Merge tag 'dax-misc-for-4.7' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdimm...
[deliverable/linux.git] / kernel / events / core.c
1 /*
2 * Performance events core code:
3 *
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8 *
9 * For licensing details see kernel-base/COPYING
10 */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/tick.h>
22 #include <linux/sysfs.h>
23 #include <linux/dcache.h>
24 #include <linux/percpu.h>
25 #include <linux/ptrace.h>
26 #include <linux/reboot.h>
27 #include <linux/vmstat.h>
28 #include <linux/device.h>
29 #include <linux/export.h>
30 #include <linux/vmalloc.h>
31 #include <linux/hardirq.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49
50 #include "internal.h"
51
52 #include <asm/irq_regs.h>
53
54 typedef int (*remote_function_f)(void *);
55
56 struct remote_function_call {
57 struct task_struct *p;
58 remote_function_f func;
59 void *info;
60 int ret;
61 };
62
63 static void remote_function(void *data)
64 {
65 struct remote_function_call *tfc = data;
66 struct task_struct *p = tfc->p;
67
68 if (p) {
69 /* -EAGAIN */
70 if (task_cpu(p) != smp_processor_id())
71 return;
72
73 /*
74 * Now that we're on right CPU with IRQs disabled, we can test
75 * if we hit the right task without races.
76 */
77
78 tfc->ret = -ESRCH; /* No such (running) process */
79 if (p != current)
80 return;
81 }
82
83 tfc->ret = tfc->func(tfc->info);
84 }
85
86 /**
87 * task_function_call - call a function on the cpu on which a task runs
88 * @p: the task to evaluate
89 * @func: the function to be called
90 * @info: the function call argument
91 *
92 * Calls the function @func when the task is currently running. This might
93 * be on the current CPU, which just calls the function directly
94 *
95 * returns: @func return value, or
96 * -ESRCH - when the process isn't running
97 * -EAGAIN - when the process moved away
98 */
99 static int
100 task_function_call(struct task_struct *p, remote_function_f func, void *info)
101 {
102 struct remote_function_call data = {
103 .p = p,
104 .func = func,
105 .info = info,
106 .ret = -EAGAIN,
107 };
108 int ret;
109
110 do {
111 ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
112 if (!ret)
113 ret = data.ret;
114 } while (ret == -EAGAIN);
115
116 return ret;
117 }
118
119 /**
120 * cpu_function_call - call a function on the cpu
121 * @func: the function to be called
122 * @info: the function call argument
123 *
124 * Calls the function @func on the remote cpu.
125 *
126 * returns: @func return value or -ENXIO when the cpu is offline
127 */
128 static int cpu_function_call(int cpu, remote_function_f func, void *info)
129 {
130 struct remote_function_call data = {
131 .p = NULL,
132 .func = func,
133 .info = info,
134 .ret = -ENXIO, /* No such CPU */
135 };
136
137 smp_call_function_single(cpu, remote_function, &data, 1);
138
139 return data.ret;
140 }
141
142 static inline struct perf_cpu_context *
143 __get_cpu_context(struct perf_event_context *ctx)
144 {
145 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
146 }
147
148 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
149 struct perf_event_context *ctx)
150 {
151 raw_spin_lock(&cpuctx->ctx.lock);
152 if (ctx)
153 raw_spin_lock(&ctx->lock);
154 }
155
156 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
157 struct perf_event_context *ctx)
158 {
159 if (ctx)
160 raw_spin_unlock(&ctx->lock);
161 raw_spin_unlock(&cpuctx->ctx.lock);
162 }
163
164 #define TASK_TOMBSTONE ((void *)-1L)
165
166 static bool is_kernel_event(struct perf_event *event)
167 {
168 return READ_ONCE(event->owner) == TASK_TOMBSTONE;
169 }
170
171 /*
172 * On task ctx scheduling...
173 *
174 * When !ctx->nr_events a task context will not be scheduled. This means
175 * we can disable the scheduler hooks (for performance) without leaving
176 * pending task ctx state.
177 *
178 * This however results in two special cases:
179 *
180 * - removing the last event from a task ctx; this is relatively straight
181 * forward and is done in __perf_remove_from_context.
182 *
183 * - adding the first event to a task ctx; this is tricky because we cannot
184 * rely on ctx->is_active and therefore cannot use event_function_call().
185 * See perf_install_in_context().
186 *
187 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
188 */
189
190 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
191 struct perf_event_context *, void *);
192
193 struct event_function_struct {
194 struct perf_event *event;
195 event_f func;
196 void *data;
197 };
198
199 static int event_function(void *info)
200 {
201 struct event_function_struct *efs = info;
202 struct perf_event *event = efs->event;
203 struct perf_event_context *ctx = event->ctx;
204 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
205 struct perf_event_context *task_ctx = cpuctx->task_ctx;
206 int ret = 0;
207
208 WARN_ON_ONCE(!irqs_disabled());
209
210 perf_ctx_lock(cpuctx, task_ctx);
211 /*
212 * Since we do the IPI call without holding ctx->lock things can have
213 * changed, double check we hit the task we set out to hit.
214 */
215 if (ctx->task) {
216 if (ctx->task != current) {
217 ret = -ESRCH;
218 goto unlock;
219 }
220
221 /*
222 * We only use event_function_call() on established contexts,
223 * and event_function() is only ever called when active (or
224 * rather, we'll have bailed in task_function_call() or the
225 * above ctx->task != current test), therefore we must have
226 * ctx->is_active here.
227 */
228 WARN_ON_ONCE(!ctx->is_active);
229 /*
230 * And since we have ctx->is_active, cpuctx->task_ctx must
231 * match.
232 */
233 WARN_ON_ONCE(task_ctx != ctx);
234 } else {
235 WARN_ON_ONCE(&cpuctx->ctx != ctx);
236 }
237
238 efs->func(event, cpuctx, ctx, efs->data);
239 unlock:
240 perf_ctx_unlock(cpuctx, task_ctx);
241
242 return ret;
243 }
244
245 static void event_function_local(struct perf_event *event, event_f func, void *data)
246 {
247 struct event_function_struct efs = {
248 .event = event,
249 .func = func,
250 .data = data,
251 };
252
253 int ret = event_function(&efs);
254 WARN_ON_ONCE(ret);
255 }
256
257 static void event_function_call(struct perf_event *event, event_f func, void *data)
258 {
259 struct perf_event_context *ctx = event->ctx;
260 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
261 struct event_function_struct efs = {
262 .event = event,
263 .func = func,
264 .data = data,
265 };
266
267 if (!event->parent) {
268 /*
269 * If this is a !child event, we must hold ctx::mutex to
270 * stabilize the the event->ctx relation. See
271 * perf_event_ctx_lock().
272 */
273 lockdep_assert_held(&ctx->mutex);
274 }
275
276 if (!task) {
277 cpu_function_call(event->cpu, event_function, &efs);
278 return;
279 }
280
281 if (task == TASK_TOMBSTONE)
282 return;
283
284 again:
285 if (!task_function_call(task, event_function, &efs))
286 return;
287
288 raw_spin_lock_irq(&ctx->lock);
289 /*
290 * Reload the task pointer, it might have been changed by
291 * a concurrent perf_event_context_sched_out().
292 */
293 task = ctx->task;
294 if (task == TASK_TOMBSTONE) {
295 raw_spin_unlock_irq(&ctx->lock);
296 return;
297 }
298 if (ctx->is_active) {
299 raw_spin_unlock_irq(&ctx->lock);
300 goto again;
301 }
302 func(event, NULL, ctx, data);
303 raw_spin_unlock_irq(&ctx->lock);
304 }
305
306 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
307 PERF_FLAG_FD_OUTPUT |\
308 PERF_FLAG_PID_CGROUP |\
309 PERF_FLAG_FD_CLOEXEC)
310
311 /*
312 * branch priv levels that need permission checks
313 */
314 #define PERF_SAMPLE_BRANCH_PERM_PLM \
315 (PERF_SAMPLE_BRANCH_KERNEL |\
316 PERF_SAMPLE_BRANCH_HV)
317
318 enum event_type_t {
319 EVENT_FLEXIBLE = 0x1,
320 EVENT_PINNED = 0x2,
321 EVENT_TIME = 0x4,
322 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
323 };
324
325 /*
326 * perf_sched_events : >0 events exist
327 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
328 */
329
330 static void perf_sched_delayed(struct work_struct *work);
331 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
332 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
333 static DEFINE_MUTEX(perf_sched_mutex);
334 static atomic_t perf_sched_count;
335
336 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
337 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
338
339 static atomic_t nr_mmap_events __read_mostly;
340 static atomic_t nr_comm_events __read_mostly;
341 static atomic_t nr_task_events __read_mostly;
342 static atomic_t nr_freq_events __read_mostly;
343 static atomic_t nr_switch_events __read_mostly;
344
345 static LIST_HEAD(pmus);
346 static DEFINE_MUTEX(pmus_lock);
347 static struct srcu_struct pmus_srcu;
348
349 /*
350 * perf event paranoia level:
351 * -1 - not paranoid at all
352 * 0 - disallow raw tracepoint access for unpriv
353 * 1 - disallow cpu events for unpriv
354 * 2 - disallow kernel profiling for unpriv
355 */
356 int sysctl_perf_event_paranoid __read_mostly = 2;
357
358 /* Minimum for 512 kiB + 1 user control page */
359 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
360
361 /*
362 * max perf event sample rate
363 */
364 #define DEFAULT_MAX_SAMPLE_RATE 100000
365 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
366 #define DEFAULT_CPU_TIME_MAX_PERCENT 25
367
368 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
369
370 static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
371 static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS;
372
373 static int perf_sample_allowed_ns __read_mostly =
374 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
375
376 static void update_perf_cpu_limits(void)
377 {
378 u64 tmp = perf_sample_period_ns;
379
380 tmp *= sysctl_perf_cpu_time_max_percent;
381 tmp = div_u64(tmp, 100);
382 if (!tmp)
383 tmp = 1;
384
385 WRITE_ONCE(perf_sample_allowed_ns, tmp);
386 }
387
388 static int perf_rotate_context(struct perf_cpu_context *cpuctx);
389
390 int perf_proc_update_handler(struct ctl_table *table, int write,
391 void __user *buffer, size_t *lenp,
392 loff_t *ppos)
393 {
394 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
395
396 if (ret || !write)
397 return ret;
398
399 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
400 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
401 update_perf_cpu_limits();
402
403 return 0;
404 }
405
406 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
407
408 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
409 void __user *buffer, size_t *lenp,
410 loff_t *ppos)
411 {
412 int ret = proc_dointvec(table, write, buffer, lenp, ppos);
413
414 if (ret || !write)
415 return ret;
416
417 if (sysctl_perf_cpu_time_max_percent == 100 ||
418 sysctl_perf_cpu_time_max_percent == 0) {
419 printk(KERN_WARNING
420 "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
421 WRITE_ONCE(perf_sample_allowed_ns, 0);
422 } else {
423 update_perf_cpu_limits();
424 }
425
426 return 0;
427 }
428
429 /*
430 * perf samples are done in some very critical code paths (NMIs).
431 * If they take too much CPU time, the system can lock up and not
432 * get any real work done. This will drop the sample rate when
433 * we detect that events are taking too long.
434 */
435 #define NR_ACCUMULATED_SAMPLES 128
436 static DEFINE_PER_CPU(u64, running_sample_length);
437
438 static u64 __report_avg;
439 static u64 __report_allowed;
440
441 static void perf_duration_warn(struct irq_work *w)
442 {
443 printk_ratelimited(KERN_WARNING
444 "perf: interrupt took too long (%lld > %lld), lowering "
445 "kernel.perf_event_max_sample_rate to %d\n",
446 __report_avg, __report_allowed,
447 sysctl_perf_event_sample_rate);
448 }
449
450 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
451
452 void perf_sample_event_took(u64 sample_len_ns)
453 {
454 u64 max_len = READ_ONCE(perf_sample_allowed_ns);
455 u64 running_len;
456 u64 avg_len;
457 u32 max;
458
459 if (max_len == 0)
460 return;
461
462 /* Decay the counter by 1 average sample. */
463 running_len = __this_cpu_read(running_sample_length);
464 running_len -= running_len/NR_ACCUMULATED_SAMPLES;
465 running_len += sample_len_ns;
466 __this_cpu_write(running_sample_length, running_len);
467
468 /*
469 * Note: this will be biased artifically low until we have
470 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
471 * from having to maintain a count.
472 */
473 avg_len = running_len/NR_ACCUMULATED_SAMPLES;
474 if (avg_len <= max_len)
475 return;
476
477 __report_avg = avg_len;
478 __report_allowed = max_len;
479
480 /*
481 * Compute a throttle threshold 25% below the current duration.
482 */
483 avg_len += avg_len / 4;
484 max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
485 if (avg_len < max)
486 max /= (u32)avg_len;
487 else
488 max = 1;
489
490 WRITE_ONCE(perf_sample_allowed_ns, avg_len);
491 WRITE_ONCE(max_samples_per_tick, max);
492
493 sysctl_perf_event_sample_rate = max * HZ;
494 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
495
496 if (!irq_work_queue(&perf_duration_work)) {
497 early_printk("perf: interrupt took too long (%lld > %lld), lowering "
498 "kernel.perf_event_max_sample_rate to %d\n",
499 __report_avg, __report_allowed,
500 sysctl_perf_event_sample_rate);
501 }
502 }
503
504 static atomic64_t perf_event_id;
505
506 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
507 enum event_type_t event_type);
508
509 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
510 enum event_type_t event_type,
511 struct task_struct *task);
512
513 static void update_context_time(struct perf_event_context *ctx);
514 static u64 perf_event_time(struct perf_event *event);
515
516 void __weak perf_event_print_debug(void) { }
517
518 extern __weak const char *perf_pmu_name(void)
519 {
520 return "pmu";
521 }
522
523 static inline u64 perf_clock(void)
524 {
525 return local_clock();
526 }
527
528 static inline u64 perf_event_clock(struct perf_event *event)
529 {
530 return event->clock();
531 }
532
533 #ifdef CONFIG_CGROUP_PERF
534
535 static inline bool
536 perf_cgroup_match(struct perf_event *event)
537 {
538 struct perf_event_context *ctx = event->ctx;
539 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
540
541 /* @event doesn't care about cgroup */
542 if (!event->cgrp)
543 return true;
544
545 /* wants specific cgroup scope but @cpuctx isn't associated with any */
546 if (!cpuctx->cgrp)
547 return false;
548
549 /*
550 * Cgroup scoping is recursive. An event enabled for a cgroup is
551 * also enabled for all its descendant cgroups. If @cpuctx's
552 * cgroup is a descendant of @event's (the test covers identity
553 * case), it's a match.
554 */
555 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
556 event->cgrp->css.cgroup);
557 }
558
559 static inline void perf_detach_cgroup(struct perf_event *event)
560 {
561 css_put(&event->cgrp->css);
562 event->cgrp = NULL;
563 }
564
565 static inline int is_cgroup_event(struct perf_event *event)
566 {
567 return event->cgrp != NULL;
568 }
569
570 static inline u64 perf_cgroup_event_time(struct perf_event *event)
571 {
572 struct perf_cgroup_info *t;
573
574 t = per_cpu_ptr(event->cgrp->info, event->cpu);
575 return t->time;
576 }
577
578 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
579 {
580 struct perf_cgroup_info *info;
581 u64 now;
582
583 now = perf_clock();
584
585 info = this_cpu_ptr(cgrp->info);
586
587 info->time += now - info->timestamp;
588 info->timestamp = now;
589 }
590
591 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
592 {
593 struct perf_cgroup *cgrp_out = cpuctx->cgrp;
594 if (cgrp_out)
595 __update_cgrp_time(cgrp_out);
596 }
597
598 static inline void update_cgrp_time_from_event(struct perf_event *event)
599 {
600 struct perf_cgroup *cgrp;
601
602 /*
603 * ensure we access cgroup data only when needed and
604 * when we know the cgroup is pinned (css_get)
605 */
606 if (!is_cgroup_event(event))
607 return;
608
609 cgrp = perf_cgroup_from_task(current, event->ctx);
610 /*
611 * Do not update time when cgroup is not active
612 */
613 if (cgrp == event->cgrp)
614 __update_cgrp_time(event->cgrp);
615 }
616
617 static inline void
618 perf_cgroup_set_timestamp(struct task_struct *task,
619 struct perf_event_context *ctx)
620 {
621 struct perf_cgroup *cgrp;
622 struct perf_cgroup_info *info;
623
624 /*
625 * ctx->lock held by caller
626 * ensure we do not access cgroup data
627 * unless we have the cgroup pinned (css_get)
628 */
629 if (!task || !ctx->nr_cgroups)
630 return;
631
632 cgrp = perf_cgroup_from_task(task, ctx);
633 info = this_cpu_ptr(cgrp->info);
634 info->timestamp = ctx->timestamp;
635 }
636
637 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
638 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
639
640 /*
641 * reschedule events based on the cgroup constraint of task.
642 *
643 * mode SWOUT : schedule out everything
644 * mode SWIN : schedule in based on cgroup for next
645 */
646 static void perf_cgroup_switch(struct task_struct *task, int mode)
647 {
648 struct perf_cpu_context *cpuctx;
649 struct pmu *pmu;
650 unsigned long flags;
651
652 /*
653 * disable interrupts to avoid geting nr_cgroup
654 * changes via __perf_event_disable(). Also
655 * avoids preemption.
656 */
657 local_irq_save(flags);
658
659 /*
660 * we reschedule only in the presence of cgroup
661 * constrained events.
662 */
663
664 list_for_each_entry_rcu(pmu, &pmus, entry) {
665 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
666 if (cpuctx->unique_pmu != pmu)
667 continue; /* ensure we process each cpuctx once */
668
669 /*
670 * perf_cgroup_events says at least one
671 * context on this CPU has cgroup events.
672 *
673 * ctx->nr_cgroups reports the number of cgroup
674 * events for a context.
675 */
676 if (cpuctx->ctx.nr_cgroups > 0) {
677 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
678 perf_pmu_disable(cpuctx->ctx.pmu);
679
680 if (mode & PERF_CGROUP_SWOUT) {
681 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
682 /*
683 * must not be done before ctxswout due
684 * to event_filter_match() in event_sched_out()
685 */
686 cpuctx->cgrp = NULL;
687 }
688
689 if (mode & PERF_CGROUP_SWIN) {
690 WARN_ON_ONCE(cpuctx->cgrp);
691 /*
692 * set cgrp before ctxsw in to allow
693 * event_filter_match() to not have to pass
694 * task around
695 * we pass the cpuctx->ctx to perf_cgroup_from_task()
696 * because cgorup events are only per-cpu
697 */
698 cpuctx->cgrp = perf_cgroup_from_task(task, &cpuctx->ctx);
699 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
700 }
701 perf_pmu_enable(cpuctx->ctx.pmu);
702 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
703 }
704 }
705
706 local_irq_restore(flags);
707 }
708
709 static inline void perf_cgroup_sched_out(struct task_struct *task,
710 struct task_struct *next)
711 {
712 struct perf_cgroup *cgrp1;
713 struct perf_cgroup *cgrp2 = NULL;
714
715 rcu_read_lock();
716 /*
717 * we come here when we know perf_cgroup_events > 0
718 * we do not need to pass the ctx here because we know
719 * we are holding the rcu lock
720 */
721 cgrp1 = perf_cgroup_from_task(task, NULL);
722 cgrp2 = perf_cgroup_from_task(next, NULL);
723
724 /*
725 * only schedule out current cgroup events if we know
726 * that we are switching to a different cgroup. Otherwise,
727 * do no touch the cgroup events.
728 */
729 if (cgrp1 != cgrp2)
730 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
731
732 rcu_read_unlock();
733 }
734
735 static inline void perf_cgroup_sched_in(struct task_struct *prev,
736 struct task_struct *task)
737 {
738 struct perf_cgroup *cgrp1;
739 struct perf_cgroup *cgrp2 = NULL;
740
741 rcu_read_lock();
742 /*
743 * we come here when we know perf_cgroup_events > 0
744 * we do not need to pass the ctx here because we know
745 * we are holding the rcu lock
746 */
747 cgrp1 = perf_cgroup_from_task(task, NULL);
748 cgrp2 = perf_cgroup_from_task(prev, NULL);
749
750 /*
751 * only need to schedule in cgroup events if we are changing
752 * cgroup during ctxsw. Cgroup events were not scheduled
753 * out of ctxsw out if that was not the case.
754 */
755 if (cgrp1 != cgrp2)
756 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
757
758 rcu_read_unlock();
759 }
760
761 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
762 struct perf_event_attr *attr,
763 struct perf_event *group_leader)
764 {
765 struct perf_cgroup *cgrp;
766 struct cgroup_subsys_state *css;
767 struct fd f = fdget(fd);
768 int ret = 0;
769
770 if (!f.file)
771 return -EBADF;
772
773 css = css_tryget_online_from_dir(f.file->f_path.dentry,
774 &perf_event_cgrp_subsys);
775 if (IS_ERR(css)) {
776 ret = PTR_ERR(css);
777 goto out;
778 }
779
780 cgrp = container_of(css, struct perf_cgroup, css);
781 event->cgrp = cgrp;
782
783 /*
784 * all events in a group must monitor
785 * the same cgroup because a task belongs
786 * to only one perf cgroup at a time
787 */
788 if (group_leader && group_leader->cgrp != cgrp) {
789 perf_detach_cgroup(event);
790 ret = -EINVAL;
791 }
792 out:
793 fdput(f);
794 return ret;
795 }
796
797 static inline void
798 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
799 {
800 struct perf_cgroup_info *t;
801 t = per_cpu_ptr(event->cgrp->info, event->cpu);
802 event->shadow_ctx_time = now - t->timestamp;
803 }
804
805 static inline void
806 perf_cgroup_defer_enabled(struct perf_event *event)
807 {
808 /*
809 * when the current task's perf cgroup does not match
810 * the event's, we need to remember to call the
811 * perf_mark_enable() function the first time a task with
812 * a matching perf cgroup is scheduled in.
813 */
814 if (is_cgroup_event(event) && !perf_cgroup_match(event))
815 event->cgrp_defer_enabled = 1;
816 }
817
818 static inline void
819 perf_cgroup_mark_enabled(struct perf_event *event,
820 struct perf_event_context *ctx)
821 {
822 struct perf_event *sub;
823 u64 tstamp = perf_event_time(event);
824
825 if (!event->cgrp_defer_enabled)
826 return;
827
828 event->cgrp_defer_enabled = 0;
829
830 event->tstamp_enabled = tstamp - event->total_time_enabled;
831 list_for_each_entry(sub, &event->sibling_list, group_entry) {
832 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
833 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
834 sub->cgrp_defer_enabled = 0;
835 }
836 }
837 }
838 #else /* !CONFIG_CGROUP_PERF */
839
840 static inline bool
841 perf_cgroup_match(struct perf_event *event)
842 {
843 return true;
844 }
845
846 static inline void perf_detach_cgroup(struct perf_event *event)
847 {}
848
849 static inline int is_cgroup_event(struct perf_event *event)
850 {
851 return 0;
852 }
853
854 static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
855 {
856 return 0;
857 }
858
859 static inline void update_cgrp_time_from_event(struct perf_event *event)
860 {
861 }
862
863 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
864 {
865 }
866
867 static inline void perf_cgroup_sched_out(struct task_struct *task,
868 struct task_struct *next)
869 {
870 }
871
872 static inline void perf_cgroup_sched_in(struct task_struct *prev,
873 struct task_struct *task)
874 {
875 }
876
877 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
878 struct perf_event_attr *attr,
879 struct perf_event *group_leader)
880 {
881 return -EINVAL;
882 }
883
884 static inline void
885 perf_cgroup_set_timestamp(struct task_struct *task,
886 struct perf_event_context *ctx)
887 {
888 }
889
890 void
891 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
892 {
893 }
894
895 static inline void
896 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
897 {
898 }
899
900 static inline u64 perf_cgroup_event_time(struct perf_event *event)
901 {
902 return 0;
903 }
904
905 static inline void
906 perf_cgroup_defer_enabled(struct perf_event *event)
907 {
908 }
909
910 static inline void
911 perf_cgroup_mark_enabled(struct perf_event *event,
912 struct perf_event_context *ctx)
913 {
914 }
915 #endif
916
917 /*
918 * set default to be dependent on timer tick just
919 * like original code
920 */
921 #define PERF_CPU_HRTIMER (1000 / HZ)
922 /*
923 * function must be called with interrupts disbled
924 */
925 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
926 {
927 struct perf_cpu_context *cpuctx;
928 int rotations = 0;
929
930 WARN_ON(!irqs_disabled());
931
932 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
933 rotations = perf_rotate_context(cpuctx);
934
935 raw_spin_lock(&cpuctx->hrtimer_lock);
936 if (rotations)
937 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
938 else
939 cpuctx->hrtimer_active = 0;
940 raw_spin_unlock(&cpuctx->hrtimer_lock);
941
942 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
943 }
944
945 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
946 {
947 struct hrtimer *timer = &cpuctx->hrtimer;
948 struct pmu *pmu = cpuctx->ctx.pmu;
949 u64 interval;
950
951 /* no multiplexing needed for SW PMU */
952 if (pmu->task_ctx_nr == perf_sw_context)
953 return;
954
955 /*
956 * check default is sane, if not set then force to
957 * default interval (1/tick)
958 */
959 interval = pmu->hrtimer_interval_ms;
960 if (interval < 1)
961 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
962
963 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
964
965 raw_spin_lock_init(&cpuctx->hrtimer_lock);
966 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
967 timer->function = perf_mux_hrtimer_handler;
968 }
969
970 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
971 {
972 struct hrtimer *timer = &cpuctx->hrtimer;
973 struct pmu *pmu = cpuctx->ctx.pmu;
974 unsigned long flags;
975
976 /* not for SW PMU */
977 if (pmu->task_ctx_nr == perf_sw_context)
978 return 0;
979
980 raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
981 if (!cpuctx->hrtimer_active) {
982 cpuctx->hrtimer_active = 1;
983 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
984 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
985 }
986 raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
987
988 return 0;
989 }
990
991 void perf_pmu_disable(struct pmu *pmu)
992 {
993 int *count = this_cpu_ptr(pmu->pmu_disable_count);
994 if (!(*count)++)
995 pmu->pmu_disable(pmu);
996 }
997
998 void perf_pmu_enable(struct pmu *pmu)
999 {
1000 int *count = this_cpu_ptr(pmu->pmu_disable_count);
1001 if (!--(*count))
1002 pmu->pmu_enable(pmu);
1003 }
1004
1005 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1006
1007 /*
1008 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1009 * perf_event_task_tick() are fully serialized because they're strictly cpu
1010 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1011 * disabled, while perf_event_task_tick is called from IRQ context.
1012 */
1013 static void perf_event_ctx_activate(struct perf_event_context *ctx)
1014 {
1015 struct list_head *head = this_cpu_ptr(&active_ctx_list);
1016
1017 WARN_ON(!irqs_disabled());
1018
1019 WARN_ON(!list_empty(&ctx->active_ctx_list));
1020
1021 list_add(&ctx->active_ctx_list, head);
1022 }
1023
1024 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1025 {
1026 WARN_ON(!irqs_disabled());
1027
1028 WARN_ON(list_empty(&ctx->active_ctx_list));
1029
1030 list_del_init(&ctx->active_ctx_list);
1031 }
1032
1033 static void get_ctx(struct perf_event_context *ctx)
1034 {
1035 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
1036 }
1037
1038 static void free_ctx(struct rcu_head *head)
1039 {
1040 struct perf_event_context *ctx;
1041
1042 ctx = container_of(head, struct perf_event_context, rcu_head);
1043 kfree(ctx->task_ctx_data);
1044 kfree(ctx);
1045 }
1046
1047 static void put_ctx(struct perf_event_context *ctx)
1048 {
1049 if (atomic_dec_and_test(&ctx->refcount)) {
1050 if (ctx->parent_ctx)
1051 put_ctx(ctx->parent_ctx);
1052 if (ctx->task && ctx->task != TASK_TOMBSTONE)
1053 put_task_struct(ctx->task);
1054 call_rcu(&ctx->rcu_head, free_ctx);
1055 }
1056 }
1057
1058 /*
1059 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1060 * perf_pmu_migrate_context() we need some magic.
1061 *
1062 * Those places that change perf_event::ctx will hold both
1063 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1064 *
1065 * Lock ordering is by mutex address. There are two other sites where
1066 * perf_event_context::mutex nests and those are:
1067 *
1068 * - perf_event_exit_task_context() [ child , 0 ]
1069 * perf_event_exit_event()
1070 * put_event() [ parent, 1 ]
1071 *
1072 * - perf_event_init_context() [ parent, 0 ]
1073 * inherit_task_group()
1074 * inherit_group()
1075 * inherit_event()
1076 * perf_event_alloc()
1077 * perf_init_event()
1078 * perf_try_init_event() [ child , 1 ]
1079 *
1080 * While it appears there is an obvious deadlock here -- the parent and child
1081 * nesting levels are inverted between the two. This is in fact safe because
1082 * life-time rules separate them. That is an exiting task cannot fork, and a
1083 * spawning task cannot (yet) exit.
1084 *
1085 * But remember that that these are parent<->child context relations, and
1086 * migration does not affect children, therefore these two orderings should not
1087 * interact.
1088 *
1089 * The change in perf_event::ctx does not affect children (as claimed above)
1090 * because the sys_perf_event_open() case will install a new event and break
1091 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1092 * concerned with cpuctx and that doesn't have children.
1093 *
1094 * The places that change perf_event::ctx will issue:
1095 *
1096 * perf_remove_from_context();
1097 * synchronize_rcu();
1098 * perf_install_in_context();
1099 *
1100 * to affect the change. The remove_from_context() + synchronize_rcu() should
1101 * quiesce the event, after which we can install it in the new location. This
1102 * means that only external vectors (perf_fops, prctl) can perturb the event
1103 * while in transit. Therefore all such accessors should also acquire
1104 * perf_event_context::mutex to serialize against this.
1105 *
1106 * However; because event->ctx can change while we're waiting to acquire
1107 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1108 * function.
1109 *
1110 * Lock order:
1111 * cred_guard_mutex
1112 * task_struct::perf_event_mutex
1113 * perf_event_context::mutex
1114 * perf_event::child_mutex;
1115 * perf_event_context::lock
1116 * perf_event::mmap_mutex
1117 * mmap_sem
1118 */
1119 static struct perf_event_context *
1120 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1121 {
1122 struct perf_event_context *ctx;
1123
1124 again:
1125 rcu_read_lock();
1126 ctx = ACCESS_ONCE(event->ctx);
1127 if (!atomic_inc_not_zero(&ctx->refcount)) {
1128 rcu_read_unlock();
1129 goto again;
1130 }
1131 rcu_read_unlock();
1132
1133 mutex_lock_nested(&ctx->mutex, nesting);
1134 if (event->ctx != ctx) {
1135 mutex_unlock(&ctx->mutex);
1136 put_ctx(ctx);
1137 goto again;
1138 }
1139
1140 return ctx;
1141 }
1142
1143 static inline struct perf_event_context *
1144 perf_event_ctx_lock(struct perf_event *event)
1145 {
1146 return perf_event_ctx_lock_nested(event, 0);
1147 }
1148
1149 static void perf_event_ctx_unlock(struct perf_event *event,
1150 struct perf_event_context *ctx)
1151 {
1152 mutex_unlock(&ctx->mutex);
1153 put_ctx(ctx);
1154 }
1155
1156 /*
1157 * This must be done under the ctx->lock, such as to serialize against
1158 * context_equiv(), therefore we cannot call put_ctx() since that might end up
1159 * calling scheduler related locks and ctx->lock nests inside those.
1160 */
1161 static __must_check struct perf_event_context *
1162 unclone_ctx(struct perf_event_context *ctx)
1163 {
1164 struct perf_event_context *parent_ctx = ctx->parent_ctx;
1165
1166 lockdep_assert_held(&ctx->lock);
1167
1168 if (parent_ctx)
1169 ctx->parent_ctx = NULL;
1170 ctx->generation++;
1171
1172 return parent_ctx;
1173 }
1174
1175 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1176 {
1177 /*
1178 * only top level events have the pid namespace they were created in
1179 */
1180 if (event->parent)
1181 event = event->parent;
1182
1183 return task_tgid_nr_ns(p, event->ns);
1184 }
1185
1186 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1187 {
1188 /*
1189 * only top level events have the pid namespace they were created in
1190 */
1191 if (event->parent)
1192 event = event->parent;
1193
1194 return task_pid_nr_ns(p, event->ns);
1195 }
1196
1197 /*
1198 * If we inherit events we want to return the parent event id
1199 * to userspace.
1200 */
1201 static u64 primary_event_id(struct perf_event *event)
1202 {
1203 u64 id = event->id;
1204
1205 if (event->parent)
1206 id = event->parent->id;
1207
1208 return id;
1209 }
1210
1211 /*
1212 * Get the perf_event_context for a task and lock it.
1213 *
1214 * This has to cope with with the fact that until it is locked,
1215 * the context could get moved to another task.
1216 */
1217 static struct perf_event_context *
1218 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1219 {
1220 struct perf_event_context *ctx;
1221
1222 retry:
1223 /*
1224 * One of the few rules of preemptible RCU is that one cannot do
1225 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1226 * part of the read side critical section was irqs-enabled -- see
1227 * rcu_read_unlock_special().
1228 *
1229 * Since ctx->lock nests under rq->lock we must ensure the entire read
1230 * side critical section has interrupts disabled.
1231 */
1232 local_irq_save(*flags);
1233 rcu_read_lock();
1234 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1235 if (ctx) {
1236 /*
1237 * If this context is a clone of another, it might
1238 * get swapped for another underneath us by
1239 * perf_event_task_sched_out, though the
1240 * rcu_read_lock() protects us from any context
1241 * getting freed. Lock the context and check if it
1242 * got swapped before we could get the lock, and retry
1243 * if so. If we locked the right context, then it
1244 * can't get swapped on us any more.
1245 */
1246 raw_spin_lock(&ctx->lock);
1247 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1248 raw_spin_unlock(&ctx->lock);
1249 rcu_read_unlock();
1250 local_irq_restore(*flags);
1251 goto retry;
1252 }
1253
1254 if (ctx->task == TASK_TOMBSTONE ||
1255 !atomic_inc_not_zero(&ctx->refcount)) {
1256 raw_spin_unlock(&ctx->lock);
1257 ctx = NULL;
1258 } else {
1259 WARN_ON_ONCE(ctx->task != task);
1260 }
1261 }
1262 rcu_read_unlock();
1263 if (!ctx)
1264 local_irq_restore(*flags);
1265 return ctx;
1266 }
1267
1268 /*
1269 * Get the context for a task and increment its pin_count so it
1270 * can't get swapped to another task. This also increments its
1271 * reference count so that the context can't get freed.
1272 */
1273 static struct perf_event_context *
1274 perf_pin_task_context(struct task_struct *task, int ctxn)
1275 {
1276 struct perf_event_context *ctx;
1277 unsigned long flags;
1278
1279 ctx = perf_lock_task_context(task, ctxn, &flags);
1280 if (ctx) {
1281 ++ctx->pin_count;
1282 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1283 }
1284 return ctx;
1285 }
1286
1287 static void perf_unpin_context(struct perf_event_context *ctx)
1288 {
1289 unsigned long flags;
1290
1291 raw_spin_lock_irqsave(&ctx->lock, flags);
1292 --ctx->pin_count;
1293 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1294 }
1295
1296 /*
1297 * Update the record of the current time in a context.
1298 */
1299 static void update_context_time(struct perf_event_context *ctx)
1300 {
1301 u64 now = perf_clock();
1302
1303 ctx->time += now - ctx->timestamp;
1304 ctx->timestamp = now;
1305 }
1306
1307 static u64 perf_event_time(struct perf_event *event)
1308 {
1309 struct perf_event_context *ctx = event->ctx;
1310
1311 if (is_cgroup_event(event))
1312 return perf_cgroup_event_time(event);
1313
1314 return ctx ? ctx->time : 0;
1315 }
1316
1317 /*
1318 * Update the total_time_enabled and total_time_running fields for a event.
1319 */
1320 static void update_event_times(struct perf_event *event)
1321 {
1322 struct perf_event_context *ctx = event->ctx;
1323 u64 run_end;
1324
1325 lockdep_assert_held(&ctx->lock);
1326
1327 if (event->state < PERF_EVENT_STATE_INACTIVE ||
1328 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1329 return;
1330
1331 /*
1332 * in cgroup mode, time_enabled represents
1333 * the time the event was enabled AND active
1334 * tasks were in the monitored cgroup. This is
1335 * independent of the activity of the context as
1336 * there may be a mix of cgroup and non-cgroup events.
1337 *
1338 * That is why we treat cgroup events differently
1339 * here.
1340 */
1341 if (is_cgroup_event(event))
1342 run_end = perf_cgroup_event_time(event);
1343 else if (ctx->is_active)
1344 run_end = ctx->time;
1345 else
1346 run_end = event->tstamp_stopped;
1347
1348 event->total_time_enabled = run_end - event->tstamp_enabled;
1349
1350 if (event->state == PERF_EVENT_STATE_INACTIVE)
1351 run_end = event->tstamp_stopped;
1352 else
1353 run_end = perf_event_time(event);
1354
1355 event->total_time_running = run_end - event->tstamp_running;
1356
1357 }
1358
1359 /*
1360 * Update total_time_enabled and total_time_running for all events in a group.
1361 */
1362 static void update_group_times(struct perf_event *leader)
1363 {
1364 struct perf_event *event;
1365
1366 update_event_times(leader);
1367 list_for_each_entry(event, &leader->sibling_list, group_entry)
1368 update_event_times(event);
1369 }
1370
1371 static struct list_head *
1372 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1373 {
1374 if (event->attr.pinned)
1375 return &ctx->pinned_groups;
1376 else
1377 return &ctx->flexible_groups;
1378 }
1379
1380 /*
1381 * Add a event from the lists for its context.
1382 * Must be called with ctx->mutex and ctx->lock held.
1383 */
1384 static void
1385 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1386 {
1387 lockdep_assert_held(&ctx->lock);
1388
1389 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1390 event->attach_state |= PERF_ATTACH_CONTEXT;
1391
1392 /*
1393 * If we're a stand alone event or group leader, we go to the context
1394 * list, group events are kept attached to the group so that
1395 * perf_group_detach can, at all times, locate all siblings.
