perfcounters: pull inherited counters
[deliverable/linux.git] / kernel / exit.c
1 /*
2 * linux/kernel/exit.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 #include <linux/mm.h>
8 #include <linux/slab.h>
9 #include <linux/interrupt.h>
10 #include <linux/module.h>
11 #include <linux/capability.h>
12 #include <linux/completion.h>
13 #include <linux/personality.h>
14 #include <linux/tty.h>
15 #include <linux/mnt_namespace.h>
16 #include <linux/iocontext.h>
17 #include <linux/key.h>
18 #include <linux/security.h>
19 #include <linux/cpu.h>
20 #include <linux/acct.h>
21 #include <linux/tsacct_kern.h>
22 #include <linux/file.h>
23 #include <linux/fdtable.h>
24 #include <linux/binfmts.h>
25 #include <linux/nsproxy.h>
26 #include <linux/pid_namespace.h>
27 #include <linux/ptrace.h>
28 #include <linux/profile.h>
29 #include <linux/mount.h>
30 #include <linux/proc_fs.h>
31 #include <linux/kthread.h>
32 #include <linux/mempolicy.h>
33 #include <linux/taskstats_kern.h>
34 #include <linux/delayacct.h>
35 #include <linux/freezer.h>
36 #include <linux/cgroup.h>
37 #include <linux/syscalls.h>
38 #include <linux/signal.h>
39 #include <linux/posix-timers.h>
40 #include <linux/cn_proc.h>
41 #include <linux/mutex.h>
42 #include <linux/futex.h>
43 #include <linux/pipe_fs_i.h>
44 #include <linux/audit.h> /* for audit_free() */
45 #include <linux/resource.h>
46 #include <linux/blkdev.h>
47 #include <linux/task_io_accounting_ops.h>
48 #include <linux/tracehook.h>
49 #include <trace/sched.h>
50
51 #include <asm/uaccess.h>
52 #include <asm/unistd.h>
53 #include <asm/pgtable.h>
54 #include <asm/mmu_context.h>
55
56 static void exit_mm(struct task_struct * tsk);
57
58 static inline int task_detached(struct task_struct *p)
59 {
60 return p->exit_signal == -1;
61 }
62
63 static void __unhash_process(struct task_struct *p)
64 {
65 nr_threads--;
66 detach_pid(p, PIDTYPE_PID);
67 if (thread_group_leader(p)) {
68 detach_pid(p, PIDTYPE_PGID);
69 detach_pid(p, PIDTYPE_SID);
70
71 list_del_rcu(&p->tasks);
72 __get_cpu_var(process_counts)--;
73 }
74 list_del_rcu(&p->thread_group);
75 list_del_init(&p->sibling);
76 }
77
78 /*
79 * This function expects the tasklist_lock write-locked.
80 */
81 static void __exit_signal(struct task_struct *tsk)
82 {
83 struct signal_struct *sig = tsk->signal;
84 struct sighand_struct *sighand;
85
86 BUG_ON(!sig);
87 BUG_ON(!atomic_read(&sig->count));
88
89 sighand = rcu_dereference(tsk->sighand);
90 spin_lock(&sighand->siglock);
91
92 posix_cpu_timers_exit(tsk);
93 if (atomic_dec_and_test(&sig->count))
94 posix_cpu_timers_exit_group(tsk);
95 else {
96 /*
97 * If there is any task waiting for the group exit
98 * then notify it:
99 */
100 if (sig->group_exit_task && atomic_read(&sig->count) == sig->notify_count)
101 wake_up_process(sig->group_exit_task);
102
103 if (tsk == sig->curr_target)
104 sig->curr_target = next_thread(tsk);
105 /*
106 * Accumulate here the counters for all threads but the
107 * group leader as they die, so they can be added into
108 * the process-wide totals when those are taken.
109 * The group leader stays around as a zombie as long
110 * as there are other threads. When it gets reaped,
111 * the exit.c code will add its counts into these totals.
112 * We won't ever get here for the group leader, since it
113 * will have been the last reference on the signal_struct.
114 */
115 sig->gtime = cputime_add(sig->gtime, task_gtime(tsk));
116 sig->min_flt += tsk->min_flt;
117 sig->maj_flt += tsk->maj_flt;
118 sig->nvcsw += tsk->nvcsw;
119 sig->nivcsw += tsk->nivcsw;
120 sig->inblock += task_io_get_inblock(tsk);
121 sig->oublock += task_io_get_oublock(tsk);
122 task_io_accounting_add(&sig->ioac, &tsk->ioac);
123 sig = NULL; /* Marker for below. */
124 }
125
126 __unhash_process(tsk);
127
128 /*
129 * Do this under ->siglock, we can race with another thread
130 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
131 */
132 flush_sigqueue(&tsk->pending);
133
134 tsk->signal = NULL;
135 tsk->sighand = NULL;
136 spin_unlock(&sighand->siglock);
137
138 __cleanup_sighand(sighand);
139 clear_tsk_thread_flag(tsk,TIF_SIGPENDING);
140 if (sig) {
141 flush_sigqueue(&sig->shared_pending);
142 taskstats_tgid_free(sig);
143 /*
144 * Make sure ->signal can't go away under rq->lock,
145 * see account_group_exec_runtime().
146 */
147 task_rq_unlock_wait(tsk);
148 __cleanup_signal(sig);
149 }
150 }
151
152 static void delayed_put_task_struct(struct rcu_head *rhp)
153 {
154 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
155
156 #ifdef CONFIG_PERF_COUNTERS
157 WARN_ON_ONCE(!list_empty(&tsk->perf_counter_ctx.counter_list));
158 #endif
159 trace_sched_process_free(tsk);
160 put_task_struct(tsk);
161 }
162
163
164 void release_task(struct task_struct * p)
165 {
166 struct task_struct *leader;
167 int zap_leader;
168 repeat:
169 tracehook_prepare_release_task(p);
170 atomic_dec(&p->user->processes);
171 proc_flush_task(p);
172 write_lock_irq(&tasklist_lock);
173 tracehook_finish_release_task(p);
174 __exit_signal(p);
175
176 /*
177 * If we are the last non-leader member of the thread
178 * group, and the leader is zombie, then notify the
179 * group leader's parent process. (if it wants notification.)
180 */
181 zap_leader = 0;
182 leader = p->group_leader;
183 if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) {
184 BUG_ON(task_detached(leader));
185 do_notify_parent(leader, leader->exit_signal);
186 /*
187 * If we were the last child thread and the leader has
188 * exited already, and the leader's parent ignores SIGCHLD,
189 * then we are the one who should release the leader.
190 *
191 * do_notify_parent() will have marked it self-reaping in
192 * that case.
193 */
194 zap_leader = task_detached(leader);
195
196 /*
197 * This maintains the invariant that release_task()
198 * only runs on a task in EXIT_DEAD, just for sanity.
199 */
200 if (zap_leader)
201 leader->exit_state = EXIT_DEAD;
202 }
203
204 write_unlock_irq(&tasklist_lock);
205 release_thread(p);
206 call_rcu(&p->rcu, delayed_put_task_struct);
207
208 p = leader;
209 if (unlikely(zap_leader))
210 goto repeat;
211 }
212
213 /*
214 * This checks not only the pgrp, but falls back on the pid if no
215 * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
216 * without this...
217 *
218 * The caller must hold rcu lock or the tasklist lock.
