iommu/intel: add missing free_domain_mem
[deliverable/linux.git] / kernel / events / uprobes.c
1 /*
2 * User-space Probes (UProbes)
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
18 * Copyright (C) IBM Corporation, 2008-2012
19 * Authors:
20 * Srikar Dronamraju
21 * Jim Keniston
22 * Copyright (C) 2011-2012 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
23 */
24
25 #include <linux/kernel.h>
26 #include <linux/highmem.h>
27 #include <linux/pagemap.h> /* read_mapping_page */
28 #include <linux/slab.h>
29 #include <linux/sched.h>
30 #include <linux/rmap.h> /* anon_vma_prepare */
31 #include <linux/mmu_notifier.h> /* set_pte_at_notify */
32 #include <linux/swap.h> /* try_to_free_swap */
33 #include <linux/ptrace.h> /* user_enable_single_step */
34 #include <linux/kdebug.h> /* notifier mechanism */
35 #include "../../mm/internal.h" /* munlock_vma_page */
36
37 #include <linux/uprobes.h>
38
39 #define UINSNS_PER_PAGE (PAGE_SIZE/UPROBE_XOL_SLOT_BYTES)
40 #define MAX_UPROBE_XOL_SLOTS UINSNS_PER_PAGE
41
42 static struct rb_root uprobes_tree = RB_ROOT;
43
44 static DEFINE_SPINLOCK(uprobes_treelock); /* serialize rbtree access */
45
46 #define UPROBES_HASH_SZ 13
47
48 /*
49 * We need separate register/unregister and mmap/munmap lock hashes because
50 * of mmap_sem nesting.
51 *
52 * uprobe_register() needs to install probes on (potentially) all processes
53 * and thus needs to acquire multiple mmap_sems (consequtively, not
54 * concurrently), whereas uprobe_mmap() is called while holding mmap_sem
55 * for the particular process doing the mmap.
56 *
57 * uprobe_register()->register_for_each_vma() needs to drop/acquire mmap_sem
58 * because of lock order against i_mmap_mutex. This means there's a hole in
59 * the register vma iteration where a mmap() can happen.
60 *
61 * Thus uprobe_register() can race with uprobe_mmap() and we can try and
62 * install a probe where one is already installed.
63 */
64
65 /* serialize (un)register */
66 static struct mutex uprobes_mutex[UPROBES_HASH_SZ];
67
68 #define uprobes_hash(v) (&uprobes_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
69
70 /* serialize uprobe->pending_list */
71 static struct mutex uprobes_mmap_mutex[UPROBES_HASH_SZ];
72 #define uprobes_mmap_hash(v) (&uprobes_mmap_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
73
74 /*
75 * uprobe_events allows us to skip the uprobe_mmap if there are no uprobe
76 * events active at this time. Probably a fine grained per inode count is
77 * better?
78 */
79 static atomic_t uprobe_events = ATOMIC_INIT(0);
80
81 struct uprobe {
82 struct rb_node rb_node; /* node in the rb tree */
83 atomic_t ref;
84 struct rw_semaphore consumer_rwsem;
85 struct list_head pending_list;
86 struct uprobe_consumer *consumers;
87 struct inode *inode; /* Also hold a ref to inode */
88 loff_t offset;
89 int flags;
90 struct arch_uprobe arch;
91 };
92
93 /*
94 * valid_vma: Verify if the specified vma is an executable vma
95 * Relax restrictions while unregistering: vm_flags might have
96 * changed after breakpoint was inserted.
97 * - is_register: indicates if we are in register context.
98 * - Return 1 if the specified virtual address is in an
99 * executable vma.
100 */
101 static bool valid_vma(struct vm_area_struct *vma, bool is_register)
102 {
103 if (!vma->vm_file)
104 return false;
105
106 if (!is_register)
107 return true;
108
109 if ((vma->vm_flags & (VM_HUGETLB|VM_READ|VM_WRITE|VM_EXEC|VM_SHARED))
110 == (VM_READ|VM_EXEC))
111 return true;
112
113 return false;
114 }
115
116 static unsigned long offset_to_vaddr(struct vm_area_struct *vma, loff_t offset)
117 {
118 return vma->vm_start + offset - ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
119 }
120
121 static loff_t vaddr_to_offset(struct vm_area_struct *vma, unsigned long vaddr)
122 {
123 return ((loff_t)vma->vm_pgoff << PAGE_SHIFT) + (vaddr - vma->vm_start);
124 }
125
126 /**
127 * __replace_page - replace page in vma by new page.
128 * based on replace_page in mm/ksm.c
129 *
130 * @vma: vma that holds the pte pointing to page
131 * @addr: address the old @page is mapped at
132 * @page: the cowed page we are replacing by kpage
133 * @kpage: the modified page we replace page by
134 *
135 * Returns 0 on success, -EFAULT on failure.
136 */
137 static int __replace_page(struct vm_area_struct *vma, unsigned long addr,
138 struct page *page, struct page *kpage)
139 {
140 struct mm_struct *mm = vma->vm_mm;
141 spinlock_t *ptl;
142 pte_t *ptep;
143 int err;
144
145 /* For try_to_free_swap() and munlock_vma_page() below */
146 lock_page(page);
147
148 err = -EAGAIN;
149 ptep = page_check_address(page, mm, addr, &ptl, 0);
150 if (!ptep)
151 goto unlock;
152
153 get_page(kpage);
154 page_add_new_anon_rmap(kpage, vma, addr);
155
156 if (!PageAnon(page)) {
157 dec_mm_counter(mm, MM_FILEPAGES);
158 inc_mm_counter(mm, MM_ANONPAGES);
159 }
160
161 flush_cache_page(vma, addr, pte_pfn(*ptep));
162 ptep_clear_flush(vma, addr, ptep);
163 set_pte_at_notify(mm, addr, ptep, mk_pte(kpage, vma->vm_page_prot));
164
165 page_remove_rmap(page);
166 if (!page_mapped(page))
167 try_to_free_swap(page);
168 pte_unmap_unlock(ptep, ptl);
169
170 if (vma->vm_flags & VM_LOCKED)
171 munlock_vma_page(page);
172 put_page(page);
173
174 err = 0;
175 unlock:
176 unlock_page(page);
177 return err;
178 }
179
180 /**
181 * is_swbp_insn - check if instruction is breakpoint instruction.
182 * @insn: instruction to be checked.
183 * Default implementation of is_swbp_insn
184 * Returns true if @insn is a breakpoint instruction.
185 */
186 bool __weak is_swbp_insn(uprobe_opcode_t *insn)
187 {
188 return *insn == UPROBE_SWBP_INSN;
189 }
190
191 /*
192 * NOTE:
193 * Expect the breakpoint instruction to be the smallest size instruction for
194 * the architecture. If an arch has variable length instruction and the
195 * breakpoint instruction is not of the smallest length instruction
196 * supported by that architecture then we need to modify read_opcode /
197 * write_opcode accordingly. This would never be a problem for archs that
198 * have fixed length instructions.
