5e5695038d2d613d69ef8a50ab38b61b0bf912e1
[deliverable/linux.git] / kernel / events / uprobes.c
1 /*
2 * User-space Probes (UProbes)
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
18 * Copyright (C) IBM Corporation, 2008-2012
19 * Authors:
20 * Srikar Dronamraju
21 * Jim Keniston
22 * Copyright (C) 2011-2012 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
23 */
24
25 #include <linux/kernel.h>
26 #include <linux/highmem.h>
27 #include <linux/pagemap.h> /* read_mapping_page */
28 #include <linux/slab.h>
29 #include <linux/sched.h>
30 #include <linux/export.h>
31 #include <linux/rmap.h> /* anon_vma_prepare */
32 #include <linux/mmu_notifier.h> /* set_pte_at_notify */
33 #include <linux/swap.h> /* try_to_free_swap */
34 #include <linux/ptrace.h> /* user_enable_single_step */
35 #include <linux/kdebug.h> /* notifier mechanism */
36 #include "../../mm/internal.h" /* munlock_vma_page */
37 #include <linux/percpu-rwsem.h>
38 #include <linux/task_work.h>
39
40 #include <linux/uprobes.h>
41
42 #define UINSNS_PER_PAGE (PAGE_SIZE/UPROBE_XOL_SLOT_BYTES)
43 #define MAX_UPROBE_XOL_SLOTS UINSNS_PER_PAGE
44
45 static struct rb_root uprobes_tree = RB_ROOT;
46 /*
47 * allows us to skip the uprobe_mmap if there are no uprobe events active
48 * at this time. Probably a fine grained per inode count is better?
49 */
50 #define no_uprobe_events() RB_EMPTY_ROOT(&uprobes_tree)
51
52 static DEFINE_SPINLOCK(uprobes_treelock); /* serialize rbtree access */
53
54 #define UPROBES_HASH_SZ 13
55 /* serialize uprobe->pending_list */
56 static struct mutex uprobes_mmap_mutex[UPROBES_HASH_SZ];
57 #define uprobes_mmap_hash(v) (&uprobes_mmap_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
58
59 static struct percpu_rw_semaphore dup_mmap_sem;
60
61 /* Have a copy of original instruction */
62 #define UPROBE_COPY_INSN 0
63 /* Can skip singlestep */
64 #define UPROBE_SKIP_SSTEP 1
65
66 struct uprobe {
67 struct rb_node rb_node; /* node in the rb tree */
68 atomic_t ref;
69 struct rw_semaphore register_rwsem;
70 struct rw_semaphore consumer_rwsem;
71 struct list_head pending_list;
72 struct uprobe_consumer *consumers;
73 struct inode *inode; /* Also hold a ref to inode */
74 loff_t offset;
75 unsigned long flags;
76 struct arch_uprobe arch;
77 };
78
79 struct return_instance {
80 struct uprobe *uprobe;
81 unsigned long func;
82 unsigned long orig_ret_vaddr; /* original return address */
83 bool chained; /* true, if instance is nested */
84
85 struct return_instance *next; /* keep as stack */
86 };
87
88 /*
89 * valid_vma: Verify if the specified vma is an executable vma
90 * Relax restrictions while unregistering: vm_flags might have
91 * changed after breakpoint was inserted.
92 * - is_register: indicates if we are in register context.
93 * - Return 1 if the specified virtual address is in an
94 * executable vma.
95 */
96 static bool valid_vma(struct vm_area_struct *vma, bool is_register)
97 {
98 vm_flags_t flags = VM_HUGETLB | VM_MAYEXEC | VM_SHARED;
99
100 if (is_register)
101 flags |= VM_WRITE;
102
103 return vma->vm_file && (vma->vm_flags & flags) == VM_MAYEXEC;
104 }
105
106 static unsigned long offset_to_vaddr(struct vm_area_struct *vma, loff_t offset)
107 {
108 return vma->vm_start + offset - ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
109 }
110
111 static loff_t vaddr_to_offset(struct vm_area_struct *vma, unsigned long vaddr)
112 {
113 return ((loff_t)vma->vm_pgoff << PAGE_SHIFT) + (vaddr - vma->vm_start);
114 }
115
116 /**
117 * __replace_page - replace page in vma by new page.
118 * based on replace_page in mm/ksm.c
119 *
120 * @vma: vma that holds the pte pointing to page
121 * @addr: address the old @page is mapped at
122 * @page: the cowed page we are replacing by kpage
123 * @kpage: the modified page we replace page by
124 *
125 * Returns 0 on success, -EFAULT on failure.
126 */
127 static int __replace_page(struct vm_area_struct *vma, unsigned long addr,
128 struct page *page, struct page *kpage)
129 {
130 struct mm_struct *mm = vma->vm_mm;
131 spinlock_t *ptl;
132 pte_t *ptep;
133 int err;
134 /* For mmu_notifiers */
135 const unsigned long mmun_start = addr;
136 const unsigned long mmun_end = addr + PAGE_SIZE;
137
138 /* For try_to_free_swap() and munlock_vma_page() below */
139 lock_page(page);
140
141 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
142 err = -EAGAIN;
143 ptep = page_check_address(page, mm, addr, &ptl, 0);
144 if (!ptep)
145 goto unlock;
146
147 get_page(kpage);
148 page_add_new_anon_rmap(kpage, vma, addr);
149
150 if (!PageAnon(page)) {
151 dec_mm_counter(mm, MM_FILEPAGES);
152 inc_mm_counter(mm, MM_ANONPAGES);
153 }
154
155 flush_cache_page(vma, addr, pte_pfn(*ptep));
156 ptep_clear_flush(vma, addr, ptep);
157 set_pte_at_notify(mm, addr, ptep, mk_pte(kpage, vma->vm_page_prot));
158
159 page_remove_rmap(page);
160 if (!page_mapped(page))
161 try_to_free_swap(page);
162 pte_unmap_unlock(ptep, ptl);
163
164 if (vma->vm_flags & VM_LOCKED)
165 munlock_vma_page(page);
166 put_page(page);
167
168 err = 0;
169 unlock:
170 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
171 unlock_page(page);
172 return err;
173 }
174
175 /**
176 * is_swbp_insn - check if instruction is breakpoint instruction.
177 * @insn: instruction to be checked.
178 * Default implementation of is_swbp_insn
179 * Returns true if @insn is a breakpoint instruction.
180 */
181 bool __weak is_swbp_insn(uprobe_opcode_t *insn)
182 {
183 return *insn == UPROBE_SWBP_INSN;
184 }
185
186 /**
187 * is_trap_insn - check if instruction is breakpoint instruction.
188 * @insn: instruction to be checked.
189 * Default implementation of is_trap_insn
190 * Returns true if @insn is a breakpoint instruction.
191 *
192 * This function is needed for the case where an architecture has multiple
193 * trap instructions (like powerpc).
194 */
195 bool __weak is_trap_insn(uprobe_opcode_t *insn)
196 {
197 return is_swbp_insn(insn);
198 }
199
200 static void copy_from_page(struct page *page, unsigned long vaddr, void *dst, int len)
201 {
202 void *kaddr = kmap_atomic(page);
203 memcpy(dst, kaddr + (vaddr & ~PAGE_MASK), len);
204 kunmap_atomic(kaddr);
205 }
206
207 static void copy_to_page(struct page *page, unsigned long vaddr, const void *src, int len)
208 {
209 void *kaddr = kmap_atomic(page);
210 memcpy(kaddr + (vaddr & ~PAGE_MASK), src, len);
211 kunmap_atomic(kaddr);
212 }
213
214 static int verify_opcode(struct page *page, unsigned long vaddr, uprobe_opcode_t *new_opcode)
215 {
216 uprobe_opcode_t old_opcode;
217 bool is_swbp;
218
219 /*
220 * Note: We only check if the old_opcode is UPROBE_SWBP_INSN here.
221 * We do not check if it is any other 'trap variant' which could
222 * be conditional trap instruction such as the one powerpc supports.
223 *
224 * The logic is that we do not care if the underlying instruction
225 * is a trap variant; uprobes always wins over any other (gdb)
226 * breakpoint.