1396 */
1397 if (event->group_leader == event) {
1398 struct list_head *list;
1399
1400 if (is_software_event(event))
1401 event->group_flags |= PERF_GROUP_SOFTWARE;
1402
1403 list = ctx_group_list(event, ctx);
1404 list_add_tail(&event->group_entry, list);
1405 }
1406
1407 if (is_cgroup_event(event))
1408 ctx->nr_cgroups++;
1409
1410 list_add_rcu(&event->event_entry, &ctx->event_list);
1411 ctx->nr_events++;
1412 if (event->attr.inherit_stat)
1413 ctx->nr_stat++;
1414
1415 ctx->generation++;
1416 }
1417
1418 /*
1419 * Initialize event state based on the perf_event_attr::disabled.
1420 */
1421 static inline void perf_event__state_init(struct perf_event *event)
1422 {
1423 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1424 PERF_EVENT_STATE_INACTIVE;
1425 }
1426
1427 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1428 {
1429 int entry = sizeof(u64); /* value */
1430 int size = 0;
1431 int nr = 1;
1432
1433 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1434 size += sizeof(u64);
1435
1436 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1437 size += sizeof(u64);
1438
1439 if (event->attr.read_format & PERF_FORMAT_ID)
1440 entry += sizeof(u64);
1441
1442 if (event->attr.read_format & PERF_FORMAT_GROUP) {
1443 nr += nr_siblings;
1444 size += sizeof(u64);
1445 }
1446
1447 size += entry * nr;
1448 event->read_size = size;
1449 }
1450
1451 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1452 {
1453 struct perf_sample_data *data;
1454 u16 size = 0;
1455
1456 if (sample_type & PERF_SAMPLE_IP)
1457 size += sizeof(data->ip);
1458
1459 if (sample_type & PERF_SAMPLE_ADDR)
1460 size += sizeof(data->addr);
1461
1462 if (sample_type & PERF_SAMPLE_PERIOD)
1463 size += sizeof(data->period);
1464
1465 if (sample_type & PERF_SAMPLE_WEIGHT)
1466 size += sizeof(data->weight);
1467
1468 if (sample_type & PERF_SAMPLE_READ)
1469 size += event->read_size;
1470
1471 if (sample_type & PERF_SAMPLE_DATA_SRC)
1472 size += sizeof(data->data_src.val);
1473
1474 if (sample_type & PERF_SAMPLE_TRANSACTION)
1475 size += sizeof(data->txn);
1476
1477 event->header_size = size;
1478 }
1479
1480 /*
1481 * Called at perf_event creation and when events are attached/detached from a
1482 * group.
1483 */
1484 static void perf_event__header_size(struct perf_event *event)
1485 {
1486 __perf_event_read_size(event,
1487 event->group_leader->nr_siblings);
1488 __perf_event_header_size(event, event->attr.sample_type);
1489 }
1490
1491 static void perf_event__id_header_size(struct perf_event *event)
1492 {
1493 struct perf_sample_data *data;
1494 u64 sample_type = event->attr.sample_type;
1495 u16 size = 0;
1496
1497 if (sample_type & PERF_SAMPLE_TID)
1498 size += sizeof(data->tid_entry);
1499
1500 if (sample_type & PERF_SAMPLE_TIME)
1501 size += sizeof(data->time);
1502
1503 if (sample_type & PERF_SAMPLE_IDENTIFIER)
1504 size += sizeof(data->id);
1505
1506 if (sample_type & PERF_SAMPLE_ID)
1507 size += sizeof(data->id);
1508
1509 if (sample_type & PERF_SAMPLE_STREAM_ID)
1510 size += sizeof(data->stream_id);
1511
1512 if (sample_type & PERF_SAMPLE_CPU)
1513 size += sizeof(data->cpu_entry);
1514
1515 event->id_header_size = size;
1516 }
1517
1518 static bool perf_event_validate_size(struct perf_event *event)
1519 {
1520 /*
1521 * The values computed here will be over-written when we actually
1522 * attach the event.
1523 */
1524 __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1525 __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1526 perf_event__id_header_size(event);
1527
1528 /*
1529 * Sum the lot; should not exceed the 64k limit we have on records.
1530 * Conservative limit to allow for callchains and other variable fields.
1531 */
1532 if (event->read_size + event->header_size +
1533 event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1534 return false;
1535
1536 return true;
1537 }
1538
1539 static void perf_group_attach(struct perf_event *event)
1540 {
1541 struct perf_event *group_leader = event->group_leader, *pos;
1542
1543 /*
1544 * We can have double attach due to group movement in perf_event_open.
1545 */
1546 if (event->attach_state & PERF_ATTACH_GROUP)
1547 return;
1548
1549 event->attach_state |= PERF_ATTACH_GROUP;
1550
1551 if (group_leader == event)
1552 return;
1553
1554 WARN_ON_ONCE(group_leader->ctx != event->ctx);
1555
1556 if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
1557 !is_software_event(event))
1558 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
1559
1560 list_add_tail(&event->group_entry, &group_leader->sibling_list);
1561 group_leader->nr_siblings++;
1562
1563 perf_event__header_size(group_leader);
1564
1565 list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1566 perf_event__header_size(pos);
1567 }
1568
1569 /*
1570 * Remove a event from the lists for its context.
1571 * Must be called with ctx->mutex and ctx->lock held.
1572 */
1573 static void
1574 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1575 {
1576 struct perf_cpu_context *cpuctx;
1577
1578 WARN_ON_ONCE(event->ctx != ctx);
1579 lockdep_assert_held(&ctx->lock);
1580
1581 /*
1582 * We can have double detach due to exit/hot-unplug + close.
1583 */
1584 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1585 return;
1586
1587 event->attach_state &= ~PERF_ATTACH_CONTEXT;
1588
1589 if (is_cgroup_event(event)) {
1590 ctx->nr_cgroups--;
1591 /*
1592 * Because cgroup events are always per-cpu events, this will
1593 * always be called from the right CPU.
1594 */
1595 cpuctx = __get_cpu_context(ctx);
1596 /*
1597 * If there are no more cgroup events then clear cgrp to avoid
1598 * stale pointer in update_cgrp_time_from_cpuctx().
1599 */
1600 if (!ctx->nr_cgroups)
1601 cpuctx->cgrp = NULL;
1602 }
1603
1604 ctx->nr_events--;
1605 if (event->attr.inherit_stat)
1606 ctx->nr_stat--;
1607
1608 list_del_rcu(&event->event_entry);
1609
1610 if (event->group_leader == event)
1611 list_del_init(&event->group_entry);
1612
1613 update_group_times(event);
1614
1615 /*
1616 * If event was in error state, then keep it
1617 * that way, otherwise bogus counts will be
1618 * returned on read(). The only way to get out
1619 * of error state is by explicit re-enabling
1620 * of the event
1621 */
1622 if (event->state > PERF_EVENT_STATE_OFF)
1623 event->state = PERF_EVENT_STATE_OFF;
1624
1625 ctx->generation++;
1626 }
1627
1628 static void perf_group_detach(struct perf_event *event)
1629 {
1630 struct perf_event *sibling, *tmp;
1631 struct list_head *list = NULL;
1632
1633 /*
1634 * We can have double detach due to exit/hot-unplug + close.
1635 */
1636 if (!(event->attach_state & PERF_ATTACH_GROUP))
1637 return;
1638
1639 event->attach_state &= ~PERF_ATTACH_GROUP;
1640
1641 /*
1642 * If this is a sibling, remove it from its group.
1643 */
1644 if (event->group_leader != event) {
1645 list_del_init(&event->group_entry);
1646 event->group_leader->nr_siblings--;
1647 goto out;
1648 }
1649
1650 if (!list_empty(&event->group_entry))
1651 list = &event->group_entry;
1652
1653 /*
1654 * If this was a group event with sibling events then
1655 * upgrade the siblings to singleton events by adding them
1656 * to whatever list we are on.
1657 */
1658 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1659 if (list)
1660 list_move_tail(&sibling->group_entry, list);
1661 sibling->group_leader = sibling;
1662
1663 /* Inherit group flags from the previous leader */
1664 sibling->group_flags = event->group_flags;
1665
1666 WARN_ON_ONCE(sibling->ctx != event->ctx);
1667 }
1668
1669 out:
1670 perf_event__header_size(event->group_leader);
1671
1672 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1673 perf_event__header_size(tmp);
1674 }
1675
1676 static bool is_orphaned_event(struct perf_event *event)
1677 {
1678 return event->state == PERF_EVENT_STATE_DEAD;
1679 }
1680
1681 static inline int pmu_filter_match(struct perf_event *event)
1682 {
1683 struct pmu *pmu = event->pmu;
1684 return pmu->filter_match ? pmu->filter_match(event) : 1;
1685 }
1686
1687 static inline int
1688 event_filter_match(struct perf_event *event)
1689 {
1690 return (event->cpu == -1 || event->cpu == smp_processor_id())
1691 && perf_cgroup_match(event) && pmu_filter_match(event);
1692 }
1693
1694 static void
1695 event_sched_out(struct perf_event *event,
1696 struct perf_cpu_context *cpuctx,
1697 struct perf_event_context *ctx)
1698 {
1699 u64 tstamp = perf_event_time(event);
1700 u64 delta;
1701
1702 WARN_ON_ONCE(event->ctx != ctx);
1703 lockdep_assert_held(&ctx->lock);
1704
1705 /*
1706 * An event which could not be activated because of
1707 * filter mismatch still needs to have its timings
1708 * maintained, otherwise bogus information is return
1709 * via read() for time_enabled, time_running:
1710 */
1711 if (event->state == PERF_EVENT_STATE_INACTIVE
1712 && !event_filter_match(event)) {
1713 delta = tstamp - event->tstamp_stopped;
1714 event->tstamp_running += delta;
1715 event->tstamp_stopped = tstamp;
1716 }
1717
1718 if (event->state != PERF_EVENT_STATE_ACTIVE)
1719 return;
1720
1721 perf_pmu_disable(event->pmu);
1722
1723 event->tstamp_stopped = tstamp;
1724 event->pmu->del(event, 0);
1725 event->oncpu = -1;
1726 event->state = PERF_EVENT_STATE_INACTIVE;
1727 if (event->pending_disable) {
1728 event->pending_disable = 0;
1729 event->state = PERF_EVENT_STATE_OFF;
1730 }
1731
1732 if (!is_software_event(event))
1733 cpuctx->active_oncpu--;
1734 if (!--ctx->nr_active)
1735 perf_event_ctx_deactivate(ctx);
1736 if (event->attr.freq && event->attr.sample_freq)
1737 ctx->nr_freq--;
1738 if (event->attr.exclusive || !cpuctx->active_oncpu)
1739 cpuctx->exclusive = 0;
1740
1741 perf_pmu_enable(event->pmu);
1742 }
1743
1744 static void
1745 group_sched_out(struct perf_event *group_event,
1746 struct perf_cpu_context *cpuctx,
1747 struct perf_event_context *ctx)
1748 {
1749 struct perf_event *event;
1750 int state = group_event->state;
1751
1752 event_sched_out(group_event, cpuctx, ctx);
1753
1754 /*
1755 * Schedule out siblings (if any):
1756 */
1757 list_for_each_entry(event, &group_event->sibling_list, group_entry)
1758 event_sched_out(event, cpuctx, ctx);
1759
1760 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1761 cpuctx->exclusive = 0;
1762 }
1763
1764 #define DETACH_GROUP 0x01UL
1765
1766 /*
1767 * Cross CPU call to remove a performance event
1768 *
1769 * We disable the event on the hardware level first. After that we
1770 * remove it from the context list.
1771 */
1772 static void
1773 __perf_remove_from_context(struct perf_event *event,
1774 struct perf_cpu_context *cpuctx,
1775 struct perf_event_context *ctx,
1776 void *info)
1777 {
1778 unsigned long flags = (unsigned long)info;
1779
1780 event_sched_out(event, cpuctx, ctx);
1781 if (flags & DETACH_GROUP)
1782 perf_group_detach(event);
1783 list_del_event(event, ctx);
1784
1785 if (!ctx->nr_events && ctx->is_active) {
1786 ctx->is_active = 0;
1787 if (ctx->task) {
1788 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
1789 cpuctx->task_ctx = NULL;
1790 }
1791 }
1792 }
1793
1794 /*
1795 * Remove the event from a task's (or a CPU's) list of events.
1796 *
1797 * If event->ctx is a cloned context, callers must make sure that
1798 * every task struct that event->ctx->task could possibly point to
1799 * remains valid. This is OK when called from perf_release since
1800 * that only calls us on the top-level context, which can't be a clone.
1801 * When called from perf_event_exit_task, it's OK because the
1802 * context has been detached from its task.
1803 */
1804 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
1805 {
1806 lockdep_assert_held(&event->ctx->mutex);
1807
1808 event_function_call(event, __perf_remove_from_context, (void *)flags);
1809 }
1810
1811 /*
1812 * Cross CPU call to disable a performance event
1813 */
1814 static void __perf_event_disable(struct perf_event *event,
1815 struct perf_cpu_context *cpuctx,
1816 struct perf_event_context *ctx,
1817 void *info)
1818 {
1819 if (event->state < PERF_EVENT_STATE_INACTIVE)
1820 return;
1821
1822 update_context_time(ctx);
1823 update_cgrp_time_from_event(event);
1824 update_group_times(event);
1825 if (event == event->group_leader)
1826 group_sched_out(event, cpuctx, ctx);
1827 else
1828 event_sched_out(event, cpuctx, ctx);
1829 event->state = PERF_EVENT_STATE_OFF;
1830 }
1831
1832 /*
1833 * Disable a event.
1834 *
1835 * If event->ctx is a cloned context, callers must make sure that
1836 * every task struct that event->ctx->task could possibly point to
1837 * remains valid. This condition is satisifed when called through
1838 * perf_event_for_each_child or perf_event_for_each because they
1839 * hold the top-level event's child_mutex, so any descendant that
1840 * goes to exit will block in perf_event_exit_event().
1841 *
1842 * When called from perf_pending_event it's OK because event->ctx
1843 * is the current context on this CPU and preemption is disabled,
1844 * hence we can't get into perf_event_task_sched_out for this context.
1845 */
1846 static void _perf_event_disable(struct perf_event *event)
1847 {
1848 struct perf_event_context *ctx = event->ctx;
1849
1850 raw_spin_lock_irq(&ctx->lock);
1851 if (event->state <= PERF_EVENT_STATE_OFF) {
1852 raw_spin_unlock_irq(&ctx->lock);
1853 return;
1854 }
1855 raw_spin_unlock_irq(&ctx->lock);
1856
1857 event_function_call(event, __perf_event_disable, NULL);
1858 }
1859
1860 void perf_event_disable_local(struct perf_event *event)
1861 {
1862 event_function_local(event, __perf_event_disable, NULL);
1863 }
1864
1865 /*
1866 * Strictly speaking kernel users cannot create groups and therefore this
1867 * interface does not need the perf_event_ctx_lock() magic.
1868 */
1869 void perf_event_disable(struct perf_event *event)
1870 {
1871 struct perf_event_context *ctx;
1872
1873 ctx = perf_event_ctx_lock(event);
1874 _perf_event_disable(event);
1875 perf_event_ctx_unlock(event, ctx);
1876 }
1877 EXPORT_SYMBOL_GPL(perf_event_disable);
1878
1879 static void perf_set_shadow_time(struct perf_event *event,
1880 struct perf_event_context *ctx,
1881 u64 tstamp)
1882 {
1883 /*
1884 * use the correct time source for the time snapshot
1885 *
1886 * We could get by without this by leveraging the
1887 * fact that to get to this function, the caller
1888 * has most likely already called update_context_time()
1889 * and update_cgrp_time_xx() and thus both timestamp
1890 * are identical (or very close). Given that tstamp is,
1891 * already adjusted for cgroup, we could say that:
1892 * tstamp - ctx->timestamp
1893 * is equivalent to
1894 * tstamp - cgrp->timestamp.
1895 *
1896 * Then, in perf_output_read(), the calculation would
1897 * work with no changes because:
1898 * - event is guaranteed scheduled in
1899 * - no scheduled out in between
1900 * - thus the timestamp would be the same
1901 *
1902 * But this is a bit hairy.
1903 *
1904 * So instead, we have an explicit cgroup call to remain
1905 * within the time time source all along. We believe it
1906 * is cleaner and simpler to understand.
1907 */
1908 if (is_cgroup_event(event))
1909 perf_cgroup_set_shadow_time(event, tstamp);
1910 else
1911 event->shadow_ctx_time = tstamp - ctx->timestamp;
1912 }
1913
1914 #define MAX_INTERRUPTS (~0ULL)
1915
1916 static void perf_log_throttle(struct perf_event *event, int enable);
1917 static void perf_log_itrace_start(struct perf_event *event);
1918
1919 static int
1920 event_sched_in(struct perf_event *event,
1921 struct perf_cpu_context *cpuctx,
1922 struct perf_event_context *ctx)
1923 {
1924 u64 tstamp = perf_event_time(event);
1925 int ret = 0;
1926
1927 lockdep_assert_held(&ctx->lock);
1928
1929 if (event->state <= PERF_EVENT_STATE_OFF)
1930 return 0;
1931
1932 WRITE_ONCE(event->oncpu, smp_processor_id());
1933 /*
1934 * Order event::oncpu write to happen before the ACTIVE state
1935 * is visible.
1936 */
1937 smp_wmb();
1938 WRITE_ONCE(event->state, PERF_EVENT_STATE_ACTIVE);
1939
1940 /*
1941 * Unthrottle events, since we scheduled we might have missed several
1942 * ticks already, also for a heavily scheduling task there is little
1943 * guarantee it'll get a tick in a timely manner.
1944 */
1945 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
1946 perf_log_throttle(event, 1);
1947 event->hw.interrupts = 0;
1948 }
1949
1950 /*
1951 * The new state must be visible before we turn it on in the hardware:
1952 */
1953 smp_wmb();
1954
1955 perf_pmu_disable(event->pmu);
1956
1957 perf_set_shadow_time(event, ctx, tstamp);
1958
1959 perf_log_itrace_start(event);
1960
1961 if (event->pmu->add(event, PERF_EF_START)) {
1962 event->state = PERF_EVENT_STATE_INACTIVE;
1963 event->oncpu = -1;
1964 ret = -EAGAIN;
1965 goto out;
1966 }
1967
1968 event->tstamp_running += tstamp - event->tstamp_stopped;
1969
1970 if (!is_software_event(event))
1971 cpuctx->active_oncpu++;
1972 if (!ctx->nr_active++)
1973 perf_event_ctx_activate(ctx);
1974 if (event->attr.freq && event->attr.sample_freq)
1975 ctx->nr_freq++;
1976
1977 if (event->attr.exclusive)
1978 cpuctx->exclusive = 1;
1979
1980 out:
1981 perf_pmu_enable(event->pmu);
1982
1983 return ret;
1984 }
1985
1986 static int
1987 group_sched_in(struct perf_event *group_event,
1988 struct perf_cpu_context *cpuctx,
1989 struct perf_event_context *ctx)
1990 {
1991 struct perf_event *event, *partial_group = NULL;
1992 struct pmu *pmu = ctx->pmu;
1993 u64 now = ctx->time;
1994 bool simulate = false;
1995
1996 if (group_event->state == PERF_EVENT_STATE_OFF)
1997 return 0;
1998
1999 pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2000
2001 if (event_sched_in(group_event, cpuctx, ctx)) {
2002 pmu->cancel_txn(pmu);
2003 perf_mux_hrtimer_restart(cpuctx);
2004 return -EAGAIN;
2005 }
2006
2007 /*
2008 * Schedule in siblings as one group (if any):
2009 */
2010 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2011 if (event_sched_in(event, cpuctx, ctx)) {
2012 partial_group = event;
2013 goto group_error;
2014 }
2015 }
2016
2017 if (!pmu->commit_txn(pmu))
2018 return 0;
2019
2020 group_error:
2021 /*
2022 * Groups can be scheduled in as one unit only, so undo any
2023 * partial group before returning:
2024 * The events up to the failed event are scheduled out normally,
2025 * tstamp_stopped will be updated.
2026 *
2027 * The failed events and the remaining siblings need to have
2028 * their timings updated as if they had gone thru event_sched_in()
2029 * and event_sched_out(). This is required to get consistent timings
2030 * across the group. This also takes care of the case where the group
2031 * could never be scheduled by ensuring tstamp_stopped is set to mark
2032 * the time the event was actually stopped, such that time delta
2033 * calculation in update_event_times() is correct.
2034 */
2035 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2036 if (event == partial_group)
2037 simulate = true;
2038
2039 if (simulate) {
2040 event->tstamp_running += now - event->tstamp_stopped;
2041 event->tstamp_stopped = now;
2042 } else {
2043 event_sched_out(event, cpuctx, ctx);
2044 }
2045 }
2046 event_sched_out(group_event, cpuctx, ctx);
2047
2048 pmu->cancel_txn(pmu);
2049
2050 perf_mux_hrtimer_restart(cpuctx);
2051
2052 return -EAGAIN;
2053 }
2054
2055 /*
2056 * Work out whether we can put this event group on the CPU now.
2057 */
2058 static int group_can_go_on(struct perf_event *event,
2059 struct perf_cpu_context *cpuctx,
2060 int can_add_hw)
2061 {
2062 /*
2063 * Groups consisting entirely of software events can always go on.
2064 */
2065 if (event->group_flags & PERF_GROUP_SOFTWARE)
2066 return 1;
2067 /*
2068 * If an exclusive group is already on, no other hardware
2069 * events can go on.
2070 */
2071 if (cpuctx->exclusive)
2072 return 0;
2073 /*
2074 * If this group is exclusive and there are already
2075 * events on the CPU, it can't go on.
2076 */
2077 if (event->attr.exclusive && cpuctx->active_oncpu)
2078 return 0;
2079 /*
2080 * Otherwise, try to add it if all previous groups were able
2081 * to go on.
2082 */
2083 return can_add_hw;
2084 }
2085
2086 static void add_event_to_ctx(struct perf_event *event,
2087 struct perf_event_context *ctx)
2088 {
2089 u64 tstamp = perf_event_time(event);
2090
2091 list_add_event(event, ctx);
2092 perf_group_attach(event);
2093 event->tstamp_enabled = tstamp;
2094 event->tstamp_running = tstamp;
2095 event->tstamp_stopped = tstamp;
2096 }
2097
2098 static void ctx_sched_out(struct perf_event_context *ctx,
2099 struct perf_cpu_context *cpuctx,
2100 enum event_type_t event_type);
2101 static void
2102 ctx_sched_in(struct perf_event_context *ctx,
2103 struct perf_cpu_context *cpuctx,
2104 enum event_type_t event_type,
2105 struct task_struct *task);
2106
2107 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2108 struct perf_event_context *ctx)
2109 {
2110 if (!cpuctx->task_ctx)
2111 return;
2112
2113 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2114 return;
2115
2116 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2117 }
2118
2119 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2120 struct perf_event_context *ctx,
2121 struct task_struct *task)
2122 {
2123 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2124 if (ctx)
2125 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2126 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2127 if (ctx)
2128 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2129 }
2130
2131 static void ctx_resched(struct perf_cpu_context *cpuctx,
2132 struct perf_event_context *task_ctx)
2133 {
2134 perf_pmu_disable(cpuctx->ctx.pmu);
2135 if (task_ctx)
2136 task_ctx_sched_out(cpuctx, task_ctx);
2137 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
2138 perf_event_sched_in(cpuctx, task_ctx, current);
2139 perf_pmu_enable(cpuctx->ctx.pmu);
2140 }
2141
2142 /*
2143 * Cross CPU call to install and enable a performance event
2144 *
2145 * Very similar to remote_function() + event_function() but cannot assume that
2146 * things like ctx->is_active and cpuctx->task_ctx are set.
2147 */
2148 static int __perf_install_in_context(void *info)
2149 {
2150 struct perf_event *event = info;
2151 struct perf_event_context *ctx = event->ctx;
2152 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2153 struct perf_event_context *task_ctx = cpuctx->task_ctx;
2154 bool activate = true;
2155 int ret = 0;
2156
2157 raw_spin_lock(&cpuctx->ctx.lock);
2158 if (ctx->task) {
2159 raw_spin_lock(&ctx->lock);
2160 task_ctx = ctx;
2161
2162 /* If we're on the wrong CPU, try again */
2163 if (task_cpu(ctx->task) != smp_processor_id()) {
2164 ret = -ESRCH;
2165 goto unlock;
2166 }
2167
2168 /*
2169 * If we're on the right CPU, see if the task we target is
2170 * current, if not we don't have to activate the ctx, a future
2171 * context switch will do that for us.
2172 */
2173 if (ctx->task != current)
2174 activate = false;
2175 else
2176 WARN_ON_ONCE(cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2177
2178 } else if (task_ctx) {
2179 raw_spin_lock(&task_ctx->lock);
2180 }
2181
2182 if (activate) {
2183 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2184 add_event_to_ctx(event, ctx);
2185 ctx_resched(cpuctx, task_ctx);
2186 } else {
2187 add_event_to_ctx(event, ctx);
2188 }
2189
2190 unlock:
2191 perf_ctx_unlock(cpuctx, task_ctx);
2192
2193 return ret;
2194 }
2195
2196 /*
2197 * Attach a performance event to a context.
2198 *
2199 * Very similar to event_function_call, see comment there.
2200 */
2201 static void
2202 perf_install_in_context(struct perf_event_context *ctx,
2203 struct perf_event *event,
2204 int cpu)
2205 {
2206 struct task_struct *task = READ_ONCE(ctx->task);
2207
2208 lockdep_assert_held(&ctx->mutex);
2209
2210 event->ctx = ctx;
2211 if (event->cpu != -1)
2212 event->cpu = cpu;
2213
2214 if (!task) {
2215 cpu_function_call(cpu, __perf_install_in_context, event);
2216 return;
2217 }
2218
2219 /*
2220 * Should not happen, we validate the ctx is still alive before calling.
2221 */
2222 if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2223 return;
2224
2225 /*
2226 * Installing events is tricky because we cannot rely on ctx->is_active
2227 * to be set in case this is the nr_events 0 -> 1 transition.
2228 */
2229 again:
2230 /*
2231 * Cannot use task_function_call() because we need to run on the task's
2232 * CPU regardless of whether its current or not.
2233 */
2234 if (!cpu_function_call(task_cpu(task), __perf_install_in_context, event))
2235 return;
2236
2237 raw_spin_lock_irq(&ctx->lock);
2238 task = ctx->task;
2239 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2240 /*
2241 * Cannot happen because we already checked above (which also
2242 * cannot happen), and we hold ctx->mutex, which serializes us
2243 * against perf_event_exit_task_context().
2244 */
2245 raw_spin_unlock_irq(&ctx->lock);
2246 return;
2247 }
2248 raw_spin_unlock_irq(&ctx->lock);
2249 /*
2250 * Since !ctx->is_active doesn't mean anything, we must IPI
2251 * unconditionally.
2252 */
2253 goto again;
2254 }
2255
2256 /*
2257 * Put a event into inactive state and update time fields.
2258 * Enabling the leader of a group effectively enables all
2259 * the group members that aren't explicitly disabled, so we
2260 * have to update their ->tstamp_enabled also.
2261 * Note: this works for group members as well as group leaders
2262 * since the non-leader members' sibling_lists will be empty.
2263 */
2264 static void __perf_event_mark_enabled(struct perf_event *event)
2265 {
2266 struct perf_event *sub;
2267 u64 tstamp = perf_event_time(event);
2268
2269 event->state = PERF_EVENT_STATE_INACTIVE;
2270 event->tstamp_enabled = tstamp - event->total_time_enabled;
2271 list_for_each_entry(sub, &event->sibling_list, group_entry) {
2272 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
2273 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
2274 }
2275 }
2276
2277 /*
2278 * Cross CPU call to enable a performance event
2279 */
2280 static void __perf_event_enable(struct perf_event *event,
2281 struct perf_cpu_context *cpuctx,
2282 struct perf_event_context *ctx,
2283 void *info)
2284 {
2285 struct perf_event *leader = event->group_leader;
2286 struct perf_event_context *task_ctx;
2287
2288 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2289 event->state <= PERF_EVENT_STATE_ERROR)
2290 return;
2291
2292 if (ctx->is_active)
2293 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2294
2295 __perf_event_mark_enabled(event);
2296
2297 if (!ctx->is_active)
2298 return;
2299
2300 if (!event_filter_match(event)) {
2301 if (is_cgroup_event(event))
2302 perf_cgroup_defer_enabled(event);
2303 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2304 return;
2305 }
2306
2307 /*
2308 * If the event is in a group and isn't the group leader,
2309 * then don't put it on unless the group is on.
2310 */
2311 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2312 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2313 return;
2314 }
2315
2316 task_ctx = cpuctx->task_ctx;
2317 if (ctx->task)
2318 WARN_ON_ONCE(task_ctx != ctx);
2319
2320 ctx_resched(cpuctx, task_ctx);
2321 }
2322
2323 /*
2324 * Enable a event.
2325 *
2326 * If event->ctx is a cloned context, callers must make sure that
2327 * every task struct that event->ctx->task could possibly point to
2328 * remains valid. This condition is satisfied when called through
2329 * perf_event_for_each_child or perf_event_for_each as described
2330 * for perf_event_disable.
2331 */
2332 static void _perf_event_enable(struct perf_event *event)
2333 {
2334 struct perf_event_context *ctx = event->ctx;
2335
2336 raw_spin_lock_irq(&ctx->lock);
2337 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2338 event->state < PERF_EVENT_STATE_ERROR) {
2339 raw_spin_unlock_irq(&ctx->lock);
2340 return;
2341 }
2342
2343 /*
2344 * If the event is in error state, clear that first.
2345 *
2346 * That way, if we see the event in error state below, we know that it
2347 * has gone back into error state, as distinct from the task having
2348 * been scheduled away before the cross-call arrived.
2349 */
2350 if (event->state == PERF_EVENT_STATE_ERROR)
2351 event->state = PERF_EVENT_STATE_OFF;
2352 raw_spin_unlock_irq(&ctx->lock);
2353
2354 event_function_call(event, __perf_event_enable, NULL);
2355 }
2356
2357 /*
2358 * See perf_event_disable();
2359 */
2360 void perf_event_enable(struct perf_event *event)
2361 {
2362 struct perf_event_context *ctx;
2363
2364 ctx = perf_event_ctx_lock(event);
2365 _perf_event_enable(event);
2366 perf_event_ctx_unlock(event, ctx);
2367 }
2368 EXPORT_SYMBOL_GPL(perf_event_enable);
2369
2370 struct stop_event_data {
2371 struct perf_event *event;
2372 unsigned int restart;
2373 };
2374
2375 static int __perf_event_stop(void *info)
2376 {
2377 struct stop_event_data *sd = info;
2378 struct perf_event *event = sd->event;
2379
2380 /* if it's already INACTIVE, do nothing */
2381 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2382 return 0;
2383
2384 /* matches smp_wmb() in event_sched_in() */
2385 smp_rmb();
2386
2387 /*
2388 * There is a window with interrupts enabled before we get here,
2389 * so we need to check again lest we try to stop another CPU's event.
2390 */
2391 if (READ_ONCE(event->oncpu) != smp_processor_id())
2392 return -EAGAIN;
2393
2394 event->pmu->stop(event, PERF_EF_UPDATE);
2395
2396 /*
2397 * May race with the actual stop (through perf_pmu_output_stop()),
2398 * but it is only used for events with AUX ring buffer, and such
2399 * events will refuse to restart because of rb::aux_mmap_count==0,
2400 * see comments in perf_aux_output_begin().
2401 *
2402 * Since this is happening on a event-local CPU, no trace is lost
2403 * while restarting.
2404 */
2405 if (sd->restart)
2406 event->pmu->start(event, PERF_EF_START);
2407
2408 return 0;
2409 }
2410
2411 static int perf_event_restart(struct perf_event *event)
2412 {
2413 struct stop_event_data sd = {
2414 .event = event,
2415 .restart = 1,
2416 };
2417 int ret = 0;
2418
2419 do {
2420 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2421 return 0;
2422
2423 /* matches smp_wmb() in event_sched_in() */
2424 smp_rmb();
2425
2426 /*
2427 * We only want to restart ACTIVE events, so if the event goes
2428 * inactive here (event->oncpu==-1), there's nothing more to do;
2429 * fall through with ret==-ENXIO.
2430 */
2431 ret = cpu_function_call(READ_ONCE(event->oncpu),
2432 __perf_event_stop, &sd);
2433 } while (ret == -EAGAIN);
2434
2435 return ret;
2436 }
2437
2438 /*
2439 * In order to contain the amount of racy and tricky in the address filter
2440 * configuration management, it is a two part process:
2441 *
2442 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
2443 * we update the addresses of corresponding vmas in
2444 * event::addr_filters_offs array and bump the event::addr_filters_gen;
2445 * (p2) when an event is scheduled in (pmu::add), it calls
2446 * perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
2447 * if the generation has changed since the previous call.
2448 *
2449 * If (p1) happens while the event is active, we restart it to force (p2).
2450 *
2451 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
2452 * pre-existing mappings, called once when new filters arrive via SET_FILTER
2453 * ioctl;
2454 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
2455 * registered mapping, called for every new mmap(), with mm::mmap_sem down
2456 * for reading;
2457 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
2458 * of exec.
2459 */
2460 void perf_event_addr_filters_sync(struct perf_event *event)
2461 {
2462 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
2463
2464 if (!has_addr_filter(event))
2465 return;
2466
2467 raw_spin_lock(&ifh->lock);
2468 if (event->addr_filters_gen != event->hw.addr_filters_gen) {
2469 event->pmu->addr_filters_sync(event);
2470 event->hw.addr_filters_gen = event->addr_filters_gen;
2471 }
2472 raw_spin_unlock(&ifh->lock);
2473 }
2474 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
2475
2476 static int _perf_event_refresh(struct perf_event *event, int refresh)
2477 {
2478 /*
2479 * not supported on inherited events
2480 */
2481 if (event->attr.inherit || !is_sampling_event(event))
2482 return -EINVAL;
2483
2484 atomic_add(refresh, &event->event_limit);
2485 _perf_event_enable(event);
2486
2487 return 0;
2488 }
2489
2490 /*
2491 * See perf_event_disable()
2492 */
2493 int perf_event_refresh(struct perf_event *event, int refresh)
2494 {
2495 struct perf_event_context *ctx;
2496 int ret;
2497
2498 ctx = perf_event_ctx_lock(event);
2499 ret = _perf_event_refresh(event, refresh);
2500 perf_event_ctx_unlock(event, ctx);
2501
2502 return ret;
2503 }
2504 EXPORT_SYMBOL_GPL(perf_event_refresh);
2505
2506 static void ctx_sched_out(struct perf_event_context *ctx,
2507 struct perf_cpu_context *cpuctx,
2508 enum event_type_t event_type)
2509 {
2510 int is_active = ctx->is_active;
2511 struct perf_event *event;
2512
2513 lockdep_assert_held(&ctx->lock);
2514
2515 if (likely(!ctx->nr_events)) {
2516 /*
2517 * See __perf_remove_from_context().
2518 */
2519 WARN_ON_ONCE(ctx->is_active);
2520 if (ctx->task)
2521 WARN_ON_ONCE(cpuctx->task_ctx);
2522 return;
2523 }
2524
2525 ctx->is_active &= ~event_type;
2526 if (!(ctx->is_active & EVENT_ALL))
2527 ctx->is_active = 0;
2528
2529 if (ctx->task) {
2530 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2531 if (!ctx->is_active)
2532 cpuctx->task_ctx = NULL;
2533 }
2534
2535 /*
2536 * Always update time if it was set; not only when it changes.
2537 * Otherwise we can 'forget' to update time for any but the last
2538 * context we sched out. For example:
2539 *
2540 * ctx_sched_out(.event_type = EVENT_FLEXIBLE)
2541 * ctx_sched_out(.event_type = EVENT_PINNED)
2542 *
2543 * would only update time for the pinned events.
2544 */
2545 if (is_active & EVENT_TIME) {
2546 /* update (and stop) ctx time */
2547 update_context_time(ctx);
2548 update_cgrp_time_from_cpuctx(cpuctx);
2549 }
2550
2551 is_active ^= ctx->is_active; /* changed bits */
2552
2553 if (!ctx->nr_active || !(is_active & EVENT_ALL))
2554 return;
2555
2556 perf_pmu_disable(ctx->pmu);
2557 if (is_active & EVENT_PINNED) {
2558 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2559 group_sched_out(event, cpuctx, ctx);
2560 }
2561
2562 if (is_active & EVENT_FLEXIBLE) {
2563 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2564 group_sched_out(event, cpuctx, ctx);
2565 }
2566 perf_pmu_enable(ctx->pmu);
2567 }
2568
2569 /*
2570 * Test whether two contexts are equivalent, i.e. whether they have both been
2571 * cloned from the same version of the same context.
2572 *
2573 * Equivalence is measured using a generation number in the context that is
2574 * incremented on each modification to it; see unclone_ctx(), list_add_event()
2575 * and list_del_event().
2576 */
2577 static int context_equiv(struct perf_event_context *ctx1,
2578 struct perf_event_context *ctx2)
2579 {
2580 lockdep_assert_held(&ctx1->lock);
2581 lockdep_assert_held(&ctx2->lock);
2582
2583 /* Pinning disables the swap optimization */
2584 if (ctx1->pin_count || ctx2->pin_count)
2585 return 0;
2586
2587 /* If ctx1 is the parent of ctx2 */
2588 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2589 return 1;
2590
2591 /* If ctx2 is the parent of ctx1 */
2592 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2593 return 1;
2594
2595 /*
2596 * If ctx1 and ctx2 have the same parent; we flatten the parent
2597 * hierarchy, see perf_event_init_context().
2598 */
2599 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2600 ctx1->parent_gen == ctx2->parent_gen)
2601 return 1;
2602
2603 /* Unmatched */
2604 return 0;
2605 }
2606
2607 static void __perf_event_sync_stat(struct perf_event *event,
2608 struct perf_event *next_event)
2609 {
2610 u64 value;
2611
2612 if (!event->attr.inherit_stat)
2613 return;
2614
2615 /*
2616 * Update the event value, we cannot use perf_event_read()
2617 * because we're in the middle of a context switch and have IRQs
2618 * disabled, which upsets smp_call_function_single(), however
2619 * we know the event must be on the current CPU, therefore we
2620 * don't need to use it.
2621 */
2622 switch (event->state) {
2623 case PERF_EVENT_STATE_ACTIVE:
2624 event->pmu->read(event);
2625 /* fall-through */
2626
2627 case PERF_EVENT_STATE_INACTIVE:
2628 update_event_times(event);
2629 break;
2630
2631 default:
2632 break;
2633 }
2634
2635 /*
2636 * In order to keep per-task stats reliable we need to flip the event
2637 * values when we flip the contexts.
2638 */
2639 value = local64_read(&next_event->count);
2640 value = local64_xchg(&event->count, value);
2641 local64_set(&next_event->count, value);
2642
2643 swap(event->total_time_enabled, next_event->total_time_enabled);
2644 swap(event->total_time_running, next_event->total_time_running);
2645
2646 /*
2647 * Since we swizzled the values, update the user visible data too.
