * use the correct time source for the time snapshot
1356 *
1357 * We could get by without this by leveraging the
1358 * fact that to get to this function, the caller
1359 * has most likely already called update_context_time()
1360 * and update_cgrp_time_xx() and thus both timestamp
1361 * are identical (or very close). Given that tstamp is,
1362 * already adjusted for cgroup, we could say that:
1363 * tstamp - ctx->timestamp
1364 * is equivalent to
1365 * tstamp - cgrp->timestamp.
1366 *
1367 * Then, in perf_output_read(), the calculation would
1368 * work with no changes because:
1369 * - event is guaranteed scheduled in
1370 * - no scheduled out in between
1371 * - thus the timestamp would be the same
1372 *
1373 * But this is a bit hairy.
1374 *
1375 * So instead, we have an explicit cgroup call to remain
1376 * within the time time source all along. We believe it
1377 * is cleaner and simpler to understand.
1378 */
1379 if (is_cgroup_event(event))
1380 perf_cgroup_set_shadow_time(event, tstamp);
1381 else
1382 event->shadow_ctx_time = tstamp - ctx->timestamp;
1383 }
1384
1385 #define MAX_INTERRUPTS (~0ULL)
1386
1387 static void perf_log_throttle(struct perf_event *event, int enable);
1388
1389 static int
1390 event_sched_in(struct perf_event *event,
1391 struct perf_cpu_context *cpuctx,
1392 struct perf_event_context *ctx)
1393 {
1394 u64 tstamp = perf_event_time(event);
1395
1396 if (event->state <= PERF_EVENT_STATE_OFF)
1397 return 0;
1398
1399 event->state = PERF_EVENT_STATE_ACTIVE;
1400 event->oncpu = smp_processor_id();
1401
1402 /*
1403 * Unthrottle events, since we scheduled we might have missed several
1404 * ticks already, also for a heavily scheduling task there is little
1405 * guarantee it'll get a tick in a timely manner.
1406 */
1407 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
1408 perf_log_throttle(event, 1);
1409 event->hw.interrupts = 0;
1410 }
1411
1412 /*
1413 * The new state must be visible before we turn it on in the hardware:
1414 */
1415 smp_wmb();
1416
1417 if (event->pmu->add(event, PERF_EF_START)) {
1418 event->state = PERF_EVENT_STATE_INACTIVE;
1419 event->oncpu = -1;
1420 return -EAGAIN;
1421 }
1422
1423 event->tstamp_running += tstamp - event->tstamp_stopped;
1424
1425 perf_set_shadow_time(event, ctx, tstamp);
1426
1427 if (!is_software_event(event))
1428 cpuctx->active_oncpu++;
1429 ctx->nr_active++;
1430 if (event->attr.freq && event->attr.sample_freq)
1431 ctx->nr_freq++;
1432
1433 if (event->attr.exclusive)
1434 cpuctx->exclusive = 1;
1435
1436 return 0;
1437 }
1438
1439 static int
1440 group_sched_in(struct perf_event *group_event,
1441 struct perf_cpu_context *cpuctx,
1442 struct perf_event_context *ctx)
1443 {
1444 struct perf_event *event, *partial_group = NULL;
1445 struct pmu *pmu = group_event->pmu;
1446 u64 now = ctx->time;
1447 bool simulate = false;
1448
1449 if (group_event->state == PERF_EVENT_STATE_OFF)
1450 return 0;
1451
1452 pmu->start_txn(pmu);
1453
1454 if (event_sched_in(group_event, cpuctx, ctx)) {
1455 pmu->cancel_txn(pmu);
1456 return -EAGAIN;
1457 }
1458
1459 /*
1460 * Schedule in siblings as one group (if any):
1461 */
1462 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1463 if (event_sched_in(event, cpuctx, ctx)) {
1464 partial_group = event;
1465 goto group_error;
1466 }
1467 }
1468
1469 if (!pmu->commit_txn(pmu))
1470 return 0;
1471
1472 group_error:
1473 /*
1474 * Groups can be scheduled in as one unit only, so undo any
1475 * partial group before returning:
1476 * The events up to the failed event are scheduled out normally,
1477 * tstamp_stopped will be updated.
1478 *
1479 * The failed events and the remaining siblings need to have
1480 * their timings updated as if they had gone thru event_sched_in()
1481 * and event_sched_out(). This is required to get consistent timings
1482 * across the group. This also takes care of the case where the group
1483 * could never be scheduled by ensuring tstamp_stopped is set to mark
1484 * the time the event was actually stopped, such that time delta
1485 * calculation in update_event_times() is correct.
1486 */
1487 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1488 if (event == partial_group)
1489 simulate = true;
1490
1491 if (simulate) {
1492 event->tstamp_running += now - event->tstamp_stopped;
1493 event->tstamp_stopped = now;
1494 } else {
1495 event_sched_out(event, cpuctx, ctx);
1496 }
1497 }
1498 event_sched_out(group_event, cpuctx, ctx);
1499
1500 pmu->cancel_txn(pmu);
1501
1502 return -EAGAIN;
1503 }
1504
1505 /*
1506 * Work out whether we can put this event group on the CPU now.
1507 */
1508 static int group_can_go_on(struct perf_event *event,
1509 struct perf_cpu_context *cpuctx,
1510 int can_add_hw)
1511 {
1512 /*
1513 * Groups consisting entirely of software events can always go on.
1514 */
1515 if (event->group_flags & PERF_GROUP_SOFTWARE)
1516 return 1;
1517 /*
1518 * If an exclusive group is already on, no other hardware
1519 * events can go on.
1520 */
1521 if (cpuctx->exclusive)
1522 return 0;
1523 /*
1524 * If this group is exclusive and there are already
1525 * events on the CPU, it can't go on.
1526 */
1527 if (event->attr.exclusive && cpuctx->active_oncpu)
1528 return 0;
1529 /*
1530 * Otherwise, try to add it if all previous groups were able
1531 * to go on.
1532 */
1533 return can_add_hw;
1534 }
1535
1536 static void add_event_to_ctx(struct perf_event *event,
1537 struct perf_event_context *ctx)
1538 {
1539 u64 tstamp = perf_event_time(event);
1540
1541 list_add_event(event, ctx);
1542 perf_group_attach(event);
1543 event->tstamp_enabled = tstamp;
1544 event->tstamp_running = tstamp;
1545 event->tstamp_stopped = tstamp;
1546 }
1547
1548 static void task_ctx_sched_out(struct perf_event_context *ctx);
1549 static void
1550 ctx_sched_in(struct perf_event_context *ctx,
1551 struct perf_cpu_context *cpuctx,
1552 enum event_type_t event_type,
1553 struct task_struct *task);
1554
1555 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
1556 struct perf_event_context *ctx,
1557 struct task_struct *task)
1558 {
1559 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
1560 if (ctx)
1561 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
1562 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
1563 if (ctx)
1564 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
1565 }
1566
1567 /*
1568 * Cross CPU call to install and enable a performance event
1569 *
1570 * Must be called with ctx->mutex held
1571 */
1572 static int __perf_install_in_context(void *info)
1573 {
1574 struct perf_event *event = info;
1575 struct perf_event_context *ctx = event->ctx;
1576 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1577 struct perf_event_context *task_ctx = cpuctx->task_ctx;
1578 struct task_struct *task = current;
1579
1580 perf_ctx_lock(cpuctx, task_ctx);
1581 perf_pmu_disable(cpuctx->ctx.pmu);
1582
1583 /*
1584 * If there was an active task_ctx schedule it out.
1585 */
1586 if (task_ctx)
1587 task_ctx_sched_out(task_ctx);
1588
1589 /*
1590 * If the context we're installing events in is not the
1591 * active task_ctx, flip them.
1592 */
1593 if (ctx->task && task_ctx != ctx) {
1594 if (task_ctx)
1595 raw_spin_unlock(&task_ctx->lock);
1596 raw_spin_lock(&ctx->lock);
1597 task_ctx = ctx;
1598 }
1599
1600 if (task_ctx) {
1601 cpuctx->task_ctx = task_ctx;
1602 task = task_ctx->task;
1603 }
1604
1605 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
1606
1607 update_context_time(ctx);
1608 /*
1609 * update cgrp time only if current cgrp
1610 * matches event->cgrp. Must be done before
1611 * calling add_event_to_ctx()
1612 */
1613 update_cgrp_time_from_event(event);
1614
1615 add_event_to_ctx(event, ctx);
1616
1617 /*
1618 * Schedule everything back in
1619 */
1620 perf_event_sched_in(cpuctx, task_ctx, task);
1621
1622 perf_pmu_enable(cpuctx->ctx.pmu);
1623 perf_ctx_unlock(cpuctx, task_ctx);
1624
1625 return 0;
1626 }
1627
1628 /*
1629 * Attach a performance event to a context
1630 *
1631 * First we add the event to the list with the hardware enable bit
1632 * in event->hw_config cleared.
1633 *
1634 * If the event is attached to a task which is on a CPU we use a smp
1635 * call to enable it in the task context. The task might have been
1636 * scheduled away, but we check this in the smp call again.
1637 */
1638 static void
1639 perf_install_in_context(struct perf_event_context *ctx,
1640 struct perf_event *event,
1641 int cpu)
1642 {
1643 struct task_struct *task = ctx->task;
1644
1645 lockdep_assert_held(&ctx->mutex);
1646
1647 event->ctx = ctx;
1648 if (event->cpu != -1)
1649 event->cpu = cpu;
1650
1651 if (!task) {
1652 /*
1653 * Per cpu events are installed via an smp call and
1654 * the install is always successful.
1655 */
1656 cpu_function_call(cpu, __perf_install_in_context, event);
1657 return;
1658 }
1659
1660 retry:
1661 if (!task_function_call(task, __perf_install_in_context, event))
1662 return;
1663
1664 raw_spin_lock_irq(&ctx->lock);
1665 /*
1666 * If we failed to find a running task, but find the context active now
1667 * that we've acquired the ctx->lock, retry.
1668 */
1669 if (ctx->is_active) {
1670 raw_spin_unlock_irq(&ctx->lock);
1671 goto retry;
1672 }
1673
1674 /*
1675 * Since the task isn't running, its safe to add the event, us holding
1676 * the ctx->lock ensures the task won't get scheduled in.
1677 */
1678 add_event_to_ctx(event, ctx);
1679 raw_spin_unlock_irq(&ctx->lock);
1680 }
1681
1682 /*
1683 * Put a event into inactive state and update time fields.
1684 * Enabling the leader of a group effectively enables all
1685 * the group members that aren't explicitly disabled, so we
1686 * have to update their ->tstamp_enabled also.
1687 * Note: this works for group members as well as group leaders
1688 * since the non-leader members' sibling_lists will be empty.
1689 */
1690 static void __perf_event_mark_enabled(struct perf_event *event)
1691 {
1692 struct perf_event *sub;
1693 u64 tstamp = perf_event_time(event);
1694
1695 event->state = PERF_EVENT_STATE_INACTIVE;
1696 event->tstamp_enabled = tstamp - event->total_time_enabled;
1697 list_for_each_entry(sub, &event->sibling_list, group_entry) {
1698 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
1699 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
1700 }
1701 }
1702
1703 /*
1704 * Cross CPU call to enable a performance event
1705 */
1706 static int __perf_event_enable(void *info)
1707 {
1708 struct perf_event *event = info;
1709 struct perf_event_context *ctx = event->ctx;
1710 struct perf_event *leader = event->group_leader;
1711 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1712 int err;
1713
1714 if (WARN_ON_ONCE(!ctx->is_active))
1715 return -EINVAL;
1716
1717 raw_spin_lock(&ctx->lock);
1718 update_context_time(ctx);
1719
1720 if (event->state >= PERF_EVENT_STATE_INACTIVE)
1721 goto unlock;
1722
1723 /*
1724 * set current task's cgroup time reference point
1725 */
1726 perf_cgroup_set_timestamp(current, ctx);
1727
1728 __perf_event_mark_enabled(event);
1729
1730 if (!event_filter_match(event)) {
1731 if (is_cgroup_event(event))
1732 perf_cgroup_defer_enabled(event);
1733 goto unlock;
1734 }
1735
1736 /*
1737 * If the event is in a group and isn't the group leader,
1738 * then don't put it on unless the group is on.
1739 */
1740 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
1741 goto unlock;
1742
1743 if (!group_can_go_on(event, cpuctx, 1)) {
1744 err = -EEXIST;
1745 } else {
1746 if (event == leader)
1747 err = group_sched_in(event, cpuctx, ctx);
1748 else
1749 err = event_sched_in(event, cpuctx, ctx);
1750 }
1751
1752 if (err) {
1753 /*
1754 * If this event can't go on and it's part of a
1755 * group, then the whole group has to come off.
1756 */
1757 if (leader != event)
1758 group_sched_out(leader, cpuctx, ctx);
1759 if (leader->attr.pinned) {
1760 update_group_times(leader);
1761 leader->state = PERF_EVENT_STATE_ERROR;
1762 }
1763 }
1764
1765 unlock:
1766 raw_spin_unlock(&ctx->lock);
1767
1768 return 0;
1769 }
1770
1771 /*
1772 * Enable a event.
1773 *
1774 * If event->ctx is a cloned context, callers must make sure that
1775 * every task struct that event->ctx->task could possibly point to
1776 * remains valid. This condition is satisfied when called through
1777 * perf_event_for_each_child or perf_event_for_each as described
1778 * for perf_event_disable.
1779 */
1780 void perf_event_enable(struct perf_event *event)
1781 {
1782 struct perf_event_context *ctx = event->ctx;
1783 struct task_struct *task = ctx->task;
1784
1785 if (!task) {
1786 /*
1787 * Enable the event on the cpu that it's on
1788 */
1789 cpu_function_call(event->cpu, __perf_event_enable, event);
1790 return;
1791 }
1792
1793 raw_spin_lock_irq(&ctx->lock);
1794 if (event->state >= PERF_EVENT_STATE_INACTIVE)
1795 goto out;
1796
1797 /*
1798 * If the event is in error state, clear that first.
1799 * That way, if we see the event in error state below, we
1800 * know that it has gone back into error state, as distinct
1801 * from the task having been scheduled away before the
1802 * cross-call arrived.
1803 */
1804 if (event->state == PERF_EVENT_STATE_ERROR)
1805 event->state = PERF_EVENT_STATE_OFF;
1806
1807 retry:
1808 if (!ctx->is_active) {
1809 __perf_event_mark_enabled(event);
1810 goto out;
1811 }
1812
1813 raw_spin_unlock_irq(&ctx->lock);
1814
1815 if (!task_function_call(task, __perf_event_enable, event))
1816 return;
1817
1818 raw_spin_lock_irq(&ctx->lock);
1819
1820 /*
1821 * If the context is active and the event is still off,
1822 * we need to retry the cross-call.
1823 */
1824 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
1825 /*
1826 * task could have been flipped by a concurrent
1827 * perf_event_context_sched_out()
1828 */
1829 task = ctx->task;
1830 goto retry;
1831 }
1832
1833 out:
1834 raw_spin_unlock_irq(&ctx->lock);
1835 }
1836 EXPORT_SYMBOL_GPL(perf_event_enable);
1837
1838 int perf_event_refresh(struct perf_event *event, int refresh)
1839 {
1840 /*
1841 * not supported on inherited events
1842 */
1843 if (event->attr.inherit || !is_sampling_event(event))
1844 return -EINVAL;
1845
1846 atomic_add(refresh, &event->event_limit);
1847 perf_event_enable(event);
1848
1849 return 0;
1850 }
1851 EXPORT_SYMBOL_GPL(perf_event_refresh);
1852
1853 static void ctx_sched_out(struct perf_event_context *ctx,
1854 struct perf_cpu_context *cpuctx,
1855 enum event_type_t event_type)
1856 {
1857 struct perf_event *event;
1858 int is_active = ctx->is_active;
1859
1860 ctx->is_active &= ~event_type;
1861 if (likely(!ctx->nr_events))
1862 return;
1863
1864 update_context_time(ctx);
1865 update_cgrp_time_from_cpuctx(cpuctx);
1866 if (!ctx->nr_active)
1867 return;
1868
1869 perf_pmu_disable(ctx->pmu);
1870 if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
1871 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
1872 group_sched_out(event, cpuctx, ctx);
1873 }
1874
1875 if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
1876 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
1877 group_sched_out(event, cpuctx, ctx);
1878 }
1879 perf_pmu_enable(ctx->pmu);
1880 }
1881
1882 /*
1883 * Test whether two contexts are equivalent, i.e. whether they
1884 * have both been cloned from the same version of the same context
1885 * and they both have the same number of enabled events.
1886 * If the number of enabled events is the same, then the set
1887 * of enabled events should be the same, because these are both
1888 * inherited contexts, therefore we can't access individual events
1889 * in them directly with an fd; we can only enable/disable all
1890 * events via prctl, or enable/disable all events in a family
1891 * via ioctl, which will have the same effect on both contexts.
1892 */
1893 static int context_equiv(struct perf_event_context *ctx1,
1894 struct perf_event_context *ctx2)
1895 {
1896 return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1897 && ctx1->parent_gen == ctx2->parent_gen
1898 && !ctx1->pin_count && !ctx2->pin_count;
1899 }
1900
1901 static void __perf_event_sync_stat(struct perf_event *event,
1902 struct perf_event *next_event)
1903 {
1904 u64 value;
1905
1906 if (!event->attr.inherit_stat)
1907 return;
1908
1909 /*
1910 * Update the event value, we cannot use perf_event_read()
1911 * because we're in the middle of a context switch and have IRQs
1912 * disabled, which upsets smp_call_function_single(), however
1913 * we know the event must be on the current CPU, therefore we
1914 * don't need to use it.
1915 */
1916 switch (event->state) {
1917 case PERF_EVENT_STATE_ACTIVE:
1918 event->pmu->read(event);
1919 /* fall-through */
1920
1921 case PERF_EVENT_STATE_INACTIVE:
1922 update_event_times(event);
1923 break;
1924
1925 default:
1926 break;
1927 }
1928
1929 /*
1930 * In order to keep per-task stats reliable we need to flip the event
1931 * values when we flip the contexts.
1932 */
1933 value = local64_read(&next_event->count);
1934 value = local64_xchg(&event->count, value);
1935 local64_set(&next_event->count, value);
1936
1937 swap(event->total_time_enabled, next_event->total_time_enabled);
1938 swap(event->total_time_running, next_event->total_time_running);
1939
1940 /*
1941 * Since we swizzled the values, update the user visible data too.
1942 */
1943 perf_event_update_userpage(event);
1944 perf_event_update_userpage(next_event);
1945 }
1946
1947 #define list_next_entry(pos, member) \
1948 list_entry(pos->member.next, typeof(*pos), member)
1949
1950 static void perf_event_sync_stat(struct perf_event_context *ctx,
1951 struct perf_event_context *next_ctx)
1952 {
1953 struct perf_event *event, *next_event;
1954
1955 if (!ctx->nr_stat)
1956 return;
1957
1958 update_context_time(ctx);
1959
1960 event = list_first_entry(&ctx->event_list,
1961 struct perf_event, event_entry);
1962
1963 next_event = list_first_entry(&next_ctx->event_list,
1964 struct perf_event, event_entry);
1965
1966 while (&event->event_entry != &ctx->event_list &&
1967 &next_event->event_entry != &next_ctx->event_list) {
1968
1969 __perf_event_sync_stat(event, next_event);
1970
1971 event = list_next_entry(event, event_entry);
1972 next_event = list_next_entry(next_event, event_entry);
1973 }
1974 }
1975
1976 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
1977 struct task_struct *next)
1978 {
1979 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
1980 struct perf_event_context *next_ctx;
1981 struct perf_event_context *parent;
1982 struct perf_cpu_context *cpuctx;
1983 int do_switch = 1;
1984
1985 if (likely(!ctx))
1986 return;
1987
1988 cpuctx = __get_cpu_context(ctx);
1989 if (!cpuctx->task_ctx)
1990 return;
1991
1992 rcu_read_lock();
1993 parent = rcu_dereference(ctx->parent_ctx);
1994 next_ctx = next->perf_event_ctxp[ctxn];
1995 if (parent && next_ctx &&
1996 rcu_dereference(next_ctx->parent_ctx) == parent) {
1997 /*
1998 * Looks like the two contexts are clones, so we might be
1999 * able to optimize the context switch. We lock both
2000 * contexts and check that they are clones under the
2001 * lock (including re-checking that neither has been
2002 * uncloned in the meantime). It doesn't matter which
2003 * order we take the locks because no other cpu could
2004 * be trying to lock both of these tasks.
2005 */
2006 raw_spin_lock(&ctx->lock);
2007 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2008 if (context_equiv(ctx, next_ctx)) {
2009 /*
2010 * XXX do we need a memory barrier of sorts
2011 * wrt to rcu_dereference() of perf_event_ctxp
2012 */
2013 task->perf_event_ctxp[ctxn] = next_ctx;
2014 next->perf_event_ctxp[ctxn] = ctx;
2015 ctx->task = next;
2016 next_ctx->task = task;
2017 do_switch = 0;
2018
2019 perf_event_sync_stat(ctx, next_ctx);
2020 }
2021 raw_spin_unlock(&next_ctx->lock);
2022 raw_spin_unlock(&ctx->lock);
2023 }
2024 rcu_read_unlock();
2025
2026 if (do_switch) {
2027 raw_spin_lock(&ctx->lock);
2028 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2029 cpuctx->task_ctx = NULL;
2030 raw_spin_unlock(&ctx->lock);
2031 }
2032 }
2033
2034 #define for_each_task_context_nr(ctxn) \
2035 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2036
2037 /*
2038 * Called from scheduler to remove the events of the current task,
2039 * with interrupts disabled.
2040 *
2041 * We stop each event and update the event value in event->count.
2042 *
2043 * This does not protect us against NMI, but disable()
2044 * sets the disabled bit in the control field of event _before_
2045 * accessing the event control register. If a NMI hits, then it will
2046 * not restart the event.
2047 */
2048 void __perf_event_task_sched_out(struct task_struct *task,
2049 struct task_struct *next)
2050 {
2051 int ctxn;
2052
2053 for_each_task_context_nr(ctxn)
2054 perf_event_context_sched_out(task, ctxn, next);
2055
2056 /*
2057 * if cgroup events exist on this CPU, then we need
2058 * to check if we have to switch out PMU state.
