clk: mxs: imx28: decrease the frequency of ref_io1 for SSP2 and SSP3
[deliverable/linux.git] / kernel / events / core.c
1 /*
2 * Performance events core code:
3 *
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8 *
9 * For licensing details see kernel-base/COPYING
10 */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/sysfs.h>
22 #include <linux/dcache.h>
23 #include <linux/percpu.h>
24 #include <linux/ptrace.h>
25 #include <linux/reboot.h>
26 #include <linux/vmstat.h>
27 #include <linux/device.h>
28 #include <linux/export.h>
29 #include <linux/vmalloc.h>
30 #include <linux/hardirq.h>
31 #include <linux/rculist.h>
32 #include <linux/uaccess.h>
33 #include <linux/syscalls.h>
34 #include <linux/anon_inodes.h>
35 #include <linux/kernel_stat.h>
36 #include <linux/perf_event.h>
37 #include <linux/ftrace_event.h>
38 #include <linux/hw_breakpoint.h>
39
40 #include "internal.h"
41
42 #include <asm/irq_regs.h>
43
44 struct remote_function_call {
45 struct task_struct *p;
46 int (*func)(void *info);
47 void *info;
48 int ret;
49 };
50
51 static void remote_function(void *data)
52 {
53 struct remote_function_call *tfc = data;
54 struct task_struct *p = tfc->p;
55
56 if (p) {
57 tfc->ret = -EAGAIN;
58 if (task_cpu(p) != smp_processor_id() || !task_curr(p))
59 return;
60 }
61
62 tfc->ret = tfc->func(tfc->info);
63 }
64
65 /**
66 * task_function_call - call a function on the cpu on which a task runs
67 * @p: the task to evaluate
68 * @func: the function to be called
69 * @info: the function call argument
70 *
71 * Calls the function @func when the task is currently running. This might
72 * be on the current CPU, which just calls the function directly
73 *
74 * returns: @func return value, or
75 * -ESRCH - when the process isn't running
76 * -EAGAIN - when the process moved away
77 */
78 static int
79 task_function_call(struct task_struct *p, int (*func) (void *info), void *info)
80 {
81 struct remote_function_call data = {
82 .p = p,
83 .func = func,
84 .info = info,
85 .ret = -ESRCH, /* No such (running) process */
86 };
87
88 if (task_curr(p))
89 smp_call_function_single(task_cpu(p), remote_function, &data, 1);
90
91 return data.ret;
92 }
93
94 /**
95 * cpu_function_call - call a function on the cpu
96 * @func: the function to be called
97 * @info: the function call argument
98 *
99 * Calls the function @func on the remote cpu.
100 *
101 * returns: @func return value or -ENXIO when the cpu is offline
102 */
103 static int cpu_function_call(int cpu, int (*func) (void *info), void *info)
104 {
105 struct remote_function_call data = {
106 .p = NULL,
107 .func = func,
108 .info = info,
109 .ret = -ENXIO, /* No such CPU */
110 };
111
112 smp_call_function_single(cpu, remote_function, &data, 1);
113
114 return data.ret;
115 }
116
117 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
118 PERF_FLAG_FD_OUTPUT |\
119 PERF_FLAG_PID_CGROUP)
120
121 /*
122 * branch priv levels that need permission checks
123 */
124 #define PERF_SAMPLE_BRANCH_PERM_PLM \
125 (PERF_SAMPLE_BRANCH_KERNEL |\
126 PERF_SAMPLE_BRANCH_HV)
127
128 enum event_type_t {
129 EVENT_FLEXIBLE = 0x1,
130 EVENT_PINNED = 0x2,
131 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
132 };
133
134 /*
135 * perf_sched_events : >0 events exist
136 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
137 */
138 struct static_key_deferred perf_sched_events __read_mostly;
139 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
140 static DEFINE_PER_CPU(atomic_t, perf_branch_stack_events);
141
142 static atomic_t nr_mmap_events __read_mostly;
143 static atomic_t nr_comm_events __read_mostly;
144 static atomic_t nr_task_events __read_mostly;
145
146 static LIST_HEAD(pmus);
147 static DEFINE_MUTEX(pmus_lock);
148 static struct srcu_struct pmus_srcu;
149
150 /*
151 * perf event paranoia level:
152 * -1 - not paranoid at all
153 * 0 - disallow raw tracepoint access for unpriv
154 * 1 - disallow cpu events for unpriv
155 * 2 - disallow kernel profiling for unpriv
156 */
157 int sysctl_perf_event_paranoid __read_mostly = 1;
158
159 /* Minimum for 512 kiB + 1 user control page */
160 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
161
162 /*
163 * max perf event sample rate
164 */
165 #define DEFAULT_MAX_SAMPLE_RATE 100000
166 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
167 static int max_samples_per_tick __read_mostly =
168 DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
169
170 int perf_proc_update_handler(struct ctl_table *table, int write,
171 void __user *buffer, size_t *lenp,
172 loff_t *ppos)
173 {
174 int ret = proc_dointvec(table, write, buffer, lenp, ppos);
175
176 if (ret || !write)
177 return ret;
178
179 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
180
181 return 0;
182 }
183
184 static atomic64_t perf_event_id;
185
186 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
187 enum event_type_t event_type);
188
189 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
190 enum event_type_t event_type,
191 struct task_struct *task);
192
193 static void update_context_time(struct perf_event_context *ctx);
194 static u64 perf_event_time(struct perf_event *event);
195
196 static void ring_buffer_attach(struct perf_event *event,
197 struct ring_buffer *rb);
198
199 void __weak perf_event_print_debug(void) { }
200
201 extern __weak const char *perf_pmu_name(void)
202 {
203 return "pmu";
204 }
205
206 static inline u64 perf_clock(void)
207 {
208 return local_clock();
209 }
210
211 static inline struct perf_cpu_context *
212 __get_cpu_context(struct perf_event_context *ctx)
213 {
214 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
215 }
216
217 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
218 struct perf_event_context *ctx)
219 {
220 raw_spin_lock(&cpuctx->ctx.lock);
221 if (ctx)
222 raw_spin_lock(&ctx->lock);
223 }
224
225 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
226 struct perf_event_context *ctx)
227 {
228 if (ctx)
229 raw_spin_unlock(&ctx->lock);
230 raw_spin_unlock(&cpuctx->ctx.lock);
231 }
232
233 #ifdef CONFIG_CGROUP_PERF
234
235 /*
236 * Must ensure cgroup is pinned (css_get) before calling
237 * this function. In other words, we cannot call this function
238 * if there is no cgroup event for the current CPU context.
239 */
240 static inline struct perf_cgroup *
241 perf_cgroup_from_task(struct task_struct *task)
242 {
243 return container_of(task_subsys_state(task, perf_subsys_id),
244 struct perf_cgroup, css);
245 }
246
247 static inline bool
248 perf_cgroup_match(struct perf_event *event)
249 {
250 struct perf_event_context *ctx = event->ctx;
251 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
252
253 return !event->cgrp || event->cgrp == cpuctx->cgrp;
254 }
255
256 static inline void perf_get_cgroup(struct perf_event *event)
257 {
258 css_get(&event->cgrp->css);
259 }
260
261 static inline void perf_put_cgroup(struct perf_event *event)
262 {
263 css_put(&event->cgrp->css);
264 }
265
266 static inline void perf_detach_cgroup(struct perf_event *event)
267 {
268 perf_put_cgroup(event);
269 event->cgrp = NULL;
270 }
271
272 static inline int is_cgroup_event(struct perf_event *event)
273 {
274 return event->cgrp != NULL;
275 }
276
277 static inline u64 perf_cgroup_event_time(struct perf_event *event)
278 {
279 struct perf_cgroup_info *t;
280
281 t = per_cpu_ptr(event->cgrp->info, event->cpu);
282 return t->time;
283 }
284
285 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
286 {
287 struct perf_cgroup_info *info;
288 u64 now;
289
290 now = perf_clock();
291
292 info = this_cpu_ptr(cgrp->info);
293
294 info->time += now - info->timestamp;
295 info->timestamp = now;
296 }
297
298 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
299 {
300 struct perf_cgroup *cgrp_out = cpuctx->cgrp;
301 if (cgrp_out)
302 __update_cgrp_time(cgrp_out);
303 }
304
305 static inline void update_cgrp_time_from_event(struct perf_event *event)
306 {
307 struct perf_cgroup *cgrp;
308
309 /*
310 * ensure we access cgroup data only when needed and
311 * when we know the cgroup is pinned (css_get)
312 */
313 if (!is_cgroup_event(event))
314 return;
315
316 cgrp = perf_cgroup_from_task(current);
317 /*
318 * Do not update time when cgroup is not active
319 */
320 if (cgrp == event->cgrp)
321 __update_cgrp_time(event->cgrp);
322 }
323
324 static inline void
325 perf_cgroup_set_timestamp(struct task_struct *task,
326 struct perf_event_context *ctx)
327 {
328 struct perf_cgroup *cgrp;
329 struct perf_cgroup_info *info;
330
331 /*
332 * ctx->lock held by caller
333 * ensure we do not access cgroup data
334 * unless we have the cgroup pinned (css_get)
335 */
336 if (!task || !ctx->nr_cgroups)
337 return;
338
339 cgrp = perf_cgroup_from_task(task);
340 info = this_cpu_ptr(cgrp->info);
341 info->timestamp = ctx->timestamp;
342 }
343
344 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
345 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
346
347 /*
348 * reschedule events based on the cgroup constraint of task.
349 *
350 * mode SWOUT : schedule out everything
351 * mode SWIN : schedule in based on cgroup for next
352 */
353 void perf_cgroup_switch(struct task_struct *task, int mode)
354 {
355 struct perf_cpu_context *cpuctx;
356 struct pmu *pmu;
357 unsigned long flags;
358
359 /*
360 * disable interrupts to avoid geting nr_cgroup
361 * changes via __perf_event_disable(). Also
362 * avoids preemption.
363 */
364 local_irq_save(flags);
365
366 /*
367 * we reschedule only in the presence of cgroup
368 * constrained events.
369 */
370 rcu_read_lock();
371
372 list_for_each_entry_rcu(pmu, &pmus, entry) {
373 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
374
375 /*
376 * perf_cgroup_events says at least one
377 * context on this CPU has cgroup events.
378 *
379 * ctx->nr_cgroups reports the number of cgroup
380 * events for a context.
381 */
382 if (cpuctx->ctx.nr_cgroups > 0) {
383 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
384 perf_pmu_disable(cpuctx->ctx.pmu);
385
386 if (mode & PERF_CGROUP_SWOUT) {
387 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
388 /*
389 * must not be done before ctxswout due
390 * to event_filter_match() in event_sched_out()
391 */
392 cpuctx->cgrp = NULL;
393 }
394
395 if (mode & PERF_CGROUP_SWIN) {
396 WARN_ON_ONCE(cpuctx->cgrp);
397 /* set cgrp before ctxsw in to
398 * allow event_filter_match() to not
399 * have to pass task around
400 */
401 cpuctx->cgrp = perf_cgroup_from_task(task);
402 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
403 }
404 perf_pmu_enable(cpuctx->ctx.pmu);
405 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
406 }
407 }
408
409 rcu_read_unlock();
410
411 local_irq_restore(flags);
412 }
413
414 static inline void perf_cgroup_sched_out(struct task_struct *task,
415 struct task_struct *next)
416 {
417 struct perf_cgroup *cgrp1;
418 struct perf_cgroup *cgrp2 = NULL;
419
420 /*
421 * we come here when we know perf_cgroup_events > 0
422 */
423 cgrp1 = perf_cgroup_from_task(task);
424
425 /*
426 * next is NULL when called from perf_event_enable_on_exec()
427 * that will systematically cause a cgroup_switch()
428 */
429 if (next)
430 cgrp2 = perf_cgroup_from_task(next);
431
432 /*
433 * only schedule out current cgroup events if we know
434 * that we are switching to a different cgroup. Otherwise,
435 * do no touch the cgroup events.
436 */
437 if (cgrp1 != cgrp2)
438 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
439 }
440
441 static inline void perf_cgroup_sched_in(struct task_struct *prev,
442 struct task_struct *task)
443 {
444 struct perf_cgroup *cgrp1;
445 struct perf_cgroup *cgrp2 = NULL;
446
447 /*
448 * we come here when we know perf_cgroup_events > 0
449 */
450 cgrp1 = perf_cgroup_from_task(task);
451
452 /* prev can never be NULL */
453 cgrp2 = perf_cgroup_from_task(prev);
454
455 /*
456 * only need to schedule in cgroup events if we are changing
457 * cgroup during ctxsw. Cgroup events were not scheduled
458 * out of ctxsw out if that was not the case.
459 */
460 if (cgrp1 != cgrp2)
461 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
462 }
463
464 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
465 struct perf_event_attr *attr,
466 struct perf_event *group_leader)
467 {
468 struct perf_cgroup *cgrp;
469 struct cgroup_subsys_state *css;
470 struct file *file;
471 int ret = 0, fput_needed;
472
473 file = fget_light(fd, &fput_needed);
474 if (!file)
475 return -EBADF;
476
477 css = cgroup_css_from_dir(file, perf_subsys_id);
478 if (IS_ERR(css)) {
479 ret = PTR_ERR(css);
480 goto out;
481 }
482
483 cgrp = container_of(css, struct perf_cgroup, css);
484 event->cgrp = cgrp;
485
486 /* must be done before we fput() the file */
487 perf_get_cgroup(event);
488
489 /*
490 * all events in a group must monitor
491 * the same cgroup because a task belongs
492 * to only one perf cgroup at a time
493 */
494 if (group_leader && group_leader->cgrp != cgrp) {
495 perf_detach_cgroup(event);
496 ret = -EINVAL;
497 }
498 out:
499 fput_light(file, fput_needed);
500 return ret;
501 }
502
503 static inline void
504 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
505 {
506 struct perf_cgroup_info *t;
507 t = per_cpu_ptr(event->cgrp->info, event->cpu);
508 event->shadow_ctx_time = now - t->timestamp;
509 }
510
511 static inline void
512 perf_cgroup_defer_enabled(struct perf_event *event)
513 {
514 /*
515 * when the current task's perf cgroup does not match
516 * the event's, we need to remember to call the
517 * perf_mark_enable() function the first time a task with
518 * a matching perf cgroup is scheduled in.
519 */
520 if (is_cgroup_event(event) && !perf_cgroup_match(event))
521 event->cgrp_defer_enabled = 1;
522 }
523
524 static inline void
525 perf_cgroup_mark_enabled(struct perf_event *event,
526 struct perf_event_context *ctx)
527 {
528 struct perf_event *sub;
529 u64 tstamp = perf_event_time(event);
530
531 if (!event->cgrp_defer_enabled)
532 return;
533
534 event->cgrp_defer_enabled = 0;
535
536 event->tstamp_enabled = tstamp - event->total_time_enabled;
537 list_for_each_entry(sub, &event->sibling_list, group_entry) {
538 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
539 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
540 sub->cgrp_defer_enabled = 0;
541 }
542 }
543 }
544 #else /* !CONFIG_CGROUP_PERF */
545
546 static inline bool
547 perf_cgroup_match(struct perf_event *event)
548 {
549 return true;
550 }
551
552 static inline void perf_detach_cgroup(struct perf_event *event)
553 {}
554
555 static inline int is_cgroup_event(struct perf_event *event)
556 {
557 return 0;
558 }
559
560 static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
561 {
562 return 0;
563 }
564
565 static inline void update_cgrp_time_from_event(struct perf_event *event)
566 {
567 }
568
569 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
570 {
571 }
572
573 static inline void perf_cgroup_sched_out(struct task_struct *task,
574 struct task_struct *next)
575 {
576 }
577
578 static inline void perf_cgroup_sched_in(struct task_struct *prev,
579 struct task_struct *task)
580 {
581 }
582
583 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
584 struct perf_event_attr *attr,
585 struct perf_event *group_leader)
586 {
587 return -EINVAL;
588 }
589
590 static inline void
591 perf_cgroup_set_timestamp(struct task_struct *task,
592 struct perf_event_context *ctx)
593 {
594 }
595
596 void
597 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
598 {
599 }
600
601 static inline void
602 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
603 {
604 }
605
606 static inline u64 perf_cgroup_event_time(struct perf_event *event)
607 {
608 return 0;
609 }
610
611 static inline void
612 perf_cgroup_defer_enabled(struct perf_event *event)
613 {
614 }
615
616 static inline void
617 perf_cgroup_mark_enabled(struct perf_event *event,
618 struct perf_event_context *ctx)
619 {
620 }
621 #endif
622
623 void perf_pmu_disable(struct pmu *pmu)
624 {
625 int *count = this_cpu_ptr(pmu->pmu_disable_count);
626 if (!(*count)++)
627 pmu->pmu_disable(pmu);
628 }
629
630 void perf_pmu_enable(struct pmu *pmu)
631 {
632 int *count = this_cpu_ptr(pmu->pmu_disable_count);
633 if (!--(*count))
634 pmu->pmu_enable(pmu);
635 }
636
637 static DEFINE_PER_CPU(struct list_head, rotation_list);
638
639 /*
640 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
641 * because they're strictly cpu affine and rotate_start is called with IRQs
642 * disabled, while rotate_context is called from IRQ context.
643 */
644 static void perf_pmu_rotate_start(struct pmu *pmu)
645 {
646 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
647 struct list_head *head = &__get_cpu_var(rotation_list);
648
649 WARN_ON(!irqs_disabled());
650
651 if (list_empty(&cpuctx->rotation_list))
652 list_add(&cpuctx->rotation_list, head);
653 }
654
655 static void get_ctx(struct perf_event_context *ctx)
656 {
657 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
658 }
659
660 static void put_ctx(struct perf_event_context *ctx)
661 {
662 if (atomic_dec_and_test(&ctx->refcount)) {
663 if (ctx->parent_ctx)
664 put_ctx(ctx->parent_ctx);
665 if (ctx->task)
666 put_task_struct(ctx->task);
667 kfree_rcu(ctx, rcu_head);
668 }
669 }
670
671 static void unclone_ctx(struct perf_event_context *ctx)
672 {
673 if (ctx->parent_ctx) {
674 put_ctx(ctx->parent_ctx);
675 ctx->parent_ctx = NULL;
676 }
677 }
678
679 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
680 {
681 /*
682 * only top level events have the pid namespace they were created in
683 */
684 if (event->parent)
685 event = event->parent;
686
687 return task_tgid_nr_ns(p, event->ns);
688 }
689
690 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
691 {
692 /*
693 * only top level events have the pid namespace they were created in
694 */
695 if (event->parent)
696 event = event->parent;
697
698 return task_pid_nr_ns(p, event->ns);
699 }
700
701 /*
702 * If we inherit events we want to return the parent event id
703 * to userspace.
704 */
705 static u64 primary_event_id(struct perf_event *event)
706 {
707 u64 id = event->id;
708
709 if (event->parent)
710 id = event->parent->id;
711
712 return id;
713 }
714
715 /*
716 * Get the perf_event_context for a task and lock it.
717 * This has to cope with with the fact that until it is locked,
718 * the context could get moved to another task.
719 */
720 static struct perf_event_context *
721 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
722 {
723 struct perf_event_context *ctx;
724
725 rcu_read_lock();
726 retry:
727 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
728 if (ctx) {
729 /*
730 * If this context is a clone of another, it might
731 * get swapped for another underneath us by
732 * perf_event_task_sched_out, though the
733 * rcu_read_lock() protects us from any context
734 * getting freed. Lock the context and check if it
735 * got swapped before we could get the lock, and retry
736 * if so. If we locked the right context, then it
737 * can't get swapped on us any more.
738 */
739 raw_spin_lock_irqsave(&ctx->lock, *flags);
740 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
741 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
742 goto retry;
743 }
744
745 if (!atomic_inc_not_zero(&ctx->refcount)) {
746 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
747 ctx = NULL;
748 }
749 }
750 rcu_read_unlock();
751 return ctx;
752 }
753
754 /*
755 * Get the context for a task and increment its pin_count so it
756 * can't get swapped to another task. This also increments its
757 * reference count so that the context can't get freed.
758 */
759 static struct perf_event_context *
760 perf_pin_task_context(struct task_struct *task, int ctxn)
761 {
762 struct perf_event_context *ctx;
763 unsigned long flags;
764
765 ctx = perf_lock_task_context(task, ctxn, &flags);
766 if (ctx) {
767 ++ctx->pin_count;
768 raw_spin_unlock_irqrestore(&ctx->lock, flags);
769 }
770 return ctx;
771 }
772
773 static void perf_unpin_context(struct perf_event_context *ctx)
774 {
775 unsigned long flags;
776
777 raw_spin_lock_irqsave(&ctx->lock, flags);
778 --ctx->pin_count;
779 raw_spin_unlock_irqrestore(&ctx->lock, flags);
780 }
781
782 /*
783 * Update the record of the current time in a context.
784 */
785 static void update_context_time(struct perf_event_context *ctx)
786 {
787 u64 now = perf_clock();
788
789 ctx->time += now - ctx->timestamp;
790 ctx->timestamp = now;
791 }
792
793 static u64 perf_event_time(struct perf_event *event)
794 {
795 struct perf_event_context *ctx = event->ctx;
796
797 if (is_cgroup_event(event))
798 return perf_cgroup_event_time(event);
799
800 return ctx ? ctx->time : 0;
801 }
802
803 /*
804 * Update the total_time_enabled and total_time_running fields for a event.
805 * The caller of this function needs to hold the ctx->lock.
806 */
807 static void update_event_times(struct perf_event *event)
808 {
809 struct perf_event_context *ctx = event->ctx;
810 u64 run_end;
811
812 if (event->state < PERF_EVENT_STATE_INACTIVE ||
813 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
814 return;
815 /*
816 * in cgroup mode, time_enabled represents
817 * the time the event was enabled AND active
818 * tasks were in the monitored cgroup. This is
819 * independent of the activity of the context as
820 * there may be a mix of cgroup and non-cgroup events.
821 *
822 * That is why we treat cgroup events differently
823 * here.
824 */
825 if (is_cgroup_event(event))
826 run_end = perf_cgroup_event_time(event);
827 else if (ctx->is_active)
828 run_end = ctx->time;
829 else
830 run_end = event->tstamp_stopped;
831
832 event->total_time_enabled = run_end - event->tstamp_enabled;
833
834 if (event->state == PERF_EVENT_STATE_INACTIVE)
835 run_end = event->tstamp_stopped;
836 else
837 run_end = perf_event_time(event);
838
839 event->total_time_running = run_end - event->tstamp_running;
840
841 }
842
843 /*
844 * Update total_time_enabled and total_time_running for all events in a group.
845 */
846 static void update_group_times(struct perf_event *leader)
847 {
848 struct perf_event *event;
849
850 update_event_times(leader);
851 list_for_each_entry(event, &leader->sibling_list, group_entry)
852 update_event_times(event);
853 }
854
855 static struct list_head *
856 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
857 {
858 if (event->attr.pinned)
859 return &ctx->pinned_groups;
860 else
861 return &ctx->flexible_groups;
862 }
863
864 /*
865 * Add a event from the lists for its context.
866 * Must be called with ctx->mutex and ctx->lock held.
867 */
868 static void
869 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
870 {
871 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
872 event->attach_state |= PERF_ATTACH_CONTEXT;
873
874 /*
875 * If we're a stand alone event or group leader, we go to the context
876 * list, group events are kept attached to the group so that
877 * perf_group_detach can, at all times, locate all siblings.
878 */
879 if (event->group_leader == event) {
880 struct list_head *list;
881
882 if (is_software_event(event))
883 event->group_flags |= PERF_GROUP_SOFTWARE;
884
885 list = ctx_group_list(event, ctx);
886 list_add_tail(&event->group_entry, list);
887 }
888
889 if (is_cgroup_event(event))
890 ctx->nr_cgroups++;
891
892 if (has_branch_stack(event))
893 ctx->nr_branch_stack++;
894
895 list_add_rcu(&event->event_entry, &ctx->event_list);
896 if (!ctx->nr_events)
897 perf_pmu_rotate_start(ctx->pmu);
898 ctx->nr_events++;
899 if (event->attr.inherit_stat)
900 ctx->nr_stat++;
901 }
902
903 /*
904 * Called at perf_event creation and when events are attached/detached from a
905 * group.
906 */
907 static void perf_event__read_size(struct perf_event *event)
908 {
909 int entry = sizeof(u64); /* value */
910 int size = 0;
911 int nr = 1;
912
913 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
914 size += sizeof(u64);
915
916 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
917 size += sizeof(u64);
918
919 if (event->attr.read_format & PERF_FORMAT_ID)
920 entry += sizeof(u64);
921
922 if (event->attr.read_format & PERF_FORMAT_GROUP) {
923 nr += event->group_leader->nr_siblings;
924 size += sizeof(u64);
925 }
926
927 size += entry * nr;
928 event->read_size = size;
929 }
930
931 static void perf_event__header_size(struct perf_event *event)
932 {
933 struct perf_sample_data *data;
934 u64 sample_type = event->attr.sample_type;
935 u16 size = 0;
936
937 perf_event__read_size(event);
938
939 if (sample_type & PERF_SAMPLE_IP)
940 size += sizeof(data->ip);
941
942 if (sample_type & PERF_SAMPLE_ADDR)
943 size += sizeof(data->addr);
944
945 if (sample_type & PERF_SAMPLE_PERIOD)
946 size += sizeof(data->period);
947
948 if (sample_type & PERF_SAMPLE_READ)
949 size += event->read_size;
950
951 event->header_size = size;
952 }
953
954 static void perf_event__id_header_size(struct perf_event *event)
955 {
956 struct perf_sample_data *data;
957 u64 sample_type = event->attr.sample_type;
958 u16 size = 0;
959
960 if (sample_type & PERF_SAMPLE_TID)
961 size += sizeof(data->tid_entry);
962
963 if (sample_type & PERF_SAMPLE_TIME)
964 size += sizeof(data->time);
965
966 if (sample_type & PERF_SAMPLE_ID)
967 size += sizeof(data->id);
968
969 if (sample_type & PERF_SAMPLE_STREAM_ID)
970 size += sizeof(data->stream_id);
971
972 if (sample_type & PERF_SAMPLE_CPU)
973 size += sizeof(data->cpu_entry);
974
975 event->id_header_size = size;
976 }
977
978 static void perf_group_attach(struct perf_event *event)
979 {
980 struct perf_event *group_leader = event->group_leader, *pos;
981
982 /*
983 * We can have double attach due to group movement in perf_event_open.
984 */
985 if (event->attach_state & PERF_ATTACH_GROUP)
986 return;
987
988 event->attach_state |= PERF_ATTACH_GROUP;
989
990 if (group_leader == event)
991 return;
992
993 if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
994 !is_software_event(event))
995 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
996
997 list_add_tail(&event->group_entry, &group_leader->sibling_list);
998 group_leader->nr_siblings++;
999
1000 perf_event__header_size(group_leader);
1001
1002 list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1003 perf_event__header_size(pos);
1004 }
1005
1006 /*
1007 * Remove a event from the lists for its context.
