3602f468e3a0c277030dfdaf95c6665ea77df47a
[deliverable/linux.git] / kernel / exit.c
1 /*
2 * linux/kernel/exit.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 #include <linux/mm.h>
8 #include <linux/slab.h>
9 #include <linux/interrupt.h>
10 #include <linux/module.h>
11 #include <linux/capability.h>
12 #include <linux/completion.h>
13 #include <linux/personality.h>
14 #include <linux/tty.h>
15 #include <linux/iocontext.h>
16 #include <linux/key.h>
17 #include <linux/security.h>
18 #include <linux/cpu.h>
19 #include <linux/acct.h>
20 #include <linux/tsacct_kern.h>
21 #include <linux/file.h>
22 #include <linux/fdtable.h>
23 #include <linux/binfmts.h>
24 #include <linux/nsproxy.h>
25 #include <linux/pid_namespace.h>
26 #include <linux/ptrace.h>
27 #include <linux/profile.h>
28 #include <linux/mount.h>
29 #include <linux/proc_fs.h>
30 #include <linux/kthread.h>
31 #include <linux/mempolicy.h>
32 #include <linux/taskstats_kern.h>
33 #include <linux/delayacct.h>
34 #include <linux/freezer.h>
35 #include <linux/cgroup.h>
36 #include <linux/syscalls.h>
37 #include <linux/signal.h>
38 #include <linux/posix-timers.h>
39 #include <linux/cn_proc.h>
40 #include <linux/mutex.h>
41 #include <linux/futex.h>
42 #include <linux/pipe_fs_i.h>
43 #include <linux/audit.h> /* for audit_free() */
44 #include <linux/resource.h>
45 #include <linux/blkdev.h>
46 #include <linux/task_io_accounting_ops.h>
47 #include <linux/tracehook.h>
48 #include <linux/fs_struct.h>
49 #include <linux/init_task.h>
50 #include <linux/perf_event.h>
51 #include <trace/events/sched.h>
52 #include <linux/hw_breakpoint.h>
53
54 #include <asm/uaccess.h>
55 #include <asm/unistd.h>
56 #include <asm/pgtable.h>
57 #include <asm/mmu_context.h>
58
59 static void exit_mm(struct task_struct * tsk);
60
61 static void __unhash_process(struct task_struct *p, bool group_dead)
62 {
63 nr_threads--;
64 detach_pid(p, PIDTYPE_PID);
65 if (group_dead) {
66 detach_pid(p, PIDTYPE_PGID);
67 detach_pid(p, PIDTYPE_SID);
68
69 list_del_rcu(&p->tasks);
70 list_del_init(&p->sibling);
71 __get_cpu_var(process_counts)--;
72 }
73 list_del_rcu(&p->thread_group);
74 }
75
76 /*
77 * This function expects the tasklist_lock write-locked.
78 */
79 static void __exit_signal(struct task_struct *tsk)
80 {
81 struct signal_struct *sig = tsk->signal;
82 bool group_dead = thread_group_leader(tsk);
83 struct sighand_struct *sighand;
84 struct tty_struct *uninitialized_var(tty);
85
86 BUG_ON(!sig);
87 BUG_ON(!atomic_read(&sig->count));
88
89 sighand = rcu_dereference_check(tsk->sighand,
90 rcu_read_lock_held() ||
91 lockdep_tasklist_lock_is_held());
92 spin_lock(&sighand->siglock);
93 atomic_dec(&sig->count);
94
95 posix_cpu_timers_exit(tsk);
96 if (group_dead) {
97 posix_cpu_timers_exit_group(tsk);
98 tty = sig->tty;
99 sig->tty = NULL;
100 } else {
101 /*
102 * If there is any task waiting for the group exit
103 * then notify it:
104 */
105 if (sig->notify_count > 0 && !--sig->notify_count)
106 wake_up_process(sig->group_exit_task);
107
108 if (tsk == sig->curr_target)
109 sig->curr_target = next_thread(tsk);
110 /*
111 * Accumulate here the counters for all threads but the
112 * group leader as they die, so they can be added into
113 * the process-wide totals when those are taken.
114 * The group leader stays around as a zombie as long
115 * as there are other threads. When it gets reaped,
116 * the exit.c code will add its counts into these totals.
117 * We won't ever get here for the group leader, since it
118 * will have been the last reference on the signal_struct.
119 */
120 sig->utime = cputime_add(sig->utime, tsk->utime);
121 sig->stime = cputime_add(sig->stime, tsk->stime);
122 sig->gtime = cputime_add(sig->gtime, tsk->gtime);
123 sig->min_flt += tsk->min_flt;
124 sig->maj_flt += tsk->maj_flt;
125 sig->nvcsw += tsk->nvcsw;
126 sig->nivcsw += tsk->nivcsw;
127 sig->inblock += task_io_get_inblock(tsk);
128 sig->oublock += task_io_get_oublock(tsk);
129 task_io_accounting_add(&sig->ioac, &tsk->ioac);
130 sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
131 }
132
133 __unhash_process(tsk, group_dead);
134
135 /*
136 * Do this under ->siglock, we can race with another thread
137 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
138 */
139 flush_sigqueue(&tsk->pending);
140 tsk->sighand = NULL;
141 spin_unlock(&sighand->siglock);
142
143 __cleanup_sighand(sighand);
144 clear_tsk_thread_flag(tsk,TIF_SIGPENDING);
145 if (group_dead) {
146 flush_sigqueue(&sig->shared_pending);
147 taskstats_tgid_free(sig);
148 tty_kref_put(tty);
149 }
150 }
151
152 static void delayed_put_task_struct(struct rcu_head *rhp)
153 {
154 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
155
156 #ifdef CONFIG_PERF_EVENTS
157 WARN_ON_ONCE(tsk->perf_event_ctxp);
158 #endif
159 trace_sched_process_free(tsk);
160 put_task_struct(tsk);
161 }
162
163
164 void release_task(struct task_struct * p)
165 {
166 struct task_struct *leader;
167 int zap_leader;
168 repeat:
169 tracehook_prepare_release_task(p);
170 /* don't need to get the RCU readlock here - the process is dead and
171 * can't be modifying its own credentials. But shut RCU-lockdep up */
172 rcu_read_lock();
173 atomic_dec(&__task_cred(p)->user->processes);
174 rcu_read_unlock();
175
176 proc_flush_task(p);
177
178 write_lock_irq(&tasklist_lock);
179 tracehook_finish_release_task(p);
180 __exit_signal(p);
181
182 /*
183 * If we are the last non-leader member of the thread
184 * group, and the leader is zombie, then notify the
185 * group leader's parent process. (if it wants notification.)
186 */
187 zap_leader = 0;
188 leader = p->group_leader;
189 if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) {
190 BUG_ON(task_detached(leader));
191 do_notify_parent(leader, leader->exit_signal);
192 /*
193 * If we were the last child thread and the leader has
194 * exited already, and the leader's parent ignores SIGCHLD,
195 * then we are the one who should release the leader.
196 *
197 * do_notify_parent() will have marked it self-reaping in
198 * that case.