2648 */
2649 perf_event_update_userpage(event);
2650 perf_event_update_userpage(next_event);
2651 }
2652
2653 static void perf_event_sync_stat(struct perf_event_context *ctx,
2654 struct perf_event_context *next_ctx)
2655 {
2656 struct perf_event *event, *next_event;
2657
2658 if (!ctx->nr_stat)
2659 return;
2660
2661 update_context_time(ctx);
2662
2663 event = list_first_entry(&ctx->event_list,
2664 struct perf_event, event_entry);
2665
2666 next_event = list_first_entry(&next_ctx->event_list,
2667 struct perf_event, event_entry);
2668
2669 while (&event->event_entry != &ctx->event_list &&
2670 &next_event->event_entry != &next_ctx->event_list) {
2671
2672 __perf_event_sync_stat(event, next_event);
2673
2674 event = list_next_entry(event, event_entry);
2675 next_event = list_next_entry(next_event, event_entry);
2676 }
2677 }
2678
2679 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2680 struct task_struct *next)
2681 {
2682 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2683 struct perf_event_context *next_ctx;
2684 struct perf_event_context *parent, *next_parent;
2685 struct perf_cpu_context *cpuctx;
2686 int do_switch = 1;
2687
2688 if (likely(!ctx))
2689 return;
2690
2691 cpuctx = __get_cpu_context(ctx);
2692 if (!cpuctx->task_ctx)
2693 return;
2694
2695 rcu_read_lock();
2696 next_ctx = next->perf_event_ctxp[ctxn];
2697 if (!next_ctx)
2698 goto unlock;
2699
2700 parent = rcu_dereference(ctx->parent_ctx);
2701 next_parent = rcu_dereference(next_ctx->parent_ctx);
2702
2703 /* If neither context have a parent context; they cannot be clones. */
2704 if (!parent && !next_parent)
2705 goto unlock;
2706
2707 if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2708 /*
2709 * Looks like the two contexts are clones, so we might be
2710 * able to optimize the context switch. We lock both
2711 * contexts and check that they are clones under the
2712 * lock (including re-checking that neither has been
2713 * uncloned in the meantime). It doesn't matter which
2714 * order we take the locks because no other cpu could
2715 * be trying to lock both of these tasks.
2716 */
2717 raw_spin_lock(&ctx->lock);
2718 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2719 if (context_equiv(ctx, next_ctx)) {
2720 WRITE_ONCE(ctx->task, next);
2721 WRITE_ONCE(next_ctx->task, task);
2722
2723 swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
2724
2725 /*
2726 * RCU_INIT_POINTER here is safe because we've not
2727 * modified the ctx and the above modification of
2728 * ctx->task and ctx->task_ctx_data are immaterial
2729 * since those values are always verified under
2730 * ctx->lock which we're now holding.
2731 */
2732 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
2733 RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
2734
2735 do_switch = 0;
2736
2737 perf_event_sync_stat(ctx, next_ctx);
2738 }
2739 raw_spin_unlock(&next_ctx->lock);
2740 raw_spin_unlock(&ctx->lock);
2741 }
2742 unlock:
2743 rcu_read_unlock();
2744
2745 if (do_switch) {
2746 raw_spin_lock(&ctx->lock);
2747 task_ctx_sched_out(cpuctx, ctx);
2748 raw_spin_unlock(&ctx->lock);
2749 }
2750 }
2751
2752 void perf_sched_cb_dec(struct pmu *pmu)
2753 {
2754 this_cpu_dec(perf_sched_cb_usages);
2755 }
2756
2757 void perf_sched_cb_inc(struct pmu *pmu)
2758 {
2759 this_cpu_inc(perf_sched_cb_usages);
2760 }
2761
2762 /*
2763 * This function provides the context switch callback to the lower code
2764 * layer. It is invoked ONLY when the context switch callback is enabled.
2765 */
2766 static void perf_pmu_sched_task(struct task_struct *prev,
2767 struct task_struct *next,
2768 bool sched_in)
2769 {
2770 struct perf_cpu_context *cpuctx;
2771 struct pmu *pmu;
2772 unsigned long flags;
2773
2774 if (prev == next)
2775 return;
2776
2777 local_irq_save(flags);
2778
2779 rcu_read_lock();
2780
2781 list_for_each_entry_rcu(pmu, &pmus, entry) {
2782 if (pmu->sched_task) {
2783 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2784
2785 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2786
2787 perf_pmu_disable(pmu);
2788
2789 pmu->sched_task(cpuctx->task_ctx, sched_in);
2790
2791 perf_pmu_enable(pmu);
2792
2793 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2794 }
2795 }
2796
2797 rcu_read_unlock();
2798
2799 local_irq_restore(flags);
2800 }
2801
2802 static void perf_event_switch(struct task_struct *task,
2803 struct task_struct *next_prev, bool sched_in);
2804
2805 #define for_each_task_context_nr(ctxn) \
2806 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2807
2808 /*
2809 * Called from scheduler to remove the events of the current task,
2810 * with interrupts disabled.
2811 *
2812 * We stop each event and update the event value in event->count.
2813 *
2814 * This does not protect us against NMI, but disable()
2815 * sets the disabled bit in the control field of event _before_
2816 * accessing the event control register. If a NMI hits, then it will
2817 * not restart the event.
2818 */
2819 void __perf_event_task_sched_out(struct task_struct *task,
2820 struct task_struct *next)
2821 {
2822 int ctxn;
2823
2824 if (__this_cpu_read(perf_sched_cb_usages))
2825 perf_pmu_sched_task(task, next, false);
2826
2827 if (atomic_read(&nr_switch_events))
2828 perf_event_switch(task, next, false);
2829
2830 for_each_task_context_nr(ctxn)
2831 perf_event_context_sched_out(task, ctxn, next);
2832
2833 /*
2834 * if cgroup events exist on this CPU, then we need
2835 * to check if we have to switch out PMU state.
2836 * cgroup event are system-wide mode only
2837 */
2838 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2839 perf_cgroup_sched_out(task, next);
2840 }
2841
2842 /*
2843 * Called with IRQs disabled
2844 */
2845 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2846 enum event_type_t event_type)
2847 {
2848 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2849 }
2850
2851 static void
2852 ctx_pinned_sched_in(struct perf_event_context *ctx,
2853 struct perf_cpu_context *cpuctx)
2854 {
2855 struct perf_event *event;
2856
2857 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2858 if (event->state <= PERF_EVENT_STATE_OFF)
2859 continue;
2860 if (!event_filter_match(event))
2861 continue;
2862
2863 /* may need to reset tstamp_enabled */
2864 if (is_cgroup_event(event))
2865 perf_cgroup_mark_enabled(event, ctx);
2866
2867 if (group_can_go_on(event, cpuctx, 1))
2868 group_sched_in(event, cpuctx, ctx);
2869
2870 /*
2871 * If this pinned group hasn't been scheduled,
2872 * put it in error state.
2873 */
2874 if (event->state == PERF_EVENT_STATE_INACTIVE) {
2875 update_group_times(event);
2876 event->state = PERF_EVENT_STATE_ERROR;
2877 }
2878 }
2879 }
2880
2881 static void
2882 ctx_flexible_sched_in(struct perf_event_context *ctx,
2883 struct perf_cpu_context *cpuctx)
2884 {
2885 struct perf_event *event;
2886 int can_add_hw = 1;
2887
2888 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2889 /* Ignore events in OFF or ERROR state */
2890 if (event->state <= PERF_EVENT_STATE_OFF)
2891 continue;
2892 /*
2893 * Listen to the 'cpu' scheduling filter constraint
2894 * of events:
2895 */
2896 if (!event_filter_match(event))
2897 continue;
2898
2899 /* may need to reset tstamp_enabled */
2900 if (is_cgroup_event(event))
2901 perf_cgroup_mark_enabled(event, ctx);
2902
2903 if (group_can_go_on(event, cpuctx, can_add_hw)) {
2904 if (group_sched_in(event, cpuctx, ctx))
2905 can_add_hw = 0;
2906 }
2907 }
2908 }
2909
2910 static void
2911 ctx_sched_in(struct perf_event_context *ctx,
2912 struct perf_cpu_context *cpuctx,
2913 enum event_type_t event_type,
2914 struct task_struct *task)
2915 {
2916 int is_active = ctx->is_active;
2917 u64 now;
2918
2919 lockdep_assert_held(&ctx->lock);
2920
2921 if (likely(!ctx->nr_events))
2922 return;
2923
2924 ctx->is_active |= (event_type | EVENT_TIME);
2925 if (ctx->task) {
2926 if (!is_active)
2927 cpuctx->task_ctx = ctx;
2928 else
2929 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2930 }
2931
2932 is_active ^= ctx->is_active; /* changed bits */
2933
2934 if (is_active & EVENT_TIME) {
2935 /* start ctx time */
2936 now = perf_clock();
2937 ctx->timestamp = now;
2938 perf_cgroup_set_timestamp(task, ctx);
2939 }
2940
2941 /*
2942 * First go through the list and put on any pinned groups
2943 * in order to give them the best chance of going on.
2944 */
2945 if (is_active & EVENT_PINNED)
2946 ctx_pinned_sched_in(ctx, cpuctx);
2947
2948 /* Then walk through the lower prio flexible groups */
2949 if (is_active & EVENT_FLEXIBLE)
2950 ctx_flexible_sched_in(ctx, cpuctx);
2951 }
2952
2953 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
2954 enum event_type_t event_type,
2955 struct task_struct *task)
2956 {
2957 struct perf_event_context *ctx = &cpuctx->ctx;
2958
2959 ctx_sched_in(ctx, cpuctx, event_type, task);
2960 }
2961
2962 static void perf_event_context_sched_in(struct perf_event_context *ctx,
2963 struct task_struct *task)
2964 {
2965 struct perf_cpu_context *cpuctx;
2966
2967 cpuctx = __get_cpu_context(ctx);
2968 if (cpuctx->task_ctx == ctx)
2969 return;
2970
2971 perf_ctx_lock(cpuctx, ctx);
2972 perf_pmu_disable(ctx->pmu);
2973 /*
2974 * We want to keep the following priority order:
2975 * cpu pinned (that don't need to move), task pinned,
2976 * cpu flexible, task flexible.
2977 */
2978 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2979 perf_event_sched_in(cpuctx, ctx, task);
2980 perf_pmu_enable(ctx->pmu);
2981 perf_ctx_unlock(cpuctx, ctx);
2982 }
2983
2984 /*
2985 * Called from scheduler to add the events of the current task
2986 * with interrupts disabled.
2987 *
2988 * We restore the event value and then enable it.
2989 *
2990 * This does not protect us against NMI, but enable()
2991 * sets the enabled bit in the control field of event _before_
2992 * accessing the event control register. If a NMI hits, then it will
2993 * keep the event running.
2994 */
2995 void __perf_event_task_sched_in(struct task_struct *prev,
2996 struct task_struct *task)
2997 {
2998 struct perf_event_context *ctx;
2999 int ctxn;
3000
3001 /*
3002 * If cgroup events exist on this CPU, then we need to check if we have
3003 * to switch in PMU state; cgroup event are system-wide mode only.
3004 *
3005 * Since cgroup events are CPU events, we must schedule these in before
3006 * we schedule in the task events.
3007 */
3008 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3009 perf_cgroup_sched_in(prev, task);
3010
3011 for_each_task_context_nr(ctxn) {
3012 ctx = task->perf_event_ctxp[ctxn];
3013 if (likely(!ctx))
3014 continue;
3015
3016 perf_event_context_sched_in(ctx, task);
3017 }
3018
3019 if (atomic_read(&nr_switch_events))
3020 perf_event_switch(task, prev, true);
3021
3022 if (__this_cpu_read(perf_sched_cb_usages))
3023 perf_pmu_sched_task(prev, task, true);
3024 }
3025
3026 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3027 {
3028 u64 frequency = event->attr.sample_freq;
3029 u64 sec = NSEC_PER_SEC;
3030 u64 divisor, dividend;
3031
3032 int count_fls, nsec_fls, frequency_fls, sec_fls;
3033
3034 count_fls = fls64(count);
3035 nsec_fls = fls64(nsec);
3036 frequency_fls = fls64(frequency);
3037 sec_fls = 30;
3038
3039 /*
3040 * We got @count in @nsec, with a target of sample_freq HZ
3041 * the target period becomes:
3042 *
3043 * @count * 10^9
3044 * period = -------------------
3045 * @nsec * sample_freq
3046 *
3047 */
3048
3049 /*
3050 * Reduce accuracy by one bit such that @a and @b converge
3051 * to a similar magnitude.
3052 */
3053 #define REDUCE_FLS(a, b) \
3054 do { \
3055 if (a##_fls > b##_fls) { \
3056 a >>= 1; \
3057 a##_fls--; \
3058 } else { \
3059 b >>= 1; \
3060 b##_fls--; \
3061 } \
3062 } while (0)
3063
3064 /*
3065 * Reduce accuracy until either term fits in a u64, then proceed with
3066 * the other, so that finally we can do a u64/u64 division.
3067 */
3068 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3069 REDUCE_FLS(nsec, frequency);
3070 REDUCE_FLS(sec, count);
3071 }
3072
3073 if (count_fls + sec_fls > 64) {
3074 divisor = nsec * frequency;
3075
3076 while (count_fls + sec_fls > 64) {
3077 REDUCE_FLS(count, sec);
3078 divisor >>= 1;
3079 }
3080
3081 dividend = count * sec;
3082 } else {
3083 dividend = count * sec;
3084
3085 while (nsec_fls + frequency_fls > 64) {
3086 REDUCE_FLS(nsec, frequency);
3087 dividend >>= 1;
3088 }
3089
3090 divisor = nsec * frequency;
3091 }
3092
3093 if (!divisor)
3094 return dividend;
3095
3096 return div64_u64(dividend, divisor);
3097 }
3098
3099 static DEFINE_PER_CPU(int, perf_throttled_count);
3100 static DEFINE_PER_CPU(u64, perf_throttled_seq);
3101
3102 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
3103 {
3104 struct hw_perf_event *hwc = &event->hw;
3105 s64 period, sample_period;
3106 s64 delta;
3107
3108 period = perf_calculate_period(event, nsec, count);
3109
3110 delta = (s64)(period - hwc->sample_period);
3111 delta = (delta + 7) / 8; /* low pass filter */
3112
3113 sample_period = hwc->sample_period + delta;
3114
3115 if (!sample_period)
3116 sample_period = 1;
3117
3118 hwc->sample_period = sample_period;
3119
3120 if (local64_read(&hwc->period_left) > 8*sample_period) {
3121 if (disable)
3122 event->pmu->stop(event, PERF_EF_UPDATE);
3123
3124 local64_set(&hwc->period_left, 0);
3125
3126 if (disable)
3127 event->pmu->start(event, PERF_EF_RELOAD);
3128 }
3129 }
3130
3131 /*
3132 * combine freq adjustment with unthrottling to avoid two passes over the
3133 * events. At the same time, make sure, having freq events does not change
3134 * the rate of unthrottling as that would introduce bias.
3135 */
3136 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3137 int needs_unthr)
3138 {
3139 struct perf_event *event;
3140 struct hw_perf_event *hwc;
3141 u64 now, period = TICK_NSEC;
3142 s64 delta;
3143
3144 /*
3145 * only need to iterate over all events iff:
3146 * - context have events in frequency mode (needs freq adjust)
3147 * - there are events to unthrottle on this cpu
3148 */
3149 if (!(ctx->nr_freq || needs_unthr))
3150 return;
3151
3152 raw_spin_lock(&ctx->lock);
3153 perf_pmu_disable(ctx->pmu);
3154
3155 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3156 if (event->state != PERF_EVENT_STATE_ACTIVE)
3157 continue;
3158
3159 if (!event_filter_match(event))
3160 continue;
3161
3162 perf_pmu_disable(event->pmu);
3163
3164 hwc = &event->hw;
3165
3166 if (hwc->interrupts == MAX_INTERRUPTS) {
3167 hwc->interrupts = 0;
3168 perf_log_throttle(event, 1);
3169 event->pmu->start(event, 0);
3170 }
3171
3172 if (!event->attr.freq || !event->attr.sample_freq)
3173 goto next;
3174
3175 /*
3176 * stop the event and update event->count
3177 */
3178 event->pmu->stop(event, PERF_EF_UPDATE);
3179
3180 now = local64_read(&event->count);
3181 delta = now - hwc->freq_count_stamp;
3182 hwc->freq_count_stamp = now;
3183
3184 /*
3185 * restart the event
3186 * reload only if value has changed
3187 * we have stopped the event so tell that
3188 * to perf_adjust_period() to avoid stopping it
3189 * twice.
3190 */
3191 if (delta > 0)
3192 perf_adjust_period(event, period, delta, false);
3193
3194 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3195 next:
3196 perf_pmu_enable(event->pmu);
3197 }
3198
3199 perf_pmu_enable(ctx->pmu);
3200 raw_spin_unlock(&ctx->lock);
3201 }
3202
3203 /*
3204 * Round-robin a context's events:
3205 */
3206 static void rotate_ctx(struct perf_event_context *ctx)
3207 {
3208 /*
3209 * Rotate the first entry last of non-pinned groups. Rotation might be
3210 * disabled by the inheritance code.
3211 */
3212 if (!ctx->rotate_disable)
3213 list_rotate_left(&ctx->flexible_groups);
3214 }
3215
3216 static int perf_rotate_context(struct perf_cpu_context *cpuctx)
3217 {
3218 struct perf_event_context *ctx = NULL;
3219 int rotate = 0;
3220
3221 if (cpuctx->ctx.nr_events) {
3222 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3223 rotate = 1;
3224 }
3225
3226 ctx = cpuctx->task_ctx;
3227 if (ctx && ctx->nr_events) {
3228 if (ctx->nr_events != ctx->nr_active)
3229 rotate = 1;
3230 }
3231
3232 if (!rotate)
3233 goto done;
3234
3235 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3236 perf_pmu_disable(cpuctx->ctx.pmu);
3237
3238 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3239 if (ctx)
3240 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
3241
3242 rotate_ctx(&cpuctx->ctx);
3243 if (ctx)
3244 rotate_ctx(ctx);
3245
3246 perf_event_sched_in(cpuctx, ctx, current);
3247
3248 perf_pmu_enable(cpuctx->ctx.pmu);
3249 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3250 done:
3251
3252 return rotate;
3253 }
3254
3255 void perf_event_task_tick(void)
3256 {
3257 struct list_head *head = this_cpu_ptr(&active_ctx_list);
3258 struct perf_event_context *ctx, *tmp;
3259 int throttled;
3260
3261 WARN_ON(!irqs_disabled());
3262
3263 __this_cpu_inc(perf_throttled_seq);
3264 throttled = __this_cpu_xchg(perf_throttled_count, 0);
3265 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
3266
3267 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3268 perf_adjust_freq_unthr_context(ctx, throttled);
3269 }
3270
3271 static int event_enable_on_exec(struct perf_event *event,
3272 struct perf_event_context *ctx)
3273 {
3274 if (!event->attr.enable_on_exec)
3275 return 0;
3276
3277 event->attr.enable_on_exec = 0;
3278 if (event->state >= PERF_EVENT_STATE_INACTIVE)
3279 return 0;
3280
3281 __perf_event_mark_enabled(event);
3282
3283 return 1;
3284 }
3285
3286 /*
3287 * Enable all of a task's events that have been marked enable-on-exec.
3288 * This expects task == current.
3289 */
3290 static void perf_event_enable_on_exec(int ctxn)
3291 {
3292 struct perf_event_context *ctx, *clone_ctx = NULL;
3293 struct perf_cpu_context *cpuctx;
3294 struct perf_event *event;
3295 unsigned long flags;
3296 int enabled = 0;
3297
3298 local_irq_save(flags);
3299 ctx = current->perf_event_ctxp[ctxn];
3300 if (!ctx || !ctx->nr_events)
3301 goto out;
3302
3303 cpuctx = __get_cpu_context(ctx);
3304 perf_ctx_lock(cpuctx, ctx);
3305 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
3306 list_for_each_entry(event, &ctx->event_list, event_entry)
3307 enabled |= event_enable_on_exec(event, ctx);
3308
3309 /*
3310 * Unclone and reschedule this context if we enabled any event.
3311 */
3312 if (enabled) {
3313 clone_ctx = unclone_ctx(ctx);
3314 ctx_resched(cpuctx, ctx);
3315 }
3316 perf_ctx_unlock(cpuctx, ctx);
3317
3318 out:
3319 local_irq_restore(flags);
3320
3321 if (clone_ctx)
3322 put_ctx(clone_ctx);
3323 }
3324
3325 struct perf_read_data {
3326 struct perf_event *event;
3327 bool group;
3328 int ret;
3329 };
3330
3331 /*
3332 * Cross CPU call to read the hardware event
3333 */
3334 static void __perf_event_read(void *info)
3335 {
3336 struct perf_read_data *data = info;
3337 struct perf_event *sub, *event = data->event;
3338 struct perf_event_context *ctx = event->ctx;
3339 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3340 struct pmu *pmu = event->pmu;
3341
3342 /*
3343 * If this is a task context, we need to check whether it is
3344 * the current task context of this cpu. If not it has been
3345 * scheduled out before the smp call arrived. In that case
3346 * event->count would have been updated to a recent sample
3347 * when the event was scheduled out.
3348 */
3349 if (ctx->task && cpuctx->task_ctx != ctx)
3350 return;
3351
3352 raw_spin_lock(&ctx->lock);
3353 if (ctx->is_active) {
3354 update_context_time(ctx);
3355 update_cgrp_time_from_event(event);
3356 }
3357
3358 update_event_times(event);
3359 if (event->state != PERF_EVENT_STATE_ACTIVE)
3360 goto unlock;
3361
3362 if (!data->group) {
3363 pmu->read(event);
3364 data->ret = 0;
3365 goto unlock;
3366 }
3367
3368 pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3369
3370 pmu->read(event);
3371
3372 list_for_each_entry(sub, &event->sibling_list, group_entry) {
3373 update_event_times(sub);
3374 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3375 /*
3376 * Use sibling's PMU rather than @event's since
3377 * sibling could be on different (eg: software) PMU.
3378 */
3379 sub->pmu->read(sub);
3380 }
3381 }
3382
3383 data->ret = pmu->commit_txn(pmu);
3384
3385 unlock:
3386 raw_spin_unlock(&ctx->lock);
3387 }
3388
3389 static inline u64 perf_event_count(struct perf_event *event)
3390 {
3391 if (event->pmu->count)
3392 return event->pmu->count(event);
3393
3394 return __perf_event_count(event);
3395 }
3396
3397 /*
3398 * NMI-safe method to read a local event, that is an event that
3399 * is:
3400 * - either for the current task, or for this CPU
3401 * - does not have inherit set, for inherited task events
3402 * will not be local and we cannot read them atomically
3403 * - must not have a pmu::count method
3404 */
3405 u64 perf_event_read_local(struct perf_event *event)
3406 {
3407 unsigned long flags;
3408 u64 val;
3409
3410 /*
3411 * Disabling interrupts avoids all counter scheduling (context
3412 * switches, timer based rotation and IPIs).
3413 */
3414 local_irq_save(flags);
3415
3416 /* If this is a per-task event, it must be for current */
3417 WARN_ON_ONCE((event->attach_state & PERF_ATTACH_TASK) &&
3418 event->hw.target != current);
3419
3420 /* If this is a per-CPU event, it must be for this CPU */
3421 WARN_ON_ONCE(!(event->attach_state & PERF_ATTACH_TASK) &&
3422 event->cpu != smp_processor_id());
3423
3424 /*
3425 * It must not be an event with inherit set, we cannot read
3426 * all child counters from atomic context.
3427 */
3428 WARN_ON_ONCE(event->attr.inherit);
3429
3430 /*
3431 * It must not have a pmu::count method, those are not
3432 * NMI safe.
3433 */
3434 WARN_ON_ONCE(event->pmu->count);
3435
3436 /*
3437 * If the event is currently on this CPU, its either a per-task event,
3438 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3439 * oncpu == -1).
3440 */
3441 if (event->oncpu == smp_processor_id())
3442 event->pmu->read(event);
3443
3444 val = local64_read(&event->count);
3445 local_irq_restore(flags);
3446
3447 return val;
3448 }
3449
3450 static int perf_event_read(struct perf_event *event, bool group)
3451 {
3452 int ret = 0;
3453
3454 /*
3455 * If event is enabled and currently active on a CPU, update the
3456 * value in the event structure:
3457 */
3458 if (event->state == PERF_EVENT_STATE_ACTIVE) {
3459 struct perf_read_data data = {
3460 .event = event,
3461 .group = group,
3462 .ret = 0,
3463 };
3464 smp_call_function_single(event->oncpu,
3465 __perf_event_read, &data, 1);
3466 ret = data.ret;
3467 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
3468 struct perf_event_context *ctx = event->ctx;
3469 unsigned long flags;
3470
3471 raw_spin_lock_irqsave(&ctx->lock, flags);
3472 /*
3473 * may read while context is not active
3474 * (e.g., thread is blocked), in that case
3475 * we cannot update context time
3476 */
3477 if (ctx->is_active) {
3478 update_context_time(ctx);
3479 update_cgrp_time_from_event(event);
3480 }
3481 if (group)
3482 update_group_times(event);
3483 else
3484 update_event_times(event);
3485 raw_spin_unlock_irqrestore(&ctx->lock, flags);
3486 }
3487
3488 return ret;
3489 }
3490
3491 /*
3492 * Initialize the perf_event context in a task_struct:
3493 */
3494 static void __perf_event_init_context(struct perf_event_context *ctx)
3495 {
3496 raw_spin_lock_init(&ctx->lock);
3497 mutex_init(&ctx->mutex);
3498 INIT_LIST_HEAD(&ctx->active_ctx_list);
3499 INIT_LIST_HEAD(&ctx->pinned_groups);
3500 INIT_LIST_HEAD(&ctx->flexible_groups);
3501 INIT_LIST_HEAD(&ctx->event_list);
3502 atomic_set(&ctx->refcount, 1);
3503 }
3504
3505 static struct perf_event_context *
3506 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3507 {
3508 struct perf_event_context *ctx;
3509
3510 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3511 if (!ctx)
3512 return NULL;
3513
3514 __perf_event_init_context(ctx);
3515 if (task) {
3516 ctx->task = task;
3517 get_task_struct(task);
3518 }
3519 ctx->pmu = pmu;
3520
3521 return ctx;
3522 }
3523
3524 static struct task_struct *
3525 find_lively_task_by_vpid(pid_t vpid)
3526 {
3527 struct task_struct *task;
3528
3529 rcu_read_lock();
3530 if (!vpid)
3531 task = current;
3532 else
3533 task = find_task_by_vpid(vpid);
3534 if (task)
3535 get_task_struct(task);
3536 rcu_read_unlock();
3537
3538 if (!task)
3539 return ERR_PTR(-ESRCH);
3540
3541 return task;
3542 }
3543
3544 /*
3545 * Returns a matching context with refcount and pincount.
3546 */
3547 static struct perf_event_context *
3548 find_get_context(struct pmu *pmu, struct task_struct *task,
3549 struct perf_event *event)
3550 {
3551 struct perf_event_context *ctx, *clone_ctx = NULL;
3552 struct perf_cpu_context *cpuctx;
3553 void *task_ctx_data = NULL;
3554 unsigned long flags;
3555 int ctxn, err;
3556 int cpu = event->cpu;
3557
3558 if (!task) {
3559 /* Must be root to operate on a CPU event: */
3560 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
3561 return ERR_PTR(-EACCES);
3562
3563 /*
3564 * We could be clever and allow to attach a event to an
3565 * offline CPU and activate it when the CPU comes up, but
3566 * that's for later.
3567 */
3568 if (!cpu_online(cpu))
3569 return ERR_PTR(-ENODEV);
3570
3571 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
3572 ctx = &cpuctx->ctx;
3573 get_ctx(ctx);
3574 ++ctx->pin_count;
3575
3576 return ctx;
3577 }
3578
3579 err = -EINVAL;
3580 ctxn = pmu->task_ctx_nr;
3581 if (ctxn < 0)
3582 goto errout;
3583
3584 if (event->attach_state & PERF_ATTACH_TASK_DATA) {
3585 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
3586 if (!task_ctx_data) {
3587 err = -ENOMEM;
3588 goto errout;
3589 }
3590 }
3591
3592 retry:
3593 ctx = perf_lock_task_context(task, ctxn, &flags);
3594 if (ctx) {
3595 clone_ctx = unclone_ctx(ctx);
3596 ++ctx->pin_count;
3597
3598 if (task_ctx_data && !ctx->task_ctx_data) {
3599 ctx->task_ctx_data = task_ctx_data;
3600 task_ctx_data = NULL;
3601 }
3602 raw_spin_unlock_irqrestore(&ctx->lock, flags);
3603
3604 if (clone_ctx)
3605 put_ctx(clone_ctx);
3606 } else {
3607 ctx = alloc_perf_context(pmu, task);
3608 err = -ENOMEM;
3609 if (!ctx)
3610 goto errout;
3611
3612 if (task_ctx_data) {
3613 ctx->task_ctx_data = task_ctx_data;
3614 task_ctx_data = NULL;
3615 }
3616
3617 err = 0;
3618 mutex_lock(&task->perf_event_mutex);
3619 /*
3620 * If it has already passed perf_event_exit_task().
3621 * we must see PF_EXITING, it takes this mutex too.
3622 */
3623 if (task->flags & PF_EXITING)
3624 err = -ESRCH;
3625 else if (task->perf_event_ctxp[ctxn])
3626 err = -EAGAIN;
3627 else {
3628 get_ctx(ctx);
3629 ++ctx->pin_count;
3630 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3631 }
3632 mutex_unlock(&task->perf_event_mutex);
3633
3634 if (unlikely(err)) {
3635 put_ctx(ctx);
3636
3637 if (err == -EAGAIN)
3638 goto retry;
3639 goto errout;
3640 }
3641 }
3642
3643 kfree(task_ctx_data);
3644 return ctx;
3645
3646 errout:
3647 kfree(task_ctx_data);
3648 return ERR_PTR(err);
3649 }
3650
3651 static void perf_event_free_filter(struct perf_event *event);
3652 static void perf_event_free_bpf_prog(struct perf_event *event);
3653
3654 static void free_event_rcu(struct rcu_head *head)
3655 {
3656 struct perf_event *event;
3657
3658 event = container_of(head, struct perf_event, rcu_head);
3659 if (event->ns)
3660 put_pid_ns(event->ns);
3661 perf_event_free_filter(event);
3662 kfree(event);
3663 }
3664
3665 static void ring_buffer_attach(struct perf_event *event,
3666 struct ring_buffer *rb);
3667
3668 static void unaccount_event_cpu(struct perf_event *event, int cpu)
3669 {
3670 if (event->parent)
3671 return;
3672
3673 if (is_cgroup_event(event))
3674 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3675 }
3676
3677 #ifdef CONFIG_NO_HZ_FULL
3678 static DEFINE_SPINLOCK(nr_freq_lock);
3679 #endif
3680
3681 static void unaccount_freq_event_nohz(void)
3682 {
3683 #ifdef CONFIG_NO_HZ_FULL
3684 spin_lock(&nr_freq_lock);
3685 if (atomic_dec_and_test(&nr_freq_events))
3686 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
3687 spin_unlock(&nr_freq_lock);
3688 #endif
3689 }
3690
3691 static void unaccount_freq_event(void)
3692 {
3693 if (tick_nohz_full_enabled())
3694 unaccount_freq_event_nohz();
3695 else
3696 atomic_dec(&nr_freq_events);
3697 }
3698
3699 static void unaccount_event(struct perf_event *event)
3700 {
3701 bool dec = false;
3702
3703 if (event->parent)
3704 return;
3705
3706 if (event->attach_state & PERF_ATTACH_TASK)
3707 dec = true;
3708 if (event->attr.mmap || event->attr.mmap_data)
3709 atomic_dec(&nr_mmap_events);
3710 if (event->attr.comm)
3711 atomic_dec(&nr_comm_events);
3712 if (event->attr.task)
3713 atomic_dec(&nr_task_events);
3714 if (event->attr.freq)
3715 unaccount_freq_event();
3716 if (event->attr.context_switch) {
3717 dec = true;
3718 atomic_dec(&nr_switch_events);
3719 }
3720 if (is_cgroup_event(event))
3721 dec = true;
3722 if (has_branch_stack(event))
3723 dec = true;
3724
3725 if (dec) {
3726 if (!atomic_add_unless(&perf_sched_count, -1, 1))
3727 schedule_delayed_work(&perf_sched_work, HZ);
3728 }
3729
3730 unaccount_event_cpu(event, event->cpu);
3731 }
3732
3733 static void perf_sched_delayed(struct work_struct *work)
3734 {
3735 mutex_lock(&perf_sched_mutex);
3736 if (atomic_dec_and_test(&perf_sched_count))
3737 static_branch_disable(&perf_sched_events);
3738 mutex_unlock(&perf_sched_mutex);
3739 }
3740
3741 /*
3742 * The following implement mutual exclusion of events on "exclusive" pmus
3743 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
3744 * at a time, so we disallow creating events that might conflict, namely:
3745 *
3746 * 1) cpu-wide events in the presence of per-task events,
3747 * 2) per-task events in the presence of cpu-wide events,
3748 * 3) two matching events on the same context.
3749 *
3750 * The former two cases are handled in the allocation path (perf_event_alloc(),
3751 * _free_event()), the latter -- before the first perf_install_in_context().
3752 */
3753 static int exclusive_event_init(struct perf_event *event)
3754 {
3755 struct pmu *pmu = event->pmu;
3756
3757 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3758 return 0;
3759
3760 /*
3761 * Prevent co-existence of per-task and cpu-wide events on the
3762 * same exclusive pmu.
3763 *
3764 * Negative pmu::exclusive_cnt means there are cpu-wide
3765 * events on this "exclusive" pmu, positive means there are
3766 * per-task events.
3767 *
3768 * Since this is called in perf_event_alloc() path, event::ctx
3769 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
3770 * to mean "per-task event", because unlike other attach states it
3771 * never gets cleared.
3772 */
3773 if (event->attach_state & PERF_ATTACH_TASK) {
3774 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
3775 return -EBUSY;
3776 } else {
3777 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
3778 return -EBUSY;
3779 }
3780
3781 return 0;
3782 }
3783
3784 static void exclusive_event_destroy(struct perf_event *event)
3785 {
3786 struct pmu *pmu = event->pmu;
3787
3788 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3789 return;
3790
3791 /* see comment in exclusive_event_init() */
3792 if (event->attach_state & PERF_ATTACH_TASK)
3793 atomic_dec(&pmu->exclusive_cnt);
3794 else
3795 atomic_inc(&pmu->exclusive_cnt);
3796 }
3797
3798 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
3799 {
3800 if ((e1->pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) &&
3801 (e1->cpu == e2->cpu ||
3802 e1->cpu == -1 ||
3803 e2->cpu == -1))
3804 return true;
3805 return false;
3806 }
3807
3808 /* Called under the same ctx::mutex as perf_install_in_context() */
3809 static bool exclusive_event_installable(struct perf_event *event,
3810 struct perf_event_context *ctx)
3811 {
3812 struct perf_event *iter_event;
3813 struct pmu *pmu = event->pmu;
3814
3815 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3816 return true;
3817
3818 list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
3819 if (exclusive_event_match(iter_event, event))
3820 return false;
3821 }
3822
3823 return true;
3824 }
3825
3826 static void perf_addr_filters_splice(struct perf_event *event,
3827 struct list_head *head);
3828
3829 static void _free_event(struct perf_event *event)
3830 {
3831 irq_work_sync(&event->pending);
3832
3833 unaccount_event(event);
3834
3835 if (event->rb) {
3836 /*
3837 * Can happen when we close an event with re-directed output.
3838 *
3839 * Since we have a 0 refcount, perf_mmap_close() will skip
3840 * over us; possibly making our ring_buffer_put() the last.
3841 */
3842 mutex_lock(&event->mmap_mutex);
3843 ring_buffer_attach(event, NULL);
3844 mutex_unlock(&event->mmap_mutex);
3845 }
3846
3847 if (is_cgroup_event(event))
3848 perf_detach_cgroup(event);
3849
3850 if (!event->parent) {
3851 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
3852 put_callchain_buffers();
3853 }
3854
3855 perf_event_free_bpf_prog(event);
3856 perf_addr_filters_splice(event, NULL);
3857 kfree(event->addr_filters_offs);
3858
3859 if (event->destroy)
3860 event->destroy(event);
3861
3862 if (event->ctx)
3863 put_ctx(event->ctx);
3864
3865 if (event->pmu) {
3866 exclusive_event_destroy(event);
3867 module_put(event->pmu->module);
3868 }
3869
3870 call_rcu(&event->rcu_head, free_event_rcu);
3871 }
3872
3873 /*
3874 * Used to free events which have a known refcount of 1, such as in error paths
3875 * where the event isn't exposed yet and inherited events.
3876 */
3877 static void free_event(struct perf_event *event)
3878 {
3879 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
3880 "unexpected event refcount: %ld; ptr=%p\n",
3881 atomic_long_read(&event->refcount), event)) {
3882 /* leak to avoid use-after-free */
3883 return;
3884 }
3885
3886 _free_event(event);
3887 }
3888
3889 /*
3890 * Remove user event from the owner task.
3891 */
3892 static void perf_remove_from_owner(struct perf_event *event)
3893 {
3894 struct task_struct *owner;
3895
3896 rcu_read_lock();
3897 /*
3898 * Matches the smp_store_release() in perf_event_exit_task(). If we
3899 * observe !owner it means the list deletion is complete and we can
3900 * indeed free this event, otherwise we need to serialize on
3901 * owner->perf_event_mutex.
3902 */
3903 owner = lockless_dereference(event->owner);
3904 if (owner) {
3905 /*
3906 * Since delayed_put_task_struct() also drops the last
3907 * task reference we can safely take a new reference
3908 * while holding the rcu_read_lock().
3909 */
3910 get_task_struct(owner);
3911 }
3912 rcu_read_unlock();
3913
3914 if (owner) {
3915 /*
3916 * If we're here through perf_event_exit_task() we're already
3917 * holding ctx->mutex which would be an inversion wrt. the
3918 * normal lock order.
3919 *
3920 * However we can safely take this lock because its the child
3921 * ctx->mutex.
3922 */
3923 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
3924
3925 /*
3926 * We have to re-check the event->owner field, if it is cleared
3927 * we raced with perf_event_exit_task(), acquiring the mutex
3928 * ensured they're done, and we can proceed with freeing the
3929 * event.