1008 * Must be called with ctx->mutex and ctx->lock held.
1009 */
1010 static void
1011 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1012 {
1013 struct perf_cpu_context *cpuctx;
1014 /*
1015 * We can have double detach due to exit/hot-unplug + close.
1016 */
1017 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1018 return;
1019
1020 event->attach_state &= ~PERF_ATTACH_CONTEXT;
1021
1022 if (is_cgroup_event(event)) {
1023 ctx->nr_cgroups--;
1024 cpuctx = __get_cpu_context(ctx);
1025 /*
1026 * if there are no more cgroup events
1027 * then cler cgrp to avoid stale pointer
1028 * in update_cgrp_time_from_cpuctx()
1029 */
1030 if (!ctx->nr_cgroups)
1031 cpuctx->cgrp = NULL;
1032 }
1033
1034 if (has_branch_stack(event))
1035 ctx->nr_branch_stack--;
1036
1037 ctx->nr_events--;
1038 if (event->attr.inherit_stat)
1039 ctx->nr_stat--;
1040
1041 list_del_rcu(&event->event_entry);
1042
1043 if (event->group_leader == event)
1044 list_del_init(&event->group_entry);
1045
1046 update_group_times(event);
1047
1048 /*
1049 * If event was in error state, then keep it
1050 * that way, otherwise bogus counts will be
1051 * returned on read(). The only way to get out
1052 * of error state is by explicit re-enabling
1053 * of the event
1054 */
1055 if (event->state > PERF_EVENT_STATE_OFF)
1056 event->state = PERF_EVENT_STATE_OFF;
1057 }
1058
1059 static void perf_group_detach(struct perf_event *event)
1060 {
1061 struct perf_event *sibling, *tmp;
1062 struct list_head *list = NULL;
1063
1064 /*
1065 * We can have double detach due to exit/hot-unplug + close.
1066 */
1067 if (!(event->attach_state & PERF_ATTACH_GROUP))
1068 return;
1069
1070 event->attach_state &= ~PERF_ATTACH_GROUP;
1071
1072 /*
1073 * If this is a sibling, remove it from its group.
1074 */
1075 if (event->group_leader != event) {
1076 list_del_init(&event->group_entry);
1077 event->group_leader->nr_siblings--;
1078 goto out;
1079 }
1080
1081 if (!list_empty(&event->group_entry))
1082 list = &event->group_entry;
1083
1084 /*
1085 * If this was a group event with sibling events then
1086 * upgrade the siblings to singleton events by adding them
1087 * to whatever list we are on.
1088 */
1089 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1090 if (list)
1091 list_move_tail(&sibling->group_entry, list);
1092 sibling->group_leader = sibling;
1093
1094 /* Inherit group flags from the previous leader */
1095 sibling->group_flags = event->group_flags;
1096 }
1097
1098 out:
1099 perf_event__header_size(event->group_leader);
1100
1101 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1102 perf_event__header_size(tmp);
1103 }
1104
1105 static inline int
1106 event_filter_match(struct perf_event *event)
1107 {
1108 return (event->cpu == -1 || event->cpu == smp_processor_id())
1109 && perf_cgroup_match(event);
1110 }
1111
1112 static void
1113 event_sched_out(struct perf_event *event,
1114 struct perf_cpu_context *cpuctx,
1115 struct perf_event_context *ctx)
1116 {
1117 u64 tstamp = perf_event_time(event);
1118 u64 delta;
1119 /*
1120 * An event which could not be activated because of
1121 * filter mismatch still needs to have its timings
1122 * maintained, otherwise bogus information is return
1123 * via read() for time_enabled, time_running:
1124 */
1125 if (event->state == PERF_EVENT_STATE_INACTIVE
1126 && !event_filter_match(event)) {
1127 delta = tstamp - event->tstamp_stopped;
1128 event->tstamp_running += delta;
1129 event->tstamp_stopped = tstamp;
1130 }
1131
1132 if (event->state != PERF_EVENT_STATE_ACTIVE)
1133 return;
1134
1135 event->state = PERF_EVENT_STATE_INACTIVE;
1136 if (event->pending_disable) {
1137 event->pending_disable = 0;
1138 event->state = PERF_EVENT_STATE_OFF;
1139 }
1140 event->tstamp_stopped = tstamp;
1141 event->pmu->del(event, 0);
1142 event->oncpu = -1;
1143
1144 if (!is_software_event(event))
1145 cpuctx->active_oncpu--;
1146 ctx->nr_active--;
1147 if (event->attr.freq && event->attr.sample_freq)
1148 ctx->nr_freq--;
1149 if (event->attr.exclusive || !cpuctx->active_oncpu)
1150 cpuctx->exclusive = 0;
1151 }
1152
1153 static void
1154 group_sched_out(struct perf_event *group_event,
1155 struct perf_cpu_context *cpuctx,
1156 struct perf_event_context *ctx)
1157 {
1158 struct perf_event *event;
1159 int state = group_event->state;
1160
1161 event_sched_out(group_event, cpuctx, ctx);
1162
1163 /*
1164 * Schedule out siblings (if any):
1165 */
1166 list_for_each_entry(event, &group_event->sibling_list, group_entry)
1167 event_sched_out(event, cpuctx, ctx);
1168
1169 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1170 cpuctx->exclusive = 0;
1171 }
1172
1173 /*
1174 * Cross CPU call to remove a performance event
1175 *
1176 * We disable the event on the hardware level first. After that we
1177 * remove it from the context list.
1178 */
1179 static int __perf_remove_from_context(void *info)
1180 {
1181 struct perf_event *event = info;
1182 struct perf_event_context *ctx = event->ctx;
1183 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1184
1185 raw_spin_lock(&ctx->lock);
1186 event_sched_out(event, cpuctx, ctx);
1187 list_del_event(event, ctx);
1188 if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
1189 ctx->is_active = 0;
1190 cpuctx->task_ctx = NULL;
1191 }
1192 raw_spin_unlock(&ctx->lock);
1193
1194 return 0;
1195 }
1196
1197
1198 /*
1199 * Remove the event from a task's (or a CPU's) list of events.
1200 *
1201 * CPU events are removed with a smp call. For task events we only
1202 * call when the task is on a CPU.
1203 *
1204 * If event->ctx is a cloned context, callers must make sure that
1205 * every task struct that event->ctx->task could possibly point to
1206 * remains valid. This is OK when called from perf_release since
1207 * that only calls us on the top-level context, which can't be a clone.
1208 * When called from perf_event_exit_task, it's OK because the
1209 * context has been detached from its task.
1210 */
1211 static void perf_remove_from_context(struct perf_event *event)
1212 {
1213 struct perf_event_context *ctx = event->ctx;
1214 struct task_struct *task = ctx->task;
1215
1216 lockdep_assert_held(&ctx->mutex);
1217
1218 if (!task) {
1219 /*
1220 * Per cpu events are removed via an smp call and
1221 * the removal is always successful.
1222 */
1223 cpu_function_call(event->cpu, __perf_remove_from_context, event);
1224 return;
1225 }
1226
1227 retry:
1228 if (!task_function_call(task, __perf_remove_from_context, event))
1229 return;
1230
1231 raw_spin_lock_irq(&ctx->lock);
1232 /*
1233 * If we failed to find a running task, but find the context active now
1234 * that we've acquired the ctx->lock, retry.
1235 */
1236 if (ctx->is_active) {
1237 raw_spin_unlock_irq(&ctx->lock);
1238 goto retry;
1239 }
1240
1241 /*
1242 * Since the task isn't running, its safe to remove the event, us
1243 * holding the ctx->lock ensures the task won't get scheduled in.
1244 */
1245 list_del_event(event, ctx);
1246 raw_spin_unlock_irq(&ctx->lock);
1247 }
1248
1249 /*
1250 * Cross CPU call to disable a performance event
1251 */
1252 static int __perf_event_disable(void *info)
1253 {
1254 struct perf_event *event = info;
1255 struct perf_event_context *ctx = event->ctx;
1256 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1257
1258 /*
1259 * If this is a per-task event, need to check whether this
1260 * event's task is the current task on this cpu.
1261 *
1262 * Can trigger due to concurrent perf_event_context_sched_out()
1263 * flipping contexts around.
1264 */
1265 if (ctx->task && cpuctx->task_ctx != ctx)
1266 return -EINVAL;
1267
1268 raw_spin_lock(&ctx->lock);
1269
1270 /*
1271 * If the event is on, turn it off.
1272 * If it is in error state, leave it in error state.
1273 */
1274 if (event->state >= PERF_EVENT_STATE_INACTIVE) {
1275 update_context_time(ctx);
1276 update_cgrp_time_from_event(event);
1277 update_group_times(event);
1278 if (event == event->group_leader)
1279 group_sched_out(event, cpuctx, ctx);
1280 else
1281 event_sched_out(event, cpuctx, ctx);
1282 event->state = PERF_EVENT_STATE_OFF;
1283 }
1284
1285 raw_spin_unlock(&ctx->lock);
1286
1287 return 0;
1288 }
1289
1290 /*
1291 * Disable a event.
1292 *
1293 * If event->ctx is a cloned context, callers must make sure that
1294 * every task struct that event->ctx->task could possibly point to
1295 * remains valid. This condition is satisifed when called through
1296 * perf_event_for_each_child or perf_event_for_each because they
1297 * hold the top-level event's child_mutex, so any descendant that
1298 * goes to exit will block in sync_child_event.
1299 * When called from perf_pending_event it's OK because event->ctx
1300 * is the current context on this CPU and preemption is disabled,
1301 * hence we can't get into perf_event_task_sched_out for this context.
1302 */
1303 void perf_event_disable(struct perf_event *event)
1304 {
1305 struct perf_event_context *ctx = event->ctx;
1306 struct task_struct *task = ctx->task;
1307
1308 if (!task) {
1309 /*
1310 * Disable the event on the cpu that it's on
1311 */
1312 cpu_function_call(event->cpu, __perf_event_disable, event);
1313 return;
1314 }
1315
1316 retry:
1317 if (!task_function_call(task, __perf_event_disable, event))
1318 return;
1319
1320 raw_spin_lock_irq(&ctx->lock);
1321 /*
1322 * If the event is still active, we need to retry the cross-call.
1323 */
1324 if (event->state == PERF_EVENT_STATE_ACTIVE) {
1325 raw_spin_unlock_irq(&ctx->lock);
1326 /*
1327 * Reload the task pointer, it might have been changed by
1328 * a concurrent perf_event_context_sched_out().
1329 */
1330 task = ctx->task;
1331 goto retry;
1332 }
1333
1334 /*
1335 * Since we have the lock this context can't be scheduled
1336 * in, so we can change the state safely.
1337 */
1338 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1339 update_group_times(event);
1340 event->state = PERF_EVENT_STATE_OFF;
1341 }
1342 raw_spin_unlock_irq(&ctx->lock);
1343 }
1344 EXPORT_SYMBOL_GPL(perf_event_disable);
1345
1346 static void perf_set_shadow_time(struct perf_event *event,
1347 struct perf_event_context *ctx,
1348 u64 tstamp)
1349 {
1350 /*
1351 * use the correct time source for the time snapshot
1352 *
1353 * We could get by without this by leveraging the
1354 * fact that to get to this function, the caller
1355 * has most likely already called update_context_time()
1356 * and update_cgrp_time_xx() and thus both timestamp
1357 * are identical (or very close). Given that tstamp is,
1358 * already adjusted for cgroup, we could say that:
1359 * tstamp - ctx->timestamp
1360 * is equivalent to
1361 * tstamp - cgrp->timestamp.
1362 *
1363 * Then, in perf_output_read(), the calculation would
1364 * work with no changes because:
1365 * - event is guaranteed scheduled in
1366 * - no scheduled out in between
1367 * - thus the timestamp would be the same
1368 *
1369 * But this is a bit hairy.
1370 *
1371 * So instead, we have an explicit cgroup call to remain
1372 * within the time time source all along. We believe it
1373 * is cleaner and simpler to understand.
1374 */
1375 if (is_cgroup_event(event))
1376 perf_cgroup_set_shadow_time(event, tstamp);
1377 else
1378 event->shadow_ctx_time = tstamp - ctx->timestamp;
1379 }
1380
1381 #define MAX_INTERRUPTS (~0ULL)
1382
1383 static void perf_log_throttle(struct perf_event *event, int enable);
1384
1385 static int
1386 event_sched_in(struct perf_event *event,
1387 struct perf_cpu_context *cpuctx,
1388 struct perf_event_context *ctx)
1389 {
1390 u64 tstamp = perf_event_time(event);
1391
1392 if (event->state <= PERF_EVENT_STATE_OFF)
1393 return 0;
1394
1395 event->state = PERF_EVENT_STATE_ACTIVE;
1396 event->oncpu = smp_processor_id();
1397
1398 /*
1399 * Unthrottle events, since we scheduled we might have missed several
1400 * ticks already, also for a heavily scheduling task there is little
1401 * guarantee it'll get a tick in a timely manner.
1402 */
1403 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
1404 perf_log_throttle(event, 1);
1405 event->hw.interrupts = 0;
1406 }
1407
1408 /*
1409 * The new state must be visible before we turn it on in the hardware:
1410 */
1411 smp_wmb();
1412
1413 if (event->pmu->add(event, PERF_EF_START)) {
1414 event->state = PERF_EVENT_STATE_INACTIVE;
1415 event->oncpu = -1;
1416 return -EAGAIN;
1417 }
1418
1419 event->tstamp_running += tstamp - event->tstamp_stopped;
1420
1421 perf_set_shadow_time(event, ctx, tstamp);
1422
1423 if (!is_software_event(event))
1424 cpuctx->active_oncpu++;
1425 ctx->nr_active++;
1426 if (event->attr.freq && event->attr.sample_freq)
1427 ctx->nr_freq++;
1428
1429 if (event->attr.exclusive)
1430 cpuctx->exclusive = 1;
1431
1432 return 0;
1433 }
1434
1435 static int
1436 group_sched_in(struct perf_event *group_event,
1437 struct perf_cpu_context *cpuctx,
1438 struct perf_event_context *ctx)
1439 {
1440 struct perf_event *event, *partial_group = NULL;
1441 struct pmu *pmu = group_event->pmu;
1442 u64 now = ctx->time;
1443 bool simulate = false;
1444
1445 if (group_event->state == PERF_EVENT_STATE_OFF)
1446 return 0;
1447
1448 pmu->start_txn(pmu);
1449
1450 if (event_sched_in(group_event, cpuctx, ctx)) {
1451 pmu->cancel_txn(pmu);
1452 return -EAGAIN;
1453 }
1454
1455 /*
1456 * Schedule in siblings as one group (if any):
1457 */
1458 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1459 if (event_sched_in(event, cpuctx, ctx)) {
1460 partial_group = event;
1461 goto group_error;
1462 }
1463 }
1464
1465 if (!pmu->commit_txn(pmu))
1466 return 0;
1467
1468 group_error:
1469 /*
1470 * Groups can be scheduled in as one unit only, so undo any
1471 * partial group before returning:
1472 * The events up to the failed event are scheduled out normally,
1473 * tstamp_stopped will be updated.
1474 *
1475 * The failed events and the remaining siblings need to have
1476 * their timings updated as if they had gone thru event_sched_in()
1477 * and event_sched_out(). This is required to get consistent timings
1478 * across the group. This also takes care of the case where the group
1479 * could never be scheduled by ensuring tstamp_stopped is set to mark
1480 * the time the event was actually stopped, such that time delta
1481 * calculation in update_event_times() is correct.
1482 */
1483 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1484 if (event == partial_group)
1485 simulate = true;
1486
1487 if (simulate) {
1488 event->tstamp_running += now - event->tstamp_stopped;
1489 event->tstamp_stopped = now;
1490 } else {
1491 event_sched_out(event, cpuctx, ctx);
1492 }
1493 }
1494 event_sched_out(group_event, cpuctx, ctx);
1495
1496 pmu->cancel_txn(pmu);
1497
1498 return -EAGAIN;
1499 }
1500
1501 /*
1502 * Work out whether we can put this event group on the CPU now.
1503 */
1504 static int group_can_go_on(struct perf_event *event,
1505 struct perf_cpu_context *cpuctx,
1506 int can_add_hw)
1507 {
1508 /*
1509 * Groups consisting entirely of software events can always go on.
1510 */
1511 if (event->group_flags & PERF_GROUP_SOFTWARE)
1512 return 1;
1513 /*
1514 * If an exclusive group is already on, no other hardware
1515 * events can go on.
1516 */
1517 if (cpuctx->exclusive)
1518 return 0;
1519 /*
1520 * If this group is exclusive and there are already
1521 * events on the CPU, it can't go on.
1522 */
1523 if (event->attr.exclusive && cpuctx->active_oncpu)
1524 return 0;
1525 /*
1526 * Otherwise, try to add it if all previous groups were able
1527 * to go on.
1528 */
1529 return can_add_hw;
1530 }
1531
1532 static void add_event_to_ctx(struct perf_event *event,
1533 struct perf_event_context *ctx)
1534 {
1535 u64 tstamp = perf_event_time(event);
1536
1537 list_add_event(event, ctx);
1538 perf_group_attach(event);
1539 event->tstamp_enabled = tstamp;
1540 event->tstamp_running = tstamp;
1541 event->tstamp_stopped = tstamp;
1542 }
1543
1544 static void task_ctx_sched_out(struct perf_event_context *ctx);
1545 static void
1546 ctx_sched_in(struct perf_event_context *ctx,
1547 struct perf_cpu_context *cpuctx,
1548 enum event_type_t event_type,
1549 struct task_struct *task);
1550
1551 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
1552 struct perf_event_context *ctx,
1553 struct task_struct *task)
1554 {
1555 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
1556 if (ctx)
1557 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
1558 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
1559 if (ctx)
1560 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
1561 }
1562
1563 /*
1564 * Cross CPU call to install and enable a performance event
1565 *
1566 * Must be called with ctx->mutex held
1567 */
1568 static int __perf_install_in_context(void *info)
1569 {
1570 struct perf_event *event = info;
1571 struct perf_event_context *ctx = event->ctx;
1572 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1573 struct perf_event_context *task_ctx = cpuctx->task_ctx;
1574 struct task_struct *task = current;
1575
1576 perf_ctx_lock(cpuctx, task_ctx);
1577 perf_pmu_disable(cpuctx->ctx.pmu);
1578
1579 /*
1580 * If there was an active task_ctx schedule it out.
1581 */
1582 if (task_ctx)
1583 task_ctx_sched_out(task_ctx);
1584
1585 /*
1586 * If the context we're installing events in is not the
1587 * active task_ctx, flip them.
1588 */
1589 if (ctx->task && task_ctx != ctx) {
1590 if (task_ctx)
1591 raw_spin_unlock(&task_ctx->lock);
1592 raw_spin_lock(&ctx->lock);
1593 task_ctx = ctx;
1594 }
1595
1596 if (task_ctx) {
1597 cpuctx->task_ctx = task_ctx;
1598 task = task_ctx->task;
1599 }
1600
1601 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
1602
1603 update_context_time(ctx);
1604 /*
1605 * update cgrp time only if current cgrp
1606 * matches event->cgrp. Must be done before
1607 * calling add_event_to_ctx()
1608 */
1609 update_cgrp_time_from_event(event);
1610
1611 add_event_to_ctx(event, ctx);
1612
1613 /*
1614 * Schedule everything back in
1615 */
1616 perf_event_sched_in(cpuctx, task_ctx, task);
1617
1618 perf_pmu_enable(cpuctx->ctx.pmu);
1619 perf_ctx_unlock(cpuctx, task_ctx);
1620
1621 return 0;
1622 }
1623
1624 /*
1625 * Attach a performance event to a context
1626 *
1627 * First we add the event to the list with the hardware enable bit
1628 * in event->hw_config cleared.
1629 *
1630 * If the event is attached to a task which is on a CPU we use a smp
1631 * call to enable it in the task context. The task might have been
1632 * scheduled away, but we check this in the smp call again.
1633 */
1634 static void
1635 perf_install_in_context(struct perf_event_context *ctx,
1636 struct perf_event *event,
1637 int cpu)
1638 {
1639 struct task_struct *task = ctx->task;
1640
1641 lockdep_assert_held(&ctx->mutex);
1642
1643 event->ctx = ctx;
1644
1645 if (!task) {
1646 /*
1647 * Per cpu events are installed via an smp call and
1648 * the install is always successful.
1649 */
1650 cpu_function_call(cpu, __perf_install_in_context, event);
1651 return;
1652 }
1653
1654 retry:
1655 if (!task_function_call(task, __perf_install_in_context, event))
1656 return;
1657
1658 raw_spin_lock_irq(&ctx->lock);
1659 /*
1660 * If we failed to find a running task, but find the context active now
1661 * that we've acquired the ctx->lock, retry.
1662 */
1663 if (ctx->is_active) {
1664 raw_spin_unlock_irq(&ctx->lock);
1665 goto retry;
1666 }
1667
1668 /*
1669 * Since the task isn't running, its safe to add the event, us holding
1670 * the ctx->lock ensures the task won't get scheduled in.
1671 */
1672 add_event_to_ctx(event, ctx);
1673 raw_spin_unlock_irq(&ctx->lock);
1674 }
1675
1676 /*
1677 * Put a event into inactive state and update time fields.
1678 * Enabling the leader of a group effectively enables all
1679 * the group members that aren't explicitly disabled, so we
1680 * have to update their ->tstamp_enabled also.
1681 * Note: this works for group members as well as group leaders
1682 * since the non-leader members' sibling_lists will be empty.
1683 */
1684 static void __perf_event_mark_enabled(struct perf_event *event)
1685 {
1686 struct perf_event *sub;
1687 u64 tstamp = perf_event_time(event);
1688
1689 event->state = PERF_EVENT_STATE_INACTIVE;
1690 event->tstamp_enabled = tstamp - event->total_time_enabled;
1691 list_for_each_entry(sub, &event->sibling_list, group_entry) {
1692 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
1693 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
1694 }
1695 }
1696
1697 /*
1698 * Cross CPU call to enable a performance event
1699 */
1700 static int __perf_event_enable(void *info)
1701 {
1702 struct perf_event *event = info;
1703 struct perf_event_context *ctx = event->ctx;
1704 struct perf_event *leader = event->group_leader;
1705 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1706 int err;
1707
1708 if (WARN_ON_ONCE(!ctx->is_active))
1709 return -EINVAL;
1710
1711 raw_spin_lock(&ctx->lock);
1712 update_context_time(ctx);
1713
1714 if (event->state >= PERF_EVENT_STATE_INACTIVE)
1715 goto unlock;
1716
1717 /*
1718 * set current task's cgroup time reference point
1719 */
1720 perf_cgroup_set_timestamp(current, ctx);
1721
1722 __perf_event_mark_enabled(event);
1723
1724 if (!event_filter_match(event)) {
1725 if (is_cgroup_event(event))
1726 perf_cgroup_defer_enabled(event);
1727 goto unlock;
1728 }
1729
1730 /*
1731 * If the event is in a group and isn't the group leader,
1732 * then don't put it on unless the group is on.
1733 */
1734 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
1735 goto unlock;
1736
1737 if (!group_can_go_on(event, cpuctx, 1)) {
1738 err = -EEXIST;
1739 } else {
1740 if (event == leader)
1741 err = group_sched_in(event, cpuctx, ctx);
1742 else
1743 err = event_sched_in(event, cpuctx, ctx);
1744 }
1745
1746 if (err) {
1747 /*
1748 * If this event can't go on and it's part of a
1749 * group, then the whole group has to come off.
1750 */
1751 if (leader != event)
1752 group_sched_out(leader, cpuctx, ctx);
1753 if (leader->attr.pinned) {
1754 update_group_times(leader);
1755 leader->state = PERF_EVENT_STATE_ERROR;
1756 }
1757 }
1758
1759 unlock:
1760 raw_spin_unlock(&ctx->lock);
1761
1762 return 0;
1763 }
1764
1765 /*
1766 * Enable a event.
1767 *
1768 * If event->ctx is a cloned context, callers must make sure that
1769 * every task struct that event->ctx->task could possibly point to
1770 * remains valid. This condition is satisfied when called through
1771 * perf_event_for_each_child or perf_event_for_each as described
1772 * for perf_event_disable.
1773 */
1774 void perf_event_enable(struct perf_event *event)
1775 {
1776 struct perf_event_context *ctx = event->ctx;
1777 struct task_struct *task = ctx->task;
1778
1779 if (!task) {
1780 /*
1781 * Enable the event on the cpu that it's on
1782 */
1783 cpu_function_call(event->cpu, __perf_event_enable, event);
1784 return;
1785 }
1786
1787 raw_spin_lock_irq(&ctx->lock);
1788 if (event->state >= PERF_EVENT_STATE_INACTIVE)
1789 goto out;
1790
1791 /*
1792 * If the event is in error state, clear that first.
1793 * That way, if we see the event in error state below, we
1794 * know that it has gone back into error state, as distinct
1795 * from the task having been scheduled away before the
1796 * cross-call arrived.
1797 */
1798 if (event->state == PERF_EVENT_STATE_ERROR)
1799 event->state = PERF_EVENT_STATE_OFF;
1800
1801 retry:
1802 if (!ctx->is_active) {
1803 __perf_event_mark_enabled(event);
1804 goto out;
1805 }
1806
1807 raw_spin_unlock_irq(&ctx->lock);
1808
1809 if (!task_function_call(task, __perf_event_enable, event))
1810 return;
1811
1812 raw_spin_lock_irq(&ctx->lock);
1813
1814 /*
1815 * If the context is active and the event is still off,
1816 * we need to retry the cross-call.
1817 */
1818 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
1819 /*
1820 * task could have been flipped by a concurrent
1821 * perf_event_context_sched_out()
1822 */
1823 task = ctx->task;
1824 goto retry;
1825 }
1826
1827 out:
1828 raw_spin_unlock_irq(&ctx->lock);
1829 }
1830 EXPORT_SYMBOL_GPL(perf_event_enable);
1831
1832 int perf_event_refresh(struct perf_event *event, int refresh)
1833 {
1834 /*
1835 * not supported on inherited events
1836 */
1837 if (event->attr.inherit || !is_sampling_event(event))
1838 return -EINVAL;
1839
1840 atomic_add(refresh, &event->event_limit);
1841 perf_event_enable(event);
1842
1843 return 0;
1844 }
1845 EXPORT_SYMBOL_GPL(perf_event_refresh);
1846
1847 static void ctx_sched_out(struct perf_event_context *ctx,
1848 struct perf_cpu_context *cpuctx,
1849 enum event_type_t event_type)
1850 {
1851 struct perf_event *event;
1852 int is_active = ctx->is_active;
1853
1854 ctx->is_active &= ~event_type;
1855 if (likely(!ctx->nr_events))
1856 return;
1857
1858 update_context_time(ctx);
1859 update_cgrp_time_from_cpuctx(cpuctx);
1860 if (!ctx->nr_active)
1861 return;
1862
1863 perf_pmu_disable(ctx->pmu);
1864 if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
1865 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
1866 group_sched_out(event, cpuctx, ctx);
1867 }
1868
1869 if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
1870 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
1871 group_sched_out(event, cpuctx, ctx);
1872 }
1873 perf_pmu_enable(ctx->pmu);
1874 }
1875
1876 /*
1877 * Test whether two contexts are equivalent, i.e. whether they
1878 * have both been cloned from the same version of the same context
1879 * and they both have the same number of enabled events.