199 */
200 zap_leader = task_detached(leader);
201
202 /*
203 * This maintains the invariant that release_task()
204 * only runs on a task in EXIT_DEAD, just for sanity.
205 */
206 if (zap_leader)
207 leader->exit_state = EXIT_DEAD;
208 }
209
210 write_unlock_irq(&tasklist_lock);
211 release_thread(p);
212 call_rcu(&p->rcu, delayed_put_task_struct);
213
214 p = leader;
215 if (unlikely(zap_leader))
216 goto repeat;
217 }
218
219 /*
220 * This checks not only the pgrp, but falls back on the pid if no
221 * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
222 * without this...
223 *
224 * The caller must hold rcu lock or the tasklist lock.
225 */
226 struct pid *session_of_pgrp(struct pid *pgrp)
227 {
228 struct task_struct *p;
229 struct pid *sid = NULL;
230
231 p = pid_task(pgrp, PIDTYPE_PGID);
232 if (p == NULL)
233 p = pid_task(pgrp, PIDTYPE_PID);
234 if (p != NULL)
235 sid = task_session(p);
236
237 return sid;
238 }
239
240 /*
241 * Determine if a process group is "orphaned", according to the POSIX
242 * definition in 2.2.2.52. Orphaned process groups are not to be affected
243 * by terminal-generated stop signals. Newly orphaned process groups are
244 * to receive a SIGHUP and a SIGCONT.
245 *
246 * "I ask you, have you ever known what it is to be an orphan?"
247 */
248 static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task)
249 {
250 struct task_struct *p;
251
252 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
253 if ((p == ignored_task) ||
254 (p->exit_state && thread_group_empty(p)) ||
255 is_global_init(p->real_parent))
256 continue;
257
258 if (task_pgrp(p->real_parent) != pgrp &&
259 task_session(p->real_parent) == task_session(p))
260 return 0;
261 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
262
263 return 1;
264 }
265
266 int is_current_pgrp_orphaned(void)
267 {
268 int retval;
269
270 read_lock(&tasklist_lock);
271 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
272 read_unlock(&tasklist_lock);
273
274 return retval;
275 }
276
277 static int has_stopped_jobs(struct pid *pgrp)
278 {
279 int retval = 0;
280 struct task_struct *p;
281
282 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
283 if (!task_is_stopped(p))
284 continue;
285 retval = 1;
286 break;
287 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
288 return retval;
289 }
290
291 /*
292 * Check to see if any process groups have become orphaned as
293 * a result of our exiting, and if they have any stopped jobs,
294 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
295 */
296 static void
297 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
298 {
299 struct pid *pgrp = task_pgrp(tsk);
300 struct task_struct *ignored_task = tsk;
301
302 if (!parent)
303 /* exit: our father is in a different pgrp than
304 * we are and we were the only connection outside.
305 */
306 parent = tsk->real_parent;
307 else
308 /* reparent: our child is in a different pgrp than
309 * we are, and it was the only connection outside.
310 */
311 ignored_task = NULL;
312
313 if (task_pgrp(parent) != pgrp &&
314 task_session(parent) == task_session(tsk) &&
315 will_become_orphaned_pgrp(pgrp, ignored_task) &&
316 has_stopped_jobs(pgrp)) {
317 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
318 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
319 }
320 }
321
322 /**
323 * reparent_to_kthreadd - Reparent the calling kernel thread to kthreadd
324 *
325 * If a kernel thread is launched as a result of a system call, or if
326 * it ever exits, it should generally reparent itself to kthreadd so it
327 * isn't in the way of other processes and is correctly cleaned up on exit.
328 *
329 * The various task state such as scheduling policy and priority may have
330 * been inherited from a user process, so we reset them to sane values here.
331 *
332 * NOTE that reparent_to_kthreadd() gives the caller full capabilities.
333 */
334 static void reparent_to_kthreadd(void)
335 {
336 write_lock_irq(&tasklist_lock);
337
338 ptrace_unlink(current);
339 /* Reparent to init */
340 current->real_parent = current->parent = kthreadd_task;
341 list_move_tail(&current->sibling, &current->real_parent->children);
342
343 /* Set the exit signal to SIGCHLD so we signal init on exit */
344 current->exit_signal = SIGCHLD;
345
346 if (task_nice(current) < 0)
347 set_user_nice(current, 0);
348 /* cpus_allowed? */
349 /* rt_priority? */
350 /* signals? */
351 memcpy(current->signal->rlim, init_task.signal->rlim,
352 sizeof(current->signal->rlim));
353
354 atomic_inc(&init_cred.usage);
355 commit_creds(&init_cred);
356 write_unlock_irq(&tasklist_lock);
357 }
358
359 void __set_special_pids(struct pid *pid)
360 {
361 struct task_struct *curr = current->group_leader;
362
363 if (task_session(curr) != pid)
364 change_pid(curr, PIDTYPE_SID, pid);
365
366 if (task_pgrp(curr) != pid)
367 change_pid(curr, PIDTYPE_PGID, pid);
368 }
369
370 static void set_special_pids(struct pid *pid)
371 {
372 write_lock_irq(&tasklist_lock);
373 __set_special_pids(pid);
374 write_unlock_irq(&tasklist_lock);
375 }
376
377 /*
378 * Let kernel threads use this to say that they allow a certain signal.
379 * Must not be used if kthread was cloned with CLONE_SIGHAND.
380 */
381 int allow_signal(int sig)
382 {
383 if (!valid_signal(sig) || sig < 1)
384 return -EINVAL;
385
386 spin_lock_irq(&current->sighand->siglock);
387 /* This is only needed for daemonize()'ed kthreads */
388 sigdelset(&current->blocked, sig);
389 /*
390 * Kernel threads handle their own signals. Let the signal code
391 * know it'll be handled, so that they don't get converted to
392 * SIGKILL or just silently dropped.
393 */
394 current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2;
395 recalc_sigpending();
396 spin_unlock_irq(&current->sighand->siglock);
397 return 0;
398 }
399
400 EXPORT_SYMBOL(allow_signal);
401
402 int disallow_signal(int sig)
403 {
404 if (!valid_signal(sig) || sig < 1)
405 return -EINVAL;
406
407 spin_lock_irq(&current->sighand->siglock);
408 current->sighand->action[(sig)-1].sa.sa_handler = SIG_IGN;
409 recalc_sigpending();
410 spin_unlock_irq(&current->sighand->siglock);
411 return 0;
412 }
413
414 EXPORT_SYMBOL(disallow_signal);
415
416 /*
417 * Put all the gunge required to become a kernel thread without
418 * attached user resources in one place where it belongs.
419 */
420
421 void daemonize(const char *name, ...)
422 {
423 va_list args;
424 sigset_t blocked;
425
426 va_start(args, name);
427 vsnprintf(current->comm, sizeof(current->comm), name, args);
428 va_end(args);
429
430 /*
431 * If we were started as result of loading a module, close all of the
432 * user space pages. We don't need them, and if we didn't close them
433 * they would be locked into memory.
434 */
435 exit_mm(current);
436 /*
437 * We don't want to have TIF_FREEZE set if the system-wide hibernation
438 * or suspend transition begins right now.