227 */
228 copy_from_page(page, vaddr, &old_opcode, UPROBE_SWBP_INSN_SIZE);
229 is_swbp = is_swbp_insn(&old_opcode);
230
231 if (is_swbp_insn(new_opcode)) {
232 if (is_swbp) /* register: already installed? */
233 return 0;
234 } else {
235 if (!is_swbp) /* unregister: was it changed by us? */
236 return 0;
237 }
238
239 return 1;
240 }
241
242 /*
243 * NOTE:
244 * Expect the breakpoint instruction to be the smallest size instruction for
245 * the architecture. If an arch has variable length instruction and the
246 * breakpoint instruction is not of the smallest length instruction
247 * supported by that architecture then we need to modify is_trap_at_addr and
248 * uprobe_write_opcode accordingly. This would never be a problem for archs
249 * that have fixed length instructions.
250 */
251
252 /*
253 * uprobe_write_opcode - write the opcode at a given virtual address.
254 * @mm: the probed process address space.
255 * @vaddr: the virtual address to store the opcode.
256 * @opcode: opcode to be written at @vaddr.
257 *
258 * Called with mm->mmap_sem held (for read and with a reference to
259 * mm).
260 *
261 * For mm @mm, write the opcode at @vaddr.
262 * Return 0 (success) or a negative errno.
263 */
264 int uprobe_write_opcode(struct mm_struct *mm, unsigned long vaddr,
265 uprobe_opcode_t opcode)
266 {
267 struct page *old_page, *new_page;
268 struct vm_area_struct *vma;
269 int ret;
270
271 retry:
272 /* Read the page with vaddr into memory */
273 ret = get_user_pages(NULL, mm, vaddr, 1, 0, 1, &old_page, &vma);
274 if (ret <= 0)
275 return ret;
276
277 ret = verify_opcode(old_page, vaddr, &opcode);
278 if (ret <= 0)
279 goto put_old;
280
281 ret = -ENOMEM;
282 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vaddr);
283 if (!new_page)
284 goto put_old;
285
286 __SetPageUptodate(new_page);
287
288 copy_highpage(new_page, old_page);
289 copy_to_page(new_page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
290
291 ret = anon_vma_prepare(vma);
292 if (ret)
293 goto put_new;
294
295 ret = __replace_page(vma, vaddr, old_page, new_page);
296
297 put_new:
298 page_cache_release(new_page);
299 put_old:
300 put_page(old_page);
301
302 if (unlikely(ret == -EAGAIN))
303 goto retry;
304 return ret;
305 }
306
307 /**
308 * set_swbp - store breakpoint at a given address.
309 * @auprobe: arch specific probepoint information.
310 * @mm: the probed process address space.
311 * @vaddr: the virtual address to insert the opcode.
312 *
313 * For mm @mm, store the breakpoint instruction at @vaddr.
314 * Return 0 (success) or a negative errno.
315 */
316 int __weak set_swbp(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
317 {
318 return uprobe_write_opcode(mm, vaddr, UPROBE_SWBP_INSN);
319 }
320
321 /**
322 * set_orig_insn - Restore the original instruction.
323 * @mm: the probed process address space.
324 * @auprobe: arch specific probepoint information.
325 * @vaddr: the virtual address to insert the opcode.
326 *
327 * For mm @mm, restore the original opcode (opcode) at @vaddr.
328 * Return 0 (success) or a negative errno.
329 */
330 int __weak
331 set_orig_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
332 {
333 return uprobe_write_opcode(mm, vaddr, *(uprobe_opcode_t *)auprobe->insn);
334 }
335
336 static int match_uprobe(struct uprobe *l, struct uprobe *r)
337 {
338 if (l->inode < r->inode)
339 return -1;
340
341 if (l->inode > r->inode)
342 return 1;
343
344 if (l->offset < r->offset)
345 return -1;
346
347 if (l->offset > r->offset)
348 return 1;
349
350 return 0;
351 }
352
353 static struct uprobe *__find_uprobe(struct inode *inode, loff_t offset)
354 {
355 struct uprobe u = { .inode = inode, .offset = offset };
356 struct rb_node *n = uprobes_tree.rb_node;
357 struct uprobe *uprobe;
358 int match;
359
360 while (n) {
361 uprobe = rb_entry(n, struct uprobe, rb_node);
362 match = match_uprobe(&u, uprobe);
363 if (!match) {
364 atomic_inc(&uprobe->ref);
365 return uprobe;
366 }
367
368 if (match < 0)
369 n = n->rb_left;
370 else
371 n = n->rb_right;
372 }
373 return NULL;
374 }
375
376 /*
377 * Find a uprobe corresponding to a given inode:offset
378 * Acquires uprobes_treelock
379 */
380 static struct uprobe *find_uprobe(struct inode *inode, loff_t offset)
381 {
382 struct uprobe *uprobe;
383
384 spin_lock(&uprobes_treelock);
385 uprobe = __find_uprobe(inode, offset);
386 spin_unlock(&uprobes_treelock);
387
388 return uprobe;
389 }
390
391 static struct uprobe *__insert_uprobe(struct uprobe *uprobe)
392 {
393 struct rb_node **p = &uprobes_tree.rb_node;
394 struct rb_node *parent = NULL;
395 struct uprobe *u;
396 int match;
397
398 while (*p) {
399 parent = *p;
400 u = rb_entry(parent, struct uprobe, rb_node);
401 match = match_uprobe(uprobe, u);
402 if (!match) {
403 atomic_inc(&u->ref);
404 return u;
405 }
406
407 if (match < 0)
408 p = &parent->rb_left;
409 else
410 p = &parent->rb_right;
411
412 }
413
414 u = NULL;
415 rb_link_node(&uprobe->rb_node, parent, p);
416 rb_insert_color(&uprobe->rb_node, &uprobes_tree);
417 /* get access + creation ref */
418 atomic_set(&uprobe->ref, 2);
419
420 return u;
421 }
422
423 /*
424 * Acquire uprobes_treelock.
425 * Matching uprobe already exists in rbtree;
426 * increment (access refcount) and return the matching uprobe.
427 *
428 * No matching uprobe; insert the uprobe in rb_tree;
429 * get a double refcount (access + creation) and return NULL.
430 */
431 static struct uprobe *insert_uprobe(struct uprobe *uprobe)
432 {
433 struct uprobe *u;
434
435 spin_lock(&uprobes_treelock);
436 u = __insert_uprobe(uprobe);
437 spin_unlock(&uprobes_treelock);
438
439 return u;
440 }
441
442 static void put_uprobe(struct uprobe *uprobe)
443 {
444 if (atomic_dec_and_test(&uprobe->ref))
445 kfree(uprobe);
446 }
447
448 static struct uprobe *alloc_uprobe(struct inode *inode, loff_t offset)
449 {
450 struct uprobe *uprobe, *cur_uprobe;
451
452 uprobe = kzalloc(sizeof(struct uprobe), GFP_KERNEL);
453 if (!uprobe)
454 return NULL;
455
456 uprobe->inode = igrab(inode);
457 uprobe->offset = offset;
458 init_rwsem(&uprobe->register_rwsem);
459 init_rwsem(&uprobe->consumer_rwsem);
460 /* For now assume that the instruction need not be single-stepped */
461 __set_bit(UPROBE_SKIP_SSTEP, &uprobe->flags);
462
463 /* add to uprobes_tree, sorted on inode:offset */
464 cur_uprobe = insert_uprobe(uprobe);
465
466 /* a uprobe exists for this inode:offset combination */
467 if (cur_uprobe) {
468 kfree(uprobe);
469 uprobe = cur_uprobe;
470 iput(inode);
471 }
472
473 return uprobe;
474 }
475
476 static void consumer_add(struct uprobe *uprobe, struct uprobe_consumer *uc)
477 {
478 down_write(&uprobe->consumer_rwsem);
479 uc->next = uprobe->consumers;
480 uprobe->consumers = uc;
481 up_write(&uprobe->consumer_rwsem);
482 }
483
484 /*
485 * For uprobe @uprobe, delete the consumer @uc.
486 * Return true if the @uc is deleted successfully
487 * or return false.