3930 */
3931 if (event->owner) {
3932 list_del_init(&event->owner_entry);
3933 smp_store_release(&event->owner, NULL);
3934 }
3935 mutex_unlock(&owner->perf_event_mutex);
3936 put_task_struct(owner);
3937 }
3938 }
3939
3940 static void put_event(struct perf_event *event)
3941 {
3942 if (!atomic_long_dec_and_test(&event->refcount))
3943 return;
3944
3945 _free_event(event);
3946 }
3947
3948 /*
3949 * Kill an event dead; while event:refcount will preserve the event
3950 * object, it will not preserve its functionality. Once the last 'user'
3951 * gives up the object, we'll destroy the thing.
3952 */
3953 int perf_event_release_kernel(struct perf_event *event)
3954 {
3955 struct perf_event_context *ctx = event->ctx;
3956 struct perf_event *child, *tmp;
3957
3958 /*
3959 * If we got here through err_file: fput(event_file); we will not have
3960 * attached to a context yet.
3961 */
3962 if (!ctx) {
3963 WARN_ON_ONCE(event->attach_state &
3964 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
3965 goto no_ctx;
3966 }
3967
3968 if (!is_kernel_event(event))
3969 perf_remove_from_owner(event);
3970
3971 ctx = perf_event_ctx_lock(event);
3972 WARN_ON_ONCE(ctx->parent_ctx);
3973 perf_remove_from_context(event, DETACH_GROUP);
3974
3975 raw_spin_lock_irq(&ctx->lock);
3976 /*
3977 * Mark this even as STATE_DEAD, there is no external reference to it
3978 * anymore.
3979 *
3980 * Anybody acquiring event->child_mutex after the below loop _must_
3981 * also see this, most importantly inherit_event() which will avoid
3982 * placing more children on the list.
3983 *
3984 * Thus this guarantees that we will in fact observe and kill _ALL_
3985 * child events.
3986 */
3987 event->state = PERF_EVENT_STATE_DEAD;
3988 raw_spin_unlock_irq(&ctx->lock);
3989
3990 perf_event_ctx_unlock(event, ctx);
3991
3992 again:
3993 mutex_lock(&event->child_mutex);
3994 list_for_each_entry(child, &event->child_list, child_list) {
3995
3996 /*
3997 * Cannot change, child events are not migrated, see the
3998 * comment with perf_event_ctx_lock_nested().
3999 */
4000 ctx = lockless_dereference(child->ctx);
4001 /*
4002 * Since child_mutex nests inside ctx::mutex, we must jump
4003 * through hoops. We start by grabbing a reference on the ctx.
4004 *
4005 * Since the event cannot get freed while we hold the
4006 * child_mutex, the context must also exist and have a !0
4007 * reference count.
4008 */
4009 get_ctx(ctx);
4010
4011 /*
4012 * Now that we have a ctx ref, we can drop child_mutex, and
4013 * acquire ctx::mutex without fear of it going away. Then we
4014 * can re-acquire child_mutex.
4015 */
4016 mutex_unlock(&event->child_mutex);
4017 mutex_lock(&ctx->mutex);
4018 mutex_lock(&event->child_mutex);
4019
4020 /*
4021 * Now that we hold ctx::mutex and child_mutex, revalidate our
4022 * state, if child is still the first entry, it didn't get freed
4023 * and we can continue doing so.
4024 */
4025 tmp = list_first_entry_or_null(&event->child_list,
4026 struct perf_event, child_list);
4027 if (tmp == child) {
4028 perf_remove_from_context(child, DETACH_GROUP);
4029 list_del(&child->child_list);
4030 free_event(child);
4031 /*
4032 * This matches the refcount bump in inherit_event();
4033 * this can't be the last reference.
4034 */
4035 put_event(event);
4036 }
4037
4038 mutex_unlock(&event->child_mutex);
4039 mutex_unlock(&ctx->mutex);
4040 put_ctx(ctx);
4041 goto again;
4042 }
4043 mutex_unlock(&event->child_mutex);
4044
4045 no_ctx:
4046 put_event(event); /* Must be the 'last' reference */
4047 return 0;
4048 }
4049 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
4050
4051 /*
4052 * Called when the last reference to the file is gone.
4053 */
4054 static int perf_release(struct inode *inode, struct file *file)
4055 {
4056 perf_event_release_kernel(file->private_data);
4057 return 0;
4058 }
4059
4060 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4061 {
4062 struct perf_event *child;
4063 u64 total = 0;
4064
4065 *enabled = 0;
4066 *running = 0;
4067
4068 mutex_lock(&event->child_mutex);
4069
4070 (void)perf_event_read(event, false);
4071 total += perf_event_count(event);
4072
4073 *enabled += event->total_time_enabled +
4074 atomic64_read(&event->child_total_time_enabled);
4075 *running += event->total_time_running +
4076 atomic64_read(&event->child_total_time_running);
4077
4078 list_for_each_entry(child, &event->child_list, child_list) {
4079 (void)perf_event_read(child, false);
4080 total += perf_event_count(child);
4081 *enabled += child->total_time_enabled;
4082 *running += child->total_time_running;
4083 }
4084 mutex_unlock(&event->child_mutex);
4085
4086 return total;
4087 }
4088 EXPORT_SYMBOL_GPL(perf_event_read_value);
4089
4090 static int __perf_read_group_add(struct perf_event *leader,
4091 u64 read_format, u64 *values)
4092 {
4093 struct perf_event *sub;
4094 int n = 1; /* skip @nr */
4095 int ret;
4096
4097 ret = perf_event_read(leader, true);
4098 if (ret)
4099 return ret;
4100
4101 /*
4102 * Since we co-schedule groups, {enabled,running} times of siblings
4103 * will be identical to those of the leader, so we only publish one
4104 * set.
4105 */
4106 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4107 values[n++] += leader->total_time_enabled +
4108 atomic64_read(&leader->child_total_time_enabled);
4109 }
4110
4111 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4112 values[n++] += leader->total_time_running +
4113 atomic64_read(&leader->child_total_time_running);
4114 }
4115
4116 /*
4117 * Write {count,id} tuples for every sibling.
4118 */
4119 values[n++] += perf_event_count(leader);
4120 if (read_format & PERF_FORMAT_ID)
4121 values[n++] = primary_event_id(leader);
4122
4123 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4124 values[n++] += perf_event_count(sub);
4125 if (read_format & PERF_FORMAT_ID)
4126 values[n++] = primary_event_id(sub);
4127 }
4128
4129 return 0;
4130 }
4131
4132 static int perf_read_group(struct perf_event *event,
4133 u64 read_format, char __user *buf)
4134 {
4135 struct perf_event *leader = event->group_leader, *child;
4136 struct perf_event_context *ctx = leader->ctx;
4137 int ret;
4138 u64 *values;
4139
4140 lockdep_assert_held(&ctx->mutex);
4141
4142 values = kzalloc(event->read_size, GFP_KERNEL);
4143 if (!values)
4144 return -ENOMEM;
4145
4146 values[0] = 1 + leader->nr_siblings;
4147
4148 /*
4149 * By locking the child_mutex of the leader we effectively
4150 * lock the child list of all siblings.. XXX explain how.
4151 */
4152 mutex_lock(&leader->child_mutex);
4153
4154 ret = __perf_read_group_add(leader, read_format, values);
4155 if (ret)
4156 goto unlock;
4157
4158 list_for_each_entry(child, &leader->child_list, child_list) {
4159 ret = __perf_read_group_add(child, read_format, values);
4160 if (ret)
4161 goto unlock;
4162 }
4163
4164 mutex_unlock(&leader->child_mutex);
4165
4166 ret = event->read_size;
4167 if (copy_to_user(buf, values, event->read_size))
4168 ret = -EFAULT;
4169 goto out;
4170
4171 unlock:
4172 mutex_unlock(&leader->child_mutex);
4173 out:
4174 kfree(values);
4175 return ret;
4176 }
4177
4178 static int perf_read_one(struct perf_event *event,
4179 u64 read_format, char __user *buf)
4180 {
4181 u64 enabled, running;
4182 u64 values[4];
4183 int n = 0;
4184
4185 values[n++] = perf_event_read_value(event, &enabled, &running);
4186 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4187 values[n++] = enabled;
4188 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4189 values[n++] = running;
4190 if (read_format & PERF_FORMAT_ID)
4191 values[n++] = primary_event_id(event);
4192
4193 if (copy_to_user(buf, values, n * sizeof(u64)))
4194 return -EFAULT;
4195
4196 return n * sizeof(u64);
4197 }
4198
4199 static bool is_event_hup(struct perf_event *event)
4200 {
4201 bool no_children;
4202
4203 if (event->state > PERF_EVENT_STATE_EXIT)
4204 return false;
4205
4206 mutex_lock(&event->child_mutex);
4207 no_children = list_empty(&event->child_list);
4208 mutex_unlock(&event->child_mutex);
4209 return no_children;
4210 }
4211
4212 /*
4213 * Read the performance event - simple non blocking version for now
4214 */
4215 static ssize_t
4216 __perf_read(struct perf_event *event, char __user *buf, size_t count)
4217 {
4218 u64 read_format = event->attr.read_format;
4219 int ret;
4220
4221 /*
4222 * Return end-of-file for a read on a event that is in
4223 * error state (i.e. because it was pinned but it couldn't be
4224 * scheduled on to the CPU at some point).
4225 */
4226 if (event->state == PERF_EVENT_STATE_ERROR)
4227 return 0;
4228
4229 if (count < event->read_size)
4230 return -ENOSPC;
4231
4232 WARN_ON_ONCE(event->ctx->parent_ctx);
4233 if (read_format & PERF_FORMAT_GROUP)
4234 ret = perf_read_group(event, read_format, buf);
4235 else
4236 ret = perf_read_one(event, read_format, buf);
4237
4238 return ret;
4239 }
4240
4241 static ssize_t
4242 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4243 {
4244 struct perf_event *event = file->private_data;
4245 struct perf_event_context *ctx;
4246 int ret;
4247
4248 ctx = perf_event_ctx_lock(event);
4249 ret = __perf_read(event, buf, count);
4250 perf_event_ctx_unlock(event, ctx);
4251
4252 return ret;
4253 }
4254
4255 static unsigned int perf_poll(struct file *file, poll_table *wait)
4256 {
4257 struct perf_event *event = file->private_data;
4258 struct ring_buffer *rb;
4259 unsigned int events = POLLHUP;
4260
4261 poll_wait(file, &event->waitq, wait);
4262
4263 if (is_event_hup(event))
4264 return events;
4265
4266 /*
4267 * Pin the event->rb by taking event->mmap_mutex; otherwise
4268 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
4269 */
4270 mutex_lock(&event->mmap_mutex);
4271 rb = event->rb;
4272 if (rb)
4273 events = atomic_xchg(&rb->poll, 0);
4274 mutex_unlock(&event->mmap_mutex);
4275 return events;
4276 }
4277
4278 static void _perf_event_reset(struct perf_event *event)
4279 {
4280 (void)perf_event_read(event, false);
4281 local64_set(&event->count, 0);
4282 perf_event_update_userpage(event);
4283 }
4284
4285 /*
4286 * Holding the top-level event's child_mutex means that any
4287 * descendant process that has inherited this event will block
4288 * in perf_event_exit_event() if it goes to exit, thus satisfying the
4289 * task existence requirements of perf_event_enable/disable.
4290 */
4291 static void perf_event_for_each_child(struct perf_event *event,
4292 void (*func)(struct perf_event *))
4293 {
4294 struct perf_event *child;
4295
4296 WARN_ON_ONCE(event->ctx->parent_ctx);
4297
4298 mutex_lock(&event->child_mutex);
4299 func(event);
4300 list_for_each_entry(child, &event->child_list, child_list)
4301 func(child);
4302 mutex_unlock(&event->child_mutex);
4303 }
4304
4305 static void perf_event_for_each(struct perf_event *event,
4306 void (*func)(struct perf_event *))
4307 {
4308 struct perf_event_context *ctx = event->ctx;
4309 struct perf_event *sibling;
4310
4311 lockdep_assert_held(&ctx->mutex);
4312
4313 event = event->group_leader;
4314
4315 perf_event_for_each_child(event, func);
4316 list_for_each_entry(sibling, &event->sibling_list, group_entry)
4317 perf_event_for_each_child(sibling, func);
4318 }
4319
4320 static void __perf_event_period(struct perf_event *event,
4321 struct perf_cpu_context *cpuctx,
4322 struct perf_event_context *ctx,
4323 void *info)
4324 {
4325 u64 value = *((u64 *)info);
4326 bool active;
4327
4328 if (event->attr.freq) {
4329 event->attr.sample_freq = value;
4330 } else {
4331 event->attr.sample_period = value;
4332 event->hw.sample_period = value;
4333 }
4334
4335 active = (event->state == PERF_EVENT_STATE_ACTIVE);
4336 if (active) {
4337 perf_pmu_disable(ctx->pmu);
4338 /*
4339 * We could be throttled; unthrottle now to avoid the tick
4340 * trying to unthrottle while we already re-started the event.
4341 */
4342 if (event->hw.interrupts == MAX_INTERRUPTS) {
4343 event->hw.interrupts = 0;
4344 perf_log_throttle(event, 1);
4345 }
4346 event->pmu->stop(event, PERF_EF_UPDATE);
4347 }
4348
4349 local64_set(&event->hw.period_left, 0);
4350
4351 if (active) {
4352 event->pmu->start(event, PERF_EF_RELOAD);
4353 perf_pmu_enable(ctx->pmu);
4354 }
4355 }
4356
4357 static int perf_event_period(struct perf_event *event, u64 __user *arg)
4358 {
4359 u64 value;
4360
4361 if (!is_sampling_event(event))
4362 return -EINVAL;
4363
4364 if (copy_from_user(&value, arg, sizeof(value)))
4365 return -EFAULT;
4366
4367 if (!value)
4368 return -EINVAL;
4369
4370 if (event->attr.freq && value > sysctl_perf_event_sample_rate)
4371 return -EINVAL;
4372
4373 event_function_call(event, __perf_event_period, &value);
4374
4375 return 0;
4376 }
4377
4378 static const struct file_operations perf_fops;
4379
4380 static inline int perf_fget_light(int fd, struct fd *p)
4381 {
4382 struct fd f = fdget(fd);
4383 if (!f.file)
4384 return -EBADF;
4385
4386 if (f.file->f_op != &perf_fops) {
4387 fdput(f);
4388 return -EBADF;
4389 }
4390 *p = f;
4391 return 0;
4392 }
4393
4394 static int perf_event_set_output(struct perf_event *event,
4395 struct perf_event *output_event);
4396 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
4397 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
4398
4399 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
4400 {
4401 void (*func)(struct perf_event *);
4402 u32 flags = arg;
4403
4404 switch (cmd) {
4405 case PERF_EVENT_IOC_ENABLE:
4406 func = _perf_event_enable;
4407 break;
4408 case PERF_EVENT_IOC_DISABLE:
4409 func = _perf_event_disable;
4410 break;
4411 case PERF_EVENT_IOC_RESET:
4412 func = _perf_event_reset;
4413 break;
4414
4415 case PERF_EVENT_IOC_REFRESH:
4416 return _perf_event_refresh(event, arg);
4417
4418 case PERF_EVENT_IOC_PERIOD:
4419 return perf_event_period(event, (u64 __user *)arg);
4420
4421 case PERF_EVENT_IOC_ID:
4422 {
4423 u64 id = primary_event_id(event);
4424
4425 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
4426 return -EFAULT;
4427 return 0;
4428 }
4429
4430 case PERF_EVENT_IOC_SET_OUTPUT:
4431 {
4432 int ret;
4433 if (arg != -1) {
4434 struct perf_event *output_event;
4435 struct fd output;
4436 ret = perf_fget_light(arg, &output);
4437 if (ret)
4438 return ret;
4439 output_event = output.file->private_data;
4440 ret = perf_event_set_output(event, output_event);
4441 fdput(output);
4442 } else {
4443 ret = perf_event_set_output(event, NULL);
4444 }
4445 return ret;
4446 }
4447
4448 case PERF_EVENT_IOC_SET_FILTER:
4449 return perf_event_set_filter(event, (void __user *)arg);
4450
4451 case PERF_EVENT_IOC_SET_BPF:
4452 return perf_event_set_bpf_prog(event, arg);
4453
4454 case PERF_EVENT_IOC_PAUSE_OUTPUT: {
4455 struct ring_buffer *rb;
4456
4457 rcu_read_lock();
4458 rb = rcu_dereference(event->rb);
4459 if (!rb || !rb->nr_pages) {
4460 rcu_read_unlock();
4461 return -EINVAL;
4462 }
4463 rb_toggle_paused(rb, !!arg);
4464 rcu_read_unlock();
4465 return 0;
4466 }
4467 default:
4468 return -ENOTTY;
4469 }
4470
4471 if (flags & PERF_IOC_FLAG_GROUP)
4472 perf_event_for_each(event, func);
4473 else
4474 perf_event_for_each_child(event, func);
4475
4476 return 0;
4477 }
4478
4479 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4480 {
4481 struct perf_event *event = file->private_data;
4482 struct perf_event_context *ctx;
4483 long ret;
4484
4485 ctx = perf_event_ctx_lock(event);
4486 ret = _perf_ioctl(event, cmd, arg);
4487 perf_event_ctx_unlock(event, ctx);
4488
4489 return ret;
4490 }
4491
4492 #ifdef CONFIG_COMPAT
4493 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
4494 unsigned long arg)
4495 {
4496 switch (_IOC_NR(cmd)) {
4497 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
4498 case _IOC_NR(PERF_EVENT_IOC_ID):
4499 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
4500 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
4501 cmd &= ~IOCSIZE_MASK;
4502 cmd |= sizeof(void *) << IOCSIZE_SHIFT;
4503 }
4504 break;
4505 }
4506 return perf_ioctl(file, cmd, arg);
4507 }
4508 #else
4509 # define perf_compat_ioctl NULL
4510 #endif
4511
4512 int perf_event_task_enable(void)
4513 {
4514 struct perf_event_context *ctx;
4515 struct perf_event *event;
4516
4517 mutex_lock(&current->perf_event_mutex);
4518 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4519 ctx = perf_event_ctx_lock(event);
4520 perf_event_for_each_child(event, _perf_event_enable);
4521 perf_event_ctx_unlock(event, ctx);
4522 }
4523 mutex_unlock(&current->perf_event_mutex);
4524
4525 return 0;
4526 }
4527
4528 int perf_event_task_disable(void)
4529 {
4530 struct perf_event_context *ctx;
4531 struct perf_event *event;
4532
4533 mutex_lock(&current->perf_event_mutex);
4534 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4535 ctx = perf_event_ctx_lock(event);
4536 perf_event_for_each_child(event, _perf_event_disable);
4537 perf_event_ctx_unlock(event, ctx);
4538 }
4539 mutex_unlock(&current->perf_event_mutex);
4540
4541 return 0;
4542 }
4543
4544 static int perf_event_index(struct perf_event *event)
4545 {
4546 if (event->hw.state & PERF_HES_STOPPED)
4547 return 0;
4548
4549 if (event->state != PERF_EVENT_STATE_ACTIVE)
4550 return 0;
4551
4552 return event->pmu->event_idx(event);
4553 }
4554
4555 static void calc_timer_values(struct perf_event *event,
4556 u64 *now,
4557 u64 *enabled,
4558 u64 *running)
4559 {
4560 u64 ctx_time;
4561
4562 *now = perf_clock();
4563 ctx_time = event->shadow_ctx_time + *now;
4564 *enabled = ctx_time - event->tstamp_enabled;
4565 *running = ctx_time - event->tstamp_running;
4566 }
4567
4568 static void perf_event_init_userpage(struct perf_event *event)
4569 {
4570 struct perf_event_mmap_page *userpg;
4571 struct ring_buffer *rb;
4572
4573 rcu_read_lock();
4574 rb = rcu_dereference(event->rb);
4575 if (!rb)
4576 goto unlock;
4577
4578 userpg = rb->user_page;
4579
4580 /* Allow new userspace to detect that bit 0 is deprecated */
4581 userpg->cap_bit0_is_deprecated = 1;
4582 userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
4583 userpg->data_offset = PAGE_SIZE;
4584 userpg->data_size = perf_data_size(rb);
4585
4586 unlock:
4587 rcu_read_unlock();
4588 }
4589
4590 void __weak arch_perf_update_userpage(
4591 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
4592 {
4593 }
4594
4595 /*
4596 * Callers need to ensure there can be no nesting of this function, otherwise
4597 * the seqlock logic goes bad. We can not serialize this because the arch
4598 * code calls this from NMI context.
4599 */
4600 void perf_event_update_userpage(struct perf_event *event)
4601 {
4602 struct perf_event_mmap_page *userpg;
4603 struct ring_buffer *rb;
4604 u64 enabled, running, now;
4605
4606 rcu_read_lock();
4607 rb = rcu_dereference(event->rb);
4608 if (!rb)
4609 goto unlock;
4610
4611 /*
4612 * compute total_time_enabled, total_time_running
4613 * based on snapshot values taken when the event
4614 * was last scheduled in.
4615 *
4616 * we cannot simply called update_context_time()
4617 * because of locking issue as we can be called in
4618 * NMI context
4619 */
4620 calc_timer_values(event, &now, &enabled, &running);
4621
4622 userpg = rb->user_page;
4623 /*
4624 * Disable preemption so as to not let the corresponding user-space
4625 * spin too long if we get preempted.
4626 */
4627 preempt_disable();
4628 ++userpg->lock;
4629 barrier();
4630 userpg->index = perf_event_index(event);
4631 userpg->offset = perf_event_count(event);
4632 if (userpg->index)
4633 userpg->offset -= local64_read(&event->hw.prev_count);
4634
4635 userpg->time_enabled = enabled +
4636 atomic64_read(&event->child_total_time_enabled);
4637
4638 userpg->time_running = running +
4639 atomic64_read(&event->child_total_time_running);
4640
4641 arch_perf_update_userpage(event, userpg, now);
4642
4643 barrier();
4644 ++userpg->lock;
4645 preempt_enable();
4646 unlock:
4647 rcu_read_unlock();
4648 }
4649
4650 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
4651 {
4652 struct perf_event *event = vma->vm_file->private_data;
4653 struct ring_buffer *rb;
4654 int ret = VM_FAULT_SIGBUS;
4655
4656 if (vmf->flags & FAULT_FLAG_MKWRITE) {
4657 if (vmf->pgoff == 0)
4658 ret = 0;
4659 return ret;
4660 }
4661
4662 rcu_read_lock();
4663 rb = rcu_dereference(event->rb);
4664 if (!rb)
4665 goto unlock;
4666
4667 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
4668 goto unlock;
4669
4670 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
4671 if (!vmf->page)
4672 goto unlock;
4673
4674 get_page(vmf->page);
4675 vmf->page->mapping = vma->vm_file->f_mapping;
4676 vmf->page->index = vmf->pgoff;
4677
4678 ret = 0;
4679 unlock:
4680 rcu_read_unlock();
4681
4682 return ret;
4683 }
4684
4685 static void ring_buffer_attach(struct perf_event *event,
4686 struct ring_buffer *rb)
4687 {
4688 struct ring_buffer *old_rb = NULL;
4689 unsigned long flags;
4690
4691 if (event->rb) {
4692 /*
4693 * Should be impossible, we set this when removing
4694 * event->rb_entry and wait/clear when adding event->rb_entry.
4695 */
4696 WARN_ON_ONCE(event->rcu_pending);
4697
4698 old_rb = event->rb;
4699 spin_lock_irqsave(&old_rb->event_lock, flags);
4700 list_del_rcu(&event->rb_entry);
4701 spin_unlock_irqrestore(&old_rb->event_lock, flags);
4702
4703 event->rcu_batches = get_state_synchronize_rcu();
4704 event->rcu_pending = 1;
4705 }
4706
4707 if (rb) {
4708 if (event->rcu_pending) {
4709 cond_synchronize_rcu(event->rcu_batches);
4710 event->rcu_pending = 0;
4711 }
4712
4713 spin_lock_irqsave(&rb->event_lock, flags);
4714 list_add_rcu(&event->rb_entry, &rb->event_list);
4715 spin_unlock_irqrestore(&rb->event_lock, flags);
4716 }
4717
4718 rcu_assign_pointer(event->rb, rb);
4719
4720 if (old_rb) {
4721 ring_buffer_put(old_rb);
4722 /*
4723 * Since we detached before setting the new rb, so that we
4724 * could attach the new rb, we could have missed a wakeup.
4725 * Provide it now.
4726 */
4727 wake_up_all(&event->waitq);
4728 }
4729 }
4730
4731 static void ring_buffer_wakeup(struct perf_event *event)
4732 {
4733 struct ring_buffer *rb;
4734
4735 rcu_read_lock();
4736 rb = rcu_dereference(event->rb);
4737 if (rb) {
4738 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
4739 wake_up_all(&event->waitq);
4740 }
4741 rcu_read_unlock();
4742 }
4743
4744 struct ring_buffer *ring_buffer_get(struct perf_event *event)
4745 {
4746 struct ring_buffer *rb;
4747
4748 rcu_read_lock();
4749 rb = rcu_dereference(event->rb);
4750 if (rb) {
4751 if (!atomic_inc_not_zero(&rb->refcount))
4752 rb = NULL;
4753 }
4754 rcu_read_unlock();
4755
4756 return rb;
4757 }
4758
4759 void ring_buffer_put(struct ring_buffer *rb)
4760 {
4761 if (!atomic_dec_and_test(&rb->refcount))
4762 return;
4763
4764 WARN_ON_ONCE(!list_empty(&rb->event_list));
4765
4766 call_rcu(&rb->rcu_head, rb_free_rcu);
4767 }
4768
4769 static void perf_mmap_open(struct vm_area_struct *vma)
4770 {
4771 struct perf_event *event = vma->vm_file->private_data;
4772
4773 atomic_inc(&event->mmap_count);
4774 atomic_inc(&event->rb->mmap_count);
4775
4776 if (vma->vm_pgoff)
4777 atomic_inc(&event->rb->aux_mmap_count);
4778
4779 if (event->pmu->event_mapped)
4780 event->pmu->event_mapped(event);
4781 }
4782
4783 static void perf_pmu_output_stop(struct perf_event *event);
4784
4785 /*
4786 * A buffer can be mmap()ed multiple times; either directly through the same
4787 * event, or through other events by use of perf_event_set_output().
4788 *
4789 * In order to undo the VM accounting done by perf_mmap() we need to destroy
4790 * the buffer here, where we still have a VM context. This means we need
4791 * to detach all events redirecting to us.
4792 */
4793 static void perf_mmap_close(struct vm_area_struct *vma)
4794 {
4795 struct perf_event *event = vma->vm_file->private_data;
4796
4797 struct ring_buffer *rb = ring_buffer_get(event);
4798 struct user_struct *mmap_user = rb->mmap_user;
4799 int mmap_locked = rb->mmap_locked;
4800 unsigned long size = perf_data_size(rb);
4801
4802 if (event->pmu->event_unmapped)
4803 event->pmu->event_unmapped(event);
4804
4805 /*
4806 * rb->aux_mmap_count will always drop before rb->mmap_count and
4807 * event->mmap_count, so it is ok to use event->mmap_mutex to
4808 * serialize with perf_mmap here.
4809 */
4810 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
4811 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
4812 /*
4813 * Stop all AUX events that are writing to this buffer,
4814 * so that we can free its AUX pages and corresponding PMU
4815 * data. Note that after rb::aux_mmap_count dropped to zero,
4816 * they won't start any more (see perf_aux_output_begin()).
4817 */
4818 perf_pmu_output_stop(event);
4819
4820 /* now it's safe to free the pages */
4821 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
4822 vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
4823
4824 /* this has to be the last one */
4825 rb_free_aux(rb);
4826 WARN_ON_ONCE(atomic_read(&rb->aux_refcount));
4827
4828 mutex_unlock(&event->mmap_mutex);
4829 }
4830
4831 atomic_dec(&rb->mmap_count);
4832
4833 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
4834 goto out_put;
4835
4836 ring_buffer_attach(event, NULL);
4837 mutex_unlock(&event->mmap_mutex);
4838
4839 /* If there's still other mmap()s of this buffer, we're done. */
4840 if (atomic_read(&rb->mmap_count))
4841 goto out_put;
4842
4843 /*
4844 * No other mmap()s, detach from all other events that might redirect
4845 * into the now unreachable buffer. Somewhat complicated by the
4846 * fact that rb::event_lock otherwise nests inside mmap_mutex.
4847 */
4848 again:
4849 rcu_read_lock();
4850 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
4851 if (!atomic_long_inc_not_zero(&event->refcount)) {
4852 /*
4853 * This event is en-route to free_event() which will
4854 * detach it and remove it from the list.
4855 */
4856 continue;
4857 }
4858 rcu_read_unlock();
4859
4860 mutex_lock(&event->mmap_mutex);
4861 /*
4862 * Check we didn't race with perf_event_set_output() which can
4863 * swizzle the rb from under us while we were waiting to
4864 * acquire mmap_mutex.
4865 *
4866 * If we find a different rb; ignore this event, a next
4867 * iteration will no longer find it on the list. We have to
4868 * still restart the iteration to make sure we're not now
4869 * iterating the wrong list.
4870 */
4871 if (event->rb == rb)
4872 ring_buffer_attach(event, NULL);
4873
4874 mutex_unlock(&event->mmap_mutex);
4875 put_event(event);
4876
4877 /*
4878 * Restart the iteration; either we're on the wrong list or
4879 * destroyed its integrity by doing a deletion.
4880 */
4881 goto again;
4882 }
4883 rcu_read_unlock();
4884
4885 /*
4886 * It could be there's still a few 0-ref events on the list; they'll
4887 * get cleaned up by free_event() -- they'll also still have their
4888 * ref on the rb and will free it whenever they are done with it.
4889 *
4890 * Aside from that, this buffer is 'fully' detached and unmapped,
4891 * undo the VM accounting.
4892 */
4893
4894 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
4895 vma->vm_mm->pinned_vm -= mmap_locked;
4896 free_uid(mmap_user);
4897
4898 out_put:
4899 ring_buffer_put(rb); /* could be last */
4900 }
4901
4902 static const struct vm_operations_struct perf_mmap_vmops = {
4903 .open = perf_mmap_open,
4904 .close = perf_mmap_close, /* non mergable */
4905 .fault = perf_mmap_fault,
4906 .page_mkwrite = perf_mmap_fault,
4907 };
4908
4909 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
4910 {
4911 struct perf_event *event = file->private_data;
4912 unsigned long user_locked, user_lock_limit;
4913 struct user_struct *user = current_user();
4914 unsigned long locked, lock_limit;
4915 struct ring_buffer *rb = NULL;
4916 unsigned long vma_size;
4917 unsigned long nr_pages;
4918 long user_extra = 0, extra = 0;
4919 int ret = 0, flags = 0;
4920
4921 /*
4922 * Don't allow mmap() of inherited per-task counters. This would
4923 * create a performance issue due to all children writing to the
4924 * same rb.
4925 */
4926 if (event->cpu == -1 && event->attr.inherit)
4927 return -EINVAL;
4928
4929 if (!(vma->vm_flags & VM_SHARED))
4930 return -EINVAL;
4931
4932 vma_size = vma->vm_end - vma->vm_start;
4933
4934 if (vma->vm_pgoff == 0) {
4935 nr_pages = (vma_size / PAGE_SIZE) - 1;
4936 } else {
4937 /*
4938 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
4939 * mapped, all subsequent mappings should have the same size
4940 * and offset. Must be above the normal perf buffer.
4941 */
4942 u64 aux_offset, aux_size;
4943
4944 if (!event->rb)
4945 return -EINVAL;
4946
4947 nr_pages = vma_size / PAGE_SIZE;
4948
4949 mutex_lock(&event->mmap_mutex);
4950 ret = -EINVAL;
4951
4952 rb = event->rb;
4953 if (!rb)
4954 goto aux_unlock;
4955
4956 aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
4957 aux_size = ACCESS_ONCE(rb->user_page->aux_size);
4958
4959 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
4960 goto aux_unlock;
4961
4962 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
4963 goto aux_unlock;
4964
4965 /* already mapped with a different offset */
4966 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
4967 goto aux_unlock;
4968
4969 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
4970 goto aux_unlock;
4971
4972 /* already mapped with a different size */
4973 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
4974 goto aux_unlock;
4975
4976 if (!is_power_of_2(nr_pages))
4977 goto aux_unlock;
4978
4979 if (!atomic_inc_not_zero(&rb->mmap_count))
4980 goto aux_unlock;
4981
4982 if (rb_has_aux(rb)) {
4983 atomic_inc(&rb->aux_mmap_count);
4984 ret = 0;
4985 goto unlock;
4986 }
4987
4988 atomic_set(&rb->aux_mmap_count, 1);
4989 user_extra = nr_pages;
4990
4991 goto accounting;
4992 }
4993
4994 /*
4995 * If we have rb pages ensure they're a power-of-two number, so we
4996 * can do bitmasks instead of modulo.
4997 */
4998 if (nr_pages != 0 && !is_power_of_2(nr_pages))
4999 return -EINVAL;
5000
5001 if (vma_size != PAGE_SIZE * (1 + nr_pages))
5002 return -EINVAL;
5003
5004 WARN_ON_ONCE(event->ctx->parent_ctx);
5005 again:
5006 mutex_lock(&event->mmap_mutex);
5007 if (event->rb) {
5008 if (event->rb->nr_pages != nr_pages) {
5009 ret = -EINVAL;
5010 goto unlock;
5011 }
5012
5013 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
5014 /*
5015 * Raced against perf_mmap_close() through
5016 * perf_event_set_output(). Try again, hope for better
5017 * luck.
5018 */
5019 mutex_unlock(&event->mmap_mutex);
5020 goto again;
5021 }
5022
5023 goto unlock;
5024 }
5025
5026 user_extra = nr_pages + 1;
5027
5028 accounting:
5029 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
5030
5031 /*
5032 * Increase the limit linearly with more CPUs:
5033 */
5034 user_lock_limit *= num_online_cpus();
5035
5036 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
5037
5038 if (user_locked > user_lock_limit)
5039 extra = user_locked - user_lock_limit;
5040
5041 lock_limit = rlimit(RLIMIT_MEMLOCK);
5042 lock_limit >>= PAGE_SHIFT;
5043 locked = vma->vm_mm->pinned_vm + extra;
5044
5045 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
5046 !capable(CAP_IPC_LOCK)) {
5047 ret = -EPERM;
5048 goto unlock;
5049 }
5050
5051 WARN_ON(!rb && event->rb);
5052
5053 if (vma->vm_flags & VM_WRITE)
5054 flags |= RING_BUFFER_WRITABLE;
5055
5056 if (!rb) {
5057 rb = rb_alloc(nr_pages,
5058 event->attr.watermark ? event->attr.wakeup_watermark : 0,
5059 event->cpu, flags);
5060
5061 if (!rb) {
5062 ret = -ENOMEM;
5063 goto unlock;
5064 }
5065
5066 atomic_set(&rb->mmap_count, 1);
5067 rb->mmap_user = get_current_user();
5068 rb->mmap_locked = extra;
5069
5070 ring_buffer_attach(event, rb);
5071
5072 perf_event_init_userpage(event);
5073 perf_event_update_userpage(event);
5074 } else {
5075 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
5076 event->attr.aux_watermark, flags);
5077 if (!ret)
5078 rb->aux_mmap_locked = extra;
5079 }
5080
5081 unlock:
5082 if (!ret) {
5083 atomic_long_add(user_extra, &user->locked_vm);
5084 vma->vm_mm->pinned_vm += extra;
5085
5086 atomic_inc(&event->mmap_count);
5087 } else if (rb) {
5088 atomic_dec(&rb->mmap_count);
5089 }
5090 aux_unlock:
5091 mutex_unlock(&event->mmap_mutex);
5092
5093 /*
5094 * Since pinned accounting is per vm we cannot allow fork() to copy our
5095 * vma.
5096 */
5097 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
5098 vma->vm_ops = &perf_mmap_vmops;
5099
5100 if (event->pmu->event_mapped)
5101 event->pmu->event_mapped(event);
5102
5103 return ret;
5104 }
5105
5106 static int perf_fasync(int fd, struct file *filp, int on)
5107 {
5108 struct inode *inode = file_inode(filp);
5109 struct perf_event *event = filp->private_data;
5110 int retval;
5111
5112 inode_lock(inode);
5113 retval = fasync_helper(fd, filp, on, &event->fasync);
5114 inode_unlock(inode);
5115
5116 if (retval < 0)
5117 return retval;
5118
5119 return 0;
5120 }
5121
5122 static const struct file_operations perf_fops = {
5123 .llseek = no_llseek,
5124 .release = perf_release,
5125 .read = perf_read,
5126 .poll = perf_poll,
5127 .unlocked_ioctl = perf_ioctl,
5128 .compat_ioctl = perf_compat_ioctl,
5129 .mmap = perf_mmap,
5130 .fasync = perf_fasync,
5131 };
5132
5133 /*
5134 * Perf event wakeup
5135 *
5136 * If there's data, ensure we set the poll() state and publish everything
5137 * to user-space before waking everybody up.
5138 */
5139
5140 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
5141 {
5142 /* only the parent has fasync state */
5143 if (event->parent)
5144 event = event->parent;
5145 return &event->fasync;
5146 }
5147
5148 void perf_event_wakeup(struct perf_event *event)
5149 {
5150 ring_buffer_wakeup(event);
5151
5152 if (event->pending_kill) {
5153 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
5154 event->pending_kill = 0;
5155 }
5156 }
5157
5158 static void perf_pending_event(struct irq_work *entry)
5159 {
5160 struct perf_event *event = container_of(entry,
5161 struct perf_event, pending);
5162 int rctx;
5163
5164 rctx = perf_swevent_get_recursion_context();
5165 /*
5166 * If we 'fail' here, that's OK, it means recursion is already disabled
5167 * and we won't recurse 'further'.
5168 */
5169
5170 if (event->pending_disable) {
5171 event->pending_disable = 0;
5172 perf_event_disable_local(event);
5173 }
5174
5175 if (event->pending_wakeup) {
5176 event->pending_wakeup = 0;
5177 perf_event_wakeup(event);
5178 }
5179
5180 if (rctx >= 0)
5181 perf_swevent_put_recursion_context(rctx);
5182 }
5183
5184 /*
5185 * We assume there is only KVM supporting the callbacks.
5186 * Later on, we might change it to a list if there is
5187 * another virtualization implementation supporting the callbacks.