439 */
440 current->flags |= (PF_NOFREEZE | PF_KTHREAD);
441
442 if (current->nsproxy != &init_nsproxy) {
443 get_nsproxy(&init_nsproxy);
444 switch_task_namespaces(current, &init_nsproxy);
445 }
446 set_special_pids(&init_struct_pid);
447 proc_clear_tty(current);
448
449 /* Block and flush all signals */
450 sigfillset(&blocked);
451 sigprocmask(SIG_BLOCK, &blocked, NULL);
452 flush_signals(current);
453
454 /* Become as one with the init task */
455
456 daemonize_fs_struct();
457 exit_files(current);
458 current->files = init_task.files;
459 atomic_inc(&current->files->count);
460
461 reparent_to_kthreadd();
462 }
463
464 EXPORT_SYMBOL(daemonize);
465
466 static void close_files(struct files_struct * files)
467 {
468 int i, j;
469 struct fdtable *fdt;
470
471 j = 0;
472
473 /*
474 * It is safe to dereference the fd table without RCU or
475 * ->file_lock because this is the last reference to the
476 * files structure. But use RCU to shut RCU-lockdep up.
477 */
478 rcu_read_lock();
479 fdt = files_fdtable(files);
480 rcu_read_unlock();
481 for (;;) {
482 unsigned long set;
483 i = j * __NFDBITS;
484 if (i >= fdt->max_fds)
485 break;
486 set = fdt->open_fds->fds_bits[j++];
487 while (set) {
488 if (set & 1) {
489 struct file * file = xchg(&fdt->fd[i], NULL);
490 if (file) {
491 filp_close(file, files);
492 cond_resched();
493 }
494 }
495 i++;
496 set >>= 1;
497 }
498 }
499 }
500
501 struct files_struct *get_files_struct(struct task_struct *task)
502 {
503 struct files_struct *files;
504
505 task_lock(task);
506 files = task->files;
507 if (files)
508 atomic_inc(&files->count);
509 task_unlock(task);
510
511 return files;
512 }
513
514 void put_files_struct(struct files_struct *files)
515 {
516 struct fdtable *fdt;
517
518 if (atomic_dec_and_test(&files->count)) {
519 close_files(files);
520 /*
521 * Free the fd and fdset arrays if we expanded them.
522 * If the fdtable was embedded, pass files for freeing
523 * at the end of the RCU grace period. Otherwise,
524 * you can free files immediately.
525 */
526 rcu_read_lock();
527 fdt = files_fdtable(files);
528 if (fdt != &files->fdtab)
529 kmem_cache_free(files_cachep, files);
530 free_fdtable(fdt);
531 rcu_read_unlock();
532 }
533 }
534
535 void reset_files_struct(struct files_struct *files)
536 {
537 struct task_struct *tsk = current;
538 struct files_struct *old;
539
540 old = tsk->files;
541 task_lock(tsk);
542 tsk->files = files;
543 task_unlock(tsk);
544 put_files_struct(old);
545 }
546
547 void exit_files(struct task_struct *tsk)
548 {
549 struct files_struct * files = tsk->files;
550
551 if (files) {
552 task_lock(tsk);
553 tsk->files = NULL;
554 task_unlock(tsk);
555 put_files_struct(files);
556 }
557 }
558
559 #ifdef CONFIG_MM_OWNER
560 /*
561 * Task p is exiting and it owned mm, lets find a new owner for it
562 */
563 static inline int
564 mm_need_new_owner(struct mm_struct *mm, struct task_struct *p)
565 {
566 /*
567 * If there are other users of the mm and the owner (us) is exiting
568 * we need to find a new owner to take on the responsibility.
569 */
570 if (atomic_read(&mm->mm_users) <= 1)
571 return 0;
572 if (mm->owner != p)
573 return 0;
574 return 1;
575 }
576
577 void mm_update_next_owner(struct mm_struct *mm)
578 {
579 struct task_struct *c, *g, *p = current;
580
581 retry:
582 if (!mm_need_new_owner(mm, p))
583 return;
584
585 read_lock(&tasklist_lock);
586 /*
587 * Search in the children
588 */
589 list_for_each_entry(c, &p->children, sibling) {
590 if (c->mm == mm)
591 goto assign_new_owner;
592 }
593
594 /*
595 * Search in the siblings
596 */
597 list_for_each_entry(c, &p->real_parent->children, sibling) {
598 if (c->mm == mm)
599 goto assign_new_owner;
600 }
601
602 /*
603 * Search through everything else. We should not get
604 * here often
605 */
606 do_each_thread(g, c) {
607 if (c->mm == mm)
608 goto assign_new_owner;
609 } while_each_thread(g, c);
610
611 read_unlock(&tasklist_lock);
612 /*
613 * We found no owner yet mm_users > 1: this implies that we are
614 * most likely racing with swapoff (try_to_unuse()) or /proc or
615 * ptrace or page migration (get_task_mm()). Mark owner as NULL.
616 */
617 mm->owner = NULL;
618 return;
619
620 assign_new_owner:
621 BUG_ON(c == p);
622 get_task_struct(c);
623 /*
624 * The task_lock protects c->mm from changing.
625 * We always want mm->owner->mm == mm
626 */
627 task_lock(c);
628 /*
629 * Delay read_unlock() till we have the task_lock()
630 * to ensure that c does not slip away underneath us
631 */
632 read_unlock(&tasklist_lock);
633 if (c->mm != mm) {
634 task_unlock(c);
635 put_task_struct(c);
636 goto retry;
637 }
638 mm->owner = c;
639 task_unlock(c);
640 put_task_struct(c);
641 }
642 #endif /* CONFIG_MM_OWNER */
643
644 /*
645 * Turn us into a lazy TLB process if we
646 * aren't already..
647 */
648 static void exit_mm(struct task_struct * tsk)
649 {
650 struct mm_struct *mm = tsk->mm;
651 struct core_state *core_state;
652
653 mm_release(tsk, mm);
654 if (!mm)
655 return;
656 /*
657 * Serialize with any possible pending coredump.
658 * We must hold mmap_sem around checking core_state
659 * and clearing tsk->mm. The core-inducing thread
660 * will increment ->nr_threads for each thread in the
661 * group with ->mm != NULL.
662 */
663 down_read(&mm->mmap_sem);
664 core_state = mm->core_state;
665 if (core_state) {
666 struct core_thread self;
667 up_read(&mm->mmap_sem);
668
669 self.task = tsk;
670 self.next = xchg(&core_state->dumper.next, &self);
671 /*
672 * Implies mb(), the result of xchg() must be visible
673 * to core_state->dumper.
674 */
675 if (atomic_dec_and_test(&core_state->nr_threads))
676 complete(&core_state->startup);
677
678 for (;;) {
679 set_task_state(tsk, TASK_UNINTERRUPTIBLE);
680 if (!self.task) /* see coredump_finish() */
681 break;
682 schedule();
683 }
684 __set_task_state(tsk, TASK_RUNNING);
685 down_read(&mm->mmap_sem);
686 }
687 atomic_inc(&mm->mm_count);
688 BUG_ON(mm != tsk->active_mm);
689 /* more a memory barrier than a real lock */
690 task_lock(tsk);
691 tsk->mm = NULL;
692 up_read(&mm->mmap_sem);
693 enter_lazy_tlb(mm, current);
694 /* We don't want this task to be frozen prematurely */
695 clear_freeze_flag(tsk);
696 task_unlock(tsk);
697 mm_update_next_owner(mm);
698 mmput(mm);
699 }
700
701 /*
702 * When we die, we re-parent all our children.
