Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/shaggy...
[deliverable/linux.git] / kernel / exit.c
1 /*
2 * linux/kernel/exit.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 #include <linux/mm.h>
8 #include <linux/slab.h>
9 #include <linux/interrupt.h>
10 #include <linux/module.h>
11 #include <linux/capability.h>
12 #include <linux/completion.h>
13 #include <linux/personality.h>
14 #include <linux/tty.h>
15 #include <linux/mnt_namespace.h>
16 #include <linux/iocontext.h>
17 #include <linux/key.h>
18 #include <linux/security.h>
19 #include <linux/cpu.h>
20 #include <linux/acct.h>
21 #include <linux/tsacct_kern.h>
22 #include <linux/file.h>
23 #include <linux/fdtable.h>
24 #include <linux/binfmts.h>
25 #include <linux/nsproxy.h>
26 #include <linux/pid_namespace.h>
27 #include <linux/ptrace.h>
28 #include <linux/profile.h>
29 #include <linux/mount.h>
30 #include <linux/proc_fs.h>
31 #include <linux/kthread.h>
32 #include <linux/mempolicy.h>
33 #include <linux/taskstats_kern.h>
34 #include <linux/delayacct.h>
35 #include <linux/freezer.h>
36 #include <linux/cgroup.h>
37 #include <linux/syscalls.h>
38 #include <linux/signal.h>
39 #include <linux/posix-timers.h>
40 #include <linux/cn_proc.h>
41 #include <linux/mutex.h>
42 #include <linux/futex.h>
43 #include <linux/pipe_fs_i.h>
44 #include <linux/audit.h> /* for audit_free() */
45 #include <linux/resource.h>
46 #include <linux/blkdev.h>
47 #include <linux/task_io_accounting_ops.h>
48 #include <linux/tracehook.h>
49 #include <linux/fs_struct.h>
50 #include <linux/init_task.h>
51 #include <trace/events/sched.h>
52
53 #include <asm/uaccess.h>
54 #include <asm/unistd.h>
55 #include <asm/pgtable.h>
56 #include <asm/mmu_context.h>
57 #include "cred-internals.h"
58
59 static void exit_mm(struct task_struct * tsk);
60
61 static void __unhash_process(struct task_struct *p)
62 {
63 nr_threads--;
64 detach_pid(p, PIDTYPE_PID);
65 if (thread_group_leader(p)) {
66 detach_pid(p, PIDTYPE_PGID);
67 detach_pid(p, PIDTYPE_SID);
68
69 list_del_rcu(&p->tasks);
70 __get_cpu_var(process_counts)--;
71 }
72 list_del_rcu(&p->thread_group);
73 list_del_init(&p->sibling);
74 }
75
76 /*
77 * This function expects the tasklist_lock write-locked.
78 */
79 static void __exit_signal(struct task_struct *tsk)
80 {
81 struct signal_struct *sig = tsk->signal;
82 struct sighand_struct *sighand;
83
84 BUG_ON(!sig);
85 BUG_ON(!atomic_read(&sig->count));
86
87 sighand = rcu_dereference(tsk->sighand);
88 spin_lock(&sighand->siglock);
89
90 posix_cpu_timers_exit(tsk);
91 if (atomic_dec_and_test(&sig->count))
92 posix_cpu_timers_exit_group(tsk);
93 else {
94 /*
95 * If there is any task waiting for the group exit
96 * then notify it:
97 */
98 if (sig->group_exit_task && atomic_read(&sig->count) == sig->notify_count)
99 wake_up_process(sig->group_exit_task);
100
101 if (tsk == sig->curr_target)
102 sig->curr_target = next_thread(tsk);
103 /*
104 * Accumulate here the counters for all threads but the
105 * group leader as they die, so they can be added into
106 * the process-wide totals when those are taken.
107 * The group leader stays around as a zombie as long
108 * as there are other threads. When it gets reaped,
109 * the exit.c code will add its counts into these totals.
110 * We won't ever get here for the group leader, since it
111 * will have been the last reference on the signal_struct.
112 */
113 sig->utime = cputime_add(sig->utime, task_utime(tsk));
114 sig->stime = cputime_add(sig->stime, task_stime(tsk));
115 sig->gtime = cputime_add(sig->gtime, task_gtime(tsk));
116 sig->min_flt += tsk->min_flt;
117 sig->maj_flt += tsk->maj_flt;
118 sig->nvcsw += tsk->nvcsw;
119 sig->nivcsw += tsk->nivcsw;
120 sig->inblock += task_io_get_inblock(tsk);
121 sig->oublock += task_io_get_oublock(tsk);
122 task_io_accounting_add(&sig->ioac, &tsk->ioac);
123 sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
124 sig = NULL; /* Marker for below. */
125 }
126
127 __unhash_process(tsk);
128
129 /*
130 * Do this under ->siglock, we can race with another thread
131 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
132 */
133 flush_sigqueue(&tsk->pending);
134
135 tsk->signal = NULL;
136 tsk->sighand = NULL;
137 spin_unlock(&sighand->siglock);
138
139 __cleanup_sighand(sighand);
140 clear_tsk_thread_flag(tsk,TIF_SIGPENDING);
141 if (sig) {
142 flush_sigqueue(&sig->shared_pending);
143 taskstats_tgid_free(sig);
144 /*
145 * Make sure ->signal can't go away under rq->lock,
146 * see account_group_exec_runtime().