219 */
220 struct pid *session_of_pgrp(struct pid *pgrp)
221 {
222 struct task_struct *p;
223 struct pid *sid = NULL;
224
225 p = pid_task(pgrp, PIDTYPE_PGID);
226 if (p == NULL)
227 p = pid_task(pgrp, PIDTYPE_PID);
228 if (p != NULL)
229 sid = task_session(p);
230
231 return sid;
232 }
233
234 /*
235 * Determine if a process group is "orphaned", according to the POSIX
236 * definition in 2.2.2.52. Orphaned process groups are not to be affected
237 * by terminal-generated stop signals. Newly orphaned process groups are
238 * to receive a SIGHUP and a SIGCONT.
239 *
240 * "I ask you, have you ever known what it is to be an orphan?"
241 */
242 static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task)
243 {
244 struct task_struct *p;
245
246 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
247 if ((p == ignored_task) ||
248 (p->exit_state && thread_group_empty(p)) ||
249 is_global_init(p->real_parent))
250 continue;
251
252 if (task_pgrp(p->real_parent) != pgrp &&
253 task_session(p->real_parent) == task_session(p))
254 return 0;
255 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
256
257 return 1;
258 }
259
260 int is_current_pgrp_orphaned(void)
261 {
262 int retval;
263
264 read_lock(&tasklist_lock);
265 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
266 read_unlock(&tasklist_lock);
267
268 return retval;
269 }
270
271 static int has_stopped_jobs(struct pid *pgrp)
272 {
273 int retval = 0;
274 struct task_struct *p;
275
276 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
277 if (!task_is_stopped(p))
278 continue;
279 retval = 1;
280 break;
281 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
282 return retval;
283 }
284
285 /*
286 * Check to see if any process groups have become orphaned as
287 * a result of our exiting, and if they have any stopped jobs,
288 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
289 */
290 static void
291 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
292 {
293 struct pid *pgrp = task_pgrp(tsk);
294 struct task_struct *ignored_task = tsk;
295
296 if (!parent)
297 /* exit: our father is in a different pgrp than
298 * we are and we were the only connection outside.
299 */
300 parent = tsk->real_parent;
301 else
302 /* reparent: our child is in a different pgrp than
303 * we are, and it was the only connection outside.
304 */
305 ignored_task = NULL;
306
307 if (task_pgrp(parent) != pgrp &&
308 task_session(parent) == task_session(tsk) &&
309 will_become_orphaned_pgrp(pgrp, ignored_task) &&
310 has_stopped_jobs(pgrp)) {
311 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
312 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
313 }
314 }
315
316 /**
317 * reparent_to_kthreadd - Reparent the calling kernel thread to kthreadd
318 *
319 * If a kernel thread is launched as a result of a system call, or if
320 * it ever exits, it should generally reparent itself to kthreadd so it
321 * isn't in the way of other processes and is correctly cleaned up on exit.
322 *
323 * The various task state such as scheduling policy and priority may have
324 * been inherited from a user process, so we reset them to sane values here.
325 *
326 * NOTE that reparent_to_kthreadd() gives the caller full capabilities.
327 */
328 static void reparent_to_kthreadd(void)
329 {
330 write_lock_irq(&tasklist_lock);
331
332 ptrace_unlink(current);
333 /* Reparent to init */
334 current->real_parent = current->parent = kthreadd_task;
335 list_move_tail(&current->sibling, &current->real_parent->children);
336
337 /* Set the exit signal to SIGCHLD so we signal init on exit */
338 current->exit_signal = SIGCHLD;
339
340 if (task_nice(current) < 0)
341 set_user_nice(current, 0);
342 /* cpus_allowed? */
343 /* rt_priority? */
344 /* signals? */
345 security_task_reparent_to_init(current);
346 memcpy(current->signal->rlim, init_task.signal->rlim,
347 sizeof(current->signal->rlim));
348 atomic_inc(&(INIT_USER->__count));
349 write_unlock_irq(&tasklist_lock);
350 switch_uid(INIT_USER);
351 }
352
353 void __set_special_pids(struct pid *pid)
354 {
355 struct task_struct *curr = current->group_leader;
356 pid_t nr = pid_nr(pid);
357
358 if (task_session(curr) != pid) {
359 change_pid(curr, PIDTYPE_SID, pid);
360 set_task_session(curr, nr);
361 }
362 if (task_pgrp(curr) != pid) {
363 change_pid(curr, PIDTYPE_PGID, pid);
364 set_task_pgrp(curr, nr);
365 }
366 }
367
368 static void set_special_pids(struct pid *pid)
369 {
370 write_lock_irq(&tasklist_lock);
371 __set_special_pids(pid);
372 write_unlock_irq(&tasklist_lock);
373 }
374
375 /*
376 * Let kernel threads use this to say that they
377 * allow a certain signal (since daemonize() will
378 * have disabled all of them by default).
379 */
380 int allow_signal(int sig)
381 {
382 if (!valid_signal(sig) || sig < 1)
383 return -EINVAL;
384
385 spin_lock_irq(&current->sighand->siglock);
386 sigdelset(&current->blocked, sig);
387 if (!current->mm) {
388 /* Kernel threads handle their own signals.
389 Let the signal code know it'll be handled, so
390 that they don't get converted to SIGKILL or
391 just silently dropped */
392 current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2;
393 }
394 recalc_sigpending();
395 spin_unlock_irq(&current->sighand->siglock);
396 return 0;
397 }
398
399 EXPORT_SYMBOL(allow_signal);
400
401 int disallow_signal(int sig)
402 {
403 if (!valid_signal(sig) || sig < 1)
404 return -EINVAL;
405
406 spin_lock_irq(&current->sighand->siglock);
407 current->sighand->action[(sig)-1].sa.sa_handler = SIG_IGN;
408 recalc_sigpending();
409 spin_unlock_irq(&current->sighand->siglock);
410 return 0;
411 }
412
413 EXPORT_SYMBOL(disallow_signal);
414
415 /*
416 * Put all the gunge required to become a kernel thread without
417 * attached user resources in one place where it belongs.
418 */
419
420 void daemonize(const char *name, ...)
421 {
422 va_list args;
423 struct fs_struct *fs;
424 sigset_t blocked;
425
426 va_start(args, name);
427 vsnprintf(current->comm, sizeof(current->comm), name, args);
428 va_end(args);
429
430 /*
431 * If we were started as result of loading a module, close all of the
432 * user space pages. We don't need them, and if we didn't close them
433 * they would be locked into memory.
434 */
435 exit_mm(current);
436 /*
437 * We don't want to have TIF_FREEZE set if the system-wide hibernation
438 * or suspend transition begins right now.
439 */
440 current->flags |= (PF_NOFREEZE | PF_KTHREAD);
441
442 if (current->nsproxy != &init_nsproxy) {
443 get_nsproxy(&init_nsproxy);
444 switch_task_namespaces(current, &init_nsproxy);
445 }
446 set_special_pids(&init_struct_pid);
447 proc_clear_tty(current);
448
449 /* Block and flush all signals */
450 sigfillset(&blocked);
451 sigprocmask(SIG_BLOCK, &blocked, NULL);
452 flush_signals(current);
453
454 /* Become as one with the init task */
455
456 exit_fs(current); /* current->fs->count--; */
457 fs = init_task.fs;
458 current->fs = fs;
459 atomic_inc(&fs->count);
460
461 exit_files(current);
462 current->files = init_task.files;
463 atomic_inc(&current->files->count);
464
465 reparent_to_kthreadd();
466 }
467
468 EXPORT_SYMBOL(daemonize);
469
470 static void close_files(struct files_struct * files)
471 {
472 int i, j;
473 struct fdtable *fdt;
474
475 j = 0;
476
477 /*
478 * It is safe to dereference the fd table without RCU or
479 * ->file_lock because this is the last reference to the
480 * files structure.