199 */
200
201 /*
202 * write_opcode - write the opcode at a given virtual address.
203 * @auprobe: arch breakpointing information.
204 * @mm: the probed process address space.
205 * @vaddr: the virtual address to store the opcode.
206 * @opcode: opcode to be written at @vaddr.
207 *
208 * Called with mm->mmap_sem held (for read and with a reference to
209 * mm).
210 *
211 * For mm @mm, write the opcode at @vaddr.
212 * Return 0 (success) or a negative errno.
213 */
214 static int write_opcode(struct arch_uprobe *auprobe, struct mm_struct *mm,
215 unsigned long vaddr, uprobe_opcode_t opcode)
216 {
217 struct page *old_page, *new_page;
218 void *vaddr_old, *vaddr_new;
219 struct vm_area_struct *vma;
220 int ret;
221
222 retry:
223 /* Read the page with vaddr into memory */
224 ret = get_user_pages(NULL, mm, vaddr, 1, 0, 0, &old_page, &vma);
225 if (ret <= 0)
226 return ret;
227
228 ret = -ENOMEM;
229 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vaddr);
230 if (!new_page)
231 goto put_old;
232
233 __SetPageUptodate(new_page);
234
235 /* copy the page now that we've got it stable */
236 vaddr_old = kmap_atomic(old_page);
237 vaddr_new = kmap_atomic(new_page);
238
239 memcpy(vaddr_new, vaddr_old, PAGE_SIZE);
240 memcpy(vaddr_new + (vaddr & ~PAGE_MASK), &opcode, UPROBE_SWBP_INSN_SIZE);
241
242 kunmap_atomic(vaddr_new);
243 kunmap_atomic(vaddr_old);
244
245 ret = anon_vma_prepare(vma);
246 if (ret)
247 goto put_new;
248
249 ret = __replace_page(vma, vaddr, old_page, new_page);
250
251 put_new:
252 page_cache_release(new_page);
253 put_old:
254 put_page(old_page);
255
256 if (unlikely(ret == -EAGAIN))
257 goto retry;
258 return ret;
259 }
260
261 /**
262 * read_opcode - read the opcode at a given virtual address.
263 * @mm: the probed process address space.
264 * @vaddr: the virtual address to read the opcode.
265 * @opcode: location to store the read opcode.
266 *
267 * Called with mm->mmap_sem held (for read and with a reference to
268 * mm.
269 *
270 * For mm @mm, read the opcode at @vaddr and store it in @opcode.
271 * Return 0 (success) or a negative errno.
272 */
273 static int read_opcode(struct mm_struct *mm, unsigned long vaddr, uprobe_opcode_t *opcode)
274 {
275 struct page *page;
276 void *vaddr_new;
277 int ret;
278
279 ret = get_user_pages(NULL, mm, vaddr, 1, 0, 1, &page, NULL);
280 if (ret <= 0)
281 return ret;
282
283 lock_page(page);
284 vaddr_new = kmap_atomic(page);
285 vaddr &= ~PAGE_MASK;
286 memcpy(opcode, vaddr_new + vaddr, UPROBE_SWBP_INSN_SIZE);
287 kunmap_atomic(vaddr_new);
288 unlock_page(page);
289
290 put_page(page);
291
292 return 0;
293 }
294
295 static int is_swbp_at_addr(struct mm_struct *mm, unsigned long vaddr)
296 {
297 uprobe_opcode_t opcode;
298 int result;
299
300 if (current->mm == mm) {
301 pagefault_disable();
302 result = __copy_from_user_inatomic(&opcode, (void __user*)vaddr,
303 sizeof(opcode));
304 pagefault_enable();
305
306 if (likely(result == 0))
307 goto out;
308 }
309
310 result = read_opcode(mm, vaddr, &opcode);
311 if (result)
312 return result;
313 out:
314 if (is_swbp_insn(&opcode))
315 return 1;
316
317 return 0;
318 }
319
320 /**
321 * set_swbp - store breakpoint at a given address.
322 * @auprobe: arch specific probepoint information.
323 * @mm: the probed process address space.
324 * @vaddr: the virtual address to insert the opcode.
325 *
326 * For mm @mm, store the breakpoint instruction at @vaddr.
327 * Return 0 (success) or a negative errno.
328 */
329 int __weak set_swbp(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
330 {
331 int result;
332 /*
333 * See the comment near uprobes_hash().
334 */
335 result = is_swbp_at_addr(mm, vaddr);
336 if (result == 1)
337 return -EEXIST;
338
339 if (result)
340 return result;
341
342 return write_opcode(auprobe, mm, vaddr, UPROBE_SWBP_INSN);
343 }
344
345 /**
346 * set_orig_insn - Restore the original instruction.
347 * @mm: the probed process address space.
348 * @auprobe: arch specific probepoint information.
349 * @vaddr: the virtual address to insert the opcode.
350 * @verify: if true, verify existance of breakpoint instruction.
351 *
352 * For mm @mm, restore the original opcode (opcode) at @vaddr.
353 * Return 0 (success) or a negative errno.
354 */
355 int __weak
356 set_orig_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr, bool verify)
357 {
358 if (verify) {
359 int result;
360
361 result = is_swbp_at_addr(mm, vaddr);
362 if (!result)
363 return -EINVAL;
364
365 if (result != 1)
366 return result;
367 }
368 return write_opcode(auprobe, mm, vaddr, *(uprobe_opcode_t *)auprobe->insn);
369 }
370
371 static int match_uprobe(struct uprobe *l, struct uprobe *r)
372 {
373 if (l->inode < r->inode)
374 return -1;
375
376 if (l->inode > r->inode)
377 return 1;
378
379 if (l->offset < r->offset)
380 return -1;
381
382 if (l->offset > r->offset)
383 return 1;
384
385 return 0;
386 }
387
388 static struct uprobe *__find_uprobe(struct inode *inode, loff_t offset)
389 {
390 struct uprobe u = { .inode = inode, .offset = offset };
391 struct rb_node *n = uprobes_tree.rb_node;
392 struct uprobe *uprobe;
393 int match;
394
395 while (n) {
396 uprobe = rb_entry(n, struct uprobe, rb_node);
397 match = match_uprobe(&u, uprobe);
398 if (!match) {
399 atomic_inc(&uprobe->ref);
400 return uprobe;
401 }
402
403 if (match < 0)
404 n = n->rb_left;
405 else
406 n = n->rb_right;
407 }
408 return NULL;
409 }
410
411 /*
412 * Find a uprobe corresponding to a given inode:offset
413 * Acquires uprobes_treelock
414 */
415 static struct uprobe *find_uprobe(struct inode *inode, loff_t offset)
416 {
417 struct uprobe *uprobe;
418 unsigned long flags;
419
420 spin_lock_irqsave(&uprobes_treelock, flags);
421 uprobe = __find_uprobe(inode, offset);
422 spin_unlock_irqrestore(&uprobes_treelock, flags);
423
424 return uprobe;
425 }
426
427 static struct uprobe *__insert_uprobe(struct uprobe *uprobe)
428 {
429 struct rb_node **p = &uprobes_tree.rb_node;
430 struct rb_node *parent = NULL;
431 struct uprobe *u;
432 int match;
433
434 while (*p) {
435 parent = *p;
436 u = rb_entry(parent, struct uprobe, rb_node);
437 match = match_uprobe(uprobe, u);
438 if (!match) {
439 atomic_inc(&u->ref);
440 return u;
441 }
442
443 if (match < 0)
444 p = &parent->rb_left;
445 else
446 p = &parent->rb_right;
447
448 }
449
450 u = NULL;
451 rb_link_node(&uprobe->rb_node, parent, p);
452 rb_insert_color(&uprobe->rb_node, &uprobes_tree);
453 /* get access + creation ref */
454 atomic_set(&uprobe->ref, 2);
455
456 return u;
457 }
458
459 /*
460 * Acquire uprobes_treelock.