2059 * cgroup event are system-wide mode only
2060 */
2061 if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2062 perf_cgroup_sched_out(task, next);
2063 }
2064
2065 static void task_ctx_sched_out(struct perf_event_context *ctx)
2066 {
2067 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2068
2069 if (!cpuctx->task_ctx)
2070 return;
2071
2072 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2073 return;
2074
2075 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2076 cpuctx->task_ctx = NULL;
2077 }
2078
2079 /*
2080 * Called with IRQs disabled
2081 */
2082 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2083 enum event_type_t event_type)
2084 {
2085 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2086 }
2087
2088 static void
2089 ctx_pinned_sched_in(struct perf_event_context *ctx,
2090 struct perf_cpu_context *cpuctx)
2091 {
2092 struct perf_event *event;
2093
2094 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2095 if (event->state <= PERF_EVENT_STATE_OFF)
2096 continue;
2097 if (!event_filter_match(event))
2098 continue;
2099
2100 /* may need to reset tstamp_enabled */
2101 if (is_cgroup_event(event))
2102 perf_cgroup_mark_enabled(event, ctx);
2103
2104 if (group_can_go_on(event, cpuctx, 1))
2105 group_sched_in(event, cpuctx, ctx);
2106
2107 /*
2108 * If this pinned group hasn't been scheduled,
2109 * put it in error state.
2110 */
2111 if (event->state == PERF_EVENT_STATE_INACTIVE) {
2112 update_group_times(event);
2113 event->state = PERF_EVENT_STATE_ERROR;
2114 }
2115 }
2116 }
2117
2118 static void
2119 ctx_flexible_sched_in(struct perf_event_context *ctx,
2120 struct perf_cpu_context *cpuctx)
2121 {
2122 struct perf_event *event;
2123 int can_add_hw = 1;
2124
2125 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2126 /* Ignore events in OFF or ERROR state */
2127 if (event->state <= PERF_EVENT_STATE_OFF)
2128 continue;
2129 /*
2130 * Listen to the 'cpu' scheduling filter constraint
2131 * of events:
2132 */
2133 if (!event_filter_match(event))
2134 continue;
2135
2136 /* may need to reset tstamp_enabled */
2137 if (is_cgroup_event(event))
2138 perf_cgroup_mark_enabled(event, ctx);
2139
2140 if (group_can_go_on(event, cpuctx, can_add_hw)) {
2141 if (group_sched_in(event, cpuctx, ctx))
2142 can_add_hw = 0;
2143 }
2144 }
2145 }
2146
2147 static void
2148 ctx_sched_in(struct perf_event_context *ctx,
2149 struct perf_cpu_context *cpuctx,
2150 enum event_type_t event_type,
2151 struct task_struct *task)
2152 {
2153 u64 now;
2154 int is_active = ctx->is_active;
2155
2156 ctx->is_active |= event_type;
2157 if (likely(!ctx->nr_events))
2158 return;
2159
2160 now = perf_clock();
2161 ctx->timestamp = now;
2162 perf_cgroup_set_timestamp(task, ctx);
2163 /*
2164 * First go through the list and put on any pinned groups
2165 * in order to give them the best chance of going on.
2166 */
2167 if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
2168 ctx_pinned_sched_in(ctx, cpuctx);
2169
2170 /* Then walk through the lower prio flexible groups */
2171 if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
2172 ctx_flexible_sched_in(ctx, cpuctx);
2173 }
2174
2175 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
2176 enum event_type_t event_type,
2177 struct task_struct *task)
2178 {
2179 struct perf_event_context *ctx = &cpuctx->ctx;
2180
2181 ctx_sched_in(ctx, cpuctx, event_type, task);
2182 }
2183
2184 static void perf_event_context_sched_in(struct perf_event_context *ctx,
2185 struct task_struct *task)
2186 {
2187 struct perf_cpu_context *cpuctx;
2188
2189 cpuctx = __get_cpu_context(ctx);
2190 if (cpuctx->task_ctx == ctx)
2191 return;
2192
2193 perf_ctx_lock(cpuctx, ctx);
2194 perf_pmu_disable(ctx->pmu);
2195 /*
2196 * We want to keep the following priority order:
2197 * cpu pinned (that don't need to move), task pinned,
2198 * cpu flexible, task flexible.
2199 */
2200 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2201
2202 if (ctx->nr_events)
2203 cpuctx->task_ctx = ctx;
2204
2205 perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);
2206
2207 perf_pmu_enable(ctx->pmu);
2208 perf_ctx_unlock(cpuctx, ctx);
2209
2210 /*
2211 * Since these rotations are per-cpu, we need to ensure the
2212 * cpu-context we got scheduled on is actually rotating.
2213 */
2214 perf_pmu_rotate_start(ctx->pmu);
2215 }
2216
2217 /*
2218 * When sampling the branck stack in system-wide, it may be necessary
2219 * to flush the stack on context switch. This happens when the branch
2220 * stack does not tag its entries with the pid of the current task.
2221 * Otherwise it becomes impossible to associate a branch entry with a
2222 * task. This ambiguity is more likely to appear when the branch stack
2223 * supports priv level filtering and the user sets it to monitor only
2224 * at the user level (which could be a useful measurement in system-wide
2225 * mode). In that case, the risk is high of having a branch stack with
2226 * branch from multiple tasks. Flushing may mean dropping the existing
2227 * entries or stashing them somewhere in the PMU specific code layer.
2228 *
2229 * This function provides the context switch callback to the lower code
2230 * layer. It is invoked ONLY when there is at least one system-wide context
2231 * with at least one active event using taken branch sampling.
2232 */
2233 static void perf_branch_stack_sched_in(struct task_struct *prev,
2234 struct task_struct *task)
2235 {
2236 struct perf_cpu_context *cpuctx;
2237 struct pmu *pmu;
2238 unsigned long flags;
2239
2240 /* no need to flush branch stack if not changing task */
2241 if (prev == task)
2242 return;
2243
2244 local_irq_save(flags);
2245
2246 rcu_read_lock();
2247
2248 list_for_each_entry_rcu(pmu, &pmus, entry) {
2249 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2250
2251 /*
2252 * check if the context has at least one
2253 * event using PERF_SAMPLE_BRANCH_STACK
2254 */
2255 if (cpuctx->ctx.nr_branch_stack > 0
2256 && pmu->flush_branch_stack) {
2257
2258 pmu = cpuctx->ctx.pmu;
2259
2260 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2261
2262 perf_pmu_disable(pmu);
2263
2264 pmu->flush_branch_stack();
2265
2266 perf_pmu_enable(pmu);
2267
2268 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2269 }
2270 }
2271
2272 rcu_read_unlock();
2273
2274 local_irq_restore(flags);
2275 }
2276
2277 /*
2278 * Called from scheduler to add the events of the current task
2279 * with interrupts disabled.
2280 *
2281 * We restore the event value and then enable it.
2282 *
2283 * This does not protect us against NMI, but enable()
2284 * sets the enabled bit in the control field of event _before_
2285 * accessing the event control register. If a NMI hits, then it will
2286 * keep the event running.
2287 */
2288 void __perf_event_task_sched_in(struct task_struct *prev,
2289 struct task_struct *task)
2290 {
2291 struct perf_event_context *ctx;
2292 int ctxn;
2293
2294 for_each_task_context_nr(ctxn) {
2295 ctx = task->perf_event_ctxp[ctxn];
2296 if (likely(!ctx))
2297 continue;
2298
2299 perf_event_context_sched_in(ctx, task);
2300 }
2301 /*
2302 * if cgroup events exist on this CPU, then we need
2303 * to check if we have to switch in PMU state.
2304 * cgroup event are system-wide mode only
2305 */
2306 if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2307 perf_cgroup_sched_in(prev, task);
2308
2309 /* check for system-wide branch_stack events */
2310 if (atomic_read(&__get_cpu_var(perf_branch_stack_events)))
2311 perf_branch_stack_sched_in(prev, task);
2312 }
2313
2314 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
2315 {
2316 u64 frequency = event->attr.sample_freq;
2317 u64 sec = NSEC_PER_SEC;
2318 u64 divisor, dividend;
2319
2320 int count_fls, nsec_fls, frequency_fls, sec_fls;
2321
2322 count_fls = fls64(count);
2323 nsec_fls = fls64(nsec);
2324 frequency_fls = fls64(frequency);
2325 sec_fls = 30;
2326
2327 /*
2328 * We got @count in @nsec, with a target of sample_freq HZ
2329 * the target period becomes:
2330 *
2331 * @count * 10^9
2332 * period = -------------------
2333 * @nsec * sample_freq
2334 *
2335 */
2336
2337 /*
2338 * Reduce accuracy by one bit such that @a and @b converge
2339 * to a similar magnitude.
2340 */
2341 #define REDUCE_FLS(a, b) \
2342 do { \
2343 if (a##_fls > b##_fls) { \
2344 a >>= 1; \
2345 a##_fls--; \
2346 } else { \
2347 b >>= 1; \
2348 b##_fls--; \
2349 } \
2350 } while (0)
2351
2352 /*
2353 * Reduce accuracy until either term fits in a u64, then proceed with
2354 * the other, so that finally we can do a u64/u64 division.
2355 */
2356 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
2357 REDUCE_FLS(nsec, frequency);
2358 REDUCE_FLS(sec, count);
2359 }
2360
2361 if (count_fls + sec_fls > 64) {
2362 divisor = nsec * frequency;
2363
2364 while (count_fls + sec_fls > 64) {
2365 REDUCE_FLS(count, sec);
2366 divisor >>= 1;
2367 }
2368
2369 dividend = count * sec;
2370 } else {
2371 dividend = count * sec;
2372
2373 while (nsec_fls + frequency_fls > 64) {
2374 REDUCE_FLS(nsec, frequency);
2375 dividend >>= 1;
2376 }
2377
2378 divisor = nsec * frequency;
2379 }
2380
2381 if (!divisor)
2382 return dividend;
2383
2384 return div64_u64(dividend, divisor);
2385 }
2386
2387 static DEFINE_PER_CPU(int, perf_throttled_count);
2388 static DEFINE_PER_CPU(u64, perf_throttled_seq);
2389
2390 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
2391 {
2392 struct hw_perf_event *hwc = &event->hw;
2393 s64 period, sample_period;
2394 s64 delta;
2395
2396 period = perf_calculate_period(event, nsec, count);
2397
2398 delta = (s64)(period - hwc->sample_period);
2399 delta = (delta + 7) / 8; /* low pass filter */
2400
2401 sample_period = hwc->sample_period + delta;
2402
2403 if (!sample_period)
2404 sample_period = 1;
2405
2406 hwc->sample_period = sample_period;
2407
2408 if (local64_read(&hwc->period_left) > 8*sample_period) {
2409 if (disable)
2410 event->pmu->stop(event, PERF_EF_UPDATE);
2411
2412 local64_set(&hwc->period_left, 0);
2413
2414 if (disable)
2415 event->pmu->start(event, PERF_EF_RELOAD);
2416 }
2417 }
2418
2419 /*
2420 * combine freq adjustment with unthrottling to avoid two passes over the
2421 * events. At the same time, make sure, having freq events does not change
2422 * the rate of unthrottling as that would introduce bias.
2423 */
2424 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
2425 int needs_unthr)
2426 {
2427 struct perf_event *event;
2428 struct hw_perf_event *hwc;
2429 u64 now, period = TICK_NSEC;
2430 s64 delta;
2431
2432 /*
2433 * only need to iterate over all events iff:
2434 * - context have events in frequency mode (needs freq adjust)
2435 * - there are events to unthrottle on this cpu
2436 */
2437 if (!(ctx->nr_freq || needs_unthr))
2438 return;
2439
2440 raw_spin_lock(&ctx->lock);
2441 perf_pmu_disable(ctx->pmu);
2442
2443 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
2444 if (event->state != PERF_EVENT_STATE_ACTIVE)
2445 continue;
2446
2447 if (!event_filter_match(event))
2448 continue;
2449
2450 hwc = &event->hw;
2451
2452 if (needs_unthr && hwc->interrupts == MAX_INTERRUPTS) {
2453 hwc->interrupts = 0;
2454 perf_log_throttle(event, 1);
2455 event->pmu->start(event, 0);
2456 }
2457
2458 if (!event->attr.freq || !event->attr.sample_freq)
2459 continue;
2460
2461 /*
2462 * stop the event and update event->count
2463 */
2464 event->pmu->stop(event, PERF_EF_UPDATE);
2465
2466 now = local64_read(&event->count);
2467 delta = now - hwc->freq_count_stamp;
2468 hwc->freq_count_stamp = now;
2469
2470 /*
2471 * restart the event
2472 * reload only if value has changed
2473 * we have stopped the event so tell that
2474 * to perf_adjust_period() to avoid stopping it
2475 * twice.
2476 */
2477 if (delta > 0)
2478 perf_adjust_period(event, period, delta, false);
2479
2480 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
2481 }
2482
2483 perf_pmu_enable(ctx->pmu);
2484 raw_spin_unlock(&ctx->lock);
2485 }
2486
2487 /*
2488 * Round-robin a context's events:
2489 */
2490 static void rotate_ctx(struct perf_event_context *ctx)
2491 {
2492 /*
2493 * Rotate the first entry last of non-pinned groups. Rotation might be
2494 * disabled by the inheritance code.
2495 */
2496 if (!ctx->rotate_disable)
2497 list_rotate_left(&ctx->flexible_groups);
2498 }
2499
2500 /*
2501 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
2502 * because they're strictly cpu affine and rotate_start is called with IRQs
2503 * disabled, while rotate_context is called from IRQ context.
2504 */
2505 static void perf_rotate_context(struct perf_cpu_context *cpuctx)
2506 {
2507 struct perf_event_context *ctx = NULL;
2508 int rotate = 0, remove = 1;
2509
2510 if (cpuctx->ctx.nr_events) {
2511 remove = 0;
2512 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
2513 rotate = 1;
2514 }
2515
2516 ctx = cpuctx->task_ctx;
2517 if (ctx && ctx->nr_events) {
2518 remove = 0;
2519 if (ctx->nr_events != ctx->nr_active)
2520 rotate = 1;
2521 }
2522
2523 if (!rotate)
2524 goto done;
2525
2526 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2527 perf_pmu_disable(cpuctx->ctx.pmu);
2528
2529 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2530 if (ctx)
2531 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
2532
2533 rotate_ctx(&cpuctx->ctx);
2534 if (ctx)
2535 rotate_ctx(ctx);
2536
2537 perf_event_sched_in(cpuctx, ctx, current);
2538
2539 perf_pmu_enable(cpuctx->ctx.pmu);
2540 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2541 done:
2542 if (remove)
2543 list_del_init(&cpuctx->rotation_list);
2544 }
2545
2546 void perf_event_task_tick(void)
2547 {
2548 struct list_head *head = &__get_cpu_var(rotation_list);
2549 struct perf_cpu_context *cpuctx, *tmp;
2550 struct perf_event_context *ctx;
2551 int throttled;
2552
2553 WARN_ON(!irqs_disabled());
2554
2555 __this_cpu_inc(perf_throttled_seq);
2556 throttled = __this_cpu_xchg(perf_throttled_count, 0);
2557
2558 list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
2559 ctx = &cpuctx->ctx;
2560 perf_adjust_freq_unthr_context(ctx, throttled);
2561
2562 ctx = cpuctx->task_ctx;
2563 if (ctx)
2564 perf_adjust_freq_unthr_context(ctx, throttled);
2565
2566 if (cpuctx->jiffies_interval == 1 ||
2567 !(jiffies % cpuctx->jiffies_interval))
2568 perf_rotate_context(cpuctx);
2569 }
2570 }
2571
2572 static int event_enable_on_exec(struct perf_event *event,
2573 struct perf_event_context *ctx)
2574 {
2575 if (!event->attr.enable_on_exec)
2576 return 0;
2577
2578 event->attr.enable_on_exec = 0;
2579 if (event->state >= PERF_EVENT_STATE_INACTIVE)
2580 return 0;
2581
2582 __perf_event_mark_enabled(event);
2583
2584 return 1;
2585 }
2586
2587 /*
2588 * Enable all of a task's events that have been marked enable-on-exec.
2589 * This expects task == current.
2590 */
2591 static void perf_event_enable_on_exec(struct perf_event_context *ctx)
2592 {
2593 struct perf_event *event;
2594 unsigned long flags;
2595 int enabled = 0;
2596 int ret;
2597
2598 local_irq_save(flags);
2599 if (!ctx || !ctx->nr_events)
2600 goto out;
2601
2602 /*
2603 * We must ctxsw out cgroup events to avoid conflict
2604 * when invoking perf_task_event_sched_in() later on
2605 * in this function. Otherwise we end up trying to
2606 * ctxswin cgroup events which are already scheduled
2607 * in.
2608 */
2609 perf_cgroup_sched_out(current, NULL);
2610
2611 raw_spin_lock(&ctx->lock);
2612 task_ctx_sched_out(ctx);
2613
2614 list_for_each_entry(event, &ctx->event_list, event_entry) {
2615 ret = event_enable_on_exec(event, ctx);
2616 if (ret)
2617 enabled = 1;
2618 }
2619
2620 /*
2621 * Unclone this context if we enabled any event.
2622 */
2623 if (enabled)
2624 unclone_ctx(ctx);
2625
2626 raw_spin_unlock(&ctx->lock);
2627
2628 /*
2629 * Also calls ctxswin for cgroup events, if any:
2630 */
2631 perf_event_context_sched_in(ctx, ctx->task);
2632 out:
2633 local_irq_restore(flags);
2634 }
2635
2636 /*
2637 * Cross CPU call to read the hardware event
2638 */
2639 static void __perf_event_read(void *info)
2640 {
2641 struct perf_event *event = info;
2642 struct perf_event_context *ctx = event->ctx;
2643 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2644
2645 /*
2646 * If this is a task context, we need to check whether it is
2647 * the current task context of this cpu. If not it has been
2648 * scheduled out before the smp call arrived. In that case
2649 * event->count would have been updated to a recent sample
2650 * when the event was scheduled out.
2651 */
2652 if (ctx->task && cpuctx->task_ctx != ctx)
2653 return;
2654
2655 raw_spin_lock(&ctx->lock);
2656 if (ctx->is_active) {
2657 update_context_time(ctx);
2658 update_cgrp_time_from_event(event);
2659 }
2660 update_event_times(event);
2661 if (event->state == PERF_EVENT_STATE_ACTIVE)
2662 event->pmu->read(event);
2663 raw_spin_unlock(&ctx->lock);
2664 }
2665
2666 static inline u64 perf_event_count(struct perf_event *event)
2667 {
2668 return local64_read(&event->count) + atomic64_read(&event->child_count);
2669 }
2670
2671 static u64 perf_event_read(struct perf_event *event)
2672 {
2673 /*
2674 * If event is enabled and currently active on a CPU, update the
2675 * value in the event structure:
2676 */
2677 if (event->state == PERF_EVENT_STATE_ACTIVE) {
2678 smp_call_function_single(event->oncpu,
2679 __perf_event_read, event, 1);
2680 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
2681 struct perf_event_context *ctx = event->ctx;
2682 unsigned long flags;
2683
2684 raw_spin_lock_irqsave(&ctx->lock, flags);
2685 /*
2686 * may read while context is not active
2687 * (e.g., thread is blocked), in that case
2688 * we cannot update context time
2689 */
2690 if (ctx->is_active) {
2691 update_context_time(ctx);
2692 update_cgrp_time_from_event(event);
2693 }
2694 update_event_times(event);
2695 raw_spin_unlock_irqrestore(&ctx->lock, flags);
2696 }
2697
2698 return perf_event_count(event);
2699 }
2700
2701 /*
2702 * Initialize the perf_event context in a task_struct:
2703 */
2704 static void __perf_event_init_context(struct perf_event_context *ctx)
2705 {
2706 raw_spin_lock_init(&ctx->lock);
2707 mutex_init(&ctx->mutex);
2708 INIT_LIST_HEAD(&ctx->pinned_groups);
2709 INIT_LIST_HEAD(&ctx->flexible_groups);
2710 INIT_LIST_HEAD(&ctx->event_list);
2711 atomic_set(&ctx->refcount, 1);
2712 }
2713
2714 static struct perf_event_context *
2715 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
2716 {
2717 struct perf_event_context *ctx;
2718
2719 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
2720 if (!ctx)
2721 return NULL;
2722
2723 __perf_event_init_context(ctx);
2724 if (task) {
2725 ctx->task = task;
2726 get_task_struct(task);
2727 }
2728 ctx->pmu = pmu;
2729
2730 return ctx;
2731 }
2732
2733 static struct task_struct *
2734 find_lively_task_by_vpid(pid_t vpid)
2735 {
2736 struct task_struct *task;
2737 int err;
2738
2739 rcu_read_lock();
2740 if (!vpid)
2741 task = current;
2742 else
2743 task = find_task_by_vpid(vpid);
2744 if (task)
2745 get_task_struct(task);
2746 rcu_read_unlock();
2747
2748 if (!task)
2749 return ERR_PTR(-ESRCH);
2750
2751 /* Reuse ptrace permission checks for now. */
2752 err = -EACCES;
2753 if (!ptrace_may_access(task, PTRACE_MODE_READ))
2754 goto errout;
2755
2756 return task;
2757 errout:
2758 put_task_struct(task);
2759 return ERR_PTR(err);
2760
2761 }
2762
2763 /*
2764 * Returns a matching context with refcount and pincount.
2765 */
2766 static struct perf_event_context *
2767 find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
2768 {
2769 struct perf_event_context *ctx;
2770 struct perf_cpu_context *cpuctx;
2771 unsigned long flags;
2772 int ctxn, err;
2773
2774 if (!task) {
2775 /* Must be root to operate on a CPU event: */
2776 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
2777 return ERR_PTR(-EACCES);
2778
2779 /*
2780 * We could be clever and allow to attach a event to an
2781 * offline CPU and activate it when the CPU comes up, but
2782 * that's for later.