481 */
482 fdt = files_fdtable(files);
483 for (;;) {
484 unsigned long set;
485 i = j * __NFDBITS;
486 if (i >= fdt->max_fds)
487 break;
488 set = fdt->open_fds->fds_bits[j++];
489 while (set) {
490 if (set & 1) {
491 struct file * file = xchg(&fdt->fd[i], NULL);
492 if (file) {
493 filp_close(file, files);
494 cond_resched();
495 }
496 }
497 i++;
498 set >>= 1;
499 }
500 }
501 }
502
503 struct files_struct *get_files_struct(struct task_struct *task)
504 {
505 struct files_struct *files;
506
507 task_lock(task);
508 files = task->files;
509 if (files)
510 atomic_inc(&files->count);
511 task_unlock(task);
512
513 return files;
514 }
515
516 void put_files_struct(struct files_struct *files)
517 {
518 struct fdtable *fdt;
519
520 if (atomic_dec_and_test(&files->count)) {
521 close_files(files);
522 /*
523 * Free the fd and fdset arrays if we expanded them.
524 * If the fdtable was embedded, pass files for freeing
525 * at the end of the RCU grace period. Otherwise,
526 * you can free files immediately.
527 */
528 fdt = files_fdtable(files);
529 if (fdt != &files->fdtab)
530 kmem_cache_free(files_cachep, files);
531 free_fdtable(fdt);
532 }
533 }
534
535 void reset_files_struct(struct files_struct *files)
536 {
537 struct task_struct *tsk = current;
538 struct files_struct *old;
539
540 old = tsk->files;
541 task_lock(tsk);
542 tsk->files = files;
543 task_unlock(tsk);
544 put_files_struct(old);
545 }
546
547 void exit_files(struct task_struct *tsk)
548 {
549 struct files_struct * files = tsk->files;
550
551 if (files) {
552 task_lock(tsk);
553 tsk->files = NULL;
554 task_unlock(tsk);
555 put_files_struct(files);
556 }
557 }
558
559 void put_fs_struct(struct fs_struct *fs)
560 {
561 /* No need to hold fs->lock if we are killing it */
562 if (atomic_dec_and_test(&fs->count)) {
563 path_put(&fs->root);
564 path_put(&fs->pwd);
565 kmem_cache_free(fs_cachep, fs);
566 }
567 }
568
569 void exit_fs(struct task_struct *tsk)
570 {
571 struct fs_struct * fs = tsk->fs;
572
573 if (fs) {
574 task_lock(tsk);
575 tsk->fs = NULL;
576 task_unlock(tsk);
577 put_fs_struct(fs);
578 }
579 }
580
581 EXPORT_SYMBOL_GPL(exit_fs);
582
583 #ifdef CONFIG_MM_OWNER
584 /*
585 * Task p is exiting and it owned mm, lets find a new owner for it
586 */
587 static inline int
588 mm_need_new_owner(struct mm_struct *mm, struct task_struct *p)
589 {
590 /*
591 * If there are other users of the mm and the owner (us) is exiting
592 * we need to find a new owner to take on the responsibility.
593 */
594 if (atomic_read(&mm->mm_users) <= 1)
595 return 0;
596 if (mm->owner != p)
597 return 0;
598 return 1;
599 }
600
601 void mm_update_next_owner(struct mm_struct *mm)
602 {
603 struct task_struct *c, *g, *p = current;
604
605 retry:
606 if (!mm_need_new_owner(mm, p))
607 return;
608
609 read_lock(&tasklist_lock);
610 /*
611 * Search in the children
612 */
613 list_for_each_entry(c, &p->children, sibling) {
614 if (c->mm == mm)
615 goto assign_new_owner;
616 }
617
618 /*
619 * Search in the siblings
620 */
621 list_for_each_entry(c, &p->parent->children, sibling) {
622 if (c->mm == mm)
623 goto assign_new_owner;
624 }
625
626 /*
627 * Search through everything else. We should not get
628 * here often
629 */
630 do_each_thread(g, c) {
631 if (c->mm == mm)
632 goto assign_new_owner;
633 } while_each_thread(g, c);
634
635 read_unlock(&tasklist_lock);
636 /*
637 * We found no owner yet mm_users > 1: this implies that we are
638 * most likely racing with swapoff (try_to_unuse()) or /proc or
639 * ptrace or page migration (get_task_mm()). Mark owner as NULL,
640 * so that subsystems can understand the callback and take action.
641 */
642 down_write(&mm->mmap_sem);
643 cgroup_mm_owner_callbacks(mm->owner, NULL);
644 mm->owner = NULL;
645 up_write(&mm->mmap_sem);
646 return;
647
648 assign_new_owner:
649 BUG_ON(c == p);
650 get_task_struct(c);
651 read_unlock(&tasklist_lock);
652 down_write(&mm->mmap_sem);
653 /*
654 * The task_lock protects c->mm from changing.
655 * We always want mm->owner->mm == mm
656 */
657 task_lock(c);
658 if (c->mm != mm) {
659 task_unlock(c);
660 up_write(&mm->mmap_sem);
661 put_task_struct(c);
662 goto retry;
663 }
664 cgroup_mm_owner_callbacks(mm->owner, c);
665 mm->owner = c;
666 task_unlock(c);
667 up_write(&mm->mmap_sem);
668 put_task_struct(c);
669 }
670 #endif /* CONFIG_MM_OWNER */
671
672 /*
673 * Turn us into a lazy TLB process if we
674 * aren't already..
675 */
676 static void exit_mm(struct task_struct * tsk)
677 {
678 struct mm_struct *mm = tsk->mm;
679 struct core_state *core_state;
680
681 mm_release(tsk, mm);
682 if (!mm)
683 return;
684 /*
685 * Serialize with any possible pending coredump.
686 * We must hold mmap_sem around checking core_state
687 * and clearing tsk->mm. The core-inducing thread
688 * will increment ->nr_threads for each thread in the
689 * group with ->mm != NULL.
690 */
691 down_read(&mm->mmap_sem);
692 core_state = mm->core_state;
693 if (core_state) {
694 struct core_thread self;
695 up_read(&mm->mmap_sem);
696
697 self.task = tsk;
698 self.next = xchg(&core_state->dumper.next, &self);
699 /*
700 * Implies mb(), the result of xchg() must be visible
701 * to core_state->dumper.
702 */
703 if (atomic_dec_and_test(&core_state->nr_threads))
704 complete(&core_state->startup);
705
706 for (;;) {
707 set_task_state(tsk, TASK_UNINTERRUPTIBLE);
708 if (!self.task) /* see coredump_finish() */
709 break;
710 schedule();
711 }
712 __set_task_state(tsk, TASK_RUNNING);
713 down_read(&mm->mmap_sem);
714 }
715 atomic_inc(&mm->mm_count);
716 BUG_ON(mm != tsk->active_mm);
717 /* more a memory barrier than a real lock */
718 task_lock(tsk);
719 tsk->mm = NULL;
720 up_read(&mm->mmap_sem);
721 enter_lazy_tlb(mm, current);
722 /* We don't want this task to be frozen prematurely */
723 clear_freeze_flag(tsk);
724 task_unlock(tsk);
725 mm_update_next_owner(mm);
726 mmput(mm);
727 }
728
729 /*
730 * Return nonzero if @parent's children should reap themselves.
731 *
732 * Called with write_lock_irq(&tasklist_lock) held.