703 * Try to give them to another thread in our thread
704 * group, and if no such member exists, give it to
705 * the child reaper process (ie "init") in our pid
706 * space.
707 */
708 static struct task_struct *find_new_reaper(struct task_struct *father)
709 {
710 struct pid_namespace *pid_ns = task_active_pid_ns(father);
711 struct task_struct *thread;
712
713 thread = father;
714 while_each_thread(father, thread) {
715 if (thread->flags & PF_EXITING)
716 continue;
717 if (unlikely(pid_ns->child_reaper == father))
718 pid_ns->child_reaper = thread;
719 return thread;
720 }
721
722 if (unlikely(pid_ns->child_reaper == father)) {
723 write_unlock_irq(&tasklist_lock);
724 if (unlikely(pid_ns == &init_pid_ns))
725 panic("Attempted to kill init!");
726
727 zap_pid_ns_processes(pid_ns);
728 write_lock_irq(&tasklist_lock);
729 /*
730 * We can not clear ->child_reaper or leave it alone.
731 * There may by stealth EXIT_DEAD tasks on ->children,
732 * forget_original_parent() must move them somewhere.
733 */
734 pid_ns->child_reaper = init_pid_ns.child_reaper;
735 }
736
737 return pid_ns->child_reaper;
738 }
739
740 /*
741 * Any that need to be release_task'd are put on the @dead list.
742 */
743 static void reparent_leader(struct task_struct *father, struct task_struct *p,
744 struct list_head *dead)
745 {
746 list_move_tail(&p->sibling, &p->real_parent->children);
747
748 if (task_detached(p))
749 return;
750 /*
751 * If this is a threaded reparent there is no need to
752 * notify anyone anything has happened.
753 */
754 if (same_thread_group(p->real_parent, father))
755 return;
756
757 /* We don't want people slaying init. */
758 p->exit_signal = SIGCHLD;
759
760 /* If it has exited notify the new parent about this child's death. */
761 if (!task_ptrace(p) &&
762 p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
763 do_notify_parent(p, p->exit_signal);
764 if (task_detached(p)) {
765 p->exit_state = EXIT_DEAD;
766 list_move_tail(&p->sibling, dead);
767 }
768 }
769
770 kill_orphaned_pgrp(p, father);
771 }
772
773 static void forget_original_parent(struct task_struct *father)
774 {
775 struct task_struct *p, *n, *reaper;
776 LIST_HEAD(dead_children);
777
778 exit_ptrace(father);
779
780 write_lock_irq(&tasklist_lock);
781 reaper = find_new_reaper(father);
782
783 list_for_each_entry_safe(p, n, &father->children, sibling) {
784 struct task_struct *t = p;
785 do {
786 t->real_parent = reaper;
787 if (t->parent == father) {
788 BUG_ON(task_ptrace(t));
789 t->parent = t->real_parent;
790 }
791 if (t->pdeath_signal)
792 group_send_sig_info(t->pdeath_signal,
793 SEND_SIG_NOINFO, t);
794 } while_each_thread(p, t);
795 reparent_leader(father, p, &dead_children);
796 }
797 write_unlock_irq(&tasklist_lock);
798
799 BUG_ON(!list_empty(&father->children));
800
801 list_for_each_entry_safe(p, n, &dead_children, sibling) {
802 list_del_init(&p->sibling);
803 release_task(p);
804 }
805 }
806
807 /*
808 * Send signals to all our closest relatives so that they know
809 * to properly mourn us..
810 */
811 static void exit_notify(struct task_struct *tsk, int group_dead)
812 {
813 int signal;
814 void *cookie;
815
816 /*
817 * This does two things:
818 *
819 * A. Make init inherit all the child processes
820 * B. Check to see if any process groups have become orphaned
821 * as a result of our exiting, and if they have any stopped
822 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
823 */
824 forget_original_parent(tsk);
825 exit_task_namespaces(tsk);
826
827 write_lock_irq(&tasklist_lock);
828 if (group_dead)
829 kill_orphaned_pgrp(tsk->group_leader, NULL);
830
831 /* Let father know we died
832 *
833 * Thread signals are configurable, but you aren't going to use
834 * that to send signals to arbitary processes.
835 * That stops right now.
836 *
837 * If the parent exec id doesn't match the exec id we saved
838 * when we started then we know the parent has changed security
839 * domain.
840 *
841 * If our self_exec id doesn't match our parent_exec_id then
842 * we have changed execution domain as these two values started
843 * the same after a fork.
844 */
845 if (tsk->exit_signal != SIGCHLD && !task_detached(tsk) &&
846 (tsk->parent_exec_id != tsk->real_parent->self_exec_id ||
847 tsk->self_exec_id != tsk->parent_exec_id))
848 tsk->exit_signal = SIGCHLD;
849
850 signal = tracehook_notify_death(tsk, &cookie, group_dead);
851 if (signal >= 0)
852 signal = do_notify_parent(tsk, signal);
853
854 tsk->exit_state = signal == DEATH_REAP ? EXIT_DEAD : EXIT_ZOMBIE;
855
856 /* mt-exec, de_thread() is waiting for group leader */
857 if (unlikely(tsk->signal->notify_count < 0))
858 wake_up_process(tsk->signal->group_exit_task);
859 write_unlock_irq(&tasklist_lock);
860
861 tracehook_report_death(tsk, signal, cookie, group_dead);
862
863 /* If the process is dead, release it - nobody will wait for it */
864 if (signal == DEATH_REAP)
865 release_task(tsk);
866 }
867
868 #ifdef CONFIG_DEBUG_STACK_USAGE
869 static void check_stack_usage(void)
870 {
871 static DEFINE_SPINLOCK(low_water_lock);
872 static int lowest_to_date = THREAD_SIZE;
873 unsigned long free;
874
875 free = stack_not_used(current);
876
877 if (free >= lowest_to_date)
878 return;
879
880 spin_lock(&low_water_lock);
881 if (free < lowest_to_date) {
882 printk(KERN_WARNING "%s used greatest stack depth: %lu bytes "
883 "left\n",
884 current->comm, free);
885 lowest_to_date = free;
886 }
887 spin_unlock(&low_water_lock);
888 }
889 #else
890 static inline void check_stack_usage(void) {}
891 #endif
892
893 NORET_TYPE void do_exit(long code)
894 {
895 struct task_struct *tsk = current;
896 int group_dead;
897
898 profile_task_exit(tsk);
899
900 WARN_ON(atomic_read(&tsk->fs_excl));
901
902 if (unlikely(in_interrupt()))
903 panic("Aiee, killing interrupt handler!");
904 if (unlikely(!tsk->pid))
905 panic("Attempted to kill the idle task!");
906
907 tracehook_report_exit(&code);
908
909 validate_creds_for_do_exit(tsk);
910
911 /*
912 * We're taking recursive faults here in do_exit. Safest is to just
913 * leave this task alone and wait for reboot.