147 */
148 task_rq_unlock_wait(tsk);
149 __cleanup_signal(sig);
150 }
151 }
152
153 static void delayed_put_task_struct(struct rcu_head *rhp)
154 {
155 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
156
157 trace_sched_process_free(tsk);
158 put_task_struct(tsk);
159 }
160
161
162 void release_task(struct task_struct * p)
163 {
164 struct task_struct *leader;
165 int zap_leader;
166 repeat:
167 tracehook_prepare_release_task(p);
168 /* don't need to get the RCU readlock here - the process is dead and
169 * can't be modifying its own credentials */
170 atomic_dec(&__task_cred(p)->user->processes);
171
172 proc_flush_task(p);
173 write_lock_irq(&tasklist_lock);
174 tracehook_finish_release_task(p);
175 __exit_signal(p);
176
177 /*
178 * If we are the last non-leader member of the thread
179 * group, and the leader is zombie, then notify the
180 * group leader's parent process. (if it wants notification.)
181 */
182 zap_leader = 0;
183 leader = p->group_leader;
184 if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) {
185 BUG_ON(task_detached(leader));
186 do_notify_parent(leader, leader->exit_signal);
187 /*
188 * If we were the last child thread and the leader has
189 * exited already, and the leader's parent ignores SIGCHLD,
190 * then we are the one who should release the leader.
191 *
192 * do_notify_parent() will have marked it self-reaping in
193 * that case.
194 */
195 zap_leader = task_detached(leader);
196
197 /*
198 * This maintains the invariant that release_task()
199 * only runs on a task in EXIT_DEAD, just for sanity.
200 */
201 if (zap_leader)
202 leader->exit_state = EXIT_DEAD;
203 }
204
205 write_unlock_irq(&tasklist_lock);
206 release_thread(p);
207 call_rcu(&p->rcu, delayed_put_task_struct);
208
209 p = leader;
210 if (unlikely(zap_leader))
211 goto repeat;
212 }
213
214 /*
215 * This checks not only the pgrp, but falls back on the pid if no
216 * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
217 * without this...
218 *
219 * The caller must hold rcu lock or the tasklist lock.
220 */
221 struct pid *session_of_pgrp(struct pid *pgrp)
222 {
223 struct task_struct *p;
224 struct pid *sid = NULL;
225
226 p = pid_task(pgrp, PIDTYPE_PGID);
227 if (p == NULL)
228 p = pid_task(pgrp, PIDTYPE_PID);
229 if (p != NULL)
230 sid = task_session(p);
231
232 return sid;
233 }
234
235 /*
236 * Determine if a process group is "orphaned", according to the POSIX
237 * definition in 2.2.2.52. Orphaned process groups are not to be affected
238 * by terminal-generated stop signals. Newly orphaned process groups are
239 * to receive a SIGHUP and a SIGCONT.
240 *
241 * "I ask you, have you ever known what it is to be an orphan?"
242 */
243 static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task)
244 {
245 struct task_struct *p;
246
247 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
248 if ((p == ignored_task) ||
249 (p->exit_state && thread_group_empty(p)) ||
250 is_global_init(p->real_parent))
251 continue;
252
253 if (task_pgrp(p->real_parent) != pgrp &&
254 task_session(p->real_parent) == task_session(p))
255 return 0;
256 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
257
258 return 1;
259 }
260
261 int is_current_pgrp_orphaned(void)
262 {
263 int retval;
264
265 read_lock(&tasklist_lock);
266 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
267 read_unlock(&tasklist_lock);
268
269 return retval;
270 }
271
272 static int has_stopped_jobs(struct pid *pgrp)
273 {
274 int retval = 0;
275 struct task_struct *p;
276
277 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
278 if (!task_is_stopped(p))
279 continue;
280 retval = 1;
281 break;
282 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
283 return retval;
284 }
285
286 /*
287 * Check to see if any process groups have become orphaned as
288 * a result of our exiting, and if they have any stopped jobs,
289 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
290 */
291 static void
292 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
293 {
294 struct pid *pgrp = task_pgrp(tsk);
295 struct task_struct *ignored_task = tsk;
296
297 if (!parent)
298 /* exit: our father is in a different pgrp than
299 * we are and we were the only connection outside.
300 */
301 parent = tsk->real_parent;
302 else
303 /* reparent: our child is in a different pgrp than
304 * we are, and it was the only connection outside.