5188 */
5189 struct perf_guest_info_callbacks *perf_guest_cbs;
5190
5191 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5192 {
5193 perf_guest_cbs = cbs;
5194 return 0;
5195 }
5196 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
5197
5198 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5199 {
5200 perf_guest_cbs = NULL;
5201 return 0;
5202 }
5203 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
5204
5205 static void
5206 perf_output_sample_regs(struct perf_output_handle *handle,
5207 struct pt_regs *regs, u64 mask)
5208 {
5209 int bit;
5210
5211 for_each_set_bit(bit, (const unsigned long *) &mask,
5212 sizeof(mask) * BITS_PER_BYTE) {
5213 u64 val;
5214
5215 val = perf_reg_value(regs, bit);
5216 perf_output_put(handle, val);
5217 }
5218 }
5219
5220 static void perf_sample_regs_user(struct perf_regs *regs_user,
5221 struct pt_regs *regs,
5222 struct pt_regs *regs_user_copy)
5223 {
5224 if (user_mode(regs)) {
5225 regs_user->abi = perf_reg_abi(current);
5226 regs_user->regs = regs;
5227 } else if (current->mm) {
5228 perf_get_regs_user(regs_user, regs, regs_user_copy);
5229 } else {
5230 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
5231 regs_user->regs = NULL;
5232 }
5233 }
5234
5235 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
5236 struct pt_regs *regs)
5237 {
5238 regs_intr->regs = regs;
5239 regs_intr->abi = perf_reg_abi(current);
5240 }
5241
5242
5243 /*
5244 * Get remaining task size from user stack pointer.
5245 *
5246 * It'd be better to take stack vma map and limit this more
5247 * precisly, but there's no way to get it safely under interrupt,
5248 * so using TASK_SIZE as limit.
5249 */
5250 static u64 perf_ustack_task_size(struct pt_regs *regs)
5251 {
5252 unsigned long addr = perf_user_stack_pointer(regs);
5253
5254 if (!addr || addr >= TASK_SIZE)
5255 return 0;
5256
5257 return TASK_SIZE - addr;
5258 }
5259
5260 static u16
5261 perf_sample_ustack_size(u16 stack_size, u16 header_size,
5262 struct pt_regs *regs)
5263 {
5264 u64 task_size;
5265
5266 /* No regs, no stack pointer, no dump. */
5267 if (!regs)
5268 return 0;
5269
5270 /*
5271 * Check if we fit in with the requested stack size into the:
5272 * - TASK_SIZE
5273 * If we don't, we limit the size to the TASK_SIZE.
5274 *
5275 * - remaining sample size
5276 * If we don't, we customize the stack size to
5277 * fit in to the remaining sample size.
5278 */
5279
5280 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
5281 stack_size = min(stack_size, (u16) task_size);
5282
5283 /* Current header size plus static size and dynamic size. */
5284 header_size += 2 * sizeof(u64);
5285
5286 /* Do we fit in with the current stack dump size? */
5287 if ((u16) (header_size + stack_size) < header_size) {
5288 /*
5289 * If we overflow the maximum size for the sample,
5290 * we customize the stack dump size to fit in.
5291 */
5292 stack_size = USHRT_MAX - header_size - sizeof(u64);
5293 stack_size = round_up(stack_size, sizeof(u64));
5294 }
5295
5296 return stack_size;
5297 }
5298
5299 static void
5300 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
5301 struct pt_regs *regs)
5302 {
5303 /* Case of a kernel thread, nothing to dump */
5304 if (!regs) {
5305 u64 size = 0;
5306 perf_output_put(handle, size);
5307 } else {
5308 unsigned long sp;
5309 unsigned int rem;
5310 u64 dyn_size;
5311
5312 /*
5313 * We dump:
5314 * static size
5315 * - the size requested by user or the best one we can fit
5316 * in to the sample max size
5317 * data
5318 * - user stack dump data
5319 * dynamic size
5320 * - the actual dumped size
5321 */
5322
5323 /* Static size. */
5324 perf_output_put(handle, dump_size);
5325
5326 /* Data. */
5327 sp = perf_user_stack_pointer(regs);
5328 rem = __output_copy_user(handle, (void *) sp, dump_size);
5329 dyn_size = dump_size - rem;
5330
5331 perf_output_skip(handle, rem);
5332
5333 /* Dynamic size. */
5334 perf_output_put(handle, dyn_size);
5335 }
5336 }
5337
5338 static void __perf_event_header__init_id(struct perf_event_header *header,
5339 struct perf_sample_data *data,
5340 struct perf_event *event)
5341 {
5342 u64 sample_type = event->attr.sample_type;
5343
5344 data->type = sample_type;
5345 header->size += event->id_header_size;
5346
5347 if (sample_type & PERF_SAMPLE_TID) {
5348 /* namespace issues */
5349 data->tid_entry.pid = perf_event_pid(event, current);
5350 data->tid_entry.tid = perf_event_tid(event, current);
5351 }
5352
5353 if (sample_type & PERF_SAMPLE_TIME)
5354 data->time = perf_event_clock(event);
5355
5356 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
5357 data->id = primary_event_id(event);
5358
5359 if (sample_type & PERF_SAMPLE_STREAM_ID)
5360 data->stream_id = event->id;
5361
5362 if (sample_type & PERF_SAMPLE_CPU) {
5363 data->cpu_entry.cpu = raw_smp_processor_id();
5364 data->cpu_entry.reserved = 0;
5365 }
5366 }
5367
5368 void perf_event_header__init_id(struct perf_event_header *header,
5369 struct perf_sample_data *data,
5370 struct perf_event *event)
5371 {
5372 if (event->attr.sample_id_all)
5373 __perf_event_header__init_id(header, data, event);
5374 }
5375
5376 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
5377 struct perf_sample_data *data)
5378 {
5379 u64 sample_type = data->type;
5380
5381 if (sample_type & PERF_SAMPLE_TID)
5382 perf_output_put(handle, data->tid_entry);
5383
5384 if (sample_type & PERF_SAMPLE_TIME)
5385 perf_output_put(handle, data->time);
5386
5387 if (sample_type & PERF_SAMPLE_ID)
5388 perf_output_put(handle, data->id);
5389
5390 if (sample_type & PERF_SAMPLE_STREAM_ID)
5391 perf_output_put(handle, data->stream_id);
5392
5393 if (sample_type & PERF_SAMPLE_CPU)
5394 perf_output_put(handle, data->cpu_entry);
5395
5396 if (sample_type & PERF_SAMPLE_IDENTIFIER)
5397 perf_output_put(handle, data->id);
5398 }
5399
5400 void perf_event__output_id_sample(struct perf_event *event,
5401 struct perf_output_handle *handle,
5402 struct perf_sample_data *sample)
5403 {
5404 if (event->attr.sample_id_all)
5405 __perf_event__output_id_sample(handle, sample);
5406 }
5407
5408 static void perf_output_read_one(struct perf_output_handle *handle,
5409 struct perf_event *event,
5410 u64 enabled, u64 running)
5411 {
5412 u64 read_format = event->attr.read_format;
5413 u64 values[4];
5414 int n = 0;
5415
5416 values[n++] = perf_event_count(event);
5417 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5418 values[n++] = enabled +
5419 atomic64_read(&event->child_total_time_enabled);
5420 }
5421 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5422 values[n++] = running +
5423 atomic64_read(&event->child_total_time_running);
5424 }
5425 if (read_format & PERF_FORMAT_ID)
5426 values[n++] = primary_event_id(event);
5427
5428 __output_copy(handle, values, n * sizeof(u64));
5429 }
5430
5431 /*
5432 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
5433 */
5434 static void perf_output_read_group(struct perf_output_handle *handle,
5435 struct perf_event *event,
5436 u64 enabled, u64 running)
5437 {
5438 struct perf_event *leader = event->group_leader, *sub;
5439 u64 read_format = event->attr.read_format;
5440 u64 values[5];
5441 int n = 0;
5442
5443 values[n++] = 1 + leader->nr_siblings;
5444
5445 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5446 values[n++] = enabled;
5447
5448 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5449 values[n++] = running;
5450
5451 if (leader != event)
5452 leader->pmu->read(leader);
5453
5454 values[n++] = perf_event_count(leader);
5455 if (read_format & PERF_FORMAT_ID)
5456 values[n++] = primary_event_id(leader);
5457
5458 __output_copy(handle, values, n * sizeof(u64));
5459
5460 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
5461 n = 0;
5462
5463 if ((sub != event) &&
5464 (sub->state == PERF_EVENT_STATE_ACTIVE))
5465 sub->pmu->read(sub);
5466
5467 values[n++] = perf_event_count(sub);
5468 if (read_format & PERF_FORMAT_ID)
5469 values[n++] = primary_event_id(sub);
5470
5471 __output_copy(handle, values, n * sizeof(u64));
5472 }
5473 }
5474
5475 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
5476 PERF_FORMAT_TOTAL_TIME_RUNNING)
5477
5478 static void perf_output_read(struct perf_output_handle *handle,
5479 struct perf_event *event)
5480 {
5481 u64 enabled = 0, running = 0, now;
5482 u64 read_format = event->attr.read_format;
5483
5484 /*
5485 * compute total_time_enabled, total_time_running
5486 * based on snapshot values taken when the event
5487 * was last scheduled in.
5488 *
5489 * we cannot simply called update_context_time()
5490 * because of locking issue as we are called in
5491 * NMI context
5492 */
5493 if (read_format & PERF_FORMAT_TOTAL_TIMES)
5494 calc_timer_values(event, &now, &enabled, &running);
5495
5496 if (event->attr.read_format & PERF_FORMAT_GROUP)
5497 perf_output_read_group(handle, event, enabled, running);
5498 else
5499 perf_output_read_one(handle, event, enabled, running);
5500 }
5501
5502 void perf_output_sample(struct perf_output_handle *handle,
5503 struct perf_event_header *header,
5504 struct perf_sample_data *data,
5505 struct perf_event *event)
5506 {
5507 u64 sample_type = data->type;
5508
5509 perf_output_put(handle, *header);
5510
5511 if (sample_type & PERF_SAMPLE_IDENTIFIER)
5512 perf_output_put(handle, data->id);
5513
5514 if (sample_type & PERF_SAMPLE_IP)
5515 perf_output_put(handle, data->ip);
5516
5517 if (sample_type & PERF_SAMPLE_TID)
5518 perf_output_put(handle, data->tid_entry);
5519
5520 if (sample_type & PERF_SAMPLE_TIME)
5521 perf_output_put(handle, data->time);
5522
5523 if (sample_type & PERF_SAMPLE_ADDR)
5524 perf_output_put(handle, data->addr);
5525
5526 if (sample_type & PERF_SAMPLE_ID)
5527 perf_output_put(handle, data->id);
5528
5529 if (sample_type & PERF_SAMPLE_STREAM_ID)
5530 perf_output_put(handle, data->stream_id);
5531
5532 if (sample_type & PERF_SAMPLE_CPU)
5533 perf_output_put(handle, data->cpu_entry);
5534
5535 if (sample_type & PERF_SAMPLE_PERIOD)
5536 perf_output_put(handle, data->period);
5537
5538 if (sample_type & PERF_SAMPLE_READ)
5539 perf_output_read(handle, event);
5540
5541 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5542 if (data->callchain) {
5543 int size = 1;
5544
5545 if (data->callchain)
5546 size += data->callchain->nr;
5547
5548 size *= sizeof(u64);
5549
5550 __output_copy(handle, data->callchain, size);
5551 } else {
5552 u64 nr = 0;
5553 perf_output_put(handle, nr);
5554 }
5555 }
5556
5557 if (sample_type & PERF_SAMPLE_RAW) {
5558 if (data->raw) {
5559 u32 raw_size = data->raw->size;
5560 u32 real_size = round_up(raw_size + sizeof(u32),
5561 sizeof(u64)) - sizeof(u32);
5562 u64 zero = 0;
5563
5564 perf_output_put(handle, real_size);
5565 __output_copy(handle, data->raw->data, raw_size);
5566 if (real_size - raw_size)
5567 __output_copy(handle, &zero, real_size - raw_size);
5568 } else {
5569 struct {
5570 u32 size;
5571 u32 data;
5572 } raw = {
5573 .size = sizeof(u32),
5574 .data = 0,
5575 };
5576 perf_output_put(handle, raw);
5577 }
5578 }
5579
5580 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5581 if (data->br_stack) {
5582 size_t size;
5583
5584 size = data->br_stack->nr
5585 * sizeof(struct perf_branch_entry);
5586
5587 perf_output_put(handle, data->br_stack->nr);
5588 perf_output_copy(handle, data->br_stack->entries, size);
5589 } else {
5590 /*
5591 * we always store at least the value of nr
5592 */
5593 u64 nr = 0;
5594 perf_output_put(handle, nr);
5595 }
5596 }
5597
5598 if (sample_type & PERF_SAMPLE_REGS_USER) {
5599 u64 abi = data->regs_user.abi;
5600
5601 /*
5602 * If there are no regs to dump, notice it through
5603 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5604 */
5605 perf_output_put(handle, abi);
5606
5607 if (abi) {
5608 u64 mask = event->attr.sample_regs_user;
5609 perf_output_sample_regs(handle,
5610 data->regs_user.regs,
5611 mask);
5612 }
5613 }
5614
5615 if (sample_type & PERF_SAMPLE_STACK_USER) {
5616 perf_output_sample_ustack(handle,
5617 data->stack_user_size,
5618 data->regs_user.regs);
5619 }
5620
5621 if (sample_type & PERF_SAMPLE_WEIGHT)
5622 perf_output_put(handle, data->weight);
5623
5624 if (sample_type & PERF_SAMPLE_DATA_SRC)
5625 perf_output_put(handle, data->data_src.val);
5626
5627 if (sample_type & PERF_SAMPLE_TRANSACTION)
5628 perf_output_put(handle, data->txn);
5629
5630 if (sample_type & PERF_SAMPLE_REGS_INTR) {
5631 u64 abi = data->regs_intr.abi;
5632 /*
5633 * If there are no regs to dump, notice it through
5634 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5635 */
5636 perf_output_put(handle, abi);
5637
5638 if (abi) {
5639 u64 mask = event->attr.sample_regs_intr;
5640
5641 perf_output_sample_regs(handle,
5642 data->regs_intr.regs,
5643 mask);
5644 }
5645 }
5646
5647 if (!event->attr.watermark) {
5648 int wakeup_events = event->attr.wakeup_events;
5649
5650 if (wakeup_events) {
5651 struct ring_buffer *rb = handle->rb;
5652 int events = local_inc_return(&rb->events);
5653
5654 if (events >= wakeup_events) {
5655 local_sub(wakeup_events, &rb->events);
5656 local_inc(&rb->wakeup);
5657 }
5658 }
5659 }
5660 }
5661
5662 void perf_prepare_sample(struct perf_event_header *header,
5663 struct perf_sample_data *data,
5664 struct perf_event *event,
5665 struct pt_regs *regs)
5666 {
5667 u64 sample_type = event->attr.sample_type;
5668
5669 header->type = PERF_RECORD_SAMPLE;
5670 header->size = sizeof(*header) + event->header_size;
5671
5672 header->misc = 0;
5673 header->misc |= perf_misc_flags(regs);
5674
5675 __perf_event_header__init_id(header, data, event);
5676
5677 if (sample_type & PERF_SAMPLE_IP)
5678 data->ip = perf_instruction_pointer(regs);
5679
5680 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5681 int size = 1;
5682
5683 data->callchain = perf_callchain(event, regs);
5684
5685 if (data->callchain)
5686 size += data->callchain->nr;
5687
5688 header->size += size * sizeof(u64);
5689 }
5690
5691 if (sample_type & PERF_SAMPLE_RAW) {
5692 int size = sizeof(u32);
5693
5694 if (data->raw)
5695 size += data->raw->size;
5696 else
5697 size += sizeof(u32);
5698
5699 header->size += round_up(size, sizeof(u64));
5700 }
5701
5702 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5703 int size = sizeof(u64); /* nr */
5704 if (data->br_stack) {
5705 size += data->br_stack->nr
5706 * sizeof(struct perf_branch_entry);
5707 }
5708 header->size += size;
5709 }
5710
5711 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
5712 perf_sample_regs_user(&data->regs_user, regs,
5713 &data->regs_user_copy);
5714
5715 if (sample_type & PERF_SAMPLE_REGS_USER) {
5716 /* regs dump ABI info */
5717 int size = sizeof(u64);
5718
5719 if (data->regs_user.regs) {
5720 u64 mask = event->attr.sample_regs_user;
5721 size += hweight64(mask) * sizeof(u64);
5722 }
5723
5724 header->size += size;
5725 }
5726
5727 if (sample_type & PERF_SAMPLE_STACK_USER) {
5728 /*
5729 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
5730 * processed as the last one or have additional check added
5731 * in case new sample type is added, because we could eat
5732 * up the rest of the sample size.
5733 */
5734 u16 stack_size = event->attr.sample_stack_user;
5735 u16 size = sizeof(u64);
5736
5737 stack_size = perf_sample_ustack_size(stack_size, header->size,
5738 data->regs_user.regs);
5739
5740 /*
5741 * If there is something to dump, add space for the dump
5742 * itself and for the field that tells the dynamic size,
5743 * which is how many have been actually dumped.
5744 */
5745 if (stack_size)
5746 size += sizeof(u64) + stack_size;
5747
5748 data->stack_user_size = stack_size;
5749 header->size += size;
5750 }
5751
5752 if (sample_type & PERF_SAMPLE_REGS_INTR) {
5753 /* regs dump ABI info */
5754 int size = sizeof(u64);
5755
5756 perf_sample_regs_intr(&data->regs_intr, regs);
5757
5758 if (data->regs_intr.regs) {
5759 u64 mask = event->attr.sample_regs_intr;
5760
5761 size += hweight64(mask) * sizeof(u64);
5762 }
5763
5764 header->size += size;
5765 }
5766 }
5767
5768 static void __always_inline
5769 __perf_event_output(struct perf_event *event,
5770 struct perf_sample_data *data,
5771 struct pt_regs *regs,
5772 int (*output_begin)(struct perf_output_handle *,
5773 struct perf_event *,
5774 unsigned int))
5775 {
5776 struct perf_output_handle handle;
5777 struct perf_event_header header;
5778
5779 /* protect the callchain buffers */
5780 rcu_read_lock();
5781
5782 perf_prepare_sample(&header, data, event, regs);
5783
5784 if (output_begin(&handle, event, header.size))
5785 goto exit;
5786
5787 perf_output_sample(&handle, &header, data, event);
5788
5789 perf_output_end(&handle);
5790
5791 exit:
5792 rcu_read_unlock();
5793 }
5794
5795 void
5796 perf_event_output_forward(struct perf_event *event,
5797 struct perf_sample_data *data,
5798 struct pt_regs *regs)
5799 {
5800 __perf_event_output(event, data, regs, perf_output_begin_forward);
5801 }
5802
5803 void
5804 perf_event_output_backward(struct perf_event *event,
5805 struct perf_sample_data *data,
5806 struct pt_regs *regs)
5807 {
5808 __perf_event_output(event, data, regs, perf_output_begin_backward);
5809 }
5810
5811 void
5812 perf_event_output(struct perf_event *event,
5813 struct perf_sample_data *data,
5814 struct pt_regs *regs)
5815 {
5816 __perf_event_output(event, data, regs, perf_output_begin);
5817 }
5818
5819 /*
5820 * read event_id
5821 */
5822
5823 struct perf_read_event {
5824 struct perf_event_header header;
5825
5826 u32 pid;
5827 u32 tid;
5828 };
5829
5830 static void
5831 perf_event_read_event(struct perf_event *event,
5832 struct task_struct *task)
5833 {
5834 struct perf_output_handle handle;
5835 struct perf_sample_data sample;
5836 struct perf_read_event read_event = {
5837 .header = {
5838 .type = PERF_RECORD_READ,
5839 .misc = 0,
5840 .size = sizeof(read_event) + event->read_size,
5841 },
5842 .pid = perf_event_pid(event, task),
5843 .tid = perf_event_tid(event, task),
5844 };
5845 int ret;
5846
5847 perf_event_header__init_id(&read_event.header, &sample, event);
5848 ret = perf_output_begin(&handle, event, read_event.header.size);
5849 if (ret)
5850 return;
5851
5852 perf_output_put(&handle, read_event);
5853 perf_output_read(&handle, event);
5854 perf_event__output_id_sample(event, &handle, &sample);
5855
5856 perf_output_end(&handle);
5857 }
5858
5859 typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);
5860
5861 static void
5862 perf_event_aux_ctx(struct perf_event_context *ctx,
5863 perf_event_aux_output_cb output,
5864 void *data, bool all)
5865 {
5866 struct perf_event *event;
5867
5868 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
5869 if (!all) {
5870 if (event->state < PERF_EVENT_STATE_INACTIVE)
5871 continue;
5872 if (!event_filter_match(event))
5873 continue;
5874 }
5875
5876 output(event, data);
5877 }
5878 }
5879
5880 static void
5881 perf_event_aux_task_ctx(perf_event_aux_output_cb output, void *data,
5882 struct perf_event_context *task_ctx)
5883 {
5884 rcu_read_lock();
5885 preempt_disable();
5886 perf_event_aux_ctx(task_ctx, output, data, false);
5887 preempt_enable();
5888 rcu_read_unlock();
5889 }
5890
5891 static void
5892 perf_event_aux(perf_event_aux_output_cb output, void *data,
5893 struct perf_event_context *task_ctx)
5894 {
5895 struct perf_cpu_context *cpuctx;
5896 struct perf_event_context *ctx;
5897 struct pmu *pmu;
5898 int ctxn;
5899
5900 /*
5901 * If we have task_ctx != NULL we only notify
5902 * the task context itself. The task_ctx is set
5903 * only for EXIT events before releasing task
5904 * context.
5905 */
5906 if (task_ctx) {
5907 perf_event_aux_task_ctx(output, data, task_ctx);
5908 return;
5909 }
5910
5911 rcu_read_lock();
5912 list_for_each_entry_rcu(pmu, &pmus, entry) {
5913 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
5914 if (cpuctx->unique_pmu != pmu)
5915 goto next;
5916 perf_event_aux_ctx(&cpuctx->ctx, output, data, false);
5917 ctxn = pmu->task_ctx_nr;
5918 if (ctxn < 0)
5919 goto next;
5920 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
5921 if (ctx)
5922 perf_event_aux_ctx(ctx, output, data, false);
5923 next:
5924 put_cpu_ptr(pmu->pmu_cpu_context);
5925 }
5926 rcu_read_unlock();
5927 }
5928
5929 /*
5930 * Clear all file-based filters at exec, they'll have to be
5931 * re-instated when/if these objects are mmapped again.
5932 */
5933 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
5934 {
5935 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
5936 struct perf_addr_filter *filter;
5937 unsigned int restart = 0, count = 0;
5938 unsigned long flags;
5939
5940 if (!has_addr_filter(event))
5941 return;
5942
5943 raw_spin_lock_irqsave(&ifh->lock, flags);
5944 list_for_each_entry(filter, &ifh->list, entry) {
5945 if (filter->inode) {
5946 event->addr_filters_offs[count] = 0;
5947 restart++;
5948 }
5949
5950 count++;
5951 }
5952
5953 if (restart)
5954 event->addr_filters_gen++;
5955 raw_spin_unlock_irqrestore(&ifh->lock, flags);
5956
5957 if (restart)
5958 perf_event_restart(event);
5959 }
5960
5961 void perf_event_exec(void)
5962 {
5963 struct perf_event_context *ctx;
5964 int ctxn;
5965
5966 rcu_read_lock();
5967 for_each_task_context_nr(ctxn) {
5968 ctx = current->perf_event_ctxp[ctxn];
5969 if (!ctx)
5970 continue;
5971
5972 perf_event_enable_on_exec(ctxn);
5973
5974 perf_event_aux_ctx(ctx, perf_event_addr_filters_exec, NULL,
5975 true);
5976 }
5977 rcu_read_unlock();
5978 }
5979
5980 struct remote_output {
5981 struct ring_buffer *rb;
5982 int err;
5983 };
5984
5985 static void __perf_event_output_stop(struct perf_event *event, void *data)
5986 {
5987 struct perf_event *parent = event->parent;
5988 struct remote_output *ro = data;
5989 struct ring_buffer *rb = ro->rb;
5990 struct stop_event_data sd = {
5991 .event = event,
5992 };
5993
5994 if (!has_aux(event))
5995 return;
5996
5997 if (!parent)
5998 parent = event;
5999
6000 /*
6001 * In case of inheritance, it will be the parent that links to the
6002 * ring-buffer, but it will be the child that's actually using it:
6003 */
6004 if (rcu_dereference(parent->rb) == rb)
6005 ro->err = __perf_event_stop(&sd);
6006 }
6007
6008 static int __perf_pmu_output_stop(void *info)
6009 {
6010 struct perf_event *event = info;
6011 struct pmu *pmu = event->pmu;
6012 struct perf_cpu_context *cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
6013 struct remote_output ro = {
6014 .rb = event->rb,
6015 };
6016
6017 rcu_read_lock();
6018 perf_event_aux_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
6019 if (cpuctx->task_ctx)
6020 perf_event_aux_ctx(cpuctx->task_ctx, __perf_event_output_stop,
6021 &ro, false);
6022 rcu_read_unlock();
6023
6024 return ro.err;
6025 }
6026
6027 static void perf_pmu_output_stop(struct perf_event *event)
6028 {
6029 struct perf_event *iter;
6030 int err, cpu;
6031
6032 restart:
6033 rcu_read_lock();
6034 list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
6035 /*
6036 * For per-CPU events, we need to make sure that neither they
6037 * nor their children are running; for cpu==-1 events it's
6038 * sufficient to stop the event itself if it's active, since
6039 * it can't have children.
6040 */
6041 cpu = iter->cpu;
6042 if (cpu == -1)
6043 cpu = READ_ONCE(iter->oncpu);
6044
6045 if (cpu == -1)
6046 continue;
6047
6048 err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
6049 if (err == -EAGAIN) {
6050 rcu_read_unlock();
6051 goto restart;
6052 }
6053 }
6054 rcu_read_unlock();
6055 }
6056
6057 /*
6058 * task tracking -- fork/exit
6059 *
6060 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
6061 */
6062
6063 struct perf_task_event {
6064 struct task_struct *task;
6065 struct perf_event_context *task_ctx;
6066
6067 struct {
6068 struct perf_event_header header;
6069
6070 u32 pid;
6071 u32 ppid;
6072 u32 tid;
6073 u32 ptid;
6074 u64 time;
6075 } event_id;
6076 };
6077
6078 static int perf_event_task_match(struct perf_event *event)
6079 {
6080 return event->attr.comm || event->attr.mmap ||
6081 event->attr.mmap2 || event->attr.mmap_data ||
6082 event->attr.task;
6083 }
6084
6085 static void perf_event_task_output(struct perf_event *event,
6086 void *data)
6087 {
6088 struct perf_task_event *task_event = data;
6089 struct perf_output_handle handle;
6090 struct perf_sample_data sample;
6091 struct task_struct *task = task_event->task;
6092 int ret, size = task_event->event_id.header.size;
6093
6094 if (!perf_event_task_match(event))
6095 return;
6096
6097 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
6098
6099 ret = perf_output_begin(&handle, event,
6100 task_event->event_id.header.size);
6101 if (ret)
6102 goto out;
6103
6104 task_event->event_id.pid = perf_event_pid(event, task);
6105 task_event->event_id.ppid = perf_event_pid(event, current);
6106
6107 task_event->event_id.tid = perf_event_tid(event, task);
6108 task_event->event_id.ptid = perf_event_tid(event, current);
6109
6110 task_event->event_id.time = perf_event_clock(event);
6111
6112 perf_output_put(&handle, task_event->event_id);
6113
6114 perf_event__output_id_sample(event, &handle, &sample);
6115
6116 perf_output_end(&handle);
6117 out:
6118 task_event->event_id.header.size = size;
6119 }
6120
6121 static void perf_event_task(struct task_struct *task,
6122 struct perf_event_context *task_ctx,
6123 int new)
6124 {
6125 struct perf_task_event task_event;
6126
6127 if (!atomic_read(&nr_comm_events) &&
6128 !atomic_read(&nr_mmap_events) &&
6129 !atomic_read(&nr_task_events))
6130 return;
6131
6132 task_event = (struct perf_task_event){
6133 .task = task,
6134 .task_ctx = task_ctx,
6135 .event_id = {
6136 .header = {
6137 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
6138 .misc = 0,
6139 .size = sizeof(task_event.event_id),
6140 },
6141 /* .pid */
6142 /* .ppid */
6143 /* .tid */
6144 /* .ptid */
6145 /* .time */
6146 },
6147 };
6148
6149 perf_event_aux(perf_event_task_output,
6150 &task_event,
6151 task_ctx);
6152 }
6153
6154 void perf_event_fork(struct task_struct *task)
6155 {
6156 perf_event_task(task, NULL, 1);
6157 }
6158
6159 /*
6160 * comm tracking
6161 */
6162
6163 struct perf_comm_event {
6164 struct task_struct *task;
6165 char *comm;
6166 int comm_size;
6167
6168 struct {
6169 struct perf_event_header header;
6170
6171 u32 pid;
6172 u32 tid;
6173 } event_id;
6174 };
6175
6176 static int perf_event_comm_match(struct perf_event *event)
6177 {
6178 return event->attr.comm;
6179 }
6180
6181 static void perf_event_comm_output(struct perf_event *event,
6182 void *data)
6183 {
6184 struct perf_comm_event *comm_event = data;
6185 struct perf_output_handle handle;
6186 struct perf_sample_data sample;
6187 int size = comm_event->event_id.header.size;
6188 int ret;
6189
6190 if (!perf_event_comm_match(event))
6191 return;
6192
6193 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
6194 ret = perf_output_begin(&handle, event,
6195 comm_event->event_id.header.size);
6196
6197 if (ret)
6198 goto out;
6199
6200 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
6201 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
6202
6203 perf_output_put(&handle, comm_event->event_id);
6204 __output_copy(&handle, comm_event->comm,
6205 comm_event->comm_size);
6206
6207 perf_event__output_id_sample(event, &handle, &sample);
6208
6209 perf_output_end(&handle);
6210 out:
6211 comm_event->event_id.header.size = size;
6212 }
6213
6214 static void perf_event_comm_event(struct perf_comm_event *comm_event)
6215 {
6216 char comm[TASK_COMM_LEN];
6217 unsigned int size;
6218
6219 memset(comm, 0, sizeof(comm));
6220 strlcpy(comm, comm_event->task->comm, sizeof(comm));
6221 size = ALIGN(strlen(comm)+1, sizeof(u64));
6222
6223 comm_event->comm = comm;
6224 comm_event->comm_size = size;
6225
6226 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
6227
6228 perf_event_aux(perf_event_comm_output,
6229 comm_event,
6230 NULL);
6231 }
6232
6233 void perf_event_comm(struct task_struct *task, bool exec)
6234 {
6235 struct perf_comm_event comm_event;
6236
6237 if (!atomic_read(&nr_comm_events))
6238 return;
6239
6240 comm_event = (struct perf_comm_event){
6241 .task = task,
6242 /* .comm */
6243 /* .comm_size */
6244 .event_id = {
6245 .header = {
6246 .type = PERF_RECORD_COMM,
6247 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
6248 /* .size */
6249 },
6250 /* .pid */
6251 /* .tid */
6252 },
6253 };
6254
6255 perf_event_comm_event(&comm_event);
6256 }
6257
6258 /*
6259 * mmap tracking
6260 */
6261
6262 struct perf_mmap_event {
6263 struct vm_area_struct *vma;
6264
6265 const char *file_name;
6266 int file_size;
6267 int maj, min;
6268 u64 ino;
6269 u64 ino_generation;
6270 u32 prot, flags;
6271
6272 struct {
6273 struct perf_event_header header;
6274
6275 u32 pid;
6276 u32 tid;
6277 u64 start;
6278 u64 len;
6279 u64 pgoff;
6280 } event_id;
6281 };
6282
6283 static int perf_event_mmap_match(struct perf_event *event,
6284 void *data)
6285 {
6286 struct perf_mmap_event *mmap_event = data;
6287 struct vm_area_struct *vma = mmap_event->vma;
6288 int executable = vma->vm_flags & VM_EXEC;
6289
6290 return (!executable && event->attr.mmap_data) ||
6291 (executable && (event->attr.mmap || event->attr.mmap2));
6292 }
6293
6294 static void perf_event_mmap_output(struct perf_event *event,
6295 void *data)
6296 {
6297 struct perf_mmap_event *mmap_event = data;
6298 struct perf_output_handle handle;
6299 struct perf_sample_data sample;
6300 int size = mmap_event->event_id.header.size;
6301 int ret;
6302
6303 if (!perf_event_mmap_match(event, data))
6304 return;
6305
6306 if (event->attr.mmap2) {
6307 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
6308 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
6309 mmap_event->event_id.header.size += sizeof(mmap_event->min);
6310 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
6311 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
6312 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
6313 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
6314 }
6315
6316 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
6317 ret = perf_output_begin(&handle, event,
6318 mmap_event->event_id.header.size);
6319 if (ret)
6320 goto out;
6321
6322 mmap_event->event_id.pid = perf_event_pid(event, current);
6323 mmap_event->event_id.tid = perf_event_tid(event, current);
6324
6325 perf_output_put(&handle, mmap_event->event_id);
6326
6327 if (event->attr.mmap2) {
6328 perf_output_put(&handle, mmap_event->maj);
6329 perf_output_put(&handle, mmap_event->min);
6330 perf_output_put(&handle, mmap_event->ino);
6331 perf_output_put(&handle, mmap_event->ino_generation);
6332 perf_output_put(&handle, mmap_event->prot);
6333 perf_output_put(&handle, mmap_event->flags);
6334 }
6335
6336 __output_copy(&handle, mmap_event->file_name,
6337 mmap_event->file_size);
6338
6339 perf_event__output_id_sample(event, &handle, &sample);
6340
6341 perf_output_end(&handle);
6342 out:
6343 mmap_event->event_id.header.size = size;
6344 }
6345
6346 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
6347 {
6348 struct vm_area_struct *vma = mmap_event->vma;
6349 struct file *file = vma->vm_file;
6350 int maj = 0, min = 0;
6351 u64 ino = 0, gen = 0;
6352 u32 prot = 0, flags = 0;
6353 unsigned int size;
6354 char tmp[16];
6355 char *buf = NULL;
6356 char *name;
6357
6358 if (file) {
6359 struct inode *inode;
6360 dev_t dev;
6361
6362 buf = kmalloc(PATH_MAX, GFP_KERNEL);
6363 if (!buf) {
6364 name = "//enomem";
6365 goto cpy_name;
6366 }
6367 /*
6368 * d_path() works from the end of the rb backwards, so we
6369 * need to add enough zero bytes after the string to handle
6370 * the 64bit alignment we do later.
6371 */
6372 name = file_path(file, buf, PATH_MAX - sizeof(u64));
6373 if (IS_ERR(name)) {
6374 name = "//toolong";
6375 goto cpy_name;
6376 }
6377 inode = file_inode(vma->vm_file);
6378 dev = inode->i_sb->s_dev;
6379 ino = inode->i_ino;
6380 gen = inode->i_generation;
6381 maj = MAJOR(dev);
6382 min = MINOR(dev);
6383
6384 if (vma->vm_flags & VM_READ)
6385 prot |= PROT_READ;
6386 if (vma->vm_flags & VM_WRITE)
6387 prot |= PROT_WRITE;
6388 if (vma->vm_flags & VM_EXEC)
6389 prot |= PROT_EXEC;
6390
6391 if (vma->vm_flags & VM_MAYSHARE)
6392 flags = MAP_SHARED;
6393 else
6394 flags = MAP_PRIVATE;
6395
6396 if (vma->vm_flags & VM_DENYWRITE)
6397 flags |= MAP_DENYWRITE;
6398 if (vma->vm_flags & VM_MAYEXEC)
6399 flags |= MAP_EXECUTABLE;
6400 if (vma->vm_flags & VM_LOCKED)
6401 flags |= MAP_LOCKED;
6402 if (vma->vm_flags & VM_HUGETLB)
6403 flags |= MAP_HUGETLB;
6404
6405 goto got_name;
6406 } else {
6407 if (vma->vm_ops && vma->vm_ops->name) {
6408 name = (char *) vma->vm_ops->name(vma);
6409 if (name)
6410 goto cpy_name;
6411 }
6412
6413 name = (char *)arch_vma_name(vma);
6414 if (name)
6415 goto cpy_name;
6416
6417 if (vma->vm_start <= vma->vm_mm->start_brk &&
6418 vma->vm_end >= vma->vm_mm->brk) {
6419 name = "[heap]";
6420 goto cpy_name;
6421 }
6422 if (vma->vm_start <= vma->vm_mm->start_stack &&
6423 vma->vm_end >= vma->vm_mm->start_stack) {
6424 name = "[stack]";
6425 goto cpy_name;
6426 }
6427
6428 name = "//anon";
6429 goto cpy_name;
6430 }
6431
6432 cpy_name:
6433 strlcpy(tmp, name, sizeof(tmp));
6434 name = tmp;
6435 got_name:
6436 /*
6437 * Since our buffer works in 8 byte units we need to align our string
6438 * size to a multiple of 8. However, we must guarantee the tail end is
6439 * zero'd out to avoid leaking random bits to userspace.
6440 */
6441 size = strlen(name)+1;
6442 while (!IS_ALIGNED(size, sizeof(u64)))
6443 name[size++] = '\0';
6444
6445 mmap_event->file_name = name;
6446 mmap_event->file_size = size;
6447 mmap_event->maj = maj;
6448 mmap_event->min = min;
6449 mmap_event->ino = ino;
6450 mmap_event->ino_generation = gen;
6451 mmap_event->prot = prot;
6452 mmap_event->flags = flags;
6453
6454 if (!(vma->vm_flags & VM_EXEC))
6455 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
6456
6457 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
6458
6459 perf_event_aux(perf_event_mmap_output,
6460 mmap_event,
6461 NULL);
6462
6463 kfree(buf);
6464 }
6465
6466 /*
6467 * Whether this @filter depends on a dynamic object which is not loaded
6468 * yet or its load addresses are not known.
6469 */
6470 static bool perf_addr_filter_needs_mmap(struct perf_addr_filter *filter)
6471 {
6472 return filter->filter && filter->inode;
6473 }
6474
6475 /*
6476 * Check whether inode and address range match filter criteria.