914 */
915 if (unlikely(tsk->flags & PF_EXITING)) {
916 printk(KERN_ALERT
917 "Fixing recursive fault but reboot is needed!\n");
918 /*
919 * We can do this unlocked here. The futex code uses
920 * this flag just to verify whether the pi state
921 * cleanup has been done or not. In the worst case it
922 * loops once more. We pretend that the cleanup was
923 * done as there is no way to return. Either the
924 * OWNER_DIED bit is set by now or we push the blocked
925 * task into the wait for ever nirwana as well.
926 */
927 tsk->flags |= PF_EXITPIDONE;
928 set_current_state(TASK_UNINTERRUPTIBLE);
929 schedule();
930 }
931
932 exit_irq_thread();
933
934 exit_signals(tsk); /* sets PF_EXITING */
935 /*
936 * tsk->flags are checked in the futex code to protect against
937 * an exiting task cleaning up the robust pi futexes.
938 */
939 smp_mb();
940 raw_spin_unlock_wait(&tsk->pi_lock);
941
942 if (unlikely(in_atomic()))
943 printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n",
944 current->comm, task_pid_nr(current),
945 preempt_count());
946
947 acct_update_integrals(tsk);
948 /* sync mm's RSS info before statistics gathering */
949 if (tsk->mm)
950 sync_mm_rss(tsk, tsk->mm);
951 group_dead = atomic_dec_and_test(&tsk->signal->live);
952 if (group_dead) {
953 hrtimer_cancel(&tsk->signal->real_timer);
954 exit_itimers(tsk->signal);
955 if (tsk->mm)
956 setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
957 }
958 acct_collect(code, group_dead);
959 if (group_dead)
960 tty_audit_exit();
961 if (unlikely(tsk->audit_context))
962 audit_free(tsk);
963
964 tsk->exit_code = code;
965 taskstats_exit(tsk, group_dead);
966
967 exit_mm(tsk);
968
969 if (group_dead)
970 acct_process();
971 trace_sched_process_exit(tsk);
972
973 exit_sem(tsk);
974 exit_files(tsk);
975 exit_fs(tsk);
976 check_stack_usage();
977 exit_thread();
978 cgroup_exit(tsk, 1);
979
980 if (group_dead)
981 disassociate_ctty(1);
982
983 module_put(task_thread_info(tsk)->exec_domain->module);
984
985 proc_exit_connector(tsk);
986
987 /*
988 * FIXME: do that only when needed, using sched_exit tracepoint
989 */
990 flush_ptrace_hw_breakpoint(tsk);
991 /*
992 * Flush inherited counters to the parent - before the parent
993 * gets woken up by child-exit notifications.
994 */
995 perf_event_exit_task(tsk);
996
997 exit_notify(tsk, group_dead);
998 #ifdef CONFIG_NUMA
999 task_lock(tsk);
1000 mpol_put(tsk->mempolicy);
1001 tsk->mempolicy = NULL;
1002 task_unlock(tsk);
1003 #endif
1004 #ifdef CONFIG_FUTEX
1005 if (unlikely(current->pi_state_cache))
1006 kfree(current->pi_state_cache);
1007 #endif
1008 /*
1009 * Make sure we are holding no locks:
1010 */
1011 debug_check_no_locks_held(tsk);
1012 /*
1013 * We can do this unlocked here. The futex code uses this flag
1014 * just to verify whether the pi state cleanup has been done
1015 * or not. In the worst case it loops once more.
1016 */
1017 tsk->flags |= PF_EXITPIDONE;
1018
1019 if (tsk->io_context)
1020 exit_io_context(tsk);
1021
1022 if (tsk->splice_pipe)
1023 __free_pipe_info(tsk->splice_pipe);
1024
1025 validate_creds_for_do_exit(tsk);
1026
1027 preempt_disable();
1028 exit_rcu();
1029 /* causes final put_task_struct in finish_task_switch(). */
1030 tsk->state = TASK_DEAD;
1031 schedule();
1032 BUG();
1033 /* Avoid "noreturn function does return". */
1034 for (;;)
1035 cpu_relax(); /* For when BUG is null */
1036 }
1037
1038 EXPORT_SYMBOL_GPL(do_exit);
1039
1040 NORET_TYPE void complete_and_exit(struct completion *comp, long code)
1041 {
1042 if (comp)
1043 complete(comp);
1044
1045 do_exit(code);
1046 }
1047
1048 EXPORT_SYMBOL(complete_and_exit);
1049
1050 SYSCALL_DEFINE1(exit, int, error_code)
1051 {
1052 do_exit((error_code&0xff)<<8);
1053 }
1054
1055 /*
1056 * Take down every thread in the group. This is called by fatal signals
1057 * as well as by sys_exit_group (below).
1058 */
1059 NORET_TYPE void
1060 do_group_exit(int exit_code)
1061 {
1062 struct signal_struct *sig = current->signal;
1063
1064 BUG_ON(exit_code & 0x80); /* core dumps don't get here */
1065
1066 if (signal_group_exit(sig))
1067 exit_code = sig->group_exit_code;
1068 else if (!thread_group_empty(current)) {
1069 struct sighand_struct *const sighand = current->sighand;
1070 spin_lock_irq(&sighand->siglock);
1071 if (signal_group_exit(sig))
1072 /* Another thread got here before we took the lock. */
1073 exit_code = sig->group_exit_code;
1074 else {
1075 sig->group_exit_code = exit_code;
1076 sig->flags = SIGNAL_GROUP_EXIT;
1077 zap_other_threads(current);
1078 }
1079 spin_unlock_irq(&sighand->siglock);
1080 }
1081
1082 do_exit(exit_code);
1083 /* NOTREACHED */
1084 }
1085
1086 /*
1087 * this kills every thread in the thread group. Note that any externally
1088 * wait4()-ing process will get the correct exit code - even if this
1089 * thread is not the thread group leader.