305 */
306 ignored_task = NULL;
307
308 if (task_pgrp(parent) != pgrp &&
309 task_session(parent) == task_session(tsk) &&
310 will_become_orphaned_pgrp(pgrp, ignored_task) &&
311 has_stopped_jobs(pgrp)) {
312 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
313 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
314 }
315 }
316
317 /**
318 * reparent_to_kthreadd - Reparent the calling kernel thread to kthreadd
319 *
320 * If a kernel thread is launched as a result of a system call, or if
321 * it ever exits, it should generally reparent itself to kthreadd so it
322 * isn't in the way of other processes and is correctly cleaned up on exit.
323 *
324 * The various task state such as scheduling policy and priority may have
325 * been inherited from a user process, so we reset them to sane values here.
326 *
327 * NOTE that reparent_to_kthreadd() gives the caller full capabilities.
328 */
329 static void reparent_to_kthreadd(void)
330 {
331 write_lock_irq(&tasklist_lock);
332
333 ptrace_unlink(current);
334 /* Reparent to init */
335 current->real_parent = current->parent = kthreadd_task;
336 list_move_tail(&current->sibling, &current->real_parent->children);
337
338 /* Set the exit signal to SIGCHLD so we signal init on exit */
339 current->exit_signal = SIGCHLD;
340
341 if (task_nice(current) < 0)
342 set_user_nice(current, 0);
343 /* cpus_allowed? */
344 /* rt_priority? */
345 /* signals? */
346 memcpy(current->signal->rlim, init_task.signal->rlim,
347 sizeof(current->signal->rlim));
348
349 atomic_inc(&init_cred.usage);
350 commit_creds(&init_cred);
351 write_unlock_irq(&tasklist_lock);
352 }
353
354 void __set_special_pids(struct pid *pid)
355 {
356 struct task_struct *curr = current->group_leader;
357
358 if (task_session(curr) != pid)
359 change_pid(curr, PIDTYPE_SID, pid);
360
361 if (task_pgrp(curr) != pid)
362 change_pid(curr, PIDTYPE_PGID, pid);
363 }
364
365 static void set_special_pids(struct pid *pid)
366 {
367 write_lock_irq(&tasklist_lock);
368 __set_special_pids(pid);
369 write_unlock_irq(&tasklist_lock);
370 }
371
372 /*
373 * Let kernel threads use this to say that they
374 * allow a certain signal (since daemonize() will
375 * have disabled all of them by default).
376 */
377 int allow_signal(int sig)
378 {
379 if (!valid_signal(sig) || sig < 1)
380 return -EINVAL;
381
382 spin_lock_irq(&current->sighand->siglock);
383 sigdelset(&current->blocked, sig);
384 if (!current->mm) {
385 /* Kernel threads handle their own signals.
386 Let the signal code know it'll be handled, so
387 that they don't get converted to SIGKILL or
388 just silently dropped */
389 current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2;
390 }
391 recalc_sigpending();
392 spin_unlock_irq(&current->sighand->siglock);
393 return 0;
394 }
395
396 EXPORT_SYMBOL(allow_signal);
397
398 int disallow_signal(int sig)
399 {
400 if (!valid_signal(sig) || sig < 1)
401 return -EINVAL;
402
403 spin_lock_irq(&current->sighand->siglock);
404 current->sighand->action[(sig)-1].sa.sa_handler = SIG_IGN;
405 recalc_sigpending();
406 spin_unlock_irq(&current->sighand->siglock);
407 return 0;
408 }
409
410 EXPORT_SYMBOL(disallow_signal);
411
412 /*
413 * Put all the gunge required to become a kernel thread without
414 * attached user resources in one place where it belongs.
415 */
416
417 void daemonize(const char *name, ...)
418 {
419 va_list args;
420 sigset_t blocked;
421
422 va_start(args, name);
423 vsnprintf(current->comm, sizeof(current->comm), name, args);
424 va_end(args);
425
426 /*
427 * If we were started as result of loading a module, close all of the
428 * user space pages. We don't need them, and if we didn't close them
429 * they would be locked into memory.
430 */
431 exit_mm(current);
432 /*
433 * We don't want to have TIF_FREEZE set if the system-wide hibernation
434 * or suspend transition begins right now.
435 */
436 current->flags |= (PF_NOFREEZE | PF_KTHREAD);
437
438 if (current->nsproxy != &init_nsproxy) {
439 get_nsproxy(&init_nsproxy);
440 switch_task_namespaces(current, &init_nsproxy);
441 }
442 set_special_pids(&init_struct_pid);
443 proc_clear_tty(current);
444
445 /* Block and flush all signals */
446 sigfillset(&blocked);
447 sigprocmask(SIG_BLOCK, &blocked, NULL);
448 flush_signals(current);
449
450 /* Become as one with the init task */
451
452 daemonize_fs_struct();
453 exit_files(current);
454 current->files = init_task.files;
455 atomic_inc(&current->files->count);
456
457 reparent_to_kthreadd();
458 }
459
460 EXPORT_SYMBOL(daemonize);
461
462 static void close_files(struct files_struct * files)
463 {
464 int i, j;
465 struct fdtable *fdt;
466
467 j = 0;
468
469 /*
470 * It is safe to dereference the fd table without RCU or
471 * ->file_lock because this is the last reference to the
472 * files structure.