2783 */
2784 if (!cpu_online(cpu))
2785 return ERR_PTR(-ENODEV);
2786
2787 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
2788 ctx = &cpuctx->ctx;
2789 get_ctx(ctx);
2790 ++ctx->pin_count;
2791
2792 return ctx;
2793 }
2794
2795 err = -EINVAL;
2796 ctxn = pmu->task_ctx_nr;
2797 if (ctxn < 0)
2798 goto errout;
2799
2800 retry:
2801 ctx = perf_lock_task_context(task, ctxn, &flags);
2802 if (ctx) {
2803 unclone_ctx(ctx);
2804 ++ctx->pin_count;
2805 raw_spin_unlock_irqrestore(&ctx->lock, flags);
2806 } else {
2807 ctx = alloc_perf_context(pmu, task);
2808 err = -ENOMEM;
2809 if (!ctx)
2810 goto errout;
2811
2812 err = 0;
2813 mutex_lock(&task->perf_event_mutex);
2814 /*
2815 * If it has already passed perf_event_exit_task().
2816 * we must see PF_EXITING, it takes this mutex too.
2817 */
2818 if (task->flags & PF_EXITING)
2819 err = -ESRCH;
2820 else if (task->perf_event_ctxp[ctxn])
2821 err = -EAGAIN;
2822 else {
2823 get_ctx(ctx);
2824 ++ctx->pin_count;
2825 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
2826 }
2827 mutex_unlock(&task->perf_event_mutex);
2828
2829 if (unlikely(err)) {
2830 put_ctx(ctx);
2831
2832 if (err == -EAGAIN)
2833 goto retry;
2834 goto errout;
2835 }
2836 }
2837
2838 return ctx;
2839
2840 errout:
2841 return ERR_PTR(err);
2842 }
2843
2844 static void perf_event_free_filter(struct perf_event *event);
2845
2846 static void free_event_rcu(struct rcu_head *head)
2847 {
2848 struct perf_event *event;
2849
2850 event = container_of(head, struct perf_event, rcu_head);
2851 if (event->ns)
2852 put_pid_ns(event->ns);
2853 perf_event_free_filter(event);
2854 kfree(event);
2855 }
2856
2857 static void ring_buffer_put(struct ring_buffer *rb);
2858
2859 static void free_event(struct perf_event *event)
2860 {
2861 irq_work_sync(&event->pending);
2862
2863 if (!event->parent) {
2864 if (event->attach_state & PERF_ATTACH_TASK)
2865 static_key_slow_dec_deferred(&perf_sched_events);
2866 if (event->attr.mmap || event->attr.mmap_data)
2867 atomic_dec(&nr_mmap_events);
2868 if (event->attr.comm)
2869 atomic_dec(&nr_comm_events);
2870 if (event->attr.task)
2871 atomic_dec(&nr_task_events);
2872 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
2873 put_callchain_buffers();
2874 if (is_cgroup_event(event)) {
2875 atomic_dec(&per_cpu(perf_cgroup_events, event->cpu));
2876 static_key_slow_dec_deferred(&perf_sched_events);
2877 }
2878
2879 if (has_branch_stack(event)) {
2880 static_key_slow_dec_deferred(&perf_sched_events);
2881 /* is system-wide event */
2882 if (!(event->attach_state & PERF_ATTACH_TASK))
2883 atomic_dec(&per_cpu(perf_branch_stack_events,
2884 event->cpu));
2885 }
2886 }
2887
2888 if (event->rb) {
2889 ring_buffer_put(event->rb);
2890 event->rb = NULL;
2891 }
2892
2893 if (is_cgroup_event(event))
2894 perf_detach_cgroup(event);
2895
2896 if (event->destroy)
2897 event->destroy(event);
2898
2899 if (event->ctx)
2900 put_ctx(event->ctx);
2901
2902 call_rcu(&event->rcu_head, free_event_rcu);
2903 }
2904
2905 int perf_event_release_kernel(struct perf_event *event)
2906 {
2907 struct perf_event_context *ctx = event->ctx;
2908
2909 WARN_ON_ONCE(ctx->parent_ctx);
2910 /*
2911 * There are two ways this annotation is useful:
2912 *
2913 * 1) there is a lock recursion from perf_event_exit_task
2914 * see the comment there.
2915 *
2916 * 2) there is a lock-inversion with mmap_sem through
2917 * perf_event_read_group(), which takes faults while
2918 * holding ctx->mutex, however this is called after
2919 * the last filedesc died, so there is no possibility
2920 * to trigger the AB-BA case.
2921 */
2922 mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
2923 raw_spin_lock_irq(&ctx->lock);
2924 perf_group_detach(event);
2925 raw_spin_unlock_irq(&ctx->lock);
2926 perf_remove_from_context(event);
2927 mutex_unlock(&ctx->mutex);
2928
2929 free_event(event);
2930
2931 return 0;
2932 }
2933 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
2934
2935 /*
2936 * Called when the last reference to the file is gone.
2937 */
2938 static int perf_release(struct inode *inode, struct file *file)
2939 {
2940 struct perf_event *event = file->private_data;
2941 struct task_struct *owner;
2942
2943 file->private_data = NULL;
2944
2945 rcu_read_lock();
2946 owner = ACCESS_ONCE(event->owner);
2947 /*
2948 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
2949 * !owner it means the list deletion is complete and we can indeed
2950 * free this event, otherwise we need to serialize on
2951 * owner->perf_event_mutex.
2952 */
2953 smp_read_barrier_depends();
2954 if (owner) {
2955 /*
2956 * Since delayed_put_task_struct() also drops the last
2957 * task reference we can safely take a new reference
2958 * while holding the rcu_read_lock().
2959 */
2960 get_task_struct(owner);
2961 }
2962 rcu_read_unlock();
2963
2964 if (owner) {
2965 mutex_lock(&owner->perf_event_mutex);
2966 /*
2967 * We have to re-check the event->owner field, if it is cleared
2968 * we raced with perf_event_exit_task(), acquiring the mutex
2969 * ensured they're done, and we can proceed with freeing the
2970 * event.
2971 */
2972 if (event->owner)
2973 list_del_init(&event->owner_entry);
2974 mutex_unlock(&owner->perf_event_mutex);
2975 put_task_struct(owner);
2976 }
2977
2978 return perf_event_release_kernel(event);
2979 }
2980
2981 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
2982 {
2983 struct perf_event *child;
2984 u64 total = 0;
2985
2986 *enabled = 0;
2987 *running = 0;
2988
2989 mutex_lock(&event->child_mutex);
2990 total += perf_event_read(event);
2991 *enabled += event->total_time_enabled +
2992 atomic64_read(&event->child_total_time_enabled);
2993 *running += event->total_time_running +
2994 atomic64_read(&event->child_total_time_running);
2995
2996 list_for_each_entry(child, &event->child_list, child_list) {
2997 total += perf_event_read(child);
2998 *enabled += child->total_time_enabled;
2999 *running += child->total_time_running;
3000 }
3001 mutex_unlock(&event->child_mutex);
3002
3003 return total;
3004 }
3005 EXPORT_SYMBOL_GPL(perf_event_read_value);
3006
3007 static int perf_event_read_group(struct perf_event *event,
3008 u64 read_format, char __user *buf)
3009 {
3010 struct perf_event *leader = event->group_leader, *sub;
3011 int n = 0, size = 0, ret = -EFAULT;
3012 struct perf_event_context *ctx = leader->ctx;
3013 u64 values[5];
3014 u64 count, enabled, running;
3015
3016 mutex_lock(&ctx->mutex);
3017 count = perf_event_read_value(leader, &enabled, &running);
3018
3019 values[n++] = 1 + leader->nr_siblings;
3020 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3021 values[n++] = enabled;
3022 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3023 values[n++] = running;
3024 values[n++] = count;
3025 if (read_format & PERF_FORMAT_ID)
3026 values[n++] = primary_event_id(leader);
3027
3028 size = n * sizeof(u64);
3029
3030 if (copy_to_user(buf, values, size))
3031 goto unlock;
3032
3033 ret = size;
3034
3035 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3036 n = 0;
3037
3038 values[n++] = perf_event_read_value(sub, &enabled, &running);
3039 if (read_format & PERF_FORMAT_ID)
3040 values[n++] = primary_event_id(sub);
3041
3042 size = n * sizeof(u64);
3043
3044 if (copy_to_user(buf + ret, values, size)) {
3045 ret = -EFAULT;
3046 goto unlock;
3047 }
3048
3049 ret += size;
3050 }
3051 unlock:
3052 mutex_unlock(&ctx->mutex);
3053
3054 return ret;
3055 }
3056
3057 static int perf_event_read_one(struct perf_event *event,
3058 u64 read_format, char __user *buf)
3059 {
3060 u64 enabled, running;
3061 u64 values[4];
3062 int n = 0;
3063
3064 values[n++] = perf_event_read_value(event, &enabled, &running);
3065 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3066 values[n++] = enabled;
3067 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3068 values[n++] = running;
3069 if (read_format & PERF_FORMAT_ID)
3070 values[n++] = primary_event_id(event);
3071
3072 if (copy_to_user(buf, values, n * sizeof(u64)))
3073 return -EFAULT;
3074
3075 return n * sizeof(u64);
3076 }
3077
3078 /*
3079 * Read the performance event - simple non blocking version for now
3080 */
3081 static ssize_t
3082 perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
3083 {
3084 u64 read_format = event->attr.read_format;
3085 int ret;
3086
3087 /*
3088 * Return end-of-file for a read on a event that is in
3089 * error state (i.e. because it was pinned but it couldn't be
3090 * scheduled on to the CPU at some point).
3091 */
3092 if (event->state == PERF_EVENT_STATE_ERROR)
3093 return 0;
3094
3095 if (count < event->read_size)
3096 return -ENOSPC;
3097
3098 WARN_ON_ONCE(event->ctx->parent_ctx);
3099 if (read_format & PERF_FORMAT_GROUP)
3100 ret = perf_event_read_group(event, read_format, buf);
3101 else
3102 ret = perf_event_read_one(event, read_format, buf);
3103
3104 return ret;
3105 }
3106
3107 static ssize_t
3108 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
3109 {
3110 struct perf_event *event = file->private_data;
3111
3112 return perf_read_hw(event, buf, count);
3113 }
3114
3115 static unsigned int perf_poll(struct file *file, poll_table *wait)
3116 {
3117 struct perf_event *event = file->private_data;
3118 struct ring_buffer *rb;
3119 unsigned int events = POLL_HUP;
3120
3121 /*
3122 * Race between perf_event_set_output() and perf_poll(): perf_poll()
3123 * grabs the rb reference but perf_event_set_output() overrides it.
3124 * Here is the timeline for two threads T1, T2:
3125 * t0: T1, rb = rcu_dereference(event->rb)
3126 * t1: T2, old_rb = event->rb
3127 * t2: T2, event->rb = new rb
3128 * t3: T2, ring_buffer_detach(old_rb)
3129 * t4: T1, ring_buffer_attach(rb1)
3130 * t5: T1, poll_wait(event->waitq)
3131 *
3132 * To avoid this problem, we grab mmap_mutex in perf_poll()
3133 * thereby ensuring that the assignment of the new ring buffer
3134 * and the detachment of the old buffer appear atomic to perf_poll()
3135 */
3136 mutex_lock(&event->mmap_mutex);
3137
3138 rcu_read_lock();
3139 rb = rcu_dereference(event->rb);
3140 if (rb) {
3141 ring_buffer_attach(event, rb);
3142 events = atomic_xchg(&rb->poll, 0);
3143 }
3144 rcu_read_unlock();
3145
3146 mutex_unlock(&event->mmap_mutex);
3147
3148 poll_wait(file, &event->waitq, wait);
3149
3150 return events;
3151 }
3152
3153 static void perf_event_reset(struct perf_event *event)
3154 {
3155 (void)perf_event_read(event);
3156 local64_set(&event->count, 0);
3157 perf_event_update_userpage(event);
3158 }
3159
3160 /*
3161 * Holding the top-level event's child_mutex means that any
3162 * descendant process that has inherited this event will block
3163 * in sync_child_event if it goes to exit, thus satisfying the
3164 * task existence requirements of perf_event_enable/disable.
3165 */
3166 static void perf_event_for_each_child(struct perf_event *event,
3167 void (*func)(struct perf_event *))
3168 {
3169 struct perf_event *child;
3170
3171 WARN_ON_ONCE(event->ctx->parent_ctx);
3172 mutex_lock(&event->child_mutex);
3173 func(event);
3174 list_for_each_entry(child, &event->child_list, child_list)
3175 func(child);
3176 mutex_unlock(&event->child_mutex);
3177 }
3178
3179 static void perf_event_for_each(struct perf_event *event,
3180 void (*func)(struct perf_event *))
3181 {
3182 struct perf_event_context *ctx = event->ctx;
3183 struct perf_event *sibling;
3184
3185 WARN_ON_ONCE(ctx->parent_ctx);
3186 mutex_lock(&ctx->mutex);
3187 event = event->group_leader;
3188
3189 perf_event_for_each_child(event, func);
3190 list_for_each_entry(sibling, &event->sibling_list, group_entry)
3191 perf_event_for_each_child(sibling, func);
3192 mutex_unlock(&ctx->mutex);
3193 }
3194
3195 static int perf_event_period(struct perf_event *event, u64 __user *arg)
3196 {
3197 struct perf_event_context *ctx = event->ctx;
3198 int ret = 0;
3199 u64 value;
3200
3201 if (!is_sampling_event(event))
3202 return -EINVAL;
3203
3204 if (copy_from_user(&value, arg, sizeof(value)))
3205 return -EFAULT;
3206
3207 if (!value)
3208 return -EINVAL;
3209
3210 raw_spin_lock_irq(&ctx->lock);
3211 if (event->attr.freq) {
3212 if (value > sysctl_perf_event_sample_rate) {
3213 ret = -EINVAL;
3214 goto unlock;
3215 }
3216
3217 event->attr.sample_freq = value;
3218 } else {
3219 event->attr.sample_period = value;
3220 event->hw.sample_period = value;
3221 }
3222 unlock:
3223 raw_spin_unlock_irq(&ctx->lock);
3224
3225 return ret;
3226 }
3227
3228 static const struct file_operations perf_fops;
3229
3230 static struct perf_event *perf_fget_light(int fd, int *fput_needed)
3231 {
3232 struct file *file;
3233
3234 file = fget_light(fd, fput_needed);
3235 if (!file)
3236 return ERR_PTR(-EBADF);
3237
3238 if (file->f_op != &perf_fops) {
3239 fput_light(file, *fput_needed);
3240 *fput_needed = 0;
3241 return ERR_PTR(-EBADF);
3242 }
3243
3244 return file->private_data;
3245 }
3246
3247 static int perf_event_set_output(struct perf_event *event,
3248 struct perf_event *output_event);
3249 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
3250
3251 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
3252 {
3253 struct perf_event *event = file->private_data;
3254 void (*func)(struct perf_event *);
3255 u32 flags = arg;
3256
3257 switch (cmd) {
3258 case PERF_EVENT_IOC_ENABLE:
3259 func = perf_event_enable;
3260 break;
3261 case PERF_EVENT_IOC_DISABLE:
3262 func = perf_event_disable;
3263 break;
3264 case PERF_EVENT_IOC_RESET:
3265 func = perf_event_reset;
3266 break;
3267
3268 case PERF_EVENT_IOC_REFRESH:
3269 return perf_event_refresh(event, arg);
3270
3271 case PERF_EVENT_IOC_PERIOD:
3272 return perf_event_period(event, (u64 __user *)arg);
3273
3274 case PERF_EVENT_IOC_SET_OUTPUT:
3275 {
3276 struct perf_event *output_event = NULL;
3277 int fput_needed = 0;
3278 int ret;
3279
3280 if (arg != -1) {
3281 output_event = perf_fget_light(arg, &fput_needed);
3282 if (IS_ERR(output_event))
3283 return PTR_ERR(output_event);
3284 }
3285
3286 ret = perf_event_set_output(event, output_event);
3287 if (output_event)
3288 fput_light(output_event->filp, fput_needed);
3289
3290 return ret;
3291 }
3292
3293 case PERF_EVENT_IOC_SET_FILTER:
3294 return perf_event_set_filter(event, (void __user *)arg);
3295
3296 default:
3297 return -ENOTTY;
3298 }
3299
3300 if (flags & PERF_IOC_FLAG_GROUP)
3301 perf_event_for_each(event, func);
3302 else
3303 perf_event_for_each_child(event, func);
3304
3305 return 0;
3306 }
3307
3308 int perf_event_task_enable(void)
3309 {
3310 struct perf_event *event;
3311
3312 mutex_lock(&current->perf_event_mutex);
3313 list_for_each_entry(event, &current->perf_event_list, owner_entry)
3314 perf_event_for_each_child(event, perf_event_enable);
3315 mutex_unlock(&current->perf_event_mutex);
3316
3317 return 0;
3318 }
3319
3320 int perf_event_task_disable(void)
3321 {
3322 struct perf_event *event;
3323
3324 mutex_lock(&current->perf_event_mutex);
3325 list_for_each_entry(event, &current->perf_event_list, owner_entry)
3326 perf_event_for_each_child(event, perf_event_disable);
3327 mutex_unlock(&current->perf_event_mutex);
3328
3329 return 0;
3330 }
3331
3332 static int perf_event_index(struct perf_event *event)
3333 {
3334 if (event->hw.state & PERF_HES_STOPPED)
3335 return 0;
3336
3337 if (event->state != PERF_EVENT_STATE_ACTIVE)
3338 return 0;
3339
3340 return event->pmu->event_idx(event);
3341 }
3342
3343 static void calc_timer_values(struct perf_event *event,
3344 u64 *now,
3345 u64 *enabled,
3346 u64 *running)
3347 {
3348 u64 ctx_time;
3349
3350 *now = perf_clock();
3351 ctx_time = event->shadow_ctx_time + *now;
3352 *enabled = ctx_time - event->tstamp_enabled;
3353 *running = ctx_time - event->tstamp_running;
3354 }
3355
3356 void __weak arch_perf_update_userpage(struct perf_event_mmap_page *userpg, u64 now)
3357 {
3358 }
3359
3360 /*
3361 * Callers need to ensure there can be no nesting of this function, otherwise
3362 * the seqlock logic goes bad. We can not serialize this because the arch
3363 * code calls this from NMI context.
3364 */
3365 void perf_event_update_userpage(struct perf_event *event)
3366 {
3367 struct perf_event_mmap_page *userpg;
3368 struct ring_buffer *rb;
3369 u64 enabled, running, now;
3370
3371 rcu_read_lock();
3372 /*
3373 * compute total_time_enabled, total_time_running
3374 * based on snapshot values taken when the event
3375 * was last scheduled in.
3376 *
3377 * we cannot simply called update_context_time()
3378 * because of locking issue as we can be called in
3379 * NMI context
3380 */
3381 calc_timer_values(event, &now, &enabled, &running);
3382 rb = rcu_dereference(event->rb);
3383 if (!rb)
3384 goto unlock;
3385
3386 userpg = rb->user_page;
3387
3388 /*
3389 * Disable preemption so as to not let the corresponding user-space
3390 * spin too long if we get preempted.
3391 */
3392 preempt_disable();
3393 ++userpg->lock;
3394 barrier();
3395 userpg->index = perf_event_index(event);
3396 userpg->offset = perf_event_count(event);
3397 if (userpg->index)
3398 userpg->offset -= local64_read(&event->hw.prev_count);
3399
3400 userpg->time_enabled = enabled +
3401 atomic64_read(&event->child_total_time_enabled);
3402
3403 userpg->time_running = running +
3404 atomic64_read(&event->child_total_time_running);
3405
3406 arch_perf_update_userpage(userpg, now);
3407
3408 barrier();
3409 ++userpg->lock;
3410 preempt_enable();
3411 unlock:
3412 rcu_read_unlock();
3413 }
3414
3415 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
3416 {
3417 struct perf_event *event = vma->vm_file->private_data;
3418 struct ring_buffer *rb;
3419 int ret = VM_FAULT_SIGBUS;
3420
3421 if (vmf->flags & FAULT_FLAG_MKWRITE) {
3422 if (vmf->pgoff == 0)
3423 ret = 0;
3424 return ret;
3425 }
3426
3427 rcu_read_lock();
3428 rb = rcu_dereference(event->rb);
3429 if (!rb)
3430 goto unlock;
3431
3432 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
3433 goto unlock;
3434
3435 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
3436 if (!vmf->page)
3437 goto unlock;
3438
3439 get_page(vmf->page);
3440 vmf->page->mapping = vma->vm_file->f_mapping;
3441 vmf->page->index = vmf->pgoff;
3442
3443 ret = 0;
3444 unlock:
3445 rcu_read_unlock();
3446
3447 return ret;
3448 }
3449
3450 static void ring_buffer_attach(struct perf_event *event,
3451 struct ring_buffer *rb)
3452 {
3453 unsigned long flags;
3454
3455 if (!list_empty(&event->rb_entry))
3456 return;
3457
3458 spin_lock_irqsave(&rb->event_lock, flags);
3459 if (!list_empty(&event->rb_entry))
3460 goto unlock;
3461
3462 list_add(&event->rb_entry, &rb->event_list);
3463 unlock:
3464 spin_unlock_irqrestore(&rb->event_lock, flags);
3465 }
3466
3467 static void ring_buffer_detach(struct perf_event *event,
3468 struct ring_buffer *rb)
3469 {
3470 unsigned long flags;
3471
3472 if (list_empty(&event->rb_entry))
3473 return;
3474
3475 spin_lock_irqsave(&rb->event_lock, flags);
3476 list_del_init(&event->rb_entry);
3477 wake_up_all(&event->waitq);
3478 spin_unlock_irqrestore(&rb->event_lock, flags);
3479 }
3480
3481 static void ring_buffer_wakeup(struct perf_event *event)
3482 {
3483 struct ring_buffer *rb;
3484
3485 rcu_read_lock();
3486 rb = rcu_dereference(event->rb);
3487 if (!rb)
3488 goto unlock;
3489
3490 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
3491 wake_up_all(&event->waitq);
3492
3493 unlock:
3494 rcu_read_unlock();
3495 }
3496
3497 static void rb_free_rcu(struct rcu_head *rcu_head)
3498 {
3499 struct ring_buffer *rb;
3500
3501 rb = container_of(rcu_head, struct ring_buffer, rcu_head);
3502 rb_free(rb);
3503 }
3504
3505 static struct ring_buffer *ring_buffer_get(struct perf_event *event)
3506 {
3507 struct ring_buffer *rb;
3508
3509 rcu_read_lock();
3510 rb = rcu_dereference(event->rb);
3511 if (rb) {
3512 if (!atomic_inc_not_zero(&rb->refcount))
3513 rb = NULL;
3514 }
3515 rcu_read_unlock();
3516
3517 return rb;
3518 }
3519
3520 static void ring_buffer_put(struct ring_buffer *rb)
3521 {
3522 struct perf_event *event, *n;
3523 unsigned long flags;
3524
3525 if (!atomic_dec_and_test(&rb->refcount))
3526 return;
3527
3528 spin_lock_irqsave(&rb->event_lock, flags);
3529 list_for_each_entry_safe(event, n, &rb->event_list, rb_entry) {
3530 list_del_init(&event->rb_entry);
3531 wake_up_all(&event->waitq);
3532 }
3533 spin_unlock_irqrestore(&rb->event_lock, flags);
3534
3535 call_rcu(&rb->rcu_head, rb_free_rcu);
3536 }
3537
3538 static void perf_mmap_open(struct vm_area_struct *vma)
3539 {
3540 struct perf_event *event = vma->vm_file->private_data;
3541
3542 atomic_inc(&event->mmap_count);
3543 }
3544
3545 static void perf_mmap_close(struct vm_area_struct *vma)
3546 {
3547 struct perf_event *event = vma->vm_file->private_data;
3548
3549 if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
3550 unsigned long size = perf_data_size(event->rb);
3551 struct user_struct *user = event->mmap_user;
3552 struct ring_buffer *rb = event->rb;
3553
3554 atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
3555 vma->vm_mm->pinned_vm -= event->mmap_locked;
3556 rcu_assign_pointer(event->rb, NULL);
3557 ring_buffer_detach(event, rb);
3558 mutex_unlock(&event->mmap_mutex);
3559
3560 ring_buffer_put(rb);
3561 free_uid(user);
3562 }
3563 }
3564
3565 static const struct vm_operations_struct perf_mmap_vmops = {
3566 .open = perf_mmap_open,
3567 .close = perf_mmap_close,
3568 .fault = perf_mmap_fault,
3569 .page_mkwrite = perf_mmap_fault,
3570 };
3571
3572 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
3573 {
3574 struct perf_event *event = file->private_data;
3575 unsigned long user_locked, user_lock_limit;
3576 struct user_struct *user = current_user();
3577 unsigned long locked, lock_limit;
3578 struct ring_buffer *rb;
3579 unsigned long vma_size;
3580 unsigned long nr_pages;
3581 long user_extra, extra;
3582 int ret = 0, flags = 0;
3583
3584 /*
3585 * Don't allow mmap() of inherited per-task counters. This would
3586 * create a performance issue due to all children writing to the
3587 * same rb.