461 * Matching uprobe already exists in rbtree;
462 * increment (access refcount) and return the matching uprobe.
463 *
464 * No matching uprobe; insert the uprobe in rb_tree;
465 * get a double refcount (access + creation) and return NULL.
466 */
467 static struct uprobe *insert_uprobe(struct uprobe *uprobe)
468 {
469 unsigned long flags;
470 struct uprobe *u;
471
472 spin_lock_irqsave(&uprobes_treelock, flags);
473 u = __insert_uprobe(uprobe);
474 spin_unlock_irqrestore(&uprobes_treelock, flags);
475
476 /* For now assume that the instruction need not be single-stepped */
477 uprobe->flags |= UPROBE_SKIP_SSTEP;
478
479 return u;
480 }
481
482 static void put_uprobe(struct uprobe *uprobe)
483 {
484 if (atomic_dec_and_test(&uprobe->ref))
485 kfree(uprobe);
486 }
487
488 static struct uprobe *alloc_uprobe(struct inode *inode, loff_t offset)
489 {
490 struct uprobe *uprobe, *cur_uprobe;
491
492 uprobe = kzalloc(sizeof(struct uprobe), GFP_KERNEL);
493 if (!uprobe)
494 return NULL;
495
496 uprobe->inode = igrab(inode);
497 uprobe->offset = offset;
498 init_rwsem(&uprobe->consumer_rwsem);
499
500 /* add to uprobes_tree, sorted on inode:offset */
501 cur_uprobe = insert_uprobe(uprobe);
502
503 /* a uprobe exists for this inode:offset combination */
504 if (cur_uprobe) {
505 kfree(uprobe);
506 uprobe = cur_uprobe;
507 iput(inode);
508 } else {
509 atomic_inc(&uprobe_events);
510 }
511
512 return uprobe;
513 }
514
515 static void handler_chain(struct uprobe *uprobe, struct pt_regs *regs)
516 {
517 struct uprobe_consumer *uc;
518
519 if (!(uprobe->flags & UPROBE_RUN_HANDLER))
520 return;
521
522 down_read(&uprobe->consumer_rwsem);
523 for (uc = uprobe->consumers; uc; uc = uc->next) {
524 if (!uc->filter || uc->filter(uc, current))
525 uc->handler(uc, regs);
526 }
527 up_read(&uprobe->consumer_rwsem);
528 }
529
530 /* Returns the previous consumer */
531 static struct uprobe_consumer *
532 consumer_add(struct uprobe *uprobe, struct uprobe_consumer *uc)
533 {
534 down_write(&uprobe->consumer_rwsem);
535 uc->next = uprobe->consumers;
536 uprobe->consumers = uc;
537 up_write(&uprobe->consumer_rwsem);
538
539 return uc->next;
540 }
541
542 /*
543 * For uprobe @uprobe, delete the consumer @uc.
544 * Return true if the @uc is deleted successfully
545 * or return false.
546 */
547 static bool consumer_del(struct uprobe *uprobe, struct uprobe_consumer *uc)
548 {
549 struct uprobe_consumer **con;
550 bool ret = false;
551
552 down_write(&uprobe->consumer_rwsem);
553 for (con = &uprobe->consumers; *con; con = &(*con)->next) {
554 if (*con == uc) {
555 *con = uc->next;
556 ret = true;
557 break;
558 }
559 }
560 up_write(&uprobe->consumer_rwsem);
561
562 return ret;
563 }
564
565 static int
566 __copy_insn(struct address_space *mapping, struct file *filp, char *insn,
567 unsigned long nbytes, loff_t offset)
568 {
569 struct page *page;
570 void *vaddr;
571 unsigned long off;
572 pgoff_t idx;
573
574 if (!filp)
575 return -EINVAL;
576
577 if (!mapping->a_ops->readpage)
578 return -EIO;
579
580 idx = offset >> PAGE_CACHE_SHIFT;
581 off = offset & ~PAGE_MASK;
582
583 /*
584 * Ensure that the page that has the original instruction is
585 * populated and in page-cache.
586 */
587 page = read_mapping_page(mapping, idx, filp);
588 if (IS_ERR(page))
589 return PTR_ERR(page);
590
591 vaddr = kmap_atomic(page);
592 memcpy(insn, vaddr + off, nbytes);
593 kunmap_atomic(vaddr);
594 page_cache_release(page);
595
596 return 0;
597 }
598
599 static int copy_insn(struct uprobe *uprobe, struct file *filp)
600 {
601 struct address_space *mapping;
602 unsigned long nbytes;
603 int bytes;
604
605 nbytes = PAGE_SIZE - (uprobe->offset & ~PAGE_MASK);
606 mapping = uprobe->inode->i_mapping;
607
608 /* Instruction at end of binary; copy only available bytes */
609 if (uprobe->offset + MAX_UINSN_BYTES > uprobe->inode->i_size)
610 bytes = uprobe->inode->i_size - uprobe->offset;
611 else
612 bytes = MAX_UINSN_BYTES;
613
614 /* Instruction at the page-boundary; copy bytes in second page */
615 if (nbytes < bytes) {
616 int err = __copy_insn(mapping, filp, uprobe->arch.insn + nbytes,
617 bytes - nbytes, uprobe->offset + nbytes);
618 if (err)
619 return err;
620 bytes = nbytes;
621 }
622 return __copy_insn(mapping, filp, uprobe->arch.insn, bytes, uprobe->offset);
623 }
624
625 /*
626 * How mm->uprobes_state.count gets updated
627 * uprobe_mmap() increments the count if
628 * - it successfully adds a breakpoint.
629 * - it cannot add a breakpoint, but sees that there is a underlying
630 * breakpoint (via a is_swbp_at_addr()).