1880 * If the number of enabled events is the same, then the set
1881 * of enabled events should be the same, because these are both
1882 * inherited contexts, therefore we can't access individual events
1883 * in them directly with an fd; we can only enable/disable all
1884 * events via prctl, or enable/disable all events in a family
1885 * via ioctl, which will have the same effect on both contexts.
1886 */
1887 static int context_equiv(struct perf_event_context *ctx1,
1888 struct perf_event_context *ctx2)
1889 {
1890 return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1891 && ctx1->parent_gen == ctx2->parent_gen
1892 && !ctx1->pin_count && !ctx2->pin_count;
1893 }
1894
1895 static void __perf_event_sync_stat(struct perf_event *event,
1896 struct perf_event *next_event)
1897 {
1898 u64 value;
1899
1900 if (!event->attr.inherit_stat)
1901 return;
1902
1903 /*
1904 * Update the event value, we cannot use perf_event_read()
1905 * because we're in the middle of a context switch and have IRQs
1906 * disabled, which upsets smp_call_function_single(), however
1907 * we know the event must be on the current CPU, therefore we
1908 * don't need to use it.
1909 */
1910 switch (event->state) {
1911 case PERF_EVENT_STATE_ACTIVE:
1912 event->pmu->read(event);
1913 /* fall-through */
1914
1915 case PERF_EVENT_STATE_INACTIVE:
1916 update_event_times(event);
1917 break;
1918
1919 default:
1920 break;
1921 }
1922
1923 /*
1924 * In order to keep per-task stats reliable we need to flip the event
1925 * values when we flip the contexts.
1926 */
1927 value = local64_read(&next_event->count);
1928 value = local64_xchg(&event->count, value);
1929 local64_set(&next_event->count, value);
1930
1931 swap(event->total_time_enabled, next_event->total_time_enabled);
1932 swap(event->total_time_running, next_event->total_time_running);
1933
1934 /*
1935 * Since we swizzled the values, update the user visible data too.
1936 */
1937 perf_event_update_userpage(event);
1938 perf_event_update_userpage(next_event);
1939 }
1940
1941 #define list_next_entry(pos, member) \
1942 list_entry(pos->member.next, typeof(*pos), member)
1943
1944 static void perf_event_sync_stat(struct perf_event_context *ctx,
1945 struct perf_event_context *next_ctx)
1946 {
1947 struct perf_event *event, *next_event;
1948
1949 if (!ctx->nr_stat)
1950 return;
1951
1952 update_context_time(ctx);
1953
1954 event = list_first_entry(&ctx->event_list,
1955 struct perf_event, event_entry);
1956
1957 next_event = list_first_entry(&next_ctx->event_list,
1958 struct perf_event, event_entry);
1959
1960 while (&event->event_entry != &ctx->event_list &&
1961 &next_event->event_entry != &next_ctx->event_list) {
1962
1963 __perf_event_sync_stat(event, next_event);
1964
1965 event = list_next_entry(event, event_entry);
1966 next_event = list_next_entry(next_event, event_entry);
1967 }
1968 }
1969
1970 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
1971 struct task_struct *next)
1972 {
1973 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
1974 struct perf_event_context *next_ctx;
1975 struct perf_event_context *parent;
1976 struct perf_cpu_context *cpuctx;
1977 int do_switch = 1;
1978
1979 if (likely(!ctx))
1980 return;
1981
1982 cpuctx = __get_cpu_context(ctx);
1983 if (!cpuctx->task_ctx)
1984 return;
1985
1986 rcu_read_lock();
1987 parent = rcu_dereference(ctx->parent_ctx);
1988 next_ctx = next->perf_event_ctxp[ctxn];
1989 if (parent && next_ctx &&
1990 rcu_dereference(next_ctx->parent_ctx) == parent) {
1991 /*
1992 * Looks like the two contexts are clones, so we might be
1993 * able to optimize the context switch. We lock both
1994 * contexts and check that they are clones under the
1995 * lock (including re-checking that neither has been
1996 * uncloned in the meantime). It doesn't matter which
1997 * order we take the locks because no other cpu could
1998 * be trying to lock both of these tasks.
1999 */
2000 raw_spin_lock(&ctx->lock);
2001 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2002 if (context_equiv(ctx, next_ctx)) {
2003 /*
2004 * XXX do we need a memory barrier of sorts
2005 * wrt to rcu_dereference() of perf_event_ctxp
2006 */
2007 task->perf_event_ctxp[ctxn] = next_ctx;
2008 next->perf_event_ctxp[ctxn] = ctx;
2009 ctx->task = next;
2010 next_ctx->task = task;
2011 do_switch = 0;
2012
2013 perf_event_sync_stat(ctx, next_ctx);
2014 }
2015 raw_spin_unlock(&next_ctx->lock);
2016 raw_spin_unlock(&ctx->lock);
2017 }
2018 rcu_read_unlock();
2019
2020 if (do_switch) {
2021 raw_spin_lock(&ctx->lock);
2022 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2023 cpuctx->task_ctx = NULL;
2024 raw_spin_unlock(&ctx->lock);
2025 }
2026 }
2027
2028 #define for_each_task_context_nr(ctxn) \
2029 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2030
2031 /*
2032 * Called from scheduler to remove the events of the current task,
2033 * with interrupts disabled.
2034 *
2035 * We stop each event and update the event value in event->count.
2036 *
2037 * This does not protect us against NMI, but disable()
2038 * sets the disabled bit in the control field of event _before_
2039 * accessing the event control register. If a NMI hits, then it will
2040 * not restart the event.
2041 */
2042 void __perf_event_task_sched_out(struct task_struct *task,
2043 struct task_struct *next)
2044 {
2045 int ctxn;
2046
2047 for_each_task_context_nr(ctxn)
2048 perf_event_context_sched_out(task, ctxn, next);
2049
2050 /*
2051 * if cgroup events exist on this CPU, then we need
2052 * to check if we have to switch out PMU state.
2053 * cgroup event are system-wide mode only
2054 */
2055 if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2056 perf_cgroup_sched_out(task, next);
2057 }
2058
2059 static void task_ctx_sched_out(struct perf_event_context *ctx)
2060 {
2061 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2062
2063 if (!cpuctx->task_ctx)
2064 return;
2065
2066 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2067 return;
2068
2069 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2070 cpuctx->task_ctx = NULL;
2071 }
2072
2073 /*
2074 * Called with IRQs disabled
2075 */
2076 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2077 enum event_type_t event_type)
2078 {
2079 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2080 }
2081
2082 static void
2083 ctx_pinned_sched_in(struct perf_event_context *ctx,
2084 struct perf_cpu_context *cpuctx)
2085 {
2086 struct perf_event *event;
2087
2088 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2089 if (event->state <= PERF_EVENT_STATE_OFF)
2090 continue;
2091 if (!event_filter_match(event))
2092 continue;
2093
2094 /* may need to reset tstamp_enabled */
2095 if (is_cgroup_event(event))
2096 perf_cgroup_mark_enabled(event, ctx);
2097
2098 if (group_can_go_on(event, cpuctx, 1))
2099 group_sched_in(event, cpuctx, ctx);
2100
2101 /*
2102 * If this pinned group hasn't been scheduled,
2103 * put it in error state.
2104 */
2105 if (event->state == PERF_EVENT_STATE_INACTIVE) {
2106 update_group_times(event);
2107 event->state = PERF_EVENT_STATE_ERROR;
2108 }
2109 }
2110 }
2111
2112 static void
2113 ctx_flexible_sched_in(struct perf_event_context *ctx,
2114 struct perf_cpu_context *cpuctx)
2115 {
2116 struct perf_event *event;
2117 int can_add_hw = 1;
2118
2119 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2120 /* Ignore events in OFF or ERROR state */
2121 if (event->state <= PERF_EVENT_STATE_OFF)
2122 continue;
2123 /*
2124 * Listen to the 'cpu' scheduling filter constraint
2125 * of events:
2126 */
2127 if (!event_filter_match(event))
2128 continue;
2129
2130 /* may need to reset tstamp_enabled */
2131 if (is_cgroup_event(event))
2132 perf_cgroup_mark_enabled(event, ctx);
2133
2134 if (group_can_go_on(event, cpuctx, can_add_hw)) {
2135 if (group_sched_in(event, cpuctx, ctx))
2136 can_add_hw = 0;
2137 }
2138 }
2139 }
2140
2141 static void
2142 ctx_sched_in(struct perf_event_context *ctx,
2143 struct perf_cpu_context *cpuctx,
2144 enum event_type_t event_type,
2145 struct task_struct *task)
2146 {
2147 u64 now;
2148 int is_active = ctx->is_active;
2149
2150 ctx->is_active |= event_type;
2151 if (likely(!ctx->nr_events))
2152 return;
2153
2154 now = perf_clock();
2155 ctx->timestamp = now;
2156 perf_cgroup_set_timestamp(task, ctx);
2157 /*
2158 * First go through the list and put on any pinned groups
2159 * in order to give them the best chance of going on.
2160 */
2161 if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
2162 ctx_pinned_sched_in(ctx, cpuctx);
2163
2164 /* Then walk through the lower prio flexible groups */
2165 if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
2166 ctx_flexible_sched_in(ctx, cpuctx);
2167 }
2168
2169 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
2170 enum event_type_t event_type,
2171 struct task_struct *task)
2172 {
2173 struct perf_event_context *ctx = &cpuctx->ctx;
2174
2175 ctx_sched_in(ctx, cpuctx, event_type, task);
2176 }
2177
2178 static void perf_event_context_sched_in(struct perf_event_context *ctx,
2179 struct task_struct *task)
2180 {
2181 struct perf_cpu_context *cpuctx;
2182
2183 cpuctx = __get_cpu_context(ctx);
2184 if (cpuctx->task_ctx == ctx)
2185 return;
2186
2187 perf_ctx_lock(cpuctx, ctx);
2188 perf_pmu_disable(ctx->pmu);
2189 /*
2190 * We want to keep the following priority order:
2191 * cpu pinned (that don't need to move), task pinned,
2192 * cpu flexible, task flexible.
2193 */
2194 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2195
2196 if (ctx->nr_events)
2197 cpuctx->task_ctx = ctx;
2198
2199 perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);
2200
2201 perf_pmu_enable(ctx->pmu);
2202 perf_ctx_unlock(cpuctx, ctx);
2203
2204 /*
2205 * Since these rotations are per-cpu, we need to ensure the
2206 * cpu-context we got scheduled on is actually rotating.
2207 */
2208 perf_pmu_rotate_start(ctx->pmu);
2209 }
2210
2211 /*
2212 * When sampling the branck stack in system-wide, it may be necessary
2213 * to flush the stack on context switch. This happens when the branch
2214 * stack does not tag its entries with the pid of the current task.
2215 * Otherwise it becomes impossible to associate a branch entry with a
2216 * task. This ambiguity is more likely to appear when the branch stack
2217 * supports priv level filtering and the user sets it to monitor only
2218 * at the user level (which could be a useful measurement in system-wide
2219 * mode). In that case, the risk is high of having a branch stack with
2220 * branch from multiple tasks. Flushing may mean dropping the existing
2221 * entries or stashing them somewhere in the PMU specific code layer.
2222 *
2223 * This function provides the context switch callback to the lower code
2224 * layer. It is invoked ONLY when there is at least one system-wide context
2225 * with at least one active event using taken branch sampling.
2226 */
2227 static void perf_branch_stack_sched_in(struct task_struct *prev,
2228 struct task_struct *task)
2229 {
2230 struct perf_cpu_context *cpuctx;
2231 struct pmu *pmu;
2232 unsigned long flags;
2233
2234 /* no need to flush branch stack if not changing task */
2235 if (prev == task)
2236 return;
2237
2238 local_irq_save(flags);
2239
2240 rcu_read_lock();
2241
2242 list_for_each_entry_rcu(pmu, &pmus, entry) {
2243 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2244
2245 /*
2246 * check if the context has at least one
2247 * event using PERF_SAMPLE_BRANCH_STACK
2248 */
2249 if (cpuctx->ctx.nr_branch_stack > 0
2250 && pmu->flush_branch_stack) {
2251
2252 pmu = cpuctx->ctx.pmu;
2253
2254 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2255
2256 perf_pmu_disable(pmu);
2257
2258 pmu->flush_branch_stack();
2259
2260 perf_pmu_enable(pmu);
2261
2262 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2263 }
2264 }
2265
2266 rcu_read_unlock();
2267
2268 local_irq_restore(flags);
2269 }
2270
2271 /*
2272 * Called from scheduler to add the events of the current task
2273 * with interrupts disabled.
2274 *
2275 * We restore the event value and then enable it.
2276 *
2277 * This does not protect us against NMI, but enable()
2278 * sets the enabled bit in the control field of event _before_
2279 * accessing the event control register. If a NMI hits, then it will
2280 * keep the event running.
2281 */
2282 void __perf_event_task_sched_in(struct task_struct *prev,
2283 struct task_struct *task)
2284 {
2285 struct perf_event_context *ctx;
2286 int ctxn;
2287
2288 for_each_task_context_nr(ctxn) {
2289 ctx = task->perf_event_ctxp[ctxn];
2290 if (likely(!ctx))
2291 continue;
2292
2293 perf_event_context_sched_in(ctx, task);
2294 }
2295 /*
2296 * if cgroup events exist on this CPU, then we need
2297 * to check if we have to switch in PMU state.
2298 * cgroup event are system-wide mode only
2299 */
2300 if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2301 perf_cgroup_sched_in(prev, task);
2302
2303 /* check for system-wide branch_stack events */
2304 if (atomic_read(&__get_cpu_var(perf_branch_stack_events)))
2305 perf_branch_stack_sched_in(prev, task);
2306 }
2307
2308 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
2309 {
2310 u64 frequency = event->attr.sample_freq;
2311 u64 sec = NSEC_PER_SEC;
2312 u64 divisor, dividend;
2313
2314 int count_fls, nsec_fls, frequency_fls, sec_fls;
2315
2316 count_fls = fls64(count);
2317 nsec_fls = fls64(nsec);
2318 frequency_fls = fls64(frequency);
2319 sec_fls = 30;
2320
2321 /*
2322 * We got @count in @nsec, with a target of sample_freq HZ
2323 * the target period becomes:
2324 *
2325 * @count * 10^9
2326 * period = -------------------
2327 * @nsec * sample_freq
2328 *
2329 */
2330
2331 /*
2332 * Reduce accuracy by one bit such that @a and @b converge
2333 * to a similar magnitude.
2334 */
2335 #define REDUCE_FLS(a, b) \
2336 do { \
2337 if (a##_fls > b##_fls) { \
2338 a >>= 1; \
2339 a##_fls--; \
2340 } else { \
2341 b >>= 1; \
2342 b##_fls--; \
2343 } \
2344 } while (0)
2345
2346 /*
2347 * Reduce accuracy until either term fits in a u64, then proceed with
2348 * the other, so that finally we can do a u64/u64 division.
2349 */
2350 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
2351 REDUCE_FLS(nsec, frequency);
2352 REDUCE_FLS(sec, count);
2353 }
2354
2355 if (count_fls + sec_fls > 64) {
2356 divisor = nsec * frequency;
2357
2358 while (count_fls + sec_fls > 64) {
2359 REDUCE_FLS(count, sec);
2360 divisor >>= 1;
2361 }
2362
2363 dividend = count * sec;
2364 } else {
2365 dividend = count * sec;
2366
2367 while (nsec_fls + frequency_fls > 64) {
2368 REDUCE_FLS(nsec, frequency);
2369 dividend >>= 1;
2370 }
2371
2372 divisor = nsec * frequency;
2373 }
2374
2375 if (!divisor)
2376 return dividend;
2377
2378 return div64_u64(dividend, divisor);
2379 }
2380
2381 static DEFINE_PER_CPU(int, perf_throttled_count);
2382 static DEFINE_PER_CPU(u64, perf_throttled_seq);
2383
2384 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
2385 {
2386 struct hw_perf_event *hwc = &event->hw;
2387 s64 period, sample_period;
2388 s64 delta;
2389
2390 period = perf_calculate_period(event, nsec, count);
2391
2392 delta = (s64)(period - hwc->sample_period);
2393 delta = (delta + 7) / 8; /* low pass filter */
2394
2395 sample_period = hwc->sample_period + delta;
2396
2397 if (!sample_period)
2398 sample_period = 1;
2399
2400 hwc->sample_period = sample_period;
2401
2402 if (local64_read(&hwc->period_left) > 8*sample_period) {
2403 if (disable)
2404 event->pmu->stop(event, PERF_EF_UPDATE);
2405
2406 local64_set(&hwc->period_left, 0);
2407
2408 if (disable)
2409 event->pmu->start(event, PERF_EF_RELOAD);
2410 }
2411 }
2412
2413 /*
2414 * combine freq adjustment with unthrottling to avoid two passes over the
2415 * events. At the same time, make sure, having freq events does not change
2416 * the rate of unthrottling as that would introduce bias.
2417 */
2418 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
2419 int needs_unthr)
2420 {
2421 struct perf_event *event;
2422 struct hw_perf_event *hwc;
2423 u64 now, period = TICK_NSEC;
2424 s64 delta;
2425
2426 /*
2427 * only need to iterate over all events iff:
2428 * - context have events in frequency mode (needs freq adjust)
2429 * - there are events to unthrottle on this cpu
2430 */
2431 if (!(ctx->nr_freq || needs_unthr))
2432 return;
2433
2434 raw_spin_lock(&ctx->lock);
2435 perf_pmu_disable(ctx->pmu);
2436
2437 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
2438 if (event->state != PERF_EVENT_STATE_ACTIVE)
2439 continue;
2440
2441 if (!event_filter_match(event))
2442 continue;
2443
2444 hwc = &event->hw;
2445
2446 if (needs_unthr && hwc->interrupts == MAX_INTERRUPTS) {
2447 hwc->interrupts = 0;
2448 perf_log_throttle(event, 1);
2449 event->pmu->start(event, 0);
2450 }
2451
2452 if (!event->attr.freq || !event->attr.sample_freq)
2453 continue;
2454
2455 /*
2456 * stop the event and update event->count
2457 */
2458 event->pmu->stop(event, PERF_EF_UPDATE);
2459
2460 now = local64_read(&event->count);
2461 delta = now - hwc->freq_count_stamp;
2462 hwc->freq_count_stamp = now;
2463
2464 /*
2465 * restart the event
2466 * reload only if value has changed
2467 * we have stopped the event so tell that
2468 * to perf_adjust_period() to avoid stopping it
2469 * twice.
2470 */
2471 if (delta > 0)
2472 perf_adjust_period(event, period, delta, false);
2473
2474 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
2475 }
2476
2477 perf_pmu_enable(ctx->pmu);
2478 raw_spin_unlock(&ctx->lock);
2479 }
2480
2481 /*
2482 * Round-robin a context's events:
2483 */
2484 static void rotate_ctx(struct perf_event_context *ctx)
2485 {
2486 /*
2487 * Rotate the first entry last of non-pinned groups. Rotation might be
2488 * disabled by the inheritance code.
2489 */
2490 if (!ctx->rotate_disable)
2491 list_rotate_left(&ctx->flexible_groups);
2492 }
2493
2494 /*
2495 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
2496 * because they're strictly cpu affine and rotate_start is called with IRQs
2497 * disabled, while rotate_context is called from IRQ context.
2498 */
2499 static void perf_rotate_context(struct perf_cpu_context *cpuctx)
2500 {
2501 struct perf_event_context *ctx = NULL;
2502 int rotate = 0, remove = 1;
2503
2504 if (cpuctx->ctx.nr_events) {
2505 remove = 0;
2506 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
2507 rotate = 1;
2508 }
2509
2510 ctx = cpuctx->task_ctx;
2511 if (ctx && ctx->nr_events) {
2512 remove = 0;
2513 if (ctx->nr_events != ctx->nr_active)
2514 rotate = 1;
2515 }
2516
2517 if (!rotate)
2518 goto done;
2519
2520 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2521 perf_pmu_disable(cpuctx->ctx.pmu);
2522
2523 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2524 if (ctx)
2525 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
2526
2527 rotate_ctx(&cpuctx->ctx);
2528 if (ctx)
2529 rotate_ctx(ctx);
2530
2531 perf_event_sched_in(cpuctx, ctx, current);
2532
2533 perf_pmu_enable(cpuctx->ctx.pmu);
2534 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2535 done:
2536 if (remove)
2537 list_del_init(&cpuctx->rotation_list);
2538 }
2539
2540 void perf_event_task_tick(void)
2541 {
2542 struct list_head *head = &__get_cpu_var(rotation_list);
2543 struct perf_cpu_context *cpuctx, *tmp;
2544 struct perf_event_context *ctx;
2545 int throttled;
2546
2547 WARN_ON(!irqs_disabled());
2548
2549 __this_cpu_inc(perf_throttled_seq);
2550 throttled = __this_cpu_xchg(perf_throttled_count, 0);
2551
2552 list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
2553 ctx = &cpuctx->ctx;
2554 perf_adjust_freq_unthr_context(ctx, throttled);
2555
2556 ctx = cpuctx->task_ctx;
2557 if (ctx)
2558 perf_adjust_freq_unthr_context(ctx, throttled);
2559
2560 if (cpuctx->jiffies_interval == 1 ||
2561 !(jiffies % cpuctx->jiffies_interval))
2562 perf_rotate_context(cpuctx);
2563 }
2564 }
2565
2566 static int event_enable_on_exec(struct perf_event *event,
2567 struct perf_event_context *ctx)
2568 {
2569 if (!event->attr.enable_on_exec)
2570 return 0;
2571
2572 event->attr.enable_on_exec = 0;
2573 if (event->state >= PERF_EVENT_STATE_INACTIVE)
2574 return 0;
2575
2576 __perf_event_mark_enabled(event);
2577
2578 return 1;
2579 }
2580
2581 /*
2582 * Enable all of a task's events that have been marked enable-on-exec.
2583 * This expects task == current.
2584 */
2585 static void perf_event_enable_on_exec(struct perf_event_context *ctx)
2586 {
2587 struct perf_event *event;
2588 unsigned long flags;
2589 int enabled = 0;
2590 int ret;
2591
2592 local_irq_save(flags);
2593 if (!ctx || !ctx->nr_events)
2594 goto out;
2595
2596 /*
2597 * We must ctxsw out cgroup events to avoid conflict
2598 * when invoking perf_task_event_sched_in() later on
2599 * in this function. Otherwise we end up trying to
2600 * ctxswin cgroup events which are already scheduled
2601 * in.
2602 */
2603 perf_cgroup_sched_out(current, NULL);
2604
2605 raw_spin_lock(&ctx->lock);
2606 task_ctx_sched_out(ctx);
2607
2608 list_for_each_entry(event, &ctx->event_list, event_entry) {
2609 ret = event_enable_on_exec(event, ctx);
2610 if (ret)
2611 enabled = 1;
2612 }
2613
2614 /*
2615 * Unclone this context if we enabled any event.
2616 */
2617 if (enabled)
2618 unclone_ctx(ctx);
2619
2620 raw_spin_unlock(&ctx->lock);
2621
2622 /*
2623 * Also calls ctxswin for cgroup events, if any:
2624 */
2625 perf_event_context_sched_in(ctx, ctx->task);
2626 out:
2627 local_irq_restore(flags);
2628 }
2629
2630 /*
2631 * Cross CPU call to read the hardware event
2632 */
2633 static void __perf_event_read(void *info)
2634 {
2635 struct perf_event *event = info;
2636 struct perf_event_context *ctx = event->ctx;
2637 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2638
2639 /*
2640 * If this is a task context, we need to check whether it is
2641 * the current task context of this cpu. If not it has been
2642 * scheduled out before the smp call arrived. In that case
2643 * event->count would have been updated to a recent sample
2644 * when the event was scheduled out.
2645 */
2646 if (ctx->task && cpuctx->task_ctx != ctx)
2647 return;
2648
2649 raw_spin_lock(&ctx->lock);
2650 if (ctx->is_active) {
2651 update_context_time(ctx);
2652 update_cgrp_time_from_event(event);
2653 }
2654 update_event_times(event);
2655 if (event->state == PERF_EVENT_STATE_ACTIVE)
2656 event->pmu->read(event);
2657 raw_spin_unlock(&ctx->lock);
2658 }
2659
2660 static inline u64 perf_event_count(struct perf_event *event)
2661 {
2662 return local64_read(&event->count) + atomic64_read(&event->child_count);
2663 }
2664
2665 static u64 perf_event_read(struct perf_event *event)
2666 {
2667 /*
2668 * If event is enabled and currently active on a CPU, update the
2669 * value in the event structure:
2670 */
2671 if (event->state == PERF_EVENT_STATE_ACTIVE) {
2672 smp_call_function_single(event->oncpu,
2673 __perf_event_read, event, 1);
2674 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
2675 struct perf_event_context *ctx = event->ctx;
2676 unsigned long flags;
2677
2678 raw_spin_lock_irqsave(&ctx->lock, flags);
2679 /*
2680 * may read while context is not active
2681 * (e.g., thread is blocked), in that case
2682 * we cannot update context time
2683 */
2684 if (ctx->is_active) {
2685 update_context_time(ctx);
2686 update_cgrp_time_from_event(event);
2687 }
2688 update_event_times(event);
2689 raw_spin_unlock_irqrestore(&ctx->lock, flags);
2690 }
2691
2692 return perf_event_count(event);
2693 }
2694
2695 /*
2696 * Initialize the perf_event context in a task_struct:
2697 */
2698 static void __perf_event_init_context(struct perf_event_context *ctx)
2699 {
2700 raw_spin_lock_init(&ctx->lock);
2701 mutex_init(&ctx->mutex);
2702 INIT_LIST_HEAD(&ctx->pinned_groups);
2703 INIT_LIST_HEAD(&ctx->flexible_groups);
2704 INIT_LIST_HEAD(&ctx->event_list);
2705 atomic_set(&ctx->refcount, 1);
2706 }
2707
2708 static struct perf_event_context *
2709 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
2710 {
2711 struct perf_event_context *ctx;
2712
2713 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
2714 if (!ctx)
2715 return NULL;
2716
2717 __perf_event_init_context(ctx);
2718 if (task) {
2719 ctx->task = task;
2720 get_task_struct(task);
2721 }
2722 ctx->pmu = pmu;
2723
2724 return ctx;
2725 }
2726
2727 static struct task_struct *
2728 find_lively_task_by_vpid(pid_t vpid)
2729 {
2730 struct task_struct *task;
2731 int err;
2732
2733 rcu_read_lock();
2734 if (!vpid)
2735 task = current;
2736 else
2737 task = find_task_by_vpid(vpid);
2738 if (task)
2739 get_task_struct(task);
2740 rcu_read_unlock();
2741
2742 if (!task)
2743 return ERR_PTR(-ESRCH);
2744
2745 /* Reuse ptrace permission checks for now. */
2746 err = -EACCES;
2747 if (!ptrace_may_access(task, PTRACE_MODE_READ))
2748 goto errout;
2749
2750 return task;
2751 errout:
2752 put_task_struct(task);
2753 return ERR_PTR(err);
2754
2755 }
2756
2757 /*
2758 * Returns a matching context with refcount and pincount.