3588 */
3589 if (event->cpu == -1 && event->attr.inherit)
3590 return -EINVAL;
3591
3592 if (!(vma->vm_flags & VM_SHARED))
3593 return -EINVAL;
3594
3595 vma_size = vma->vm_end - vma->vm_start;
3596 nr_pages = (vma_size / PAGE_SIZE) - 1;
3597
3598 /*
3599 * If we have rb pages ensure they're a power-of-two number, so we
3600 * can do bitmasks instead of modulo.
3601 */
3602 if (nr_pages != 0 && !is_power_of_2(nr_pages))
3603 return -EINVAL;
3604
3605 if (vma_size != PAGE_SIZE * (1 + nr_pages))
3606 return -EINVAL;
3607
3608 if (vma->vm_pgoff != 0)
3609 return -EINVAL;
3610
3611 WARN_ON_ONCE(event->ctx->parent_ctx);
3612 mutex_lock(&event->mmap_mutex);
3613 if (event->rb) {
3614 if (event->rb->nr_pages == nr_pages)
3615 atomic_inc(&event->rb->refcount);
3616 else
3617 ret = -EINVAL;
3618 goto unlock;
3619 }
3620
3621 user_extra = nr_pages + 1;
3622 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
3623
3624 /*
3625 * Increase the limit linearly with more CPUs:
3626 */
3627 user_lock_limit *= num_online_cpus();
3628
3629 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
3630
3631 extra = 0;
3632 if (user_locked > user_lock_limit)
3633 extra = user_locked - user_lock_limit;
3634
3635 lock_limit = rlimit(RLIMIT_MEMLOCK);
3636 lock_limit >>= PAGE_SHIFT;
3637 locked = vma->vm_mm->pinned_vm + extra;
3638
3639 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
3640 !capable(CAP_IPC_LOCK)) {
3641 ret = -EPERM;
3642 goto unlock;
3643 }
3644
3645 WARN_ON(event->rb);
3646
3647 if (vma->vm_flags & VM_WRITE)
3648 flags |= RING_BUFFER_WRITABLE;
3649
3650 rb = rb_alloc(nr_pages,
3651 event->attr.watermark ? event->attr.wakeup_watermark : 0,
3652 event->cpu, flags);
3653
3654 if (!rb) {
3655 ret = -ENOMEM;
3656 goto unlock;
3657 }
3658 rcu_assign_pointer(event->rb, rb);
3659
3660 atomic_long_add(user_extra, &user->locked_vm);
3661 event->mmap_locked = extra;
3662 event->mmap_user = get_current_user();
3663 vma->vm_mm->pinned_vm += event->mmap_locked;
3664
3665 perf_event_update_userpage(event);
3666
3667 unlock:
3668 if (!ret)
3669 atomic_inc(&event->mmap_count);
3670 mutex_unlock(&event->mmap_mutex);
3671
3672 vma->vm_flags |= VM_RESERVED;
3673 vma->vm_ops = &perf_mmap_vmops;
3674
3675 return ret;
3676 }
3677
3678 static int perf_fasync(int fd, struct file *filp, int on)
3679 {
3680 struct inode *inode = filp->f_path.dentry->d_inode;
3681 struct perf_event *event = filp->private_data;
3682 int retval;
3683
3684 mutex_lock(&inode->i_mutex);
3685 retval = fasync_helper(fd, filp, on, &event->fasync);
3686 mutex_unlock(&inode->i_mutex);
3687
3688 if (retval < 0)
3689 return retval;
3690
3691 return 0;
3692 }
3693
3694 static const struct file_operations perf_fops = {
3695 .llseek = no_llseek,
3696 .release = perf_release,
3697 .read = perf_read,
3698 .poll = perf_poll,
3699 .unlocked_ioctl = perf_ioctl,
3700 .compat_ioctl = perf_ioctl,
3701 .mmap = perf_mmap,
3702 .fasync = perf_fasync,
3703 };
3704
3705 /*
3706 * Perf event wakeup
3707 *
3708 * If there's data, ensure we set the poll() state and publish everything
3709 * to user-space before waking everybody up.
3710 */
3711
3712 void perf_event_wakeup(struct perf_event *event)
3713 {
3714 ring_buffer_wakeup(event);
3715
3716 if (event->pending_kill) {
3717 kill_fasync(&event->fasync, SIGIO, event->pending_kill);
3718 event->pending_kill = 0;
3719 }
3720 }
3721
3722 static void perf_pending_event(struct irq_work *entry)
3723 {
3724 struct perf_event *event = container_of(entry,
3725 struct perf_event, pending);
3726
3727 if (event->pending_disable) {
3728 event->pending_disable = 0;
3729 __perf_event_disable(event);
3730 }
3731
3732 if (event->pending_wakeup) {
3733 event->pending_wakeup = 0;
3734 perf_event_wakeup(event);
3735 }
3736 }
3737
3738 /*
3739 * We assume there is only KVM supporting the callbacks.
3740 * Later on, we might change it to a list if there is
3741 * another virtualization implementation supporting the callbacks.
3742 */
3743 struct perf_guest_info_callbacks *perf_guest_cbs;
3744
3745 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
3746 {
3747 perf_guest_cbs = cbs;
3748 return 0;
3749 }
3750 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
3751
3752 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
3753 {
3754 perf_guest_cbs = NULL;
3755 return 0;
3756 }
3757 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
3758
3759 static void __perf_event_header__init_id(struct perf_event_header *header,
3760 struct perf_sample_data *data,
3761 struct perf_event *event)
3762 {
3763 u64 sample_type = event->attr.sample_type;
3764
3765 data->type = sample_type;
3766 header->size += event->id_header_size;
3767
3768 if (sample_type & PERF_SAMPLE_TID) {
3769 /* namespace issues */
3770 data->tid_entry.pid = perf_event_pid(event, current);
3771 data->tid_entry.tid = perf_event_tid(event, current);
3772 }
3773
3774 if (sample_type & PERF_SAMPLE_TIME)
3775 data->time = perf_clock();
3776
3777 if (sample_type & PERF_SAMPLE_ID)
3778 data->id = primary_event_id(event);
3779
3780 if (sample_type & PERF_SAMPLE_STREAM_ID)
3781 data->stream_id = event->id;
3782
3783 if (sample_type & PERF_SAMPLE_CPU) {
3784 data->cpu_entry.cpu = raw_smp_processor_id();
3785 data->cpu_entry.reserved = 0;
3786 }
3787 }
3788
3789 void perf_event_header__init_id(struct perf_event_header *header,
3790 struct perf_sample_data *data,
3791 struct perf_event *event)
3792 {
3793 if (event->attr.sample_id_all)
3794 __perf_event_header__init_id(header, data, event);
3795 }
3796
3797 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
3798 struct perf_sample_data *data)
3799 {
3800 u64 sample_type = data->type;
3801
3802 if (sample_type & PERF_SAMPLE_TID)
3803 perf_output_put(handle, data->tid_entry);
3804
3805 if (sample_type & PERF_SAMPLE_TIME)
3806 perf_output_put(handle, data->time);
3807
3808 if (sample_type & PERF_SAMPLE_ID)
3809 perf_output_put(handle, data->id);
3810
3811 if (sample_type & PERF_SAMPLE_STREAM_ID)
3812 perf_output_put(handle, data->stream_id);
3813
3814 if (sample_type & PERF_SAMPLE_CPU)
3815 perf_output_put(handle, data->cpu_entry);
3816 }
3817
3818 void perf_event__output_id_sample(struct perf_event *event,
3819 struct perf_output_handle *handle,
3820 struct perf_sample_data *sample)
3821 {
3822 if (event->attr.sample_id_all)
3823 __perf_event__output_id_sample(handle, sample);
3824 }
3825
3826 static void perf_output_read_one(struct perf_output_handle *handle,
3827 struct perf_event *event,
3828 u64 enabled, u64 running)
3829 {
3830 u64 read_format = event->attr.read_format;
3831 u64 values[4];
3832 int n = 0;
3833
3834 values[n++] = perf_event_count(event);
3835 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3836 values[n++] = enabled +
3837 atomic64_read(&event->child_total_time_enabled);
3838 }
3839 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3840 values[n++] = running +
3841 atomic64_read(&event->child_total_time_running);
3842 }
3843 if (read_format & PERF_FORMAT_ID)
3844 values[n++] = primary_event_id(event);
3845
3846 __output_copy(handle, values, n * sizeof(u64));
3847 }
3848
3849 /*
3850 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3851 */
3852 static void perf_output_read_group(struct perf_output_handle *handle,
3853 struct perf_event *event,
3854 u64 enabled, u64 running)
3855 {
3856 struct perf_event *leader = event->group_leader, *sub;
3857 u64 read_format = event->attr.read_format;
3858 u64 values[5];
3859 int n = 0;
3860
3861 values[n++] = 1 + leader->nr_siblings;
3862
3863 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3864 values[n++] = enabled;
3865
3866 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3867 values[n++] = running;
3868
3869 if (leader != event)
3870 leader->pmu->read(leader);
3871
3872 values[n++] = perf_event_count(leader);
3873 if (read_format & PERF_FORMAT_ID)
3874 values[n++] = primary_event_id(leader);
3875
3876 __output_copy(handle, values, n * sizeof(u64));
3877
3878 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3879 n = 0;
3880
3881 if (sub != event)
3882 sub->pmu->read(sub);
3883
3884 values[n++] = perf_event_count(sub);
3885 if (read_format & PERF_FORMAT_ID)
3886 values[n++] = primary_event_id(sub);
3887
3888 __output_copy(handle, values, n * sizeof(u64));
3889 }
3890 }
3891
3892 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
3893 PERF_FORMAT_TOTAL_TIME_RUNNING)
3894
3895 static void perf_output_read(struct perf_output_handle *handle,
3896 struct perf_event *event)
3897 {
3898 u64 enabled = 0, running = 0, now;
3899 u64 read_format = event->attr.read_format;
3900
3901 /*
3902 * compute total_time_enabled, total_time_running
3903 * based on snapshot values taken when the event
3904 * was last scheduled in.
3905 *
3906 * we cannot simply called update_context_time()
3907 * because of locking issue as we are called in
3908 * NMI context
3909 */
3910 if (read_format & PERF_FORMAT_TOTAL_TIMES)
3911 calc_timer_values(event, &now, &enabled, &running);
3912
3913 if (event->attr.read_format & PERF_FORMAT_GROUP)
3914 perf_output_read_group(handle, event, enabled, running);
3915 else
3916 perf_output_read_one(handle, event, enabled, running);
3917 }
3918
3919 void perf_output_sample(struct perf_output_handle *handle,
3920 struct perf_event_header *header,
3921 struct perf_sample_data *data,
3922 struct perf_event *event)
3923 {
3924 u64 sample_type = data->type;
3925
3926 perf_output_put(handle, *header);
3927
3928 if (sample_type & PERF_SAMPLE_IP)
3929 perf_output_put(handle, data->ip);
3930
3931 if (sample_type & PERF_SAMPLE_TID)
3932 perf_output_put(handle, data->tid_entry);
3933
3934 if (sample_type & PERF_SAMPLE_TIME)
3935 perf_output_put(handle, data->time);
3936
3937 if (sample_type & PERF_SAMPLE_ADDR)
3938 perf_output_put(handle, data->addr);
3939
3940 if (sample_type & PERF_SAMPLE_ID)
3941 perf_output_put(handle, data->id);
3942
3943 if (sample_type & PERF_SAMPLE_STREAM_ID)
3944 perf_output_put(handle, data->stream_id);
3945
3946 if (sample_type & PERF_SAMPLE_CPU)
3947 perf_output_put(handle, data->cpu_entry);
3948
3949 if (sample_type & PERF_SAMPLE_PERIOD)
3950 perf_output_put(handle, data->period);
3951
3952 if (sample_type & PERF_SAMPLE_READ)
3953 perf_output_read(handle, event);
3954
3955 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3956 if (data->callchain) {
3957 int size = 1;
3958
3959 if (data->callchain)
3960 size += data->callchain->nr;
3961
3962 size *= sizeof(u64);
3963
3964 __output_copy(handle, data->callchain, size);
3965 } else {
3966 u64 nr = 0;
3967 perf_output_put(handle, nr);
3968 }
3969 }
3970
3971 if (sample_type & PERF_SAMPLE_RAW) {
3972 if (data->raw) {
3973 perf_output_put(handle, data->raw->size);
3974 __output_copy(handle, data->raw->data,
3975 data->raw->size);
3976 } else {
3977 struct {
3978 u32 size;
3979 u32 data;
3980 } raw = {
3981 .size = sizeof(u32),
3982 .data = 0,
3983 };
3984 perf_output_put(handle, raw);
3985 }
3986 }
3987
3988 if (!event->attr.watermark) {
3989 int wakeup_events = event->attr.wakeup_events;
3990
3991 if (wakeup_events) {
3992 struct ring_buffer *rb = handle->rb;
3993 int events = local_inc_return(&rb->events);
3994
3995 if (events >= wakeup_events) {
3996 local_sub(wakeup_events, &rb->events);
3997 local_inc(&rb->wakeup);
3998 }
3999 }
4000 }
4001
4002 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
4003 if (data->br_stack) {
4004 size_t size;
4005
4006 size = data->br_stack->nr
4007 * sizeof(struct perf_branch_entry);
4008
4009 perf_output_put(handle, data->br_stack->nr);
4010 perf_output_copy(handle, data->br_stack->entries, size);
4011 } else {
4012 /*
4013 * we always store at least the value of nr
4014 */
4015 u64 nr = 0;
4016 perf_output_put(handle, nr);
4017 }
4018 }
4019 }
4020
4021 void perf_prepare_sample(struct perf_event_header *header,
4022 struct perf_sample_data *data,
4023 struct perf_event *event,
4024 struct pt_regs *regs)
4025 {
4026 u64 sample_type = event->attr.sample_type;
4027
4028 header->type = PERF_RECORD_SAMPLE;
4029 header->size = sizeof(*header) + event->header_size;
4030
4031 header->misc = 0;
4032 header->misc |= perf_misc_flags(regs);
4033
4034 __perf_event_header__init_id(header, data, event);
4035
4036 if (sample_type & PERF_SAMPLE_IP)
4037 data->ip = perf_instruction_pointer(regs);
4038
4039 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
4040 int size = 1;
4041
4042 data->callchain = perf_callchain(regs);
4043
4044 if (data->callchain)
4045 size += data->callchain->nr;
4046
4047 header->size += size * sizeof(u64);
4048 }
4049
4050 if (sample_type & PERF_SAMPLE_RAW) {
4051 int size = sizeof(u32);
4052
4053 if (data->raw)
4054 size += data->raw->size;
4055 else
4056 size += sizeof(u32);
4057
4058 WARN_ON_ONCE(size & (sizeof(u64)-1));
4059 header->size += size;
4060 }
4061
4062 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
4063 int size = sizeof(u64); /* nr */
4064 if (data->br_stack) {
4065 size += data->br_stack->nr
4066 * sizeof(struct perf_branch_entry);
4067 }
4068 header->size += size;
4069 }
4070 }
4071
4072 static void perf_event_output(struct perf_event *event,
4073 struct perf_sample_data *data,
4074 struct pt_regs *regs)
4075 {
4076 struct perf_output_handle handle;
4077 struct perf_event_header header;
4078
4079 /* protect the callchain buffers */
4080 rcu_read_lock();
4081
4082 perf_prepare_sample(&header, data, event, regs);
4083
4084 if (perf_output_begin(&handle, event, header.size))
4085 goto exit;
4086
4087 perf_output_sample(&handle, &header, data, event);
4088
4089 perf_output_end(&handle);
4090
4091 exit:
4092 rcu_read_unlock();
4093 }
4094
4095 /*
4096 * read event_id
4097 */
4098
4099 struct perf_read_event {
4100 struct perf_event_header header;
4101
4102 u32 pid;
4103 u32 tid;
4104 };
4105
4106 static void
4107 perf_event_read_event(struct perf_event *event,
4108 struct task_struct *task)
4109 {
4110 struct perf_output_handle handle;
4111 struct perf_sample_data sample;
4112 struct perf_read_event read_event = {
4113 .header = {
4114 .type = PERF_RECORD_READ,
4115 .misc = 0,
4116 .size = sizeof(read_event) + event->read_size,
4117 },
4118 .pid = perf_event_pid(event, task),
4119 .tid = perf_event_tid(event, task),
4120 };
4121 int ret;
4122
4123 perf_event_header__init_id(&read_event.header, &sample, event);
4124 ret = perf_output_begin(&handle, event, read_event.header.size);
4125 if (ret)
4126 return;
4127
4128 perf_output_put(&handle, read_event);
4129 perf_output_read(&handle, event);
4130 perf_event__output_id_sample(event, &handle, &sample);
4131
4132 perf_output_end(&handle);
4133 }
4134
4135 /*
4136 * task tracking -- fork/exit
4137 *
4138 * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task
4139 */
4140
4141 struct perf_task_event {
4142 struct task_struct *task;
4143 struct perf_event_context *task_ctx;
4144
4145 struct {
4146 struct perf_event_header header;
4147
4148 u32 pid;
4149 u32 ppid;
4150 u32 tid;
4151 u32 ptid;
4152 u64 time;
4153 } event_id;
4154 };
4155
4156 static void perf_event_task_output(struct perf_event *event,
4157 struct perf_task_event *task_event)
4158 {
4159 struct perf_output_handle handle;
4160 struct perf_sample_data sample;
4161 struct task_struct *task = task_event->task;
4162 int ret, size = task_event->event_id.header.size;
4163
4164 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
4165
4166 ret = perf_output_begin(&handle, event,
4167 task_event->event_id.header.size);
4168 if (ret)
4169 goto out;
4170
4171 task_event->event_id.pid = perf_event_pid(event, task);
4172 task_event->event_id.ppid = perf_event_pid(event, current);
4173
4174 task_event->event_id.tid = perf_event_tid(event, task);
4175 task_event->event_id.ptid = perf_event_tid(event, current);
4176
4177 perf_output_put(&handle, task_event->event_id);
4178
4179 perf_event__output_id_sample(event, &handle, &sample);
4180
4181 perf_output_end(&handle);
4182 out:
4183 task_event->event_id.header.size = size;
4184 }
4185
4186 static int perf_event_task_match(struct perf_event *event)
4187 {
4188 if (event->state < PERF_EVENT_STATE_INACTIVE)
4189 return 0;
4190
4191 if (!event_filter_match(event))
4192 return 0;
4193
4194 if (event->attr.comm || event->attr.mmap ||
4195 event->attr.mmap_data || event->attr.task)
4196 return 1;
4197
4198 return 0;
4199 }
4200
4201 static void perf_event_task_ctx(struct perf_event_context *ctx,
4202 struct perf_task_event *task_event)
4203 {
4204 struct perf_event *event;
4205
4206 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4207 if (perf_event_task_match(event))
4208 perf_event_task_output(event, task_event);
4209 }
4210 }
4211
4212 static void perf_event_task_event(struct perf_task_event *task_event)
4213 {
4214 struct perf_cpu_context *cpuctx;
4215 struct perf_event_context *ctx;
4216 struct pmu *pmu;
4217 int ctxn;
4218
4219 rcu_read_lock();
4220 list_for_each_entry_rcu(pmu, &pmus, entry) {
4221 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4222 if (cpuctx->active_pmu != pmu)
4223 goto next;
4224 perf_event_task_ctx(&cpuctx->ctx, task_event);
4225
4226 ctx = task_event->task_ctx;
4227 if (!ctx) {