733 */
734 static int ignoring_children(struct task_struct *parent)
735 {
736 int ret;
737 struct sighand_struct *psig = parent->sighand;
738 unsigned long flags;
739 spin_lock_irqsave(&psig->siglock, flags);
740 ret = (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
741 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT));
742 spin_unlock_irqrestore(&psig->siglock, flags);
743 return ret;
744 }
745
746 /*
747 * Detach all tasks we were using ptrace on.
748 * Any that need to be release_task'd are put on the @dead list.
749 *
750 * Called with write_lock(&tasklist_lock) held.
751 */
752 static void ptrace_exit(struct task_struct *parent, struct list_head *dead)
753 {
754 struct task_struct *p, *n;
755 int ign = -1;
756
757 list_for_each_entry_safe(p, n, &parent->ptraced, ptrace_entry) {
758 __ptrace_unlink(p);
759
760 if (p->exit_state != EXIT_ZOMBIE)
761 continue;
762
763 /*
764 * If it's a zombie, our attachedness prevented normal
765 * parent notification or self-reaping. Do notification
766 * now if it would have happened earlier. If it should
767 * reap itself, add it to the @dead list. We can't call
768 * release_task() here because we already hold tasklist_lock.
769 *
770 * If it's our own child, there is no notification to do.
771 * But if our normal children self-reap, then this child
772 * was prevented by ptrace and we must reap it now.
773 */
774 if (!task_detached(p) && thread_group_empty(p)) {
775 if (!same_thread_group(p->real_parent, parent))
776 do_notify_parent(p, p->exit_signal);
777 else {
778 if (ign < 0)
779 ign = ignoring_children(parent);
780 if (ign)
781 p->exit_signal = -1;
782 }
783 }
784
785 if (task_detached(p)) {
786 /*
787 * Mark it as in the process of being reaped.
788 */
789 p->exit_state = EXIT_DEAD;
790 list_add(&p->ptrace_entry, dead);
791 }
792 }
793 }
794
795 /*
796 * Finish up exit-time ptrace cleanup.
797 *
798 * Called without locks.
799 */
800 static void ptrace_exit_finish(struct task_struct *parent,
801 struct list_head *dead)
802 {
803 struct task_struct *p, *n;
804
805 BUG_ON(!list_empty(&parent->ptraced));
806
807 list_for_each_entry_safe(p, n, dead, ptrace_entry) {
808 list_del_init(&p->ptrace_entry);
809 release_task(p);
810 }
811 }
812
813 static void reparent_thread(struct task_struct *p, struct task_struct *father)
814 {
815 if (p->pdeath_signal)
816 /* We already hold the tasklist_lock here. */
817 group_send_sig_info(p->pdeath_signal, SEND_SIG_NOINFO, p);
818
819 list_move_tail(&p->sibling, &p->real_parent->children);
820
821 /* If this is a threaded reparent there is no need to
822 * notify anyone anything has happened.
823 */
824 if (same_thread_group(p->real_parent, father))
825 return;
826
827 /* We don't want people slaying init. */
828 if (!task_detached(p))
829 p->exit_signal = SIGCHLD;
830
831 /* If we'd notified the old parent about this child's death,
832 * also notify the new parent.
833 */
834 if (!ptrace_reparented(p) &&
835 p->exit_state == EXIT_ZOMBIE &&
836 !task_detached(p) && thread_group_empty(p))
837 do_notify_parent(p, p->exit_signal);
838
839 kill_orphaned_pgrp(p, father);
840 }
841
842 /*
843 * When we die, we re-parent all our children.
844 * Try to give them to another thread in our thread
845 * group, and if no such member exists, give it to
846 * the child reaper process (ie "init") in our pid
847 * space.
848 */
849 static struct task_struct *find_new_reaper(struct task_struct *father)
850 {
851 struct pid_namespace *pid_ns = task_active_pid_ns(father);
852 struct task_struct *thread;
853
854 thread = father;
855 while_each_thread(father, thread) {
856 if (thread->flags & PF_EXITING)
857 continue;
858 if (unlikely(pid_ns->child_reaper == father))
859 pid_ns->child_reaper = thread;
860 return thread;
861 }
862
863 if (unlikely(pid_ns->child_reaper == father)) {
864 write_unlock_irq(&tasklist_lock);
865 if (unlikely(pid_ns == &init_pid_ns))
866 panic("Attempted to kill init!");
867
868 zap_pid_ns_processes(pid_ns);
869 write_lock_irq(&tasklist_lock);
870 /*
871 * We can not clear ->child_reaper or leave it alone.
872 * There may by stealth EXIT_DEAD tasks on ->children,
873 * forget_original_parent() must move them somewhere.
874 */
875 pid_ns->child_reaper = init_pid_ns.child_reaper;
876 }
877
878 return pid_ns->child_reaper;
879 }
880
881 static void forget_original_parent(struct task_struct *father)
882 {
883 struct task_struct *p, *n, *reaper;
884 LIST_HEAD(ptrace_dead);
885
886 write_lock_irq(&tasklist_lock);
887 reaper = find_new_reaper(father);
888 /*
889 * First clean up ptrace if we were using it.
890 */
891 ptrace_exit(father, &ptrace_dead);
892
893 list_for_each_entry_safe(p, n, &father->children, sibling) {
894 p->real_parent = reaper;
895 if (p->parent == father) {
896 BUG_ON(p->ptrace);
897 p->parent = p->real_parent;
898 }
899 reparent_thread(p, father);
900 }
901
902 write_unlock_irq(&tasklist_lock);
903 BUG_ON(!list_empty(&father->children));
904
905 ptrace_exit_finish(father, &ptrace_dead);
906 }
907
908 /*
909 * Send signals to all our closest relatives so that they know
910 * to properly mourn us..
911 */
912 static void exit_notify(struct task_struct *tsk, int group_dead)
913 {
914 int signal;
915 void *cookie;
916
917 /*
918 * This does two things:
919 *
920 * A. Make init inherit all the child processes
921 * B. Check to see if any process groups have become orphaned
922 * as a result of our exiting, and if they have any stopped
923 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
924 */
925 forget_original_parent(tsk);
926 exit_task_namespaces(tsk);
927
928 write_lock_irq(&tasklist_lock);
929 if (group_dead)
930 kill_orphaned_pgrp(tsk->group_leader, NULL);
931
932 /* Let father know we died
933 *
934 * Thread signals are configurable, but you aren't going to use
935 * that to send signals to arbitary processes.
936 * That stops right now.
937 *
938 * If the parent exec id doesn't match the exec id we saved
939 * when we started then we know the parent has changed security
940 * domain.
941 *
942 * If our self_exec id doesn't match our parent_exec_id then
943 * we have changed execution domain as these two values started
944 * the same after a fork.