473 */
474 fdt = files_fdtable(files);
475 for (;;) {
476 unsigned long set;
477 i = j * __NFDBITS;
478 if (i >= fdt->max_fds)
479 break;
480 set = fdt->open_fds->fds_bits[j++];
481 while (set) {
482 if (set & 1) {
483 struct file * file = xchg(&fdt->fd[i], NULL);
484 if (file) {
485 filp_close(file, files);
486 cond_resched();
487 }
488 }
489 i++;
490 set >>= 1;
491 }
492 }
493 }
494
495 struct files_struct *get_files_struct(struct task_struct *task)
496 {
497 struct files_struct *files;
498
499 task_lock(task);
500 files = task->files;
501 if (files)
502 atomic_inc(&files->count);
503 task_unlock(task);
504
505 return files;
506 }
507
508 void put_files_struct(struct files_struct *files)
509 {
510 struct fdtable *fdt;
511
512 if (atomic_dec_and_test(&files->count)) {
513 close_files(files);
514 /*
515 * Free the fd and fdset arrays if we expanded them.
516 * If the fdtable was embedded, pass files for freeing
517 * at the end of the RCU grace period. Otherwise,
518 * you can free files immediately.
519 */
520 fdt = files_fdtable(files);
521 if (fdt != &files->fdtab)
522 kmem_cache_free(files_cachep, files);
523 free_fdtable(fdt);
524 }
525 }
526
527 void reset_files_struct(struct files_struct *files)
528 {
529 struct task_struct *tsk = current;
530 struct files_struct *old;
531
532 old = tsk->files;
533 task_lock(tsk);
534 tsk->files = files;
535 task_unlock(tsk);
536 put_files_struct(old);
537 }
538
539 void exit_files(struct task_struct *tsk)
540 {
541 struct files_struct * files = tsk->files;
542
543 if (files) {
544 task_lock(tsk);
545 tsk->files = NULL;
546 task_unlock(tsk);
547 put_files_struct(files);
548 }
549 }
550
551 #ifdef CONFIG_MM_OWNER
552 /*
553 * Task p is exiting and it owned mm, lets find a new owner for it
554 */
555 static inline int
556 mm_need_new_owner(struct mm_struct *mm, struct task_struct *p)
557 {
558 /*
559 * If there are other users of the mm and the owner (us) is exiting
560 * we need to find a new owner to take on the responsibility.
561 */
562 if (atomic_read(&mm->mm_users) <= 1)
563 return 0;
564 if (mm->owner != p)
565 return 0;
566 return 1;
567 }
568
569 void mm_update_next_owner(struct mm_struct *mm)
570 {
571 struct task_struct *c, *g, *p = current;
572
573 retry:
574 if (!mm_need_new_owner(mm, p))
575 return;
576
577 read_lock(&tasklist_lock);
578 /*
579 * Search in the children
580 */
581 list_for_each_entry(c, &p->children, sibling) {
582 if (c->mm == mm)
583 goto assign_new_owner;
584 }
585
586 /*
587 * Search in the siblings
588 */
589 list_for_each_entry(c, &p->parent->children, sibling) {
590 if (c->mm == mm)
591 goto assign_new_owner;
592 }
593
594 /*
595 * Search through everything else. We should not get
596 * here often
597 */
598 do_each_thread(g, c) {
599 if (c->mm == mm)
600 goto assign_new_owner;
601 } while_each_thread(g, c);
602
603 read_unlock(&tasklist_lock);
604 /*
605 * We found no owner yet mm_users > 1: this implies that we are
606 * most likely racing with swapoff (try_to_unuse()) or /proc or
607 * ptrace or page migration (get_task_mm()). Mark owner as NULL.
608 */
609 mm->owner = NULL;
610 return;
611
612 assign_new_owner:
613 BUG_ON(c == p);
614 get_task_struct(c);
615 /*
616 * The task_lock protects c->mm from changing.
617 * We always want mm->owner->mm == mm
618 */
619 task_lock(c);
620 /*
621 * Delay read_unlock() till we have the task_lock()
622 * to ensure that c does not slip away underneath us
623 */
624 read_unlock(&tasklist_lock);
625 if (c->mm != mm) {
626 task_unlock(c);
627 put_task_struct(c);
628 goto retry;
629 }
630 mm->owner = c;
631 task_unlock(c);
632 put_task_struct(c);
633 }
634 #endif /* CONFIG_MM_OWNER */
635
636 /*
637 * Turn us into a lazy TLB process if we
638 * aren't already..