4228 ctxn = pmu->task_ctx_nr;
4229 if (ctxn < 0)
4230 goto next;
4231 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4232 }
4233 if (ctx)
4234 perf_event_task_ctx(ctx, task_event);
4235 next:
4236 put_cpu_ptr(pmu->pmu_cpu_context);
4237 }
4238 rcu_read_unlock();
4239 }
4240
4241 static void perf_event_task(struct task_struct *task,
4242 struct perf_event_context *task_ctx,
4243 int new)
4244 {
4245 struct perf_task_event task_event;
4246
4247 if (!atomic_read(&nr_comm_events) &&
4248 !atomic_read(&nr_mmap_events) &&
4249 !atomic_read(&nr_task_events))
4250 return;
4251
4252 task_event = (struct perf_task_event){
4253 .task = task,
4254 .task_ctx = task_ctx,
4255 .event_id = {
4256 .header = {
4257 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
4258 .misc = 0,
4259 .size = sizeof(task_event.event_id),
4260 },
4261 /* .pid */
4262 /* .ppid */
4263 /* .tid */
4264 /* .ptid */
4265 .time = perf_clock(),
4266 },
4267 };
4268
4269 perf_event_task_event(&task_event);
4270 }
4271
4272 void perf_event_fork(struct task_struct *task)
4273 {
4274 perf_event_task(task, NULL, 1);
4275 }
4276
4277 /*
4278 * comm tracking
4279 */
4280
4281 struct perf_comm_event {
4282 struct task_struct *task;
4283 char *comm;
4284 int comm_size;
4285
4286 struct {
4287 struct perf_event_header header;
4288
4289 u32 pid;
4290 u32 tid;
4291 } event_id;
4292 };
4293
4294 static void perf_event_comm_output(struct perf_event *event,
4295 struct perf_comm_event *comm_event)
4296 {
4297 struct perf_output_handle handle;
4298 struct perf_sample_data sample;
4299 int size = comm_event->event_id.header.size;
4300 int ret;
4301
4302 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
4303 ret = perf_output_begin(&handle, event,
4304 comm_event->event_id.header.size);
4305
4306 if (ret)
4307 goto out;
4308
4309 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
4310 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
4311
4312 perf_output_put(&handle, comm_event->event_id);
4313 __output_copy(&handle, comm_event->comm,
4314 comm_event->comm_size);
4315
4316 perf_event__output_id_sample(event, &handle, &sample);
4317
4318 perf_output_end(&handle);
4319 out:
4320 comm_event->event_id.header.size = size;
4321 }
4322
4323 static int perf_event_comm_match(struct perf_event *event)
4324 {
4325 if (event->state < PERF_EVENT_STATE_INACTIVE)
4326 return 0;
4327
4328 if (!event_filter_match(event))
4329 return 0;
4330
4331 if (event->attr.comm)
4332 return 1;
4333
4334 return 0;
4335 }
4336
4337 static void perf_event_comm_ctx(struct perf_event_context *ctx,
4338 struct perf_comm_event *comm_event)
4339 {
4340 struct perf_event *event;
4341
4342 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4343 if (perf_event_comm_match(event))
4344 perf_event_comm_output(event, comm_event);
4345 }
4346 }
4347
4348 static void perf_event_comm_event(struct perf_comm_event *comm_event)
4349 {
4350 struct perf_cpu_context *cpuctx;
4351 struct perf_event_context *ctx;
4352 char comm[TASK_COMM_LEN];
4353 unsigned int size;
4354 struct pmu *pmu;
4355 int ctxn;
4356
4357 memset(comm, 0, sizeof(comm));
4358 strlcpy(comm, comm_event->task->comm, sizeof(comm));
4359 size = ALIGN(strlen(comm)+1, sizeof(u64));
4360
4361 comm_event->comm = comm;
4362 comm_event->comm_size = size;
4363
4364 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
4365 rcu_read_lock();
4366 list_for_each_entry_rcu(pmu, &pmus, entry) {
4367 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4368 if (cpuctx->active_pmu != pmu)
4369 goto next;
4370 perf_event_comm_ctx(&cpuctx->ctx, comm_event);
4371
4372 ctxn = pmu->task_ctx_nr;
4373 if (ctxn < 0)
4374 goto next;
4375
4376 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4377 if (ctx)
4378 perf_event_comm_ctx(ctx, comm_event);
4379 next:
4380 put_cpu_ptr(pmu->pmu_cpu_context);
4381 }
4382 rcu_read_unlock();
4383 }
4384
4385 void perf_event_comm(struct task_struct *task)
4386 {
4387 struct perf_comm_event comm_event;
4388 struct perf_event_context *ctx;
4389 int ctxn;
4390
4391 for_each_task_context_nr(ctxn) {
4392 ctx = task->perf_event_ctxp[ctxn];
4393 if (!ctx)
4394 continue;
4395
4396 perf_event_enable_on_exec(ctx);
4397 }
4398
4399 if (!atomic_read(&nr_comm_events))
4400 return;
4401
4402 comm_event = (struct perf_comm_event){
4403 .task = task,
4404 /* .comm */
4405 /* .comm_size */
4406 .event_id = {
4407 .header = {
4408 .type = PERF_RECORD_COMM,
4409 .misc = 0,
4410 /* .size */
4411 },
4412 /* .pid */
4413 /* .tid */
4414 },
4415 };
4416
4417 perf_event_comm_event(&comm_event);
4418 }
4419
4420 /*
4421 * mmap tracking
4422 */
4423
4424 struct perf_mmap_event {
4425 struct vm_area_struct *vma;
4426
4427 const char *file_name;
4428 int file_size;
4429
4430 struct {
4431 struct perf_event_header header;
4432
4433 u32 pid;
4434 u32 tid;
4435 u64 start;
4436 u64 len;
4437 u64 pgoff;
4438 } event_id;
4439 };
4440
4441 static void perf_event_mmap_output(struct perf_event *event,
4442 struct perf_mmap_event *mmap_event)
4443 {
4444 struct perf_output_handle handle;
4445 struct perf_sample_data sample;
4446 int size = mmap_event->event_id.header.size;
4447 int ret;
4448
4449 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
4450 ret = perf_output_begin(&handle, event,
4451 mmap_event->event_id.header.size);
4452 if (ret)
4453 goto out;
4454
4455 mmap_event->event_id.pid = perf_event_pid(event, current);
4456 mmap_event->event_id.tid = perf_event_tid(event, current);
4457
4458 perf_output_put(&handle, mmap_event->event_id);
4459 __output_copy(&handle, mmap_event->file_name,
4460 mmap_event->file_size);
4461
4462 perf_event__output_id_sample(event, &handle, &sample);
4463
4464 perf_output_end(&handle);
4465 out:
4466 mmap_event->event_id.header.size = size;
4467 }
4468
4469 static int perf_event_mmap_match(struct perf_event *event,
4470 struct perf_mmap_event *mmap_event,
4471 int executable)
4472 {
4473 if (event->state < PERF_EVENT_STATE_INACTIVE)
4474 return 0;
4475
4476 if (!event_filter_match(event))
4477 return 0;
4478
4479 if ((!executable && event->attr.mmap_data) ||
4480 (executable && event->attr.mmap))
4481 return 1;
4482
4483 return 0;
4484 }
4485
4486 static void perf_event_mmap_ctx(struct perf_event_context *ctx,
4487 struct perf_mmap_event *mmap_event,
4488 int executable)
4489 {
4490 struct perf_event *event;
4491
4492 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4493 if (perf_event_mmap_match(event, mmap_event, executable))
4494 perf_event_mmap_output(event, mmap_event);
4495 }
4496 }
4497
4498 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
4499 {
4500 struct perf_cpu_context *cpuctx;
4501 struct perf_event_context *ctx;
4502 struct vm_area_struct *vma = mmap_event->vma;
4503 struct file *file = vma->vm_file;
4504 unsigned int size;
4505 char tmp[16];
4506 char *buf = NULL;
4507 const char *name;
4508 struct pmu *pmu;
4509 int ctxn;
4510
4511 memset(tmp, 0, sizeof(tmp));
4512
4513 if (file) {
4514 /*
4515 * d_path works from the end of the rb backwards, so we
4516 * need to add enough zero bytes after the string to handle
4517 * the 64bit alignment we do later.
4518 */
4519 buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
4520 if (!buf) {
4521 name = strncpy(tmp, "//enomem", sizeof(tmp));
4522 goto got_name;
4523 }
4524 name = d_path(&file->f_path, buf, PATH_MAX);
4525 if (IS_ERR(name)) {
4526 name = strncpy(tmp, "//toolong", sizeof(tmp));
4527 goto got_name;
4528 }
4529 } else {
4530 if (arch_vma_name(mmap_event->vma)) {
4531 name = strncpy(tmp, arch_vma_name(mmap_event->vma),
4532 sizeof(tmp));
4533 goto got_name;
4534 }
4535
4536 if (!vma->vm_mm) {
4537 name = strncpy(tmp, "[vdso]", sizeof(tmp));
4538 goto got_name;
4539 } else if (vma->vm_start <= vma->vm_mm->start_brk &&
4540 vma->vm_end >= vma->vm_mm->brk) {
4541 name = strncpy(tmp, "[heap]", sizeof(tmp));
4542 goto got_name;
4543 } else if (vma->vm_start <= vma->vm_mm->start_stack &&
4544 vma->vm_end >= vma->vm_mm->start_stack) {
4545 name = strncpy(tmp, "[stack]", sizeof(tmp));
4546 goto got_name;
4547 }
4548
4549 name = strncpy(tmp, "//anon", sizeof(tmp));
4550 goto got_name;
4551 }
4552
4553 got_name:
4554 size = ALIGN(strlen(name)+1, sizeof(u64));
4555
4556 mmap_event->file_name = name;
4557 mmap_event->file_size = size;
4558
4559 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
4560
4561 rcu_read_lock();
4562 list_for_each_entry_rcu(pmu, &pmus, entry) {
4563 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4564 if (cpuctx->active_pmu != pmu)
4565 goto next;
4566 perf_event_mmap_ctx(&cpuctx->ctx, mmap_event,
4567 vma->vm_flags & VM_EXEC);
4568
4569 ctxn = pmu->task_ctx_nr;
4570 if (ctxn < 0)
4571 goto next;
4572
4573 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4574 if (ctx) {
4575 perf_event_mmap_ctx(ctx, mmap_event,
4576 vma->vm_flags & VM_EXEC);
4577 }
4578 next:
4579 put_cpu_ptr(pmu->pmu_cpu_context);
4580 }
4581 rcu_read_unlock();
4582
4583 kfree(buf);
4584 }
4585
4586 void perf_event_mmap(struct vm_area_struct *vma)
4587 {
4588 struct perf_mmap_event mmap_event;
4589
4590 if (!atomic_read(&nr_mmap_events))
4591 return;
4592
4593 mmap_event = (struct perf_mmap_event){
4594 .vma = vma,
4595 /* .file_name */
4596 /* .file_size */
4597 .event_id = {
4598 .header = {
4599 .type = PERF_RECORD_MMAP,
4600 .misc = PERF_RECORD_MISC_USER,
4601 /* .size */
4602 },
4603 /* .pid */
4604 /* .tid */
4605 .start = vma->vm_start,
4606 .len = vma->vm_end - vma->vm_start,
4607 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
4608 },
4609 };
4610
4611 perf_event_mmap_event(&mmap_event);
4612 }
4613
4614 /*
4615 * IRQ throttle logging
4616 */
4617
4618 static void perf_log_throttle(struct perf_event *event, int enable)
4619 {
4620 struct perf_output_handle handle;
4621 struct perf_sample_data sample;
4622 int ret;
4623
4624 struct {
4625 struct perf_event_header header;
4626 u64 time;
4627 u64 id;
4628 u64 stream_id;
4629 } throttle_event = {
4630 .header = {
4631 .type = PERF_RECORD_THROTTLE,
4632 .misc = 0,
4633 .size = sizeof(throttle_event),
4634 },
4635 .time = perf_clock(),
4636 .id = primary_event_id(event),
4637 .stream_id = event->id,
4638 };
4639
4640 if (enable)
4641 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
4642
4643 perf_event_header__init_id(&throttle_event.header, &sample, event);
4644
4645 ret = perf_output_begin(&handle, event,
4646 throttle_event.header.size);
4647 if (ret)
4648 return;
4649
4650 perf_output_put(&handle, throttle_event);
4651 perf_event__output_id_sample(event, &handle, &sample);
4652 perf_output_end(&handle);
4653 }
4654
4655 /*
4656 * Generic event overflow handling, sampling.
4657 */
4658
4659 static int __perf_event_overflow(struct perf_event *event,
4660 int throttle, struct perf_sample_data *data,
4661 struct pt_regs *regs)
4662 {
4663 int events = atomic_read(&event->event_limit);
4664 struct hw_perf_event *hwc = &event->hw;
4665 u64 seq;
4666 int ret = 0;
4667
4668 /*
4669 * Non-sampling counters might still use the PMI to fold short
4670 * hardware counters, ignore those.
4671 */
4672 if (unlikely(!is_sampling_event(event)))
4673 return 0;
4674
4675 seq = __this_cpu_read(perf_throttled_seq);
4676 if (seq != hwc->interrupts_seq) {
4677 hwc->interrupts_seq = seq;
4678 hwc->interrupts = 1;
4679 } else {
4680 hwc->interrupts++;
4681 if (unlikely(throttle
4682 && hwc->interrupts >= max_samples_per_tick)) {
4683 __this_cpu_inc(perf_throttled_count);
4684 hwc->interrupts = MAX_INTERRUPTS;
4685 perf_log_throttle(event, 0);
4686 ret = 1;
4687 }
4688 }
4689
4690 if (event->attr.freq) {
4691 u64 now = perf_clock();
4692 s64 delta = now - hwc->freq_time_stamp;
4693
4694 hwc->freq_time_stamp = now;
4695
4696 if (delta > 0 && delta < 2*TICK_NSEC)
4697 perf_adjust_period(event, delta, hwc->last_period, true);
4698 }
4699
4700 /*
4701 * XXX event_limit might not quite work as expected on inherited
4702 * events
4703 */
4704
4705 event->pending_kill = POLL_IN;
4706 if (events && atomic_dec_and_test(&event->event_limit)) {
4707 ret = 1;
4708 event->pending_kill = POLL_HUP;
4709 event->pending_disable = 1;
4710 irq_work_queue(&event->pending);
4711 }
4712
4713 if (event->overflow_handler)
4714 event->overflow_handler(event, data, regs);
4715 else
4716 perf_event_output(event, data, regs);
4717
4718 if (event->fasync && event->pending_kill) {
4719 event->pending_wakeup = 1;
4720 irq_work_queue(&event->pending);
4721 }
4722
4723 return ret;
4724 }
4725
4726 int perf_event_overflow(struct perf_event *event,
4727 struct perf_sample_data *data,
4728 struct pt_regs *regs)
4729 {
4730 return __perf_event_overflow(event, 1, data, regs);
4731 }
4732
4733 /*
4734 * Generic software event infrastructure
4735 */
4736
4737 struct swevent_htable {
4738 struct swevent_hlist *swevent_hlist;
4739 struct mutex hlist_mutex;
4740 int hlist_refcount;
4741
4742 /* Recursion avoidance in each contexts */
4743 int recursion[PERF_NR_CONTEXTS];
4744 };
4745
4746 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
4747
4748 /*
4749 * We directly increment event->count and keep a second value in
4750 * event->hw.period_left to count intervals. This period event
4751 * is kept in the range [-sample_period, 0] so that we can use the
4752 * sign as trigger.
4753 */
4754
4755 static u64 perf_swevent_set_period(struct perf_event *event)
4756 {
4757 struct hw_perf_event *hwc = &event->hw;
4758 u64 period = hwc->last_period;
4759 u64 nr, offset;
4760 s64 old, val;
4761
4762 hwc->last_period = hwc->sample_period;
4763
4764 again:
4765 old = val = local64_read(&hwc->period_left);
4766 if (val < 0)
4767 return 0;
4768
4769 nr = div64_u64(period + val, period);
4770 offset = nr * period;
4771 val -= offset;
4772 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
4773 goto again;
4774
4775 return nr;
4776 }
4777
4778 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
4779 struct perf_sample_data *data,
4780 struct pt_regs *regs)
4781 {
4782 struct hw_perf_event *hwc = &event->hw;
4783 int throttle = 0;
4784
4785 if (!overflow)
4786 overflow = perf_swevent_set_period(event);
4787
4788 if (hwc->interrupts == MAX_INTERRUPTS)
4789 return;
4790
4791 for (; overflow; overflow--) {
4792 if (__perf_event_overflow(event, throttle,
4793 data, regs)) {
4794 /*
4795 * We inhibit the overflow from happening when
4796 * hwc->interrupts == MAX_INTERRUPTS.
4797 */
4798 break;
4799 }
4800 throttle = 1;
4801 }
4802 }
4803
4804 static void perf_swevent_event(struct perf_event *event, u64 nr,
4805 struct perf_sample_data *data,
4806 struct pt_regs *regs)
4807 {
4808 struct hw_perf_event *hwc = &event->hw;
4809
4810 local64_add(nr, &event->count);
4811
4812 if (!regs)
4813 return;
4814
4815 if (!is_sampling_event(event))
4816 return;
4817
4818 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
4819 data->period = nr;
4820 return perf_swevent_overflow(event, 1, data, regs);
4821 } else
4822 data->period = event->hw.last_period;
4823
4824 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
4825 return perf_swevent_overflow(event, 1, data, regs);
4826
4827 if (local64_add_negative(nr, &hwc->period_left))
4828 return;
4829
4830 perf_swevent_overflow(event, 0, data, regs);
4831 }
4832
4833 static int perf_exclude_event(struct perf_event *event,
4834 struct pt_regs *regs)
4835 {
4836 if (event->hw.state & PERF_HES_STOPPED)
4837 return 1;
4838
4839 if (regs) {
4840 if (event->attr.exclude_user && user_mode(regs))
4841 return 1;
4842
4843 if (event->attr.exclude_kernel && !user_mode(regs))
4844 return 1;
4845 }
4846
4847 return 0;
4848 }
4849
4850 static int perf_swevent_match(struct perf_event *event,
4851 enum perf_type_id type,
4852 u32 event_id,
4853 struct perf_sample_data *data,
4854 struct pt_regs *regs)
4855 {
4856 if (event->attr.type != type)
4857 return 0;
4858
4859 if (event->attr.config != event_id)
4860 return 0;
4861
4862 if (perf_exclude_event(event, regs))
4863 return 0;
4864
4865 return 1;
4866 }
4867
4868 static inline u64 swevent_hash(u64 type, u32 event_id)
4869 {
4870 u64 val = event_id | (type << 32);
4871
4872 return hash_64(val, SWEVENT_HLIST_BITS);
4873 }
4874
4875 static inline struct hlist_head *
4876 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
4877 {
4878 u64 hash = swevent_hash(type, event_id);
4879
4880 return &hlist->heads[hash];
4881 }
4882
4883 /* For the read side: events when they trigger */
4884 static inline struct hlist_head *
4885 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
4886 {
4887 struct swevent_hlist *hlist;
4888
4889 hlist = rcu_dereference(swhash->swevent_hlist);
4890 if (!hlist)
4891 return NULL;
4892
4893 return __find_swevent_head(hlist, type, event_id);
4894 }
4895
4896 /* For the event head insertion and removal in the hlist */
4897 static inline struct hlist_head *
4898 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
4899 {
4900 struct swevent_hlist *hlist;
4901 u32 event_id = event->attr.config;
4902 u64 type = event->attr.type;
4903
4904 /*
4905 * Event scheduling is always serialized against hlist allocation
4906 * and release. Which makes the protected version suitable here.
4907 * The context lock guarantees that.