631 *
632 * uprobe_munmap() decrements the count if
633 * - it sees a underlying breakpoint, (via is_swbp_at_addr)
634 * (Subsequent uprobe_unregister wouldnt find the breakpoint
635 * unless a uprobe_mmap kicks in, since the old vma would be
636 * dropped just after uprobe_munmap.)
637 *
638 * uprobe_register increments the count if:
639 * - it successfully adds a breakpoint.
640 *
641 * uprobe_unregister decrements the count if:
642 * - it sees a underlying breakpoint and removes successfully.
643 * (via is_swbp_at_addr)
644 * (Subsequent uprobe_munmap wouldnt find the breakpoint
645 * since there is no underlying breakpoint after the
646 * breakpoint removal.)
647 */
648 static int
649 install_breakpoint(struct uprobe *uprobe, struct mm_struct *mm,
650 struct vm_area_struct *vma, unsigned long vaddr)
651 {
652 int ret;
653
654 /*
655 * If probe is being deleted, unregister thread could be done with
656 * the vma-rmap-walk through. Adding a probe now can be fatal since
657 * nobody will be able to cleanup. Also we could be from fork or
658 * mremap path, where the probe might have already been inserted.
659 * Hence behave as if probe already existed.
660 */
661 if (!uprobe->consumers)
662 return -EEXIST;
663
664 if (!(uprobe->flags & UPROBE_COPY_INSN)) {
665 ret = copy_insn(uprobe, vma->vm_file);
666 if (ret)
667 return ret;
668
669 if (is_swbp_insn((uprobe_opcode_t *)uprobe->arch.insn))
670 return -ENOTSUPP;
671
672 ret = arch_uprobe_analyze_insn(&uprobe->arch, mm, vaddr);
673 if (ret)
674 return ret;
675
676 /* write_opcode() assumes we don't cross page boundary */
677 BUG_ON((uprobe->offset & ~PAGE_MASK) +
678 UPROBE_SWBP_INSN_SIZE > PAGE_SIZE);
679
680 uprobe->flags |= UPROBE_COPY_INSN;
681 }
682
683 /*
684 * Ideally, should be updating the probe count after the breakpoint
685 * has been successfully inserted. However a thread could hit the
686 * breakpoint we just inserted even before the probe count is
687 * incremented. If this is the first breakpoint placed, breakpoint
688 * notifier might ignore uprobes and pass the trap to the thread.
689 * Hence increment before and decrement on failure.
690 */
691 atomic_inc(&mm->uprobes_state.count);
692 ret = set_swbp(&uprobe->arch, mm, vaddr);
693 if (ret)
694 atomic_dec(&mm->uprobes_state.count);
695
696 return ret;
697 }
698
699 static void
700 remove_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, unsigned long vaddr)
701 {
702 if (!set_orig_insn(&uprobe->arch, mm, vaddr, true))
703 atomic_dec(&mm->uprobes_state.count);
704 }
705
706 /*
707 * There could be threads that have already hit the breakpoint. They
708 * will recheck the current insn and restart if find_uprobe() fails.
709 * See find_active_uprobe().
710 */
711 static void delete_uprobe(struct uprobe *uprobe)
712 {
713 unsigned long flags;
714
715 spin_lock_irqsave(&uprobes_treelock, flags);
716 rb_erase(&uprobe->rb_node, &uprobes_tree);
717 spin_unlock_irqrestore(&uprobes_treelock, flags);
718 iput(uprobe->inode);
719 put_uprobe(uprobe);
720 atomic_dec(&uprobe_events);
721 }
722
723 struct map_info {
724 struct map_info *next;
725 struct mm_struct *mm;
726 unsigned long vaddr;
727 };
728
729 static inline struct map_info *free_map_info(struct map_info *info)
730 {
731 struct map_info *next = info->next;
732 kfree(info);
733 return next;
734 }
735
736 static struct map_info *
737 build_map_info(struct address_space *mapping, loff_t offset, bool is_register)
738 {
739 unsigned long pgoff = offset >> PAGE_SHIFT;
740 struct prio_tree_iter iter;
741 struct vm_area_struct *vma;
742 struct map_info *curr = NULL;
743 struct map_info *prev = NULL;
744 struct map_info *info;
745 int more = 0;
746
747 again:
748 mutex_lock(&mapping->i_mmap_mutex);
749 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
750 if (!valid_vma(vma, is_register))
751 continue;
752
753 if (!prev && !more) {
754 /*
755 * Needs GFP_NOWAIT to avoid i_mmap_mutex recursion through
756 * reclaim. This is optimistic, no harm done if it fails.
757 */
758 prev = kmalloc(sizeof(struct map_info),
759 GFP_NOWAIT | __GFP_NOMEMALLOC | __GFP_NOWARN);
760 if (prev)
761 prev->next = NULL;
762 }
763 if (!prev) {
764 more++;
765 continue;
766 }
767
768 if (!atomic_inc_not_zero(&vma->vm_mm->mm_users))
769 continue;
770
771 info = prev;
772 prev = prev->next;
773 info->next = curr;
774 curr = info;
775
776 info->mm = vma->vm_mm;
777 info->vaddr = offset_to_vaddr(vma, offset);
778 }
779 mutex_unlock(&mapping->i_mmap_mutex);
780
781 if (!more)
782 goto out;
783
784 prev = curr;
785 while (curr) {
786 mmput(curr->mm);
787 curr = curr->next;
788 }
789
790 do {
791 info = kmalloc(sizeof(struct map_info), GFP_KERNEL);
792 if (!info) {
793 curr = ERR_PTR(-ENOMEM);
794 goto out;
795 }
796 info->next = prev;
797 prev = info;
798 } while (--more);
799
800 goto again;
801 out:
802 while (prev)
803 prev = free_map_info(prev);
804 return curr;
805 }
806
807 static int register_for_each_vma(struct uprobe *uprobe, bool is_register)
808 {
809 struct map_info *info;
810 int err = 0;
811
812 info = build_map_info(uprobe->inode->i_mapping,
813 uprobe->offset, is_register);
814 if (IS_ERR(info))
815 return PTR_ERR(info);
816
817 while (info) {
818 struct mm_struct *mm = info->mm;
819 struct vm_area_struct *vma;
820
821 if (err)
822 goto free;
823
824 down_write(&mm->mmap_sem);
825 vma = find_vma(mm, info->vaddr);
826 if (!vma || !valid_vma(vma, is_register) ||
827 vma->vm_file->f_mapping->host != uprobe->inode)
828 goto unlock;
829
830 if (vma->vm_start > info->vaddr ||
831 vaddr_to_offset(vma, info->vaddr) != uprobe->offset)
832 goto unlock;
833
834 if (is_register) {
835 err = install_breakpoint(uprobe, mm, vma, info->vaddr);
836 /*
837 * We can race against uprobe_mmap(), see the
838 * comment near uprobe_hash().