6477 */
6478 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
6479 struct file *file, unsigned long offset,
6480 unsigned long size)
6481 {
6482 if (filter->inode != file->f_inode)
6483 return false;
6484
6485 if (filter->offset > offset + size)
6486 return false;
6487
6488 if (filter->offset + filter->size < offset)
6489 return false;
6490
6491 return true;
6492 }
6493
6494 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
6495 {
6496 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6497 struct vm_area_struct *vma = data;
6498 unsigned long off = vma->vm_pgoff << PAGE_SHIFT, flags;
6499 struct file *file = vma->vm_file;
6500 struct perf_addr_filter *filter;
6501 unsigned int restart = 0, count = 0;
6502
6503 if (!has_addr_filter(event))
6504 return;
6505
6506 if (!file)
6507 return;
6508
6509 raw_spin_lock_irqsave(&ifh->lock, flags);
6510 list_for_each_entry(filter, &ifh->list, entry) {
6511 if (perf_addr_filter_match(filter, file, off,
6512 vma->vm_end - vma->vm_start)) {
6513 event->addr_filters_offs[count] = vma->vm_start;
6514 restart++;
6515 }
6516
6517 count++;
6518 }
6519
6520 if (restart)
6521 event->addr_filters_gen++;
6522 raw_spin_unlock_irqrestore(&ifh->lock, flags);
6523
6524 if (restart)
6525 perf_event_restart(event);
6526 }
6527
6528 /*
6529 * Adjust all task's events' filters to the new vma
6530 */
6531 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
6532 {
6533 struct perf_event_context *ctx;
6534 int ctxn;
6535
6536 rcu_read_lock();
6537 for_each_task_context_nr(ctxn) {
6538 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6539 if (!ctx)
6540 continue;
6541
6542 perf_event_aux_ctx(ctx, __perf_addr_filters_adjust, vma, true);
6543 }
6544 rcu_read_unlock();
6545 }
6546
6547 void perf_event_mmap(struct vm_area_struct *vma)
6548 {
6549 struct perf_mmap_event mmap_event;
6550
6551 if (!atomic_read(&nr_mmap_events))
6552 return;
6553
6554 mmap_event = (struct perf_mmap_event){
6555 .vma = vma,
6556 /* .file_name */
6557 /* .file_size */
6558 .event_id = {
6559 .header = {
6560 .type = PERF_RECORD_MMAP,
6561 .misc = PERF_RECORD_MISC_USER,
6562 /* .size */
6563 },
6564 /* .pid */
6565 /* .tid */
6566 .start = vma->vm_start,
6567 .len = vma->vm_end - vma->vm_start,
6568 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
6569 },
6570 /* .maj (attr_mmap2 only) */
6571 /* .min (attr_mmap2 only) */
6572 /* .ino (attr_mmap2 only) */
6573 /* .ino_generation (attr_mmap2 only) */
6574 /* .prot (attr_mmap2 only) */
6575 /* .flags (attr_mmap2 only) */
6576 };
6577
6578 perf_addr_filters_adjust(vma);
6579 perf_event_mmap_event(&mmap_event);
6580 }
6581
6582 void perf_event_aux_event(struct perf_event *event, unsigned long head,
6583 unsigned long size, u64 flags)
6584 {
6585 struct perf_output_handle handle;
6586 struct perf_sample_data sample;
6587 struct perf_aux_event {
6588 struct perf_event_header header;
6589 u64 offset;
6590 u64 size;
6591 u64 flags;
6592 } rec = {
6593 .header = {
6594 .type = PERF_RECORD_AUX,
6595 .misc = 0,
6596 .size = sizeof(rec),
6597 },
6598 .offset = head,
6599 .size = size,
6600 .flags = flags,
6601 };
6602 int ret;
6603
6604 perf_event_header__init_id(&rec.header, &sample, event);
6605 ret = perf_output_begin(&handle, event, rec.header.size);
6606
6607 if (ret)
6608 return;
6609
6610 perf_output_put(&handle, rec);
6611 perf_event__output_id_sample(event, &handle, &sample);
6612
6613 perf_output_end(&handle);
6614 }
6615
6616 /*
6617 * Lost/dropped samples logging
6618 */
6619 void perf_log_lost_samples(struct perf_event *event, u64 lost)
6620 {
6621 struct perf_output_handle handle;
6622 struct perf_sample_data sample;
6623 int ret;
6624
6625 struct {
6626 struct perf_event_header header;
6627 u64 lost;
6628 } lost_samples_event = {
6629 .header = {
6630 .type = PERF_RECORD_LOST_SAMPLES,
6631 .misc = 0,
6632 .size = sizeof(lost_samples_event),
6633 },
6634 .lost = lost,
6635 };
6636
6637 perf_event_header__init_id(&lost_samples_event.header, &sample, event);
6638
6639 ret = perf_output_begin(&handle, event,
6640 lost_samples_event.header.size);
6641 if (ret)
6642 return;
6643
6644 perf_output_put(&handle, lost_samples_event);
6645 perf_event__output_id_sample(event, &handle, &sample);
6646 perf_output_end(&handle);
6647 }
6648
6649 /*
6650 * context_switch tracking
6651 */
6652
6653 struct perf_switch_event {
6654 struct task_struct *task;
6655 struct task_struct *next_prev;
6656
6657 struct {
6658 struct perf_event_header header;
6659 u32 next_prev_pid;
6660 u32 next_prev_tid;
6661 } event_id;
6662 };
6663
6664 static int perf_event_switch_match(struct perf_event *event)
6665 {
6666 return event->attr.context_switch;
6667 }
6668
6669 static void perf_event_switch_output(struct perf_event *event, void *data)
6670 {
6671 struct perf_switch_event *se = data;
6672 struct perf_output_handle handle;
6673 struct perf_sample_data sample;
6674 int ret;
6675
6676 if (!perf_event_switch_match(event))
6677 return;
6678
6679 /* Only CPU-wide events are allowed to see next/prev pid/tid */
6680 if (event->ctx->task) {
6681 se->event_id.header.type = PERF_RECORD_SWITCH;
6682 se->event_id.header.size = sizeof(se->event_id.header);
6683 } else {
6684 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
6685 se->event_id.header.size = sizeof(se->event_id);
6686 se->event_id.next_prev_pid =
6687 perf_event_pid(event, se->next_prev);
6688 se->event_id.next_prev_tid =
6689 perf_event_tid(event, se->next_prev);
6690 }
6691
6692 perf_event_header__init_id(&se->event_id.header, &sample, event);
6693
6694 ret = perf_output_begin(&handle, event, se->event_id.header.size);
6695 if (ret)
6696 return;
6697
6698 if (event->ctx->task)
6699 perf_output_put(&handle, se->event_id.header);
6700 else
6701 perf_output_put(&handle, se->event_id);
6702
6703 perf_event__output_id_sample(event, &handle, &sample);
6704
6705 perf_output_end(&handle);
6706 }
6707
6708 static void perf_event_switch(struct task_struct *task,
6709 struct task_struct *next_prev, bool sched_in)
6710 {
6711 struct perf_switch_event switch_event;
6712
6713 /* N.B. caller checks nr_switch_events != 0 */
6714
6715 switch_event = (struct perf_switch_event){
6716 .task = task,
6717 .next_prev = next_prev,
6718 .event_id = {
6719 .header = {
6720 /* .type */
6721 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
6722 /* .size */
6723 },
6724 /* .next_prev_pid */
6725 /* .next_prev_tid */
6726 },
6727 };
6728
6729 perf_event_aux(perf_event_switch_output,
6730 &switch_event,
6731 NULL);
6732 }
6733
6734 /*
6735 * IRQ throttle logging
6736 */
6737
6738 static void perf_log_throttle(struct perf_event *event, int enable)
6739 {
6740 struct perf_output_handle handle;
6741 struct perf_sample_data sample;
6742 int ret;
6743
6744 struct {
6745 struct perf_event_header header;
6746 u64 time;
6747 u64 id;
6748 u64 stream_id;
6749 } throttle_event = {
6750 .header = {
6751 .type = PERF_RECORD_THROTTLE,
6752 .misc = 0,
6753 .size = sizeof(throttle_event),
6754 },
6755 .time = perf_event_clock(event),
6756 .id = primary_event_id(event),
6757 .stream_id = event->id,
6758 };
6759
6760 if (enable)
6761 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
6762
6763 perf_event_header__init_id(&throttle_event.header, &sample, event);
6764
6765 ret = perf_output_begin(&handle, event,
6766 throttle_event.header.size);
6767 if (ret)
6768 return;
6769
6770 perf_output_put(&handle, throttle_event);
6771 perf_event__output_id_sample(event, &handle, &sample);
6772 perf_output_end(&handle);
6773 }
6774
6775 static void perf_log_itrace_start(struct perf_event *event)
6776 {
6777 struct perf_output_handle handle;
6778 struct perf_sample_data sample;
6779 struct perf_aux_event {
6780 struct perf_event_header header;
6781 u32 pid;
6782 u32 tid;
6783 } rec;
6784 int ret;
6785
6786 if (event->parent)
6787 event = event->parent;
6788
6789 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
6790 event->hw.itrace_started)
6791 return;
6792
6793 rec.header.type = PERF_RECORD_ITRACE_START;
6794 rec.header.misc = 0;
6795 rec.header.size = sizeof(rec);
6796 rec.pid = perf_event_pid(event, current);
6797 rec.tid = perf_event_tid(event, current);
6798
6799 perf_event_header__init_id(&rec.header, &sample, event);
6800 ret = perf_output_begin(&handle, event, rec.header.size);
6801
6802 if (ret)
6803 return;
6804
6805 perf_output_put(&handle, rec);
6806 perf_event__output_id_sample(event, &handle, &sample);
6807
6808 perf_output_end(&handle);
6809 }
6810
6811 /*
6812 * Generic event overflow handling, sampling.
6813 */
6814
6815 static int __perf_event_overflow(struct perf_event *event,
6816 int throttle, struct perf_sample_data *data,
6817 struct pt_regs *regs)
6818 {
6819 int events = atomic_read(&event->event_limit);
6820 struct hw_perf_event *hwc = &event->hw;
6821 u64 seq;
6822 int ret = 0;
6823
6824 /*
6825 * Non-sampling counters might still use the PMI to fold short
6826 * hardware counters, ignore those.
6827 */
6828 if (unlikely(!is_sampling_event(event)))
6829 return 0;
6830
6831 seq = __this_cpu_read(perf_throttled_seq);
6832 if (seq != hwc->interrupts_seq) {
6833 hwc->interrupts_seq = seq;
6834 hwc->interrupts = 1;
6835 } else {
6836 hwc->interrupts++;
6837 if (unlikely(throttle
6838 && hwc->interrupts >= max_samples_per_tick)) {
6839 __this_cpu_inc(perf_throttled_count);
6840 tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
6841 hwc->interrupts = MAX_INTERRUPTS;
6842 perf_log_throttle(event, 0);
6843 ret = 1;
6844 }
6845 }
6846
6847 if (event->attr.freq) {
6848 u64 now = perf_clock();
6849 s64 delta = now - hwc->freq_time_stamp;
6850
6851 hwc->freq_time_stamp = now;
6852
6853 if (delta > 0 && delta < 2*TICK_NSEC)
6854 perf_adjust_period(event, delta, hwc->last_period, true);
6855 }
6856
6857 /*
6858 * XXX event_limit might not quite work as expected on inherited
6859 * events
6860 */
6861
6862 event->pending_kill = POLL_IN;
6863 if (events && atomic_dec_and_test(&event->event_limit)) {
6864 ret = 1;
6865 event->pending_kill = POLL_HUP;
6866 event->pending_disable = 1;
6867 irq_work_queue(&event->pending);
6868 }
6869
6870 event->overflow_handler(event, data, regs);
6871
6872 if (*perf_event_fasync(event) && event->pending_kill) {
6873 event->pending_wakeup = 1;
6874 irq_work_queue(&event->pending);
6875 }
6876
6877 return ret;
6878 }
6879
6880 int perf_event_overflow(struct perf_event *event,
6881 struct perf_sample_data *data,
6882 struct pt_regs *regs)
6883 {
6884 return __perf_event_overflow(event, 1, data, regs);
6885 }
6886
6887 /*
6888 * Generic software event infrastructure
6889 */
6890
6891 struct swevent_htable {
6892 struct swevent_hlist *swevent_hlist;
6893 struct mutex hlist_mutex;
6894 int hlist_refcount;
6895
6896 /* Recursion avoidance in each contexts */
6897 int recursion[PERF_NR_CONTEXTS];
6898 };
6899
6900 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
6901
6902 /*
6903 * We directly increment event->count and keep a second value in
6904 * event->hw.period_left to count intervals. This period event
6905 * is kept in the range [-sample_period, 0] so that we can use the
6906 * sign as trigger.
6907 */
6908
6909 u64 perf_swevent_set_period(struct perf_event *event)
6910 {
6911 struct hw_perf_event *hwc = &event->hw;
6912 u64 period = hwc->last_period;
6913 u64 nr, offset;
6914 s64 old, val;
6915
6916 hwc->last_period = hwc->sample_period;
6917
6918 again:
6919 old = val = local64_read(&hwc->period_left);
6920 if (val < 0)
6921 return 0;
6922
6923 nr = div64_u64(period + val, period);
6924 offset = nr * period;
6925 val -= offset;
6926 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
6927 goto again;
6928
6929 return nr;
6930 }
6931
6932 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
6933 struct perf_sample_data *data,
6934 struct pt_regs *regs)
6935 {
6936 struct hw_perf_event *hwc = &event->hw;
6937 int throttle = 0;
6938
6939 if (!overflow)
6940 overflow = perf_swevent_set_period(event);
6941
6942 if (hwc->interrupts == MAX_INTERRUPTS)
6943 return;
6944
6945 for (; overflow; overflow--) {
6946 if (__perf_event_overflow(event, throttle,
6947 data, regs)) {
6948 /*
6949 * We inhibit the overflow from happening when
6950 * hwc->interrupts == MAX_INTERRUPTS.
6951 */
6952 break;
6953 }
6954 throttle = 1;
6955 }
6956 }
6957
6958 static void perf_swevent_event(struct perf_event *event, u64 nr,
6959 struct perf_sample_data *data,
6960 struct pt_regs *regs)
6961 {
6962 struct hw_perf_event *hwc = &event->hw;
6963
6964 local64_add(nr, &event->count);
6965
6966 if (!regs)
6967 return;
6968
6969 if (!is_sampling_event(event))
6970 return;
6971
6972 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
6973 data->period = nr;
6974 return perf_swevent_overflow(event, 1, data, regs);
6975 } else
6976 data->period = event->hw.last_period;
6977
6978 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
6979 return perf_swevent_overflow(event, 1, data, regs);
6980
6981 if (local64_add_negative(nr, &hwc->period_left))
6982 return;
6983
6984 perf_swevent_overflow(event, 0, data, regs);
6985 }
6986
6987 static int perf_exclude_event(struct perf_event *event,
6988 struct pt_regs *regs)
6989 {
6990 if (event->hw.state & PERF_HES_STOPPED)
6991 return 1;
6992
6993 if (regs) {
6994 if (event->attr.exclude_user && user_mode(regs))
6995 return 1;
6996
6997 if (event->attr.exclude_kernel && !user_mode(regs))
6998 return 1;
6999 }
7000
7001 return 0;
7002 }
7003
7004 static int perf_swevent_match(struct perf_event *event,
7005 enum perf_type_id type,
7006 u32 event_id,
7007 struct perf_sample_data *data,
7008 struct pt_regs *regs)
7009 {
7010 if (event->attr.type != type)
7011 return 0;
7012
7013 if (event->attr.config != event_id)
7014 return 0;
7015
7016 if (perf_exclude_event(event, regs))
7017 return 0;
7018
7019 return 1;
7020 }
7021
7022 static inline u64 swevent_hash(u64 type, u32 event_id)
7023 {
7024 u64 val = event_id | (type << 32);
7025
7026 return hash_64(val, SWEVENT_HLIST_BITS);
7027 }
7028
7029 static inline struct hlist_head *
7030 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
7031 {
7032 u64 hash = swevent_hash(type, event_id);
7033
7034 return &hlist->heads[hash];
7035 }
7036
7037 /* For the read side: events when they trigger */
7038 static inline struct hlist_head *
7039 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
7040 {
7041 struct swevent_hlist *hlist;
7042
7043 hlist = rcu_dereference(swhash->swevent_hlist);
7044 if (!hlist)
7045 return NULL;
7046
7047 return __find_swevent_head(hlist, type, event_id);
7048 }
7049
7050 /* For the event head insertion and removal in the hlist */
7051 static inline struct hlist_head *
7052 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
7053 {
7054 struct swevent_hlist *hlist;
7055 u32 event_id = event->attr.config;
7056 u64 type = event->attr.type;
7057
7058 /*
7059 * Event scheduling is always serialized against hlist allocation
7060 * and release. Which makes the protected version suitable here.
7061 * The context lock guarantees that.
7062 */
7063 hlist = rcu_dereference_protected(swhash->swevent_hlist,
7064 lockdep_is_held(&event->ctx->lock));
7065 if (!hlist)
7066 return NULL;
7067
7068 return __find_swevent_head(hlist, type, event_id);
7069 }
7070
7071 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
7072 u64 nr,
7073 struct perf_sample_data *data,
7074 struct pt_regs *regs)
7075 {
7076 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7077 struct perf_event *event;
7078 struct hlist_head *head;
7079
7080 rcu_read_lock();
7081 head = find_swevent_head_rcu(swhash, type, event_id);
7082 if (!head)
7083 goto end;
7084
7085 hlist_for_each_entry_rcu(event, head, hlist_entry) {
7086 if (perf_swevent_match(event, type, event_id, data, regs))
7087 perf_swevent_event(event, nr, data, regs);
7088 }
7089 end:
7090 rcu_read_unlock();
7091 }
7092
7093 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
7094
7095 int perf_swevent_get_recursion_context(void)
7096 {
7097 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7098
7099 return get_recursion_context(swhash->recursion);
7100 }
7101 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
7102
7103 void perf_swevent_put_recursion_context(int rctx)
7104 {
7105 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7106
7107 put_recursion_context(swhash->recursion, rctx);
7108 }
7109
7110 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7111 {
7112 struct perf_sample_data data;
7113
7114 if (WARN_ON_ONCE(!regs))
7115 return;
7116
7117 perf_sample_data_init(&data, addr, 0);
7118 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
7119 }
7120
7121 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7122 {
7123 int rctx;
7124
7125 preempt_disable_notrace();
7126 rctx = perf_swevent_get_recursion_context();
7127 if (unlikely(rctx < 0))
7128 goto fail;
7129
7130 ___perf_sw_event(event_id, nr, regs, addr);
7131
7132 perf_swevent_put_recursion_context(rctx);
7133 fail:
7134 preempt_enable_notrace();
7135 }
7136
7137 static void perf_swevent_read(struct perf_event *event)
7138 {
7139 }
7140
7141 static int perf_swevent_add(struct perf_event *event, int flags)
7142 {
7143 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7144 struct hw_perf_event *hwc = &event->hw;
7145 struct hlist_head *head;
7146
7147 if (is_sampling_event(event)) {
7148 hwc->last_period = hwc->sample_period;
7149 perf_swevent_set_period(event);
7150 }
7151
7152 hwc->state = !(flags & PERF_EF_START);
7153
7154 head = find_swevent_head(swhash, event);
7155 if (WARN_ON_ONCE(!head))
7156 return -EINVAL;
7157
7158 hlist_add_head_rcu(&event->hlist_entry, head);
7159 perf_event_update_userpage(event);
7160
7161 return 0;
7162 }
7163
7164 static void perf_swevent_del(struct perf_event *event, int flags)
7165 {
7166 hlist_del_rcu(&event->hlist_entry);
7167 }
7168
7169 static void perf_swevent_start(struct perf_event *event, int flags)
7170 {
7171 event->hw.state = 0;
7172 }
7173
7174 static void perf_swevent_stop(struct perf_event *event, int flags)
7175 {
7176 event->hw.state = PERF_HES_STOPPED;
7177 }
7178
7179 /* Deref the hlist from the update side */
7180 static inline struct swevent_hlist *
7181 swevent_hlist_deref(struct swevent_htable *swhash)
7182 {
7183 return rcu_dereference_protected(swhash->swevent_hlist,
7184 lockdep_is_held(&swhash->hlist_mutex));
7185 }
7186
7187 static void swevent_hlist_release(struct swevent_htable *swhash)
7188 {
7189 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
7190
7191 if (!hlist)
7192 return;
7193
7194 RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
7195 kfree_rcu(hlist, rcu_head);
7196 }
7197
7198 static void swevent_hlist_put_cpu(int cpu)
7199 {
7200 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7201
7202 mutex_lock(&swhash->hlist_mutex);
7203
7204 if (!--swhash->hlist_refcount)
7205 swevent_hlist_release(swhash);
7206
7207 mutex_unlock(&swhash->hlist_mutex);
7208 }
7209
7210 static void swevent_hlist_put(void)
7211 {
7212 int cpu;
7213
7214 for_each_possible_cpu(cpu)
7215 swevent_hlist_put_cpu(cpu);
7216 }
7217
7218 static int swevent_hlist_get_cpu(int cpu)
7219 {
7220 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7221 int err = 0;
7222
7223 mutex_lock(&swhash->hlist_mutex);
7224 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
7225 struct swevent_hlist *hlist;
7226
7227 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
7228 if (!hlist) {
7229 err = -ENOMEM;
7230 goto exit;
7231 }
7232 rcu_assign_pointer(swhash->swevent_hlist, hlist);
7233 }
7234 swhash->hlist_refcount++;
7235 exit:
7236 mutex_unlock(&swhash->hlist_mutex);
7237
7238 return err;
7239 }
7240
7241 static int swevent_hlist_get(void)
7242 {
7243 int err, cpu, failed_cpu;
7244
7245 get_online_cpus();
7246 for_each_possible_cpu(cpu) {
7247 err = swevent_hlist_get_cpu(cpu);
7248 if (err) {
7249 failed_cpu = cpu;
7250 goto fail;
7251 }
7252 }
7253 put_online_cpus();
7254
7255 return 0;
7256 fail:
7257 for_each_possible_cpu(cpu) {
7258 if (cpu == failed_cpu)
7259 break;
7260 swevent_hlist_put_cpu(cpu);
7261 }
7262
7263 put_online_cpus();
7264 return err;
7265 }
7266
7267 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
7268
7269 static void sw_perf_event_destroy(struct perf_event *event)
7270 {
7271 u64 event_id = event->attr.config;
7272
7273 WARN_ON(event->parent);
7274
7275 static_key_slow_dec(&perf_swevent_enabled[event_id]);
7276 swevent_hlist_put();
7277 }
7278
7279 static int perf_swevent_init(struct perf_event *event)
7280 {
7281 u64 event_id = event->attr.config;
7282
7283 if (event->attr.type != PERF_TYPE_SOFTWARE)
7284 return -ENOENT;
7285
7286 /*
7287 * no branch sampling for software events
7288 */
7289 if (has_branch_stack(event))
7290 return -EOPNOTSUPP;
7291
7292 switch (event_id) {
7293 case PERF_COUNT_SW_CPU_CLOCK:
7294 case PERF_COUNT_SW_TASK_CLOCK:
7295 return -ENOENT;
7296
7297 default:
7298 break;
7299 }
7300
7301 if (event_id >= PERF_COUNT_SW_MAX)
7302 return -ENOENT;
7303
7304 if (!event->parent) {
7305 int err;
7306
7307 err = swevent_hlist_get();
7308 if (err)
7309 return err;
7310
7311 static_key_slow_inc(&perf_swevent_enabled[event_id]);
7312 event->destroy = sw_perf_event_destroy;
7313 }
7314
7315 return 0;
7316 }
7317
7318 static struct pmu perf_swevent = {
7319 .task_ctx_nr = perf_sw_context,
7320
7321 .capabilities = PERF_PMU_CAP_NO_NMI,
7322
7323 .event_init = perf_swevent_init,
7324 .add = perf_swevent_add,
7325 .del = perf_swevent_del,
7326 .start = perf_swevent_start,
7327 .stop = perf_swevent_stop,
7328 .read = perf_swevent_read,
7329 };
7330
7331 #ifdef CONFIG_EVENT_TRACING
7332
7333 static int perf_tp_filter_match(struct perf_event *event,
7334 struct perf_sample_data *data)
7335 {
7336 void *record = data->raw->data;
7337
7338 /* only top level events have filters set */
7339 if (event->parent)
7340 event = event->parent;
7341
7342 if (likely(!event->filter) || filter_match_preds(event->filter, record))
7343 return 1;
7344 return 0;
7345 }
7346
7347 static int perf_tp_event_match(struct perf_event *event,
7348 struct perf_sample_data *data,
7349 struct pt_regs *regs)
7350 {
7351 if (event->hw.state & PERF_HES_STOPPED)
7352 return 0;
7353 /*
7354 * All tracepoints are from kernel-space.
7355 */
7356 if (event->attr.exclude_kernel)
7357 return 0;
7358
7359 if (!perf_tp_filter_match(event, data))
7360 return 0;
7361
7362 return 1;
7363 }
7364
7365 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
7366 struct trace_event_call *call, u64 count,
7367 struct pt_regs *regs, struct hlist_head *head,
7368 struct task_struct *task)
7369 {
7370 struct bpf_prog *prog = call->prog;
7371
7372 if (prog) {
7373 *(struct pt_regs **)raw_data = regs;
7374 if (!trace_call_bpf(prog, raw_data) || hlist_empty(head)) {
7375 perf_swevent_put_recursion_context(rctx);
7376 return;
7377 }
7378 }
7379 perf_tp_event(call->event.type, count, raw_data, size, regs, head,
7380 rctx, task);
7381 }
7382 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
7383
7384 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
7385 struct pt_regs *regs, struct hlist_head *head, int rctx,
7386 struct task_struct *task)
7387 {
7388 struct perf_sample_data data;
7389 struct perf_event *event;
7390
7391 struct perf_raw_record raw = {
7392 .size = entry_size,
7393 .data = record,
7394 };
7395
7396 perf_sample_data_init(&data, 0, 0);
7397 data.raw = &raw;
7398
7399 perf_trace_buf_update(record, event_type);
7400
7401 hlist_for_each_entry_rcu(event, head, hlist_entry) {
7402 if (perf_tp_event_match(event, &data, regs))
7403 perf_swevent_event(event, count, &data, regs);
7404 }
7405
7406 /*
7407 * If we got specified a target task, also iterate its context and
7408 * deliver this event there too.
7409 */
7410 if (task && task != current) {
7411 struct perf_event_context *ctx;
7412 struct trace_entry *entry = record;
7413
7414 rcu_read_lock();
7415 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
7416 if (!ctx)
7417 goto unlock;
7418
7419 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
7420 if (event->attr.type != PERF_TYPE_TRACEPOINT)
7421 continue;
7422 if (event->attr.config != entry->type)
7423 continue;
7424 if (perf_tp_event_match(event, &data, regs))
7425 perf_swevent_event(event, count, &data, regs);
7426 }
7427 unlock:
7428 rcu_read_unlock();
7429 }
7430
7431 perf_swevent_put_recursion_context(rctx);
7432 }
7433 EXPORT_SYMBOL_GPL(perf_tp_event);
7434
7435 static void tp_perf_event_destroy(struct perf_event *event)
7436 {
7437 perf_trace_destroy(event);
7438 }
7439
7440 static int perf_tp_event_init(struct perf_event *event)
7441 {
7442 int err;
7443
7444 if (event->attr.type != PERF_TYPE_TRACEPOINT)
7445 return -ENOENT;
7446
7447 /*
7448 * no branch sampling for tracepoint events
7449 */
7450 if (has_branch_stack(event))
7451 return -EOPNOTSUPP;
7452
7453 err = perf_trace_init(event);
7454 if (err)
7455 return err;
7456
7457 event->destroy = tp_perf_event_destroy;
7458
7459 return 0;
7460 }
7461
7462 static struct pmu perf_tracepoint = {
7463 .task_ctx_nr = perf_sw_context,
7464
7465 .event_init = perf_tp_event_init,
7466 .add = perf_trace_add,
7467 .del = perf_trace_del,
7468 .start = perf_swevent_start,
7469 .stop = perf_swevent_stop,
7470 .read = perf_swevent_read,
7471 };
7472
7473 static inline void perf_tp_register(void)
7474 {
7475 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
7476 }
7477
7478 static void perf_event_free_filter(struct perf_event *event)
7479 {
7480 ftrace_profile_free_filter(event);
7481 }
7482
7483 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
7484 {
7485 bool is_kprobe, is_tracepoint;
7486 struct bpf_prog *prog;
7487
7488 if (event->attr.type != PERF_TYPE_TRACEPOINT)
7489 return -EINVAL;
7490
7491 if (event->tp_event->prog)
7492 return -EEXIST;
7493
7494 is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
7495 is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
7496 if (!is_kprobe && !is_tracepoint)
7497 /* bpf programs can only be attached to u/kprobe or tracepoint */
7498 return -EINVAL;
7499
7500 prog = bpf_prog_get(prog_fd);
7501 if (IS_ERR(prog))
7502 return PTR_ERR(prog);
7503
7504 if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
7505 (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
7506 /* valid fd, but invalid bpf program type */
7507 bpf_prog_put(prog);
7508 return -EINVAL;
7509 }
7510
7511 if (is_tracepoint) {
7512 int off = trace_event_get_offsets(event->tp_event);
7513
7514 if (prog->aux->max_ctx_offset > off) {
7515 bpf_prog_put(prog);
7516 return -EACCES;
7517 }
7518 }
7519 event->tp_event->prog = prog;
7520
7521 return 0;
7522 }
7523
7524 static void perf_event_free_bpf_prog(struct perf_event *event)
7525 {
7526 struct bpf_prog *prog;
7527
7528 if (!event->tp_event)
7529 return;
7530
7531 prog = event->tp_event->prog;
7532 if (prog) {
7533 event->tp_event->prog = NULL;
7534 bpf_prog_put(prog);
7535 }
7536 }
7537
7538 #else
7539
7540 static inline void perf_tp_register(void)
7541 {
7542 }
7543
7544 static void perf_event_free_filter(struct perf_event *event)
7545 {
7546 }
7547
7548 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
7549 {
7550 return -ENOENT;
7551 }
7552
7553 static void perf_event_free_bpf_prog(struct perf_event *event)
7554 {
7555 }
7556 #endif /* CONFIG_EVENT_TRACING */
7557
7558 #ifdef CONFIG_HAVE_HW_BREAKPOINT
7559 void perf_bp_event(struct perf_event *bp, void *data)
7560 {
7561 struct perf_sample_data sample;
7562 struct pt_regs *regs = data;
7563
7564 perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
7565
7566 if (!bp->hw.state && !perf_exclude_event(bp, regs))
7567 perf_swevent_event(bp, 1, &sample, regs);
7568 }
7569 #endif
7570
7571 /*
7572 * Allocate a new address filter
7573 */
7574 static struct perf_addr_filter *
7575 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
7576 {
7577 int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
7578 struct perf_addr_filter *filter;
7579
7580 filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
7581 if (!filter)
7582 return NULL;
7583
7584 INIT_LIST_HEAD(&filter->entry);
7585 list_add_tail(&filter->entry, filters);
7586
7587 return filter;
7588 }
7589
7590 static void free_filters_list(struct list_head *filters)
7591 {
7592 struct perf_addr_filter *filter, *iter;
7593
7594 list_for_each_entry_safe(filter, iter, filters, entry) {
7595 if (filter->inode)
7596 iput(filter->inode);
7597 list_del(&filter->entry);
7598 kfree(filter);
7599 }
7600 }
7601
7602 /*
7603 * Free existing address filters and optionally install new ones
7604 */
7605 static void perf_addr_filters_splice(struct perf_event *event,
7606 struct list_head *head)
7607 {
7608 unsigned long flags;
7609 LIST_HEAD(list);
7610
7611 if (!has_addr_filter(event))
7612 return;
7613
7614 /* don't bother with children, they don't have their own filters */
7615 if (event->parent)
7616 return;
7617
7618 raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
7619
7620 list_splice_init(&event->addr_filters.list, &list);
7621 if (head)
7622 list_splice(head, &event->addr_filters.list);
7623
7624 raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
7625
7626 free_filters_list(&list);
7627 }
7628
7629 /*
7630 * Scan through mm's vmas and see if one of them matches the
7631 * @filter; if so, adjust filter's address range.
7632 * Called with mm::mmap_sem down for reading.
7633 */
7634 static unsigned long perf_addr_filter_apply(struct perf_addr_filter *filter,
7635 struct mm_struct *mm)
7636 {
7637 struct vm_area_struct *vma;
7638
7639 for (vma = mm->mmap; vma; vma = vma->vm_next) {
7640 struct file *file = vma->vm_file;
7641 unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
7642 unsigned long vma_size = vma->vm_end - vma->vm_start;
7643
7644 if (!file)
7645 continue;
7646
7647 if (!perf_addr_filter_match(filter, file, off, vma_size))
7648 continue;
7649
7650 return vma->vm_start;
7651 }
7652
7653 return 0;
7654 }
7655
7656 /*
7657 * Update event's address range filters based on the
7658 * task's existing mappings, if any.
7659 */
7660 static void perf_event_addr_filters_apply(struct perf_event *event)
7661 {
7662 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
7663 struct task_struct *task = READ_ONCE(event->ctx->task);
7664 struct perf_addr_filter *filter;
7665 struct mm_struct *mm = NULL;
7666 unsigned int count = 0;
7667 unsigned long flags;
7668
7669 /*
7670 * We may observe TASK_TOMBSTONE, which means that the event tear-down
7671 * will stop on the parent's child_mutex that our caller is also holding
7672 */
7673 if (task == TASK_TOMBSTONE)
7674 return;
7675
7676 mm = get_task_mm(event->ctx->task);
7677 if (!mm)
7678 goto restart;
7679
7680 down_read(&mm->mmap_sem);
7681
7682 raw_spin_lock_irqsave(&ifh->lock, flags);
7683 list_for_each_entry(filter, &ifh->list, entry) {
7684 event->addr_filters_offs[count] = 0;
7685
7686 if (perf_addr_filter_needs_mmap(filter))
7687 event->addr_filters_offs[count] =
7688 perf_addr_filter_apply(filter, mm);
7689
7690 count++;
7691 }
7692
7693 event->addr_filters_gen++;
7694 raw_spin_unlock_irqrestore(&ifh->lock, flags);
7695
7696 up_read(&mm->mmap_sem);
7697
7698 mmput(mm);
7699
7700 restart:
7701 perf_event_restart(event);
7702 }
7703
7704 /*
7705 * Address range filtering: limiting the data to certain
7706 * instruction address ranges. Filters are ioctl()ed to us from
7707 * userspace as ascii strings.
7708 *
7709 * Filter string format:
7710 *
7711 * ACTION RANGE_SPEC
7712 * where ACTION is one of the
7713 * * "filter": limit the trace to this region
7714 * * "start": start tracing from this address
7715 * * "stop": stop tracing at this address/region;
7716 * RANGE_SPEC is
7717 * * for kernel addresses: <start address>[/<size>]
7718 * * for object files: <start address>[/<size>]@</path/to/object/file>
7719 *
7720 * if <size> is not specified, the range is treated as a single address.
7721 */
7722 enum {
7723 IF_ACT_FILTER,
7724 IF_ACT_START,
7725 IF_ACT_STOP,
7726 IF_SRC_FILE,
7727 IF_SRC_KERNEL,
7728 IF_SRC_FILEADDR,
7729 IF_SRC_KERNELADDR,
7730 };
7731
7732 enum {
7733 IF_STATE_ACTION = 0,
7734 IF_STATE_SOURCE,
7735 IF_STATE_END,
7736 };
7737
7738 static const match_table_t if_tokens = {
7739 { IF_ACT_FILTER, "filter" },
7740 { IF_ACT_START, "start" },
7741 { IF_ACT_STOP, "stop" },
7742 { IF_SRC_FILE, "%u/%u@%s" },
7743 { IF_SRC_KERNEL, "%u/%u" },
7744 { IF_SRC_FILEADDR, "%u@%s" },
7745 { IF_SRC_KERNELADDR, "%u" },
7746 };
7747
7748 /*
7749 * Address filter string parser
7750 */
7751 static int
7752 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
7753 struct list_head *filters)
7754 {
7755 struct perf_addr_filter *filter = NULL;
7756 char *start, *orig, *filename = NULL;
7757 struct path path;
7758 substring_t args[MAX_OPT_ARGS];
7759 int state = IF_STATE_ACTION, token;
7760 unsigned int kernel = 0;
7761 int ret = -EINVAL;
7762
7763 orig = fstr = kstrdup(fstr, GFP_KERNEL);
7764 if (!fstr)
7765 return -ENOMEM;
7766
7767 while ((start = strsep(&fstr, " ,\n")) != NULL) {
7768 ret = -EINVAL;
7769
7770 if (!*start)
7771 continue;
7772
7773 /* filter definition begins */
7774 if (state == IF_STATE_ACTION) {
7775 filter = perf_addr_filter_new(event, filters);
7776 if (!filter)
7777 goto fail;
7778 }
7779
7780 token = match_token(start, if_tokens, args);
7781 switch (token) {
7782 case IF_ACT_FILTER:
7783 case IF_ACT_START:
7784 filter->filter = 1;
7785
7786 case IF_ACT_STOP:
7787 if (state != IF_STATE_ACTION)
7788 goto fail;
7789
7790 state = IF_STATE_SOURCE;
7791 break;
7792
7793 case IF_SRC_KERNELADDR:
7794 case IF_SRC_KERNEL:
7795 kernel = 1;
7796
7797 case IF_SRC_FILEADDR:
7798 case IF_SRC_FILE:
7799 if (state != IF_STATE_SOURCE)
7800 goto fail;
7801
7802 if (token == IF_SRC_FILE || token == IF_SRC_KERNEL)
7803 filter->range = 1;
7804
7805 *args[0].to = 0;
7806 ret = kstrtoul(args[0].from, 0, &filter->offset);
7807 if (ret)
7808 goto fail;
7809
7810 if (filter->range) {
7811 *args[1].to = 0;
7812 ret = kstrtoul(args[1].from, 0, &filter->size);
7813 if (ret)
7814 goto fail;
7815 }
7816
7817 if (token == IF_SRC_FILE) {
7818 filename = match_strdup(&args[2]);
7819 if (!filename) {
7820 ret = -ENOMEM;
7821 goto fail;
7822 }
7823 }
7824
7825 state = IF_STATE_END;
7826 break;
7827
7828 default:
7829 goto fail;
7830 }
7831
7832 /*
7833 * Filter definition is fully parsed, validate and install it.
7834 * Make sure that it doesn't contradict itself or the event's
7835 * attribute.
7836 */
7837 if (state == IF_STATE_END) {
7838 if (kernel && event->attr.exclude_kernel)
7839 goto fail;
7840
7841 if (!kernel) {
7842 if (!filename)
7843 goto fail;
7844
7845 /* look up the path and grab its inode */
7846 ret = kern_path(filename, LOOKUP_FOLLOW, &path);
7847 if (ret)
7848 goto fail_free_name;
7849
7850 filter->inode = igrab(d_inode(path.dentry));
7851 path_put(&path);
7852 kfree(filename);
7853 filename = NULL;
7854
7855 ret = -EINVAL;
7856 if (!filter->inode ||
7857 !S_ISREG(filter->inode->i_mode))
7858 /* free_filters_list() will iput() */
7859 goto fail;
7860 }
7861
7862 /* ready to consume more filters */
7863 state = IF_STATE_ACTION;
7864 filter = NULL;
7865 }
7866 }
7867
7868 if (state != IF_STATE_ACTION)
7869 goto fail;
7870
7871 kfree(orig);
7872
7873 return 0;
7874
7875 fail_free_name:
7876 kfree(filename);
7877 fail:
7878 free_filters_list(filters);
7879 kfree(orig);
7880
7881 return ret;
7882 }
7883
7884 static int
7885 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
7886 {
7887 LIST_HEAD(filters);
7888 int ret;
7889
7890 /*
7891 * Since this is called in perf_ioctl() path, we're already holding
7892 * ctx::mutex.