639 */
640 static void exit_mm(struct task_struct * tsk)
641 {
642 struct mm_struct *mm = tsk->mm;
643 struct core_state *core_state;
644
645 mm_release(tsk, mm);
646 if (!mm)
647 return;
648 /*
649 * Serialize with any possible pending coredump.
650 * We must hold mmap_sem around checking core_state
651 * and clearing tsk->mm. The core-inducing thread
652 * will increment ->nr_threads for each thread in the
653 * group with ->mm != NULL.
654 */
655 down_read(&mm->mmap_sem);
656 core_state = mm->core_state;
657 if (core_state) {
658 struct core_thread self;
659 up_read(&mm->mmap_sem);
660
661 self.task = tsk;
662 self.next = xchg(&core_state->dumper.next, &self);
663 /*
664 * Implies mb(), the result of xchg() must be visible
665 * to core_state->dumper.
666 */
667 if (atomic_dec_and_test(&core_state->nr_threads))
668 complete(&core_state->startup);
669
670 for (;;) {
671 set_task_state(tsk, TASK_UNINTERRUPTIBLE);
672 if (!self.task) /* see coredump_finish() */
673 break;
674 schedule();
675 }
676 __set_task_state(tsk, TASK_RUNNING);
677 down_read(&mm->mmap_sem);
678 }
679 atomic_inc(&mm->mm_count);
680 BUG_ON(mm != tsk->active_mm);
681 /* more a memory barrier than a real lock */
682 task_lock(tsk);
683 tsk->mm = NULL;
684 up_read(&mm->mmap_sem);
685 enter_lazy_tlb(mm, current);
686 /* We don't want this task to be frozen prematurely */
687 clear_freeze_flag(tsk);
688 task_unlock(tsk);
689 mm_update_next_owner(mm);
690 mmput(mm);
691 }
692
693 /*
694 * When we die, we re-parent all our children.
695 * Try to give them to another thread in our thread
696 * group, and if no such member exists, give it to
697 * the child reaper process (ie "init") in our pid
698 * space.
699 */
700 static struct task_struct *find_new_reaper(struct task_struct *father)
701 {
702 struct pid_namespace *pid_ns = task_active_pid_ns(father);
703 struct task_struct *thread;
704
705 thread = father;
706 while_each_thread(father, thread) {
707 if (thread->flags & PF_EXITING)
708 continue;
709 if (unlikely(pid_ns->child_reaper == father))
710 pid_ns->child_reaper = thread;
711 return thread;
712 }
713
714 if (unlikely(pid_ns->child_reaper == father)) {
715 write_unlock_irq(&tasklist_lock);
716 if (unlikely(pid_ns == &init_pid_ns))
717 panic("Attempted to kill init!");
718
719 zap_pid_ns_processes(pid_ns);
720 write_lock_irq(&tasklist_lock);
721 /*
722 * We can not clear ->child_reaper or leave it alone.
723 * There may by stealth EXIT_DEAD tasks on ->children,
724 * forget_original_parent() must move them somewhere.
725 */
726 pid_ns->child_reaper = init_pid_ns.child_reaper;
727 }
728
729 return pid_ns->child_reaper;
730 }
731
732 /*
733 * Any that need to be release_task'd are put on the @dead list.
734 */
735 static void reparent_thread(struct task_struct *father, struct task_struct *p,
736 struct list_head *dead)
737 {
738 if (p->pdeath_signal)
739 group_send_sig_info(p->pdeath_signal, SEND_SIG_NOINFO, p);
740
741 list_move_tail(&p->sibling, &p->real_parent->children);
742
743 if (task_detached(p))
744 return;
745 /*
746 * If this is a threaded reparent there is no need to
747 * notify anyone anything has happened.
748 */
749 if (same_thread_group(p->real_parent, father))
750 return;
751
752 /* We don't want people slaying init. */
753 p->exit_signal = SIGCHLD;
754
755 /* If it has exited notify the new parent about this child's death. */
756 if (!p->ptrace &&
757 p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
758 do_notify_parent(p, p->exit_signal);
759 if (task_detached(p)) {
760 p->exit_state = EXIT_DEAD;
761 list_move_tail(&p->sibling, dead);
762 }
763 }
764
765 kill_orphaned_pgrp(p, father);
766 }
767
768 static void forget_original_parent(struct task_struct *father)
769 {
770 struct task_struct *p, *n, *reaper;
771 LIST_HEAD(dead_children);
772
773 exit_ptrace(father);
774
775 write_lock_irq(&tasklist_lock);
776 reaper = find_new_reaper(father);
777
778 list_for_each_entry_safe(p, n, &father->children, sibling) {
779 p->real_parent = reaper;
780 if (p->parent == father) {
781 BUG_ON(p->ptrace);
782 p->parent = p->real_parent;
783 }
784 reparent_thread(father, p, &dead_children);
785 }
786 write_unlock_irq(&tasklist_lock);
787
788 BUG_ON(!list_empty(&father->children));
789
790 list_for_each_entry_safe(p, n, &dead_children, sibling) {
791 list_del_init(&p->sibling);
792 release_task(p);
793 }
794 }
795
796 /*
797 * Send signals to all our closest relatives so that they know
798 * to properly mourn us..