1090 */
1091 SYSCALL_DEFINE1(exit_group, int, error_code)
1092 {
1093 do_group_exit((error_code & 0xff) << 8);
1094 /* NOTREACHED */
1095 return 0;
1096 }
1097
1098 struct wait_opts {
1099 enum pid_type wo_type;
1100 int wo_flags;
1101 struct pid *wo_pid;
1102
1103 struct siginfo __user *wo_info;
1104 int __user *wo_stat;
1105 struct rusage __user *wo_rusage;
1106
1107 wait_queue_t child_wait;
1108 int notask_error;
1109 };
1110
1111 static inline
1112 struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
1113 {
1114 if (type != PIDTYPE_PID)
1115 task = task->group_leader;
1116 return task->pids[type].pid;
1117 }
1118
1119 static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
1120 {
1121 return wo->wo_type == PIDTYPE_MAX ||
1122 task_pid_type(p, wo->wo_type) == wo->wo_pid;
1123 }
1124
1125 static int eligible_child(struct wait_opts *wo, struct task_struct *p)
1126 {
1127 if (!eligible_pid(wo, p))
1128 return 0;
1129 /* Wait for all children (clone and not) if __WALL is set;
1130 * otherwise, wait for clone children *only* if __WCLONE is
1131 * set; otherwise, wait for non-clone children *only*. (Note:
1132 * A "clone" child here is one that reports to its parent
1133 * using a signal other than SIGCHLD.) */
1134 if (((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
1135 && !(wo->wo_flags & __WALL))
1136 return 0;
1137
1138 return 1;
1139 }
1140
1141 static int wait_noreap_copyout(struct wait_opts *wo, struct task_struct *p,
1142 pid_t pid, uid_t uid, int why, int status)
1143 {
1144 struct siginfo __user *infop;
1145 int retval = wo->wo_rusage
1146 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1147
1148 put_task_struct(p);
1149 infop = wo->wo_info;
1150 if (infop) {
1151 if (!retval)
1152 retval = put_user(SIGCHLD, &infop->si_signo);
1153 if (!retval)
1154 retval = put_user(0, &infop->si_errno);
1155 if (!retval)
1156 retval = put_user((short)why, &infop->si_code);
1157 if (!retval)
1158 retval = put_user(pid, &infop->si_pid);
1159 if (!retval)
1160 retval = put_user(uid, &infop->si_uid);
1161 if (!retval)
1162 retval = put_user(status, &infop->si_status);
1163 }
1164 if (!retval)
1165 retval = pid;
1166 return retval;
1167 }
1168
1169 /*
1170 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold
1171 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1172 * the lock and this task is uninteresting. If we return nonzero, we have
1173 * released the lock and the system call should return.
1174 */
1175 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
1176 {
1177 unsigned long state;
1178 int retval, status, traced;
1179 pid_t pid = task_pid_vnr(p);
1180 uid_t uid = __task_cred(p)->uid;
1181 struct siginfo __user *infop;
1182
1183 if (!likely(wo->wo_flags & WEXITED))
1184 return 0;
1185
1186 if (unlikely(wo->wo_flags & WNOWAIT)) {
1187 int exit_code = p->exit_code;
1188 int why;
1189
1190 get_task_struct(p);
1191 read_unlock(&tasklist_lock);
1192 if ((exit_code & 0x7f) == 0) {
1193 why = CLD_EXITED;
1194 status = exit_code >> 8;
1195 } else {
1196 why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
1197 status = exit_code & 0x7f;
1198 }
1199 return wait_noreap_copyout(wo, p, pid, uid, why, status);
1200 }
1201
1202 /*
1203 * Try to move the task's state to DEAD
1204 * only one thread is allowed to do this:
1205 */
1206 state = xchg(&p->exit_state, EXIT_DEAD);
1207 if (state != EXIT_ZOMBIE) {
1208 BUG_ON(state != EXIT_DEAD);
1209 return 0;
1210 }
1211
1212 traced = ptrace_reparented(p);
1213 /*
1214 * It can be ptraced but not reparented, check
1215 * !task_detached() to filter out sub-threads.
1216 */
1217 if (likely(!traced) && likely(!task_detached(p))) {
1218 struct signal_struct *psig;
1219 struct signal_struct *sig;
1220 unsigned long maxrss;
1221 cputime_t tgutime, tgstime;
1222
1223 /*
1224 * The resource counters for the group leader are in its
1225 * own task_struct. Those for dead threads in the group
1226 * are in its signal_struct, as are those for the child
1227 * processes it has previously reaped. All these
1228 * accumulate in the parent's signal_struct c* fields.
1229 *
1230 * We don't bother to take a lock here to protect these
1231 * p->signal fields, because they are only touched by
1232 * __exit_signal, which runs with tasklist_lock
1233 * write-locked anyway, and so is excluded here. We do
1234 * need to protect the access to parent->signal fields,
1235 * as other threads in the parent group can be right
1236 * here reaping other children at the same time.
1237 *
1238 * We use thread_group_times() to get times for the thread
1239 * group, which consolidates times for all threads in the
1240 * group including the group leader.
1241 */
1242 thread_group_times(p, &tgutime, &tgstime);
1243 spin_lock_irq(&p->real_parent->sighand->siglock);
1244 psig = p->real_parent->signal;
1245 sig = p->signal;
1246 psig->cutime =
1247 cputime_add(psig->cutime,
1248 cputime_add(tgutime,
1249 sig->cutime));
1250 psig->cstime =
1251 cputime_add(psig->cstime,
1252 cputime_add(tgstime,
1253 sig->cstime));
1254 psig->cgtime =
1255 cputime_add(psig->cgtime,
1256 cputime_add(p->gtime,
1257 cputime_add(sig->gtime,
1258 sig->cgtime)));
1259 psig->cmin_flt +=
1260 p->min_flt + sig->min_flt + sig->cmin_flt;
1261 psig->cmaj_flt +=
1262 p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1263 psig->cnvcsw +=
1264 p->nvcsw + sig->nvcsw + sig->cnvcsw;
1265 psig->cnivcsw +=
1266 p->nivcsw + sig->nivcsw + sig->cnivcsw;
1267 psig->cinblock +=
1268 task_io_get_inblock(p) +
1269 sig->inblock + sig->cinblock;
1270 psig->coublock +=
1271 task_io_get_oublock(p) +
1272 sig->oublock + sig->coublock;
1273 maxrss = max(sig->maxrss, sig->cmaxrss);
1274 if (psig->cmaxrss < maxrss)
1275 psig->cmaxrss = maxrss;
1276 task_io_accounting_add(&psig->ioac, &p->ioac);
1277 task_io_accounting_add(&psig->ioac, &sig->ioac);
1278 spin_unlock_irq(&p->real_parent->sighand->siglock);
1279 }
1280
1281 /*
1282 * Now we are sure this task is interesting, and no other
1283 * thread can reap it because we set its state to EXIT_DEAD.
1284 */
1285 read_unlock(&tasklist_lock);
1286
1287 retval = wo->wo_rusage
1288 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1289 status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1290 ? p->signal->group_exit_code : p->exit_code;
1291 if (!retval && wo->wo_stat)
1292 retval = put_user(status, wo->wo_stat);
1293
1294 infop = wo->wo_info;
1295 if (!retval && infop)
1296 retval = put_user(SIGCHLD, &infop->si_signo);
1297 if (!retval && infop)
1298 retval = put_user(0, &infop->si_errno);
1299 if (!retval && infop) {
1300 int why;
1301
1302 if ((status & 0x7f) == 0) {
1303 why = CLD_EXITED;
1304 status >>= 8;
1305 } else {
1306 why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1307 status &= 0x7f;
1308 }
1309 retval = put_user((short)why, &infop->si_code);
1310 if (!retval)
1311 retval = put_user(status, &infop->si_status);
1312 }
1313 if (!retval && infop)
1314 retval = put_user(pid, &infop->si_pid);
1315 if (!retval && infop)
1316 retval = put_user(uid, &infop->si_uid);
1317 if (!retval)
1318 retval = pid;
1319
1320 if (traced) {
1321 write_lock_irq(&tasklist_lock);
1322 /* We dropped tasklist, ptracer could die and untrace */
1323 ptrace_unlink(p);
1324 /*
1325 * If this is not a detached task, notify the parent.
1326 * If it's still not detached after that, don't release
1327 * it now.