488 */
489 static bool consumer_del(struct uprobe *uprobe, struct uprobe_consumer *uc)
490 {
491 struct uprobe_consumer **con;
492 bool ret = false;
493
494 down_write(&uprobe->consumer_rwsem);
495 for (con = &uprobe->consumers; *con; con = &(*con)->next) {
496 if (*con == uc) {
497 *con = uc->next;
498 ret = true;
499 break;
500 }
501 }
502 up_write(&uprobe->consumer_rwsem);
503
504 return ret;
505 }
506
507 static int
508 __copy_insn(struct address_space *mapping, struct file *filp, char *insn,
509 unsigned long nbytes, loff_t offset)
510 {
511 struct page *page;
512
513 if (!mapping->a_ops->readpage)
514 return -EIO;
515 /*
516 * Ensure that the page that has the original instruction is
517 * populated and in page-cache.
518 */
519 page = read_mapping_page(mapping, offset >> PAGE_CACHE_SHIFT, filp);
520 if (IS_ERR(page))
521 return PTR_ERR(page);
522
523 copy_from_page(page, offset, insn, nbytes);
524 page_cache_release(page);
525
526 return 0;
527 }
528
529 static int copy_insn(struct uprobe *uprobe, struct file *filp)
530 {
531 struct address_space *mapping;
532 unsigned long nbytes;
533 int bytes;
534
535 nbytes = PAGE_SIZE - (uprobe->offset & ~PAGE_MASK);
536 mapping = uprobe->inode->i_mapping;
537
538 /* Instruction at end of binary; copy only available bytes */
539 if (uprobe->offset + MAX_UINSN_BYTES > uprobe->inode->i_size)
540 bytes = uprobe->inode->i_size - uprobe->offset;
541 else
542 bytes = MAX_UINSN_BYTES;
543
544 /* Instruction at the page-boundary; copy bytes in second page */
545 if (nbytes < bytes) {
546 int err = __copy_insn(mapping, filp, uprobe->arch.insn + nbytes,
547 bytes - nbytes, uprobe->offset + nbytes);
548 if (err)
549 return err;
550 bytes = nbytes;
551 }
552 return __copy_insn(mapping, filp, uprobe->arch.insn, bytes, uprobe->offset);
553 }
554
555 static int prepare_uprobe(struct uprobe *uprobe, struct file *file,
556 struct mm_struct *mm, unsigned long vaddr)
557 {
558 int ret = 0;
559
560 if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
561 return ret;
562
563 /* TODO: move this into _register, until then we abuse this sem. */
564 down_write(&uprobe->consumer_rwsem);
565 if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
566 goto out;
567
568 ret = copy_insn(uprobe, file);
569 if (ret)
570 goto out;
571
572 ret = -ENOTSUPP;
573 if (is_trap_insn((uprobe_opcode_t *)uprobe->arch.insn))
574 goto out;
575
576 ret = arch_uprobe_analyze_insn(&uprobe->arch, mm, vaddr);
577 if (ret)
578 goto out;
579
580 /* uprobe_write_opcode() assumes we don't cross page boundary */
581 BUG_ON((uprobe->offset & ~PAGE_MASK) +
582 UPROBE_SWBP_INSN_SIZE > PAGE_SIZE);
583
584 smp_wmb(); /* pairs with rmb() in find_active_uprobe() */
585 set_bit(UPROBE_COPY_INSN, &uprobe->flags);
586
587 out:
588 up_write(&uprobe->consumer_rwsem);
589
590 return ret;
591 }
592
593 static inline bool consumer_filter(struct uprobe_consumer *uc,
594 enum uprobe_filter_ctx ctx, struct mm_struct *mm)
595 {
596 return !uc->filter || uc->filter(uc, ctx, mm);
597 }
598
599 static bool filter_chain(struct uprobe *uprobe,
600 enum uprobe_filter_ctx ctx, struct mm_struct *mm)
601 {
602 struct uprobe_consumer *uc;
603 bool ret = false;
604
605 down_read(&uprobe->consumer_rwsem);
606 for (uc = uprobe->consumers; uc; uc = uc->next) {
607 ret = consumer_filter(uc, ctx, mm);
608 if (ret)
609 break;
610 }
611 up_read(&uprobe->consumer_rwsem);
612
613 return ret;
614 }
615
616 static int
617 install_breakpoint(struct uprobe *uprobe, struct mm_struct *mm,
618 struct vm_area_struct *vma, unsigned long vaddr)
619 {
620 bool first_uprobe;
621 int ret;
622
623 ret = prepare_uprobe(uprobe, vma->vm_file, mm, vaddr);
624 if (ret)
625 return ret;
626
627 /*
628 * set MMF_HAS_UPROBES in advance for uprobe_pre_sstep_notifier(),
629 * the task can hit this breakpoint right after __replace_page().
630 */
631 first_uprobe = !test_bit(MMF_HAS_UPROBES, &mm->flags);
632 if (first_uprobe)
633 set_bit(MMF_HAS_UPROBES, &mm->flags);
634
635 ret = set_swbp(&uprobe->arch, mm, vaddr);
636 if (!ret)
637 clear_bit(MMF_RECALC_UPROBES, &mm->flags);
638 else if (first_uprobe)
639 clear_bit(MMF_HAS_UPROBES, &mm->flags);
640
641 return ret;
642 }
643
644 static int
645 remove_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, unsigned long vaddr)
646 {
647 set_bit(MMF_RECALC_UPROBES, &mm->flags);
648 return set_orig_insn(&uprobe->arch, mm, vaddr);
649 }
650
651 static inline bool uprobe_is_active(struct uprobe *uprobe)
652 {
653 return !RB_EMPTY_NODE(&uprobe->rb_node);
654 }
655 /*
656 * There could be threads that have already hit the breakpoint. They
657 * will recheck the current insn and restart if find_uprobe() fails.
658 * See find_active_uprobe().
659 */
660 static void delete_uprobe(struct uprobe *uprobe)
661 {
662 if (WARN_ON(!uprobe_is_active(uprobe)))
663 return;
664
665 spin_lock(&uprobes_treelock);
666 rb_erase(&uprobe->rb_node, &uprobes_tree);
667 spin_unlock(&uprobes_treelock);
668 RB_CLEAR_NODE(&uprobe->rb_node); /* for uprobe_is_active() */
669 iput(uprobe->inode);
670 put_uprobe(uprobe);
671 }
672
673 struct map_info {
674 struct map_info *next;
675 struct mm_struct *mm;
676 unsigned long vaddr;
677 };
678
679 static inline struct map_info *free_map_info(struct map_info *info)
680 {
681 struct map_info *next = info->next;
682 kfree(info);
683 return next;
684 }
685
686 static struct map_info *
687 build_map_info(struct address_space *mapping, loff_t offset, bool is_register)
688 {
689 unsigned long pgoff = offset >> PAGE_SHIFT;
690 struct vm_area_struct *vma;
691 struct map_info *curr = NULL;
692 struct map_info *prev = NULL;
693 struct map_info *info;
694 int more = 0;
695
696 again:
697 mutex_lock(&mapping->i_mmap_mutex);
698 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
699 if (!valid_vma(vma, is_register))
700 continue;
701
702 if (!prev && !more) {
703 /*
704 * Needs GFP_NOWAIT to avoid i_mmap_mutex recursion through
705 * reclaim. This is optimistic, no harm done if it fails.