799 */
800 static void exit_notify(struct task_struct *tsk, int group_dead)
801 {
802 int signal;
803 void *cookie;
804
805 /*
806 * This does two things:
807 *
808 * A. Make init inherit all the child processes
809 * B. Check to see if any process groups have become orphaned
810 * as a result of our exiting, and if they have any stopped
811 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
812 */
813 forget_original_parent(tsk);
814 exit_task_namespaces(tsk);
815
816 write_lock_irq(&tasklist_lock);
817 if (group_dead)
818 kill_orphaned_pgrp(tsk->group_leader, NULL);
819
820 /* Let father know we died
821 *
822 * Thread signals are configurable, but you aren't going to use
823 * that to send signals to arbitary processes.
824 * That stops right now.
825 *
826 * If the parent exec id doesn't match the exec id we saved
827 * when we started then we know the parent has changed security
828 * domain.
829 *
830 * If our self_exec id doesn't match our parent_exec_id then
831 * we have changed execution domain as these two values started
832 * the same after a fork.
833 */
834 if (tsk->exit_signal != SIGCHLD && !task_detached(tsk) &&
835 (tsk->parent_exec_id != tsk->real_parent->self_exec_id ||
836 tsk->self_exec_id != tsk->parent_exec_id))
837 tsk->exit_signal = SIGCHLD;
838
839 signal = tracehook_notify_death(tsk, &cookie, group_dead);
840 if (signal >= 0)
841 signal = do_notify_parent(tsk, signal);
842
843 tsk->exit_state = signal == DEATH_REAP ? EXIT_DEAD : EXIT_ZOMBIE;
844
845 /* mt-exec, de_thread() is waiting for us */
846 if (thread_group_leader(tsk) &&
847 tsk->signal->group_exit_task &&
848 tsk->signal->notify_count < 0)
849 wake_up_process(tsk->signal->group_exit_task);
850
851 write_unlock_irq(&tasklist_lock);
852
853 tracehook_report_death(tsk, signal, cookie, group_dead);
854
855 /* If the process is dead, release it - nobody will wait for it */
856 if (signal == DEATH_REAP)
857 release_task(tsk);
858 }
859
860 #ifdef CONFIG_DEBUG_STACK_USAGE
861 static void check_stack_usage(void)
862 {
863 static DEFINE_SPINLOCK(low_water_lock);
864 static int lowest_to_date = THREAD_SIZE;
865 unsigned long free;
866
867 free = stack_not_used(current);
868
869 if (free >= lowest_to_date)
870 return;
871
872 spin_lock(&low_water_lock);
873 if (free < lowest_to_date) {
874 printk(KERN_WARNING "%s used greatest stack depth: %lu bytes "
875 "left\n",
876 current->comm, free);
877 lowest_to_date = free;
878 }
879 spin_unlock(&low_water_lock);
880 }
881 #else
882 static inline void check_stack_usage(void) {}
883 #endif
884
885 NORET_TYPE void do_exit(long code)
886 {
887 struct task_struct *tsk = current;
888 int group_dead;
889
890 profile_task_exit(tsk);
891
892 WARN_ON(atomic_read(&tsk->fs_excl));
893
894 if (unlikely(in_interrupt()))
895 panic("Aiee, killing interrupt handler!");
896 if (unlikely(!tsk->pid))
897 panic("Attempted to kill the idle task!");
898
899 tracehook_report_exit(&code);
900
901 /*
902 * We're taking recursive faults here in do_exit. Safest is to just
903 * leave this task alone and wait for reboot.
904 */
905 if (unlikely(tsk->flags & PF_EXITING)) {
906 printk(KERN_ALERT
907 "Fixing recursive fault but reboot is needed!\n");
908 /*
909 * We can do this unlocked here. The futex code uses
910 * this flag just to verify whether the pi state
911 * cleanup has been done or not. In the worst case it
912 * loops once more. We pretend that the cleanup was
913 * done as there is no way to return. Either the
914 * OWNER_DIED bit is set by now or we push the blocked
915 * task into the wait for ever nirwana as well.
916 */
917 tsk->flags |= PF_EXITPIDONE;
918 set_current_state(TASK_UNINTERRUPTIBLE);
919 schedule();
920 }
921
922 exit_irq_thread();
923
924 exit_signals(tsk); /* sets PF_EXITING */
925 /*
926 * tsk->flags are checked in the futex code to protect against
927 * an exiting task cleaning up the robust pi futexes.