2759 */
2760 static struct perf_event_context *
2761 find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
2762 {
2763 struct perf_event_context *ctx;
2764 struct perf_cpu_context *cpuctx;
2765 unsigned long flags;
2766 int ctxn, err;
2767
2768 if (!task) {
2769 /* Must be root to operate on a CPU event: */
2770 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
2771 return ERR_PTR(-EACCES);
2772
2773 /*
2774 * We could be clever and allow to attach a event to an
2775 * offline CPU and activate it when the CPU comes up, but
2776 * that's for later.
2777 */
2778 if (!cpu_online(cpu))
2779 return ERR_PTR(-ENODEV);
2780
2781 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
2782 ctx = &cpuctx->ctx;
2783 get_ctx(ctx);
2784 ++ctx->pin_count;
2785
2786 return ctx;
2787 }
2788
2789 err = -EINVAL;
2790 ctxn = pmu->task_ctx_nr;
2791 if (ctxn < 0)
2792 goto errout;
2793
2794 retry:
2795 ctx = perf_lock_task_context(task, ctxn, &flags);
2796 if (ctx) {
2797 unclone_ctx(ctx);
2798 ++ctx->pin_count;
2799 raw_spin_unlock_irqrestore(&ctx->lock, flags);
2800 } else {
2801 ctx = alloc_perf_context(pmu, task);
2802 err = -ENOMEM;
2803 if (!ctx)
2804 goto errout;
2805
2806 err = 0;
2807 mutex_lock(&task->perf_event_mutex);
2808 /*
2809 * If it has already passed perf_event_exit_task().
2810 * we must see PF_EXITING, it takes this mutex too.
2811 */
2812 if (task->flags & PF_EXITING)
2813 err = -ESRCH;
2814 else if (task->perf_event_ctxp[ctxn])
2815 err = -EAGAIN;
2816 else {
2817 get_ctx(ctx);
2818 ++ctx->pin_count;
2819 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
2820 }
2821 mutex_unlock(&task->perf_event_mutex);
2822
2823 if (unlikely(err)) {
2824 put_ctx(ctx);
2825
2826 if (err == -EAGAIN)
2827 goto retry;
2828 goto errout;
2829 }
2830 }
2831
2832 return ctx;
2833
2834 errout:
2835 return ERR_PTR(err);
2836 }
2837
2838 static void perf_event_free_filter(struct perf_event *event);
2839
2840 static void free_event_rcu(struct rcu_head *head)
2841 {
2842 struct perf_event *event;
2843
2844 event = container_of(head, struct perf_event, rcu_head);
2845 if (event->ns)
2846 put_pid_ns(event->ns);
2847 perf_event_free_filter(event);
2848 kfree(event);
2849 }
2850
2851 static void ring_buffer_put(struct ring_buffer *rb);
2852
2853 static void free_event(struct perf_event *event)
2854 {
2855 irq_work_sync(&event->pending);
2856
2857 if (!event->parent) {
2858 if (event->attach_state & PERF_ATTACH_TASK)
2859 static_key_slow_dec_deferred(&perf_sched_events);
2860 if (event->attr.mmap || event->attr.mmap_data)
2861 atomic_dec(&nr_mmap_events);
2862 if (event->attr.comm)
2863 atomic_dec(&nr_comm_events);
2864 if (event->attr.task)
2865 atomic_dec(&nr_task_events);
2866 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
2867 put_callchain_buffers();
2868 if (is_cgroup_event(event)) {
2869 atomic_dec(&per_cpu(perf_cgroup_events, event->cpu));
2870 static_key_slow_dec_deferred(&perf_sched_events);
2871 }
2872
2873 if (has_branch_stack(event)) {
2874 static_key_slow_dec_deferred(&perf_sched_events);
2875 /* is system-wide event */
2876 if (!(event->attach_state & PERF_ATTACH_TASK))
2877 atomic_dec(&per_cpu(perf_branch_stack_events,
2878 event->cpu));
2879 }
2880 }
2881
2882 if (event->rb) {
2883 ring_buffer_put(event->rb);
2884 event->rb = NULL;
2885 }
2886
2887 if (is_cgroup_event(event))
2888 perf_detach_cgroup(event);
2889
2890 if (event->destroy)
2891 event->destroy(event);
2892
2893 if (event->ctx)
2894 put_ctx(event->ctx);
2895
2896 call_rcu(&event->rcu_head, free_event_rcu);
2897 }
2898
2899 int perf_event_release_kernel(struct perf_event *event)
2900 {
2901 struct perf_event_context *ctx = event->ctx;
2902
2903 WARN_ON_ONCE(ctx->parent_ctx);
2904 /*
2905 * There are two ways this annotation is useful:
2906 *
2907 * 1) there is a lock recursion from perf_event_exit_task
2908 * see the comment there.
2909 *
2910 * 2) there is a lock-inversion with mmap_sem through
2911 * perf_event_read_group(), which takes faults while
2912 * holding ctx->mutex, however this is called after
2913 * the last filedesc died, so there is no possibility
2914 * to trigger the AB-BA case.
2915 */
2916 mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
2917 raw_spin_lock_irq(&ctx->lock);
2918 perf_group_detach(event);
2919 raw_spin_unlock_irq(&ctx->lock);
2920 perf_remove_from_context(event);
2921 mutex_unlock(&ctx->mutex);
2922
2923 free_event(event);
2924
2925 return 0;
2926 }
2927 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
2928
2929 /*
2930 * Called when the last reference to the file is gone.
2931 */
2932 static int perf_release(struct inode *inode, struct file *file)
2933 {
2934 struct perf_event *event = file->private_data;
2935 struct task_struct *owner;
2936
2937 file->private_data = NULL;
2938
2939 rcu_read_lock();
2940 owner = ACCESS_ONCE(event->owner);
2941 /*
2942 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
2943 * !owner it means the list deletion is complete and we can indeed
2944 * free this event, otherwise we need to serialize on
2945 * owner->perf_event_mutex.
2946 */
2947 smp_read_barrier_depends();
2948 if (owner) {
2949 /*
2950 * Since delayed_put_task_struct() also drops the last
2951 * task reference we can safely take a new reference
2952 * while holding the rcu_read_lock().
2953 */
2954 get_task_struct(owner);
2955 }
2956 rcu_read_unlock();
2957
2958 if (owner) {
2959 mutex_lock(&owner->perf_event_mutex);
2960 /*
2961 * We have to re-check the event->owner field, if it is cleared
2962 * we raced with perf_event_exit_task(), acquiring the mutex
2963 * ensured they're done, and we can proceed with freeing the
2964 * event.
2965 */
2966 if (event->owner)
2967 list_del_init(&event->owner_entry);
2968 mutex_unlock(&owner->perf_event_mutex);
2969 put_task_struct(owner);
2970 }
2971
2972 return perf_event_release_kernel(event);
2973 }
2974
2975 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
2976 {
2977 struct perf_event *child;
2978 u64 total = 0;
2979
2980 *enabled = 0;
2981 *running = 0;
2982
2983 mutex_lock(&event->child_mutex);
2984 total += perf_event_read(event);
2985 *enabled += event->total_time_enabled +
2986 atomic64_read(&event->child_total_time_enabled);
2987 *running += event->total_time_running +
2988 atomic64_read(&event->child_total_time_running);
2989
2990 list_for_each_entry(child, &event->child_list, child_list) {
2991 total += perf_event_read(child);
2992 *enabled += child->total_time_enabled;
2993 *running += child->total_time_running;
2994 }
2995 mutex_unlock(&event->child_mutex);
2996
2997 return total;
2998 }
2999 EXPORT_SYMBOL_GPL(perf_event_read_value);
3000
3001 static int perf_event_read_group(struct perf_event *event,
3002 u64 read_format, char __user *buf)
3003 {
3004 struct perf_event *leader = event->group_leader, *sub;
3005 int n = 0, size = 0, ret = -EFAULT;
3006 struct perf_event_context *ctx = leader->ctx;
3007 u64 values[5];
3008 u64 count, enabled, running;
3009
3010 mutex_lock(&ctx->mutex);
3011 count = perf_event_read_value(leader, &enabled, &running);
3012
3013 values[n++] = 1 + leader->nr_siblings;
3014 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3015 values[n++] = enabled;
3016 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3017 values[n++] = running;
3018 values[n++] = count;
3019 if (read_format & PERF_FORMAT_ID)
3020 values[n++] = primary_event_id(leader);
3021
3022 size = n * sizeof(u64);
3023
3024 if (copy_to_user(buf, values, size))
3025 goto unlock;
3026
3027 ret = size;
3028
3029 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3030 n = 0;
3031
3032 values[n++] = perf_event_read_value(sub, &enabled, &running);
3033 if (read_format & PERF_FORMAT_ID)
3034 values[n++] = primary_event_id(sub);
3035
3036 size = n * sizeof(u64);
3037
3038 if (copy_to_user(buf + ret, values, size)) {
3039 ret = -EFAULT;
3040 goto unlock;
3041 }
3042
3043 ret += size;
3044 }
3045 unlock:
3046 mutex_unlock(&ctx->mutex);
3047
3048 return ret;
3049 }
3050
3051 static int perf_event_read_one(struct perf_event *event,
3052 u64 read_format, char __user *buf)
3053 {
3054 u64 enabled, running;
3055 u64 values[4];
3056 int n = 0;
3057
3058 values[n++] = perf_event_read_value(event, &enabled, &running);
3059 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3060 values[n++] = enabled;
3061 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3062 values[n++] = running;
3063 if (read_format & PERF_FORMAT_ID)
3064 values[n++] = primary_event_id(event);
3065
3066 if (copy_to_user(buf, values, n * sizeof(u64)))
3067 return -EFAULT;
3068
3069 return n * sizeof(u64);
3070 }
3071
3072 /*
3073 * Read the performance event - simple non blocking version for now
3074 */
3075 static ssize_t
3076 perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
3077 {
3078 u64 read_format = event->attr.read_format;
3079 int ret;
3080
3081 /*
3082 * Return end-of-file for a read on a event that is in
3083 * error state (i.e. because it was pinned but it couldn't be
3084 * scheduled on to the CPU at some point).
3085 */
3086 if (event->state == PERF_EVENT_STATE_ERROR)
3087 return 0;
3088
3089 if (count < event->read_size)
3090 return -ENOSPC;
3091
3092 WARN_ON_ONCE(event->ctx->parent_ctx);
3093 if (read_format & PERF_FORMAT_GROUP)
3094 ret = perf_event_read_group(event, read_format, buf);
3095 else
3096 ret = perf_event_read_one(event, read_format, buf);
3097
3098 return ret;
3099 }
3100
3101 static ssize_t
3102 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
3103 {
3104 struct perf_event *event = file->private_data;
3105
3106 return perf_read_hw(event, buf, count);
3107 }
3108
3109 static unsigned int perf_poll(struct file *file, poll_table *wait)
3110 {
3111 struct perf_event *event = file->private_data;
3112 struct ring_buffer *rb;
3113 unsigned int events = POLL_HUP;
3114
3115 /*
3116 * Race between perf_event_set_output() and perf_poll(): perf_poll()
3117 * grabs the rb reference but perf_event_set_output() overrides it.
3118 * Here is the timeline for two threads T1, T2:
3119 * t0: T1, rb = rcu_dereference(event->rb)
3120 * t1: T2, old_rb = event->rb
3121 * t2: T2, event->rb = new rb
3122 * t3: T2, ring_buffer_detach(old_rb)
3123 * t4: T1, ring_buffer_attach(rb1)
3124 * t5: T1, poll_wait(event->waitq)
3125 *
3126 * To avoid this problem, we grab mmap_mutex in perf_poll()
3127 * thereby ensuring that the assignment of the new ring buffer
3128 * and the detachment of the old buffer appear atomic to perf_poll()
3129 */
3130 mutex_lock(&event->mmap_mutex);
3131
3132 rcu_read_lock();
3133 rb = rcu_dereference(event->rb);
3134 if (rb) {
3135 ring_buffer_attach(event, rb);
3136 events = atomic_xchg(&rb->poll, 0);
3137 }
3138 rcu_read_unlock();
3139
3140 mutex_unlock(&event->mmap_mutex);
3141
3142 poll_wait(file, &event->waitq, wait);
3143
3144 return events;
3145 }
3146
3147 static void perf_event_reset(struct perf_event *event)
3148 {
3149 (void)perf_event_read(event);
3150 local64_set(&event->count, 0);
3151 perf_event_update_userpage(event);
3152 }
3153
3154 /*
3155 * Holding the top-level event's child_mutex means that any
3156 * descendant process that has inherited this event will block
3157 * in sync_child_event if it goes to exit, thus satisfying the
3158 * task existence requirements of perf_event_enable/disable.
3159 */
3160 static void perf_event_for_each_child(struct perf_event *event,
3161 void (*func)(struct perf_event *))
3162 {
3163 struct perf_event *child;
3164
3165 WARN_ON_ONCE(event->ctx->parent_ctx);
3166 mutex_lock(&event->child_mutex);
3167 func(event);
3168 list_for_each_entry(child, &event->child_list, child_list)
3169 func(child);
3170 mutex_unlock(&event->child_mutex);
3171 }
3172
3173 static void perf_event_for_each(struct perf_event *event,
3174 void (*func)(struct perf_event *))
3175 {
3176 struct perf_event_context *ctx = event->ctx;
3177 struct perf_event *sibling;
3178
3179 WARN_ON_ONCE(ctx->parent_ctx);
3180 mutex_lock(&ctx->mutex);
3181 event = event->group_leader;
3182
3183 perf_event_for_each_child(event, func);
3184 list_for_each_entry(sibling, &event->sibling_list, group_entry)
3185 perf_event_for_each_child(sibling, func);
3186 mutex_unlock(&ctx->mutex);
3187 }
3188
3189 static int perf_event_period(struct perf_event *event, u64 __user *arg)
3190 {
3191 struct perf_event_context *ctx = event->ctx;
3192 int ret = 0;
3193 u64 value;
3194
3195 if (!is_sampling_event(event))
3196 return -EINVAL;
3197
3198 if (copy_from_user(&value, arg, sizeof(value)))
3199 return -EFAULT;
3200
3201 if (!value)
3202 return -EINVAL;
3203
3204 raw_spin_lock_irq(&ctx->lock);
3205 if (event->attr.freq) {
3206 if (value > sysctl_perf_event_sample_rate) {
3207 ret = -EINVAL;
3208 goto unlock;
3209 }
3210
3211 event->attr.sample_freq = value;
3212 } else {
3213 event->attr.sample_period = value;
3214 event->hw.sample_period = value;
3215 }
3216 unlock:
3217 raw_spin_unlock_irq(&ctx->lock);
3218
3219 return ret;
3220 }
3221
3222 static const struct file_operations perf_fops;
3223
3224 static struct perf_event *perf_fget_light(int fd, int *fput_needed)
3225 {
3226 struct file *file;
3227
3228 file = fget_light(fd, fput_needed);
3229 if (!file)
3230 return ERR_PTR(-EBADF);
3231
3232 if (file->f_op != &perf_fops) {
3233 fput_light(file, *fput_needed);
3234 *fput_needed = 0;
3235 return ERR_PTR(-EBADF);
3236 }
3237
3238 return file->private_data;
3239 }
3240
3241 static int perf_event_set_output(struct perf_event *event,
3242 struct perf_event *output_event);
3243 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
3244
3245 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
3246 {
3247 struct perf_event *event = file->private_data;
3248 void (*func)(struct perf_event *);
3249 u32 flags = arg;
3250
3251 switch (cmd) {
3252 case PERF_EVENT_IOC_ENABLE:
3253 func = perf_event_enable;
3254 break;
3255 case PERF_EVENT_IOC_DISABLE:
3256 func = perf_event_disable;
3257 break;
3258 case PERF_EVENT_IOC_RESET:
3259 func = perf_event_reset;
3260 break;
3261
3262 case PERF_EVENT_IOC_REFRESH:
3263 return perf_event_refresh(event, arg);
3264
3265 case PERF_EVENT_IOC_PERIOD:
3266 return perf_event_period(event, (u64 __user *)arg);
3267
3268 case PERF_EVENT_IOC_SET_OUTPUT:
3269 {
3270 struct perf_event *output_event = NULL;
3271 int fput_needed = 0;
3272 int ret;
3273
3274 if (arg != -1) {
3275 output_event = perf_fget_light(arg, &fput_needed);
3276 if (IS_ERR(output_event))
3277 return PTR_ERR(output_event);
3278 }
3279
3280 ret = perf_event_set_output(event, output_event);
3281 if (output_event)
3282 fput_light(output_event->filp, fput_needed);
3283
3284 return ret;
3285 }
3286
3287 case PERF_EVENT_IOC_SET_FILTER:
3288 return perf_event_set_filter(event, (void __user *)arg);
3289
3290 default:
3291 return -ENOTTY;
3292 }
3293
3294 if (flags & PERF_IOC_FLAG_GROUP)
3295 perf_event_for_each(event, func);
3296 else
3297 perf_event_for_each_child(event, func);
3298
3299 return 0;
3300 }
3301
3302 int perf_event_task_enable(void)
3303 {
3304 struct perf_event *event;
3305
3306 mutex_lock(&current->perf_event_mutex);
3307 list_for_each_entry(event, &current->perf_event_list, owner_entry)
3308 perf_event_for_each_child(event, perf_event_enable);
3309 mutex_unlock(&current->perf_event_mutex);
3310
3311 return 0;
3312 }
3313
3314 int perf_event_task_disable(void)
3315 {
3316 struct perf_event *event;
3317
3318 mutex_lock(&current->perf_event_mutex);
3319 list_for_each_entry(event, &current->perf_event_list, owner_entry)
3320 perf_event_for_each_child(event, perf_event_disable);
3321 mutex_unlock(&current->perf_event_mutex);
3322
3323 return 0;
3324 }
3325
3326 static int perf_event_index(struct perf_event *event)
3327 {
3328 if (event->hw.state & PERF_HES_STOPPED)
3329 return 0;
3330
3331 if (event->state != PERF_EVENT_STATE_ACTIVE)
3332 return 0;
3333
3334 return event->pmu->event_idx(event);
3335 }
3336
3337 static void calc_timer_values(struct perf_event *event,
3338 u64 *now,
3339 u64 *enabled,
3340 u64 *running)
3341 {
3342 u64 ctx_time;
3343
3344 *now = perf_clock();
3345 ctx_time = event->shadow_ctx_time + *now;
3346 *enabled = ctx_time - event->tstamp_enabled;
3347 *running = ctx_time - event->tstamp_running;
3348 }
3349
3350 void __weak arch_perf_update_userpage(struct perf_event_mmap_page *userpg, u64 now)
3351 {
3352 }
3353
3354 /*
3355 * Callers need to ensure there can be no nesting of this function, otherwise
3356 * the seqlock logic goes bad. We can not serialize this because the arch
3357 * code calls this from NMI context.
3358 */
3359 void perf_event_update_userpage(struct perf_event *event)
3360 {
3361 struct perf_event_mmap_page *userpg;
3362 struct ring_buffer *rb;
3363 u64 enabled, running, now;
3364
3365 rcu_read_lock();
3366 /*
3367 * compute total_time_enabled, total_time_running
3368 * based on snapshot values taken when the event
3369 * was last scheduled in.
3370 *
3371 * we cannot simply called update_context_time()
3372 * because of locking issue as we can be called in
3373 * NMI context
3374 */
3375 calc_timer_values(event, &now, &enabled, &running);
3376 rb = rcu_dereference(event->rb);
3377 if (!rb)
3378 goto unlock;
3379
3380 userpg = rb->user_page;
3381
3382 /*
3383 * Disable preemption so as to not let the corresponding user-space
3384 * spin too long if we get preempted.
3385 */
3386 preempt_disable();
3387 ++userpg->lock;
3388 barrier();
3389 userpg->index = perf_event_index(event);
3390 userpg->offset = perf_event_count(event);
3391 if (userpg->index)
3392 userpg->offset -= local64_read(&event->hw.prev_count);
3393
3394 userpg->time_enabled = enabled +
3395 atomic64_read(&event->child_total_time_enabled);
3396
3397 userpg->time_running = running +
3398 atomic64_read(&event->child_total_time_running);
3399
3400 arch_perf_update_userpage(userpg, now);
3401
3402 barrier();
3403 ++userpg->lock;
3404 preempt_enable();
3405 unlock:
3406 rcu_read_unlock();
3407 }
3408
3409 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
3410 {
3411 struct perf_event *event = vma->vm_file->private_data;
3412 struct ring_buffer *rb;
3413 int ret = VM_FAULT_SIGBUS;
3414
3415 if (vmf->flags & FAULT_FLAG_MKWRITE) {
3416 if (vmf->pgoff == 0)
3417 ret = 0;
3418 return ret;
3419 }
3420
3421 rcu_read_lock();
3422 rb = rcu_dereference(event->rb);
3423 if (!rb)
3424 goto unlock;
3425
3426 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
3427 goto unlock;
3428
3429 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
3430 if (!vmf->page)
3431 goto unlock;
3432
3433 get_page(vmf->page);
3434 vmf->page->mapping = vma->vm_file->f_mapping;
3435 vmf->page->index = vmf->pgoff;
3436
3437 ret = 0;
3438 unlock:
3439 rcu_read_unlock();
3440
3441 return ret;
3442 }
3443
3444 static void ring_buffer_attach(struct perf_event *event,
3445 struct ring_buffer *rb)
3446 {
3447 unsigned long flags;
3448
3449 if (!list_empty(&event->rb_entry))
3450 return;
3451
3452 spin_lock_irqsave(&rb->event_lock, flags);
3453 if (!list_empty(&event->rb_entry))
3454 goto unlock;
3455
3456 list_add(&event->rb_entry, &rb->event_list);
3457 unlock:
3458 spin_unlock_irqrestore(&rb->event_lock, flags);
3459 }
3460
3461 static void ring_buffer_detach(struct perf_event *event,
3462 struct ring_buffer *rb)
3463 {
3464 unsigned long flags;
3465
3466 if (list_empty(&event->rb_entry))
3467 return;
3468
3469 spin_lock_irqsave(&rb->event_lock, flags);
3470 list_del_init(&event->rb_entry);
3471 wake_up_all(&event->waitq);
3472 spin_unlock_irqrestore(&rb->event_lock, flags);
3473 }
3474
3475 static void ring_buffer_wakeup(struct perf_event *event)
3476 {
3477 struct ring_buffer *rb;
3478
3479 rcu_read_lock();
3480 rb = rcu_dereference(event->rb);
3481 if (!rb)
3482 goto unlock;
3483
3484 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
3485 wake_up_all(&event->waitq);
3486
3487 unlock:
3488 rcu_read_unlock();
3489 }
3490
3491 static void rb_free_rcu(struct rcu_head *rcu_head)
3492 {
3493 struct ring_buffer *rb;
3494
3495 rb = container_of(rcu_head, struct ring_buffer, rcu_head);
3496 rb_free(rb);
3497 }
3498
3499 static struct ring_buffer *ring_buffer_get(struct perf_event *event)
3500 {
3501 struct ring_buffer *rb;
3502
3503 rcu_read_lock();
3504 rb = rcu_dereference(event->rb);
3505 if (rb) {
3506 if (!atomic_inc_not_zero(&rb->refcount))
3507 rb = NULL;
3508 }
3509 rcu_read_unlock();
3510
3511 return rb;
3512 }
3513
3514 static void ring_buffer_put(struct ring_buffer *rb)
3515 {
3516 struct perf_event *event, *n;
3517 unsigned long flags;
3518
3519 if (!atomic_dec_and_test(&rb->refcount))
3520 return;
3521
3522 spin_lock_irqsave(&rb->event_lock, flags);
3523 list_for_each_entry_safe(event, n, &rb->event_list, rb_entry) {
3524 list_del_init(&event->rb_entry);
3525 wake_up_all(&event->waitq);
3526 }
3527 spin_unlock_irqrestore(&rb->event_lock, flags);
3528
3529 call_rcu(&rb->rcu_head, rb_free_rcu);
3530 }
3531
3532 static void perf_mmap_open(struct vm_area_struct *vma)
3533 {
3534 struct perf_event *event = vma->vm_file->private_data;
3535
3536 atomic_inc(&event->mmap_count);
3537 }
3538
3539 static void perf_mmap_close(struct vm_area_struct *vma)
3540 {
3541 struct perf_event *event = vma->vm_file->private_data;
3542
3543 if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
3544 unsigned long size = perf_data_size(event->rb);
3545 struct user_struct *user = event->mmap_user;
3546 struct ring_buffer *rb = event->rb;
3547
3548 atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
3549 vma->vm_mm->pinned_vm -= event->mmap_locked;
3550 rcu_assign_pointer(event->rb, NULL);
3551 ring_buffer_detach(event, rb);
3552 mutex_unlock(&event->mmap_mutex);
3553
3554 ring_buffer_put(rb);
3555 free_uid(user);
3556 }
3557 }
3558
3559 static const struct vm_operations_struct perf_mmap_vmops = {
3560 .open = perf_mmap_open,
3561 .close = perf_mmap_close,
3562 .fault = perf_mmap_fault,
3563 .page_mkwrite = perf_mmap_fault,
3564 };
3565
3566 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
3567 {
3568 struct perf_event *event = file->private_data;
3569 unsigned long user_locked, user_lock_limit;
3570 struct user_struct *user = current_user();
3571 unsigned long locked, lock_limit;
3572 struct ring_buffer *rb;
3573 unsigned long vma_size;
3574 unsigned long nr_pages;
3575 long user_extra, extra;
3576 int ret = 0, flags = 0;
3577
3578 /*
3579 * Don't allow mmap() of inherited per-task counters. This would
3580 * create a performance issue due to all children writing to the
3581 * same rb.
3582 */
3583 if (event->cpu == -1 && event->attr.inherit)
3584 return -EINVAL;
3585
3586 if (!(vma->vm_flags & VM_SHARED))
3587 return -EINVAL;
3588
3589 vma_size = vma->vm_end - vma->vm_start;
3590 nr_pages = (vma_size / PAGE_SIZE) - 1;
3591
3592 /*
3593 * If we have rb pages ensure they're a power-of-two number, so we
3594 * can do bitmasks instead of modulo.