839 */
840 if (err == -EEXIST)
841 err = 0;
842 } else {
843 remove_breakpoint(uprobe, mm, info->vaddr);
844 }
845 unlock:
846 up_write(&mm->mmap_sem);
847 free:
848 mmput(mm);
849 info = free_map_info(info);
850 }
851
852 return err;
853 }
854
855 static int __uprobe_register(struct uprobe *uprobe)
856 {
857 return register_for_each_vma(uprobe, true);
858 }
859
860 static void __uprobe_unregister(struct uprobe *uprobe)
861 {
862 if (!register_for_each_vma(uprobe, false))
863 delete_uprobe(uprobe);
864
865 /* TODO : cant unregister? schedule a worker thread */
866 }
867
868 /*
869 * uprobe_register - register a probe
870 * @inode: the file in which the probe has to be placed.
871 * @offset: offset from the start of the file.
872 * @uc: information on howto handle the probe..
873 *
874 * Apart from the access refcount, uprobe_register() takes a creation
875 * refcount (thro alloc_uprobe) if and only if this @uprobe is getting
876 * inserted into the rbtree (i.e first consumer for a @inode:@offset
877 * tuple). Creation refcount stops uprobe_unregister from freeing the
878 * @uprobe even before the register operation is complete. Creation
879 * refcount is released when the last @uc for the @uprobe
880 * unregisters.
881 *
882 * Return errno if it cannot successully install probes
883 * else return 0 (success)
884 */
885 int uprobe_register(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
886 {
887 struct uprobe *uprobe;
888 int ret;
889
890 if (!inode || !uc || uc->next)
891 return -EINVAL;
892
893 if (offset > i_size_read(inode))
894 return -EINVAL;
895
896 ret = 0;
897 mutex_lock(uprobes_hash(inode));
898 uprobe = alloc_uprobe(inode, offset);
899
900 if (uprobe && !consumer_add(uprobe, uc)) {
901 ret = __uprobe_register(uprobe);
902 if (ret) {
903 uprobe->consumers = NULL;
904 __uprobe_unregister(uprobe);
905 } else {
906 uprobe->flags |= UPROBE_RUN_HANDLER;
907 }
908 }
909
910 mutex_unlock(uprobes_hash(inode));
911 put_uprobe(uprobe);
912
913 return ret;
914 }
915
916 /*
917 * uprobe_unregister - unregister a already registered probe.
918 * @inode: the file in which the probe has to be removed.
919 * @offset: offset from the start of the file.
920 * @uc: identify which probe if multiple probes are colocated.
921 */
922 void uprobe_unregister(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
923 {
924 struct uprobe *uprobe;
925
926 if (!inode || !uc)
927 return;
928
929 uprobe = find_uprobe(inode, offset);
930 if (!uprobe)
931 return;
932
933 mutex_lock(uprobes_hash(inode));
934
935 if (consumer_del(uprobe, uc)) {
936 if (!uprobe->consumers) {
937 __uprobe_unregister(uprobe);
938 uprobe->flags &= ~UPROBE_RUN_HANDLER;
939 }
940 }
941
942 mutex_unlock(uprobes_hash(inode));
943 if (uprobe)
944 put_uprobe(uprobe);
945 }
946
947 static struct rb_node *
948 find_node_in_range(struct inode *inode, loff_t min, loff_t max)
949 {
950 struct rb_node *n = uprobes_tree.rb_node;
951
952 while (n) {
953 struct uprobe *u = rb_entry(n, struct uprobe, rb_node);
954
955 if (inode < u->inode) {
956 n = n->rb_left;
957 } else if (inode > u->inode) {
958 n = n->rb_right;
959 } else {
960 if (max < u->offset)
961 n = n->rb_left;
962 else if (min > u->offset)
963 n = n->rb_right;
964 else
965 break;
966 }
967 }
968
969 return n;
970 }
971
972 /*
973 * For a given range in vma, build a list of probes that need to be inserted.
974 */
975 static void build_probe_list(struct inode *inode,
976 struct vm_area_struct *vma,
977 unsigned long start, unsigned long end,
978 struct list_head *head)
979 {
980 loff_t min, max;
981 unsigned long flags;
982 struct rb_node *n, *t;
983 struct uprobe *u;
984
985 INIT_LIST_HEAD(head);
986 min = vaddr_to_offset(vma, start);
987 max = min + (end - start) - 1;
988
989 spin_lock_irqsave(&uprobes_treelock, flags);
990 n = find_node_in_range(inode, min, max);
991 if (n) {
992 for (t = n; t; t = rb_prev(t)) {
993 u = rb_entry(t, struct uprobe, rb_node);
994 if (u->inode != inode || u->offset < min)
995 break;
996 list_add(&u->pending_list, head);
997 atomic_inc(&u->ref);
998 }
999 for (t = n; (t = rb_next(t)); ) {
1000 u = rb_entry(t, struct uprobe, rb_node);
1001 if (u->inode != inode || u->offset > max)
1002 break;
1003 list_add(&u->pending_list, head);
1004 atomic_inc(&u->ref);
1005 }
1006 }
1007 spin_unlock_irqrestore(&uprobes_treelock, flags);
1008 }
1009
1010 /*
1011 * Called from mmap_region.
1012 * called with mm->mmap_sem acquired.
1013 *
1014 * Return -ve no if we fail to insert probes and we cannot
1015 * bail-out.
1016 * Return 0 otherwise. i.e:
1017 *
1018 * - successful insertion of probes
1019 * - (or) no possible probes to be inserted.
1020 * - (or) insertion of probes failed but we can bail-out.
1021 */
1022 int uprobe_mmap(struct vm_area_struct *vma)
1023 {
1024 struct list_head tmp_list;
1025 struct uprobe *uprobe, *u;
1026 struct inode *inode;
1027 int ret, count;
1028
1029 if (!atomic_read(&uprobe_events) || !valid_vma(vma, true))
1030 return 0;
1031
1032 inode = vma->vm_file->f_mapping->host;
1033 if (!inode)
1034 return 0;
1035
1036 mutex_lock(uprobes_mmap_hash(inode));
1037 build_probe_list(inode, vma, vma->vm_start, vma->vm_end, &tmp_list);
1038
1039 ret = 0;
1040 count = 0;
1041
1042 list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) {
1043 if (!ret) {
1044 unsigned long vaddr = offset_to_vaddr(vma, uprobe->offset);
1045
1046 ret = install_breakpoint(uprobe, vma->vm_mm, vma, vaddr);
1047 /*
1048 * We can race against uprobe_register(), see the
1049 * comment near uprobe_hash().
1050 */
1051 if (ret == -EEXIST) {
1052 ret = 0;
1053
1054 if (!is_swbp_at_addr(vma->vm_mm, vaddr))
1055 continue;
1056
1057 /*
1058 * Unable to insert a breakpoint, but
1059 * breakpoint lies underneath. Increment the
1060 * probe count.