928 */
929 smp_mb();
930 spin_unlock_wait(&tsk->pi_lock);
931
932 if (unlikely(in_atomic()))
933 printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n",
934 current->comm, task_pid_nr(current),
935 preempt_count());
936
937 acct_update_integrals(tsk);
938
939 group_dead = atomic_dec_and_test(&tsk->signal->live);
940 if (group_dead) {
941 hrtimer_cancel(&tsk->signal->real_timer);
942 exit_itimers(tsk->signal);
943 }
944 acct_collect(code, group_dead);
945 if (group_dead)
946 tty_audit_exit();
947 if (unlikely(tsk->audit_context))
948 audit_free(tsk);
949
950 tsk->exit_code = code;
951 taskstats_exit(tsk, group_dead);
952
953 exit_mm(tsk);
954
955 if (group_dead)
956 acct_process();
957 trace_sched_process_exit(tsk);
958
959 exit_sem(tsk);
960 exit_files(tsk);
961 exit_fs(tsk);
962 check_stack_usage();
963 exit_thread();
964 cgroup_exit(tsk, 1);
965
966 if (group_dead && tsk->signal->leader)
967 disassociate_ctty(1);
968
969 module_put(task_thread_info(tsk)->exec_domain->module);
970 if (tsk->binfmt)
971 module_put(tsk->binfmt->module);
972
973 proc_exit_connector(tsk);
974 exit_notify(tsk, group_dead);
975 #ifdef CONFIG_NUMA
976 mpol_put(tsk->mempolicy);
977 tsk->mempolicy = NULL;
978 #endif
979 #ifdef CONFIG_FUTEX
980 /*
981 * This must happen late, after the PID is not
982 * hashed anymore:
983 */
984 if (unlikely(!list_empty(&tsk->pi_state_list)))
985 exit_pi_state_list(tsk);
986 if (unlikely(current->pi_state_cache))
987 kfree(current->pi_state_cache);
988 #endif
989 /*
990 * Make sure we are holding no locks:
991 */
992 debug_check_no_locks_held(tsk);
993 /*
994 * We can do this unlocked here. The futex code uses this flag
995 * just to verify whether the pi state cleanup has been done
996 * or not. In the worst case it loops once more.
997 */
998 tsk->flags |= PF_EXITPIDONE;
999
1000 if (tsk->io_context)
1001 exit_io_context();
1002
1003 if (tsk->splice_pipe)
1004 __free_pipe_info(tsk->splice_pipe);
1005
1006 preempt_disable();
1007 /* causes final put_task_struct in finish_task_switch(). */
1008 tsk->state = TASK_DEAD;
1009 schedule();
1010 BUG();
1011 /* Avoid "noreturn function does return". */
1012 for (;;)
1013 cpu_relax(); /* For when BUG is null */
1014 }
1015
1016 EXPORT_SYMBOL_GPL(do_exit);
1017
1018 NORET_TYPE void complete_and_exit(struct completion *comp, long code)
1019 {
1020 if (comp)
1021 complete(comp);
1022
1023 do_exit(code);
1024 }
1025
1026 EXPORT_SYMBOL(complete_and_exit);
1027
1028 SYSCALL_DEFINE1(exit, int, error_code)
1029 {
1030 do_exit((error_code&0xff)<<8);
1031 }
1032
1033 /*
1034 * Take down every thread in the group. This is called by fatal signals
1035 * as well as by sys_exit_group (below).
1036 */
1037 NORET_TYPE void
1038 do_group_exit(int exit_code)
1039 {
1040 struct signal_struct *sig = current->signal;
1041
1042 BUG_ON(exit_code & 0x80); /* core dumps don't get here */
1043
1044 if (signal_group_exit(sig))
1045 exit_code = sig->group_exit_code;
1046 else if (!thread_group_empty(current)) {
1047 struct sighand_struct *const sighand = current->sighand;
1048 spin_lock_irq(&sighand->siglock);
1049 if (signal_group_exit(sig))
1050 /* Another thread got here before we took the lock. */
1051 exit_code = sig->group_exit_code;
1052 else {
1053 sig->group_exit_code = exit_code;
1054 sig->flags = SIGNAL_GROUP_EXIT;
1055 zap_other_threads(current);
1056 }
1057 spin_unlock_irq(&sighand->siglock);
1058 }
1059
1060 do_exit(exit_code);
1061 /* NOTREACHED */
1062 }
1063
1064 /*
1065 * this kills every thread in the thread group. Note that any externally
1066 * wait4()-ing process will get the correct exit code - even if this
1067 * thread is not the thread group leader.