706 */
707 prev = kmalloc(sizeof(struct map_info),
708 GFP_NOWAIT | __GFP_NOMEMALLOC | __GFP_NOWARN);
709 if (prev)
710 prev->next = NULL;
711 }
712 if (!prev) {
713 more++;
714 continue;
715 }
716
717 if (!atomic_inc_not_zero(&vma->vm_mm->mm_users))
718 continue;
719
720 info = prev;
721 prev = prev->next;
722 info->next = curr;
723 curr = info;
724
725 info->mm = vma->vm_mm;
726 info->vaddr = offset_to_vaddr(vma, offset);
727 }
728 mutex_unlock(&mapping->i_mmap_mutex);
729
730 if (!more)
731 goto out;
732
733 prev = curr;
734 while (curr) {
735 mmput(curr->mm);
736 curr = curr->next;
737 }
738
739 do {
740 info = kmalloc(sizeof(struct map_info), GFP_KERNEL);
741 if (!info) {
742 curr = ERR_PTR(-ENOMEM);
743 goto out;
744 }
745 info->next = prev;
746 prev = info;
747 } while (--more);
748
749 goto again;
750 out:
751 while (prev)
752 prev = free_map_info(prev);
753 return curr;
754 }
755
756 static int
757 register_for_each_vma(struct uprobe *uprobe, struct uprobe_consumer *new)
758 {
759 bool is_register = !!new;
760 struct map_info *info;
761 int err = 0;
762
763 percpu_down_write(&dup_mmap_sem);
764 info = build_map_info(uprobe->inode->i_mapping,
765 uprobe->offset, is_register);
766 if (IS_ERR(info)) {
767 err = PTR_ERR(info);
768 goto out;
769 }
770
771 while (info) {
772 struct mm_struct *mm = info->mm;
773 struct vm_area_struct *vma;
774
775 if (err && is_register)
776 goto free;
777
778 down_write(&mm->mmap_sem);
779 vma = find_vma(mm, info->vaddr);
780 if (!vma || !valid_vma(vma, is_register) ||
781 file_inode(vma->vm_file) != uprobe->inode)
782 goto unlock;
783
784 if (vma->vm_start > info->vaddr ||
785 vaddr_to_offset(vma, info->vaddr) != uprobe->offset)
786 goto unlock;
787
788 if (is_register) {
789 /* consult only the "caller", new consumer. */
790 if (consumer_filter(new,
791 UPROBE_FILTER_REGISTER, mm))
792 err = install_breakpoint(uprobe, mm, vma, info->vaddr);
793 } else if (test_bit(MMF_HAS_UPROBES, &mm->flags)) {
794 if (!filter_chain(uprobe,
795 UPROBE_FILTER_UNREGISTER, mm))
796 err |= remove_breakpoint(uprobe, mm, info->vaddr);
797 }
798
799 unlock:
800 up_write(&mm->mmap_sem);
801 free:
802 mmput(mm);
803 info = free_map_info(info);
804 }
805 out:
806 percpu_up_write(&dup_mmap_sem);
807 return err;
808 }
809
810 static int __uprobe_register(struct uprobe *uprobe, struct uprobe_consumer *uc)
811 {
812 consumer_add(uprobe, uc);
813 return register_for_each_vma(uprobe, uc);
814 }
815
816 static void __uprobe_unregister(struct uprobe *uprobe, struct uprobe_consumer *uc)
817 {
818 int err;
819
820 if (!consumer_del(uprobe, uc)) /* WARN? */
821 return;
822
823 err = register_for_each_vma(uprobe, NULL);
824 /* TODO : cant unregister? schedule a worker thread */
825 if (!uprobe->consumers && !err)
826 delete_uprobe(uprobe);
827 }
828
829 /*
830 * uprobe_register - register a probe
831 * @inode: the file in which the probe has to be placed.
832 * @offset: offset from the start of the file.
833 * @uc: information on howto handle the probe..
834 *
835 * Apart from the access refcount, uprobe_register() takes a creation
836 * refcount (thro alloc_uprobe) if and only if this @uprobe is getting
837 * inserted into the rbtree (i.e first consumer for a @inode:@offset
838 * tuple). Creation refcount stops uprobe_unregister from freeing the
839 * @uprobe even before the register operation is complete. Creation
840 * refcount is released when the last @uc for the @uprobe
841 * unregisters.
842 *
843 * Return errno if it cannot successully install probes
844 * else return 0 (success)
845 */
846 int uprobe_register(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
847 {
848 struct uprobe *uprobe;
849 int ret;
850
851 /* Uprobe must have at least one set consumer */
852 if (!uc->handler && !uc->ret_handler)
853 return -EINVAL;
854
855 /* Racy, just to catch the obvious mistakes */
856 if (offset > i_size_read(inode))
857 return -EINVAL;
858
859 retry:
860 uprobe = alloc_uprobe(inode, offset);
861 if (!uprobe)
862 return -ENOMEM;
863 /*
864 * We can race with uprobe_unregister()->delete_uprobe().
865 * Check uprobe_is_active() and retry if it is false.
866 */
867 down_write(&uprobe->register_rwsem);
868 ret = -EAGAIN;
869 if (likely(uprobe_is_active(uprobe))) {
870 ret = __uprobe_register(uprobe, uc);
871 if (ret)
872 __uprobe_unregister(uprobe, uc);
873 }
874 up_write(&uprobe->register_rwsem);
875 put_uprobe(uprobe);
876
877 if (unlikely(ret == -EAGAIN))
878 goto retry;
879 return ret;
880 }
881 EXPORT_SYMBOL_GPL(uprobe_register);
882
883 /*
884 * uprobe_apply - unregister a already registered probe.
885 * @inode: the file in which the probe has to be removed.
886 * @offset: offset from the start of the file.
887 * @uc: consumer which wants to add more or remove some breakpoints
888 * @add: add or remove the breakpoints
889 */
890 int uprobe_apply(struct inode *inode, loff_t offset,
891 struct uprobe_consumer *uc, bool add)
892 {
893 struct uprobe *uprobe;
894 struct uprobe_consumer *con;
895 int ret = -ENOENT;
896
897 uprobe = find_uprobe(inode, offset);
898 if (!uprobe)
899 return ret;
900
901 down_write(&uprobe->register_rwsem);
902 for (con = uprobe->consumers; con && con != uc ; con = con->next)
903 ;
904 if (con)
905 ret = register_for_each_vma(uprobe, add ? uc : NULL);
906 up_write(&uprobe->register_rwsem);
907 put_uprobe(uprobe);
908
909 return ret;
910 }
911
912 /*
913 * uprobe_unregister - unregister a already registered probe.
914 * @inode: the file in which the probe has to be removed.
915 * @offset: offset from the start of the file.
916 * @uc: identify which probe if multiple probes are colocated.
917 */
918 void uprobe_unregister(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
919 {
920 struct uprobe *uprobe;
921
922 uprobe = find_uprobe(inode, offset);
923 if (!uprobe)
924 return;
925
926 down_write(&uprobe->register_rwsem);
927 __uprobe_unregister(uprobe, uc);
928 up_write(&uprobe->register_rwsem);
929 put_uprobe(uprobe);
930 }
931 EXPORT_SYMBOL_GPL(uprobe_unregister);
932
933 static int unapply_uprobe(struct uprobe *uprobe, struct mm_struct *mm)
934 {
935 struct vm_area_struct *vma;
936 int err = 0;
937
938 down_read(&mm->mmap_sem);
939 for (vma = mm->mmap; vma; vma = vma->vm_next) {
940 unsigned long vaddr;
941 loff_t offset;
942
943 if (!valid_vma(vma, false) ||
944 file_inode(vma->vm_file) != uprobe->inode)
945 continue;
946
947 offset = (loff_t)vma->vm_pgoff << PAGE_SHIFT;
948 if (uprobe->offset < offset ||
949 uprobe->offset >= offset + vma->vm_end - vma->vm_start)
950 continue;
951
952 vaddr = offset_to_vaddr(vma, uprobe->offset);
953 err |= remove_breakpoint(uprobe, mm, vaddr);
954 }
955 up_read(&mm->mmap_sem);
956
957 return err;
958 }
959
960 static struct rb_node *
961 find_node_in_range(struct inode *inode, loff_t min, loff_t max)
962 {
963 struct rb_node *n = uprobes_tree.rb_node;
964
965 while (n) {
966 struct uprobe *u = rb_entry(n, struct uprobe, rb_node);
967
968 if (inode < u->inode) {
969 n = n->rb_left;
970 } else if (inode > u->inode) {
971 n = n->rb_right;
972 } else {
973 if (max < u->offset)
974 n = n->rb_left;
975 else if (min > u->offset)
976 n = n->rb_right;
977 else
978 break;
979 }
980 }
981
982 return n;
983 }
984
985 /*
986 * For a given range in vma, build a list of probes that need to be inserted.