3595 */
3596 if (nr_pages != 0 && !is_power_of_2(nr_pages))
3597 return -EINVAL;
3598
3599 if (vma_size != PAGE_SIZE * (1 + nr_pages))
3600 return -EINVAL;
3601
3602 if (vma->vm_pgoff != 0)
3603 return -EINVAL;
3604
3605 WARN_ON_ONCE(event->ctx->parent_ctx);
3606 mutex_lock(&event->mmap_mutex);
3607 if (event->rb) {
3608 if (event->rb->nr_pages == nr_pages)
3609 atomic_inc(&event->rb->refcount);
3610 else
3611 ret = -EINVAL;
3612 goto unlock;
3613 }
3614
3615 user_extra = nr_pages + 1;
3616 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
3617
3618 /*
3619 * Increase the limit linearly with more CPUs:
3620 */
3621 user_lock_limit *= num_online_cpus();
3622
3623 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
3624
3625 extra = 0;
3626 if (user_locked > user_lock_limit)
3627 extra = user_locked - user_lock_limit;
3628
3629 lock_limit = rlimit(RLIMIT_MEMLOCK);
3630 lock_limit >>= PAGE_SHIFT;
3631 locked = vma->vm_mm->pinned_vm + extra;
3632
3633 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
3634 !capable(CAP_IPC_LOCK)) {
3635 ret = -EPERM;
3636 goto unlock;
3637 }
3638
3639 WARN_ON(event->rb);
3640
3641 if (vma->vm_flags & VM_WRITE)
3642 flags |= RING_BUFFER_WRITABLE;
3643
3644 rb = rb_alloc(nr_pages,
3645 event->attr.watermark ? event->attr.wakeup_watermark : 0,
3646 event->cpu, flags);
3647
3648 if (!rb) {
3649 ret = -ENOMEM;
3650 goto unlock;
3651 }
3652 rcu_assign_pointer(event->rb, rb);
3653
3654 atomic_long_add(user_extra, &user->locked_vm);
3655 event->mmap_locked = extra;
3656 event->mmap_user = get_current_user();
3657 vma->vm_mm->pinned_vm += event->mmap_locked;
3658
3659 perf_event_update_userpage(event);
3660
3661 unlock:
3662 if (!ret)
3663 atomic_inc(&event->mmap_count);
3664 mutex_unlock(&event->mmap_mutex);
3665
3666 vma->vm_flags |= VM_RESERVED;
3667 vma->vm_ops = &perf_mmap_vmops;
3668
3669 return ret;
3670 }
3671
3672 static int perf_fasync(int fd, struct file *filp, int on)
3673 {
3674 struct inode *inode = filp->f_path.dentry->d_inode;
3675 struct perf_event *event = filp->private_data;
3676 int retval;
3677
3678 mutex_lock(&inode->i_mutex);
3679 retval = fasync_helper(fd, filp, on, &event->fasync);
3680 mutex_unlock(&inode->i_mutex);
3681
3682 if (retval < 0)
3683 return retval;
3684
3685 return 0;
3686 }
3687
3688 static const struct file_operations perf_fops = {
3689 .llseek = no_llseek,
3690 .release = perf_release,
3691 .read = perf_read,
3692 .poll = perf_poll,
3693 .unlocked_ioctl = perf_ioctl,
3694 .compat_ioctl = perf_ioctl,
3695 .mmap = perf_mmap,
3696 .fasync = perf_fasync,
3697 };
3698
3699 /*
3700 * Perf event wakeup
3701 *
3702 * If there's data, ensure we set the poll() state and publish everything
3703 * to user-space before waking everybody up.
3704 */
3705
3706 void perf_event_wakeup(struct perf_event *event)
3707 {
3708 ring_buffer_wakeup(event);
3709
3710 if (event->pending_kill) {
3711 kill_fasync(&event->fasync, SIGIO, event->pending_kill);
3712 event->pending_kill = 0;
3713 }
3714 }
3715
3716 static void perf_pending_event(struct irq_work *entry)
3717 {
3718 struct perf_event *event = container_of(entry,
3719 struct perf_event, pending);
3720
3721 if (event->pending_disable) {
3722 event->pending_disable = 0;
3723 __perf_event_disable(event);
3724 }
3725
3726 if (event->pending_wakeup) {
3727 event->pending_wakeup = 0;
3728 perf_event_wakeup(event);
3729 }
3730 }
3731
3732 /*
3733 * We assume there is only KVM supporting the callbacks.
3734 * Later on, we might change it to a list if there is
3735 * another virtualization implementation supporting the callbacks.
3736 */
3737 struct perf_guest_info_callbacks *perf_guest_cbs;
3738
3739 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
3740 {
3741 perf_guest_cbs = cbs;
3742 return 0;
3743 }
3744 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
3745
3746 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
3747 {
3748 perf_guest_cbs = NULL;
3749 return 0;
3750 }
3751 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
3752
3753 static void __perf_event_header__init_id(struct perf_event_header *header,
3754 struct perf_sample_data *data,
3755 struct perf_event *event)
3756 {
3757 u64 sample_type = event->attr.sample_type;
3758
3759 data->type = sample_type;
3760 header->size += event->id_header_size;
3761
3762 if (sample_type & PERF_SAMPLE_TID) {
3763 /* namespace issues */
3764 data->tid_entry.pid = perf_event_pid(event, current);
3765 data->tid_entry.tid = perf_event_tid(event, current);
3766 }
3767
3768 if (sample_type & PERF_SAMPLE_TIME)
3769 data->time = perf_clock();
3770
3771 if (sample_type & PERF_SAMPLE_ID)
3772 data->id = primary_event_id(event);
3773
3774 if (sample_type & PERF_SAMPLE_STREAM_ID)
3775 data->stream_id = event->id;
3776
3777 if (sample_type & PERF_SAMPLE_CPU) {
3778 data->cpu_entry.cpu = raw_smp_processor_id();
3779 data->cpu_entry.reserved = 0;
3780 }
3781 }
3782
3783 void perf_event_header__init_id(struct perf_event_header *header,
3784 struct perf_sample_data *data,
3785 struct perf_event *event)
3786 {
3787 if (event->attr.sample_id_all)
3788 __perf_event_header__init_id(header, data, event);
3789 }
3790
3791 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
3792 struct perf_sample_data *data)
3793 {
3794 u64 sample_type = data->type;
3795
3796 if (sample_type & PERF_SAMPLE_TID)
3797 perf_output_put(handle, data->tid_entry);
3798
3799 if (sample_type & PERF_SAMPLE_TIME)
3800 perf_output_put(handle, data->time);
3801
3802 if (sample_type & PERF_SAMPLE_ID)
3803 perf_output_put(handle, data->id);
3804
3805 if (sample_type & PERF_SAMPLE_STREAM_ID)
3806 perf_output_put(handle, data->stream_id);
3807
3808 if (sample_type & PERF_SAMPLE_CPU)
3809 perf_output_put(handle, data->cpu_entry);
3810 }
3811
3812 void perf_event__output_id_sample(struct perf_event *event,
3813 struct perf_output_handle *handle,
3814 struct perf_sample_data *sample)
3815 {
3816 if (event->attr.sample_id_all)
3817 __perf_event__output_id_sample(handle, sample);
3818 }
3819
3820 static void perf_output_read_one(struct perf_output_handle *handle,
3821 struct perf_event *event,
3822 u64 enabled, u64 running)
3823 {
3824 u64 read_format = event->attr.read_format;
3825 u64 values[4];
3826 int n = 0;
3827
3828 values[n++] = perf_event_count(event);
3829 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3830 values[n++] = enabled +
3831 atomic64_read(&event->child_total_time_enabled);
3832 }
3833 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3834 values[n++] = running +
3835 atomic64_read(&event->child_total_time_running);
3836 }
3837 if (read_format & PERF_FORMAT_ID)
3838 values[n++] = primary_event_id(event);
3839
3840 __output_copy(handle, values, n * sizeof(u64));
3841 }
3842
3843 /*
3844 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3845 */
3846 static void perf_output_read_group(struct perf_output_handle *handle,
3847 struct perf_event *event,
3848 u64 enabled, u64 running)
3849 {
3850 struct perf_event *leader = event->group_leader, *sub;
3851 u64 read_format = event->attr.read_format;
3852 u64 values[5];
3853 int n = 0;
3854
3855 values[n++] = 1 + leader->nr_siblings;
3856
3857 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3858 values[n++] = enabled;
3859
3860 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3861 values[n++] = running;
3862
3863 if (leader != event)
3864 leader->pmu->read(leader);
3865
3866 values[n++] = perf_event_count(leader);
3867 if (read_format & PERF_FORMAT_ID)
3868 values[n++] = primary_event_id(leader);
3869
3870 __output_copy(handle, values, n * sizeof(u64));
3871
3872 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3873 n = 0;
3874
3875 if (sub != event)
3876 sub->pmu->read(sub);
3877
3878 values[n++] = perf_event_count(sub);
3879 if (read_format & PERF_FORMAT_ID)
3880 values[n++] = primary_event_id(sub);
3881
3882 __output_copy(handle, values, n * sizeof(u64));
3883 }
3884 }
3885
3886 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
3887 PERF_FORMAT_TOTAL_TIME_RUNNING)
3888
3889 static void perf_output_read(struct perf_output_handle *handle,
3890 struct perf_event *event)
3891 {
3892 u64 enabled = 0, running = 0, now;
3893 u64 read_format = event->attr.read_format;
3894
3895 /*
3896 * compute total_time_enabled, total_time_running
3897 * based on snapshot values taken when the event
3898 * was last scheduled in.
3899 *
3900 * we cannot simply called update_context_time()
3901 * because of locking issue as we are called in
3902 * NMI context
3903 */
3904 if (read_format & PERF_FORMAT_TOTAL_TIMES)
3905 calc_timer_values(event, &now, &enabled, &running);
3906
3907 if (event->attr.read_format & PERF_FORMAT_GROUP)
3908 perf_output_read_group(handle, event, enabled, running);
3909 else
3910 perf_output_read_one(handle, event, enabled, running);
3911 }
3912
3913 void perf_output_sample(struct perf_output_handle *handle,
3914 struct perf_event_header *header,
3915 struct perf_sample_data *data,
3916 struct perf_event *event)
3917 {
3918 u64 sample_type = data->type;
3919
3920 perf_output_put(handle, *header);
3921
3922 if (sample_type & PERF_SAMPLE_IP)
3923 perf_output_put(handle, data->ip);
3924
3925 if (sample_type & PERF_SAMPLE_TID)
3926 perf_output_put(handle, data->tid_entry);
3927
3928 if (sample_type & PERF_SAMPLE_TIME)
3929 perf_output_put(handle, data->time);
3930
3931 if (sample_type & PERF_SAMPLE_ADDR)
3932 perf_output_put(handle, data->addr);
3933
3934 if (sample_type & PERF_SAMPLE_ID)
3935 perf_output_put(handle, data->id);
3936
3937 if (sample_type & PERF_SAMPLE_STREAM_ID)
3938 perf_output_put(handle, data->stream_id);
3939
3940 if (sample_type & PERF_SAMPLE_CPU)
3941 perf_output_put(handle, data->cpu_entry);
3942
3943 if (sample_type & PERF_SAMPLE_PERIOD)
3944 perf_output_put(handle, data->period);
3945
3946 if (sample_type & PERF_SAMPLE_READ)
3947 perf_output_read(handle, event);
3948
3949 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3950 if (data->callchain) {
3951 int size = 1;
3952
3953 if (data->callchain)
3954 size += data->callchain->nr;
3955
3956 size *= sizeof(u64);
3957
3958 __output_copy(handle, data->callchain, size);
3959 } else {
3960 u64 nr = 0;
3961 perf_output_put(handle, nr);
3962 }
3963 }
3964
3965 if (sample_type & PERF_SAMPLE_RAW) {
3966 if (data->raw) {
3967 perf_output_put(handle, data->raw->size);
3968 __output_copy(handle, data->raw->data,
3969 data->raw->size);
3970 } else {
3971 struct {
3972 u32 size;
3973 u32 data;
3974 } raw = {
3975 .size = sizeof(u32),
3976 .data = 0,
3977 };
3978 perf_output_put(handle, raw);
3979 }
3980 }
3981
3982 if (!event->attr.watermark) {
3983 int wakeup_events = event->attr.wakeup_events;
3984
3985 if (wakeup_events) {
3986 struct ring_buffer *rb = handle->rb;
3987 int events = local_inc_return(&rb->events);
3988
3989 if (events >= wakeup_events) {
3990 local_sub(wakeup_events, &rb->events);
3991 local_inc(&rb->wakeup);
3992 }
3993 }
3994 }
3995
3996 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
3997 if (data->br_stack) {
3998 size_t size;
3999
4000 size = data->br_stack->nr
4001 * sizeof(struct perf_branch_entry);
4002
4003 perf_output_put(handle, data->br_stack->nr);
4004 perf_output_copy(handle, data->br_stack->entries, size);
4005 } else {
4006 /*
4007 * we always store at least the value of nr
4008 */
4009 u64 nr = 0;
4010 perf_output_put(handle, nr);
4011 }
4012 }
4013 }
4014
4015 void perf_prepare_sample(struct perf_event_header *header,
4016 struct perf_sample_data *data,
4017 struct perf_event *event,
4018 struct pt_regs *regs)
4019 {
4020 u64 sample_type = event->attr.sample_type;
4021
4022 header->type = PERF_RECORD_SAMPLE;
4023 header->size = sizeof(*header) + event->header_size;
4024
4025 header->misc = 0;
4026 header->misc |= perf_misc_flags(regs);
4027
4028 __perf_event_header__init_id(header, data, event);
4029
4030 if (sample_type & PERF_SAMPLE_IP)
4031 data->ip = perf_instruction_pointer(regs);
4032
4033 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
4034 int size = 1;
4035
4036 data->callchain = perf_callchain(regs);
4037
4038 if (data->callchain)
4039 size += data->callchain->nr;
4040
4041 header->size += size * sizeof(u64);
4042 }
4043
4044 if (sample_type & PERF_SAMPLE_RAW) {
4045 int size = sizeof(u32);
4046
4047 if (data->raw)
4048 size += data->raw->size;
4049 else
4050 size += sizeof(u32);
4051
4052 WARN_ON_ONCE(size & (sizeof(u64)-1));
4053 header->size += size;
4054 }
4055
4056 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
4057 int size = sizeof(u64); /* nr */
4058 if (data->br_stack) {
4059 size += data->br_stack->nr
4060 * sizeof(struct perf_branch_entry);
4061 }
4062 header->size += size;
4063 }
4064 }
4065
4066 static void perf_event_output(struct perf_event *event,
4067 struct perf_sample_data *data,
4068 struct pt_regs *regs)
4069 {
4070 struct perf_output_handle handle;
4071 struct perf_event_header header;
4072
4073 /* protect the callchain buffers */
4074 rcu_read_lock();
4075
4076 perf_prepare_sample(&header, data, event, regs);
4077
4078 if (perf_output_begin(&handle, event, header.size))
4079 goto exit;
4080
4081 perf_output_sample(&handle, &header, data, event);
4082
4083 perf_output_end(&handle);
4084
4085 exit:
4086 rcu_read_unlock();
4087 }
4088
4089 /*
4090 * read event_id
4091 */
4092
4093 struct perf_read_event {
4094 struct perf_event_header header;
4095
4096 u32 pid;
4097 u32 tid;
4098 };
4099
4100 static void
4101 perf_event_read_event(struct perf_event *event,
4102 struct task_struct *task)
4103 {
4104 struct perf_output_handle handle;
4105 struct perf_sample_data sample;
4106 struct perf_read_event read_event = {
4107 .header = {
4108 .type = PERF_RECORD_READ,
4109 .misc = 0,
4110 .size = sizeof(read_event) + event->read_size,
4111 },
4112 .pid = perf_event_pid(event, task),
4113 .tid = perf_event_tid(event, task),
4114 };
4115 int ret;
4116
4117 perf_event_header__init_id(&read_event.header, &sample, event);
4118 ret = perf_output_begin(&handle, event, read_event.header.size);
4119 if (ret)
4120 return;
4121
4122 perf_output_put(&handle, read_event);
4123 perf_output_read(&handle, event);
4124 perf_event__output_id_sample(event, &handle, &sample);
4125
4126 perf_output_end(&handle);
4127 }
4128
4129 /*
4130 * task tracking -- fork/exit
4131 *
4132 * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task
4133 */
4134
4135 struct perf_task_event {
4136 struct task_struct *task;
4137 struct perf_event_context *task_ctx;
4138
4139 struct {
4140 struct perf_event_header header;
4141
4142 u32 pid;
4143 u32 ppid;
4144 u32 tid;
4145 u32 ptid;
4146 u64 time;
4147 } event_id;
4148 };
4149
4150 static void perf_event_task_output(struct perf_event *event,
4151 struct perf_task_event *task_event)
4152 {
4153 struct perf_output_handle handle;
4154 struct perf_sample_data sample;
4155 struct task_struct *task = task_event->task;
4156 int ret, size = task_event->event_id.header.size;
4157
4158 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
4159
4160 ret = perf_output_begin(&handle, event,
4161 task_event->event_id.header.size);
4162 if (ret)
4163 goto out;
4164
4165 task_event->event_id.pid = perf_event_pid(event, task);
4166 task_event->event_id.ppid = perf_event_pid(event, current);
4167
4168 task_event->event_id.tid = perf_event_tid(event, task);
4169 task_event->event_id.ptid = perf_event_tid(event, current);
4170
4171 perf_output_put(&handle, task_event->event_id);
4172
4173 perf_event__output_id_sample(event, &handle, &sample);
4174
4175 perf_output_end(&handle);
4176 out:
4177 task_event->event_id.header.size = size;
4178 }
4179
4180 static int perf_event_task_match(struct perf_event *event)
4181 {
4182 if (event->state < PERF_EVENT_STATE_INACTIVE)
4183 return 0;
4184
4185 if (!event_filter_match(event))
4186 return 0;
4187
4188 if (event->attr.comm || event->attr.mmap ||
4189 event->attr.mmap_data || event->attr.task)
4190 return 1;
4191
4192 return 0;
4193 }
4194
4195 static void perf_event_task_ctx(struct perf_event_context *ctx,
4196 struct perf_task_event *task_event)
4197 {
4198 struct perf_event *event;
4199
4200 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4201 if (perf_event_task_match(event))
4202 perf_event_task_output(event, task_event);
4203 }
4204 }
4205
4206 static void perf_event_task_event(struct perf_task_event *task_event)
4207 {
4208 struct perf_cpu_context *cpuctx;
4209 struct perf_event_context *ctx;
4210 struct pmu *pmu;
4211 int ctxn;
4212
4213 rcu_read_lock();
4214 list_for_each_entry_rcu(pmu, &pmus, entry) {
4215 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4216 if (cpuctx->active_pmu != pmu)
4217 goto next;
4218 perf_event_task_ctx(&cpuctx->ctx, task_event);
4219
4220 ctx = task_event->task_ctx;
4221 if (!ctx) {
4222 ctxn = pmu->task_ctx_nr;
4223 if (ctxn < 0)
4224 goto next;
4225 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4226 }
4227 if (ctx)
4228 perf_event_task_ctx(ctx, task_event);
4229 next:
4230 put_cpu_ptr(pmu->pmu_cpu_context);
4231 }
4232 rcu_read_unlock();
4233 }
4234
4235 static void perf_event_task(struct task_struct *task,
4236 struct perf_event_context *task_ctx,
4237 int new)
4238 {
4239 struct perf_task_event task_event;
4240
4241 if (!atomic_read(&nr_comm_events) &&
4242 !atomic_read(&nr_mmap_events) &&
4243 !atomic_read(&nr_task_events))
4244 return;
4245
4246 task_event = (struct perf_task_event){
4247 .task = task,
4248 .task_ctx = task_ctx,
4249 .event_id = {
4250 .header = {
4251 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
4252 .misc = 0,
4253 .size = sizeof(task_event.event_id),
4254 },
4255 /* .pid */
4256 /* .ppid */
4257 /* .tid */
4258 /* .ptid */
4259 .time = perf_clock(),
4260 },
4261 };
4262
4263 perf_event_task_event(&task_event);
4264 }
4265
4266 void perf_event_fork(struct task_struct *task)
4267 {
4268 perf_event_task(task, NULL, 1);
4269 }
4270
4271 /*
4272 * comm tracking
4273 */
4274
4275 struct perf_comm_event {
4276 struct task_struct *task;
4277 char *comm;
4278 int comm_size;
4279
4280 struct {
4281 struct perf_event_header header;
4282
4283 u32 pid;
4284 u32 tid;
4285 } event_id;
4286 };
4287
4288 static void perf_event_comm_output(struct perf_event *event,
4289 struct perf_comm_event *comm_event)
4290 {
4291 struct perf_output_handle handle;
4292 struct perf_sample_data sample;
4293 int size = comm_event->event_id.header.size;
4294 int ret;
4295
4296 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
4297 ret = perf_output_begin(&handle, event,
4298 comm_event->event_id.header.size);
4299
4300 if (ret)
4301 goto out;
4302
4303 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
4304 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
4305
4306 perf_output_put(&handle, comm_event->event_id);
4307 __output_copy(&handle, comm_event->comm,
4308 comm_event->comm_size);
4309
4310 perf_event__output_id_sample(event, &handle, &sample);
4311
4312 perf_output_end(&handle);
4313 out:
4314 comm_event->event_id.header.size = size;
4315 }
4316
4317 static int perf_event_comm_match(struct perf_event *event)
4318 {
4319 if (event->state < PERF_EVENT_STATE_INACTIVE)
4320 return 0;
4321
4322 if (!event_filter_match(event))
4323 return 0;
4324
4325 if (event->attr.comm)
4326 return 1;
4327
4328 return 0;
4329 }
4330
4331 static void perf_event_comm_ctx(struct perf_event_context *ctx,
4332 struct perf_comm_event *comm_event)
4333 {
4334 struct perf_event *event;
4335
4336 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4337 if (perf_event_comm_match(event))
4338 perf_event_comm_output(event, comm_event);
4339 }
4340 }
4341
4342 static void perf_event_comm_event(struct perf_comm_event *comm_event)
4343 {
4344 struct perf_cpu_context *cpuctx;
4345 struct perf_event_context *ctx;
4346 char comm[TASK_COMM_LEN];
4347 unsigned int size;
4348 struct pmu *pmu;
4349 int ctxn;
4350
4351 memset(comm, 0, sizeof(comm));
4352 strlcpy(comm, comm_event->task->comm, sizeof(comm));
4353 size = ALIGN(strlen(comm)+1, sizeof(u64));
4354
4355 comm_event->comm = comm;
4356 comm_event->comm_size = size;
4357
4358 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
4359 rcu_read_lock();
4360 list_for_each_entry_rcu(pmu, &pmus, entry) {
4361 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4362 if (cpuctx->active_pmu != pmu)
4363 goto next;
4364 perf_event_comm_ctx(&cpuctx->ctx, comm_event);
4365
4366 ctxn = pmu->task_ctx_nr;
4367 if (ctxn < 0)
4368 goto next;
4369
4370 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4371 if (ctx)
4372 perf_event_comm_ctx(ctx, comm_event);
4373 next:
4374 put_cpu_ptr(pmu->pmu_cpu_context);
4375 }
4376 rcu_read_unlock();
4377 }
4378
4379 void perf_event_comm(struct task_struct *task)
4380 {
4381 struct perf_comm_event comm_event;
4382 struct perf_event_context *ctx;
4383 int ctxn;
4384
4385 for_each_task_context_nr(ctxn) {
4386 ctx = task->perf_event_ctxp[ctxn];
4387 if (!ctx)
4388 continue;
4389
4390 perf_event_enable_on_exec(ctx);
4391 }
4392
4393 if (!atomic_read(&nr_comm_events))
4394 return;
4395
4396 comm_event = (struct perf_comm_event){
4397 .task = task,
4398 /* .comm */
4399 /* .comm_size */
4400 .event_id = {
4401 .header = {
4402 .type = PERF_RECORD_COMM,
4403 .misc = 0,
4404 /* .size */
4405 },
4406 /* .pid */
4407 /* .tid */
4408 },
4409 };
4410
4411 perf_event_comm_event(&comm_event);
4412 }
4413
4414 /*
4415 * mmap tracking
4416 */
4417
4418 struct perf_mmap_event {
4419 struct vm_area_struct *vma;
4420
4421 const char *file_name;
4422 int file_size;
4423
4424 struct {
4425 struct perf_event_header header;
4426
4427 u32 pid;
4428 u32 tid;
4429 u64 start;
4430 u64 len;
4431 u64 pgoff;
4432 } event_id;
4433 };
4434
4435 static void perf_event_mmap_output(struct perf_event *event,
4436 struct perf_mmap_event *mmap_event)
4437 {
4438 struct perf_output_handle handle;
4439 struct perf_sample_data sample;
4440 int size = mmap_event->event_id.header.size;
4441 int ret;
4442
4443 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
4444 ret = perf_output_begin(&handle, event,
4445 mmap_event->event_id.header.size);
4446 if (ret)
4447 goto out;
4448
4449 mmap_event->event_id.pid = perf_event_pid(event, current);
4450 mmap_event->event_id.tid = perf_event_tid(event, current);
4451
4452 perf_output_put(&handle, mmap_event->event_id);
4453 __output_copy(&handle, mmap_event->file_name,
4454 mmap_event->file_size);
4455
4456 perf_event__output_id_sample(event, &handle, &sample);
4457
4458 perf_output_end(&handle);
4459 out:
4460 mmap_event->event_id.header.size = size;
4461 }
4462
4463 static int perf_event_mmap_match(struct perf_event *event,
4464 struct perf_mmap_event *mmap_event,
4465 int executable)
4466 {
4467 if (event->state < PERF_EVENT_STATE_INACTIVE)
4468 return 0;
4469
4470 if (!event_filter_match(event))
4471 return 0;
4472
4473 if ((!executable && event->attr.mmap_data) ||
4474 (executable && event->attr.mmap))
4475 return 1;
4476
4477 return 0;
4478 }
4479
4480 static void perf_event_mmap_ctx(struct perf_event_context *ctx,
4481 struct perf_mmap_event *mmap_event,
4482 int executable)
4483 {
4484 struct perf_event *event;
4485
4486 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4487 if (perf_event_mmap_match(event, mmap_event, executable))
4488 perf_event_mmap_output(event, mmap_event);
4489 }
4490 }
4491
4492 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
4493 {
4494 struct perf_cpu_context *cpuctx;
4495 struct perf_event_context *ctx;
4496 struct vm_area_struct *vma = mmap_event->vma;
4497 struct file *file = vma->vm_file;
4498 unsigned int size;
4499 char tmp[16];
4500 char *buf = NULL;
4501 const char *name;
4502 struct pmu *pmu;
4503 int ctxn;
4504
4505 memset(tmp, 0, sizeof(tmp));
4506
4507 if (file) {
4508 /*
4509 * d_path works from the end of the rb backwards, so we
4510 * need to add enough zero bytes after the string to handle
4511 * the 64bit alignment we do later.