7893 */
7894 lockdep_assert_held(&event->ctx->mutex);
7895
7896 if (WARN_ON_ONCE(event->parent))
7897 return -EINVAL;
7898
7899 /*
7900 * For now, we only support filtering in per-task events; doing so
7901 * for CPU-wide events requires additional context switching trickery,
7902 * since same object code will be mapped at different virtual
7903 * addresses in different processes.
7904 */
7905 if (!event->ctx->task)
7906 return -EOPNOTSUPP;
7907
7908 ret = perf_event_parse_addr_filter(event, filter_str, &filters);
7909 if (ret)
7910 return ret;
7911
7912 ret = event->pmu->addr_filters_validate(&filters);
7913 if (ret) {
7914 free_filters_list(&filters);
7915 return ret;
7916 }
7917
7918 /* remove existing filters, if any */
7919 perf_addr_filters_splice(event, &filters);
7920
7921 /* install new filters */
7922 perf_event_for_each_child(event, perf_event_addr_filters_apply);
7923
7924 return ret;
7925 }
7926
7927 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
7928 {
7929 char *filter_str;
7930 int ret = -EINVAL;
7931
7932 if ((event->attr.type != PERF_TYPE_TRACEPOINT ||
7933 !IS_ENABLED(CONFIG_EVENT_TRACING)) &&
7934 !has_addr_filter(event))
7935 return -EINVAL;
7936
7937 filter_str = strndup_user(arg, PAGE_SIZE);
7938 if (IS_ERR(filter_str))
7939 return PTR_ERR(filter_str);
7940
7941 if (IS_ENABLED(CONFIG_EVENT_TRACING) &&
7942 event->attr.type == PERF_TYPE_TRACEPOINT)
7943 ret = ftrace_profile_set_filter(event, event->attr.config,
7944 filter_str);
7945 else if (has_addr_filter(event))
7946 ret = perf_event_set_addr_filter(event, filter_str);
7947
7948 kfree(filter_str);
7949 return ret;
7950 }
7951
7952 /*
7953 * hrtimer based swevent callback
7954 */
7955
7956 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
7957 {
7958 enum hrtimer_restart ret = HRTIMER_RESTART;
7959 struct perf_sample_data data;
7960 struct pt_regs *regs;
7961 struct perf_event *event;
7962 u64 period;
7963
7964 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
7965
7966 if (event->state != PERF_EVENT_STATE_ACTIVE)
7967 return HRTIMER_NORESTART;
7968
7969 event->pmu->read(event);
7970
7971 perf_sample_data_init(&data, 0, event->hw.last_period);
7972 regs = get_irq_regs();
7973
7974 if (regs && !perf_exclude_event(event, regs)) {
7975 if (!(event->attr.exclude_idle && is_idle_task(current)))
7976 if (__perf_event_overflow(event, 1, &data, regs))
7977 ret = HRTIMER_NORESTART;
7978 }
7979
7980 period = max_t(u64, 10000, event->hw.sample_period);
7981 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
7982
7983 return ret;
7984 }
7985
7986 static void perf_swevent_start_hrtimer(struct perf_event *event)
7987 {
7988 struct hw_perf_event *hwc = &event->hw;
7989 s64 period;
7990
7991 if (!is_sampling_event(event))
7992 return;
7993
7994 period = local64_read(&hwc->period_left);
7995 if (period) {
7996 if (period < 0)
7997 period = 10000;
7998
7999 local64_set(&hwc->period_left, 0);
8000 } else {
8001 period = max_t(u64, 10000, hwc->sample_period);
8002 }
8003 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
8004 HRTIMER_MODE_REL_PINNED);
8005 }
8006
8007 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
8008 {
8009 struct hw_perf_event *hwc = &event->hw;
8010
8011 if (is_sampling_event(event)) {
8012 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
8013 local64_set(&hwc->period_left, ktime_to_ns(remaining));
8014
8015 hrtimer_cancel(&hwc->hrtimer);
8016 }
8017 }
8018
8019 static void perf_swevent_init_hrtimer(struct perf_event *event)
8020 {
8021 struct hw_perf_event *hwc = &event->hw;
8022
8023 if (!is_sampling_event(event))
8024 return;
8025
8026 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
8027 hwc->hrtimer.function = perf_swevent_hrtimer;
8028
8029 /*
8030 * Since hrtimers have a fixed rate, we can do a static freq->period
8031 * mapping and avoid the whole period adjust feedback stuff.
8032 */
8033 if (event->attr.freq) {
8034 long freq = event->attr.sample_freq;
8035
8036 event->attr.sample_period = NSEC_PER_SEC / freq;
8037 hwc->sample_period = event->attr.sample_period;
8038 local64_set(&hwc->period_left, hwc->sample_period);
8039 hwc->last_period = hwc->sample_period;
8040 event->attr.freq = 0;
8041 }
8042 }
8043
8044 /*
8045 * Software event: cpu wall time clock
8046 */
8047
8048 static void cpu_clock_event_update(struct perf_event *event)
8049 {
8050 s64 prev;
8051 u64 now;
8052
8053 now = local_clock();
8054 prev = local64_xchg(&event->hw.prev_count, now);
8055 local64_add(now - prev, &event->count);
8056 }
8057
8058 static void cpu_clock_event_start(struct perf_event *event, int flags)
8059 {
8060 local64_set(&event->hw.prev_count, local_clock());
8061 perf_swevent_start_hrtimer(event);
8062 }
8063
8064 static void cpu_clock_event_stop(struct perf_event *event, int flags)
8065 {
8066 perf_swevent_cancel_hrtimer(event);
8067 cpu_clock_event_update(event);
8068 }
8069
8070 static int cpu_clock_event_add(struct perf_event *event, int flags)
8071 {
8072 if (flags & PERF_EF_START)
8073 cpu_clock_event_start(event, flags);
8074 perf_event_update_userpage(event);
8075
8076 return 0;
8077 }
8078
8079 static void cpu_clock_event_del(struct perf_event *event, int flags)
8080 {
8081 cpu_clock_event_stop(event, flags);
8082 }
8083
8084 static void cpu_clock_event_read(struct perf_event *event)
8085 {
8086 cpu_clock_event_update(event);
8087 }
8088
8089 static int cpu_clock_event_init(struct perf_event *event)
8090 {
8091 if (event->attr.type != PERF_TYPE_SOFTWARE)
8092 return -ENOENT;
8093
8094 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
8095 return -ENOENT;
8096
8097 /*
8098 * no branch sampling for software events
8099 */
8100 if (has_branch_stack(event))
8101 return -EOPNOTSUPP;
8102
8103 perf_swevent_init_hrtimer(event);
8104
8105 return 0;
8106 }
8107
8108 static struct pmu perf_cpu_clock = {
8109 .task_ctx_nr = perf_sw_context,
8110
8111 .capabilities = PERF_PMU_CAP_NO_NMI,
8112
8113 .event_init = cpu_clock_event_init,
8114 .add = cpu_clock_event_add,
8115 .del = cpu_clock_event_del,
8116 .start = cpu_clock_event_start,
8117 .stop = cpu_clock_event_stop,
8118 .read = cpu_clock_event_read,
8119 };
8120
8121 /*
8122 * Software event: task time clock
8123 */
8124
8125 static void task_clock_event_update(struct perf_event *event, u64 now)
8126 {
8127 u64 prev;
8128 s64 delta;
8129
8130 prev = local64_xchg(&event->hw.prev_count, now);
8131 delta = now - prev;
8132 local64_add(delta, &event->count);
8133 }
8134
8135 static void task_clock_event_start(struct perf_event *event, int flags)
8136 {
8137 local64_set(&event->hw.prev_count, event->ctx->time);
8138 perf_swevent_start_hrtimer(event);
8139 }
8140
8141 static void task_clock_event_stop(struct perf_event *event, int flags)
8142 {
8143 perf_swevent_cancel_hrtimer(event);
8144 task_clock_event_update(event, event->ctx->time);
8145 }
8146
8147 static int task_clock_event_add(struct perf_event *event, int flags)
8148 {
8149 if (flags & PERF_EF_START)
8150 task_clock_event_start(event, flags);
8151 perf_event_update_userpage(event);
8152
8153 return 0;
8154 }
8155
8156 static void task_clock_event_del(struct perf_event *event, int flags)
8157 {
8158 task_clock_event_stop(event, PERF_EF_UPDATE);
8159 }
8160
8161 static void task_clock_event_read(struct perf_event *event)
8162 {
8163 u64 now = perf_clock();
8164 u64 delta = now - event->ctx->timestamp;
8165 u64 time = event->ctx->time + delta;
8166
8167 task_clock_event_update(event, time);
8168 }
8169
8170 static int task_clock_event_init(struct perf_event *event)
8171 {
8172 if (event->attr.type != PERF_TYPE_SOFTWARE)
8173 return -ENOENT;
8174
8175 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
8176 return -ENOENT;
8177
8178 /*
8179 * no branch sampling for software events
8180 */
8181 if (has_branch_stack(event))
8182 return -EOPNOTSUPP;
8183
8184 perf_swevent_init_hrtimer(event);
8185
8186 return 0;
8187 }
8188
8189 static struct pmu perf_task_clock = {
8190 .task_ctx_nr = perf_sw_context,
8191
8192 .capabilities = PERF_PMU_CAP_NO_NMI,
8193
8194 .event_init = task_clock_event_init,
8195 .add = task_clock_event_add,
8196 .del = task_clock_event_del,
8197 .start = task_clock_event_start,
8198 .stop = task_clock_event_stop,
8199 .read = task_clock_event_read,
8200 };
8201
8202 static void perf_pmu_nop_void(struct pmu *pmu)
8203 {
8204 }
8205
8206 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
8207 {
8208 }
8209
8210 static int perf_pmu_nop_int(struct pmu *pmu)
8211 {
8212 return 0;
8213 }
8214
8215 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
8216
8217 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
8218 {
8219 __this_cpu_write(nop_txn_flags, flags);
8220
8221 if (flags & ~PERF_PMU_TXN_ADD)
8222 return;
8223
8224 perf_pmu_disable(pmu);
8225 }
8226
8227 static int perf_pmu_commit_txn(struct pmu *pmu)
8228 {
8229 unsigned int flags = __this_cpu_read(nop_txn_flags);
8230
8231 __this_cpu_write(nop_txn_flags, 0);
8232
8233 if (flags & ~PERF_PMU_TXN_ADD)
8234 return 0;
8235
8236 perf_pmu_enable(pmu);
8237 return 0;
8238 }
8239
8240 static void perf_pmu_cancel_txn(struct pmu *pmu)
8241 {
8242 unsigned int flags = __this_cpu_read(nop_txn_flags);
8243
8244 __this_cpu_write(nop_txn_flags, 0);
8245
8246 if (flags & ~PERF_PMU_TXN_ADD)
8247 return;
8248
8249 perf_pmu_enable(pmu);
8250 }
8251
8252 static int perf_event_idx_default(struct perf_event *event)
8253 {
8254 return 0;
8255 }
8256
8257 /*
8258 * Ensures all contexts with the same task_ctx_nr have the same
8259 * pmu_cpu_context too.
8260 */
8261 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
8262 {
8263 struct pmu *pmu;
8264
8265 if (ctxn < 0)
8266 return NULL;
8267
8268 list_for_each_entry(pmu, &pmus, entry) {
8269 if (pmu->task_ctx_nr == ctxn)
8270 return pmu->pmu_cpu_context;
8271 }
8272
8273 return NULL;
8274 }
8275
8276 static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
8277 {
8278 int cpu;
8279
8280 for_each_possible_cpu(cpu) {
8281 struct perf_cpu_context *cpuctx;
8282
8283 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
8284
8285 if (cpuctx->unique_pmu == old_pmu)
8286 cpuctx->unique_pmu = pmu;
8287 }
8288 }
8289
8290 static void free_pmu_context(struct pmu *pmu)
8291 {
8292 struct pmu *i;
8293
8294 mutex_lock(&pmus_lock);
8295 /*
8296 * Like a real lame refcount.
8297 */
8298 list_for_each_entry(i, &pmus, entry) {
8299 if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
8300 update_pmu_context(i, pmu);
8301 goto out;
8302 }
8303 }
8304
8305 free_percpu(pmu->pmu_cpu_context);
8306 out:
8307 mutex_unlock(&pmus_lock);
8308 }
8309
8310 /*
8311 * Let userspace know that this PMU supports address range filtering:
8312 */
8313 static ssize_t nr_addr_filters_show(struct device *dev,
8314 struct device_attribute *attr,
8315 char *page)
8316 {
8317 struct pmu *pmu = dev_get_drvdata(dev);
8318
8319 return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
8320 }
8321 DEVICE_ATTR_RO(nr_addr_filters);
8322
8323 static struct idr pmu_idr;
8324
8325 static ssize_t
8326 type_show(struct device *dev, struct device_attribute *attr, char *page)
8327 {
8328 struct pmu *pmu = dev_get_drvdata(dev);
8329
8330 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
8331 }
8332 static DEVICE_ATTR_RO(type);
8333
8334 static ssize_t
8335 perf_event_mux_interval_ms_show(struct device *dev,
8336 struct device_attribute *attr,
8337 char *page)
8338 {
8339 struct pmu *pmu = dev_get_drvdata(dev);
8340
8341 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
8342 }
8343
8344 static DEFINE_MUTEX(mux_interval_mutex);
8345
8346 static ssize_t
8347 perf_event_mux_interval_ms_store(struct device *dev,
8348 struct device_attribute *attr,
8349 const char *buf, size_t count)
8350 {
8351 struct pmu *pmu = dev_get_drvdata(dev);
8352 int timer, cpu, ret;
8353
8354 ret = kstrtoint(buf, 0, &timer);
8355 if (ret)
8356 return ret;
8357
8358 if (timer < 1)
8359 return -EINVAL;
8360
8361 /* same value, noting to do */
8362 if (timer == pmu->hrtimer_interval_ms)
8363 return count;
8364
8365 mutex_lock(&mux_interval_mutex);
8366 pmu->hrtimer_interval_ms = timer;
8367
8368 /* update all cpuctx for this PMU */
8369 get_online_cpus();
8370 for_each_online_cpu(cpu) {
8371 struct perf_cpu_context *cpuctx;
8372 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
8373 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
8374
8375 cpu_function_call(cpu,
8376 (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
8377 }
8378 put_online_cpus();
8379 mutex_unlock(&mux_interval_mutex);
8380
8381 return count;
8382 }
8383 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
8384
8385 static struct attribute *pmu_dev_attrs[] = {
8386 &dev_attr_type.attr,
8387 &dev_attr_perf_event_mux_interval_ms.attr,
8388 NULL,
8389 };
8390 ATTRIBUTE_GROUPS(pmu_dev);
8391
8392 static int pmu_bus_running;
8393 static struct bus_type pmu_bus = {
8394 .name = "event_source",
8395 .dev_groups = pmu_dev_groups,
8396 };
8397
8398 static void pmu_dev_release(struct device *dev)
8399 {
8400 kfree(dev);
8401 }
8402
8403 static int pmu_dev_alloc(struct pmu *pmu)
8404 {
8405 int ret = -ENOMEM;
8406
8407 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
8408 if (!pmu->dev)
8409 goto out;
8410
8411 pmu->dev->groups = pmu->attr_groups;
8412 device_initialize(pmu->dev);
8413 ret = dev_set_name(pmu->dev, "%s", pmu->name);
8414 if (ret)
8415 goto free_dev;
8416
8417 dev_set_drvdata(pmu->dev, pmu);
8418 pmu->dev->bus = &pmu_bus;
8419 pmu->dev->release = pmu_dev_release;
8420 ret = device_add(pmu->dev);
8421 if (ret)
8422 goto free_dev;
8423
8424 /* For PMUs with address filters, throw in an extra attribute: */
8425 if (pmu->nr_addr_filters)
8426 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
8427
8428 if (ret)
8429 goto del_dev;
8430
8431 out:
8432 return ret;
8433
8434 del_dev:
8435 device_del(pmu->dev);
8436
8437 free_dev:
8438 put_device(pmu->dev);
8439 goto out;
8440 }
8441
8442 static struct lock_class_key cpuctx_mutex;
8443 static struct lock_class_key cpuctx_lock;
8444
8445 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
8446 {
8447 int cpu, ret;
8448
8449 mutex_lock(&pmus_lock);
8450 ret = -ENOMEM;
8451 pmu->pmu_disable_count = alloc_percpu(int);
8452 if (!pmu->pmu_disable_count)
8453 goto unlock;
8454
8455 pmu->type = -1;
8456 if (!name)
8457 goto skip_type;
8458 pmu->name = name;
8459
8460 if (type < 0) {
8461 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
8462 if (type < 0) {
8463 ret = type;
8464 goto free_pdc;
8465 }
8466 }
8467 pmu->type = type;
8468
8469 if (pmu_bus_running) {
8470 ret = pmu_dev_alloc(pmu);
8471 if (ret)
8472 goto free_idr;
8473 }
8474
8475 skip_type:
8476 if (pmu->task_ctx_nr == perf_hw_context) {
8477 static int hw_context_taken = 0;
8478
8479 /*
8480 * Other than systems with heterogeneous CPUs, it never makes
8481 * sense for two PMUs to share perf_hw_context. PMUs which are
8482 * uncore must use perf_invalid_context.
8483 */
8484 if (WARN_ON_ONCE(hw_context_taken &&
8485 !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
8486 pmu->task_ctx_nr = perf_invalid_context;
8487
8488 hw_context_taken = 1;
8489 }
8490
8491 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
8492 if (pmu->pmu_cpu_context)
8493 goto got_cpu_context;
8494
8495 ret = -ENOMEM;
8496 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
8497 if (!pmu->pmu_cpu_context)
8498 goto free_dev;
8499
8500 for_each_possible_cpu(cpu) {
8501 struct perf_cpu_context *cpuctx;
8502
8503 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
8504 __perf_event_init_context(&cpuctx->ctx);
8505 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
8506 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
8507 cpuctx->ctx.pmu = pmu;
8508
8509 __perf_mux_hrtimer_init(cpuctx, cpu);
8510
8511 cpuctx->unique_pmu = pmu;
8512 }
8513
8514 got_cpu_context:
8515 if (!pmu->start_txn) {
8516 if (pmu->pmu_enable) {
8517 /*
8518 * If we have pmu_enable/pmu_disable calls, install
8519 * transaction stubs that use that to try and batch
8520 * hardware accesses.
8521 */
8522 pmu->start_txn = perf_pmu_start_txn;
8523 pmu->commit_txn = perf_pmu_commit_txn;
8524 pmu->cancel_txn = perf_pmu_cancel_txn;
8525 } else {
8526 pmu->start_txn = perf_pmu_nop_txn;
8527 pmu->commit_txn = perf_pmu_nop_int;
8528 pmu->cancel_txn = perf_pmu_nop_void;
8529 }
8530 }
8531
8532 if (!pmu->pmu_enable) {
8533 pmu->pmu_enable = perf_pmu_nop_void;
8534 pmu->pmu_disable = perf_pmu_nop_void;
8535 }
8536
8537 if (!pmu->event_idx)
8538 pmu->event_idx = perf_event_idx_default;
8539
8540 list_add_rcu(&pmu->entry, &pmus);
8541 atomic_set(&pmu->exclusive_cnt, 0);
8542 ret = 0;
8543 unlock:
8544 mutex_unlock(&pmus_lock);
8545
8546 return ret;
8547
8548 free_dev:
8549 device_del(pmu->dev);
8550 put_device(pmu->dev);
8551
8552 free_idr:
8553 if (pmu->type >= PERF_TYPE_MAX)
8554 idr_remove(&pmu_idr, pmu->type);
8555
8556 free_pdc:
8557 free_percpu(pmu->pmu_disable_count);
8558 goto unlock;
8559 }
8560 EXPORT_SYMBOL_GPL(perf_pmu_register);
8561
8562 void perf_pmu_unregister(struct pmu *pmu)
8563 {
8564 mutex_lock(&pmus_lock);
8565 list_del_rcu(&pmu->entry);
8566 mutex_unlock(&pmus_lock);
8567
8568 /*
8569 * We dereference the pmu list under both SRCU and regular RCU, so
8570 * synchronize against both of those.
8571 */
8572 synchronize_srcu(&pmus_srcu);
8573 synchronize_rcu();
8574
8575 free_percpu(pmu->pmu_disable_count);
8576 if (pmu->type >= PERF_TYPE_MAX)
8577 idr_remove(&pmu_idr, pmu->type);
8578 if (pmu->nr_addr_filters)
8579 device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
8580 device_del(pmu->dev);
8581 put_device(pmu->dev);
8582 free_pmu_context(pmu);
8583 }
8584 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
8585
8586 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
8587 {
8588 struct perf_event_context *ctx = NULL;
8589 int ret;
8590
8591 if (!try_module_get(pmu->module))
8592 return -ENODEV;
8593
8594 if (event->group_leader != event) {
8595 /*
8596 * This ctx->mutex can nest when we're called through
8597 * inheritance. See the perf_event_ctx_lock_nested() comment.
8598 */
8599 ctx = perf_event_ctx_lock_nested(event->group_leader,
8600 SINGLE_DEPTH_NESTING);
8601 BUG_ON(!ctx);
8602 }
8603
8604 event->pmu = pmu;
8605 ret = pmu->event_init(event);
8606
8607 if (ctx)
8608 perf_event_ctx_unlock(event->group_leader, ctx);
8609
8610 if (ret)
8611 module_put(pmu->module);
8612
8613 return ret;
8614 }
8615
8616 static struct pmu *perf_init_event(struct perf_event *event)
8617 {
8618 struct pmu *pmu = NULL;
8619 int idx;
8620 int ret;
8621
8622 idx = srcu_read_lock(&pmus_srcu);
8623
8624 rcu_read_lock();
8625 pmu = idr_find(&pmu_idr, event->attr.type);
8626 rcu_read_unlock();
8627 if (pmu) {
8628 ret = perf_try_init_event(pmu, event);
8629 if (ret)
8630 pmu = ERR_PTR(ret);
8631 goto unlock;
8632 }
8633
8634 list_for_each_entry_rcu(pmu, &pmus, entry) {
8635 ret = perf_try_init_event(pmu, event);
8636 if (!ret)
8637 goto unlock;
8638
8639 if (ret != -ENOENT) {
8640 pmu = ERR_PTR(ret);
8641 goto unlock;
8642 }
8643 }
8644 pmu = ERR_PTR(-ENOENT);
8645 unlock:
8646 srcu_read_unlock(&pmus_srcu, idx);
8647
8648 return pmu;
8649 }
8650
8651 static void account_event_cpu(struct perf_event *event, int cpu)
8652 {
8653 if (event->parent)
8654 return;
8655
8656 if (is_cgroup_event(event))
8657 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
8658 }
8659
8660 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
8661 static void account_freq_event_nohz(void)
8662 {
8663 #ifdef CONFIG_NO_HZ_FULL
8664 /* Lock so we don't race with concurrent unaccount */
8665 spin_lock(&nr_freq_lock);
8666 if (atomic_inc_return(&nr_freq_events) == 1)
8667 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
8668 spin_unlock(&nr_freq_lock);
8669 #endif
8670 }
8671
8672 static void account_freq_event(void)
8673 {
8674 if (tick_nohz_full_enabled())
8675 account_freq_event_nohz();
8676 else
8677 atomic_inc(&nr_freq_events);
8678 }
8679
8680
8681 static void account_event(struct perf_event *event)
8682 {
8683 bool inc = false;
8684
8685 if (event->parent)
8686 return;
8687
8688 if (event->attach_state & PERF_ATTACH_TASK)
8689 inc = true;
8690 if (event->attr.mmap || event->attr.mmap_data)
8691 atomic_inc(&nr_mmap_events);
8692 if (event->attr.comm)
8693 atomic_inc(&nr_comm_events);
8694 if (event->attr.task)
8695 atomic_inc(&nr_task_events);
8696 if (event->attr.freq)
8697 account_freq_event();
8698 if (event->attr.context_switch) {
8699 atomic_inc(&nr_switch_events);
8700 inc = true;
8701 }
8702 if (has_branch_stack(event))
8703 inc = true;
8704 if (is_cgroup_event(event))
8705 inc = true;
8706
8707 if (inc) {
8708 if (atomic_inc_not_zero(&perf_sched_count))
8709 goto enabled;
8710
8711 mutex_lock(&perf_sched_mutex);
8712 if (!atomic_read(&perf_sched_count)) {
8713 static_branch_enable(&perf_sched_events);
8714 /*
8715 * Guarantee that all CPUs observe they key change and
8716 * call the perf scheduling hooks before proceeding to
8717 * install events that need them.
8718 */
8719 synchronize_sched();
8720 }
8721 /*
8722 * Now that we have waited for the sync_sched(), allow further
8723 * increments to by-pass the mutex.
8724 */
8725 atomic_inc(&perf_sched_count);
8726 mutex_unlock(&perf_sched_mutex);
8727 }
8728 enabled:
8729
8730 account_event_cpu(event, event->cpu);
8731 }
8732
8733 /*
8734 * Allocate and initialize a event structure
8735 */
8736 static struct perf_event *
8737 perf_event_alloc(struct perf_event_attr *attr, int cpu,
8738 struct task_struct *task,
8739 struct perf_event *group_leader,
8740 struct perf_event *parent_event,
8741 perf_overflow_handler_t overflow_handler,
8742 void *context, int cgroup_fd)
8743 {
8744 struct pmu *pmu;
8745 struct perf_event *event;
8746 struct hw_perf_event *hwc;
8747 long err = -EINVAL;
8748
8749 if ((unsigned)cpu >= nr_cpu_ids) {
8750 if (!task || cpu != -1)
8751 return ERR_PTR(-EINVAL);
8752 }
8753
8754 event = kzalloc(sizeof(*event), GFP_KERNEL);
8755 if (!event)
8756 return ERR_PTR(-ENOMEM);
8757
8758 /*
8759 * Single events are their own group leaders, with an
8760 * empty sibling list:
8761 */
8762 if (!group_leader)
8763 group_leader = event;
8764
8765 mutex_init(&event->child_mutex);
8766 INIT_LIST_HEAD(&event->child_list);
8767
8768 INIT_LIST_HEAD(&event->group_entry);
8769 INIT_LIST_HEAD(&event->event_entry);
8770 INIT_LIST_HEAD(&event->sibling_list);
8771 INIT_LIST_HEAD(&event->rb_entry);
8772 INIT_LIST_HEAD(&event->active_entry);
8773 INIT_LIST_HEAD(&event->addr_filters.list);
8774 INIT_HLIST_NODE(&event->hlist_entry);
8775
8776
8777 init_waitqueue_head(&event->waitq);
8778 init_irq_work(&event->pending, perf_pending_event);
8779
8780 mutex_init(&event->mmap_mutex);
8781 raw_spin_lock_init(&event->addr_filters.lock);
8782
8783 atomic_long_set(&event->refcount, 1);
8784 event->cpu = cpu;
8785 event->attr = *attr;
8786 event->group_leader = group_leader;
8787 event->pmu = NULL;
8788 event->oncpu = -1;
8789
8790 event->parent = parent_event;
8791
8792 event->ns = get_pid_ns(task_active_pid_ns(current));
8793 event->id = atomic64_inc_return(&perf_event_id);
8794
8795 event->state = PERF_EVENT_STATE_INACTIVE;
8796
8797 if (task) {
8798 event->attach_state = PERF_ATTACH_TASK;
8799 /*
8800 * XXX pmu::event_init needs to know what task to account to
8801 * and we cannot use the ctx information because we need the
8802 * pmu before we get a ctx.
8803 */
8804 event->hw.target = task;
8805 }
8806
8807 event->clock = &local_clock;
8808 if (parent_event)
8809 event->clock = parent_event->clock;
8810
8811 if (!overflow_handler && parent_event) {
8812 overflow_handler = parent_event->overflow_handler;
8813 context = parent_event->overflow_handler_context;
8814 }
8815
8816 if (overflow_handler) {
8817 event->overflow_handler = overflow_handler;
8818 event->overflow_handler_context = context;
8819 } else if (is_write_backward(event)){
8820 event->overflow_handler = perf_event_output_backward;
8821 event->overflow_handler_context = NULL;
8822 } else {
8823 event->overflow_handler = perf_event_output_forward;
8824 event->overflow_handler_context = NULL;
8825 }
8826
8827 perf_event__state_init(event);
8828
8829 pmu = NULL;
8830
8831 hwc = &event->hw;
8832 hwc->sample_period = attr->sample_period;
8833 if (attr->freq && attr->sample_freq)
8834 hwc->sample_period = 1;
8835 hwc->last_period = hwc->sample_period;
8836
8837 local64_set(&hwc->period_left, hwc->sample_period);
8838
8839 /*
8840 * we currently do not support PERF_FORMAT_GROUP on inherited events
8841 */
8842 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
8843 goto err_ns;
8844
8845 if (!has_branch_stack(event))
8846 event->attr.branch_sample_type = 0;
8847
8848 if (cgroup_fd != -1) {
8849 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
8850 if (err)
8851 goto err_ns;
8852 }
8853
8854 pmu = perf_init_event(event);
8855 if (!pmu)
8856 goto err_ns;
8857 else if (IS_ERR(pmu)) {
8858 err = PTR_ERR(pmu);
8859 goto err_ns;
8860 }
8861
8862 err = exclusive_event_init(event);
8863 if (err)
8864 goto err_pmu;
8865
8866 if (has_addr_filter(event)) {
8867 event->addr_filters_offs = kcalloc(pmu->nr_addr_filters,
8868 sizeof(unsigned long),
8869 GFP_KERNEL);
8870 if (!event->addr_filters_offs)
8871 goto err_per_task;
8872
8873 /* force hw sync on the address filters */
8874 event->addr_filters_gen = 1;
8875 }
8876
8877 if (!event->parent) {
8878 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
8879 err = get_callchain_buffers();
8880 if (err)
8881 goto err_addr_filters;
8882 }
8883 }
8884
8885 /* symmetric to unaccount_event() in _free_event() */
8886 account_event(event);
8887
8888 return event;
8889
8890 err_addr_filters:
8891 kfree(event->addr_filters_offs);
8892
8893 err_per_task:
8894 exclusive_event_destroy(event);
8895
8896 err_pmu:
8897 if (event->destroy)
8898 event->destroy(event);
8899 module_put(pmu->module);
8900 err_ns:
8901 if (is_cgroup_event(event))
8902 perf_detach_cgroup(event);
8903 if (event->ns)
8904 put_pid_ns(event->ns);
8905 kfree(event);
8906
8907 return ERR_PTR(err);
8908 }
8909
8910 static int perf_copy_attr(struct perf_event_attr __user *uattr,
8911 struct perf_event_attr *attr)
8912 {
8913 u32 size;
8914 int ret;
8915
8916 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
8917 return -EFAULT;
8918
8919 /*
8920 * zero the full structure, so that a short copy will be nice.
8921 */
8922 memset(attr, 0, sizeof(*attr));
8923
8924 ret = get_user(size, &uattr->size);
8925 if (ret)
8926 return ret;
8927
8928 if (size > PAGE_SIZE) /* silly large */
8929 goto err_size;
8930
8931 if (!size) /* abi compat */
8932 size = PERF_ATTR_SIZE_VER0;
8933
8934 if (size < PERF_ATTR_SIZE_VER0)
8935 goto err_size;
8936
8937 /*
8938 * If we're handed a bigger struct than we know of,
8939 * ensure all the unknown bits are 0 - i.e. new
8940 * user-space does not rely on any kernel feature
8941 * extensions we dont know about yet.
8942 */
8943 if (size > sizeof(*attr)) {
8944 unsigned char __user *addr;
8945 unsigned char __user *end;
8946 unsigned char val;
8947
8948 addr = (void __user *)uattr + sizeof(*attr);
8949 end = (void __user *)uattr + size;
8950
8951 for (; addr < end; addr++) {
8952 ret = get_user(val, addr);
8953 if (ret)
8954 return ret;
8955 if (val)
8956 goto err_size;
8957 }
8958 size = sizeof(*attr);
8959 }
8960
8961 ret = copy_from_user(attr, uattr, size);
8962 if (ret)
8963 return -EFAULT;
8964
8965 if (attr->__reserved_1)
8966 return -EINVAL;
8967
8968 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
8969 return -EINVAL;
8970
8971 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
8972 return -EINVAL;
8973
8974 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
8975 u64 mask = attr->branch_sample_type;
8976
8977 /* only using defined bits */
8978 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
8979 return -EINVAL;
8980
8981 /* at least one branch bit must be set */
8982 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
8983 return -EINVAL;
8984
8985 /* propagate priv level, when not set for branch */
8986 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
8987
8988 /* exclude_kernel checked on syscall entry */
8989 if (!attr->exclude_kernel)
8990 mask |= PERF_SAMPLE_BRANCH_KERNEL;
8991
8992 if (!attr->exclude_user)
8993 mask |= PERF_SAMPLE_BRANCH_USER;
8994
8995 if (!attr->exclude_hv)
8996 mask |= PERF_SAMPLE_BRANCH_HV;
8997 /*
8998 * adjust user setting (for HW filter setup)
8999 */
9000 attr->branch_sample_type = mask;
9001 }
9002 /* privileged levels capture (kernel, hv): check permissions */
9003 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
9004 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9005 return -EACCES;
9006 }
9007
9008 if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
9009 ret = perf_reg_validate(attr->sample_regs_user);
9010 if (ret)
9011 return ret;
9012 }
9013
9014 if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
9015 if (!arch_perf_have_user_stack_dump())
9016 return -ENOSYS;
9017
9018 /*
9019 * We have __u32 type for the size, but so far
9020 * we can only use __u16 as maximum due to the
9021 * __u16 sample size limit.
9022 */
9023 if (attr->sample_stack_user >= USHRT_MAX)
9024 ret = -EINVAL;
9025 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
9026 ret = -EINVAL;
9027 }
9028
9029 if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
9030 ret = perf_reg_validate(attr->sample_regs_intr);
9031 out:
9032 return ret;
9033
9034 err_size:
9035 put_user(sizeof(*attr), &uattr->size);
9036 ret = -E2BIG;
9037 goto out;
9038 }
9039
9040 static int
9041 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
9042 {
9043 struct ring_buffer *rb = NULL;
9044 int ret = -EINVAL;
9045
9046 if (!output_event)
9047 goto set;
9048
9049 /* don't allow circular references */
9050 if (event == output_event)
9051 goto out;
9052
9053 /*
9054 * Don't allow cross-cpu buffers
9055 */
9056 if (output_event->cpu != event->cpu)
9057 goto out;
9058
9059 /*
9060 * If its not a per-cpu rb, it must be the same task.
9061 */
9062 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
9063 goto out;
9064
9065 /*
9066 * Mixing clocks in the same buffer is trouble you don't need.
9067 */
9068 if (output_event->clock != event->clock)
9069 goto out;
9070
9071 /*
9072 * Either writing ring buffer from beginning or from end.
9073 * Mixing is not allowed.
9074 */
9075 if (is_write_backward(output_event) != is_write_backward(event))
9076 goto out;
9077
9078 /*
9079 * If both events generate aux data, they must be on the same PMU
9080 */
9081 if (has_aux(event) && has_aux(output_event) &&
9082 event->pmu != output_event->pmu)
9083 goto out;
9084
9085 set:
9086 mutex_lock(&event->mmap_mutex);
9087 /* Can't redirect output if we've got an active mmap() */
9088 if (atomic_read(&event->mmap_count))
9089 goto unlock;
9090
9091 if (output_event) {
9092 /* get the rb we want to redirect to */
9093 rb = ring_buffer_get(output_event);
9094 if (!rb)
9095 goto unlock;
9096 }
9097
9098 ring_buffer_attach(event, rb);
9099
9100 ret = 0;
9101 unlock:
9102 mutex_unlock(&event->mmap_mutex);
9103
9104 out:
9105 return ret;
9106 }
9107
9108 static void mutex_lock_double(struct mutex *a, struct mutex *b)
9109 {
9110 if (b < a)
9111 swap(a, b);
9112
9113 mutex_lock(a);
9114 mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
9115 }
9116
9117 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
9118 {
9119 bool nmi_safe = false;
9120
9121 switch (clk_id) {
9122 case CLOCK_MONOTONIC:
9123 event->clock = &ktime_get_mono_fast_ns;
9124 nmi_safe = true;
9125 break;
9126
9127 case CLOCK_MONOTONIC_RAW:
9128 event->clock = &ktime_get_raw_fast_ns;
9129 nmi_safe = true;
9130 break;
9131
9132 case CLOCK_REALTIME:
9133 event->clock = &ktime_get_real_ns;
9134 break;
9135
9136 case CLOCK_BOOTTIME:
9137 event->clock = &ktime_get_boot_ns;
9138 break;
9139
9140 case CLOCK_TAI:
9141 event->clock = &ktime_get_tai_ns;
9142 break;
9143
9144 default:
9145 return -EINVAL;
9146 }
9147
9148 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
9149 return -EINVAL;
9150
9151 return 0;
9152 }
9153
9154 /**
9155 * sys_perf_event_open - open a performance event, associate it to a task/cpu
9156 *
9157 * @attr_uptr: event_id type attributes for monitoring/sampling
9158 * @pid: target pid
9159 * @cpu: target cpu
9160 * @group_fd: group leader event fd
9161 */
9162 SYSCALL_DEFINE5(perf_event_open,
9163 struct perf_event_attr __user *, attr_uptr,
9164 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
9165 {
9166 struct perf_event *group_leader = NULL, *output_event = NULL;
9167 struct perf_event *event, *sibling;
9168 struct perf_event_attr attr;
9169 struct perf_event_context *ctx, *uninitialized_var(gctx);
9170 struct file *event_file = NULL;
9171 struct fd group = {NULL, 0};
9172 struct task_struct *task = NULL;
9173 struct pmu *pmu;
9174 int event_fd;
9175 int move_group = 0;
9176 int err;
9177 int f_flags = O_RDWR;
9178 int cgroup_fd = -1;
9179
9180 /* for future expandability... */
9181 if (flags & ~PERF_FLAG_ALL)
9182 return -EINVAL;
9183
9184 err = perf_copy_attr(attr_uptr, &attr);
9185 if (err)
9186 return err;
9187
9188 if (!attr.exclude_kernel) {
9189 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9190 return -EACCES;
9191 }
9192
9193 if (attr.freq) {
9194 if (attr.sample_freq > sysctl_perf_event_sample_rate)
9195 return -EINVAL;
9196 } else {
9197 if (attr.sample_period & (1ULL << 63))
9198 return -EINVAL;
9199 }
9200
9201 /*
9202 * In cgroup mode, the pid argument is used to pass the fd
9203 * opened to the cgroup directory in cgroupfs. The cpu argument
9204 * designates the cpu on which to monitor threads from that
9205 * cgroup.