987 */
988 static void build_probe_list(struct inode *inode,
989 struct vm_area_struct *vma,
990 unsigned long start, unsigned long end,
991 struct list_head *head)
992 {
993 loff_t min, max;
994 struct rb_node *n, *t;
995 struct uprobe *u;
996
997 INIT_LIST_HEAD(head);
998 min = vaddr_to_offset(vma, start);
999 max = min + (end - start) - 1;
1000
1001 spin_lock(&uprobes_treelock);
1002 n = find_node_in_range(inode, min, max);
1003 if (n) {
1004 for (t = n; t; t = rb_prev(t)) {
1005 u = rb_entry(t, struct uprobe, rb_node);
1006 if (u->inode != inode || u->offset < min)
1007 break;
1008 list_add(&u->pending_list, head);
1009 atomic_inc(&u->ref);
1010 }
1011 for (t = n; (t = rb_next(t)); ) {
1012 u = rb_entry(t, struct uprobe, rb_node);
1013 if (u->inode != inode || u->offset > max)
1014 break;
1015 list_add(&u->pending_list, head);
1016 atomic_inc(&u->ref);
1017 }
1018 }
1019 spin_unlock(&uprobes_treelock);
1020 }
1021
1022 /*
1023 * Called from mmap_region/vma_adjust with mm->mmap_sem acquired.
1024 *
1025 * Currently we ignore all errors and always return 0, the callers
1026 * can't handle the failure anyway.
1027 */
1028 int uprobe_mmap(struct vm_area_struct *vma)
1029 {
1030 struct list_head tmp_list;
1031 struct uprobe *uprobe, *u;
1032 struct inode *inode;
1033
1034 if (no_uprobe_events() || !valid_vma(vma, true))
1035 return 0;
1036
1037 inode = file_inode(vma->vm_file);
1038 if (!inode)
1039 return 0;
1040
1041 mutex_lock(uprobes_mmap_hash(inode));
1042 build_probe_list(inode, vma, vma->vm_start, vma->vm_end, &tmp_list);
1043 /*
1044 * We can race with uprobe_unregister(), this uprobe can be already
1045 * removed. But in this case filter_chain() must return false, all
1046 * consumers have gone away.
1047 */
1048 list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) {
1049 if (!fatal_signal_pending(current) &&
1050 filter_chain(uprobe, UPROBE_FILTER_MMAP, vma->vm_mm)) {
1051 unsigned long vaddr = offset_to_vaddr(vma, uprobe->offset);
1052 install_breakpoint(uprobe, vma->vm_mm, vma, vaddr);
1053 }
1054 put_uprobe(uprobe);
1055 }
1056 mutex_unlock(uprobes_mmap_hash(inode));
1057
1058 return 0;
1059 }
1060
1061 static bool
1062 vma_has_uprobes(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1063 {
1064 loff_t min, max;
1065 struct inode *inode;
1066 struct rb_node *n;
1067
1068 inode = file_inode(vma->vm_file);
1069
1070 min = vaddr_to_offset(vma, start);
1071 max = min + (end - start) - 1;
1072
1073 spin_lock(&uprobes_treelock);
1074 n = find_node_in_range(inode, min, max);
1075 spin_unlock(&uprobes_treelock);
1076
1077 return !!n;
1078 }
1079
1080 /*
1081 * Called in context of a munmap of a vma.
1082 */
1083 void uprobe_munmap(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1084 {
1085 if (no_uprobe_events() || !valid_vma(vma, false))
1086 return;
1087
1088 if (!atomic_read(&vma->vm_mm->mm_users)) /* called by mmput() ? */
1089 return;
1090
1091 if (!test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags) ||
1092 test_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags))
1093 return;
1094
1095 if (vma_has_uprobes(vma, start, end))
1096 set_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags);
1097 }
1098
1099 /* Slot allocation for XOL */
1100 static int xol_add_vma(struct mm_struct *mm, struct xol_area *area)
1101 {
1102 int ret = -EALREADY;
1103
1104 down_write(&mm->mmap_sem);
1105 if (mm->uprobes_state.xol_area)
1106 goto fail;
1107
1108 if (!area->vaddr) {
1109 /* Try to map as high as possible, this is only a hint. */
1110 area->vaddr = get_unmapped_area(NULL, TASK_SIZE - PAGE_SIZE,
1111 PAGE_SIZE, 0, 0);
1112 if (area->vaddr & ~PAGE_MASK) {
1113 ret = area->vaddr;
1114 goto fail;
1115 }
1116 }
1117
1118 ret = install_special_mapping(mm, area->vaddr, PAGE_SIZE,
1119 VM_EXEC|VM_MAYEXEC|VM_DONTCOPY|VM_IO, &area->page);
1120 if (ret)
1121 goto fail;
1122
1123 smp_wmb(); /* pairs with get_xol_area() */
1124 mm->uprobes_state.xol_area = area;
1125 fail:
1126 up_write(&mm->mmap_sem);
1127
1128 return ret;
1129 }
1130
1131 static struct xol_area *__create_xol_area(unsigned long vaddr)
1132 {
1133 struct mm_struct *mm = current->mm;
1134 uprobe_opcode_t insn = UPROBE_SWBP_INSN;
1135 struct xol_area *area;
1136
1137 area = kmalloc(sizeof(*area), GFP_KERNEL);
1138 if (unlikely(!area))
1139 goto out;
1140
1141 area->bitmap = kzalloc(BITS_TO_LONGS(UINSNS_PER_PAGE) * sizeof(long), GFP_KERNEL);
1142 if (!area->bitmap)
1143 goto free_area;
1144
1145 area->page = alloc_page(GFP_HIGHUSER);
1146 if (!area->page)
1147 goto free_bitmap;
1148
1149 area->vaddr = vaddr;
1150 init_waitqueue_head(&area->wq);
1151 /* Reserve the 1st slot for get_trampoline_vaddr() */
1152 set_bit(0, area->bitmap);
1153 atomic_set(&area->slot_count, 1);
1154 copy_to_page(area->page, 0, &insn, UPROBE_SWBP_INSN_SIZE);
1155
1156 if (!xol_add_vma(mm, area))
1157 return area;
1158
1159 __free_page(area->page);
1160 free_bitmap:
1161 kfree(area->bitmap);
1162 free_area:
1163 kfree(area);
1164 out:
1165 return NULL;
1166 }
1167
1168 /*
1169 * get_xol_area - Allocate process's xol_area if necessary.
1170 * This area will be used for storing instructions for execution out of line.
1171 *
1172 * Returns the allocated area or NULL.
1173 */
1174 static struct xol_area *get_xol_area(void)
1175 {
1176 struct mm_struct *mm = current->mm;
1177 struct xol_area *area;
1178
1179 if (!mm->uprobes_state.xol_area)
1180 __create_xol_area(0);
1181
1182 area = mm->uprobes_state.xol_area;
1183 smp_read_barrier_depends(); /* pairs with wmb in xol_add_vma() */
1184 return area;
1185 }
1186
1187 /*
1188 * uprobe_clear_state - Free the area allocated for slots.
1189 */
1190 void uprobe_clear_state(struct mm_struct *mm)
1191 {
1192 struct xol_area *area = mm->uprobes_state.xol_area;
1193
1194 if (!area)
1195 return;
1196
1197 put_page(area->page);
1198 kfree(area->bitmap);
1199 kfree(area);
1200 }
1201
1202 void uprobe_start_dup_mmap(void)
1203 {
1204 percpu_down_read(&dup_mmap_sem);
1205 }
1206
1207 void uprobe_end_dup_mmap(void)
1208 {
1209 percpu_up_read(&dup_mmap_sem);
1210 }
1211
1212 void uprobe_dup_mmap(struct mm_struct *oldmm, struct mm_struct *newmm)
1213 {
1214 newmm->uprobes_state.xol_area = NULL;
1215
1216 if (test_bit(MMF_HAS_UPROBES, &oldmm->flags)) {
1217 set_bit(MMF_HAS_UPROBES, &newmm->flags);
1218 /* unconditionally, dup_mmap() skips VM_DONTCOPY vmas */
1219 set_bit(MMF_RECALC_UPROBES, &newmm->flags);
1220 }
1221 }
1222
1223 /*
1224 * - search for a free slot.
1225 */
1226 static unsigned long xol_take_insn_slot(struct xol_area *area)
1227 {
1228 unsigned long slot_addr;
1229 int slot_nr;
1230
1231 do {
1232 slot_nr = find_first_zero_bit(area->bitmap, UINSNS_PER_PAGE);
1233 if (slot_nr < UINSNS_PER_PAGE) {
1234 if (!test_and_set_bit(slot_nr, area->bitmap))
1235 break;
1236
1237 slot_nr = UINSNS_PER_PAGE;
1238 continue;
1239 }
1240 wait_event(area->wq, (atomic_read(&area->slot_count) < UINSNS_PER_PAGE));
1241 } while (slot_nr >= UINSNS_PER_PAGE);
1242
1243 slot_addr = area->vaddr + (slot_nr * UPROBE_XOL_SLOT_BYTES);
1244 atomic_inc(&area->slot_count);
1245
1246 return slot_addr;
1247 }
1248
1249 /*
1250 * xol_get_insn_slot - allocate a slot for xol.