4512 */
4513 buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
4514 if (!buf) {
4515 name = strncpy(tmp, "//enomem", sizeof(tmp));
4516 goto got_name;
4517 }
4518 name = d_path(&file->f_path, buf, PATH_MAX);
4519 if (IS_ERR(name)) {
4520 name = strncpy(tmp, "//toolong", sizeof(tmp));
4521 goto got_name;
4522 }
4523 } else {
4524 if (arch_vma_name(mmap_event->vma)) {
4525 name = strncpy(tmp, arch_vma_name(mmap_event->vma),
4526 sizeof(tmp));
4527 goto got_name;
4528 }
4529
4530 if (!vma->vm_mm) {
4531 name = strncpy(tmp, "[vdso]", sizeof(tmp));
4532 goto got_name;
4533 } else if (vma->vm_start <= vma->vm_mm->start_brk &&
4534 vma->vm_end >= vma->vm_mm->brk) {
4535 name = strncpy(tmp, "[heap]", sizeof(tmp));
4536 goto got_name;
4537 } else if (vma->vm_start <= vma->vm_mm->start_stack &&
4538 vma->vm_end >= vma->vm_mm->start_stack) {
4539 name = strncpy(tmp, "[stack]", sizeof(tmp));
4540 goto got_name;
4541 }
4542
4543 name = strncpy(tmp, "//anon", sizeof(tmp));
4544 goto got_name;
4545 }
4546
4547 got_name:
4548 size = ALIGN(strlen(name)+1, sizeof(u64));
4549
4550 mmap_event->file_name = name;
4551 mmap_event->file_size = size;
4552
4553 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
4554
4555 rcu_read_lock();
4556 list_for_each_entry_rcu(pmu, &pmus, entry) {
4557 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4558 if (cpuctx->active_pmu != pmu)
4559 goto next;
4560 perf_event_mmap_ctx(&cpuctx->ctx, mmap_event,
4561 vma->vm_flags & VM_EXEC);
4562
4563 ctxn = pmu->task_ctx_nr;
4564 if (ctxn < 0)
4565 goto next;
4566
4567 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4568 if (ctx) {
4569 perf_event_mmap_ctx(ctx, mmap_event,
4570 vma->vm_flags & VM_EXEC);
4571 }
4572 next:
4573 put_cpu_ptr(pmu->pmu_cpu_context);
4574 }
4575 rcu_read_unlock();
4576
4577 kfree(buf);
4578 }
4579
4580 void perf_event_mmap(struct vm_area_struct *vma)
4581 {
4582 struct perf_mmap_event mmap_event;
4583
4584 if (!atomic_read(&nr_mmap_events))
4585 return;
4586
4587 mmap_event = (struct perf_mmap_event){
4588 .vma = vma,
4589 /* .file_name */
4590 /* .file_size */
4591 .event_id = {
4592 .header = {
4593 .type = PERF_RECORD_MMAP,
4594 .misc = PERF_RECORD_MISC_USER,
4595 /* .size */
4596 },
4597 /* .pid */
4598 /* .tid */
4599 .start = vma->vm_start,
4600 .len = vma->vm_end - vma->vm_start,
4601 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
4602 },
4603 };
4604
4605 perf_event_mmap_event(&mmap_event);
4606 }
4607
4608 /*
4609 * IRQ throttle logging
4610 */
4611
4612 static void perf_log_throttle(struct perf_event *event, int enable)
4613 {
4614 struct perf_output_handle handle;
4615 struct perf_sample_data sample;
4616 int ret;
4617
4618 struct {
4619 struct perf_event_header header;
4620 u64 time;
4621 u64 id;
4622 u64 stream_id;
4623 } throttle_event = {
4624 .header = {
4625 .type = PERF_RECORD_THROTTLE,
4626 .misc = 0,
4627 .size = sizeof(throttle_event),
4628 },
4629 .time = perf_clock(),
4630 .id = primary_event_id(event),
4631 .stream_id = event->id,
4632 };
4633
4634 if (enable)
4635 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
4636
4637 perf_event_header__init_id(&throttle_event.header, &sample, event);
4638
4639 ret = perf_output_begin(&handle, event,
4640 throttle_event.header.size);
4641 if (ret)
4642 return;
4643
4644 perf_output_put(&handle, throttle_event);
4645 perf_event__output_id_sample(event, &handle, &sample);
4646 perf_output_end(&handle);
4647 }
4648
4649 /*
4650 * Generic event overflow handling, sampling.
4651 */
4652
4653 static int __perf_event_overflow(struct perf_event *event,
4654 int throttle, struct perf_sample_data *data,
4655 struct pt_regs *regs)
4656 {
4657 int events = atomic_read(&event->event_limit);
4658 struct hw_perf_event *hwc = &event->hw;
4659 u64 seq;
4660 int ret = 0;
4661
4662 /*
4663 * Non-sampling counters might still use the PMI to fold short
4664 * hardware counters, ignore those.
4665 */
4666 if (unlikely(!is_sampling_event(event)))
4667 return 0;
4668
4669 seq = __this_cpu_read(perf_throttled_seq);
4670 if (seq != hwc->interrupts_seq) {
4671 hwc->interrupts_seq = seq;
4672 hwc->interrupts = 1;
4673 } else {
4674 hwc->interrupts++;
4675 if (unlikely(throttle
4676 && hwc->interrupts >= max_samples_per_tick)) {
4677 __this_cpu_inc(perf_throttled_count);
4678 hwc->interrupts = MAX_INTERRUPTS;
4679 perf_log_throttle(event, 0);
4680 ret = 1;
4681 }
4682 }
4683
4684 if (event->attr.freq) {
4685 u64 now = perf_clock();
4686 s64 delta = now - hwc->freq_time_stamp;
4687
4688 hwc->freq_time_stamp = now;
4689
4690 if (delta > 0 && delta < 2*TICK_NSEC)
4691 perf_adjust_period(event, delta, hwc->last_period, true);
4692 }
4693
4694 /*
4695 * XXX event_limit might not quite work as expected on inherited
4696 * events
4697 */
4698
4699 event->pending_kill = POLL_IN;
4700 if (events && atomic_dec_and_test(&event->event_limit)) {
4701 ret = 1;
4702 event->pending_kill = POLL_HUP;
4703 event->pending_disable = 1;
4704 irq_work_queue(&event->pending);
4705 }
4706
4707 if (event->overflow_handler)
4708 event->overflow_handler(event, data, regs);
4709 else
4710 perf_event_output(event, data, regs);
4711
4712 if (event->fasync && event->pending_kill) {
4713 event->pending_wakeup = 1;
4714 irq_work_queue(&event->pending);
4715 }
4716
4717 return ret;
4718 }
4719
4720 int perf_event_overflow(struct perf_event *event,
4721 struct perf_sample_data *data,
4722 struct pt_regs *regs)
4723 {
4724 return __perf_event_overflow(event, 1, data, regs);
4725 }
4726
4727 /*
4728 * Generic software event infrastructure
4729 */
4730
4731 struct swevent_htable {
4732 struct swevent_hlist *swevent_hlist;
4733 struct mutex hlist_mutex;
4734 int hlist_refcount;
4735
4736 /* Recursion avoidance in each contexts */
4737 int recursion[PERF_NR_CONTEXTS];
4738 };
4739
4740 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
4741
4742 /*
4743 * We directly increment event->count and keep a second value in
4744 * event->hw.period_left to count intervals. This period event
4745 * is kept in the range [-sample_period, 0] so that we can use the
4746 * sign as trigger.
4747 */
4748
4749 static u64 perf_swevent_set_period(struct perf_event *event)
4750 {
4751 struct hw_perf_event *hwc = &event->hw;
4752 u64 period = hwc->last_period;
4753 u64 nr, offset;
4754 s64 old, val;
4755
4756 hwc->last_period = hwc->sample_period;
4757
4758 again:
4759 old = val = local64_read(&hwc->period_left);
4760 if (val < 0)
4761 return 0;
4762
4763 nr = div64_u64(period + val, period);
4764 offset = nr * period;
4765 val -= offset;
4766 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
4767 goto again;
4768
4769 return nr;
4770 }
4771
4772 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
4773 struct perf_sample_data *data,
4774 struct pt_regs *regs)
4775 {
4776 struct hw_perf_event *hwc = &event->hw;
4777 int throttle = 0;
4778
4779 if (!overflow)
4780 overflow = perf_swevent_set_period(event);
4781
4782 if (hwc->interrupts == MAX_INTERRUPTS)
4783 return;
4784
4785 for (; overflow; overflow--) {
4786 if (__perf_event_overflow(event, throttle,
4787 data, regs)) {
4788 /*
4789 * We inhibit the overflow from happening when
4790 * hwc->interrupts == MAX_INTERRUPTS.
4791 */
4792 break;
4793 }
4794 throttle = 1;
4795 }
4796 }
4797
4798 static void perf_swevent_event(struct perf_event *event, u64 nr,
4799 struct perf_sample_data *data,
4800 struct pt_regs *regs)
4801 {
4802 struct hw_perf_event *hwc = &event->hw;
4803
4804 local64_add(nr, &event->count);
4805
4806 if (!regs)
4807 return;
4808
4809 if (!is_sampling_event(event))
4810 return;
4811
4812 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
4813 data->period = nr;
4814 return perf_swevent_overflow(event, 1, data, regs);
4815 } else
4816 data->period = event->hw.last_period;
4817
4818 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
4819 return perf_swevent_overflow(event, 1, data, regs);
4820
4821 if (local64_add_negative(nr, &hwc->period_left))
4822 return;
4823
4824 perf_swevent_overflow(event, 0, data, regs);
4825 }
4826
4827 static int perf_exclude_event(struct perf_event *event,
4828 struct pt_regs *regs)
4829 {
4830 if (event->hw.state & PERF_HES_STOPPED)
4831 return 1;
4832
4833 if (regs) {
4834 if (event->attr.exclude_user && user_mode(regs))
4835 return 1;
4836
4837 if (event->attr.exclude_kernel && !user_mode(regs))
4838 return 1;
4839 }
4840
4841 return 0;
4842 }
4843
4844 static int perf_swevent_match(struct perf_event *event,
4845 enum perf_type_id type,
4846 u32 event_id,
4847 struct perf_sample_data *data,
4848 struct pt_regs *regs)
4849 {
4850 if (event->attr.type != type)
4851 return 0;
4852
4853 if (event->attr.config != event_id)
4854 return 0;
4855
4856 if (perf_exclude_event(event, regs))
4857 return 0;
4858
4859 return 1;
4860 }
4861
4862 static inline u64 swevent_hash(u64 type, u32 event_id)
4863 {
4864 u64 val = event_id | (type << 32);
4865
4866 return hash_64(val, SWEVENT_HLIST_BITS);
4867 }
4868
4869 static inline struct hlist_head *
4870 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
4871 {
4872 u64 hash = swevent_hash(type, event_id);
4873
4874 return &hlist->heads[hash];
4875 }
4876
4877 /* For the read side: events when they trigger */
4878 static inline struct hlist_head *
4879 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
4880 {
4881 struct swevent_hlist *hlist;
4882
4883 hlist = rcu_dereference(swhash->swevent_hlist);
4884 if (!hlist)
4885 return NULL;
4886
4887 return __find_swevent_head(hlist, type, event_id);
4888 }
4889
4890 /* For the event head insertion and removal in the hlist */
4891 static inline struct hlist_head *
4892 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
4893 {
4894 struct swevent_hlist *hlist;
4895 u32 event_id = event->attr.config;
4896 u64 type = event->attr.type;
4897
4898 /*
4899 * Event scheduling is always serialized against hlist allocation
4900 * and release. Which makes the protected version suitable here.
4901 * The context lock guarantees that.
4902 */
4903 hlist = rcu_dereference_protected(swhash->swevent_hlist,
4904 lockdep_is_held(&event->ctx->lock));
4905 if (!hlist)
4906 return NULL;
4907
4908 return __find_swevent_head(hlist, type, event_id);
4909 }
4910
4911 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
4912 u64 nr,
4913 struct perf_sample_data *data,
4914 struct pt_regs *regs)
4915 {
4916 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4917 struct perf_event *event;
4918 struct hlist_node *node;
4919 struct hlist_head *head;
4920
4921 rcu_read_lock();
4922 head = find_swevent_head_rcu(swhash, type, event_id);
4923 if (!head)
4924 goto end;
4925
4926 hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
4927 if (perf_swevent_match(event, type, event_id, data, regs))
4928 perf_swevent_event(event, nr, data, regs);
4929 }
4930 end:
4931 rcu_read_unlock();
4932 }
4933
4934 int perf_swevent_get_recursion_context(void)
4935 {
4936 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4937
4938 return get_recursion_context(swhash->recursion);
4939 }
4940 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
4941
4942 inline void perf_swevent_put_recursion_context(int rctx)
4943 {
4944 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4945
4946 put_recursion_context(swhash->recursion, rctx);
4947 }
4948
4949 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
4950 {
4951 struct perf_sample_data data;
4952 int rctx;
4953
4954 preempt_disable_notrace();
4955 rctx = perf_swevent_get_recursion_context();
4956 if (rctx < 0)
4957 return;
4958
4959 perf_sample_data_init(&data, addr, 0);
4960
4961 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
4962
4963 perf_swevent_put_recursion_context(rctx);
4964 preempt_enable_notrace();
4965 }
4966
4967 static void perf_swevent_read(struct perf_event *event)
4968 {
4969 }
4970
4971 static int perf_swevent_add(struct perf_event *event, int flags)
4972 {
4973 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4974 struct hw_perf_event *hwc = &event->hw;
4975 struct hlist_head *head;
4976
4977 if (is_sampling_event(event)) {
4978 hwc->last_period = hwc->sample_period;
4979 perf_swevent_set_period(event);
4980 }
4981
4982 hwc->state = !(flags & PERF_EF_START);
4983
4984 head = find_swevent_head(swhash, event);
4985 if (WARN_ON_ONCE(!head))
4986 return -EINVAL;
4987
4988 hlist_add_head_rcu(&event->hlist_entry, head);
4989
4990 return 0;
4991 }
4992
4993 static void perf_swevent_del(struct perf_event *event, int flags)
4994 {
4995 hlist_del_rcu(&event->hlist_entry);
4996 }
4997
4998 static void perf_swevent_start(struct perf_event *event, int flags)
4999 {
5000 event->hw.state = 0;
5001 }
5002
5003 static void perf_swevent_stop(struct perf_event *event, int flags)
5004 {
5005 event->hw.state = PERF_HES_STOPPED;
5006 }
5007
5008 /* Deref the hlist from the update side */
5009 static inline struct swevent_hlist *
5010 swevent_hlist_deref(struct swevent_htable *swhash)
5011 {
5012 return rcu_dereference_protected(swhash->swevent_hlist,
5013 lockdep_is_held(&swhash->hlist_mutex));
5014 }
5015
5016 static void swevent_hlist_release(struct swevent_htable *swhash)
5017 {
5018 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
5019
5020 if (!hlist)
5021 return;
5022
5023 rcu_assign_pointer(swhash->swevent_hlist, NULL);
5024 kfree_rcu(hlist, rcu_head);
5025 }
5026
5027 static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
5028 {
5029 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5030
5031 mutex_lock(&swhash->hlist_mutex);
5032
5033 if (!--swhash->hlist_refcount)
5034 swevent_hlist_release(swhash);
5035
5036 mutex_unlock(&swhash->hlist_mutex);
5037 }
5038
5039 static void swevent_hlist_put(struct perf_event *event)
5040 {
5041 int cpu;
5042
5043 if (event->cpu != -1) {
5044 swevent_hlist_put_cpu(event, event->cpu);
5045 return;
5046 }
5047
5048 for_each_possible_cpu(cpu)
5049 swevent_hlist_put_cpu(event, cpu);
5050 }
5051
5052 static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
5053 {
5054 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5055 int err = 0;
5056
5057 mutex_lock(&swhash->hlist_mutex);
5058
5059 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
5060 struct swevent_hlist *hlist;
5061
5062 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
5063 if (!hlist) {
5064 err = -ENOMEM;
5065 goto exit;
5066 }
5067 rcu_assign_pointer(swhash->swevent_hlist, hlist);
5068 }
5069 swhash->hlist_refcount++;
5070 exit:
5071 mutex_unlock(&swhash->hlist_mutex);
5072
5073 return err;
5074 }
5075
5076 static int swevent_hlist_get(struct perf_event *event)
5077 {
5078 int err;
5079 int cpu, failed_cpu;
5080
5081 if (event->cpu != -1)
5082 return swevent_hlist_get_cpu(event, event->cpu);
5083
5084 get_online_cpus();
5085 for_each_possible_cpu(cpu) {
5086 err = swevent_hlist_get_cpu(event, cpu);
5087 if (err) {
5088 failed_cpu = cpu;
5089 goto fail;
5090 }
5091 }
5092 put_online_cpus();
5093
5094 return 0;
5095 fail:
5096 for_each_possible_cpu(cpu) {
5097 if (cpu == failed_cpu)
5098 break;
5099 swevent_hlist_put_cpu(event, cpu);
5100 }
5101
5102 put_online_cpus();
5103 return err;
5104 }
5105
5106 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
5107
5108 static void sw_perf_event_destroy(struct perf_event *event)
5109 {
5110 u64 event_id = event->attr.config;
5111
5112 WARN_ON(event->parent);
5113
5114 static_key_slow_dec(&perf_swevent_enabled[event_id]);
5115 swevent_hlist_put(event);
5116 }
5117
5118 static int perf_swevent_init(struct perf_event *event)
5119 {
5120 int event_id = event->attr.config;
5121
5122 if (event->attr.type != PERF_TYPE_SOFTWARE)
5123 return -ENOENT;
5124
5125 /*
5126 * no branch sampling for software events
5127 */
5128 if (has_branch_stack(event))
5129 return -EOPNOTSUPP;
5130
5131 switch (event_id) {
5132 case PERF_COUNT_SW_CPU_CLOCK:
5133 case PERF_COUNT_SW_TASK_CLOCK:
5134 return -ENOENT;
5135
5136 default:
5137 break;
5138 }
5139
5140 if (event_id >= PERF_COUNT_SW_MAX)
5141 return -ENOENT;
5142
5143 if (!event->parent) {
5144 int err;
5145
5146 err = swevent_hlist_get(event);
5147 if (err)
5148 return err;
5149
5150 static_key_slow_inc(&perf_swevent_enabled[event_id]);
5151 event->destroy = sw_perf_event_destroy;
5152 }
5153
5154 return 0;
5155 }
5156
5157 static int perf_swevent_event_idx(struct perf_event *event)
5158 {
5159 return 0;
5160 }
5161
5162 static struct pmu perf_swevent = {
5163 .task_ctx_nr = perf_sw_context,
5164
5165 .event_init = perf_swevent_init,
5166 .add = perf_swevent_add,
5167 .del = perf_swevent_del,
5168 .start = perf_swevent_start,
5169 .stop = perf_swevent_stop,
5170 .read = perf_swevent_read,
5171
5172 .event_idx = perf_swevent_event_idx,
5173 };
5174
5175 #ifdef CONFIG_EVENT_TRACING
5176
5177 static int perf_tp_filter_match(struct perf_event *event,
5178 struct perf_sample_data *data)
5179 {
5180 void *record = data->raw->data;
5181
5182 if (likely(!event->filter) || filter_match_preds(event->filter, record))
5183 return 1;
5184 return 0;
5185 }
5186
5187 static int perf_tp_event_match(struct perf_event *event,
5188 struct perf_sample_data *data,
5189 struct pt_regs *regs)
5190 {
5191 if (event->hw.state & PERF_HES_STOPPED)
5192 return 0;
5193 /*
5194 * All tracepoints are from kernel-space.
5195 */
5196 if (event->attr.exclude_kernel)
5197 return 0;
5198
5199 if (!perf_tp_filter_match(event, data))
5200 return 0;
5201
5202 return 1;
5203 }
5204
5205 void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
5206 struct pt_regs *regs, struct hlist_head *head, int rctx)
5207 {
5208 struct perf_sample_data data;
5209 struct perf_event *event;
5210 struct hlist_node *node;
5211
5212 struct perf_raw_record raw = {
5213 .size = entry_size,
5214 .data = record,
5215 };
5216
5217 perf_sample_data_init(&data, addr, 0);
5218 data.raw = &raw;
5219
5220 hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
5221 if (perf_tp_event_match(event, &data, regs))
5222 perf_swevent_event(event, count, &data, regs);
5223 }
5224
5225 perf_swevent_put_recursion_context(rctx);
5226 }
5227 EXPORT_SYMBOL_GPL(perf_tp_event);
5228
5229 static void tp_perf_event_destroy(struct perf_event *event)
5230 {
5231 perf_trace_destroy(event);
5232 }
5233
5234 static int perf_tp_event_init(struct perf_event *event)
5235 {
5236 int err;
5237
5238 if (event->attr.type != PERF_TYPE_TRACEPOINT)
5239 return -ENOENT;
5240
5241 /*
5242 * no branch sampling for tracepoint events
5243 */
5244 if (has_branch_stack(event))
5245 return -EOPNOTSUPP;
5246
5247 err = perf_trace_init(event);
5248 if (err)
5249 return err;
5250
5251 event->destroy = tp_perf_event_destroy;
5252
5253 return 0;
5254 }
5255
5256 static struct pmu perf_tracepoint = {
5257 .task_ctx_nr = perf_sw_context,
5258
5259 .event_init = perf_tp_event_init,
5260 .add = perf_trace_add,
5261 .del = perf_trace_del,
5262 .start = perf_swevent_start,
5263 .stop = perf_swevent_stop,
5264 .read = perf_swevent_read,
5265
5266 .event_idx = perf_swevent_event_idx,
5267 };
5268
5269 static inline void perf_tp_register(void)
5270 {
5271 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
5272 }
5273
5274 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
5275 {
5276 char *filter_str;
5277 int ret;
5278
5279 if (event->attr.type != PERF_TYPE_TRACEPOINT)
5280 return -EINVAL;
5281
5282 filter_str = strndup_user(arg, PAGE_SIZE);
5283 if (IS_ERR(filter_str))
5284 return PTR_ERR(filter_str);
5285
5286 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
5287
5288 kfree(filter_str);
5289 return ret;
5290 }
5291
5292 static void perf_event_free_filter(struct perf_event *event)
5293 {
5294 ftrace_profile_free_filter(event);
5295 }
5296
5297 #else
5298
5299 static inline void perf_tp_register(void)
5300 {
5301 }
5302
5303 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
5304 {
5305 return -ENOENT;
5306 }
5307
5308 static void perf_event_free_filter(struct perf_event *event)
5309 {
5310 }
5311
5312 #endif /* CONFIG_EVENT_TRACING */
5313
5314 #ifdef CONFIG_HAVE_HW_BREAKPOINT
5315 void perf_bp_event(struct perf_event *bp, void *data)
5316 {
5317 struct perf_sample_data sample;
5318 struct pt_regs *regs = data;
5319
5320 perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
5321
5322 if (!bp->hw.state && !perf_exclude_event(bp, regs))
5323 perf_swevent_event(bp, 1, &sample, regs);
5324 }
5325 #endif
5326
5327 /*
5328 * hrtimer based swevent callback
5329 */
5330
5331 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
5332 {
5333 enum hrtimer_restart ret = HRTIMER_RESTART;
5334 struct perf_sample_data data;
5335 struct pt_regs *regs;
5336 struct perf_event *event;
5337 u64 period;
5338
5339 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
5340
5341 if (event->state != PERF_EVENT_STATE_ACTIVE)
5342 return HRTIMER_NORESTART;
5343
5344 event->pmu->read(event);
5345
5346 perf_sample_data_init(&data, 0, event->hw.last_period);
5347 regs = get_irq_regs();
5348
5349 if (regs && !perf_exclude_event(event, regs)) {
5350 if (!(event->attr.exclude_idle && is_idle_task(current)))
5351 if (__perf_event_overflow(event, 1, &data, regs))
5352 ret = HRTIMER_NORESTART;
5353 }
5354
5355 period = max_t(u64, 10000, event->hw.sample_period);
5356 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
5357
5358 return ret;
5359 }
5360
5361 static void perf_swevent_start_hrtimer(struct perf_event *event)
5362 {
5363 struct hw_perf_event *hwc = &event->hw;
5364 s64 period;
5365
5366 if (!is_sampling_event(event))
5367 return;
5368
5369 period = local64_read(&hwc->period_left);
5370 if (period) {
5371 if (period < 0)
5372 period = 10000;
5373
5374 local64_set(&hwc->period_left, 0);
5375 } else {
5376 period = max_t(u64, 10000, hwc->sample_period);
5377 }
5378 __hrtimer_start_range_ns(&hwc->hrtimer,
5379 ns_to_ktime(period), 0,
5380 HRTIMER_MODE_REL_PINNED, 0);
5381 }
5382
5383 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
5384 {
5385 struct hw_perf_event *hwc = &event->hw;
5386
5387 if (is_sampling_event(event)) {
5388 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
5389 local64_set(&hwc->period_left, ktime_to_ns(remaining));
5390
5391 hrtimer_cancel(&hwc->hrtimer);
5392 }
5393 }
5394
5395 static void perf_swevent_init_hrtimer(struct perf_event *event)
5396 {
5397 struct hw_perf_event *hwc = &event->hw;
5398
5399 if (!is_sampling_event(event))
5400 return;
5401
5402 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
5403 hwc->hrtimer.function = perf_swevent_hrtimer;
5404
5405 /*
5406 * Since hrtimers have a fixed rate, we can do a static freq->period
5407 * mapping and avoid the whole period adjust feedback stuff.