1061 */
1062 atomic_inc(&vma->vm_mm->uprobes_state.count);
1063 }
1064
1065 if (!ret)
1066 count++;
1067 }
1068 put_uprobe(uprobe);
1069 }
1070
1071 mutex_unlock(uprobes_mmap_hash(inode));
1072
1073 if (ret)
1074 atomic_sub(count, &vma->vm_mm->uprobes_state.count);
1075
1076 return ret;
1077 }
1078
1079 /*
1080 * Called in context of a munmap of a vma.
1081 */
1082 void uprobe_munmap(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1083 {
1084 struct list_head tmp_list;
1085 struct uprobe *uprobe, *u;
1086 struct inode *inode;
1087
1088 if (!atomic_read(&uprobe_events) || !valid_vma(vma, false))
1089 return;
1090
1091 if (!atomic_read(&vma->vm_mm->mm_users)) /* called by mmput() ? */
1092 return;
1093
1094 if (!atomic_read(&vma->vm_mm->uprobes_state.count))
1095 return;
1096
1097 inode = vma->vm_file->f_mapping->host;
1098 if (!inode)
1099 return;
1100
1101 mutex_lock(uprobes_mmap_hash(inode));
1102 build_probe_list(inode, vma, start, end, &tmp_list);
1103
1104 list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) {
1105 unsigned long vaddr = offset_to_vaddr(vma, uprobe->offset);
1106 /*
1107 * An unregister could have removed the probe before
1108 * unmap. So check before we decrement the count.
1109 */
1110 if (is_swbp_at_addr(vma->vm_mm, vaddr) == 1)
1111 atomic_dec(&vma->vm_mm->uprobes_state.count);
1112 put_uprobe(uprobe);
1113 }
1114 mutex_unlock(uprobes_mmap_hash(inode));
1115 }
1116
1117 /* Slot allocation for XOL */
1118 static int xol_add_vma(struct xol_area *area)
1119 {
1120 struct mm_struct *mm;
1121 int ret;
1122
1123 area->page = alloc_page(GFP_HIGHUSER);
1124 if (!area->page)
1125 return -ENOMEM;
1126
1127 ret = -EALREADY;
1128 mm = current->mm;
1129
1130 down_write(&mm->mmap_sem);
1131 if (mm->uprobes_state.xol_area)
1132 goto fail;
1133
1134 ret = -ENOMEM;
1135
1136 /* Try to map as high as possible, this is only a hint. */
1137 area->vaddr = get_unmapped_area(NULL, TASK_SIZE - PAGE_SIZE, PAGE_SIZE, 0, 0);
1138 if (area->vaddr & ~PAGE_MASK) {
1139 ret = area->vaddr;
1140 goto fail;
1141 }
1142
1143 ret = install_special_mapping(mm, area->vaddr, PAGE_SIZE,
1144 VM_EXEC|VM_MAYEXEC|VM_DONTCOPY|VM_IO, &area->page);
1145 if (ret)
1146 goto fail;
1147
1148 smp_wmb(); /* pairs with get_xol_area() */
1149 mm->uprobes_state.xol_area = area;
1150 ret = 0;
1151
1152 fail:
1153 up_write(&mm->mmap_sem);
1154 if (ret)
1155 __free_page(area->page);
1156
1157 return ret;
1158 }
1159
1160 static struct xol_area *get_xol_area(struct mm_struct *mm)
1161 {
1162 struct xol_area *area;
1163
1164 area = mm->uprobes_state.xol_area;
1165 smp_read_barrier_depends(); /* pairs with wmb in xol_add_vma() */
1166
1167 return area;
1168 }
1169
1170 /*
1171 * xol_alloc_area - Allocate process's xol_area.
1172 * This area will be used for storing instructions for execution out of
1173 * line.
1174 *
1175 * Returns the allocated area or NULL.
1176 */
1177 static struct xol_area *xol_alloc_area(void)
1178 {
1179 struct xol_area *area;
1180
1181 area = kzalloc(sizeof(*area), GFP_KERNEL);
1182 if (unlikely(!area))
1183 return NULL;
1184
1185 area->bitmap = kzalloc(BITS_TO_LONGS(UINSNS_PER_PAGE) * sizeof(long), GFP_KERNEL);
1186
1187 if (!area->bitmap)
1188 goto fail;
1189
1190 init_waitqueue_head(&area->wq);
1191 if (!xol_add_vma(area))
1192 return area;
1193
1194 fail:
1195 kfree(area->bitmap);
1196 kfree(area);
1197
1198 return get_xol_area(current->mm);
1199 }
1200
1201 /*
1202 * uprobe_clear_state - Free the area allocated for slots.
1203 */
1204 void uprobe_clear_state(struct mm_struct *mm)
1205 {
1206 struct xol_area *area = mm->uprobes_state.xol_area;
1207
1208 if (!area)
1209 return;
1210
1211 put_page(area->page);
1212 kfree(area->bitmap);
1213 kfree(area);
1214 }
1215
1216 /*
1217 * uprobe_reset_state - Free the area allocated for slots.
1218 */
1219 void uprobe_reset_state(struct mm_struct *mm)
1220 {
1221 mm->uprobes_state.xol_area = NULL;
1222 atomic_set(&mm->uprobes_state.count, 0);
1223 }
1224
1225 /*
1226 * - search for a free slot.
1227 */
1228 static unsigned long xol_take_insn_slot(struct xol_area *area)
1229 {
1230 unsigned long slot_addr;
1231 int slot_nr;
1232
1233 do {
1234 slot_nr = find_first_zero_bit(area->bitmap, UINSNS_PER_PAGE);
1235 if (slot_nr < UINSNS_PER_PAGE) {
1236 if (!test_and_set_bit(slot_nr, area->bitmap))
1237 break;
1238
1239 slot_nr = UINSNS_PER_PAGE;
1240 continue;
1241 }
1242 wait_event(area->wq, (atomic_read(&area->slot_count) < UINSNS_PER_PAGE));
1243 } while (slot_nr >= UINSNS_PER_PAGE);
1244
1245 slot_addr = area->vaddr + (slot_nr * UPROBE_XOL_SLOT_BYTES);
1246 atomic_inc(&area->slot_count);
1247
1248 return slot_addr;
1249 }
1250
1251 /*
1252 * xol_get_insn_slot - If was not allocated a slot, then
1253 * allocate a slot.
1254 * Returns the allocated slot address or 0.
1255 */
1256 static unsigned long xol_get_insn_slot(struct uprobe *uprobe, unsigned long slot_addr)
1257 {
1258 struct xol_area *area;
1259 unsigned long offset;
1260 void *vaddr;
1261
1262 area = get_xol_area(current->mm);
1263 if (!area) {
1264 area = xol_alloc_area();
1265 if (!area)
1266 return 0;
1267 }
1268 current->utask->xol_vaddr = xol_take_insn_slot(area);
1269
1270 /*
1271 * Initialize the slot if xol_vaddr points to valid
1272 * instruction slot.