1251 * Returns the allocated slot address or 0.
1252 */
1253 static unsigned long xol_get_insn_slot(struct uprobe *uprobe)
1254 {
1255 struct xol_area *area;
1256 unsigned long xol_vaddr;
1257
1258 area = get_xol_area();
1259 if (!area)
1260 return 0;
1261
1262 xol_vaddr = xol_take_insn_slot(area);
1263 if (unlikely(!xol_vaddr))
1264 return 0;
1265
1266 /* Initialize the slot */
1267 copy_to_page(area->page, xol_vaddr,
1268 uprobe->arch.ixol, sizeof(uprobe->arch.ixol));
1269 /*
1270 * We probably need flush_icache_user_range() but it needs vma.
1271 * This should work on supported architectures too.
1272 */
1273 flush_dcache_page(area->page);
1274
1275 return xol_vaddr;
1276 }
1277
1278 /*
1279 * xol_free_insn_slot - If slot was earlier allocated by
1280 * @xol_get_insn_slot(), make the slot available for
1281 * subsequent requests.
1282 */
1283 static void xol_free_insn_slot(struct task_struct *tsk)
1284 {
1285 struct xol_area *area;
1286 unsigned long vma_end;
1287 unsigned long slot_addr;
1288
1289 if (!tsk->mm || !tsk->mm->uprobes_state.xol_area || !tsk->utask)
1290 return;
1291
1292 slot_addr = tsk->utask->xol_vaddr;
1293 if (unlikely(!slot_addr))
1294 return;
1295
1296 area = tsk->mm->uprobes_state.xol_area;
1297 vma_end = area->vaddr + PAGE_SIZE;
1298 if (area->vaddr <= slot_addr && slot_addr < vma_end) {
1299 unsigned long offset;
1300 int slot_nr;
1301
1302 offset = slot_addr - area->vaddr;
1303 slot_nr = offset / UPROBE_XOL_SLOT_BYTES;
1304 if (slot_nr >= UINSNS_PER_PAGE)
1305 return;
1306
1307 clear_bit(slot_nr, area->bitmap);
1308 atomic_dec(&area->slot_count);
1309 if (waitqueue_active(&area->wq))
1310 wake_up(&area->wq);
1311
1312 tsk->utask->xol_vaddr = 0;
1313 }
1314 }
1315
1316 /**
1317 * uprobe_get_swbp_addr - compute address of swbp given post-swbp regs
1318 * @regs: Reflects the saved state of the task after it has hit a breakpoint
1319 * instruction.
1320 * Return the address of the breakpoint instruction.
1321 */
1322 unsigned long __weak uprobe_get_swbp_addr(struct pt_regs *regs)
1323 {
1324 return instruction_pointer(regs) - UPROBE_SWBP_INSN_SIZE;
1325 }
1326
1327 /*
1328 * Called with no locks held.
1329 * Called in context of a exiting or a exec-ing thread.
1330 */
1331 void uprobe_free_utask(struct task_struct *t)
1332 {
1333 struct uprobe_task *utask = t->utask;
1334 struct return_instance *ri, *tmp;
1335
1336 if (!utask)
1337 return;
1338
1339 if (utask->active_uprobe)
1340 put_uprobe(utask->active_uprobe);
1341
1342 ri = utask->return_instances;
1343 while (ri) {
1344 tmp = ri;
1345 ri = ri->next;
1346
1347 put_uprobe(tmp->uprobe);
1348 kfree(tmp);
1349 }
1350
1351 xol_free_insn_slot(t);
1352 kfree(utask);
1353 t->utask = NULL;
1354 }
1355
1356 /*
1357 * Allocate a uprobe_task object for the task if if necessary.
1358 * Called when the thread hits a breakpoint.
1359 *
1360 * Returns:
1361 * - pointer to new uprobe_task on success
1362 * - NULL otherwise
1363 */
1364 static struct uprobe_task *get_utask(void)
1365 {
1366 if (!current->utask)
1367 current->utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL);
1368 return current->utask;
1369 }
1370
1371 static int dup_utask(struct task_struct *t, struct uprobe_task *o_utask)
1372 {
1373 struct uprobe_task *n_utask;
1374 struct return_instance **p, *o, *n;
1375
1376 n_utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL);
1377 if (!n_utask)
1378 return -ENOMEM;
1379 t->utask = n_utask;
1380
1381 p = &n_utask->return_instances;
1382 for (o = o_utask->return_instances; o; o = o->next) {
1383 n = kmalloc(sizeof(struct return_instance), GFP_KERNEL);
1384 if (!n)
1385 return -ENOMEM;
1386
1387 *n = *o;
1388 atomic_inc(&n->uprobe->ref);
1389 n->next = NULL;
1390
1391 *p = n;
1392 p = &n->next;
1393 n_utask->depth++;
1394 }
1395
1396 return 0;
1397 }
1398
1399 static void uprobe_warn(struct task_struct *t, const char *msg)
1400 {
1401 pr_warn("uprobe: %s:%d failed to %s\n",
1402 current->comm, current->pid, msg);
1403 }
1404
1405 static void dup_xol_work(struct callback_head *work)
1406 {
1407 kfree(work);
1408
1409 if (current->flags & PF_EXITING)
1410 return;
1411
1412 if (!__create_xol_area(current->utask->vaddr))
1413 uprobe_warn(current, "dup xol area");
1414 }
1415
1416 /*
1417 * Called in context of a new clone/fork from copy_process.
1418 */
1419 void uprobe_copy_process(struct task_struct *t, unsigned long flags)
1420 {
1421 struct uprobe_task *utask = current->utask;
1422 struct mm_struct *mm = current->mm;
1423 struct callback_head *work;
1424 struct xol_area *area;
1425
1426 t->utask = NULL;
1427
1428 if (!utask || !utask->return_instances)
1429 return;
1430
1431 if (mm == t->mm && !(flags & CLONE_VFORK))
1432 return;
1433
1434 if (dup_utask(t, utask))
1435 return uprobe_warn(t, "dup ret instances");
1436
1437 /* The task can fork() after dup_xol_work() fails */
1438 area = mm->uprobes_state.xol_area;
1439 if (!area)
1440 return uprobe_warn(t, "dup xol area");
1441
1442 if (mm == t->mm)
1443 return;
1444
1445 /* TODO: move it into the union in uprobe_task */
1446 work = kmalloc(sizeof(*work), GFP_KERNEL);
1447 if (!work)
1448 return uprobe_warn(t, "dup xol area");
1449
1450 t->utask->vaddr = area->vaddr;
1451 init_task_work(work, dup_xol_work);
1452 task_work_add(t, work, true);
1453 }
1454
1455 /*
1456 * Current area->vaddr notion assume the trampoline address is always
1457 * equal area->vaddr.
1458 *
1459 * Returns -1 in case the xol_area is not allocated.
1460 */
1461 static unsigned long get_trampoline_vaddr(void)
1462 {
1463 struct xol_area *area;
1464 unsigned long trampoline_vaddr = -1;
1465
1466 area = current->mm->uprobes_state.xol_area;
1467 smp_read_barrier_depends();
1468 if (area)
1469 trampoline_vaddr = area->vaddr;
1470
1471 return trampoline_vaddr;
1472 }
1473
1474 static void prepare_uretprobe(struct uprobe *uprobe, struct pt_regs *regs)
1475 {
1476 struct return_instance *ri;
1477 struct uprobe_task *utask;
1478 unsigned long orig_ret_vaddr, trampoline_vaddr;
1479 bool chained = false;
1480
1481 if (!get_xol_area())
1482 return;
1483
1484 utask = get_utask();
1485 if (!utask)
1486 return;
1487
1488 if (utask->depth >= MAX_URETPROBE_DEPTH) {
1489 printk_ratelimited(KERN_INFO "uprobe: omit uretprobe due to"
1490 " nestedness limit pid/tgid=%d/%d\n",
1491 current->pid, current->tgid);
1492 return;
1493 }
1494
1495 ri = kzalloc(sizeof(struct return_instance), GFP_KERNEL);
1496 if (!ri)
1497 goto fail;
1498
1499 trampoline_vaddr = get_trampoline_vaddr();
1500 orig_ret_vaddr = arch_uretprobe_hijack_return_addr(trampoline_vaddr, regs);
1501 if (orig_ret_vaddr == -1)
1502 goto fail;
1503
1504 /*
1505 * We don't want to keep trampoline address in stack, rather keep the
1506 * original return address of first caller thru all the consequent
1507 * instances. This also makes breakpoint unwrapping easier.