1328 */
1329 if (!task_detached(p)) {
1330 do_notify_parent(p, p->exit_signal);
1331 if (!task_detached(p)) {
1332 p->exit_state = EXIT_ZOMBIE;
1333 p = NULL;
1334 }
1335 }
1336 write_unlock_irq(&tasklist_lock);
1337 }
1338 if (p != NULL)
1339 release_task(p);
1340
1341 return retval;
1342 }
1343
1344 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1345 {
1346 if (ptrace) {
1347 if (task_is_stopped_or_traced(p))
1348 return &p->exit_code;
1349 } else {
1350 if (p->signal->flags & SIGNAL_STOP_STOPPED)
1351 return &p->signal->group_exit_code;
1352 }
1353 return NULL;
1354 }
1355
1356 /*
1357 * Handle sys_wait4 work for one task in state TASK_STOPPED. We hold
1358 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1359 * the lock and this task is uninteresting. If we return nonzero, we have
1360 * released the lock and the system call should return.
1361 */
1362 static int wait_task_stopped(struct wait_opts *wo,
1363 int ptrace, struct task_struct *p)
1364 {
1365 struct siginfo __user *infop;
1366 int retval, exit_code, *p_code, why;
1367 uid_t uid = 0; /* unneeded, required by compiler */
1368 pid_t pid;
1369
1370 /*
1371 * Traditionally we see ptrace'd stopped tasks regardless of options.
1372 */
1373 if (!ptrace && !(wo->wo_flags & WUNTRACED))
1374 return 0;
1375
1376 exit_code = 0;
1377 spin_lock_irq(&p->sighand->siglock);
1378
1379 p_code = task_stopped_code(p, ptrace);
1380 if (unlikely(!p_code))
1381 goto unlock_sig;
1382
1383 exit_code = *p_code;
1384 if (!exit_code)
1385 goto unlock_sig;
1386
1387 if (!unlikely(wo->wo_flags & WNOWAIT))
1388 *p_code = 0;
1389
1390 /* don't need the RCU readlock here as we're holding a spinlock */
1391 uid = __task_cred(p)->uid;
1392 unlock_sig:
1393 spin_unlock_irq(&p->sighand->siglock);
1394 if (!exit_code)
1395 return 0;
1396
1397 /*
1398 * Now we are pretty sure this task is interesting.
1399 * Make sure it doesn't get reaped out from under us while we
1400 * give up the lock and then examine it below. We don't want to
1401 * keep holding onto the tasklist_lock while we call getrusage and
1402 * possibly take page faults for user memory.
1403 */
1404 get_task_struct(p);
1405 pid = task_pid_vnr(p);
1406 why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1407 read_unlock(&tasklist_lock);
1408
1409 if (unlikely(wo->wo_flags & WNOWAIT))
1410 return wait_noreap_copyout(wo, p, pid, uid, why, exit_code);
1411
1412 retval = wo->wo_rusage
1413 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1414 if (!retval && wo->wo_stat)
1415 retval = put_user((exit_code << 8) | 0x7f, wo->wo_stat);
1416
1417 infop = wo->wo_info;
1418 if (!retval && infop)
1419 retval = put_user(SIGCHLD, &infop->si_signo);
1420 if (!retval && infop)
1421 retval = put_user(0, &infop->si_errno);
1422 if (!retval && infop)
1423 retval = put_user((short)why, &infop->si_code);
1424 if (!retval && infop)
1425 retval = put_user(exit_code, &infop->si_status);
1426 if (!retval && infop)
1427 retval = put_user(pid, &infop->si_pid);
1428 if (!retval && infop)
1429 retval = put_user(uid, &infop->si_uid);
1430 if (!retval)
1431 retval = pid;
1432 put_task_struct(p);
1433
1434 BUG_ON(!retval);
1435 return retval;
1436 }
1437
1438 /*
1439 * Handle do_wait work for one task in a live, non-stopped state.
1440 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1441 * the lock and this task is uninteresting. If we return nonzero, we have
1442 * released the lock and the system call should return.
1443 */
1444 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1445 {
1446 int retval;
1447 pid_t pid;
1448 uid_t uid;
1449
1450 if (!unlikely(wo->wo_flags & WCONTINUED))
1451 return 0;
1452
1453 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1454 return 0;
1455
1456 spin_lock_irq(&p->sighand->siglock);
1457 /* Re-check with the lock held. */
1458 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1459 spin_unlock_irq(&p->sighand->siglock);
1460 return 0;
1461 }
1462 if (!unlikely(wo->wo_flags & WNOWAIT))
1463 p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1464 uid = __task_cred(p)->uid;
1465 spin_unlock_irq(&p->sighand->siglock);
1466
1467 pid = task_pid_vnr(p);
1468 get_task_struct(p);
1469 read_unlock(&tasklist_lock);
1470
1471 if (!wo->wo_info) {
1472 retval = wo->wo_rusage
1473 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1474 put_task_struct(p);
1475 if (!retval && wo->wo_stat)
1476 retval = put_user(0xffff, wo->wo_stat);
1477 if (!retval)
1478 retval = pid;
1479 } else {
1480 retval = wait_noreap_copyout(wo, p, pid, uid,
1481 CLD_CONTINUED, SIGCONT);
1482 BUG_ON(retval == 0);
1483 }
1484
1485 return retval;
1486 }
1487
1488 /*
1489 * Consider @p for a wait by @parent.
1490 *
1491 * -ECHILD should be in ->notask_error before the first call.
1492 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1493 * Returns zero if the search for a child should continue;
1494 * then ->notask_error is 0 if @p is an eligible child,
1495 * or another error from security_task_wait(), or still -ECHILD.
1496 */
1497 static int wait_consider_task(struct wait_opts *wo, int ptrace,
1498 struct task_struct *p)
1499 {
1500 int ret = eligible_child(wo, p);
1501 if (!ret)
1502 return ret;
1503
1504 ret = security_task_wait(p);
1505 if (unlikely(ret < 0)) {
1506 /*
1507 * If we have not yet seen any eligible child,
1508 * then let this error code replace -ECHILD.
1509 * A permission error will give the user a clue
1510 * to look for security policy problems, rather
1511 * than for mysterious wait bugs.
1512 */
1513 if (wo->notask_error)
1514 wo->notask_error = ret;
1515 return 0;
1516 }
1517
1518 if (likely(!ptrace) && unlikely(task_ptrace(p))) {
1519 /*
1520 * This child is hidden by ptrace.
1521 * We aren't allowed to see it now, but eventually we will.
1522 */
1523 wo->notask_error = 0;
1524 return 0;
1525 }
1526
1527 if (p->exit_state == EXIT_DEAD)
1528 return 0;
1529
1530 /*
1531 * We don't reap group leaders with subthreads.
1532 */
1533 if (p->exit_state == EXIT_ZOMBIE && !delay_group_leader(p))
1534 return wait_task_zombie(wo, p);
1535
1536 /*
1537 * It's stopped or running now, so it might
1538 * later continue, exit, or stop again.