5408 */
5409 if (event->attr.freq) {
5410 long freq = event->attr.sample_freq;
5411
5412 event->attr.sample_period = NSEC_PER_SEC / freq;
5413 hwc->sample_period = event->attr.sample_period;
5414 local64_set(&hwc->period_left, hwc->sample_period);
5415 event->attr.freq = 0;
5416 }
5417 }
5418
5419 /*
5420 * Software event: cpu wall time clock
5421 */
5422
5423 static void cpu_clock_event_update(struct perf_event *event)
5424 {
5425 s64 prev;
5426 u64 now;
5427
5428 now = local_clock();
5429 prev = local64_xchg(&event->hw.prev_count, now);
5430 local64_add(now - prev, &event->count);
5431 }
5432
5433 static void cpu_clock_event_start(struct perf_event *event, int flags)
5434 {
5435 local64_set(&event->hw.prev_count, local_clock());
5436 perf_swevent_start_hrtimer(event);
5437 }
5438
5439 static void cpu_clock_event_stop(struct perf_event *event, int flags)
5440 {
5441 perf_swevent_cancel_hrtimer(event);
5442 cpu_clock_event_update(event);
5443 }
5444
5445 static int cpu_clock_event_add(struct perf_event *event, int flags)
5446 {
5447 if (flags & PERF_EF_START)
5448 cpu_clock_event_start(event, flags);
5449
5450 return 0;
5451 }
5452
5453 static void cpu_clock_event_del(struct perf_event *event, int flags)
5454 {
5455 cpu_clock_event_stop(event, flags);
5456 }
5457
5458 static void cpu_clock_event_read(struct perf_event *event)
5459 {
5460 cpu_clock_event_update(event);
5461 }
5462
5463 static int cpu_clock_event_init(struct perf_event *event)
5464 {
5465 if (event->attr.type != PERF_TYPE_SOFTWARE)
5466 return -ENOENT;
5467
5468 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
5469 return -ENOENT;
5470
5471 /*
5472 * no branch sampling for software events
5473 */
5474 if (has_branch_stack(event))
5475 return -EOPNOTSUPP;
5476
5477 perf_swevent_init_hrtimer(event);
5478
5479 return 0;
5480 }
5481
5482 static struct pmu perf_cpu_clock = {
5483 .task_ctx_nr = perf_sw_context,
5484
5485 .event_init = cpu_clock_event_init,
5486 .add = cpu_clock_event_add,
5487 .del = cpu_clock_event_del,
5488 .start = cpu_clock_event_start,
5489 .stop = cpu_clock_event_stop,
5490 .read = cpu_clock_event_read,
5491
5492 .event_idx = perf_swevent_event_idx,
5493 };
5494
5495 /*
5496 * Software event: task time clock
5497 */
5498
5499 static void task_clock_event_update(struct perf_event *event, u64 now)
5500 {
5501 u64 prev;
5502 s64 delta;
5503
5504 prev = local64_xchg(&event->hw.prev_count, now);
5505 delta = now - prev;
5506 local64_add(delta, &event->count);
5507 }
5508
5509 static void task_clock_event_start(struct perf_event *event, int flags)
5510 {
5511 local64_set(&event->hw.prev_count, event->ctx->time);
5512 perf_swevent_start_hrtimer(event);
5513 }
5514
5515 static void task_clock_event_stop(struct perf_event *event, int flags)
5516 {
5517 perf_swevent_cancel_hrtimer(event);
5518 task_clock_event_update(event, event->ctx->time);
5519 }
5520
5521 static int task_clock_event_add(struct perf_event *event, int flags)
5522 {
5523 if (flags & PERF_EF_START)
5524 task_clock_event_start(event, flags);
5525
5526 return 0;
5527 }
5528
5529 static void task_clock_event_del(struct perf_event *event, int flags)
5530 {
5531 task_clock_event_stop(event, PERF_EF_UPDATE);
5532 }
5533
5534 static void task_clock_event_read(struct perf_event *event)
5535 {
5536 u64 now = perf_clock();
5537 u64 delta = now - event->ctx->timestamp;
5538 u64 time = event->ctx->time + delta;
5539
5540 task_clock_event_update(event, time);
5541 }
5542
5543 static int task_clock_event_init(struct perf_event *event)
5544 {
5545 if (event->attr.type != PERF_TYPE_SOFTWARE)
5546 return -ENOENT;
5547
5548 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
5549 return -ENOENT;
5550
5551 /*
5552 * no branch sampling for software events
5553 */
5554 if (has_branch_stack(event))
5555 return -EOPNOTSUPP;
5556
5557 perf_swevent_init_hrtimer(event);
5558
5559 return 0;
5560 }
5561
5562 static struct pmu perf_task_clock = {
5563 .task_ctx_nr = perf_sw_context,
5564
5565 .event_init = task_clock_event_init,
5566 .add = task_clock_event_add,
5567 .del = task_clock_event_del,
5568 .start = task_clock_event_start,
5569 .stop = task_clock_event_stop,
5570 .read = task_clock_event_read,
5571
5572 .event_idx = perf_swevent_event_idx,
5573 };
5574
5575 static void perf_pmu_nop_void(struct pmu *pmu)
5576 {
5577 }
5578
5579 static int perf_pmu_nop_int(struct pmu *pmu)
5580 {
5581 return 0;
5582 }
5583
5584 static void perf_pmu_start_txn(struct pmu *pmu)
5585 {
5586 perf_pmu_disable(pmu);
5587 }
5588
5589 static int perf_pmu_commit_txn(struct pmu *pmu)
5590 {
5591 perf_pmu_enable(pmu);
5592 return 0;
5593 }
5594
5595 static void perf_pmu_cancel_txn(struct pmu *pmu)
5596 {
5597 perf_pmu_enable(pmu);
5598 }
5599
5600 static int perf_event_idx_default(struct perf_event *event)
5601 {
5602 return event->hw.idx + 1;
5603 }
5604
5605 /*
5606 * Ensures all contexts with the same task_ctx_nr have the same
5607 * pmu_cpu_context too.
5608 */
5609 static void *find_pmu_context(int ctxn)
5610 {
5611 struct pmu *pmu;
5612
5613 if (ctxn < 0)
5614 return NULL;
5615
5616 list_for_each_entry(pmu, &pmus, entry) {
5617 if (pmu->task_ctx_nr == ctxn)
5618 return pmu->pmu_cpu_context;
5619 }
5620
5621 return NULL;
5622 }
5623
5624 static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
5625 {
5626 int cpu;
5627
5628 for_each_possible_cpu(cpu) {
5629 struct perf_cpu_context *cpuctx;
5630
5631 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
5632
5633 if (cpuctx->active_pmu == old_pmu)
5634 cpuctx->active_pmu = pmu;
5635 }
5636 }
5637
5638 static void free_pmu_context(struct pmu *pmu)
5639 {
5640 struct pmu *i;
5641
5642 mutex_lock(&pmus_lock);
5643 /*
5644 * Like a real lame refcount.
5645 */
5646 list_for_each_entry(i, &pmus, entry) {
5647 if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
5648 update_pmu_context(i, pmu);
5649 goto out;
5650 }
5651 }
5652
5653 free_percpu(pmu->pmu_cpu_context);
5654 out:
5655 mutex_unlock(&pmus_lock);
5656 }
5657 static struct idr pmu_idr;
5658
5659 static ssize_t
5660 type_show(struct device *dev, struct device_attribute *attr, char *page)
5661 {
5662 struct pmu *pmu = dev_get_drvdata(dev);
5663
5664 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
5665 }
5666
5667 static struct device_attribute pmu_dev_attrs[] = {
5668 __ATTR_RO(type),
5669 __ATTR_NULL,
5670 };
5671
5672 static int pmu_bus_running;
5673 static struct bus_type pmu_bus = {
5674 .name = "event_source",
5675 .dev_attrs = pmu_dev_attrs,
5676 };
5677
5678 static void pmu_dev_release(struct device *dev)
5679 {
5680 kfree(dev);
5681 }
5682
5683 static int pmu_dev_alloc(struct pmu *pmu)
5684 {
5685 int ret = -ENOMEM;
5686
5687 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
5688 if (!pmu->dev)
5689 goto out;
5690
5691 pmu->dev->groups = pmu->attr_groups;
5692 device_initialize(pmu->dev);
5693 ret = dev_set_name(pmu->dev, "%s", pmu->name);
5694 if (ret)
5695 goto free_dev;
5696
5697 dev_set_drvdata(pmu->dev, pmu);
5698 pmu->dev->bus = &pmu_bus;
5699 pmu->dev->release = pmu_dev_release;
5700 ret = device_add(pmu->dev);
5701 if (ret)
5702 goto free_dev;
5703
5704 out:
5705 return ret;
5706
5707 free_dev:
5708 put_device(pmu->dev);
5709 goto out;
5710 }
5711
5712 static struct lock_class_key cpuctx_mutex;
5713 static struct lock_class_key cpuctx_lock;
5714
5715 int perf_pmu_register(struct pmu *pmu, char *name, int type)
5716 {
5717 int cpu, ret;
5718
5719 mutex_lock(&pmus_lock);
5720 ret = -ENOMEM;
5721 pmu->pmu_disable_count = alloc_percpu(int);
5722 if (!pmu->pmu_disable_count)
5723 goto unlock;
5724
5725 pmu->type = -1;
5726 if (!name)
5727 goto skip_type;
5728 pmu->name = name;
5729
5730 if (type < 0) {
5731 int err = idr_pre_get(&pmu_idr, GFP_KERNEL);
5732 if (!err)
5733 goto free_pdc;
5734
5735 err = idr_get_new_above(&pmu_idr, pmu, PERF_TYPE_MAX, &type);
5736 if (err) {
5737 ret = err;
5738 goto free_pdc;
5739 }
5740 }
5741 pmu->type = type;
5742
5743 if (pmu_bus_running) {
5744 ret = pmu_dev_alloc(pmu);
5745 if (ret)
5746 goto free_idr;
5747 }
5748
5749 skip_type:
5750 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
5751 if (pmu->pmu_cpu_context)
5752 goto got_cpu_context;
5753
5754 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
5755 if (!pmu->pmu_cpu_context)
5756 goto free_dev;
5757
5758 for_each_possible_cpu(cpu) {
5759 struct perf_cpu_context *cpuctx;
5760
5761 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
5762 __perf_event_init_context(&cpuctx->ctx);
5763 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
5764 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
5765 cpuctx->ctx.type = cpu_context;
5766 cpuctx->ctx.pmu = pmu;
5767 cpuctx->jiffies_interval = 1;
5768 INIT_LIST_HEAD(&cpuctx->rotation_list);
5769 cpuctx->active_pmu = pmu;
5770 }
5771
5772 got_cpu_context:
5773 if (!pmu->start_txn) {
5774 if (pmu->pmu_enable) {
5775 /*
5776 * If we have pmu_enable/pmu_disable calls, install
5777 * transaction stubs that use that to try and batch
5778 * hardware accesses.
5779 */
5780 pmu->start_txn = perf_pmu_start_txn;
5781 pmu->commit_txn = perf_pmu_commit_txn;
5782 pmu->cancel_txn = perf_pmu_cancel_txn;
5783 } else {
5784 pmu->start_txn = perf_pmu_nop_void;
5785 pmu->commit_txn = perf_pmu_nop_int;
5786 pmu->cancel_txn = perf_pmu_nop_void;
5787 }
5788 }
5789
5790 if (!pmu->pmu_enable) {
5791 pmu->pmu_enable = perf_pmu_nop_void;
5792 pmu->pmu_disable = perf_pmu_nop_void;
5793 }
5794
5795 if (!pmu->event_idx)
5796 pmu->event_idx = perf_event_idx_default;
5797
5798 list_add_rcu(&pmu->entry, &pmus);
5799 ret = 0;
5800 unlock:
5801 mutex_unlock(&pmus_lock);
5802
5803 return ret;
5804
5805 free_dev:
5806 device_del(pmu->dev);
5807 put_device(pmu->dev);
5808
5809 free_idr:
5810 if (pmu->type >= PERF_TYPE_MAX)
5811 idr_remove(&pmu_idr, pmu->type);
5812
5813 free_pdc:
5814 free_percpu(pmu->pmu_disable_count);
5815 goto unlock;
5816 }
5817
5818 void perf_pmu_unregister(struct pmu *pmu)
5819 {
5820 mutex_lock(&pmus_lock);
5821 list_del_rcu(&pmu->entry);
5822 mutex_unlock(&pmus_lock);
5823
5824 /*
5825 * We dereference the pmu list under both SRCU and regular RCU, so
5826 * synchronize against both of those.
5827 */
5828 synchronize_srcu(&pmus_srcu);
5829 synchronize_rcu();
5830
5831 free_percpu(pmu->pmu_disable_count);
5832 if (pmu->type >= PERF_TYPE_MAX)
5833 idr_remove(&pmu_idr, pmu->type);
5834 device_del(pmu->dev);
5835 put_device(pmu->dev);
5836 free_pmu_context(pmu);
5837 }
5838
5839 struct pmu *perf_init_event(struct perf_event *event)
5840 {
5841 struct pmu *pmu = NULL;
5842 int idx;
5843 int ret;
5844
5845 idx = srcu_read_lock(&pmus_srcu);
5846
5847 rcu_read_lock();
5848 pmu = idr_find(&pmu_idr, event->attr.type);
5849 rcu_read_unlock();
5850 if (pmu) {
5851 event->pmu = pmu;
5852 ret = pmu->event_init(event);
5853 if (ret)
5854 pmu = ERR_PTR(ret);
5855 goto unlock;
5856 }
5857
5858 list_for_each_entry_rcu(pmu, &pmus, entry) {
5859 event->pmu = pmu;
5860 ret = pmu->event_init(event);
5861 if (!ret)
5862 goto unlock;
5863
5864 if (ret != -ENOENT) {
5865 pmu = ERR_PTR(ret);
5866 goto unlock;
5867 }
5868 }
5869 pmu = ERR_PTR(-ENOENT);
5870 unlock:
5871 srcu_read_unlock(&pmus_srcu, idx);
5872
5873 return pmu;
5874 }
5875
5876 /*
5877 * Allocate and initialize a event structure
5878 */
5879 static struct perf_event *
5880 perf_event_alloc(struct perf_event_attr *attr, int cpu,
5881 struct task_struct *task,
5882 struct perf_event *group_leader,
5883 struct perf_event *parent_event,
5884 perf_overflow_handler_t overflow_handler,
5885 void *context)
5886 {
5887 struct pmu *pmu;
5888 struct perf_event *event;
5889 struct hw_perf_event *hwc;
5890 long err;
5891
5892 if ((unsigned)cpu >= nr_cpu_ids) {
5893 if (!task || cpu != -1)
5894 return ERR_PTR(-EINVAL);
5895 }
5896
5897 event = kzalloc(sizeof(*event), GFP_KERNEL);
5898 if (!event)
5899 return ERR_PTR(-ENOMEM);
5900
5901 /*
5902 * Single events are their own group leaders, with an
5903 * empty sibling list:
5904 */
5905 if (!group_leader)
5906 group_leader = event;
5907
5908 mutex_init(&event->child_mutex);
5909 INIT_LIST_HEAD(&event->child_list);
5910
5911 INIT_LIST_HEAD(&event->group_entry);
5912 INIT_LIST_HEAD(&event->event_entry);
5913 INIT_LIST_HEAD(&event->sibling_list);
5914 INIT_LIST_HEAD(&event->rb_entry);
5915
5916 init_waitqueue_head(&event->waitq);
5917 init_irq_work(&event->pending, perf_pending_event);
5918
5919 mutex_init(&event->mmap_mutex);
5920
5921 event->cpu = cpu;
5922 event->attr = *attr;
5923 event->group_leader = group_leader;
5924 event->pmu = NULL;
5925 event->oncpu = -1;
5926
5927 event->parent = parent_event;
5928
5929 event->ns = get_pid_ns(current->nsproxy->pid_ns);
5930 event->id = atomic64_inc_return(&perf_event_id);
5931
5932 event->state = PERF_EVENT_STATE_INACTIVE;
5933
5934 if (task) {
5935 event->attach_state = PERF_ATTACH_TASK;
5936 #ifdef CONFIG_HAVE_HW_BREAKPOINT
5937 /*
5938 * hw_breakpoint is a bit difficult here..
5939 */
5940 if (attr->type == PERF_TYPE_BREAKPOINT)
5941 event->hw.bp_target = task;
5942 #endif
5943 }
5944
5945 if (!overflow_handler && parent_event) {
5946 overflow_handler = parent_event->overflow_handler;
5947 context = parent_event->overflow_handler_context;
5948 }
5949
5950 event->overflow_handler = overflow_handler;
5951 event->overflow_handler_context = context;
5952
5953 if (attr->disabled)
5954 event->state = PERF_EVENT_STATE_OFF;
5955
5956 pmu = NULL;
5957
5958 hwc = &event->hw;
5959 hwc->sample_period = attr->sample_period;
5960 if (attr->freq && attr->sample_freq)
5961 hwc->sample_period = 1;
5962 hwc->last_period = hwc->sample_period;
5963
5964 local64_set(&hwc->period_left, hwc->sample_period);
5965
5966 /*
5967 * we currently do not support PERF_FORMAT_GROUP on inherited events
5968 */
5969 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
5970 goto done;
5971
5972 pmu = perf_init_event(event);
5973
5974 done:
5975 err = 0;
5976 if (!pmu)
5977 err = -EINVAL;
5978 else if (IS_ERR(pmu))
5979 err = PTR_ERR(pmu);
5980
5981 if (err) {
5982 if (event->ns)
5983 put_pid_ns(event->ns);
5984 kfree(event);
5985 return ERR_PTR(err);
5986 }
5987
5988 if (!event->parent) {
5989 if (event->attach_state & PERF_ATTACH_TASK)
5990 static_key_slow_inc(&perf_sched_events.key);
5991 if (event->attr.mmap || event->attr.mmap_data)
5992 atomic_inc(&nr_mmap_events);
5993 if (event->attr.comm)
5994 atomic_inc(&nr_comm_events);
5995 if (event->attr.task)
5996 atomic_inc(&nr_task_events);
5997 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
5998 err = get_callchain_buffers();
5999 if (err) {
6000 free_event(event);
6001 return ERR_PTR(err);
6002 }
6003 }
6004 if (has_branch_stack(event)) {
6005 static_key_slow_inc(&perf_sched_events.key);
6006 if (!(event->attach_state & PERF_ATTACH_TASK))
6007 atomic_inc(&per_cpu(perf_branch_stack_events,
6008 event->cpu));
6009 }
6010 }
6011
6012 return event;
6013 }
6014
6015 static int perf_copy_attr(struct perf_event_attr __user *uattr,
6016 struct perf_event_attr *attr)
6017 {
6018 u32 size;
6019 int ret;
6020
6021 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
6022 return -EFAULT;
6023
6024 /*
6025 * zero the full structure, so that a short copy will be nice.
6026 */
6027 memset(attr, 0, sizeof(*attr));
6028
6029 ret = get_user(size, &uattr->size);
6030 if (ret)
6031 return ret;
6032
6033 if (size > PAGE_SIZE) /* silly large */
6034 goto err_size;
6035
6036 if (!size) /* abi compat */
6037 size = PERF_ATTR_SIZE_VER0;
6038
6039 if (size < PERF_ATTR_SIZE_VER0)
6040 goto err_size;
6041
6042 /*
6043 * If we're handed a bigger struct than we know of,
6044 * ensure all the unknown bits are 0 - i.e. new
6045 * user-space does not rely on any kernel feature
6046 * extensions we dont know about yet.
6047 */
6048 if (size > sizeof(*attr)) {
6049 unsigned char __user *addr;
6050 unsigned char __user *end;
6051 unsigned char val;
6052
6053 addr = (void __user *)uattr + sizeof(*attr);
6054 end = (void __user *)uattr + size;
6055
6056 for (; addr < end; addr++) {
6057 ret = get_user(val, addr);
6058 if (ret)
6059 return ret;
6060 if (val)
6061 goto err_size;
6062 }
6063 size = sizeof(*attr);
6064 }
6065
6066 ret = copy_from_user(attr, uattr, size);
6067 if (ret)
6068 return -EFAULT;
6069
6070 if (attr->__reserved_1)
6071 return -EINVAL;
6072
6073 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
6074 return -EINVAL;
6075
6076 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
6077 return -EINVAL;
6078
6079 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
6080 u64 mask = attr->branch_sample_type;
6081
6082 /* only using defined bits */
6083 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
6084 return -EINVAL;
6085
6086 /* at least one branch bit must be set */
6087 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
6088 return -EINVAL;
6089
6090 /* kernel level capture: check permissions */
6091 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
6092 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
6093 return -EACCES;
6094
6095 /* propagate priv level, when not set for branch */
6096 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
6097
6098 /* exclude_kernel checked on syscall entry */
6099 if (!attr->exclude_kernel)
6100 mask |= PERF_SAMPLE_BRANCH_KERNEL;
6101
6102 if (!attr->exclude_user)
6103 mask |= PERF_SAMPLE_BRANCH_USER;
6104
6105 if (!attr->exclude_hv)
6106 mask |= PERF_SAMPLE_BRANCH_HV;
6107 /*
6108 * adjust user setting (for HW filter setup)
6109 */
6110 attr->branch_sample_type = mask;
6111 }
6112 }
6113 out:
6114 return ret;
6115
6116 err_size:
6117 put_user(sizeof(*attr), &uattr->size);
6118 ret = -E2BIG;
6119 goto out;
6120 }
6121
6122 static int
6123 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
6124 {
6125 struct ring_buffer *rb = NULL, *old_rb = NULL;
6126 int ret = -EINVAL;
6127
6128 if (!output_event)
6129 goto set;
6130
6131 /* don't allow circular references */
6132 if (event == output_event)
6133 goto out;
6134
6135 /*
6136 * Don't allow cross-cpu buffers
6137 */
6138 if (output_event->cpu != event->cpu)
6139 goto out;
6140
6141 /*
6142 * If its not a per-cpu rb, it must be the same task.
6143 */
6144 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
6145 goto out;
6146
6147 set:
6148 mutex_lock(&event->mmap_mutex);
6149 /* Can't redirect output if we've got an active mmap() */
6150 if (atomic_read(&event->mmap_count))
6151 goto unlock;
6152
6153 if (output_event) {
6154 /* get the rb we want to redirect to */
6155 rb = ring_buffer_get(output_event);
6156 if (!rb)
6157 goto unlock;
6158 }
6159
6160 old_rb = event->rb;
6161 rcu_assign_pointer(event->rb, rb);
6162 if (old_rb)
6163 ring_buffer_detach(event, old_rb);
6164 ret = 0;
6165 unlock:
6166 mutex_unlock(&event->mmap_mutex);
6167
6168 if (old_rb)
6169 ring_buffer_put(old_rb);
6170 out:
6171 return ret;
6172 }
6173
6174 /**
6175 * sys_perf_event_open - open a performance event, associate it to a task/cpu
6176 *
6177 * @attr_uptr: event_id type attributes for monitoring/sampling
6178 * @pid: target pid
6179 * @cpu: target cpu
6180 * @group_fd: group leader event fd
6181 */
6182 SYSCALL_DEFINE5(perf_event_open,
6183 struct perf_event_attr __user *, attr_uptr,
6184 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
6185 {
6186 struct perf_event *group_leader = NULL, *output_event = NULL;
6187 struct perf_event *event, *sibling;
6188 struct perf_event_attr attr;
6189 struct perf_event_context *ctx;
6190 struct file *event_file = NULL;
6191 struct file *group_file = NULL;
6192 struct task_struct *task = NULL;
6193 struct pmu *pmu;
6194 int event_fd;
6195 int move_group = 0;
6196 int fput_needed = 0;
6197 int err;
6198
6199 /* for future expandability... */
6200 if (flags & ~PERF_FLAG_ALL)
6201 return -EINVAL;
6202
6203 err = perf_copy_attr(attr_uptr, &attr);
6204 if (err)
6205 return err;
6206
6207 if (!attr.exclude_kernel) {
6208 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
6209 return -EACCES;
6210 }
6211
6212 if (attr.freq) {
6213 if (attr.sample_freq > sysctl_perf_event_sample_rate)
6214 return -EINVAL;
6215 }
6216
6217 /*
6218 * In cgroup mode, the pid argument is used to pass the fd
6219 * opened to the cgroup directory in cgroupfs. The cpu argument
6220 * designates the cpu on which to monitor threads from that
6221 * cgroup.
6222 */
6223 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
6224 return -EINVAL;
6225
6226 event_fd = get_unused_fd_flags(O_RDWR);
6227 if (event_fd < 0)
6228 return event_fd;
6229
6230 if (group_fd != -1) {
6231 group_leader = perf_fget_light(group_fd, &fput_needed);
6232 if (IS_ERR(group_leader)) {
6233 err = PTR_ERR(group_leader);
6234 goto err_fd;
6235 }
6236 group_file = group_leader->filp;
6237 if (flags & PERF_FLAG_FD_OUTPUT)
6238 output_event = group_leader;
6239 if (flags & PERF_FLAG_FD_NO_GROUP)
6240 group_leader = NULL;
6241 }
6242
6243 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
6244 task = find_lively_task_by_vpid(pid);
6245 if (IS_ERR(task)) {
6246 err = PTR_ERR(task);
6247 goto err_group_fd;
6248 }
6249 }
6250
6251 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
6252 NULL, NULL);
6253 if (IS_ERR(event)) {
6254 err = PTR_ERR(event);
6255 goto err_task;
6256 }
6257
6258 if (flags & PERF_FLAG_PID_CGROUP) {
6259 err = perf_cgroup_connect(pid, event, &attr, group_leader);
6260 if (err)
6261 goto err_alloc;
6262 /*
6263 * one more event:
6264 * - that has cgroup constraint on event->cpu
6265 * - that may need work on context switch
6266 */
6267 atomic_inc(&per_cpu(perf_cgroup_events, event->cpu));
6268 static_key_slow_inc(&perf_sched_events.key);
6269 }
6270
6271 /*
6272 * Special case software events and allow them to be part of
6273 * any hardware group.
6274 */
6275 pmu = event->pmu;
6276
6277 if (group_leader &&
6278 (is_software_event(event) != is_software_event(group_leader))) {
6279 if (is_software_event(event)) {
6280 /*
6281 * If event and group_leader are not both a software
6282 * event, and event is, then group leader is not.
6283 *
6284 * Allow the addition of software events to !software
6285 * groups, this is safe because software events never
6286 * fail to schedule.
6287 */
6288 pmu = group_leader->pmu;
6289 } else if (is_software_event(group_leader) &&
6290 (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
6291 /*
6292 * In case the group is a pure software group, and we
6293 * try to add a hardware event, move the whole group to
6294 * the hardware context.