945 */
946 if (tsk->exit_signal != SIGCHLD && !task_detached(tsk) &&
947 (tsk->parent_exec_id != tsk->real_parent->self_exec_id ||
948 tsk->self_exec_id != tsk->parent_exec_id) &&
949 !capable(CAP_KILL))
950 tsk->exit_signal = SIGCHLD;
951
952 signal = tracehook_notify_death(tsk, &cookie, group_dead);
953 if (signal >= 0)
954 signal = do_notify_parent(tsk, signal);
955
956 tsk->exit_state = signal == DEATH_REAP ? EXIT_DEAD : EXIT_ZOMBIE;
957
958 /* mt-exec, de_thread() is waiting for us */
959 if (thread_group_leader(tsk) &&
960 tsk->signal->group_exit_task &&
961 tsk->signal->notify_count < 0)
962 wake_up_process(tsk->signal->group_exit_task);
963
964 write_unlock_irq(&tasklist_lock);
965
966 tracehook_report_death(tsk, signal, cookie, group_dead);
967
968 /* If the process is dead, release it - nobody will wait for it */
969 if (signal == DEATH_REAP)
970 release_task(tsk);
971 }
972
973 #ifdef CONFIG_DEBUG_STACK_USAGE
974 static void check_stack_usage(void)
975 {
976 static DEFINE_SPINLOCK(low_water_lock);
977 static int lowest_to_date = THREAD_SIZE;
978 unsigned long *n = end_of_stack(current);
979 unsigned long free;
980
981 while (*n == 0)
982 n++;
983 free = (unsigned long)n - (unsigned long)end_of_stack(current);
984
985 if (free >= lowest_to_date)
986 return;
987
988 spin_lock(&low_water_lock);
989 if (free < lowest_to_date) {
990 printk(KERN_WARNING "%s used greatest stack depth: %lu bytes "
991 "left\n",
992 current->comm, free);
993 lowest_to_date = free;
994 }
995 spin_unlock(&low_water_lock);
996 }
997 #else
998 static inline void check_stack_usage(void) {}
999 #endif
1000
1001 NORET_TYPE void do_exit(long code)
1002 {
1003 struct task_struct *tsk = current;
1004 int group_dead;
1005
1006 profile_task_exit(tsk);
1007
1008 WARN_ON(atomic_read(&tsk->fs_excl));
1009
1010 if (unlikely(in_interrupt()))
1011 panic("Aiee, killing interrupt handler!");
1012 if (unlikely(!tsk->pid))
1013 panic("Attempted to kill the idle task!");
1014
1015 tracehook_report_exit(&code);
1016
1017 /*
1018 * We're taking recursive faults here in do_exit. Safest is to just
1019 * leave this task alone and wait for reboot.
1020 */
1021 if (unlikely(tsk->flags & PF_EXITING)) {
1022 printk(KERN_ALERT
1023 "Fixing recursive fault but reboot is needed!\n");
1024 /*
1025 * We can do this unlocked here. The futex code uses
1026 * this flag just to verify whether the pi state
1027 * cleanup has been done or not. In the worst case it
1028 * loops once more. We pretend that the cleanup was
1029 * done as there is no way to return. Either the
1030 * OWNER_DIED bit is set by now or we push the blocked
1031 * task into the wait for ever nirwana as well.
1032 */
1033 tsk->flags |= PF_EXITPIDONE;
1034 if (tsk->io_context)
1035 exit_io_context();
1036 set_current_state(TASK_UNINTERRUPTIBLE);
1037 schedule();
1038 }
1039
1040 exit_signals(tsk); /* sets PF_EXITING */
1041 /*
1042 * tsk->flags are checked in the futex code to protect against
1043 * an exiting task cleaning up the robust pi futexes.
1044 */
1045 smp_mb();
1046 spin_unlock_wait(&tsk->pi_lock);
1047
1048 if (unlikely(in_atomic()))
1049 printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n",
1050 current->comm, task_pid_nr(current),
1051 preempt_count());
1052
1053 acct_update_integrals(tsk);
1054 if (tsk->mm) {
1055 update_hiwater_rss(tsk->mm);
1056 update_hiwater_vm(tsk->mm);
1057 }
1058 group_dead = atomic_dec_and_test(&tsk->signal->live);
1059 if (group_dead) {
1060 hrtimer_cancel(&tsk->signal->real_timer);
1061 exit_itimers(tsk->signal);
1062 }
1063 acct_collect(code, group_dead);
1064 if (group_dead)
1065 tty_audit_exit();
1066 if (unlikely(tsk->audit_context))
1067 audit_free(tsk);
1068
1069 tsk->exit_code = code;
1070 taskstats_exit(tsk, group_dead);
1071
1072 exit_mm(tsk);
1073
1074 if (group_dead)
1075 acct_process();
1076 trace_sched_process_exit(tsk);
1077
1078 exit_sem(tsk);
1079 exit_files(tsk);
1080 exit_fs(tsk);
1081 check_stack_usage();
1082 exit_thread();
1083 cgroup_exit(tsk, 1);
1084 exit_keys(tsk);
1085
1086 if (group_dead && tsk->signal->leader)
1087 disassociate_ctty(1);
1088
1089 module_put(task_thread_info(tsk)->exec_domain->module);
1090 if (tsk->binfmt)
1091 module_put(tsk->binfmt->module);
1092
1093 proc_exit_connector(tsk);
1094 exit_notify(tsk, group_dead);
1095 #ifdef CONFIG_NUMA
1096 mpol_put(tsk->mempolicy);
1097 tsk->mempolicy = NULL;
1098 #endif
1099 #ifdef CONFIG_FUTEX
1100 if (unlikely(!list_empty(&tsk->pi_state_list)))
1101 exit_pi_state_list(tsk);
1102 if (unlikely(current->pi_state_cache))
1103 kfree(current->pi_state_cache);
1104 #endif
1105 /*
1106 * Make sure we are holding no locks:
1107 */
1108 debug_check_no_locks_held(tsk);
1109 /*
1110 * We can do this unlocked here. The futex code uses this flag
1111 * just to verify whether the pi state cleanup has been done
1112 * or not. In the worst case it loops once more.
1113 */
1114 tsk->flags |= PF_EXITPIDONE;
1115
1116 if (tsk->io_context)
1117 exit_io_context();
1118
1119 if (tsk->splice_pipe)
1120 __free_pipe_info(tsk->splice_pipe);
1121
1122 preempt_disable();
1123 /* causes final put_task_struct in finish_task_switch(). */
1124 tsk->state = TASK_DEAD;
1125
1126 schedule();
1127 BUG();
1128 /* Avoid "noreturn function does return". */
1129 for (;;)
1130 cpu_relax(); /* For when BUG is null */
1131 }
1132
1133 EXPORT_SYMBOL_GPL(do_exit);
1134
1135 NORET_TYPE void complete_and_exit(struct completion *comp, long code)
1136 {
1137 if (comp)
1138 complete(comp);
1139
1140 do_exit(code);
1141 }
1142
1143 EXPORT_SYMBOL(complete_and_exit);
1144
1145 asmlinkage long sys_exit(int error_code)
1146 {
1147 do_exit((error_code&0xff)<<8);
1148 }
1149
1150 /*
1151 * Take down every thread in the group. This is called by fatal signals
1152 * as well as by sys_exit_group (below).
1153 */
1154 NORET_TYPE void
1155 do_group_exit(int exit_code)
1156 {
1157 struct signal_struct *sig = current->signal;
1158
1159 BUG_ON(exit_code & 0x80); /* core dumps don't get here */
1160
1161 if (signal_group_exit(sig))
1162 exit_code = sig->group_exit_code;
1163 else if (!thread_group_empty(current)) {
1164 struct sighand_struct *const sighand = current->sighand;
1165 spin_lock_irq(&sighand->siglock);
1166 if (signal_group_exit(sig))
1167 /* Another thread got here before we took the lock. */
1168 exit_code = sig->group_exit_code;
1169 else {
1170 sig->group_exit_code = exit_code;
1171 sig->flags = SIGNAL_GROUP_EXIT;
1172 zap_other_threads(current);
1173 }
1174 spin_unlock_irq(&sighand->siglock);
1175 }
1176
1177 do_exit(exit_code);
1178 /* NOTREACHED */
1179 }
1180
1181 /*
1182 * this kills every thread in the thread group. Note that any externally
1183 * wait4()-ing process will get the correct exit code - even if this
1184 * thread is not the thread group leader.