1539 */
1540 wo->notask_error = 0;
1541
1542 if (task_stopped_code(p, ptrace))
1543 return wait_task_stopped(wo, ptrace, p);
1544
1545 return wait_task_continued(wo, p);
1546 }
1547
1548 /*
1549 * Do the work of do_wait() for one thread in the group, @tsk.
1550 *
1551 * -ECHILD should be in ->notask_error before the first call.
1552 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1553 * Returns zero if the search for a child should continue; then
1554 * ->notask_error is 0 if there were any eligible children,
1555 * or another error from security_task_wait(), or still -ECHILD.
1556 */
1557 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1558 {
1559 struct task_struct *p;
1560
1561 list_for_each_entry(p, &tsk->children, sibling) {
1562 int ret = wait_consider_task(wo, 0, p);
1563 if (ret)
1564 return ret;
1565 }
1566
1567 return 0;
1568 }
1569
1570 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1571 {
1572 struct task_struct *p;
1573
1574 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1575 int ret = wait_consider_task(wo, 1, p);
1576 if (ret)
1577 return ret;
1578 }
1579
1580 return 0;
1581 }
1582
1583 static int child_wait_callback(wait_queue_t *wait, unsigned mode,
1584 int sync, void *key)
1585 {
1586 struct wait_opts *wo = container_of(wait, struct wait_opts,
1587 child_wait);
1588 struct task_struct *p = key;
1589
1590 if (!eligible_pid(wo, p))
1591 return 0;
1592
1593 if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1594 return 0;
1595
1596 return default_wake_function(wait, mode, sync, key);
1597 }
1598
1599 void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1600 {
1601 __wake_up_sync_key(&parent->signal->wait_chldexit,
1602 TASK_INTERRUPTIBLE, 1, p);
1603 }
1604
1605 static long do_wait(struct wait_opts *wo)
1606 {
1607 struct task_struct *tsk;
1608 int retval;
1609
1610 trace_sched_process_wait(wo->wo_pid);
1611
1612 init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1613 wo->child_wait.private = current;
1614 add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1615 repeat:
1616 /*
1617 * If there is nothing that can match our critiera just get out.
1618 * We will clear ->notask_error to zero if we see any child that
1619 * might later match our criteria, even if we are not able to reap
1620 * it yet.
1621 */
1622 wo->notask_error = -ECHILD;
1623 if ((wo->wo_type < PIDTYPE_MAX) &&
1624 (!wo->wo_pid || hlist_empty(&wo->wo_pid->tasks[wo->wo_type])))
1625 goto notask;
1626
1627 set_current_state(TASK_INTERRUPTIBLE);
1628 read_lock(&tasklist_lock);
1629 tsk = current;
1630 do {
1631 retval = do_wait_thread(wo, tsk);
1632 if (retval)
1633 goto end;
1634
1635 retval = ptrace_do_wait(wo, tsk);
1636 if (retval)
1637 goto end;
1638
1639 if (wo->wo_flags & __WNOTHREAD)
1640 break;
1641 } while_each_thread(current, tsk);
1642 read_unlock(&tasklist_lock);
1643
1644 notask:
1645 retval = wo->notask_error;
1646 if (!retval && !(wo->wo_flags & WNOHANG)) {
1647 retval = -ERESTARTSYS;
1648 if (!signal_pending(current)) {
1649 schedule();
1650 goto repeat;
1651 }
1652 }
1653 end:
1654 __set_current_state(TASK_RUNNING);
1655 remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1656 return retval;
1657 }
1658
1659 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1660 infop, int, options, struct rusage __user *, ru)
1661 {
1662 struct wait_opts wo;
1663 struct pid *pid = NULL;
1664 enum pid_type type;
1665 long ret;
1666
1667 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED))
1668 return -EINVAL;
1669 if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1670 return -EINVAL;
1671
1672 switch (which) {
1673 case P_ALL:
1674 type = PIDTYPE_MAX;
1675 break;
1676 case P_PID:
1677 type = PIDTYPE_PID;
1678 if (upid <= 0)
1679 return -EINVAL;
1680 break;
1681 case P_PGID:
1682 type = PIDTYPE_PGID;
1683 if (upid <= 0)
1684 return -EINVAL;
1685 break;
1686 default:
1687 return -EINVAL;
1688 }
1689
1690 if (type < PIDTYPE_MAX)
1691 pid = find_get_pid(upid);
1692
1693 wo.wo_type = type;
1694 wo.wo_pid = pid;
1695 wo.wo_flags = options;
1696 wo.wo_info = infop;
1697 wo.wo_stat = NULL;
1698 wo.wo_rusage = ru;
1699 ret = do_wait(&wo);
1700
1701 if (ret > 0) {
1702 ret = 0;
1703 } else if (infop) {
1704 /*
1705 * For a WNOHANG return, clear out all the fields
1706 * we would set so the user can easily tell the
1707 * difference.
1708 */
1709 if (!ret)
1710 ret = put_user(0, &infop->si_signo);
1711 if (!ret)
1712 ret = put_user(0, &infop->si_errno);
1713 if (!ret)
1714 ret = put_user(0, &infop->si_code);
1715 if (!ret)
1716 ret = put_user(0, &infop->si_pid);
1717 if (!ret)
1718 ret = put_user(0, &infop->si_uid);
1719 if (!ret)
1720 ret = put_user(0, &infop->si_status);
1721 }
1722
1723 put_pid(pid);
1724
1725 /* avoid REGPARM breakage on x86: */
1726 asmlinkage_protect(5, ret, which, upid, infop, options, ru);
1727 return ret;
1728 }
1729
1730 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1731 int, options, struct rusage __user *, ru)
1732 {
1733 struct wait_opts wo;
1734 struct pid *pid = NULL;
1735 enum pid_type type;
1736 long ret;
1737
1738 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1739 __WNOTHREAD|__WCLONE|__WALL))
1740 return -EINVAL;
1741
1742 if (upid == -1)
1743 type = PIDTYPE_MAX;
1744 else if (upid < 0) {
1745 type = PIDTYPE_PGID;
1746 pid = find_get_pid(-upid);
1747 } else if (upid == 0) {
1748 type = PIDTYPE_PGID;
1749 pid = get_task_pid(current, PIDTYPE_PGID);
1750 } else /* upid > 0 */ {
1751 type = PIDTYPE_PID;
1752 pid = find_get_pid(upid);
1753 }
1754
1755 wo.wo_type = type;
1756 wo.wo_pid = pid;
1757 wo.wo_flags = options | WEXITED;
1758 wo.wo_info = NULL;
1759 wo.wo_stat = stat_addr;
1760 wo.wo_rusage = ru;
1761 ret = do_wait(&wo);
1762 put_pid(pid);
1763
1764 /* avoid REGPARM breakage on x86: */
1765 asmlinkage_protect(4, ret, upid, stat_addr, options, ru);
1766 return ret;
1767 }
1768
1769 #ifdef __ARCH_WANT_SYS_WAITPID
1770
1771 /*
1772 * sys_waitpid() remains for compatibility. waitpid() should be
1773 * implemented by calling sys_wait4() from libc.a.
1774 */
1775 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1776 {
1777 return sys_wait4(pid, stat_addr, options, NULL);
1778 }
1779
1780 #endif
This page took 0.07181 seconds and 4 git commands to generate.