1508 */
1509 if (orig_ret_vaddr == trampoline_vaddr) {
1510 if (!utask->return_instances) {
1511 /*
1512 * This situation is not possible. Likely we have an
1513 * attack from user-space.
1514 */
1515 pr_warn("uprobe: unable to set uretprobe pid/tgid=%d/%d\n",
1516 current->pid, current->tgid);
1517 goto fail;
1518 }
1519
1520 chained = true;
1521 orig_ret_vaddr = utask->return_instances->orig_ret_vaddr;
1522 }
1523
1524 atomic_inc(&uprobe->ref);
1525 ri->uprobe = uprobe;
1526 ri->func = instruction_pointer(regs);
1527 ri->orig_ret_vaddr = orig_ret_vaddr;
1528 ri->chained = chained;
1529
1530 utask->depth++;
1531
1532 /* add instance to the stack */
1533 ri->next = utask->return_instances;
1534 utask->return_instances = ri;
1535
1536 return;
1537
1538 fail:
1539 kfree(ri);
1540 }
1541
1542 /* Prepare to single-step probed instruction out of line. */
1543 static int
1544 pre_ssout(struct uprobe *uprobe, struct pt_regs *regs, unsigned long bp_vaddr)
1545 {
1546 struct uprobe_task *utask;
1547 unsigned long xol_vaddr;
1548 int err;
1549
1550 utask = get_utask();
1551 if (!utask)
1552 return -ENOMEM;
1553
1554 xol_vaddr = xol_get_insn_slot(uprobe);
1555 if (!xol_vaddr)
1556 return -ENOMEM;
1557
1558 utask->xol_vaddr = xol_vaddr;
1559 utask->vaddr = bp_vaddr;
1560
1561 err = arch_uprobe_pre_xol(&uprobe->arch, regs);
1562 if (unlikely(err)) {
1563 xol_free_insn_slot(current);
1564 return err;
1565 }
1566
1567 utask->active_uprobe = uprobe;
1568 utask->state = UTASK_SSTEP;
1569 return 0;
1570 }
1571
1572 /*
1573 * If we are singlestepping, then ensure this thread is not connected to
1574 * non-fatal signals until completion of singlestep. When xol insn itself
1575 * triggers the signal, restart the original insn even if the task is
1576 * already SIGKILL'ed (since coredump should report the correct ip). This
1577 * is even more important if the task has a handler for SIGSEGV/etc, The
1578 * _same_ instruction should be repeated again after return from the signal
1579 * handler, and SSTEP can never finish in this case.
1580 */
1581 bool uprobe_deny_signal(void)
1582 {
1583 struct task_struct *t = current;
1584 struct uprobe_task *utask = t->utask;
1585
1586 if (likely(!utask || !utask->active_uprobe))
1587 return false;
1588
1589 WARN_ON_ONCE(utask->state != UTASK_SSTEP);
1590
1591 if (signal_pending(t)) {
1592 spin_lock_irq(&t->sighand->siglock);
1593 clear_tsk_thread_flag(t, TIF_SIGPENDING);
1594 spin_unlock_irq(&t->sighand->siglock);
1595
1596 if (__fatal_signal_pending(t) || arch_uprobe_xol_was_trapped(t)) {
1597 utask->state = UTASK_SSTEP_TRAPPED;
1598 set_tsk_thread_flag(t, TIF_UPROBE);
1599 set_tsk_thread_flag(t, TIF_NOTIFY_RESUME);
1600 }
1601 }
1602
1603 return true;
1604 }
1605
1606 /*
1607 * Avoid singlestepping the original instruction if the original instruction
1608 * is a NOP or can be emulated.
1609 */
1610 static bool can_skip_sstep(struct uprobe *uprobe, struct pt_regs *regs)
1611 {
1612 if (test_bit(UPROBE_SKIP_SSTEP, &uprobe->flags)) {
1613 if (arch_uprobe_skip_sstep(&uprobe->arch, regs))
1614 return true;
1615 clear_bit(UPROBE_SKIP_SSTEP, &uprobe->flags);
1616 }
1617 return false;
1618 }
1619
1620 static void mmf_recalc_uprobes(struct mm_struct *mm)
1621 {
1622 struct vm_area_struct *vma;
1623
1624 for (vma = mm->mmap; vma; vma = vma->vm_next) {
1625 if (!valid_vma(vma, false))
1626 continue;
1627 /*
1628 * This is not strictly accurate, we can race with
1629 * uprobe_unregister() and see the already removed
1630 * uprobe if delete_uprobe() was not yet called.
1631 * Or this uprobe can be filtered out.
1632 */
1633 if (vma_has_uprobes(vma, vma->vm_start, vma->vm_end))
1634 return;
1635 }
1636
1637 clear_bit(MMF_HAS_UPROBES, &mm->flags);
1638 }
1639
1640 static int is_trap_at_addr(struct mm_struct *mm, unsigned long vaddr)
1641 {
1642 struct page *page;
1643 uprobe_opcode_t opcode;
1644 int result;
1645
1646 pagefault_disable();
1647 result = __copy_from_user_inatomic(&opcode, (void __user*)vaddr,
1648 sizeof(opcode));
1649 pagefault_enable();
1650
1651 if (likely(result == 0))
1652 goto out;
1653
1654 result = get_user_pages(NULL, mm, vaddr, 1, 0, 1, &page, NULL);
1655 if (result < 0)
1656 return result;
1657
1658 copy_from_page(page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
1659 put_page(page);
1660 out:
1661 /* This needs to return true for any variant of the trap insn */
1662 return is_trap_insn(&opcode);
1663 }
1664
1665 static struct uprobe *find_active_uprobe(unsigned long bp_vaddr, int *is_swbp)
1666 {
1667 struct mm_struct *mm = current->mm;
1668 struct uprobe *uprobe = NULL;
1669 struct vm_area_struct *vma;
1670
1671 down_read(&mm->mmap_sem);
1672 vma = find_vma(mm, bp_vaddr);
1673 if (vma && vma->vm_start <= bp_vaddr) {
1674 if (valid_vma(vma, false)) {
1675 struct inode *inode = file_inode(vma->vm_file);
1676 loff_t offset = vaddr_to_offset(vma, bp_vaddr);
1677
1678 uprobe = find_uprobe(inode, offset);
1679 }
1680
1681 if (!uprobe)
1682 *is_swbp = is_trap_at_addr(mm, bp_vaddr);
1683 } else {
1684 *is_swbp = -EFAULT;
1685 }
1686
1687 if (!uprobe && test_and_clear_bit(MMF_RECALC_UPROBES, &mm->flags))
1688 mmf_recalc_uprobes(mm);
1689 up_read(&mm->mmap_sem);
1690
1691 return uprobe;
1692 }
1693
1694 static void handler_chain(struct uprobe *uprobe, struct pt_regs *regs)
1695 {
1696 struct uprobe_consumer *uc;
1697 int remove = UPROBE_HANDLER_REMOVE;
1698 bool need_prep = false; /* prepare return uprobe, when needed */
1699
1700 down_read(&uprobe->register_rwsem);
1701 for (uc = uprobe->consumers; uc; uc = uc->next) {
1702 int rc = 0;
1703
1704 if (uc->handler) {
1705 rc = uc->handler(uc, regs);
1706 WARN(rc & ~UPROBE_HANDLER_MASK,
1707 "bad rc=0x%x from %pf()\n", rc, uc->handler);
1708 }
1709
1710 if (uc->ret_handler)
1711 need_prep = true;
1712
1713 remove &= rc;
1714 }
1715
1716 if (need_prep && !remove)
1717 prepare_uretprobe(uprobe, regs); /* put bp at return */
1718
1719 if (remove && uprobe->consumers) {
1720 WARN_ON(!uprobe_is_active(uprobe));
1721 unapply_uprobe(uprobe, current->mm);
1722 }
1723 up_read(&uprobe->register_rwsem);
1724 }
1725
1726 static void
1727 handle_uretprobe_chain(struct return_instance *ri, struct pt_regs *regs)
1728 {
1729 struct uprobe *uprobe = ri->uprobe;
1730 struct uprobe_consumer *uc;
1731
1732 down_read(&uprobe->register_rwsem);
1733 for (uc = uprobe->consumers; uc; uc = uc->next) {
1734 if (uc->ret_handler)
1735 uc->ret_handler(uc, ri->func, regs);
1736 }
1737 up_read(&uprobe->register_rwsem);
1738 }
1739
1740 static bool handle_trampoline(struct pt_regs *regs)
1741 {
1742 struct uprobe_task *utask;
1743 struct return_instance *ri, *tmp;
1744 bool chained;
1745
1746 utask = current->utask;
1747 if (!utask)
1748 return false;
1749
1750 ri = utask->return_instances;
1751 if (!ri)
1752 return false;
1753
1754 /*
1755 * TODO: we should throw out return_instance's invalidated by
1756 * longjmp(), currently we assume that the probed function always
1757 * returns.