1273 */
1274 if (unlikely(!current->utask->xol_vaddr))
1275 return 0;
1276
1277 current->utask->vaddr = slot_addr;
1278 offset = current->utask->xol_vaddr & ~PAGE_MASK;
1279 vaddr = kmap_atomic(area->page);
1280 memcpy(vaddr + offset, uprobe->arch.insn, MAX_UINSN_BYTES);
1281 kunmap_atomic(vaddr);
1282
1283 return current->utask->xol_vaddr;
1284 }
1285
1286 /*
1287 * xol_free_insn_slot - If slot was earlier allocated by
1288 * @xol_get_insn_slot(), make the slot available for
1289 * subsequent requests.
1290 */
1291 static void xol_free_insn_slot(struct task_struct *tsk)
1292 {
1293 struct xol_area *area;
1294 unsigned long vma_end;
1295 unsigned long slot_addr;
1296
1297 if (!tsk->mm || !tsk->mm->uprobes_state.xol_area || !tsk->utask)
1298 return;
1299
1300 slot_addr = tsk->utask->xol_vaddr;
1301
1302 if (unlikely(!slot_addr || IS_ERR_VALUE(slot_addr)))
1303 return;
1304
1305 area = tsk->mm->uprobes_state.xol_area;
1306 vma_end = area->vaddr + PAGE_SIZE;
1307 if (area->vaddr <= slot_addr && slot_addr < vma_end) {
1308 unsigned long offset;
1309 int slot_nr;
1310
1311 offset = slot_addr - area->vaddr;
1312 slot_nr = offset / UPROBE_XOL_SLOT_BYTES;
1313 if (slot_nr >= UINSNS_PER_PAGE)
1314 return;
1315
1316 clear_bit(slot_nr, area->bitmap);
1317 atomic_dec(&area->slot_count);
1318 if (waitqueue_active(&area->wq))
1319 wake_up(&area->wq);
1320
1321 tsk->utask->xol_vaddr = 0;
1322 }
1323 }
1324
1325 /**
1326 * uprobe_get_swbp_addr - compute address of swbp given post-swbp regs
1327 * @regs: Reflects the saved state of the task after it has hit a breakpoint
1328 * instruction.
1329 * Return the address of the breakpoint instruction.
1330 */
1331 unsigned long __weak uprobe_get_swbp_addr(struct pt_regs *regs)
1332 {
1333 return instruction_pointer(regs) - UPROBE_SWBP_INSN_SIZE;
1334 }
1335
1336 /*
1337 * Called with no locks held.
1338 * Called in context of a exiting or a exec-ing thread.
1339 */
1340 void uprobe_free_utask(struct task_struct *t)
1341 {
1342 struct uprobe_task *utask = t->utask;
1343
1344 if (!utask)
1345 return;
1346
1347 if (utask->active_uprobe)
1348 put_uprobe(utask->active_uprobe);
1349
1350 xol_free_insn_slot(t);
1351 kfree(utask);
1352 t->utask = NULL;
1353 }
1354
1355 /*
1356 * Called in context of a new clone/fork from copy_process.
1357 */
1358 void uprobe_copy_process(struct task_struct *t)
1359 {
1360 t->utask = NULL;
1361 }
1362
1363 /*
1364 * Allocate a uprobe_task object for the task.
1365 * Called when the thread hits a breakpoint for the first time.
1366 *
1367 * Returns:
1368 * - pointer to new uprobe_task on success
1369 * - NULL otherwise
1370 */
1371 static struct uprobe_task *add_utask(void)
1372 {
1373 struct uprobe_task *utask;
1374
1375 utask = kzalloc(sizeof *utask, GFP_KERNEL);
1376 if (unlikely(!utask))
1377 return NULL;
1378
1379 current->utask = utask;
1380 return utask;
1381 }
1382
1383 /* Prepare to single-step probed instruction out of line. */
1384 static int
1385 pre_ssout(struct uprobe *uprobe, struct pt_regs *regs, unsigned long vaddr)
1386 {
1387 if (xol_get_insn_slot(uprobe, vaddr) && !arch_uprobe_pre_xol(&uprobe->arch, regs))
1388 return 0;
1389
1390 return -EFAULT;
1391 }
1392
1393 /*
1394 * If we are singlestepping, then ensure this thread is not connected to
1395 * non-fatal signals until completion of singlestep. When xol insn itself
1396 * triggers the signal, restart the original insn even if the task is
1397 * already SIGKILL'ed (since coredump should report the correct ip). This
1398 * is even more important if the task has a handler for SIGSEGV/etc, The
1399 * _same_ instruction should be repeated again after return from the signal
1400 * handler, and SSTEP can never finish in this case.
1401 */
1402 bool uprobe_deny_signal(void)
1403 {
1404 struct task_struct *t = current;
1405 struct uprobe_task *utask = t->utask;
1406
1407 if (likely(!utask || !utask->active_uprobe))
1408 return false;
1409
1410 WARN_ON_ONCE(utask->state != UTASK_SSTEP);
1411
1412 if (signal_pending(t)) {
1413 spin_lock_irq(&t->sighand->siglock);
1414 clear_tsk_thread_flag(t, TIF_SIGPENDING);
1415 spin_unlock_irq(&t->sighand->siglock);
1416
1417 if (__fatal_signal_pending(t) || arch_uprobe_xol_was_trapped(t)) {
1418 utask->state = UTASK_SSTEP_TRAPPED;
1419 set_tsk_thread_flag(t, TIF_UPROBE);
1420 set_tsk_thread_flag(t, TIF_NOTIFY_RESUME);
1421 }
1422 }
1423
1424 return true;
1425 }
1426
1427 /*
1428 * Avoid singlestepping the original instruction if the original instruction
1429 * is a NOP or can be emulated.
1430 */
1431 static bool can_skip_sstep(struct uprobe *uprobe, struct pt_regs *regs)
1432 {
1433 if (arch_uprobe_skip_sstep(&uprobe->arch, regs))
1434 return true;
1435
1436 uprobe->flags &= ~UPROBE_SKIP_SSTEP;
1437 return false;
1438 }
1439
1440 static struct uprobe *find_active_uprobe(unsigned long bp_vaddr, int *is_swbp)
1441 {
1442 struct mm_struct *mm = current->mm;
1443 struct uprobe *uprobe = NULL;
1444 struct vm_area_struct *vma;
1445
1446 down_read(&mm->mmap_sem);
1447 vma = find_vma(mm, bp_vaddr);
1448 if (vma && vma->vm_start <= bp_vaddr) {
1449 if (valid_vma(vma, false)) {
1450 struct inode *inode = vma->vm_file->f_mapping->host;
1451 loff_t offset = vaddr_to_offset(vma, bp_vaddr);
1452
1453 uprobe = find_uprobe(inode, offset);
1454 }
1455
1456 if (!uprobe)
1457 *is_swbp = is_swbp_at_addr(mm, bp_vaddr);
1458 } else {
1459 *is_swbp = -EFAULT;
1460 }
1461 up_read(&mm->mmap_sem);
1462
1463 return uprobe;
1464 }
1465
1466 /*
1467 * Run handler and ask thread to singlestep.