1185 */
1186 asmlinkage void sys_exit_group(int error_code)
1187 {
1188 do_group_exit((error_code & 0xff) << 8);
1189 }
1190
1191 static struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
1192 {
1193 struct pid *pid = NULL;
1194 if (type == PIDTYPE_PID)
1195 pid = task->pids[type].pid;
1196 else if (type < PIDTYPE_MAX)
1197 pid = task->group_leader->pids[type].pid;
1198 return pid;
1199 }
1200
1201 static int eligible_child(enum pid_type type, struct pid *pid, int options,
1202 struct task_struct *p)
1203 {
1204 int err;
1205
1206 if (type < PIDTYPE_MAX) {
1207 if (task_pid_type(p, type) != pid)
1208 return 0;
1209 }
1210
1211 /* Wait for all children (clone and not) if __WALL is set;
1212 * otherwise, wait for clone children *only* if __WCLONE is
1213 * set; otherwise, wait for non-clone children *only*. (Note:
1214 * A "clone" child here is one that reports to its parent
1215 * using a signal other than SIGCHLD.) */
1216 if (((p->exit_signal != SIGCHLD) ^ ((options & __WCLONE) != 0))
1217 && !(options & __WALL))
1218 return 0;
1219
1220 err = security_task_wait(p);
1221 if (err)
1222 return err;
1223
1224 return 1;
1225 }
1226
1227 static int wait_noreap_copyout(struct task_struct *p, pid_t pid, uid_t uid,
1228 int why, int status,
1229 struct siginfo __user *infop,
1230 struct rusage __user *rusagep)
1231 {
1232 int retval = rusagep ? getrusage(p, RUSAGE_BOTH, rusagep) : 0;
1233
1234 put_task_struct(p);
1235 if (!retval)
1236 retval = put_user(SIGCHLD, &infop->si_signo);
1237 if (!retval)
1238 retval = put_user(0, &infop->si_errno);
1239 if (!retval)
1240 retval = put_user((short)why, &infop->si_code);
1241 if (!retval)
1242 retval = put_user(pid, &infop->si_pid);
1243 if (!retval)
1244 retval = put_user(uid, &infop->si_uid);
1245 if (!retval)
1246 retval = put_user(status, &infop->si_status);
1247 if (!retval)
1248 retval = pid;
1249 return retval;
1250 }
1251
1252 /*
1253 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold
1254 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1255 * the lock and this task is uninteresting. If we return nonzero, we have
1256 * released the lock and the system call should return.
1257 */
1258 static int wait_task_zombie(struct task_struct *p, int options,
1259 struct siginfo __user *infop,
1260 int __user *stat_addr, struct rusage __user *ru)
1261 {
1262 unsigned long state;
1263 int retval, status, traced;
1264 pid_t pid = task_pid_vnr(p);
1265
1266 if (!likely(options & WEXITED))
1267 return 0;
1268
1269 if (unlikely(options & WNOWAIT)) {
1270 uid_t uid = p->uid;
1271 int exit_code = p->exit_code;
1272 int why, status;
1273
1274 get_task_struct(p);
1275 read_unlock(&tasklist_lock);
1276 if ((exit_code & 0x7f) == 0) {
1277 why = CLD_EXITED;
1278 status = exit_code >> 8;
1279 } else {
1280 why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
1281 status = exit_code & 0x7f;
1282 }
1283 return wait_noreap_copyout(p, pid, uid, why,
1284 status, infop, ru);
1285 }
1286
1287 /*
1288 * Try to move the task's state to DEAD
1289 * only one thread is allowed to do this:
1290 */
1291 state = xchg(&p->exit_state, EXIT_DEAD);
1292 if (state != EXIT_ZOMBIE) {
1293 BUG_ON(state != EXIT_DEAD);
1294 return 0;
1295 }
1296
1297 traced = ptrace_reparented(p);
1298
1299 if (likely(!traced)) {
1300 struct signal_struct *psig;
1301 struct signal_struct *sig;
1302 struct task_cputime cputime;
1303
1304 /*
1305 * The resource counters for the group leader are in its
1306 * own task_struct. Those for dead threads in the group
1307 * are in its signal_struct, as are those for the child
1308 * processes it has previously reaped. All these
1309 * accumulate in the parent's signal_struct c* fields.
1310 *
1311 * We don't bother to take a lock here to protect these
1312 * p->signal fields, because they are only touched by
1313 * __exit_signal, which runs with tasklist_lock
1314 * write-locked anyway, and so is excluded here. We do
1315 * need to protect the access to p->parent->signal fields,
1316 * as other threads in the parent group can be right
1317 * here reaping other children at the same time.
1318 *
1319 * We use thread_group_cputime() to get times for the thread
1320 * group, which consolidates times for all threads in the
1321 * group including the group leader.
1322 */
1323 spin_lock_irq(&p->parent->sighand->siglock);
1324 psig = p->parent->signal;
1325 sig = p->signal;
1326 thread_group_cputime(p, &cputime);
1327 psig->cutime =
1328 cputime_add(psig->cutime,
1329 cputime_add(cputime.utime,
1330 sig->cutime));
1331 psig->cstime =
1332 cputime_add(psig->cstime,
1333 cputime_add(cputime.stime,
1334 sig->cstime));
1335 psig->cgtime =
1336 cputime_add(psig->cgtime,
1337 cputime_add(p->gtime,
1338 cputime_add(sig->gtime,
1339 sig->cgtime)));
1340 psig->cmin_flt +=
1341 p->min_flt + sig->min_flt + sig->cmin_flt;
1342 psig->cmaj_flt +=
1343 p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1344 psig->cnvcsw +=
1345 p->nvcsw + sig->nvcsw + sig->cnvcsw;
1346 psig->cnivcsw +=
1347 p->nivcsw + sig->nivcsw + sig->cnivcsw;
1348 psig->cinblock +=
1349 task_io_get_inblock(p) +
1350 sig->inblock + sig->cinblock;
1351 psig->coublock +=
1352 task_io_get_oublock(p) +
1353 sig->oublock + sig->coublock;
1354 task_io_accounting_add(&psig->ioac, &p->ioac);
1355 task_io_accounting_add(&psig->ioac, &sig->ioac);
1356 spin_unlock_irq(&p->parent->sighand->siglock);
1357 }
1358
1359 /*
1360 * Now we are sure this task is interesting, and no other
1361 * thread can reap it because we set its state to EXIT_DEAD.
1362 */
1363 read_unlock(&tasklist_lock);
1364
1365 /*
1366 * Flush inherited counters to the parent - before the parent
1367 * gets woken up by child-exit notifications.
1368 */
1369 perf_counter_exit_task(p);
1370
1371 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1372 status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1373 ? p->signal->group_exit_code : p->exit_code;
1374 if (!retval && stat_addr)
1375 retval = put_user(status, stat_addr);
1376 if (!retval && infop)
1377 retval = put_user(SIGCHLD, &infop->si_signo);
1378 if (!retval && infop)
1379 retval = put_user(0, &infop->si_errno);
1380 if (!retval && infop) {
1381 int why;
1382
1383 if ((status & 0x7f) == 0) {
1384 why = CLD_EXITED;
1385 status >>= 8;
1386 } else {
1387 why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1388 status &= 0x7f;
1389 }
1390 retval = put_user((short)why, &infop->si_code);
1391 if (!retval)
1392 retval = put_user(status, &infop->si_status);
1393 }
1394 if (!retval && infop)
1395 retval = put_user(pid, &infop->si_pid);
1396 if (!retval && infop)
1397 retval = put_user(p->uid, &infop->si_uid);
1398 if (!retval)
1399 retval = pid;
1400
1401 if (traced) {
1402 write_lock_irq(&tasklist_lock);
1403 /* We dropped tasklist, ptracer could die and untrace */
1404 ptrace_unlink(p);
1405 /*
1406 * If this is not a detached task, notify the parent.