1758 */
1759 instruction_pointer_set(regs, ri->orig_ret_vaddr);
1760
1761 for (;;) {
1762 handle_uretprobe_chain(ri, regs);
1763
1764 chained = ri->chained;
1765 put_uprobe(ri->uprobe);
1766
1767 tmp = ri;
1768 ri = ri->next;
1769 kfree(tmp);
1770 utask->depth--;
1771
1772 if (!chained)
1773 break;
1774 BUG_ON(!ri);
1775 }
1776
1777 utask->return_instances = ri;
1778
1779 return true;
1780 }
1781
1782 /*
1783 * Run handler and ask thread to singlestep.
1784 * Ensure all non-fatal signals cannot interrupt thread while it singlesteps.
1785 */
1786 static void handle_swbp(struct pt_regs *regs)
1787 {
1788 struct uprobe *uprobe;
1789 unsigned long bp_vaddr;
1790 int uninitialized_var(is_swbp);
1791
1792 bp_vaddr = uprobe_get_swbp_addr(regs);
1793 if (bp_vaddr == get_trampoline_vaddr()) {
1794 if (handle_trampoline(regs))
1795 return;
1796
1797 pr_warn("uprobe: unable to handle uretprobe pid/tgid=%d/%d\n",
1798 current->pid, current->tgid);
1799 }
1800
1801 uprobe = find_active_uprobe(bp_vaddr, &is_swbp);
1802 if (!uprobe) {
1803 if (is_swbp > 0) {
1804 /* No matching uprobe; signal SIGTRAP. */
1805 send_sig(SIGTRAP, current, 0);
1806 } else {
1807 /*
1808 * Either we raced with uprobe_unregister() or we can't
1809 * access this memory. The latter is only possible if
1810 * another thread plays with our ->mm. In both cases
1811 * we can simply restart. If this vma was unmapped we
1812 * can pretend this insn was not executed yet and get
1813 * the (correct) SIGSEGV after restart.
1814 */
1815 instruction_pointer_set(regs, bp_vaddr);
1816 }
1817 return;
1818 }
1819
1820 /* change it in advance for ->handler() and restart */
1821 instruction_pointer_set(regs, bp_vaddr);
1822
1823 /*
1824 * TODO: move copy_insn/etc into _register and remove this hack.
1825 * After we hit the bp, _unregister + _register can install the
1826 * new and not-yet-analyzed uprobe at the same address, restart.
1827 */
1828 smp_rmb(); /* pairs with wmb() in install_breakpoint() */
1829 if (unlikely(!test_bit(UPROBE_COPY_INSN, &uprobe->flags)))
1830 goto out;
1831
1832 handler_chain(uprobe, regs);
1833 if (can_skip_sstep(uprobe, regs))
1834 goto out;
1835
1836 if (!pre_ssout(uprobe, regs, bp_vaddr))
1837 return;
1838
1839 /* can_skip_sstep() succeeded, or restart if can't singlestep */
1840 out:
1841 put_uprobe(uprobe);
1842 }
1843
1844 /*
1845 * Perform required fix-ups and disable singlestep.
1846 * Allow pending signals to take effect.
1847 */
1848 static void handle_singlestep(struct uprobe_task *utask, struct pt_regs *regs)
1849 {
1850 struct uprobe *uprobe;
1851
1852 uprobe = utask->active_uprobe;
1853 if (utask->state == UTASK_SSTEP_ACK)
1854 arch_uprobe_post_xol(&uprobe->arch, regs);
1855 else if (utask->state == UTASK_SSTEP_TRAPPED)
1856 arch_uprobe_abort_xol(&uprobe->arch, regs);
1857 else
1858 WARN_ON_ONCE(1);
1859
1860 put_uprobe(uprobe);
1861 utask->active_uprobe = NULL;
1862 utask->state = UTASK_RUNNING;
1863 xol_free_insn_slot(current);
1864
1865 spin_lock_irq(&current->sighand->siglock);
1866 recalc_sigpending(); /* see uprobe_deny_signal() */
1867 spin_unlock_irq(&current->sighand->siglock);
1868 }
1869
1870 /*
1871 * On breakpoint hit, breakpoint notifier sets the TIF_UPROBE flag and
1872 * allows the thread to return from interrupt. After that handle_swbp()
1873 * sets utask->active_uprobe.
1874 *
1875 * On singlestep exception, singlestep notifier sets the TIF_UPROBE flag
1876 * and allows the thread to return from interrupt.
1877 *
1878 * While returning to userspace, thread notices the TIF_UPROBE flag and calls
1879 * uprobe_notify_resume().
1880 */
1881 void uprobe_notify_resume(struct pt_regs *regs)
1882 {
1883 struct uprobe_task *utask;
1884
1885 clear_thread_flag(TIF_UPROBE);
1886
1887 utask = current->utask;
1888 if (utask && utask->active_uprobe)
1889 handle_singlestep(utask, regs);
1890 else
1891 handle_swbp(regs);
1892 }
1893
1894 /*
1895 * uprobe_pre_sstep_notifier gets called from interrupt context as part of
1896 * notifier mechanism. Set TIF_UPROBE flag and indicate breakpoint hit.
1897 */
1898 int uprobe_pre_sstep_notifier(struct pt_regs *regs)
1899 {
1900 if (!current->mm)
1901 return 0;
1902
1903 if (!test_bit(MMF_HAS_UPROBES, &current->mm->flags) &&
1904 (!current->utask || !current->utask->return_instances))
1905 return 0;
1906
1907 set_thread_flag(TIF_UPROBE);
1908 return 1;
1909 }
1910
1911 /*
1912 * uprobe_post_sstep_notifier gets called in interrupt context as part of notifier
1913 * mechanism. Set TIF_UPROBE flag and indicate completion of singlestep.
1914 */
1915 int uprobe_post_sstep_notifier(struct pt_regs *regs)
1916 {
1917 struct uprobe_task *utask = current->utask;
1918
1919 if (!current->mm || !utask || !utask->active_uprobe)
1920 /* task is currently not uprobed */
1921 return 0;
1922
1923 utask->state = UTASK_SSTEP_ACK;
1924 set_thread_flag(TIF_UPROBE);
1925 return 1;
1926 }
1927
1928 static struct notifier_block uprobe_exception_nb = {
1929 .notifier_call = arch_uprobe_exception_notify,
1930 .priority = INT_MAX-1, /* notified after kprobes, kgdb */
1931 };
1932
1933 static int __init init_uprobes(void)
1934 {
1935 int i;
1936
1937 for (i = 0; i < UPROBES_HASH_SZ; i++)
1938 mutex_init(&uprobes_mmap_mutex[i]);
1939
1940 if (percpu_init_rwsem(&dup_mmap_sem))
1941 return -ENOMEM;
1942
1943 return register_die_notifier(&uprobe_exception_nb);
1944 }
1945 __initcall(init_uprobes);
This page took 0.118801 seconds and 4 git commands to generate.