9206 */
9207 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
9208 return -EINVAL;
9209
9210 if (flags & PERF_FLAG_FD_CLOEXEC)
9211 f_flags |= O_CLOEXEC;
9212
9213 event_fd = get_unused_fd_flags(f_flags);
9214 if (event_fd < 0)
9215 return event_fd;
9216
9217 if (group_fd != -1) {
9218 err = perf_fget_light(group_fd, &group);
9219 if (err)
9220 goto err_fd;
9221 group_leader = group.file->private_data;
9222 if (flags & PERF_FLAG_FD_OUTPUT)
9223 output_event = group_leader;
9224 if (flags & PERF_FLAG_FD_NO_GROUP)
9225 group_leader = NULL;
9226 }
9227
9228 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
9229 task = find_lively_task_by_vpid(pid);
9230 if (IS_ERR(task)) {
9231 err = PTR_ERR(task);
9232 goto err_group_fd;
9233 }
9234 }
9235
9236 if (task && group_leader &&
9237 group_leader->attr.inherit != attr.inherit) {
9238 err = -EINVAL;
9239 goto err_task;
9240 }
9241
9242 get_online_cpus();
9243
9244 if (task) {
9245 err = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
9246 if (err)
9247 goto err_cpus;
9248
9249 /*
9250 * Reuse ptrace permission checks for now.
9251 *
9252 * We must hold cred_guard_mutex across this and any potential
9253 * perf_install_in_context() call for this new event to
9254 * serialize against exec() altering our credentials (and the
9255 * perf_event_exit_task() that could imply).
9256 */
9257 err = -EACCES;
9258 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
9259 goto err_cred;
9260 }
9261
9262 if (flags & PERF_FLAG_PID_CGROUP)
9263 cgroup_fd = pid;
9264
9265 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
9266 NULL, NULL, cgroup_fd);
9267 if (IS_ERR(event)) {
9268 err = PTR_ERR(event);
9269 goto err_cred;
9270 }
9271
9272 if (is_sampling_event(event)) {
9273 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
9274 err = -ENOTSUPP;
9275 goto err_alloc;
9276 }
9277 }
9278
9279 /*
9280 * Special case software events and allow them to be part of
9281 * any hardware group.
9282 */
9283 pmu = event->pmu;
9284
9285 if (attr.use_clockid) {
9286 err = perf_event_set_clock(event, attr.clockid);
9287 if (err)
9288 goto err_alloc;
9289 }
9290
9291 if (group_leader &&
9292 (is_software_event(event) != is_software_event(group_leader))) {
9293 if (is_software_event(event)) {
9294 /*
9295 * If event and group_leader are not both a software
9296 * event, and event is, then group leader is not.
9297 *
9298 * Allow the addition of software events to !software
9299 * groups, this is safe because software events never
9300 * fail to schedule.
9301 */
9302 pmu = group_leader->pmu;
9303 } else if (is_software_event(group_leader) &&
9304 (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
9305 /*
9306 * In case the group is a pure software group, and we
9307 * try to add a hardware event, move the whole group to
9308 * the hardware context.
9309 */
9310 move_group = 1;
9311 }
9312 }
9313
9314 /*
9315 * Get the target context (task or percpu):
9316 */
9317 ctx = find_get_context(pmu, task, event);
9318 if (IS_ERR(ctx)) {
9319 err = PTR_ERR(ctx);
9320 goto err_alloc;
9321 }
9322
9323 if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
9324 err = -EBUSY;
9325 goto err_context;
9326 }
9327
9328 /*
9329 * Look up the group leader (we will attach this event to it):
9330 */
9331 if (group_leader) {
9332 err = -EINVAL;
9333
9334 /*
9335 * Do not allow a recursive hierarchy (this new sibling
9336 * becoming part of another group-sibling):
9337 */
9338 if (group_leader->group_leader != group_leader)
9339 goto err_context;
9340
9341 /* All events in a group should have the same clock */
9342 if (group_leader->clock != event->clock)
9343 goto err_context;
9344
9345 /*
9346 * Do not allow to attach to a group in a different
9347 * task or CPU context:
9348 */
9349 if (move_group) {
9350 /*
9351 * Make sure we're both on the same task, or both
9352 * per-cpu events.
9353 */
9354 if (group_leader->ctx->task != ctx->task)
9355 goto err_context;
9356
9357 /*
9358 * Make sure we're both events for the same CPU;
9359 * grouping events for different CPUs is broken; since
9360 * you can never concurrently schedule them anyhow.
9361 */
9362 if (group_leader->cpu != event->cpu)
9363 goto err_context;
9364 } else {
9365 if (group_leader->ctx != ctx)
9366 goto err_context;
9367 }
9368
9369 /*
9370 * Only a group leader can be exclusive or pinned
9371 */
9372 if (attr.exclusive || attr.pinned)
9373 goto err_context;
9374 }
9375
9376 if (output_event) {
9377 err = perf_event_set_output(event, output_event);
9378 if (err)
9379 goto err_context;
9380 }
9381
9382 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
9383 f_flags);
9384 if (IS_ERR(event_file)) {
9385 err = PTR_ERR(event_file);
9386 event_file = NULL;
9387 goto err_context;
9388 }
9389
9390 if (move_group) {
9391 gctx = group_leader->ctx;
9392 mutex_lock_double(&gctx->mutex, &ctx->mutex);
9393 if (gctx->task == TASK_TOMBSTONE) {
9394 err = -ESRCH;
9395 goto err_locked;
9396 }
9397 } else {
9398 mutex_lock(&ctx->mutex);
9399 }
9400
9401 if (ctx->task == TASK_TOMBSTONE) {
9402 err = -ESRCH;
9403 goto err_locked;
9404 }
9405
9406 if (!perf_event_validate_size(event)) {
9407 err = -E2BIG;
9408 goto err_locked;
9409 }
9410
9411 /*
9412 * Must be under the same ctx::mutex as perf_install_in_context(),
9413 * because we need to serialize with concurrent event creation.
9414 */
9415 if (!exclusive_event_installable(event, ctx)) {
9416 /* exclusive and group stuff are assumed mutually exclusive */
9417 WARN_ON_ONCE(move_group);
9418
9419 err = -EBUSY;
9420 goto err_locked;
9421 }
9422
9423 WARN_ON_ONCE(ctx->parent_ctx);
9424
9425 /*
9426 * This is the point on no return; we cannot fail hereafter. This is
9427 * where we start modifying current state.
9428 */
9429
9430 if (move_group) {
9431 /*
9432 * See perf_event_ctx_lock() for comments on the details
9433 * of swizzling perf_event::ctx.
9434 */
9435 perf_remove_from_context(group_leader, 0);
9436
9437 list_for_each_entry(sibling, &group_leader->sibling_list,
9438 group_entry) {
9439 perf_remove_from_context(sibling, 0);
9440 put_ctx(gctx);
9441 }
9442
9443 /*
9444 * Wait for everybody to stop referencing the events through
9445 * the old lists, before installing it on new lists.
9446 */
9447 synchronize_rcu();
9448
9449 /*
9450 * Install the group siblings before the group leader.
9451 *
9452 * Because a group leader will try and install the entire group
9453 * (through the sibling list, which is still in-tact), we can
9454 * end up with siblings installed in the wrong context.
9455 *
9456 * By installing siblings first we NO-OP because they're not
9457 * reachable through the group lists.
9458 */
9459 list_for_each_entry(sibling, &group_leader->sibling_list,
9460 group_entry) {
9461 perf_event__state_init(sibling);
9462 perf_install_in_context(ctx, sibling, sibling->cpu);
9463 get_ctx(ctx);
9464 }
9465
9466 /*
9467 * Removing from the context ends up with disabled
9468 * event. What we want here is event in the initial
9469 * startup state, ready to be add into new context.
9470 */
9471 perf_event__state_init(group_leader);
9472 perf_install_in_context(ctx, group_leader, group_leader->cpu);
9473 get_ctx(ctx);
9474
9475 /*
9476 * Now that all events are installed in @ctx, nothing
9477 * references @gctx anymore, so drop the last reference we have
9478 * on it.
9479 */
9480 put_ctx(gctx);
9481 }
9482
9483 /*
9484 * Precalculate sample_data sizes; do while holding ctx::mutex such
9485 * that we're serialized against further additions and before
9486 * perf_install_in_context() which is the point the event is active and
9487 * can use these values.
9488 */
9489 perf_event__header_size(event);
9490 perf_event__id_header_size(event);
9491
9492 event->owner = current;
9493
9494 perf_install_in_context(ctx, event, event->cpu);
9495 perf_unpin_context(ctx);
9496
9497 if (move_group)
9498 mutex_unlock(&gctx->mutex);
9499 mutex_unlock(&ctx->mutex);
9500
9501 if (task) {
9502 mutex_unlock(&task->signal->cred_guard_mutex);
9503 put_task_struct(task);
9504 }
9505
9506 put_online_cpus();
9507
9508 mutex_lock(&current->perf_event_mutex);
9509 list_add_tail(&event->owner_entry, &current->perf_event_list);
9510 mutex_unlock(&current->perf_event_mutex);
9511
9512 /*
9513 * Drop the reference on the group_event after placing the
9514 * new event on the sibling_list. This ensures destruction
9515 * of the group leader will find the pointer to itself in
9516 * perf_group_detach().
9517 */
9518 fdput(group);
9519 fd_install(event_fd, event_file);
9520 return event_fd;
9521
9522 err_locked:
9523 if (move_group)
9524 mutex_unlock(&gctx->mutex);
9525 mutex_unlock(&ctx->mutex);
9526 /* err_file: */
9527 fput(event_file);
9528 err_context:
9529 perf_unpin_context(ctx);
9530 put_ctx(ctx);
9531 err_alloc:
9532 /*
9533 * If event_file is set, the fput() above will have called ->release()
9534 * and that will take care of freeing the event.
9535 */
9536 if (!event_file)
9537 free_event(event);
9538 err_cred:
9539 if (task)
9540 mutex_unlock(&task->signal->cred_guard_mutex);
9541 err_cpus:
9542 put_online_cpus();
9543 err_task:
9544 if (task)
9545 put_task_struct(task);
9546 err_group_fd:
9547 fdput(group);
9548 err_fd:
9549 put_unused_fd(event_fd);
9550 return err;
9551 }
9552
9553 /**
9554 * perf_event_create_kernel_counter
9555 *
9556 * @attr: attributes of the counter to create
9557 * @cpu: cpu in which the counter is bound
9558 * @task: task to profile (NULL for percpu)
9559 */
9560 struct perf_event *
9561 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
9562 struct task_struct *task,
9563 perf_overflow_handler_t overflow_handler,
9564 void *context)
9565 {
9566 struct perf_event_context *ctx;
9567 struct perf_event *event;
9568 int err;
9569
9570 /*
9571 * Get the target context (task or percpu):
9572 */
9573
9574 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
9575 overflow_handler, context, -1);
9576 if (IS_ERR(event)) {
9577 err = PTR_ERR(event);
9578 goto err;
9579 }
9580
9581 /* Mark owner so we could distinguish it from user events. */
9582 event->owner = TASK_TOMBSTONE;
9583
9584 ctx = find_get_context(event->pmu, task, event);
9585 if (IS_ERR(ctx)) {
9586 err = PTR_ERR(ctx);
9587 goto err_free;
9588 }
9589
9590 WARN_ON_ONCE(ctx->parent_ctx);
9591 mutex_lock(&ctx->mutex);
9592 if (ctx->task == TASK_TOMBSTONE) {
9593 err = -ESRCH;
9594 goto err_unlock;
9595 }
9596
9597 if (!exclusive_event_installable(event, ctx)) {
9598 err = -EBUSY;
9599 goto err_unlock;
9600 }
9601
9602 perf_install_in_context(ctx, event, cpu);
9603 perf_unpin_context(ctx);
9604 mutex_unlock(&ctx->mutex);
9605
9606 return event;
9607
9608 err_unlock:
9609 mutex_unlock(&ctx->mutex);
9610 perf_unpin_context(ctx);
9611 put_ctx(ctx);
9612 err_free:
9613 free_event(event);
9614 err:
9615 return ERR_PTR(err);
9616 }
9617 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
9618
9619 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
9620 {
9621 struct perf_event_context *src_ctx;
9622 struct perf_event_context *dst_ctx;
9623 struct perf_event *event, *tmp;
9624 LIST_HEAD(events);
9625
9626 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
9627 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
9628
9629 /*
9630 * See perf_event_ctx_lock() for comments on the details
9631 * of swizzling perf_event::ctx.
9632 */
9633 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
9634 list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
9635 event_entry) {
9636 perf_remove_from_context(event, 0);
9637 unaccount_event_cpu(event, src_cpu);
9638 put_ctx(src_ctx);
9639 list_add(&event->migrate_entry, &events);
9640 }
9641
9642 /*
9643 * Wait for the events to quiesce before re-instating them.
9644 */
9645 synchronize_rcu();
9646
9647 /*
9648 * Re-instate events in 2 passes.
9649 *
9650 * Skip over group leaders and only install siblings on this first
9651 * pass, siblings will not get enabled without a leader, however a
9652 * leader will enable its siblings, even if those are still on the old
9653 * context.
9654 */
9655 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
9656 if (event->group_leader == event)
9657 continue;
9658
9659 list_del(&event->migrate_entry);
9660 if (event->state >= PERF_EVENT_STATE_OFF)
9661 event->state = PERF_EVENT_STATE_INACTIVE;
9662 account_event_cpu(event, dst_cpu);
9663 perf_install_in_context(dst_ctx, event, dst_cpu);
9664 get_ctx(dst_ctx);
9665 }
9666
9667 /*
9668 * Once all the siblings are setup properly, install the group leaders
9669 * to make it go.
9670 */
9671 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
9672 list_del(&event->migrate_entry);
9673 if (event->state >= PERF_EVENT_STATE_OFF)
9674 event->state = PERF_EVENT_STATE_INACTIVE;
9675 account_event_cpu(event, dst_cpu);
9676 perf_install_in_context(dst_ctx, event, dst_cpu);
9677 get_ctx(dst_ctx);
9678 }
9679 mutex_unlock(&dst_ctx->mutex);
9680 mutex_unlock(&src_ctx->mutex);
9681 }
9682 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
9683
9684 static void sync_child_event(struct perf_event *child_event,
9685 struct task_struct *child)
9686 {
9687 struct perf_event *parent_event = child_event->parent;
9688 u64 child_val;
9689
9690 if (child_event->attr.inherit_stat)
9691 perf_event_read_event(child_event, child);
9692
9693 child_val = perf_event_count(child_event);
9694
9695 /*
9696 * Add back the child's count to the parent's count:
9697 */
9698 atomic64_add(child_val, &parent_event->child_count);
9699 atomic64_add(child_event->total_time_enabled,
9700 &parent_event->child_total_time_enabled);
9701 atomic64_add(child_event->total_time_running,
9702 &parent_event->child_total_time_running);
9703 }
9704
9705 static void
9706 perf_event_exit_event(struct perf_event *child_event,
9707 struct perf_event_context *child_ctx,
9708 struct task_struct *child)
9709 {
9710 struct perf_event *parent_event = child_event->parent;
9711
9712 /*
9713 * Do not destroy the 'original' grouping; because of the context
9714 * switch optimization the original events could've ended up in a
9715 * random child task.
9716 *
9717 * If we were to destroy the original group, all group related
9718 * operations would cease to function properly after this random
9719 * child dies.
9720 *
9721 * Do destroy all inherited groups, we don't care about those
9722 * and being thorough is better.
9723 */
9724 raw_spin_lock_irq(&child_ctx->lock);
9725 WARN_ON_ONCE(child_ctx->is_active);
9726
9727 if (parent_event)
9728 perf_group_detach(child_event);
9729 list_del_event(child_event, child_ctx);
9730 child_event->state = PERF_EVENT_STATE_EXIT; /* is_event_hup() */
9731 raw_spin_unlock_irq(&child_ctx->lock);
9732
9733 /*
9734 * Parent events are governed by their filedesc, retain them.
9735 */
9736 if (!parent_event) {
9737 perf_event_wakeup(child_event);
9738 return;
9739 }
9740 /*
9741 * Child events can be cleaned up.
9742 */
9743
9744 sync_child_event(child_event, child);
9745
9746 /*
9747 * Remove this event from the parent's list
9748 */
9749 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
9750 mutex_lock(&parent_event->child_mutex);
9751 list_del_init(&child_event->child_list);
9752 mutex_unlock(&parent_event->child_mutex);
9753
9754 /*
9755 * Kick perf_poll() for is_event_hup().
9756 */
9757 perf_event_wakeup(parent_event);
9758 free_event(child_event);
9759 put_event(parent_event);
9760 }
9761
9762 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
9763 {
9764 struct perf_event_context *child_ctx, *clone_ctx = NULL;
9765 struct perf_event *child_event, *next;
9766
9767 WARN_ON_ONCE(child != current);
9768
9769 child_ctx = perf_pin_task_context(child, ctxn);
9770 if (!child_ctx)
9771 return;
9772
9773 /*
9774 * In order to reduce the amount of tricky in ctx tear-down, we hold
9775 * ctx::mutex over the entire thing. This serializes against almost
9776 * everything that wants to access the ctx.
9777 *
9778 * The exception is sys_perf_event_open() /
9779 * perf_event_create_kernel_count() which does find_get_context()
9780 * without ctx::mutex (it cannot because of the move_group double mutex
9781 * lock thing). See the comments in perf_install_in_context().
9782 */
9783 mutex_lock(&child_ctx->mutex);
9784
9785 /*
9786 * In a single ctx::lock section, de-schedule the events and detach the
9787 * context from the task such that we cannot ever get it scheduled back
9788 * in.
9789 */
9790 raw_spin_lock_irq(&child_ctx->lock);
9791 task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx);
9792
9793 /*
9794 * Now that the context is inactive, destroy the task <-> ctx relation
9795 * and mark the context dead.
9796 */
9797 RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
9798 put_ctx(child_ctx); /* cannot be last */
9799 WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
9800 put_task_struct(current); /* cannot be last */
9801
9802 clone_ctx = unclone_ctx(child_ctx);
9803 raw_spin_unlock_irq(&child_ctx->lock);
9804
9805 if (clone_ctx)
9806 put_ctx(clone_ctx);
9807
9808 /*
9809 * Report the task dead after unscheduling the events so that we
9810 * won't get any samples after PERF_RECORD_EXIT. We can however still
9811 * get a few PERF_RECORD_READ events.
9812 */
9813 perf_event_task(child, child_ctx, 0);
9814
9815 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
9816 perf_event_exit_event(child_event, child_ctx, child);
9817
9818 mutex_unlock(&child_ctx->mutex);
9819
9820 put_ctx(child_ctx);
9821 }
9822
9823 /*
9824 * When a child task exits, feed back event values to parent events.
9825 *
9826 * Can be called with cred_guard_mutex held when called from
9827 * install_exec_creds().
9828 */
9829 void perf_event_exit_task(struct task_struct *child)
9830 {
9831 struct perf_event *event, *tmp;
9832 int ctxn;
9833
9834 mutex_lock(&child->perf_event_mutex);
9835 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
9836 owner_entry) {
9837 list_del_init(&event->owner_entry);
9838
9839 /*
9840 * Ensure the list deletion is visible before we clear
9841 * the owner, closes a race against perf_release() where
9842 * we need to serialize on the owner->perf_event_mutex.
9843 */
9844 smp_store_release(&event->owner, NULL);
9845 }
9846 mutex_unlock(&child->perf_event_mutex);
9847
9848 for_each_task_context_nr(ctxn)
9849 perf_event_exit_task_context(child, ctxn);
9850
9851 /*
9852 * The perf_event_exit_task_context calls perf_event_task
9853 * with child's task_ctx, which generates EXIT events for
9854 * child contexts and sets child->perf_event_ctxp[] to NULL.
9855 * At this point we need to send EXIT events to cpu contexts.
9856 */
9857 perf_event_task(child, NULL, 0);
9858 }
9859
9860 static void perf_free_event(struct perf_event *event,
9861 struct perf_event_context *ctx)
9862 {
9863 struct perf_event *parent = event->parent;
9864
9865 if (WARN_ON_ONCE(!parent))
9866 return;
9867
9868 mutex_lock(&parent->child_mutex);
9869 list_del_init(&event->child_list);
9870 mutex_unlock(&parent->child_mutex);
9871
9872 put_event(parent);
9873
9874 raw_spin_lock_irq(&ctx->lock);
9875 perf_group_detach(event);
9876 list_del_event(event, ctx);
9877 raw_spin_unlock_irq(&ctx->lock);
9878 free_event(event);
9879 }
9880
9881 /*
9882 * Free an unexposed, unused context as created by inheritance by
9883 * perf_event_init_task below, used by fork() in case of fail.
9884 *
9885 * Not all locks are strictly required, but take them anyway to be nice and
9886 * help out with the lockdep assertions.
9887 */
9888 void perf_event_free_task(struct task_struct *task)
9889 {
9890 struct perf_event_context *ctx;
9891 struct perf_event *event, *tmp;
9892 int ctxn;
9893
9894 for_each_task_context_nr(ctxn) {
9895 ctx = task->perf_event_ctxp[ctxn];
9896 if (!ctx)
9897 continue;
9898
9899 mutex_lock(&ctx->mutex);
9900 again:
9901 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
9902 group_entry)
9903 perf_free_event(event, ctx);
9904
9905 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
9906 group_entry)
9907 perf_free_event(event, ctx);
9908
9909 if (!list_empty(&ctx->pinned_groups) ||
9910 !list_empty(&ctx->flexible_groups))
9911 goto again;
9912
9913 mutex_unlock(&ctx->mutex);
9914
9915 put_ctx(ctx);
9916 }
9917 }
9918
9919 void perf_event_delayed_put(struct task_struct *task)
9920 {
9921 int ctxn;
9922
9923 for_each_task_context_nr(ctxn)
9924 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
9925 }
9926
9927 struct file *perf_event_get(unsigned int fd)
9928 {
9929 struct file *file;
9930
9931 file = fget_raw(fd);
9932 if (!file)
9933 return ERR_PTR(-EBADF);
9934
9935 if (file->f_op != &perf_fops) {
9936 fput(file);
9937 return ERR_PTR(-EBADF);
9938 }
9939
9940 return file;
9941 }
9942
9943 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
9944 {
9945 if (!event)
9946 return ERR_PTR(-EINVAL);
9947
9948 return &event->attr;
9949 }
9950
9951 /*
9952 * inherit a event from parent task to child task:
9953 */
9954 static struct perf_event *
9955 inherit_event(struct perf_event *parent_event,
9956 struct task_struct *parent,
9957 struct perf_event_context *parent_ctx,
9958 struct task_struct *child,
9959 struct perf_event *group_leader,
9960 struct perf_event_context *child_ctx)
9961 {
9962 enum perf_event_active_state parent_state = parent_event->state;
9963 struct perf_event *child_event;
9964 unsigned long flags;
9965
9966 /*
9967 * Instead of creating recursive hierarchies of events,
9968 * we link inherited events back to the original parent,
9969 * which has a filp for sure, which we use as the reference
9970 * count:
9971 */
9972 if (parent_event->parent)
9973 parent_event = parent_event->parent;
9974
9975 child_event = perf_event_alloc(&parent_event->attr,
9976 parent_event->cpu,
9977 child,
9978 group_leader, parent_event,
9979 NULL, NULL, -1);
9980 if (IS_ERR(child_event))
9981 return child_event;
9982
9983 /*
9984 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
9985 * must be under the same lock in order to serialize against
9986 * perf_event_release_kernel(), such that either we must observe
9987 * is_orphaned_event() or they will observe us on the child_list.
9988 */
9989 mutex_lock(&parent_event->child_mutex);
9990 if (is_orphaned_event(parent_event) ||
9991 !atomic_long_inc_not_zero(&parent_event->refcount)) {
9992 mutex_unlock(&parent_event->child_mutex);
9993 free_event(child_event);
9994 return NULL;
9995 }
9996
9997 get_ctx(child_ctx);
9998
9999 /*
10000 * Make the child state follow the state of the parent event,
10001 * not its attr.disabled bit. We hold the parent's mutex,
10002 * so we won't race with perf_event_{en, dis}able_family.
10003 */
10004 if (parent_state >= PERF_EVENT_STATE_INACTIVE)
10005 child_event->state = PERF_EVENT_STATE_INACTIVE;
10006 else
10007 child_event->state = PERF_EVENT_STATE_OFF;
10008
10009 if (parent_event->attr.freq) {
10010 u64 sample_period = parent_event->hw.sample_period;
10011 struct hw_perf_event *hwc = &child_event->hw;
10012
10013 hwc->sample_period = sample_period;
10014 hwc->last_period = sample_period;
10015
10016 local64_set(&hwc->period_left, sample_period);
10017 }
10018
10019 child_event->ctx = child_ctx;
10020 child_event->overflow_handler = parent_event->overflow_handler;
10021 child_event->overflow_handler_context
10022 = parent_event->overflow_handler_context;
10023
10024 /*
10025 * Precalculate sample_data sizes
10026 */
10027 perf_event__header_size(child_event);
10028 perf_event__id_header_size(child_event);
10029
10030 /*
10031 * Link it up in the child's context:
10032 */
10033 raw_spin_lock_irqsave(&child_ctx->lock, flags);
10034 add_event_to_ctx(child_event, child_ctx);
10035 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
10036
10037 /*
10038 * Link this into the parent event's child list
10039 */
10040 list_add_tail(&child_event->child_list, &parent_event->child_list);
10041 mutex_unlock(&parent_event->child_mutex);
10042
10043 return child_event;
10044 }
10045
10046 static int inherit_group(struct perf_event *parent_event,
10047 struct task_struct *parent,
10048 struct perf_event_context *parent_ctx,
10049 struct task_struct *child,
10050 struct perf_event_context *child_ctx)
10051 {
10052 struct perf_event *leader;
10053 struct perf_event *sub;
10054 struct perf_event *child_ctr;
10055
10056 leader = inherit_event(parent_event, parent, parent_ctx,
10057 child, NULL, child_ctx);
10058 if (IS_ERR(leader))
10059 return PTR_ERR(leader);
10060 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
10061 child_ctr = inherit_event(sub, parent, parent_ctx,
10062 child, leader, child_ctx);
10063 if (IS_ERR(child_ctr))
10064 return PTR_ERR(child_ctr);
10065 }
10066 return 0;
10067 }
10068
10069 static int
10070 inherit_task_group(struct perf_event *event, struct task_struct *parent,
10071 struct perf_event_context *parent_ctx,
10072 struct task_struct *child, int ctxn,
10073 int *inherited_all)
10074 {
10075 int ret;
10076 struct perf_event_context *child_ctx;
10077
10078 if (!event->attr.inherit) {
10079 *inherited_all = 0;
10080 return 0;
10081 }
10082
10083 child_ctx = child->perf_event_ctxp[ctxn];
10084 if (!child_ctx) {
10085 /*
10086 * This is executed from the parent task context, so
10087 * inherit events that have been marked for cloning.
10088 * First allocate and initialize a context for the
10089 * child.
10090 */
10091
10092 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
10093 if (!child_ctx)
10094 return -ENOMEM;
10095
10096 child->perf_event_ctxp[ctxn] = child_ctx;
10097 }
10098
10099 ret = inherit_group(event, parent, parent_ctx,
10100 child, child_ctx);
10101
10102 if (ret)
10103 *inherited_all = 0;
10104
10105 return ret;
10106 }
10107
10108 /*
10109 * Initialize the perf_event context in task_struct
10110 */
10111 static int perf_event_init_context(struct task_struct *child, int ctxn)
10112 {
10113 struct perf_event_context *child_ctx, *parent_ctx;
10114 struct perf_event_context *cloned_ctx;
10115 struct perf_event *event;
10116 struct task_struct *parent = current;
10117 int inherited_all = 1;
10118 unsigned long flags;
10119 int ret = 0;
10120
10121 if (likely(!parent->perf_event_ctxp[ctxn]))
10122 return 0;
10123
10124 /*
10125 * If the parent's context is a clone, pin it so it won't get
10126 * swapped under us.
10127 */
10128 parent_ctx = perf_pin_task_context(parent, ctxn);
10129 if (!parent_ctx)
10130 return 0;
10131
10132 /*
10133 * No need to check if parent_ctx != NULL here; since we saw
10134 * it non-NULL earlier, the only reason for it to become NULL
10135 * is if we exit, and since we're currently in the middle of
10136 * a fork we can't be exiting at the same time.
10137 */
10138
10139 /*
10140 * Lock the parent list. No need to lock the child - not PID
10141 * hashed yet and not running, so nobody can access it.
10142 */
10143 mutex_lock(&parent_ctx->mutex);
10144
10145 /*
10146 * We dont have to disable NMIs - we are only looking at
10147 * the list, not manipulating it:
10148 */
10149 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
10150 ret = inherit_task_group(event, parent, parent_ctx,
10151 child, ctxn, &inherited_all);
10152 if (ret)
10153 break;
10154 }
10155
10156 /*
10157 * We can't hold ctx->lock when iterating the ->flexible_group list due
10158 * to allocations, but we need to prevent rotation because
10159 * rotate_ctx() will change the list from interrupt context.
10160 */
10161 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
10162 parent_ctx->rotate_disable = 1;
10163 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
10164
10165 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
10166 ret = inherit_task_group(event, parent, parent_ctx,
10167 child, ctxn, &inherited_all);
10168 if (ret)
10169 break;
10170 }
10171
10172 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
10173 parent_ctx->rotate_disable = 0;
10174
10175 child_ctx = child->perf_event_ctxp[ctxn];
10176
10177 if (child_ctx && inherited_all) {
10178 /*
10179 * Mark the child context as a clone of the parent
10180 * context, or of whatever the parent is a clone of.
10181 *
10182 * Note that if the parent is a clone, the holding of
10183 * parent_ctx->lock avoids it from being uncloned.
10184 */
10185 cloned_ctx = parent_ctx->parent_ctx;
10186 if (cloned_ctx) {
10187 child_ctx->parent_ctx = cloned_ctx;
10188 child_ctx->parent_gen = parent_ctx->parent_gen;
10189 } else {
10190 child_ctx->parent_ctx = parent_ctx;
10191 child_ctx->parent_gen = parent_ctx->generation;
10192 }
10193 get_ctx(child_ctx->parent_ctx);
10194 }
10195
10196 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
10197 mutex_unlock(&parent_ctx->mutex);
10198
10199 perf_unpin_context(parent_ctx);
10200 put_ctx(parent_ctx);
10201
10202 return ret;
10203 }
10204
10205 /*
10206 * Initialize the perf_event context in task_struct
10207 */
10208 int perf_event_init_task(struct task_struct *child)
10209 {
10210 int ctxn, ret;
10211
10212 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
10213 mutex_init(&child->perf_event_mutex);
10214 INIT_LIST_HEAD(&child->perf_event_list);
10215
10216 for_each_task_context_nr(ctxn) {
10217 ret = perf_event_init_context(child, ctxn);
10218 if (ret) {
10219 perf_event_free_task(child);
10220 return ret;
10221 }
10222 }
10223
10224 return 0;
10225 }
10226
10227 static void __init perf_event_init_all_cpus(void)
10228 {
10229 struct swevent_htable *swhash;
10230 int cpu;
10231
10232 for_each_possible_cpu(cpu) {
10233 swhash = &per_cpu(swevent_htable, cpu);
10234 mutex_init(&swhash->hlist_mutex);
10235 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
10236 }
10237 }
10238
10239 static void perf_event_init_cpu(int cpu)
10240 {
10241 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
10242
10243 mutex_lock(&swhash->hlist_mutex);
10244 if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
10245 struct swevent_hlist *hlist;
10246
10247 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
10248 WARN_ON(!hlist);
10249 rcu_assign_pointer(swhash->swevent_hlist, hlist);
10250 }
10251 mutex_unlock(&swhash->hlist_mutex);
10252 }
10253
10254 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
10255 static void __perf_event_exit_context(void *__info)
10256 {
10257 struct perf_event_context *ctx = __info;
10258 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
10259 struct perf_event *event;
10260
10261 raw_spin_lock(&ctx->lock);
10262 list_for_each_entry(event, &ctx->event_list, event_entry)
10263 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
10264 raw_spin_unlock(&ctx->lock);
10265 }
10266
10267 static void perf_event_exit_cpu_context(int cpu)
10268 {
10269 struct perf_event_context *ctx;
10270 struct pmu *pmu;
10271 int idx;
10272
10273 idx = srcu_read_lock(&pmus_srcu);
10274 list_for_each_entry_rcu(pmu, &pmus, entry) {
10275 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
10276
10277 mutex_lock(&ctx->mutex);
10278 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
10279 mutex_unlock(&ctx->mutex);
10280 }
10281 srcu_read_unlock(&pmus_srcu, idx);
10282 }
10283
10284 static void perf_event_exit_cpu(int cpu)
10285 {
10286 perf_event_exit_cpu_context(cpu);
10287 }
10288 #else
10289 static inline void perf_event_exit_cpu(int cpu) { }
10290 #endif
10291
10292 static int
10293 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
10294 {
10295 int cpu;
10296
10297 for_each_online_cpu(cpu)
10298 perf_event_exit_cpu(cpu);
10299
10300 return NOTIFY_OK;
10301 }
10302
10303 /*
10304 * Run the perf reboot notifier at the very last possible moment so that
10305 * the generic watchdog code runs as long as possible.
10306 */
10307 static struct notifier_block perf_reboot_notifier = {
10308 .notifier_call = perf_reboot,
10309 .priority = INT_MIN,
10310 };
10311
10312 static int
10313 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
10314 {
10315 unsigned int cpu = (long)hcpu;
10316
10317 switch (action & ~CPU_TASKS_FROZEN) {
10318
10319 case CPU_UP_PREPARE:
10320 /*
10321 * This must be done before the CPU comes alive, because the
10322 * moment we can run tasks we can encounter (software) events.
10323 *
10324 * Specifically, someone can have inherited events on kthreadd
10325 * or a pre-existing worker thread that gets re-bound.
10326 */
10327 perf_event_init_cpu(cpu);
10328 break;
10329
10330 case CPU_DOWN_PREPARE:
10331 /*
10332 * This must be done before the CPU dies because after that an
10333 * active event might want to IPI the CPU and that'll not work
10334 * so great for dead CPUs.
10335 *
10336 * XXX smp_call_function_single() return -ENXIO without a warn
10337 * so we could possibly deal with this.
10338 *
10339 * This is safe against new events arriving because
10340 * sys_perf_event_open() serializes against hotplug using
10341 * get_online_cpus().
10342 */
10343 perf_event_exit_cpu(cpu);
10344 break;
10345 default:
10346 break;
10347 }
10348
10349 return NOTIFY_OK;
10350 }
10351
10352 void __init perf_event_init(void)
10353 {
10354 int ret;
10355
10356 idr_init(&pmu_idr);
10357
10358 perf_event_init_all_cpus();
10359 init_srcu_struct(&pmus_srcu);
10360 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
10361 perf_pmu_register(&perf_cpu_clock, NULL, -1);
10362 perf_pmu_register(&perf_task_clock, NULL, -1);
10363 perf_tp_register();
10364 perf_cpu_notifier(perf_cpu_notify);
10365 register_reboot_notifier(&perf_reboot_notifier);
10366
10367 ret = init_hw_breakpoint();
10368 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
10369
10370 /*
10371 * Build time assertion that we keep the data_head at the intended
10372 * location. IOW, validation we got the __reserved[] size right.
10373 */
10374 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
10375 != 1024);
10376 }
10377
10378 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
10379 char *page)
10380 {
10381 struct perf_pmu_events_attr *pmu_attr =
10382 container_of(attr, struct perf_pmu_events_attr, attr);
10383
10384 if (pmu_attr->event_str)
10385 return sprintf(page, "%s\n", pmu_attr->event_str);
10386
10387 return 0;
10388 }
10389 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
10390
10391 static int __init perf_event_sysfs_init(void)
10392 {
10393 struct pmu *pmu;
10394 int ret;
10395
10396 mutex_lock(&pmus_lock);
10397
10398 ret = bus_register(&pmu_bus);
10399 if (ret)
10400 goto unlock;
10401
10402 list_for_each_entry(pmu, &pmus, entry) {
10403 if (!pmu->name || pmu->type < 0)
10404 continue;
10405
10406 ret = pmu_dev_alloc(pmu);
10407 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
10408 }
10409 pmu_bus_running = 1;
10410 ret = 0;
10411
10412 unlock:
10413 mutex_unlock(&pmus_lock);
10414
10415 return ret;
10416 }
10417 device_initcall(perf_event_sysfs_init);
10418
10419 #ifdef CONFIG_CGROUP_PERF
10420 static struct cgroup_subsys_state *
10421 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
10422 {
10423 struct perf_cgroup *jc;
10424
10425 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
10426 if (!jc)
10427 return ERR_PTR(-ENOMEM);
10428
10429 jc->info = alloc_percpu(struct perf_cgroup_info);
10430 if (!jc->info) {
10431 kfree(jc);
10432 return ERR_PTR(-ENOMEM);
10433 }
10434
10435 return &jc->css;
10436 }
10437
10438 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
10439 {
10440 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
10441
10442 free_percpu(jc->info);
10443 kfree(jc);
10444 }
10445
10446 static int __perf_cgroup_move(void *info)
10447 {
10448 struct task_struct *task = info;
10449 rcu_read_lock();
10450 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
10451 rcu_read_unlock();
10452 return 0;
10453 }
10454
10455 static void perf_cgroup_attach(struct cgroup_taskset *tset)
10456 {
10457 struct task_struct *task;
10458 struct cgroup_subsys_state *css;
10459
10460 cgroup_taskset_for_each(task, css, tset)
10461 task_function_call(task, __perf_cgroup_move, task);
10462 }
10463
10464 struct cgroup_subsys perf_event_cgrp_subsys = {
10465 .css_alloc = perf_cgroup_css_alloc,
10466 .css_free = perf_cgroup_css_free,
10467 .attach = perf_cgroup_attach,
10468 };
10469 #endif /* CONFIG_CGROUP_PERF */
This page took 0.229207 seconds and 6 git commands to generate.