1407 * If it's still not detached after that, don't release
1408 * it now.
1409 */
1410 if (!task_detached(p)) {
1411 do_notify_parent(p, p->exit_signal);
1412 if (!task_detached(p)) {
1413 p->exit_state = EXIT_ZOMBIE;
1414 p = NULL;
1415 }
1416 }
1417 write_unlock_irq(&tasklist_lock);
1418 }
1419 if (p != NULL)
1420 release_task(p);
1421
1422 return retval;
1423 }
1424
1425 /*
1426 * Handle sys_wait4 work for one task in state TASK_STOPPED. We hold
1427 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1428 * the lock and this task is uninteresting. If we return nonzero, we have
1429 * released the lock and the system call should return.
1430 */
1431 static int wait_task_stopped(int ptrace, struct task_struct *p,
1432 int options, struct siginfo __user *infop,
1433 int __user *stat_addr, struct rusage __user *ru)
1434 {
1435 int retval, exit_code, why;
1436 uid_t uid = 0; /* unneeded, required by compiler */
1437 pid_t pid;
1438
1439 if (!(options & WUNTRACED))
1440 return 0;
1441
1442 exit_code = 0;
1443 spin_lock_irq(&p->sighand->siglock);
1444
1445 if (unlikely(!task_is_stopped_or_traced(p)))
1446 goto unlock_sig;
1447
1448 if (!ptrace && p->signal->group_stop_count > 0)
1449 /*
1450 * A group stop is in progress and this is the group leader.
1451 * We won't report until all threads have stopped.
1452 */
1453 goto unlock_sig;
1454
1455 exit_code = p->exit_code;
1456 if (!exit_code)
1457 goto unlock_sig;
1458
1459 if (!unlikely(options & WNOWAIT))
1460 p->exit_code = 0;
1461
1462 uid = p->uid;
1463 unlock_sig:
1464 spin_unlock_irq(&p->sighand->siglock);
1465 if (!exit_code)
1466 return 0;
1467
1468 /*
1469 * Now we are pretty sure this task is interesting.
1470 * Make sure it doesn't get reaped out from under us while we
1471 * give up the lock and then examine it below. We don't want to
1472 * keep holding onto the tasklist_lock while we call getrusage and
1473 * possibly take page faults for user memory.
1474 */
1475 get_task_struct(p);
1476 pid = task_pid_vnr(p);
1477 why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1478 read_unlock(&tasklist_lock);
1479
1480 if (unlikely(options & WNOWAIT))
1481 return wait_noreap_copyout(p, pid, uid,
1482 why, exit_code,
1483 infop, ru);
1484
1485 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1486 if (!retval && stat_addr)
1487 retval = put_user((exit_code << 8) | 0x7f, stat_addr);
1488 if (!retval && infop)
1489 retval = put_user(SIGCHLD, &infop->si_signo);
1490 if (!retval && infop)
1491 retval = put_user(0, &infop->si_errno);
1492 if (!retval && infop)
1493 retval = put_user((short)why, &infop->si_code);
1494 if (!retval && infop)
1495 retval = put_user(exit_code, &infop->si_status);
1496 if (!retval && infop)
1497 retval = put_user(pid, &infop->si_pid);
1498 if (!retval && infop)
1499 retval = put_user(uid, &infop->si_uid);
1500 if (!retval)
1501 retval = pid;
1502 put_task_struct(p);
1503
1504 BUG_ON(!retval);
1505 return retval;
1506 }
1507
1508 /*
1509 * Handle do_wait work for one task in a live, non-stopped state.
1510 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1511 * the lock and this task is uninteresting. If we return nonzero, we have
1512 * released the lock and the system call should return.
1513 */
1514 static int wait_task_continued(struct task_struct *p, int options,
1515 struct siginfo __user *infop,
1516 int __user *stat_addr, struct rusage __user *ru)
1517 {
1518 int retval;
1519 pid_t pid;
1520 uid_t uid;
1521
1522 if (!unlikely(options & WCONTINUED))
1523 return 0;
1524
1525 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1526 return 0;
1527
1528 spin_lock_irq(&p->sighand->siglock);
1529 /* Re-check with the lock held. */
1530 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1531 spin_unlock_irq(&p->sighand->siglock);
1532 return 0;
1533 }
1534 if (!unlikely(options & WNOWAIT))
1535 p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1536 spin_unlock_irq(&p->sighand->siglock);
1537
1538 pid = task_pid_vnr(p);
1539 uid = p->uid;
1540 get_task_struct(p);
1541 read_unlock(&tasklist_lock);
1542
1543 if (!infop) {
1544 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1545 put_task_struct(p);
1546 if (!retval && stat_addr)
1547 retval = put_user(0xffff, stat_addr);
1548 if (!retval)
1549 retval = pid;
1550 } else {
1551 retval = wait_noreap_copyout(p, pid, uid,
1552 CLD_CONTINUED, SIGCONT,
1553 infop, ru);
1554 BUG_ON(retval == 0);
1555 }
1556
1557 return retval;
1558 }
1559
1560 /*
1561 * Consider @p for a wait by @parent.
1562 *
1563 * -ECHILD should be in *@notask_error before the first call.
1564 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1565 * Returns zero if the search for a child should continue;
1566 * then *@notask_error is 0 if @p is an eligible child,
1567 * or another error from security_task_wait(), or still -ECHILD.
1568 */
1569 static int wait_consider_task(struct task_struct *parent, int ptrace,
1570 struct task_struct *p, int *notask_error,
1571 enum pid_type type, struct pid *pid, int options,
1572 struct siginfo __user *infop,
1573 int __user *stat_addr, struct rusage __user *ru)
1574 {
1575 int ret = eligible_child(type, pid, options, p);
1576 if (!ret)
1577 return ret;
1578
1579 if (unlikely(ret < 0)) {
1580 /*
1581 * If we have not yet seen any eligible child,
1582 * then let this error code replace -ECHILD.
1583 * A permission error will give the user a clue
1584 * to look for security policy problems, rather
1585 * than for mysterious wait bugs.
1586 */
1587 if (*notask_error)
1588 *notask_error = ret;
1589 }
1590
1591 if (likely(!ptrace) && unlikely(p->ptrace)) {
1592 /*
1593 * This child is hidden by ptrace.
1594 * We aren't allowed to see it now, but eventually we will.
1595 */
1596 *notask_error = 0;
1597 return 0;
1598 }
1599
1600 if (p->exit_state == EXIT_DEAD)
1601 return 0;
1602
1603 /*
1604 * We don't reap group leaders with subthreads.
1605 */
1606 if (p->exit_state == EXIT_ZOMBIE && !delay_group_leader(p))
1607 return wait_task_zombie(p, options, infop, stat_addr, ru);
1608
1609 /*
1610 * It's stopped or running now, so it might
1611 * later continue, exit, or stop again.
1612 */
1613 *notask_error = 0;
1614
1615 if (task_is_stopped_or_traced(p))
1616 return wait_task_stopped(ptrace, p, options,
1617 infop, stat_addr, ru);
1618
1619 return wait_task_continued(p, options, infop, stat_addr, ru);
1620 }
1621
1622 /*
1623 * Do the work of do_wait() for one thread in the group, @tsk.