1468 * Ensure all non-fatal signals cannot interrupt thread while it singlesteps.
1469 */
1470 static void handle_swbp(struct pt_regs *regs)
1471 {
1472 struct uprobe_task *utask;
1473 struct uprobe *uprobe;
1474 unsigned long bp_vaddr;
1475 int uninitialized_var(is_swbp);
1476
1477 bp_vaddr = uprobe_get_swbp_addr(regs);
1478 uprobe = find_active_uprobe(bp_vaddr, &is_swbp);
1479
1480 if (!uprobe) {
1481 if (is_swbp > 0) {
1482 /* No matching uprobe; signal SIGTRAP. */
1483 send_sig(SIGTRAP, current, 0);
1484 } else {
1485 /*
1486 * Either we raced with uprobe_unregister() or we can't
1487 * access this memory. The latter is only possible if
1488 * another thread plays with our ->mm. In both cases
1489 * we can simply restart. If this vma was unmapped we
1490 * can pretend this insn was not executed yet and get
1491 * the (correct) SIGSEGV after restart.
1492 */
1493 instruction_pointer_set(regs, bp_vaddr);
1494 }
1495 return;
1496 }
1497
1498 utask = current->utask;
1499 if (!utask) {
1500 utask = add_utask();
1501 /* Cannot allocate; re-execute the instruction. */
1502 if (!utask)
1503 goto cleanup_ret;
1504 }
1505 utask->active_uprobe = uprobe;
1506 handler_chain(uprobe, regs);
1507 if (uprobe->flags & UPROBE_SKIP_SSTEP && can_skip_sstep(uprobe, regs))
1508 goto cleanup_ret;
1509
1510 utask->state = UTASK_SSTEP;
1511 if (!pre_ssout(uprobe, regs, bp_vaddr)) {
1512 user_enable_single_step(current);
1513 return;
1514 }
1515
1516 cleanup_ret:
1517 if (utask) {
1518 utask->active_uprobe = NULL;
1519 utask->state = UTASK_RUNNING;
1520 }
1521 if (uprobe) {
1522 if (!(uprobe->flags & UPROBE_SKIP_SSTEP))
1523
1524 /*
1525 * cannot singlestep; cannot skip instruction;
1526 * re-execute the instruction.
1527 */
1528 instruction_pointer_set(regs, bp_vaddr);
1529
1530 put_uprobe(uprobe);
1531 }
1532 }
1533
1534 /*
1535 * Perform required fix-ups and disable singlestep.
1536 * Allow pending signals to take effect.
1537 */
1538 static void handle_singlestep(struct uprobe_task *utask, struct pt_regs *regs)
1539 {
1540 struct uprobe *uprobe;
1541
1542 uprobe = utask->active_uprobe;
1543 if (utask->state == UTASK_SSTEP_ACK)
1544 arch_uprobe_post_xol(&uprobe->arch, regs);
1545 else if (utask->state == UTASK_SSTEP_TRAPPED)
1546 arch_uprobe_abort_xol(&uprobe->arch, regs);
1547 else
1548 WARN_ON_ONCE(1);
1549
1550 put_uprobe(uprobe);
1551 utask->active_uprobe = NULL;
1552 utask->state = UTASK_RUNNING;
1553 user_disable_single_step(current);
1554 xol_free_insn_slot(current);
1555
1556 spin_lock_irq(&current->sighand->siglock);
1557 recalc_sigpending(); /* see uprobe_deny_signal() */
1558 spin_unlock_irq(&current->sighand->siglock);
1559 }
1560
1561 /*
1562 * On breakpoint hit, breakpoint notifier sets the TIF_UPROBE flag. (and on
1563 * subsequent probe hits on the thread sets the state to UTASK_BP_HIT) and
1564 * allows the thread to return from interrupt.
1565 *
1566 * On singlestep exception, singlestep notifier sets the TIF_UPROBE flag and
1567 * also sets the state to UTASK_SSTEP_ACK and allows the thread to return from
1568 * interrupt.
1569 *
1570 * While returning to userspace, thread notices the TIF_UPROBE flag and calls
1571 * uprobe_notify_resume().
1572 */
1573 void uprobe_notify_resume(struct pt_regs *regs)
1574 {
1575 struct uprobe_task *utask;
1576
1577 utask = current->utask;
1578 if (!utask || utask->state == UTASK_BP_HIT)
1579 handle_swbp(regs);
1580 else
1581 handle_singlestep(utask, regs);
1582 }
1583
1584 /*
1585 * uprobe_pre_sstep_notifier gets called from interrupt context as part of
1586 * notifier mechanism. Set TIF_UPROBE flag and indicate breakpoint hit.
1587 */
1588 int uprobe_pre_sstep_notifier(struct pt_regs *regs)
1589 {
1590 struct uprobe_task *utask;
1591
1592 if (!current->mm || !atomic_read(&current->mm->uprobes_state.count))
1593 /* task is currently not uprobed */
1594 return 0;
1595
1596 utask = current->utask;
1597 if (utask)
1598 utask->state = UTASK_BP_HIT;
1599
1600 set_thread_flag(TIF_UPROBE);
1601
1602 return 1;
1603 }
1604
1605 /*
1606 * uprobe_post_sstep_notifier gets called in interrupt context as part of notifier
1607 * mechanism. Set TIF_UPROBE flag and indicate completion of singlestep.
1608 */
1609 int uprobe_post_sstep_notifier(struct pt_regs *regs)
1610 {
1611 struct uprobe_task *utask = current->utask;
1612
1613 if (!current->mm || !utask || !utask->active_uprobe)
1614 /* task is currently not uprobed */
1615 return 0;
1616
1617 utask->state = UTASK_SSTEP_ACK;
1618 set_thread_flag(TIF_UPROBE);
1619 return 1;
1620 }
1621
1622 static struct notifier_block uprobe_exception_nb = {
1623 .notifier_call = arch_uprobe_exception_notify,
1624 .priority = INT_MAX-1, /* notified after kprobes, kgdb */
1625 };
1626
1627 static int __init init_uprobes(void)
1628 {
1629 int i;
1630
1631 for (i = 0; i < UPROBES_HASH_SZ; i++) {
1632 mutex_init(&uprobes_mutex[i]);
1633 mutex_init(&uprobes_mmap_mutex[i]);
1634 }
1635
1636 return register_die_notifier(&uprobe_exception_nb);
1637 }
1638 module_init(init_uprobes);
1639
1640 static void __exit exit_uprobes(void)
1641 {
1642 }
1643 module_exit(exit_uprobes);
This page took 0.065318 seconds and 5 git commands to generate.