6295 */
6296 move_group = 1;
6297 }
6298 }
6299
6300 /*
6301 * Get the target context (task or percpu):
6302 */
6303 ctx = find_get_context(pmu, task, cpu);
6304 if (IS_ERR(ctx)) {
6305 err = PTR_ERR(ctx);
6306 goto err_alloc;
6307 }
6308
6309 if (task) {
6310 put_task_struct(task);
6311 task = NULL;
6312 }
6313
6314 /*
6315 * Look up the group leader (we will attach this event to it):
6316 */
6317 if (group_leader) {
6318 err = -EINVAL;
6319
6320 /*
6321 * Do not allow a recursive hierarchy (this new sibling
6322 * becoming part of another group-sibling):
6323 */
6324 if (group_leader->group_leader != group_leader)
6325 goto err_context;
6326 /*
6327 * Do not allow to attach to a group in a different
6328 * task or CPU context:
6329 */
6330 if (move_group) {
6331 if (group_leader->ctx->type != ctx->type)
6332 goto err_context;
6333 } else {
6334 if (group_leader->ctx != ctx)
6335 goto err_context;
6336 }
6337
6338 /*
6339 * Only a group leader can be exclusive or pinned
6340 */
6341 if (attr.exclusive || attr.pinned)
6342 goto err_context;
6343 }
6344
6345 if (output_event) {
6346 err = perf_event_set_output(event, output_event);
6347 if (err)
6348 goto err_context;
6349 }
6350
6351 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
6352 if (IS_ERR(event_file)) {
6353 err = PTR_ERR(event_file);
6354 goto err_context;
6355 }
6356
6357 if (move_group) {
6358 struct perf_event_context *gctx = group_leader->ctx;
6359
6360 mutex_lock(&gctx->mutex);
6361 perf_remove_from_context(group_leader);
6362 list_for_each_entry(sibling, &group_leader->sibling_list,
6363 group_entry) {
6364 perf_remove_from_context(sibling);
6365 put_ctx(gctx);
6366 }
6367 mutex_unlock(&gctx->mutex);
6368 put_ctx(gctx);
6369 }
6370
6371 event->filp = event_file;
6372 WARN_ON_ONCE(ctx->parent_ctx);
6373 mutex_lock(&ctx->mutex);
6374
6375 if (move_group) {
6376 perf_install_in_context(ctx, group_leader, cpu);
6377 get_ctx(ctx);
6378 list_for_each_entry(sibling, &group_leader->sibling_list,
6379 group_entry) {
6380 perf_install_in_context(ctx, sibling, cpu);
6381 get_ctx(ctx);
6382 }
6383 }
6384
6385 perf_install_in_context(ctx, event, cpu);
6386 ++ctx->generation;
6387 perf_unpin_context(ctx);
6388 mutex_unlock(&ctx->mutex);
6389
6390 event->owner = current;
6391
6392 mutex_lock(&current->perf_event_mutex);
6393 list_add_tail(&event->owner_entry, &current->perf_event_list);
6394 mutex_unlock(&current->perf_event_mutex);
6395
6396 /*
6397 * Precalculate sample_data sizes
6398 */
6399 perf_event__header_size(event);
6400 perf_event__id_header_size(event);
6401
6402 /*
6403 * Drop the reference on the group_event after placing the
6404 * new event on the sibling_list. This ensures destruction
6405 * of the group leader will find the pointer to itself in
6406 * perf_group_detach().
6407 */
6408 fput_light(group_file, fput_needed);
6409 fd_install(event_fd, event_file);
6410 return event_fd;
6411
6412 err_context:
6413 perf_unpin_context(ctx);
6414 put_ctx(ctx);
6415 err_alloc:
6416 free_event(event);
6417 err_task:
6418 if (task)
6419 put_task_struct(task);
6420 err_group_fd:
6421 fput_light(group_file, fput_needed);
6422 err_fd:
6423 put_unused_fd(event_fd);
6424 return err;
6425 }
6426
6427 /**
6428 * perf_event_create_kernel_counter
6429 *
6430 * @attr: attributes of the counter to create
6431 * @cpu: cpu in which the counter is bound
6432 * @task: task to profile (NULL for percpu)
6433 */
6434 struct perf_event *
6435 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
6436 struct task_struct *task,
6437 perf_overflow_handler_t overflow_handler,
6438 void *context)
6439 {
6440 struct perf_event_context *ctx;
6441 struct perf_event *event;
6442 int err;
6443
6444 /*
6445 * Get the target context (task or percpu):
6446 */
6447
6448 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
6449 overflow_handler, context);
6450 if (IS_ERR(event)) {
6451 err = PTR_ERR(event);
6452 goto err;
6453 }
6454
6455 ctx = find_get_context(event->pmu, task, cpu);
6456 if (IS_ERR(ctx)) {
6457 err = PTR_ERR(ctx);
6458 goto err_free;
6459 }
6460
6461 event->filp = NULL;
6462 WARN_ON_ONCE(ctx->parent_ctx);
6463 mutex_lock(&ctx->mutex);
6464 perf_install_in_context(ctx, event, cpu);
6465 ++ctx->generation;
6466 perf_unpin_context(ctx);
6467 mutex_unlock(&ctx->mutex);
6468
6469 return event;
6470
6471 err_free:
6472 free_event(event);
6473 err:
6474 return ERR_PTR(err);
6475 }
6476 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
6477
6478 static void sync_child_event(struct perf_event *child_event,
6479 struct task_struct *child)
6480 {
6481 struct perf_event *parent_event = child_event->parent;
6482 u64 child_val;
6483
6484 if (child_event->attr.inherit_stat)
6485 perf_event_read_event(child_event, child);
6486
6487 child_val = perf_event_count(child_event);
6488
6489 /*
6490 * Add back the child's count to the parent's count:
6491 */
6492 atomic64_add(child_val, &parent_event->child_count);
6493 atomic64_add(child_event->total_time_enabled,
6494 &parent_event->child_total_time_enabled);
6495 atomic64_add(child_event->total_time_running,
6496 &parent_event->child_total_time_running);
6497
6498 /*
6499 * Remove this event from the parent's list
6500 */
6501 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
6502 mutex_lock(&parent_event->child_mutex);
6503 list_del_init(&child_event->child_list);
6504 mutex_unlock(&parent_event->child_mutex);
6505
6506 /*
6507 * Release the parent event, if this was the last
6508 * reference to it.
6509 */
6510 fput(parent_event->filp);
6511 }
6512
6513 static void
6514 __perf_event_exit_task(struct perf_event *child_event,
6515 struct perf_event_context *child_ctx,
6516 struct task_struct *child)
6517 {
6518 if (child_event->parent) {
6519 raw_spin_lock_irq(&child_ctx->lock);
6520 perf_group_detach(child_event);
6521 raw_spin_unlock_irq(&child_ctx->lock);
6522 }
6523
6524 perf_remove_from_context(child_event);
6525
6526 /*
6527 * It can happen that the parent exits first, and has events
6528 * that are still around due to the child reference. These
6529 * events need to be zapped.
6530 */
6531 if (child_event->parent) {
6532 sync_child_event(child_event, child);
6533 free_event(child_event);
6534 }
6535 }
6536
6537 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
6538 {
6539 struct perf_event *child_event, *tmp;
6540 struct perf_event_context *child_ctx;
6541 unsigned long flags;
6542
6543 if (likely(!child->perf_event_ctxp[ctxn])) {
6544 perf_event_task(child, NULL, 0);
6545 return;
6546 }
6547
6548 local_irq_save(flags);
6549 /*
6550 * We can't reschedule here because interrupts are disabled,
6551 * and either child is current or it is a task that can't be
6552 * scheduled, so we are now safe from rescheduling changing
6553 * our context.
6554 */
6555 child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
6556
6557 /*
6558 * Take the context lock here so that if find_get_context is
6559 * reading child->perf_event_ctxp, we wait until it has
6560 * incremented the context's refcount before we do put_ctx below.
6561 */
6562 raw_spin_lock(&child_ctx->lock);
6563 task_ctx_sched_out(child_ctx);
6564 child->perf_event_ctxp[ctxn] = NULL;
6565 /*
6566 * If this context is a clone; unclone it so it can't get
6567 * swapped to another process while we're removing all
6568 * the events from it.
6569 */
6570 unclone_ctx(child_ctx);
6571 update_context_time(child_ctx);
6572 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
6573
6574 /*
6575 * Report the task dead after unscheduling the events so that we
6576 * won't get any samples after PERF_RECORD_EXIT. We can however still
6577 * get a few PERF_RECORD_READ events.
6578 */
6579 perf_event_task(child, child_ctx, 0);
6580
6581 /*
6582 * We can recurse on the same lock type through:
6583 *
6584 * __perf_event_exit_task()
6585 * sync_child_event()
6586 * fput(parent_event->filp)
6587 * perf_release()
6588 * mutex_lock(&ctx->mutex)
6589 *
6590 * But since its the parent context it won't be the same instance.
6591 */
6592 mutex_lock(&child_ctx->mutex);
6593
6594 again:
6595 list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
6596 group_entry)
6597 __perf_event_exit_task(child_event, child_ctx, child);
6598
6599 list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
6600 group_entry)
6601 __perf_event_exit_task(child_event, child_ctx, child);
6602
6603 /*
6604 * If the last event was a group event, it will have appended all
6605 * its siblings to the list, but we obtained 'tmp' before that which
6606 * will still point to the list head terminating the iteration.
6607 */
6608 if (!list_empty(&child_ctx->pinned_groups) ||
6609 !list_empty(&child_ctx->flexible_groups))
6610 goto again;
6611
6612 mutex_unlock(&child_ctx->mutex);
6613
6614 put_ctx(child_ctx);
6615 }
6616
6617 /*
6618 * When a child task exits, feed back event values to parent events.
6619 */
6620 void perf_event_exit_task(struct task_struct *child)
6621 {
6622 struct perf_event *event, *tmp;
6623 int ctxn;
6624
6625 mutex_lock(&child->perf_event_mutex);
6626 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
6627 owner_entry) {
6628 list_del_init(&event->owner_entry);
6629
6630 /*
6631 * Ensure the list deletion is visible before we clear
6632 * the owner, closes a race against perf_release() where
6633 * we need to serialize on the owner->perf_event_mutex.
6634 */
6635 smp_wmb();
6636 event->owner = NULL;
6637 }
6638 mutex_unlock(&child->perf_event_mutex);
6639
6640 for_each_task_context_nr(ctxn)
6641 perf_event_exit_task_context(child, ctxn);
6642 }
6643
6644 static void perf_free_event(struct perf_event *event,
6645 struct perf_event_context *ctx)
6646 {
6647 struct perf_event *parent = event->parent;
6648
6649 if (WARN_ON_ONCE(!parent))
6650 return;
6651
6652 mutex_lock(&parent->child_mutex);
6653 list_del_init(&event->child_list);
6654 mutex_unlock(&parent->child_mutex);
6655
6656 fput(parent->filp);
6657
6658 perf_group_detach(event);
6659 list_del_event(event, ctx);
6660 free_event(event);
6661 }
6662
6663 /*
6664 * free an unexposed, unused context as created by inheritance by
6665 * perf_event_init_task below, used by fork() in case of fail.
6666 */
6667 void perf_event_free_task(struct task_struct *task)
6668 {
6669 struct perf_event_context *ctx;
6670 struct perf_event *event, *tmp;
6671 int ctxn;
6672
6673 for_each_task_context_nr(ctxn) {
6674 ctx = task->perf_event_ctxp[ctxn];
6675 if (!ctx)
6676 continue;
6677
6678 mutex_lock(&ctx->mutex);
6679 again:
6680 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
6681 group_entry)
6682 perf_free_event(event, ctx);
6683
6684 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
6685 group_entry)
6686 perf_free_event(event, ctx);
6687
6688 if (!list_empty(&ctx->pinned_groups) ||
6689 !list_empty(&ctx->flexible_groups))
6690 goto again;
6691
6692 mutex_unlock(&ctx->mutex);
6693
6694 put_ctx(ctx);
6695 }
6696 }
6697
6698 void perf_event_delayed_put(struct task_struct *task)
6699 {
6700 int ctxn;
6701
6702 for_each_task_context_nr(ctxn)
6703 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
6704 }
6705
6706 /*
6707 * inherit a event from parent task to child task:
6708 */
6709 static struct perf_event *
6710 inherit_event(struct perf_event *parent_event,
6711 struct task_struct *parent,
6712 struct perf_event_context *parent_ctx,
6713 struct task_struct *child,
6714 struct perf_event *group_leader,
6715 struct perf_event_context *child_ctx)
6716 {
6717 struct perf_event *child_event;
6718 unsigned long flags;
6719
6720 /*
6721 * Instead of creating recursive hierarchies of events,
6722 * we link inherited events back to the original parent,
6723 * which has a filp for sure, which we use as the reference
6724 * count:
6725 */
6726 if (parent_event->parent)
6727 parent_event = parent_event->parent;
6728
6729 child_event = perf_event_alloc(&parent_event->attr,
6730 parent_event->cpu,
6731 child,
6732 group_leader, parent_event,
6733 NULL, NULL);
6734 if (IS_ERR(child_event))
6735 return child_event;
6736 get_ctx(child_ctx);
6737
6738 /*
6739 * Make the child state follow the state of the parent event,
6740 * not its attr.disabled bit. We hold the parent's mutex,
6741 * so we won't race with perf_event_{en, dis}able_family.
6742 */
6743 if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
6744 child_event->state = PERF_EVENT_STATE_INACTIVE;
6745 else
6746 child_event->state = PERF_EVENT_STATE_OFF;
6747
6748 if (parent_event->attr.freq) {
6749 u64 sample_period = parent_event->hw.sample_period;
6750 struct hw_perf_event *hwc = &child_event->hw;
6751
6752 hwc->sample_period = sample_period;
6753 hwc->last_period = sample_period;
6754
6755 local64_set(&hwc->period_left, sample_period);
6756 }
6757
6758 child_event->ctx = child_ctx;
6759 child_event->overflow_handler = parent_event->overflow_handler;
6760 child_event->overflow_handler_context
6761 = parent_event->overflow_handler_context;
6762
6763 /*
6764 * Precalculate sample_data sizes
6765 */
6766 perf_event__header_size(child_event);
6767 perf_event__id_header_size(child_event);
6768
6769 /*
6770 * Link it up in the child's context:
6771 */
6772 raw_spin_lock_irqsave(&child_ctx->lock, flags);
6773 add_event_to_ctx(child_event, child_ctx);
6774 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
6775
6776 /*
6777 * Get a reference to the parent filp - we will fput it
6778 * when the child event exits. This is safe to do because
6779 * we are in the parent and we know that the filp still
6780 * exists and has a nonzero count:
6781 */
6782 atomic_long_inc(&parent_event->filp->f_count);
6783
6784 /*
6785 * Link this into the parent event's child list
6786 */
6787 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
6788 mutex_lock(&parent_event->child_mutex);
6789 list_add_tail(&child_event->child_list, &parent_event->child_list);
6790 mutex_unlock(&parent_event->child_mutex);
6791
6792 return child_event;
6793 }
6794
6795 static int inherit_group(struct perf_event *parent_event,
6796 struct task_struct *parent,
6797 struct perf_event_context *parent_ctx,
6798 struct task_struct *child,
6799 struct perf_event_context *child_ctx)
6800 {
6801 struct perf_event *leader;
6802 struct perf_event *sub;
6803 struct perf_event *child_ctr;
6804
6805 leader = inherit_event(parent_event, parent, parent_ctx,
6806 child, NULL, child_ctx);
6807 if (IS_ERR(leader))
6808 return PTR_ERR(leader);
6809 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
6810 child_ctr = inherit_event(sub, parent, parent_ctx,
6811 child, leader, child_ctx);
6812 if (IS_ERR(child_ctr))
6813 return PTR_ERR(child_ctr);
6814 }
6815 return 0;
6816 }
6817
6818 static int
6819 inherit_task_group(struct perf_event *event, struct task_struct *parent,
6820 struct perf_event_context *parent_ctx,
6821 struct task_struct *child, int ctxn,
6822 int *inherited_all)
6823 {
6824 int ret;
6825 struct perf_event_context *child_ctx;
6826
6827 if (!event->attr.inherit) {
6828 *inherited_all = 0;
6829 return 0;
6830 }
6831
6832 child_ctx = child->perf_event_ctxp[ctxn];
6833 if (!child_ctx) {
6834 /*
6835 * This is executed from the parent task context, so
6836 * inherit events that have been marked for cloning.
6837 * First allocate and initialize a context for the
6838 * child.
6839 */
6840
6841 child_ctx = alloc_perf_context(event->pmu, child);
6842 if (!child_ctx)
6843 return -ENOMEM;
6844
6845 child->perf_event_ctxp[ctxn] = child_ctx;
6846 }
6847
6848 ret = inherit_group(event, parent, parent_ctx,
6849 child, child_ctx);
6850
6851 if (ret)
6852 *inherited_all = 0;
6853
6854 return ret;
6855 }
6856
6857 /*
6858 * Initialize the perf_event context in task_struct
6859 */
6860 int perf_event_init_context(struct task_struct *child, int ctxn)
6861 {
6862 struct perf_event_context *child_ctx, *parent_ctx;
6863 struct perf_event_context *cloned_ctx;
6864 struct perf_event *event;
6865 struct task_struct *parent = current;
6866 int inherited_all = 1;
6867 unsigned long flags;
6868 int ret = 0;
6869
6870 if (likely(!parent->perf_event_ctxp[ctxn]))
6871 return 0;
6872
6873 /*
6874 * If the parent's context is a clone, pin it so it won't get
6875 * swapped under us.
6876 */
6877 parent_ctx = perf_pin_task_context(parent, ctxn);
6878
6879 /*
6880 * No need to check if parent_ctx != NULL here; since we saw
6881 * it non-NULL earlier, the only reason for it to become NULL
6882 * is if we exit, and since we're currently in the middle of
6883 * a fork we can't be exiting at the same time.
6884 */
6885
6886 /*
6887 * Lock the parent list. No need to lock the child - not PID
6888 * hashed yet and not running, so nobody can access it.
6889 */
6890 mutex_lock(&parent_ctx->mutex);
6891
6892 /*
6893 * We dont have to disable NMIs - we are only looking at
6894 * the list, not manipulating it:
6895 */
6896 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
6897 ret = inherit_task_group(event, parent, parent_ctx,
6898 child, ctxn, &inherited_all);
6899 if (ret)
6900 break;
6901 }
6902
6903 /*
6904 * We can't hold ctx->lock when iterating the ->flexible_group list due
6905 * to allocations, but we need to prevent rotation because
6906 * rotate_ctx() will change the list from interrupt context.
6907 */
6908 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
6909 parent_ctx->rotate_disable = 1;
6910 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
6911
6912 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
6913 ret = inherit_task_group(event, parent, parent_ctx,
6914 child, ctxn, &inherited_all);
6915 if (ret)
6916 break;
6917 }
6918
6919 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
6920 parent_ctx->rotate_disable = 0;
6921
6922 child_ctx = child->perf_event_ctxp[ctxn];
6923
6924 if (child_ctx && inherited_all) {
6925 /*
6926 * Mark the child context as a clone of the parent
6927 * context, or of whatever the parent is a clone of.
6928 *
6929 * Note that if the parent is a clone, the holding of
6930 * parent_ctx->lock avoids it from being uncloned.
6931 */
6932 cloned_ctx = parent_ctx->parent_ctx;
6933 if (cloned_ctx) {
6934 child_ctx->parent_ctx = cloned_ctx;
6935 child_ctx->parent_gen = parent_ctx->parent_gen;
6936 } else {
6937 child_ctx->parent_ctx = parent_ctx;
6938 child_ctx->parent_gen = parent_ctx->generation;
6939 }
6940 get_ctx(child_ctx->parent_ctx);
6941 }
6942
6943 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
6944 mutex_unlock(&parent_ctx->mutex);
6945
6946 perf_unpin_context(parent_ctx);
6947 put_ctx(parent_ctx);
6948
6949 return ret;
6950 }
6951
6952 /*
6953 * Initialize the perf_event context in task_struct
6954 */
6955 int perf_event_init_task(struct task_struct *child)
6956 {
6957 int ctxn, ret;
6958
6959 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
6960 mutex_init(&child->perf_event_mutex);
6961 INIT_LIST_HEAD(&child->perf_event_list);
6962
6963 for_each_task_context_nr(ctxn) {
6964 ret = perf_event_init_context(child, ctxn);
6965 if (ret)
6966 return ret;
6967 }
6968
6969 return 0;
6970 }
6971
6972 static void __init perf_event_init_all_cpus(void)
6973 {
6974 struct swevent_htable *swhash;
6975 int cpu;
6976
6977 for_each_possible_cpu(cpu) {
6978 swhash = &per_cpu(swevent_htable, cpu);
6979 mutex_init(&swhash->hlist_mutex);
6980 INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
6981 }
6982 }
6983
6984 static void __cpuinit perf_event_init_cpu(int cpu)
6985 {
6986 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6987
6988 mutex_lock(&swhash->hlist_mutex);
6989 if (swhash->hlist_refcount > 0) {
6990 struct swevent_hlist *hlist;
6991
6992 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
6993 WARN_ON(!hlist);
6994 rcu_assign_pointer(swhash->swevent_hlist, hlist);
6995 }
6996 mutex_unlock(&swhash->hlist_mutex);
6997 }
6998
6999 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
7000 static void perf_pmu_rotate_stop(struct pmu *pmu)
7001 {
7002 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
7003
7004 WARN_ON(!irqs_disabled());
7005
7006 list_del_init(&cpuctx->rotation_list);
7007 }
7008
7009 static void __perf_event_exit_context(void *__info)
7010 {
7011 struct perf_event_context *ctx = __info;
7012 struct perf_event *event, *tmp;
7013
7014 perf_pmu_rotate_stop(ctx->pmu);
7015
7016 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
7017 __perf_remove_from_context(event);
7018 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
7019 __perf_remove_from_context(event);
7020 }
7021
7022 static void perf_event_exit_cpu_context(int cpu)
7023 {
7024 struct perf_event_context *ctx;
7025 struct pmu *pmu;
7026 int idx;
7027
7028 idx = srcu_read_lock(&pmus_srcu);
7029 list_for_each_entry_rcu(pmu, &pmus, entry) {
7030 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
7031
7032 mutex_lock(&ctx->mutex);
7033 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
7034 mutex_unlock(&ctx->mutex);
7035 }
7036 srcu_read_unlock(&pmus_srcu, idx);
7037 }
7038
7039 static void perf_event_exit_cpu(int cpu)
7040 {
7041 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7042
7043 mutex_lock(&swhash->hlist_mutex);
7044 swevent_hlist_release(swhash);
7045 mutex_unlock(&swhash->hlist_mutex);
7046
7047 perf_event_exit_cpu_context(cpu);
7048 }
7049 #else
7050 static inline void perf_event_exit_cpu(int cpu) { }
7051 #endif
7052
7053 static int
7054 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
7055 {
7056 int cpu;
7057
7058 for_each_online_cpu(cpu)
7059 perf_event_exit_cpu(cpu);
7060
7061 return NOTIFY_OK;
7062 }
7063
7064 /*
7065 * Run the perf reboot notifier at the very last possible moment so that
7066 * the generic watchdog code runs as long as possible.
7067 */
7068 static struct notifier_block perf_reboot_notifier = {
7069 .notifier_call = perf_reboot,
7070 .priority = INT_MIN,
7071 };
7072
7073 static int __cpuinit
7074 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
7075 {
7076 unsigned int cpu = (long)hcpu;
7077
7078 switch (action & ~CPU_TASKS_FROZEN) {
7079
7080 case CPU_UP_PREPARE:
7081 case CPU_DOWN_FAILED:
7082 perf_event_init_cpu(cpu);
7083 break;
7084
7085 case CPU_UP_CANCELED:
7086 case CPU_DOWN_PREPARE:
7087 perf_event_exit_cpu(cpu);
7088 break;
7089
7090 default:
7091 break;
7092 }
7093
7094 return NOTIFY_OK;
7095 }
7096
7097 void __init perf_event_init(void)
7098 {
7099 int ret;
7100
7101 idr_init(&pmu_idr);
7102
7103 perf_event_init_all_cpus();
7104 init_srcu_struct(&pmus_srcu);
7105 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
7106 perf_pmu_register(&perf_cpu_clock, NULL, -1);
7107 perf_pmu_register(&perf_task_clock, NULL, -1);
7108 perf_tp_register();
7109 perf_cpu_notifier(perf_cpu_notify);
7110 register_reboot_notifier(&perf_reboot_notifier);
7111
7112 ret = init_hw_breakpoint();
7113 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
7114
7115 /* do not patch jump label more than once per second */
7116 jump_label_rate_limit(&perf_sched_events, HZ);
7117
7118 /*
7119 * Build time assertion that we keep the data_head at the intended
7120 * location. IOW, validation we got the __reserved[] size right.
7121 */
7122 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
7123 != 1024);
7124 }
7125
7126 static int __init perf_event_sysfs_init(void)
7127 {
7128 struct pmu *pmu;
7129 int ret;
7130
7131 mutex_lock(&pmus_lock);
7132
7133 ret = bus_register(&pmu_bus);
7134 if (ret)
7135 goto unlock;
7136
7137 list_for_each_entry(pmu, &pmus, entry) {
7138 if (!pmu->name || pmu->type < 0)
7139 continue;
7140
7141 ret = pmu_dev_alloc(pmu);
7142 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
7143 }
7144 pmu_bus_running = 1;
7145 ret = 0;
7146
7147 unlock:
7148 mutex_unlock(&pmus_lock);
7149
7150 return ret;
7151 }
7152 device_initcall(perf_event_sysfs_init);
7153
7154 #ifdef CONFIG_CGROUP_PERF
7155 static struct cgroup_subsys_state *perf_cgroup_create(struct cgroup *cont)
7156 {
7157 struct perf_cgroup *jc;
7158
7159 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
7160 if (!jc)
7161 return ERR_PTR(-ENOMEM);
7162
7163 jc->info = alloc_percpu(struct perf_cgroup_info);
7164 if (!jc->info) {
7165 kfree(jc);
7166 return ERR_PTR(-ENOMEM);
7167 }
7168
7169 return &jc->css;
7170 }
7171
7172 static void perf_cgroup_destroy(struct cgroup *cont)
7173 {
7174 struct perf_cgroup *jc;
7175 jc = container_of(cgroup_subsys_state(cont, perf_subsys_id),
7176 struct perf_cgroup, css);
7177 free_percpu(jc->info);
7178 kfree(jc);
7179 }
7180
7181 static int __perf_cgroup_move(void *info)
7182 {
7183 struct task_struct *task = info;
7184 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
7185 return 0;
7186 }
7187
7188 static void perf_cgroup_attach(struct cgroup *cgrp, struct cgroup_taskset *tset)
7189 {
7190 struct task_struct *task;
7191
7192 cgroup_taskset_for_each(task, cgrp, tset)
7193 task_function_call(task, __perf_cgroup_move, task);
7194 }
7195
7196 static void perf_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp,
7197 struct task_struct *task)
7198 {
7199 /*
7200 * cgroup_exit() is called in the copy_process() failure path.
7201 * Ignore this case since the task hasn't ran yet, this avoids
7202 * trying to poke a half freed task state from generic code.
7203 */
7204 if (!(task->flags & PF_EXITING))
7205 return;
7206
7207 task_function_call(task, __perf_cgroup_move, task);
7208 }
7209
7210 struct cgroup_subsys perf_subsys = {
7211 .name = "perf_event",
7212 .subsys_id = perf_subsys_id,
7213 .create = perf_cgroup_create,
7214 .destroy = perf_cgroup_destroy,
7215 .exit = perf_cgroup_exit,
7216 .attach = perf_cgroup_attach,
7217 };
7218 #endif /* CONFIG_CGROUP_PERF */
This page took 0.182746 seconds and 5 git commands to generate.