4908 */
4909 hlist = rcu_dereference_protected(swhash->swevent_hlist,
4910 lockdep_is_held(&event->ctx->lock));
4911 if (!hlist)
4912 return NULL;
4913
4914 return __find_swevent_head(hlist, type, event_id);
4915 }
4916
4917 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
4918 u64 nr,
4919 struct perf_sample_data *data,
4920 struct pt_regs *regs)
4921 {
4922 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4923 struct perf_event *event;
4924 struct hlist_node *node;
4925 struct hlist_head *head;
4926
4927 rcu_read_lock();
4928 head = find_swevent_head_rcu(swhash, type, event_id);
4929 if (!head)
4930 goto end;
4931
4932 hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
4933 if (perf_swevent_match(event, type, event_id, data, regs))
4934 perf_swevent_event(event, nr, data, regs);
4935 }
4936 end:
4937 rcu_read_unlock();
4938 }
4939
4940 int perf_swevent_get_recursion_context(void)
4941 {
4942 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4943
4944 return get_recursion_context(swhash->recursion);
4945 }
4946 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
4947
4948 inline void perf_swevent_put_recursion_context(int rctx)
4949 {
4950 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4951
4952 put_recursion_context(swhash->recursion, rctx);
4953 }
4954
4955 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
4956 {
4957 struct perf_sample_data data;
4958 int rctx;
4959
4960 preempt_disable_notrace();
4961 rctx = perf_swevent_get_recursion_context();
4962 if (rctx < 0)
4963 return;
4964
4965 perf_sample_data_init(&data, addr, 0);
4966
4967 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
4968
4969 perf_swevent_put_recursion_context(rctx);
4970 preempt_enable_notrace();
4971 }
4972
4973 static void perf_swevent_read(struct perf_event *event)
4974 {
4975 }
4976
4977 static int perf_swevent_add(struct perf_event *event, int flags)
4978 {
4979 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4980 struct hw_perf_event *hwc = &event->hw;
4981 struct hlist_head *head;
4982
4983 if (is_sampling_event(event)) {
4984 hwc->last_period = hwc->sample_period;
4985 perf_swevent_set_period(event);
4986 }
4987
4988 hwc->state = !(flags & PERF_EF_START);
4989
4990 head = find_swevent_head(swhash, event);
4991 if (WARN_ON_ONCE(!head))
4992 return -EINVAL;
4993
4994 hlist_add_head_rcu(&event->hlist_entry, head);
4995
4996 return 0;
4997 }
4998
4999 static void perf_swevent_del(struct perf_event *event, int flags)
5000 {
5001 hlist_del_rcu(&event->hlist_entry);
5002 }
5003
5004 static void perf_swevent_start(struct perf_event *event, int flags)
5005 {
5006 event->hw.state = 0;
5007 }
5008
5009 static void perf_swevent_stop(struct perf_event *event, int flags)
5010 {
5011 event->hw.state = PERF_HES_STOPPED;
5012 }
5013
5014 /* Deref the hlist from the update side */
5015 static inline struct swevent_hlist *
5016 swevent_hlist_deref(struct swevent_htable *swhash)
5017 {
5018 return rcu_dereference_protected(swhash->swevent_hlist,
5019 lockdep_is_held(&swhash->hlist_mutex));
5020 }
5021
5022 static void swevent_hlist_release(struct swevent_htable *swhash)
5023 {
5024 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
5025
5026 if (!hlist)
5027 return;
5028
5029 rcu_assign_pointer(swhash->swevent_hlist, NULL);
5030 kfree_rcu(hlist, rcu_head);
5031 }
5032
5033 static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
5034 {
5035 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5036
5037 mutex_lock(&swhash->hlist_mutex);
5038
5039 if (!--swhash->hlist_refcount)
5040 swevent_hlist_release(swhash);
5041
5042 mutex_unlock(&swhash->hlist_mutex);
5043 }
5044
5045 static void swevent_hlist_put(struct perf_event *event)
5046 {
5047 int cpu;
5048
5049 if (event->cpu != -1) {
5050 swevent_hlist_put_cpu(event, event->cpu);
5051 return;
5052 }
5053
5054 for_each_possible_cpu(cpu)
5055 swevent_hlist_put_cpu(event, cpu);
5056 }
5057
5058 static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
5059 {
5060 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5061 int err = 0;
5062
5063 mutex_lock(&swhash->hlist_mutex);
5064
5065 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
5066 struct swevent_hlist *hlist;
5067
5068 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
5069 if (!hlist) {
5070 err = -ENOMEM;
5071 goto exit;
5072 }
5073 rcu_assign_pointer(swhash->swevent_hlist, hlist);
5074 }
5075 swhash->hlist_refcount++;
5076 exit:
5077 mutex_unlock(&swhash->hlist_mutex);
5078
5079 return err;
5080 }
5081
5082 static int swevent_hlist_get(struct perf_event *event)
5083 {
5084 int err;
5085 int cpu, failed_cpu;
5086
5087 if (event->cpu != -1)
5088 return swevent_hlist_get_cpu(event, event->cpu);
5089
5090 get_online_cpus();
5091 for_each_possible_cpu(cpu) {
5092 err = swevent_hlist_get_cpu(event, cpu);
5093 if (err) {
5094 failed_cpu = cpu;
5095 goto fail;
5096 }
5097 }
5098 put_online_cpus();
5099
5100 return 0;
5101 fail:
5102 for_each_possible_cpu(cpu) {
5103 if (cpu == failed_cpu)
5104 break;
5105 swevent_hlist_put_cpu(event, cpu);
5106 }
5107
5108 put_online_cpus();
5109 return err;
5110 }
5111
5112 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
5113
5114 static void sw_perf_event_destroy(struct perf_event *event)
5115 {
5116 u64 event_id = event->attr.config;
5117
5118 WARN_ON(event->parent);
5119
5120 static_key_slow_dec(&perf_swevent_enabled[event_id]);
5121 swevent_hlist_put(event);
5122 }
5123
5124 static int perf_swevent_init(struct perf_event *event)
5125 {
5126 int event_id = event->attr.config;
5127
5128 if (event->attr.type != PERF_TYPE_SOFTWARE)
5129 return -ENOENT;
5130
5131 /*
5132 * no branch sampling for software events
5133 */
5134 if (has_branch_stack(event))
5135 return -EOPNOTSUPP;
5136
5137 switch (event_id) {
5138 case PERF_COUNT_SW_CPU_CLOCK:
5139 case PERF_COUNT_SW_TASK_CLOCK:
5140 return -ENOENT;
5141
5142 default:
5143 break;
5144 }
5145
5146 if (event_id >= PERF_COUNT_SW_MAX)
5147 return -ENOENT;
5148
5149 if (!event->parent) {
5150 int err;
5151
5152 err = swevent_hlist_get(event);
5153 if (err)
5154 return err;
5155
5156 static_key_slow_inc(&perf_swevent_enabled[event_id]);
5157 event->destroy = sw_perf_event_destroy;
5158 }
5159
5160 return 0;
5161 }
5162
5163 static int perf_swevent_event_idx(struct perf_event *event)
5164 {
5165 return 0;
5166 }
5167
5168 static struct pmu perf_swevent = {
5169 .task_ctx_nr = perf_sw_context,
5170
5171 .event_init = perf_swevent_init,
5172 .add = perf_swevent_add,
5173 .del = perf_swevent_del,
5174 .start = perf_swevent_start,
5175 .stop = perf_swevent_stop,
5176 .read = perf_swevent_read,
5177
5178 .event_idx = perf_swevent_event_idx,
5179 };
5180
5181 #ifdef CONFIG_EVENT_TRACING
5182
5183 static int perf_tp_filter_match(struct perf_event *event,
5184 struct perf_sample_data *data)
5185 {
5186 void *record = data->raw->data;
5187
5188 if (likely(!event->filter) || filter_match_preds(event->filter, record))
5189 return 1;
5190 return 0;
5191 }
5192
5193 static int perf_tp_event_match(struct perf_event *event,
5194 struct perf_sample_data *data,
5195 struct pt_regs *regs)
5196 {
5197 if (event->hw.state & PERF_HES_STOPPED)
5198 return 0;
5199 /*
5200 * All tracepoints are from kernel-space.
5201 */
5202 if (event->attr.exclude_kernel)
5203 return 0;
5204
5205 if (!perf_tp_filter_match(event, data))
5206 return 0;
5207
5208 return 1;
5209 }
5210
5211 void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
5212 struct pt_regs *regs, struct hlist_head *head, int rctx)
5213 {
5214 struct perf_sample_data data;
5215 struct perf_event *event;
5216 struct hlist_node *node;
5217
5218 struct perf_raw_record raw = {
5219 .size = entry_size,
5220 .data = record,
5221 };
5222
5223 perf_sample_data_init(&data, addr, 0);
5224 data.raw = &raw;
5225
5226 hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
5227 if (perf_tp_event_match(event, &data, regs))
5228 perf_swevent_event(event, count, &data, regs);
5229 }
5230
5231 perf_swevent_put_recursion_context(rctx);
5232 }
5233 EXPORT_SYMBOL_GPL(perf_tp_event);
5234
5235 static void tp_perf_event_destroy(struct perf_event *event)
5236 {
5237 perf_trace_destroy(event);
5238 }
5239
5240 static int perf_tp_event_init(struct perf_event *event)
5241 {
5242 int err;
5243
5244 if (event->attr.type != PERF_TYPE_TRACEPOINT)
5245 return -ENOENT;
5246
5247 /*
5248 * no branch sampling for tracepoint events
5249 */
5250 if (has_branch_stack(event))
5251 return -EOPNOTSUPP;
5252
5253 err = perf_trace_init(event);
5254 if (err)
5255 return err;
5256
5257 event->destroy = tp_perf_event_destroy;
5258
5259 return 0;
5260 }
5261
5262 static struct pmu perf_tracepoint = {
5263 .task_ctx_nr = perf_sw_context,
5264
5265 .event_init = perf_tp_event_init,
5266 .add = perf_trace_add,
5267 .del = perf_trace_del,
5268 .start = perf_swevent_start,
5269 .stop = perf_swevent_stop,
5270 .read = perf_swevent_read,
5271
5272 .event_idx = perf_swevent_event_idx,
5273 };
5274
5275 static inline void perf_tp_register(void)
5276 {
5277 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
5278 }
5279
5280 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
5281 {
5282 char *filter_str;
5283 int ret;
5284
5285 if (event->attr.type != PERF_TYPE_TRACEPOINT)
5286 return -EINVAL;
5287
5288 filter_str = strndup_user(arg, PAGE_SIZE);
5289 if (IS_ERR(filter_str))
5290 return PTR_ERR(filter_str);
5291
5292 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
5293
5294 kfree(filter_str);
5295 return ret;
5296 }
5297
5298 static void perf_event_free_filter(struct perf_event *event)
5299 {
5300 ftrace_profile_free_filter(event);
5301 }
5302
5303 #else
5304
5305 static inline void perf_tp_register(void)
5306 {
5307 }
5308
5309 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
5310 {
5311 return -ENOENT;
5312 }
5313
5314 static void perf_event_free_filter(struct perf_event *event)
5315 {
5316 }
5317
5318 #endif /* CONFIG_EVENT_TRACING */
5319
5320 #ifdef CONFIG_HAVE_HW_BREAKPOINT
5321 void perf_bp_event(struct perf_event *bp, void *data)
5322 {
5323 struct perf_sample_data sample;
5324 struct pt_regs *regs = data;
5325
5326 perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
5327
5328 if (!bp->hw.state && !perf_exclude_event(bp, regs))
5329 perf_swevent_event(bp, 1, &sample, regs);
5330 }
5331 #endif
5332
5333 /*
5334 * hrtimer based swevent callback
5335 */
5336
5337 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
5338 {
5339 enum hrtimer_restart ret = HRTIMER_RESTART;
5340 struct perf_sample_data data;
5341 struct pt_regs *regs;
5342 struct perf_event *event;
5343 u64 period;
5344
5345 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
5346
5347 if (event->state != PERF_EVENT_STATE_ACTIVE)
5348 return HRTIMER_NORESTART;
5349
5350 event->pmu->read(event);
5351
5352 perf_sample_data_init(&data, 0, event->hw.last_period);
5353 regs = get_irq_regs();
5354
5355 if (regs && !perf_exclude_event(event, regs)) {
5356 if (!(event->attr.exclude_idle && is_idle_task(current)))
5357 if (__perf_event_overflow(event, 1, &data, regs))
5358 ret = HRTIMER_NORESTART;
5359 }
5360
5361 period = max_t(u64, 10000, event->hw.sample_period);
5362 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
5363
5364 return ret;
5365 }
5366
5367 static void perf_swevent_start_hrtimer(struct perf_event *event)
5368 {
5369 struct hw_perf_event *hwc = &event->hw;
5370 s64 period;
5371
5372 if (!is_sampling_event(event))
5373 return;
5374
5375 period = local64_read(&hwc->period_left);
5376 if (period) {
5377 if (period < 0)
5378 period = 10000;
5379
5380 local64_set(&hwc->period_left, 0);
5381 } else {
5382 period = max_t(u64, 10000, hwc->sample_period);
5383 }
5384 __hrtimer_start_range_ns(&hwc->hrtimer,
5385 ns_to_ktime(period), 0,
5386 HRTIMER_MODE_REL_PINNED, 0);
5387 }
5388
5389 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
5390 {
5391 struct hw_perf_event *hwc = &event->hw;
5392
5393 if (is_sampling_event(event)) {
5394 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
5395 local64_set(&hwc->period_left, ktime_to_ns(remaining));
5396
5397 hrtimer_cancel(&hwc->hrtimer);
5398 }
5399 }
5400
5401 static void perf_swevent_init_hrtimer(struct perf_event *event)
5402 {
5403 struct hw_perf_event *hwc = &event->hw;
5404
5405 if (!is_sampling_event(event))
5406 return;
5407
5408 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
5409 hwc->hrtimer.function = perf_swevent_hrtimer;
5410
5411 /*
5412 * Since hrtimers have a fixed rate, we can do a static freq->period
5413 * mapping and avoid the whole period adjust feedback stuff.
5414 */
5415 if (event->attr.freq) {
5416 long freq = event->attr.sample_freq;
5417
5418 event->attr.sample_period = NSEC_PER_SEC / freq;
5419 hwc->sample_period = event->attr.sample_period;
5420 local64_set(&hwc->period_left, hwc->sample_period);
5421 event->attr.freq = 0;
5422 }
5423 }
5424
5425 /*
5426 * Software event: cpu wall time clock
5427 */
5428
5429 static void cpu_clock_event_update(struct perf_event *event)
5430 {
5431 s64 prev;
5432 u64 now;
5433
5434 now = local_clock();
5435 prev = local64_xchg(&event->hw.prev_count, now);
5436 local64_add(now - prev, &event->count);
5437 }
5438
5439 static void cpu_clock_event_start(struct perf_event *event, int flags)
5440 {
5441 local64_set(&event->hw.prev_count, local_clock());
5442 perf_swevent_start_hrtimer(event);
5443 }
5444
5445 static void cpu_clock_event_stop(struct perf_event *event, int flags)
5446 {
5447 perf_swevent_cancel_hrtimer(event);
5448 cpu_clock_event_update(event);
5449 }
5450
5451 static int cpu_clock_event_add(struct perf_event *event, int flags)
5452 {
5453 if (flags & PERF_EF_START)
5454 cpu_clock_event_start(event, flags);
5455
5456 return 0;
5457 }
5458
5459 static void cpu_clock_event_del(struct perf_event *event, int flags)
5460 {
5461 cpu_clock_event_stop(event, flags);
5462 }
5463
5464 static void cpu_clock_event_read(struct perf_event *event)
5465 {
5466 cpu_clock_event_update(event);
5467 }
5468
5469 static int cpu_clock_event_init(struct perf_event *event)
5470 {
5471 if (event->attr.type != PERF_TYPE_SOFTWARE)
5472 return -ENOENT;
5473
5474 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
5475 return -ENOENT;
5476
5477 /*
5478 * no branch sampling for software events
5479 */
5480 if (has_branch_stack(event))
5481 return -EOPNOTSUPP;
5482
5483 perf_swevent_init_hrtimer(event);
5484
5485 return 0;
5486 }
5487
5488 static struct pmu perf_cpu_clock = {
5489 .task_ctx_nr = perf_sw_context,
5490
5491 .event_init = cpu_clock_event_init,
5492 .add = cpu_clock_event_add,
5493 .del = cpu_clock_event_del,
5494 .start = cpu_clock_event_start,
5495 .stop = cpu_clock_event_stop,
5496 .read = cpu_clock_event_read,
5497
5498 .event_idx = perf_swevent_event_idx,
5499 };
5500
5501 /*
5502 * Software event: task time clock
5503 */
5504
5505 static void task_clock_event_update(struct perf_event *event, u64 now)
5506 {
5507 u64 prev;
5508 s64 delta;
5509
5510 prev = local64_xchg(&event->hw.prev_count, now);
5511 delta = now - prev;
5512 local64_add(delta, &event->count);
5513 }
5514
5515 static void task_clock_event_start(struct perf_event *event, int flags)
5516 {
5517 local64_set(&event->hw.prev_count, event->ctx->time);
5518 perf_swevent_start_hrtimer(event);
5519 }
5520
5521 static void task_clock_event_stop(struct perf_event *event, int flags)
5522 {
5523 perf_swevent_cancel_hrtimer(event);
5524 task_clock_event_update(event, event->ctx->time);
5525 }
5526
5527 static int task_clock_event_add(struct perf_event *event, int flags)
5528 {
5529 if (flags & PERF_EF_START)
5530 task_clock_event_start(event, flags);
5531
5532 return 0;
5533 }
5534
5535 static void task_clock_event_del(struct perf_event *event, int flags)
5536 {
5537 task_clock_event_stop(event, PERF_EF_UPDATE);
5538 }
5539
5540 static void task_clock_event_read(struct perf_event *event)
5541 {
5542 u64 now = perf_clock();
5543 u64 delta = now - event->ctx->timestamp;
5544 u64 time = event->ctx->time + delta;
5545
5546 task_clock_event_update(event, time);
5547 }
5548
5549 static int task_clock_event_init(struct perf_event *event)
5550 {
5551 if (event->attr.type != PERF_TYPE_SOFTWARE)
5552 return -ENOENT;
5553
5554 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
5555 return -ENOENT;
5556
5557 /*
5558 * no branch sampling for software events
5559 */
5560 if (has_branch_stack(event))
5561 return -EOPNOTSUPP;
5562
5563 perf_swevent_init_hrtimer(event);
5564
5565 return 0;
5566 }
5567
5568 static struct pmu perf_task_clock = {
5569 .task_ctx_nr = perf_sw_context,
5570
5571 .event_init = task_clock_event_init,
5572 .add = task_clock_event_add,
5573 .del = task_clock_event_del,
5574 .start = task_clock_event_start,
5575 .stop = task_clock_event_stop,
5576 .read = task_clock_event_read,
5577
5578 .event_idx = perf_swevent_event_idx,
5579 };
5580
5581 static void perf_pmu_nop_void(struct pmu *pmu)
5582 {
5583 }
5584
5585 static int perf_pmu_nop_int(struct pmu *pmu)
5586 {
5587 return 0;
5588 }
5589
5590 static void perf_pmu_start_txn(struct pmu *pmu)
5591 {
5592 perf_pmu_disable(pmu);
5593 }
5594
5595 static int perf_pmu_commit_txn(struct pmu *pmu)
5596 {
5597 perf_pmu_enable(pmu);
5598 return 0;
5599 }
5600
5601 static void perf_pmu_cancel_txn(struct pmu *pmu)
5602 {
5603 perf_pmu_enable(pmu);
5604 }
5605
5606 static int perf_event_idx_default(struct perf_event *event)
5607 {
5608 return event->hw.idx + 1;
5609 }
5610
5611 /*
5612 * Ensures all contexts with the same task_ctx_nr have the same
5613 * pmu_cpu_context too.
5614 */
5615 static void *find_pmu_context(int ctxn)
5616 {
5617 struct pmu *pmu;
5618
5619 if (ctxn < 0)
5620 return NULL;
5621
5622 list_for_each_entry(pmu, &pmus, entry) {
5623 if (pmu->task_ctx_nr == ctxn)
5624 return pmu->pmu_cpu_context;
5625 }
5626
5627 return NULL;
5628 }
5629
5630 static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
5631 {
5632 int cpu;
5633
5634 for_each_possible_cpu(cpu) {
5635 struct perf_cpu_context *cpuctx;
5636
5637 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
5638
5639 if (cpuctx->active_pmu == old_pmu)
5640 cpuctx->active_pmu = pmu;
5641 }
5642 }
5643
5644 static void free_pmu_context(struct pmu *pmu)
5645 {
5646 struct pmu *i;
5647
5648 mutex_lock(&pmus_lock);
5649 /*
5650 * Like a real lame refcount.
5651 */
5652 list_for_each_entry(i, &pmus, entry) {
5653 if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
5654 update_pmu_context(i, pmu);
5655 goto out;
5656 }
5657 }
5658
5659 free_percpu(pmu->pmu_cpu_context);
5660 out:
5661 mutex_unlock(&pmus_lock);
5662 }
5663 static struct idr pmu_idr;
5664
5665 static ssize_t
5666 type_show(struct device *dev, struct device_attribute *attr, char *page)
5667 {
5668 struct pmu *pmu = dev_get_drvdata(dev);
5669
5670 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
5671 }
5672
5673 static struct device_attribute pmu_dev_attrs[] = {
5674 __ATTR_RO(type),
5675 __ATTR_NULL,
5676 };
5677
5678 static int pmu_bus_running;
5679 static struct bus_type pmu_bus = {
5680 .name = "event_source",
5681 .dev_attrs = pmu_dev_attrs,
5682 };
5683
5684 static void pmu_dev_release(struct device *dev)
5685 {
5686 kfree(dev);
5687 }
5688
5689 static int pmu_dev_alloc(struct pmu *pmu)
5690 {
5691 int ret = -ENOMEM;
5692
5693 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
5694 if (!pmu->dev)
5695 goto out;
5696
5697 pmu->dev->groups = pmu->attr_groups;
5698 device_initialize(pmu->dev);
5699 ret = dev_set_name(pmu->dev, "%s", pmu->name);
5700 if (ret)
5701 goto free_dev;
5702
5703 dev_set_drvdata(pmu->dev, pmu);
5704 pmu->dev->bus = &pmu_bus;
5705 pmu->dev->release = pmu_dev_release;
5706 ret = device_add(pmu->dev);
5707 if (ret)
5708 goto free_dev;
5709
5710 out:
5711 return ret;
5712
5713 free_dev:
5714 put_device(pmu->dev);
5715 goto out;
5716 }
5717
5718 static struct lock_class_key cpuctx_mutex;
5719 static struct lock_class_key cpuctx_lock;
5720
5721 int perf_pmu_register(struct pmu *pmu, char *name, int type)
5722 {
5723 int cpu, ret;
5724
5725 mutex_lock(&pmus_lock);
5726 ret = -ENOMEM;
5727 pmu->pmu_disable_count = alloc_percpu(int);
5728 if (!pmu->pmu_disable_count)
5729 goto unlock;
5730
5731 pmu->type = -1;
5732 if (!name)
5733 goto skip_type;
5734 pmu->name = name;
5735
5736 if (type < 0) {
5737 int err = idr_pre_get(&pmu_idr, GFP_KERNEL);
5738 if (!err)
5739 goto free_pdc;
5740
5741 err = idr_get_new_above(&pmu_idr, pmu, PERF_TYPE_MAX, &type);
5742 if (err) {
5743 ret = err;
5744 goto free_pdc;
5745 }
5746 }
5747 pmu->type = type;
5748
5749 if (pmu_bus_running) {
5750 ret = pmu_dev_alloc(pmu);
5751 if (ret)
5752 goto free_idr;
5753 }
5754
5755 skip_type:
5756 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
5757 if (pmu->pmu_cpu_context)
5758 goto got_cpu_context;
5759
5760 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
5761 if (!pmu->pmu_cpu_context)
5762 goto free_dev;
5763
5764 for_each_possible_cpu(cpu) {
5765 struct perf_cpu_context *cpuctx;
5766
5767 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
5768 __perf_event_init_context(&cpuctx->ctx);
5769 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
5770 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
5771 cpuctx->ctx.type = cpu_context;
5772 cpuctx->ctx.pmu = pmu;
5773 cpuctx->jiffies_interval = 1;
5774 INIT_LIST_HEAD(&cpuctx->rotation_list);
5775 cpuctx->active_pmu = pmu;
5776 }
5777
5778 got_cpu_context:
5779 if (!pmu->start_txn) {
5780 if (pmu->pmu_enable) {
5781 /*
5782 * If we have pmu_enable/pmu_disable calls, install
5783 * transaction stubs that use that to try and batch
5784 * hardware accesses.