1624 *
1625 * -ECHILD should be in *@notask_error before the first call.
1626 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1627 * Returns zero if the search for a child should continue; then
1628 * *@notask_error is 0 if there were any eligible children,
1629 * or another error from security_task_wait(), or still -ECHILD.
1630 */
1631 static int do_wait_thread(struct task_struct *tsk, int *notask_error,
1632 enum pid_type type, struct pid *pid, int options,
1633 struct siginfo __user *infop, int __user *stat_addr,
1634 struct rusage __user *ru)
1635 {
1636 struct task_struct *p;
1637
1638 list_for_each_entry(p, &tsk->children, sibling) {
1639 /*
1640 * Do not consider detached threads.
1641 */
1642 if (!task_detached(p)) {
1643 int ret = wait_consider_task(tsk, 0, p, notask_error,
1644 type, pid, options,
1645 infop, stat_addr, ru);
1646 if (ret)
1647 return ret;
1648 }
1649 }
1650
1651 return 0;
1652 }
1653
1654 static int ptrace_do_wait(struct task_struct *tsk, int *notask_error,
1655 enum pid_type type, struct pid *pid, int options,
1656 struct siginfo __user *infop, int __user *stat_addr,
1657 struct rusage __user *ru)
1658 {
1659 struct task_struct *p;
1660
1661 /*
1662 * Traditionally we see ptrace'd stopped tasks regardless of options.
1663 */
1664 options |= WUNTRACED;
1665
1666 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1667 int ret = wait_consider_task(tsk, 1, p, notask_error,
1668 type, pid, options,
1669 infop, stat_addr, ru);
1670 if (ret)
1671 return ret;
1672 }
1673
1674 return 0;
1675 }
1676
1677 static long do_wait(enum pid_type type, struct pid *pid, int options,
1678 struct siginfo __user *infop, int __user *stat_addr,
1679 struct rusage __user *ru)
1680 {
1681 DECLARE_WAITQUEUE(wait, current);
1682 struct task_struct *tsk;
1683 int retval;
1684
1685 trace_sched_process_wait(pid);
1686
1687 add_wait_queue(&current->signal->wait_chldexit,&wait);
1688 repeat:
1689 /*
1690 * If there is nothing that can match our critiera just get out.
1691 * We will clear @retval to zero if we see any child that might later
1692 * match our criteria, even if we are not able to reap it yet.
1693 */
1694 retval = -ECHILD;
1695 if ((type < PIDTYPE_MAX) && (!pid || hlist_empty(&pid->tasks[type])))
1696 goto end;
1697
1698 current->state = TASK_INTERRUPTIBLE;
1699 read_lock(&tasklist_lock);
1700 tsk = current;
1701 do {
1702 int tsk_result = do_wait_thread(tsk, &retval,
1703 type, pid, options,
1704 infop, stat_addr, ru);
1705 if (!tsk_result)
1706 tsk_result = ptrace_do_wait(tsk, &retval,
1707 type, pid, options,
1708 infop, stat_addr, ru);
1709 if (tsk_result) {
1710 /*
1711 * tasklist_lock is unlocked and we have a final result.
1712 */
1713 retval = tsk_result;
1714 goto end;
1715 }
1716
1717 if (options & __WNOTHREAD)
1718 break;
1719 tsk = next_thread(tsk);
1720 BUG_ON(tsk->signal != current->signal);
1721 } while (tsk != current);
1722 read_unlock(&tasklist_lock);
1723
1724 if (!retval && !(options & WNOHANG)) {
1725 retval = -ERESTARTSYS;
1726 if (!signal_pending(current)) {
1727 schedule();
1728 goto repeat;
1729 }
1730 }
1731
1732 end:
1733 current->state = TASK_RUNNING;
1734 remove_wait_queue(&current->signal->wait_chldexit,&wait);
1735 if (infop) {
1736 if (retval > 0)
1737 retval = 0;
1738 else {
1739 /*
1740 * For a WNOHANG return, clear out all the fields
1741 * we would set so the user can easily tell the
1742 * difference.
1743 */
1744 if (!retval)
1745 retval = put_user(0, &infop->si_signo);
1746 if (!retval)
1747 retval = put_user(0, &infop->si_errno);
1748 if (!retval)
1749 retval = put_user(0, &infop->si_code);
1750 if (!retval)
1751 retval = put_user(0, &infop->si_pid);
1752 if (!retval)
1753 retval = put_user(0, &infop->si_uid);
1754 if (!retval)
1755 retval = put_user(0, &infop->si_status);
1756 }
1757 }
1758 return retval;
1759 }
1760
1761 asmlinkage long sys_waitid(int which, pid_t upid,
1762 struct siginfo __user *infop, int options,
1763 struct rusage __user *ru)
1764 {
1765 struct pid *pid = NULL;
1766 enum pid_type type;
1767 long ret;
1768
1769 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED))
1770 return -EINVAL;
1771 if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1772 return -EINVAL;
1773
1774 switch (which) {
1775 case P_ALL:
1776 type = PIDTYPE_MAX;
1777 break;
1778 case P_PID:
1779 type = PIDTYPE_PID;
1780 if (upid <= 0)
1781 return -EINVAL;
1782 break;
1783 case P_PGID:
1784 type = PIDTYPE_PGID;
1785 if (upid <= 0)
1786 return -EINVAL;
1787 break;
1788 default:
1789 return -EINVAL;
1790 }
1791
1792 if (type < PIDTYPE_MAX)
1793 pid = find_get_pid(upid);
1794 ret = do_wait(type, pid, options, infop, NULL, ru);
1795 put_pid(pid);
1796
1797 /* avoid REGPARM breakage on x86: */
1798 asmlinkage_protect(5, ret, which, upid, infop, options, ru);
1799 return ret;
1800 }
1801
1802 asmlinkage long sys_wait4(pid_t upid, int __user *stat_addr,
1803 int options, struct rusage __user *ru)
1804 {
1805 struct pid *pid = NULL;
1806 enum pid_type type;
1807 long ret;
1808
1809 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1810 __WNOTHREAD|__WCLONE|__WALL))
1811 return -EINVAL;
1812
1813 if (upid == -1)
1814 type = PIDTYPE_MAX;
1815 else if (upid < 0) {
1816 type = PIDTYPE_PGID;
1817 pid = find_get_pid(-upid);
1818 } else if (upid == 0) {
1819 type = PIDTYPE_PGID;
1820 pid = get_pid(task_pgrp(current));
1821 } else /* upid > 0 */ {
1822 type = PIDTYPE_PID;
1823 pid = find_get_pid(upid);
1824 }
1825
1826 ret = do_wait(type, pid, options | WEXITED, NULL, stat_addr, ru);
1827 put_pid(pid);
1828
1829 /* avoid REGPARM breakage on x86: */
1830 asmlinkage_protect(4, ret, upid, stat_addr, options, ru);
1831 return ret;
1832 }
1833
1834 #ifdef __ARCH_WANT_SYS_WAITPID
1835
1836 /*
1837 * sys_waitpid() remains for compatibility. waitpid() should be
1838 * implemented by calling sys_wait4() from libc.a.
1839 */
1840 asmlinkage long sys_waitpid(pid_t pid, int __user *stat_addr, int options)
1841 {
1842 return sys_wait4(pid, stat_addr, options, NULL);
1843 }
1844
1845 #endif
This page took 0.070213 seconds and 5 git commands to generate.