5785 */
5786 pmu->start_txn = perf_pmu_start_txn;
5787 pmu->commit_txn = perf_pmu_commit_txn;
5788 pmu->cancel_txn = perf_pmu_cancel_txn;
5789 } else {
5790 pmu->start_txn = perf_pmu_nop_void;
5791 pmu->commit_txn = perf_pmu_nop_int;
5792 pmu->cancel_txn = perf_pmu_nop_void;
5793 }
5794 }
5795
5796 if (!pmu->pmu_enable) {
5797 pmu->pmu_enable = perf_pmu_nop_void;
5798 pmu->pmu_disable = perf_pmu_nop_void;
5799 }
5800
5801 if (!pmu->event_idx)
5802 pmu->event_idx = perf_event_idx_default;
5803
5804 list_add_rcu(&pmu->entry, &pmus);
5805 ret = 0;
5806 unlock:
5807 mutex_unlock(&pmus_lock);
5808
5809 return ret;
5810
5811 free_dev:
5812 device_del(pmu->dev);
5813 put_device(pmu->dev);
5814
5815 free_idr:
5816 if (pmu->type >= PERF_TYPE_MAX)
5817 idr_remove(&pmu_idr, pmu->type);
5818
5819 free_pdc:
5820 free_percpu(pmu->pmu_disable_count);
5821 goto unlock;
5822 }
5823
5824 void perf_pmu_unregister(struct pmu *pmu)
5825 {
5826 mutex_lock(&pmus_lock);
5827 list_del_rcu(&pmu->entry);
5828 mutex_unlock(&pmus_lock);
5829
5830 /*
5831 * We dereference the pmu list under both SRCU and regular RCU, so
5832 * synchronize against both of those.
5833 */
5834 synchronize_srcu(&pmus_srcu);
5835 synchronize_rcu();
5836
5837 free_percpu(pmu->pmu_disable_count);
5838 if (pmu->type >= PERF_TYPE_MAX)
5839 idr_remove(&pmu_idr, pmu->type);
5840 device_del(pmu->dev);
5841 put_device(pmu->dev);
5842 free_pmu_context(pmu);
5843 }
5844
5845 struct pmu *perf_init_event(struct perf_event *event)
5846 {
5847 struct pmu *pmu = NULL;
5848 int idx;
5849 int ret;
5850
5851 idx = srcu_read_lock(&pmus_srcu);
5852
5853 rcu_read_lock();
5854 pmu = idr_find(&pmu_idr, event->attr.type);
5855 rcu_read_unlock();
5856 if (pmu) {
5857 event->pmu = pmu;
5858 ret = pmu->event_init(event);
5859 if (ret)
5860 pmu = ERR_PTR(ret);
5861 goto unlock;
5862 }
5863
5864 list_for_each_entry_rcu(pmu, &pmus, entry) {
5865 event->pmu = pmu;
5866 ret = pmu->event_init(event);
5867 if (!ret)
5868 goto unlock;
5869
5870 if (ret != -ENOENT) {
5871 pmu = ERR_PTR(ret);
5872 goto unlock;
5873 }
5874 }
5875 pmu = ERR_PTR(-ENOENT);
5876 unlock:
5877 srcu_read_unlock(&pmus_srcu, idx);
5878
5879 return pmu;
5880 }
5881
5882 /*
5883 * Allocate and initialize a event structure
5884 */
5885 static struct perf_event *
5886 perf_event_alloc(struct perf_event_attr *attr, int cpu,
5887 struct task_struct *task,
5888 struct perf_event *group_leader,
5889 struct perf_event *parent_event,
5890 perf_overflow_handler_t overflow_handler,
5891 void *context)
5892 {
5893 struct pmu *pmu;
5894 struct perf_event *event;
5895 struct hw_perf_event *hwc;
5896 long err;
5897
5898 if ((unsigned)cpu >= nr_cpu_ids) {
5899 if (!task || cpu != -1)
5900 return ERR_PTR(-EINVAL);
5901 }
5902
5903 event = kzalloc(sizeof(*event), GFP_KERNEL);
5904 if (!event)
5905 return ERR_PTR(-ENOMEM);
5906
5907 /*
5908 * Single events are their own group leaders, with an
5909 * empty sibling list:
5910 */
5911 if (!group_leader)
5912 group_leader = event;
5913
5914 mutex_init(&event->child_mutex);
5915 INIT_LIST_HEAD(&event->child_list);
5916
5917 INIT_LIST_HEAD(&event->group_entry);
5918 INIT_LIST_HEAD(&event->event_entry);
5919 INIT_LIST_HEAD(&event->sibling_list);
5920 INIT_LIST_HEAD(&event->rb_entry);
5921
5922 init_waitqueue_head(&event->waitq);
5923 init_irq_work(&event->pending, perf_pending_event);
5924
5925 mutex_init(&event->mmap_mutex);
5926
5927 event->cpu = cpu;
5928 event->attr = *attr;
5929 event->group_leader = group_leader;
5930 event->pmu = NULL;
5931 event->oncpu = -1;
5932
5933 event->parent = parent_event;
5934
5935 event->ns = get_pid_ns(current->nsproxy->pid_ns);
5936 event->id = atomic64_inc_return(&perf_event_id);
5937
5938 event->state = PERF_EVENT_STATE_INACTIVE;
5939
5940 if (task) {
5941 event->attach_state = PERF_ATTACH_TASK;
5942 #ifdef CONFIG_HAVE_HW_BREAKPOINT
5943 /*
5944 * hw_breakpoint is a bit difficult here..
5945 */
5946 if (attr->type == PERF_TYPE_BREAKPOINT)
5947 event->hw.bp_target = task;
5948 #endif
5949 }
5950
5951 if (!overflow_handler && parent_event) {
5952 overflow_handler = parent_event->overflow_handler;
5953 context = parent_event->overflow_handler_context;
5954 }
5955
5956 event->overflow_handler = overflow_handler;
5957 event->overflow_handler_context = context;
5958
5959 if (attr->disabled)
5960 event->state = PERF_EVENT_STATE_OFF;
5961
5962 pmu = NULL;
5963
5964 hwc = &event->hw;
5965 hwc->sample_period = attr->sample_period;
5966 if (attr->freq && attr->sample_freq)
5967 hwc->sample_period = 1;
5968 hwc->last_period = hwc->sample_period;
5969
5970 local64_set(&hwc->period_left, hwc->sample_period);
5971
5972 /*
5973 * we currently do not support PERF_FORMAT_GROUP on inherited events
5974 */
5975 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
5976 goto done;
5977
5978 pmu = perf_init_event(event);
5979
5980 done:
5981 err = 0;
5982 if (!pmu)
5983 err = -EINVAL;
5984 else if (IS_ERR(pmu))
5985 err = PTR_ERR(pmu);
5986
5987 if (err) {
5988 if (event->ns)
5989 put_pid_ns(event->ns);
5990 kfree(event);
5991 return ERR_PTR(err);
5992 }
5993
5994 if (!event->parent) {
5995 if (event->attach_state & PERF_ATTACH_TASK)
5996 static_key_slow_inc(&perf_sched_events.key);
5997 if (event->attr.mmap || event->attr.mmap_data)
5998 atomic_inc(&nr_mmap_events);
5999 if (event->attr.comm)
6000 atomic_inc(&nr_comm_events);
6001 if (event->attr.task)
6002 atomic_inc(&nr_task_events);
6003 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
6004 err = get_callchain_buffers();
6005 if (err) {
6006 free_event(event);
6007 return ERR_PTR(err);
6008 }
6009 }
6010 if (has_branch_stack(event)) {
6011 static_key_slow_inc(&perf_sched_events.key);
6012 if (!(event->attach_state & PERF_ATTACH_TASK))
6013 atomic_inc(&per_cpu(perf_branch_stack_events,
6014 event->cpu));
6015 }
6016 }
6017
6018 return event;
6019 }
6020
6021 static int perf_copy_attr(struct perf_event_attr __user *uattr,
6022 struct perf_event_attr *attr)
6023 {
6024 u32 size;
6025 int ret;
6026
6027 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
6028 return -EFAULT;
6029
6030 /*
6031 * zero the full structure, so that a short copy will be nice.
6032 */
6033 memset(attr, 0, sizeof(*attr));
6034
6035 ret = get_user(size, &uattr->size);
6036 if (ret)
6037 return ret;
6038
6039 if (size > PAGE_SIZE) /* silly large */
6040 goto err_size;
6041
6042 if (!size) /* abi compat */
6043 size = PERF_ATTR_SIZE_VER0;
6044
6045 if (size < PERF_ATTR_SIZE_VER0)
6046 goto err_size;
6047
6048 /*
6049 * If we're handed a bigger struct than we know of,
6050 * ensure all the unknown bits are 0 - i.e. new
6051 * user-space does not rely on any kernel feature
6052 * extensions we dont know about yet.
6053 */
6054 if (size > sizeof(*attr)) {
6055 unsigned char __user *addr;
6056 unsigned char __user *end;
6057 unsigned char val;
6058
6059 addr = (void __user *)uattr + sizeof(*attr);
6060 end = (void __user *)uattr + size;
6061
6062 for (; addr < end; addr++) {
6063 ret = get_user(val, addr);
6064 if (ret)
6065 return ret;
6066 if (val)
6067 goto err_size;
6068 }
6069 size = sizeof(*attr);
6070 }
6071
6072 ret = copy_from_user(attr, uattr, size);
6073 if (ret)
6074 return -EFAULT;
6075
6076 if (attr->__reserved_1)
6077 return -EINVAL;
6078
6079 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
6080 return -EINVAL;
6081
6082 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
6083 return -EINVAL;
6084
6085 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
6086 u64 mask = attr->branch_sample_type;
6087
6088 /* only using defined bits */
6089 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
6090 return -EINVAL;
6091
6092 /* at least one branch bit must be set */
6093 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
6094 return -EINVAL;
6095
6096 /* kernel level capture: check permissions */
6097 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
6098 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
6099 return -EACCES;
6100
6101 /* propagate priv level, when not set for branch */
6102 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
6103
6104 /* exclude_kernel checked on syscall entry */
6105 if (!attr->exclude_kernel)
6106 mask |= PERF_SAMPLE_BRANCH_KERNEL;
6107
6108 if (!attr->exclude_user)
6109 mask |= PERF_SAMPLE_BRANCH_USER;
6110
6111 if (!attr->exclude_hv)
6112 mask |= PERF_SAMPLE_BRANCH_HV;
6113 /*
6114 * adjust user setting (for HW filter setup)
6115 */
6116 attr->branch_sample_type = mask;
6117 }
6118 }
6119 out:
6120 return ret;
6121
6122 err_size:
6123 put_user(sizeof(*attr), &uattr->size);
6124 ret = -E2BIG;
6125 goto out;
6126 }
6127
6128 static int
6129 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
6130 {
6131 struct ring_buffer *rb = NULL, *old_rb = NULL;
6132 int ret = -EINVAL;
6133
6134 if (!output_event)
6135 goto set;
6136
6137 /* don't allow circular references */
6138 if (event == output_event)
6139 goto out;
6140
6141 /*
6142 * Don't allow cross-cpu buffers
6143 */
6144 if (output_event->cpu != event->cpu)
6145 goto out;
6146
6147 /*
6148 * If its not a per-cpu rb, it must be the same task.
6149 */
6150 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
6151 goto out;
6152
6153 set:
6154 mutex_lock(&event->mmap_mutex);
6155 /* Can't redirect output if we've got an active mmap() */
6156 if (atomic_read(&event->mmap_count))
6157 goto unlock;
6158
6159 if (output_event) {
6160 /* get the rb we want to redirect to */
6161 rb = ring_buffer_get(output_event);
6162 if (!rb)
6163 goto unlock;
6164 }
6165
6166 old_rb = event->rb;
6167 rcu_assign_pointer(event->rb, rb);
6168 if (old_rb)
6169 ring_buffer_detach(event, old_rb);
6170 ret = 0;
6171 unlock:
6172 mutex_unlock(&event->mmap_mutex);
6173
6174 if (old_rb)
6175 ring_buffer_put(old_rb);
6176 out:
6177 return ret;
6178 }
6179
6180 /**
6181 * sys_perf_event_open - open a performance event, associate it to a task/cpu
6182 *
6183 * @attr_uptr: event_id type attributes for monitoring/sampling
6184 * @pid: target pid
6185 * @cpu: target cpu
6186 * @group_fd: group leader event fd
6187 */
6188 SYSCALL_DEFINE5(perf_event_open,
6189 struct perf_event_attr __user *, attr_uptr,
6190 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
6191 {
6192 struct perf_event *group_leader = NULL, *output_event = NULL;
6193 struct perf_event *event, *sibling;
6194 struct perf_event_attr attr;
6195 struct perf_event_context *ctx;
6196 struct file *event_file = NULL;
6197 struct file *group_file = NULL;
6198 struct task_struct *task = NULL;
6199 struct pmu *pmu;
6200 int event_fd;
6201 int move_group = 0;
6202 int fput_needed = 0;
6203 int err;
6204
6205 /* for future expandability... */
6206 if (flags & ~PERF_FLAG_ALL)
6207 return -EINVAL;
6208
6209 err = perf_copy_attr(attr_uptr, &attr);
6210 if (err)
6211 return err;
6212
6213 if (!attr.exclude_kernel) {
6214 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
6215 return -EACCES;
6216 }
6217
6218 if (attr.freq) {
6219 if (attr.sample_freq > sysctl_perf_event_sample_rate)
6220 return -EINVAL;
6221 }
6222
6223 /*
6224 * In cgroup mode, the pid argument is used to pass the fd
6225 * opened to the cgroup directory in cgroupfs. The cpu argument
6226 * designates the cpu on which to monitor threads from that
6227 * cgroup.
6228 */
6229 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
6230 return -EINVAL;
6231
6232 event_fd = get_unused_fd_flags(O_RDWR);
6233 if (event_fd < 0)
6234 return event_fd;
6235
6236 if (group_fd != -1) {
6237 group_leader = perf_fget_light(group_fd, &fput_needed);
6238 if (IS_ERR(group_leader)) {
6239 err = PTR_ERR(group_leader);
6240 goto err_fd;
6241 }
6242 group_file = group_leader->filp;
6243 if (flags & PERF_FLAG_FD_OUTPUT)
6244 output_event = group_leader;
6245 if (flags & PERF_FLAG_FD_NO_GROUP)
6246 group_leader = NULL;
6247 }
6248
6249 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
6250 task = find_lively_task_by_vpid(pid);
6251 if (IS_ERR(task)) {
6252 err = PTR_ERR(task);
6253 goto err_group_fd;
6254 }
6255 }
6256
6257 get_online_cpus();
6258
6259 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
6260 NULL, NULL);
6261 if (IS_ERR(event)) {
6262 err = PTR_ERR(event);
6263 goto err_task;
6264 }
6265
6266 if (flags & PERF_FLAG_PID_CGROUP) {
6267 err = perf_cgroup_connect(pid, event, &attr, group_leader);
6268 if (err)
6269 goto err_alloc;
6270 /*
6271 * one more event:
6272 * - that has cgroup constraint on event->cpu
6273 * - that may need work on context switch
6274 */
6275 atomic_inc(&per_cpu(perf_cgroup_events, event->cpu));
6276 static_key_slow_inc(&perf_sched_events.key);
6277 }
6278
6279 /*
6280 * Special case software events and allow them to be part of
6281 * any hardware group.
6282 */
6283 pmu = event->pmu;
6284
6285 if (group_leader &&
6286 (is_software_event(event) != is_software_event(group_leader))) {
6287 if (is_software_event(event)) {
6288 /*
6289 * If event and group_leader are not both a software
6290 * event, and event is, then group leader is not.
6291 *
6292 * Allow the addition of software events to !software
6293 * groups, this is safe because software events never
6294 * fail to schedule.
6295 */
6296 pmu = group_leader->pmu;
6297 } else if (is_software_event(group_leader) &&
6298 (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
6299 /*
6300 * In case the group is a pure software group, and we
6301 * try to add a hardware event, move the whole group to
6302 * the hardware context.
6303 */
6304 move_group = 1;
6305 }
6306 }
6307
6308 /*
6309 * Get the target context (task or percpu):
6310 */
6311 ctx = find_get_context(pmu, task, event->cpu);
6312 if (IS_ERR(ctx)) {
6313 err = PTR_ERR(ctx);
6314 goto err_alloc;
6315 }
6316
6317 if (task) {
6318 put_task_struct(task);
6319 task = NULL;
6320 }
6321
6322 /*
6323 * Look up the group leader (we will attach this event to it):
6324 */
6325 if (group_leader) {
6326 err = -EINVAL;
6327
6328 /*
6329 * Do not allow a recursive hierarchy (this new sibling
6330 * becoming part of another group-sibling):
6331 */
6332 if (group_leader->group_leader != group_leader)
6333 goto err_context;
6334 /*
6335 * Do not allow to attach to a group in a different
6336 * task or CPU context:
6337 */
6338 if (move_group) {
6339 if (group_leader->ctx->type != ctx->type)
6340 goto err_context;
6341 } else {
6342 if (group_leader->ctx != ctx)
6343 goto err_context;
6344 }
6345
6346 /*
6347 * Only a group leader can be exclusive or pinned
6348 */
6349 if (attr.exclusive || attr.pinned)
6350 goto err_context;
6351 }
6352
6353 if (output_event) {
6354 err = perf_event_set_output(event, output_event);
6355 if (err)
6356 goto err_context;
6357 }
6358
6359 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
6360 if (IS_ERR(event_file)) {
6361 err = PTR_ERR(event_file);
6362 goto err_context;
6363 }
6364
6365 if (move_group) {
6366 struct perf_event_context *gctx = group_leader->ctx;
6367
6368 mutex_lock(&gctx->mutex);
6369 perf_remove_from_context(group_leader);
6370 list_for_each_entry(sibling, &group_leader->sibling_list,
6371 group_entry) {
6372 perf_remove_from_context(sibling);
6373 put_ctx(gctx);
6374 }
6375 mutex_unlock(&gctx->mutex);
6376 put_ctx(gctx);
6377 }
6378
6379 event->filp = event_file;
6380 WARN_ON_ONCE(ctx->parent_ctx);
6381 mutex_lock(&ctx->mutex);
6382
6383 if (move_group) {
6384 synchronize_rcu();
6385 perf_install_in_context(ctx, group_leader, event->cpu);
6386 get_ctx(ctx);
6387 list_for_each_entry(sibling, &group_leader->sibling_list,
6388 group_entry) {
6389 perf_install_in_context(ctx, sibling, event->cpu);
6390 get_ctx(ctx);
6391 }
6392 }
6393
6394 perf_install_in_context(ctx, event, event->cpu);
6395 ++ctx->generation;
6396 perf_unpin_context(ctx);
6397 mutex_unlock(&ctx->mutex);
6398
6399 put_online_cpus();
6400
6401 event->owner = current;
6402
6403 mutex_lock(&current->perf_event_mutex);
6404 list_add_tail(&event->owner_entry, &current->perf_event_list);
6405 mutex_unlock(&current->perf_event_mutex);
6406
6407 /*
6408 * Precalculate sample_data sizes
6409 */
6410 perf_event__header_size(event);
6411 perf_event__id_header_size(event);
6412
6413 /*
6414 * Drop the reference on the group_event after placing the
6415 * new event on the sibling_list. This ensures destruction
6416 * of the group leader will find the pointer to itself in
6417 * perf_group_detach().
6418 */
6419 fput_light(group_file, fput_needed);
6420 fd_install(event_fd, event_file);
6421 return event_fd;
6422
6423 err_context:
6424 perf_unpin_context(ctx);
6425 put_ctx(ctx);
6426 err_alloc:
6427 free_event(event);
6428 err_task:
6429 put_online_cpus();
6430 if (task)
6431 put_task_struct(task);
6432 err_group_fd:
6433 fput_light(group_file, fput_needed);
6434 err_fd:
6435 put_unused_fd(event_fd);
6436 return err;
6437 }
6438
6439 /**
6440 * perf_event_create_kernel_counter
6441 *
6442 * @attr: attributes of the counter to create
6443 * @cpu: cpu in which the counter is bound
6444 * @task: task to profile (NULL for percpu)
6445 */
6446 struct perf_event *
6447 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
6448 struct task_struct *task,
6449 perf_overflow_handler_t overflow_handler,
6450 void *context)
6451 {
6452 struct perf_event_context *ctx;
6453 struct perf_event *event;
6454 int err;
6455
6456 /*
6457 * Get the target context (task or percpu):
6458 */
6459
6460 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
6461 overflow_handler, context);
6462 if (IS_ERR(event)) {
6463 err = PTR_ERR(event);
6464 goto err;
6465 }
6466
6467 ctx = find_get_context(event->pmu, task, cpu);
6468 if (IS_ERR(ctx)) {
6469 err = PTR_ERR(ctx);
6470 goto err_free;
6471 }
6472
6473 event->filp = NULL;
6474 WARN_ON_ONCE(ctx->parent_ctx);
6475 mutex_lock(&ctx->mutex);
6476 perf_install_in_context(ctx, event, cpu);
6477 ++ctx->generation;
6478 perf_unpin_context(ctx);
6479 mutex_unlock(&ctx->mutex);
6480
6481 return event;
6482
6483 err_free:
6484 free_event(event);
6485 err:
6486 return ERR_PTR(err);
6487 }
6488 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
6489
6490 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
6491 {
6492 struct perf_event_context *src_ctx;
6493 struct perf_event_context *dst_ctx;
6494 struct perf_event *event, *tmp;
6495 LIST_HEAD(events);
6496
6497 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
6498 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
6499
6500 mutex_lock(&src_ctx->mutex);
6501 list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
6502 event_entry) {
6503 perf_remove_from_context(event);
6504 put_ctx(src_ctx);
6505 list_add(&event->event_entry, &events);
6506 }
6507 mutex_unlock(&src_ctx->mutex);
6508
6509 synchronize_rcu();
6510
6511 mutex_lock(&dst_ctx->mutex);
6512 list_for_each_entry_safe(event, tmp, &events, event_entry) {
6513 list_del(&event->event_entry);
6514 if (event->state >= PERF_EVENT_STATE_OFF)
6515 event->state = PERF_EVENT_STATE_INACTIVE;
6516 perf_install_in_context(dst_ctx, event, dst_cpu);
6517 get_ctx(dst_ctx);
6518 }
6519 mutex_unlock(&dst_ctx->mutex);
6520 }
6521 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
6522
6523 static void sync_child_event(struct perf_event *child_event,
6524 struct task_struct *child)
6525 {
6526 struct perf_event *parent_event = child_event->parent;
6527 u64 child_val;
6528
6529 if (child_event->attr.inherit_stat)
6530 perf_event_read_event(child_event, child);
6531
6532 child_val = perf_event_count(child_event);
6533
6534 /*
6535 * Add back the child's count to the parent's count:
6536 */
6537 atomic64_add(child_val, &parent_event->child_count);
6538 atomic64_add(child_event->total_time_enabled,
6539 &parent_event->child_total_time_enabled);
6540 atomic64_add(child_event->total_time_running,
6541 &parent_event->child_total_time_running);
6542
6543 /*
6544 * Remove this event from the parent's list
6545 */
6546 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
6547 mutex_lock(&parent_event->child_mutex);
6548 list_del_init(&child_event->child_list);
6549 mutex_unlock(&parent_event->child_mutex);
6550
6551 /*
6552 * Release the parent event, if this was the last
6553 * reference to it.
6554 */
6555 fput(parent_event->filp);
6556 }
6557
6558 static void
6559 __perf_event_exit_task(struct perf_event *child_event,
6560 struct perf_event_context *child_ctx,
6561 struct task_struct *child)
6562 {
6563 if (child_event->parent) {
6564 raw_spin_lock_irq(&child_ctx->lock);
6565 perf_group_detach(child_event);
6566 raw_spin_unlock_irq(&child_ctx->lock);
6567 }
6568
6569 perf_remove_from_context(child_event);
6570
6571 /*
6572 * It can happen that the parent exits first, and has events
6573 * that are still around due to the child reference. These
6574 * events need to be zapped.
6575 */
6576 if (child_event->parent) {
6577 sync_child_event(child_event, child);
6578 free_event(child_event);
6579 }
6580 }
6581
6582 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
6583 {
6584 struct perf_event *child_event, *tmp;
6585 struct perf_event_context *child_ctx;
6586 unsigned long flags;
6587
6588 if (likely(!child->perf_event_ctxp[ctxn])) {
6589 perf_event_task(child, NULL, 0);
6590 return;
6591 }
6592
6593 local_irq_save(flags);
6594 /*
6595 * We can't reschedule here because interrupts are disabled,
6596 * and either child is current or it is a task that can't be
6597 * scheduled, so we are now safe from rescheduling changing
6598 * our context.
6599 */
6600 child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
6601
6602 /*
6603 * Take the context lock here so that if find_get_context is
6604 * reading child->perf_event_ctxp, we wait until it has
6605 * incremented the context's refcount before we do put_ctx below.
6606 */
6607 raw_spin_lock(&child_ctx->lock);
6608 task_ctx_sched_out(child_ctx);
6609 child->perf_event_ctxp[ctxn] = NULL;
6610 /*
6611 * If this context is a clone; unclone it so it can't get
6612 * swapped to another process while we're removing all
6613 * the events from it.
6614 */
6615 unclone_ctx(child_ctx);
6616 update_context_time(child_ctx);
6617 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
6618
6619 /*
6620 * Report the task dead after unscheduling the events so that we
6621 * won't get any samples after PERF_RECORD_EXIT. We can however still
6622 * get a few PERF_RECORD_READ events.
6623 */
6624 perf_event_task(child, child_ctx, 0);
6625
6626 /*
6627 * We can recurse on the same lock type through:
6628 *
6629 * __perf_event_exit_task()
6630 * sync_child_event()
6631 * fput(parent_event->filp)
6632 * perf_release()
6633 * mutex_lock(&ctx->mutex)
6634 *
6635 * But since its the parent context it won't be the same instance.
6636 */
6637 mutex_lock(&child_ctx->mutex);
6638
6639 again:
6640 list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
6641 group_entry)
6642 __perf_event_exit_task(child_event, child_ctx, child);
6643
6644 list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
6645 group_entry)
6646 __perf_event_exit_task(child_event, child_ctx, child);
6647
6648 /*
6649 * If the last event was a group event, it will have appended all
6650 * its siblings to the list, but we obtained 'tmp' before that which
6651 * will still point to the list head terminating the iteration.
6652 */
6653 if (!list_empty(&child_ctx->pinned_groups) ||
6654 !list_empty(&child_ctx->flexible_groups))
6655 goto again;
6656
6657 mutex_unlock(&child_ctx->mutex);
6658
6659 put_ctx(child_ctx);
6660 }
6661
6662 /*
6663 * When a child task exits, feed back event values to parent events.
6664 */
6665 void perf_event_exit_task(struct task_struct *child)
6666 {
6667 struct perf_event *event, *tmp;
6668 int ctxn;
6669
6670 mutex_lock(&child->perf_event_mutex);
6671 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
6672 owner_entry) {
6673 list_del_init(&event->owner_entry);
6674
6675 /*
6676 * Ensure the list deletion is visible before we clear
6677 * the owner, closes a race against perf_release() where
6678 * we need to serialize on the owner->perf_event_mutex.
6679 */
6680 smp_wmb();
6681 event->owner = NULL;
6682 }
6683 mutex_unlock(&child->perf_event_mutex);
6684
6685 for_each_task_context_nr(ctxn)
6686 perf_event_exit_task_context(child, ctxn);
6687 }
6688
6689 static void perf_free_event(struct perf_event *event,
6690 struct perf_event_context *ctx)
6691 {
6692 struct perf_event *parent = event->parent;
6693
6694 if (WARN_ON_ONCE(!parent))
6695 return;
6696
6697 mutex_lock(&parent->child_mutex);
6698 list_del_init(&event->child_list);
6699 mutex_unlock(&parent->child_mutex);
6700
6701 fput(parent->filp);
6702
6703 perf_group_detach(event);
6704 list_del_event(event, ctx);
6705 free_event(event);
6706 }
6707
6708 /*
6709 * free an unexposed, unused context as created by inheritance by
6710 * perf_event_init_task below, used by fork() in case of fail.
6711 */
6712 void perf_event_free_task(struct task_struct *task)
6713 {
6714 struct perf_event_context *ctx;
6715 struct perf_event *event, *tmp;
6716 int ctxn;
6717
6718 for_each_task_context_nr(ctxn) {
6719 ctx = task->perf_event_ctxp[ctxn];
6720 if (!ctx)
6721 continue;
6722
6723 mutex_lock(&ctx->mutex);
6724 again:
6725 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
6726 group_entry)
6727 perf_free_event(event, ctx);
6728
6729 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
6730 group_entry)
6731 perf_free_event(event, ctx);
6732
6733 if (!list_empty(&ctx->pinned_groups) ||
6734 !list_empty(&ctx->flexible_groups))
6735 goto again;
6736
6737 mutex_unlock(&ctx->mutex);
6738
6739 put_ctx(ctx);
6740 }
6741 }
6742
6743 void perf_event_delayed_put(struct task_struct *task)
6744 {
6745 int ctxn;
6746
6747 for_each_task_context_nr(ctxn)
6748 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
6749 }
6750
6751 /*
6752 * inherit a event from parent task to child task:
6753 */
6754 static struct perf_event *
6755 inherit_event(struct perf_event *parent_event,
6756 struct task_struct *parent,
6757 struct perf_event_context *parent_ctx,
6758 struct task_struct *child,
6759 struct perf_event *group_leader,
6760 struct perf_event_context *child_ctx)
6761 {
6762 struct perf_event *child_event;
6763 unsigned long flags;
6764
6765 /*
6766 * Instead of creating recursive hierarchies of events,
6767 * we link inherited events back to the original parent,
6768 * which has a filp for sure, which we use as the reference
6769 * count:
6770 */
6771 if (parent_event->parent)
6772 parent_event = parent_event->parent;
6773
6774 child_event = perf_event_alloc(&parent_event->attr,
6775 parent_event->cpu,
6776 child,
6777 group_leader, parent_event,
6778 NULL, NULL);
6779 if (IS_ERR(child_event))
6780 return child_event;
6781 get_ctx(child_ctx);
6782
6783 /*
6784 * Make the child state follow the state of the parent event,
6785 * not its attr.disabled bit. We hold the parent's mutex,
6786 * so we won't race with perf_event_{en, dis}able_family.
6787 */
6788 if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
6789 child_event->state = PERF_EVENT_STATE_INACTIVE;
6790 else
6791 child_event->state = PERF_EVENT_STATE_OFF;
6792
6793 if (parent_event->attr.freq) {
6794 u64 sample_period = parent_event->hw.sample_period;
6795 struct hw_perf_event *hwc = &child_event->hw;
6796
6797 hwc->sample_period = sample_period;
6798 hwc->last_period = sample_period;
6799
6800 local64_set(&hwc->period_left, sample_period);
6801 }
6802
6803 child_event->ctx = child_ctx;
6804 child_event->overflow_handler = parent_event->overflow_handler;
6805 child_event->overflow_handler_context
6806 = parent_event->overflow_handler_context;
6807
6808 /*
6809 * Precalculate sample_data sizes
6810 */
6811 perf_event__header_size(child_event);
6812 perf_event__id_header_size(child_event);
6813
6814 /*
6815 * Link it up in the child's context:
6816 */
6817 raw_spin_lock_irqsave(&child_ctx->lock, flags);
6818 add_event_to_ctx(child_event, child_ctx);
6819 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
6820
6821 /*
6822 * Get a reference to the parent filp - we will fput it
6823 * when the child event exits. This is safe to do because
6824 * we are in the parent and we know that the filp still
6825 * exists and has a nonzero count:
6826 */
6827 atomic_long_inc(&parent_event->filp->f_count);
6828
6829 /*
6830 * Link this into the parent event's child list
6831 */
6832 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
6833 mutex_lock(&parent_event->child_mutex);
6834 list_add_tail(&child_event->child_list, &parent_event->child_list);
6835 mutex_unlock(&parent_event->child_mutex);
6836
6837 return child_event;
6838 }
6839
6840 static int inherit_group(struct perf_event *parent_event,
6841 struct task_struct *parent,
6842 struct perf_event_context *parent_ctx,
6843 struct task_struct *child,
6844 struct perf_event_context *child_ctx)
6845 {
6846 struct perf_event *leader;
6847 struct perf_event *sub;
6848 struct perf_event *child_ctr;
6849
6850 leader = inherit_event(parent_event, parent, parent_ctx,
6851 child, NULL, child_ctx);
6852 if (IS_ERR(leader))
6853 return PTR_ERR(leader);
6854 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
6855 child_ctr = inherit_event(sub, parent, parent_ctx,
6856 child, leader, child_ctx);
6857 if (IS_ERR(child_ctr))
6858 return PTR_ERR(child_ctr);
6859 }
6860 return 0;
6861 }
6862
6863 static int
6864 inherit_task_group(struct perf_event *event, struct task_struct *parent,
6865 struct perf_event_context *parent_ctx,
6866 struct task_struct *child, int ctxn,
6867 int *inherited_all)
6868 {
6869 int ret;
6870 struct perf_event_context *child_ctx;
6871
6872 if (!event->attr.inherit) {
6873 *inherited_all = 0;
6874 return 0;
6875 }
6876
6877 child_ctx = child->perf_event_ctxp[ctxn];
6878 if (!child_ctx) {
6879 /*
6880 * This is executed from the parent task context, so
6881 * inherit events that have been marked for cloning.
6882 * First allocate and initialize a context for the
6883 * child.
6884 */
6885
6886 child_ctx = alloc_perf_context(event->pmu, child);
6887 if (!child_ctx)
6888 return -ENOMEM;
6889
6890 child->perf_event_ctxp[ctxn] = child_ctx;
6891 }
6892
6893 ret = inherit_group(event, parent, parent_ctx,
6894 child, child_ctx);
6895
6896 if (ret)
6897 *inherited_all = 0;
6898
6899 return ret;
6900 }
6901
6902 /*
6903 * Initialize the perf_event context in task_struct
6904 */
6905 int perf_event_init_context(struct task_struct *child, int ctxn)
6906 {
6907 struct perf_event_context *child_ctx, *parent_ctx;
6908 struct perf_event_context *cloned_ctx;
6909 struct perf_event *event;
6910 struct task_struct *parent = current;
6911 int inherited_all = 1;
6912 unsigned long flags;
6913 int ret = 0;
6914
6915 if (likely(!parent->perf_event_ctxp[ctxn]))
6916 return 0;
6917
6918 /*
6919 * If the parent's context is a clone, pin it so it won't get
6920 * swapped under us.
6921 */
6922 parent_ctx = perf_pin_task_context(parent, ctxn);
6923
6924 /*
6925 * No need to check if parent_ctx != NULL here; since we saw
6926 * it non-NULL earlier, the only reason for it to become NULL
6927 * is if we exit, and since we're currently in the middle of
6928 * a fork we can't be exiting at the same time.
6929 */
6930
6931 /*
6932 * Lock the parent list. No need to lock the child - not PID
6933 * hashed yet and not running, so nobody can access it.
6934 */
6935 mutex_lock(&parent_ctx->mutex);
6936
6937 /*
6938 * We dont have to disable NMIs - we are only looking at
6939 * the list, not manipulating it:
6940 */
6941 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
6942 ret = inherit_task_group(event, parent, parent_ctx,
6943 child, ctxn, &inherited_all);
6944 if (ret)
6945 break;
6946 }
6947
6948 /*
6949 * We can't hold ctx->lock when iterating the ->flexible_group list due
6950 * to allocations, but we need to prevent rotation because
6951 * rotate_ctx() will change the list from interrupt context.
6952 */
6953 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
6954 parent_ctx->rotate_disable = 1;
6955 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
6956
6957 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
6958 ret = inherit_task_group(event, parent, parent_ctx,
6959 child, ctxn, &inherited_all);
6960 if (ret)
6961 break;
6962 }
6963
6964 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
6965 parent_ctx->rotate_disable = 0;
6966
6967 child_ctx = child->perf_event_ctxp[ctxn];
6968
6969 if (child_ctx && inherited_all) {
6970 /*
6971 * Mark the child context as a clone of the parent
6972 * context, or of whatever the parent is a clone of.
6973 *
6974 * Note that if the parent is a clone, the holding of
6975 * parent_ctx->lock avoids it from being uncloned.
6976 */
6977 cloned_ctx = parent_ctx->parent_ctx;
6978 if (cloned_ctx) {
6979 child_ctx->parent_ctx = cloned_ctx;
6980 child_ctx->parent_gen = parent_ctx->parent_gen;
6981 } else {
6982 child_ctx->parent_ctx = parent_ctx;
6983 child_ctx->parent_gen = parent_ctx->generation;
6984 }
6985 get_ctx(child_ctx->parent_ctx);
6986 }
6987
6988 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
6989 mutex_unlock(&parent_ctx->mutex);
6990
6991 perf_unpin_context(parent_ctx);
6992 put_ctx(parent_ctx);
6993
6994 return ret;
6995 }
6996
6997 /*
6998 * Initialize the perf_event context in task_struct
6999 */
7000 int perf_event_init_task(struct task_struct *child)
7001 {
7002 int ctxn, ret;
7003
7004 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
7005 mutex_init(&child->perf_event_mutex);
7006 INIT_LIST_HEAD(&child->perf_event_list);
7007
7008 for_each_task_context_nr(ctxn) {
7009 ret = perf_event_init_context(child, ctxn);
7010 if (ret)
7011 return ret;
7012 }
7013
7014 return 0;
7015 }
7016
7017 static void __init perf_event_init_all_cpus(void)
7018 {
7019 struct swevent_htable *swhash;
7020 int cpu;
7021
7022 for_each_possible_cpu(cpu) {
7023 swhash = &per_cpu(swevent_htable, cpu);
7024 mutex_init(&swhash->hlist_mutex);
7025 INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
7026 }
7027 }
7028
7029 static void __cpuinit perf_event_init_cpu(int cpu)
7030 {
7031 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7032
7033 mutex_lock(&swhash->hlist_mutex);
7034 if (swhash->hlist_refcount > 0) {
7035 struct swevent_hlist *hlist;
7036
7037 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
7038 WARN_ON(!hlist);
7039 rcu_assign_pointer(swhash->swevent_hlist, hlist);
7040 }
7041 mutex_unlock(&swhash->hlist_mutex);
7042 }
7043
7044 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
7045 static void perf_pmu_rotate_stop(struct pmu *pmu)
7046 {
7047 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
7048
7049 WARN_ON(!irqs_disabled());
7050
7051 list_del_init(&cpuctx->rotation_list);
7052 }
7053
7054 static void __perf_event_exit_context(void *__info)
7055 {
7056 struct perf_event_context *ctx = __info;
7057 struct perf_event *event, *tmp;
7058
7059 perf_pmu_rotate_stop(ctx->pmu);
7060
7061 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
7062 __perf_remove_from_context(event);
7063 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
7064 __perf_remove_from_context(event);
7065 }
7066
7067 static void perf_event_exit_cpu_context(int cpu)
7068 {
7069 struct perf_event_context *ctx;
7070 struct pmu *pmu;
7071 int idx;
7072
7073 idx = srcu_read_lock(&pmus_srcu);
7074 list_for_each_entry_rcu(pmu, &pmus, entry) {
7075 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
7076
7077 mutex_lock(&ctx->mutex);
7078 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
7079 mutex_unlock(&ctx->mutex);
7080 }
7081 srcu_read_unlock(&pmus_srcu, idx);
7082 }
7083
7084 static void perf_event_exit_cpu(int cpu)
7085 {
7086 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7087
7088 mutex_lock(&swhash->hlist_mutex);
7089 swevent_hlist_release(swhash);
7090 mutex_unlock(&swhash->hlist_mutex);
7091
7092 perf_event_exit_cpu_context(cpu);
7093 }
7094 #else
7095 static inline void perf_event_exit_cpu(int cpu) { }
7096 #endif
7097
7098 static int
7099 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
7100 {
7101 int cpu;
7102
7103 for_each_online_cpu(cpu)
7104 perf_event_exit_cpu(cpu);
7105
7106 return NOTIFY_OK;
7107 }
7108
7109 /*
7110 * Run the perf reboot notifier at the very last possible moment so that
7111 * the generic watchdog code runs as long as possible.
7112 */
7113 static struct notifier_block perf_reboot_notifier = {
7114 .notifier_call = perf_reboot,
7115 .priority = INT_MIN,
7116 };
7117
7118 static int __cpuinit
7119 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
7120 {
7121 unsigned int cpu = (long)hcpu;
7122
7123 switch (action & ~CPU_TASKS_FROZEN) {
7124
7125 case CPU_UP_PREPARE:
7126 case CPU_DOWN_FAILED:
7127 perf_event_init_cpu(cpu);
7128 break;
7129
7130 case CPU_UP_CANCELED:
7131 case CPU_DOWN_PREPARE:
7132 perf_event_exit_cpu(cpu);
7133 break;
7134
7135 default:
7136 break;
7137 }
7138
7139 return NOTIFY_OK;
7140 }
7141
7142 void __init perf_event_init(void)
7143 {
7144 int ret;
7145
7146 idr_init(&pmu_idr);
7147
7148 perf_event_init_all_cpus();
7149 init_srcu_struct(&pmus_srcu);
7150 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
7151 perf_pmu_register(&perf_cpu_clock, NULL, -1);
7152 perf_pmu_register(&perf_task_clock, NULL, -1);
7153 perf_tp_register();
7154 perf_cpu_notifier(perf_cpu_notify);
7155 register_reboot_notifier(&perf_reboot_notifier);
7156
7157 ret = init_hw_breakpoint();
7158 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
7159
7160 /* do not patch jump label more than once per second */
7161 jump_label_rate_limit(&perf_sched_events, HZ);
7162
7163 /*
7164 * Build time assertion that we keep the data_head at the intended
7165 * location. IOW, validation we got the __reserved[] size right.
7166 */
7167 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
7168 != 1024);
7169 }
7170
7171 static int __init perf_event_sysfs_init(void)
7172 {
7173 struct pmu *pmu;
7174 int ret;
7175
7176 mutex_lock(&pmus_lock);
7177
7178 ret = bus_register(&pmu_bus);
7179 if (ret)
7180 goto unlock;
7181
7182 list_for_each_entry(pmu, &pmus, entry) {
7183 if (!pmu->name || pmu->type < 0)
7184 continue;
7185
7186 ret = pmu_dev_alloc(pmu);
7187 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
7188 }
7189 pmu_bus_running = 1;
7190 ret = 0;
7191
7192 unlock:
7193 mutex_unlock(&pmus_lock);
7194
7195 return ret;
7196 }
7197 device_initcall(perf_event_sysfs_init);
7198
7199 #ifdef CONFIG_CGROUP_PERF
7200 static struct cgroup_subsys_state *perf_cgroup_create(struct cgroup *cont)
7201 {
7202 struct perf_cgroup *jc;
7203
7204 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
7205 if (!jc)
7206 return ERR_PTR(-ENOMEM);
7207
7208 jc->info = alloc_percpu(struct perf_cgroup_info);
7209 if (!jc->info) {
7210 kfree(jc);
7211 return ERR_PTR(-ENOMEM);
7212 }
7213
7214 return &jc->css;
7215 }
7216
7217 static void perf_cgroup_destroy(struct cgroup *cont)
7218 {
7219 struct perf_cgroup *jc;
7220 jc = container_of(cgroup_subsys_state(cont, perf_subsys_id),
7221 struct perf_cgroup, css);
7222 free_percpu(jc->info);
7223 kfree(jc);
7224 }
7225
7226 static int __perf_cgroup_move(void *info)
7227 {
7228 struct task_struct *task = info;
7229 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
7230 return 0;
7231 }
7232
7233 static void perf_cgroup_attach(struct cgroup *cgrp, struct cgroup_taskset *tset)
7234 {
7235 struct task_struct *task;
7236
7237 cgroup_taskset_for_each(task, cgrp, tset)
7238 task_function_call(task, __perf_cgroup_move, task);
7239 }
7240
7241 static void perf_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp,
7242 struct task_struct *task)
7243 {
7244 /*
7245 * cgroup_exit() is called in the copy_process() failure path.
7246 * Ignore this case since the task hasn't ran yet, this avoids
7247 * trying to poke a half freed task state from generic code.
7248 */
7249 if (!(task->flags & PF_EXITING))
7250 return;
7251
7252 task_function_call(task, __perf_cgroup_move, task);
7253 }
7254
7255 struct cgroup_subsys perf_subsys = {
7256 .name = "perf_event",
7257 .subsys_id = perf_subsys_id,
7258 .create = perf_cgroup_create,
7259 .destroy = perf_cgroup_destroy,
7260 .exit = perf_cgroup_exit,
7261 .attach = perf_cgroup_attach,
7262 };
7263 #endif /* CONFIG_CGROUP_PERF */
This page took 0.206531 seconds and 5 git commands to generate.