1068 */
1069 SYSCALL_DEFINE1(exit_group, int, error_code)
1070 {
1071 do_group_exit((error_code & 0xff) << 8);
1072 /* NOTREACHED */
1073 return 0;
1074 }
1075
1076 static struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
1077 {
1078 struct pid *pid = NULL;
1079 if (type == PIDTYPE_PID)
1080 pid = task->pids[type].pid;
1081 else if (type < PIDTYPE_MAX)
1082 pid = task->group_leader->pids[type].pid;
1083 return pid;
1084 }
1085
1086 static int eligible_child(enum pid_type type, struct pid *pid, int options,
1087 struct task_struct *p)
1088 {
1089 int err;
1090
1091 if (type < PIDTYPE_MAX) {
1092 if (task_pid_type(p, type) != pid)
1093 return 0;
1094 }
1095
1096 /* Wait for all children (clone and not) if __WALL is set;
1097 * otherwise, wait for clone children *only* if __WCLONE is
1098 * set; otherwise, wait for non-clone children *only*. (Note:
1099 * A "clone" child here is one that reports to its parent
1100 * using a signal other than SIGCHLD.) */
1101 if (((p->exit_signal != SIGCHLD) ^ ((options & __WCLONE) != 0))
1102 && !(options & __WALL))
1103 return 0;
1104
1105 err = security_task_wait(p);
1106 if (err)
1107 return err;
1108
1109 return 1;
1110 }
1111
1112 static int wait_noreap_copyout(struct task_struct *p, pid_t pid, uid_t uid,
1113 int why, int status,
1114 struct siginfo __user *infop,
1115 struct rusage __user *rusagep)
1116 {
1117 int retval = rusagep ? getrusage(p, RUSAGE_BOTH, rusagep) : 0;
1118
1119 put_task_struct(p);
1120 if (!retval)
1121 retval = put_user(SIGCHLD, &infop->si_signo);
1122 if (!retval)
1123 retval = put_user(0, &infop->si_errno);
1124 if (!retval)
1125 retval = put_user((short)why, &infop->si_code);
1126 if (!retval)
1127 retval = put_user(pid, &infop->si_pid);
1128 if (!retval)
1129 retval = put_user(uid, &infop->si_uid);
1130 if (!retval)
1131 retval = put_user(status, &infop->si_status);
1132 if (!retval)
1133 retval = pid;
1134 return retval;
1135 }
1136
1137 /*
1138 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold
1139 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1140 * the lock and this task is uninteresting. If we return nonzero, we have
1141 * released the lock and the system call should return.
1142 */
1143 static int wait_task_zombie(struct task_struct *p, int options,
1144 struct siginfo __user *infop,
1145 int __user *stat_addr, struct rusage __user *ru)
1146 {
1147 unsigned long state;
1148 int retval, status, traced;
1149 pid_t pid = task_pid_vnr(p);
1150 uid_t uid = __task_cred(p)->uid;
1151
1152 if (!likely(options & WEXITED))
1153 return 0;
1154
1155 if (unlikely(options & WNOWAIT)) {
1156 int exit_code = p->exit_code;
1157 int why, status;
1158
1159 get_task_struct(p);
1160 read_unlock(&tasklist_lock);
1161 if ((exit_code & 0x7f) == 0) {
1162 why = CLD_EXITED;
1163 status = exit_code >> 8;
1164 } else {
1165 why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
1166 status = exit_code & 0x7f;
1167 }
1168 return wait_noreap_copyout(p, pid, uid, why,
1169 status, infop, ru);
1170 }
1171
1172 /*
1173 * Try to move the task's state to DEAD
1174 * only one thread is allowed to do this:
1175 */
1176 state = xchg(&p->exit_state, EXIT_DEAD);
1177 if (state != EXIT_ZOMBIE) {
1178 BUG_ON(state != EXIT_DEAD);
1179 return 0;
1180 }
1181
1182 traced = ptrace_reparented(p);
1183
1184 if (likely(!traced)) {
1185 struct signal_struct *psig;
1186 struct signal_struct *sig;
1187 struct task_cputime cputime;
1188
1189 /*
1190 * The resource counters for the group leader are in its
1191 * own task_struct. Those for dead threads in the group
1192 * are in its signal_struct, as are those for the child
1193 * processes it has previously reaped. All these
1194 * accumulate in the parent's signal_struct c* fields.
1195 *
1196 * We don't bother to take a lock here to protect these
1197 * p->signal fields, because they are only touched by
1198 * __exit_signal, which runs with tasklist_lock
1199 * write-locked anyway, and so is excluded here. We do
1200 * need to protect the access to p->parent->signal fields,
1201 * as other threads in the parent group can be right
1202 * here reaping other children at the same time.
1203 *
1204 * We use thread_group_cputime() to get times for the thread
1205 * group, which consolidates times for all threads in the
1206 * group including the group leader.
1207 */
1208 thread_group_cputime(p, &cputime);
1209 spin_lock_irq(&p->parent->sighand->siglock);
1210 psig = p->parent->signal;
1211 sig = p->signal;
1212 psig->cutime =
1213 cputime_add(psig->cutime,
1214 cputime_add(cputime.utime,
1215 sig->cutime));
1216 psig->cstime =
1217 cputime_add(psig->cstime,
1218 cputime_add(cputime.stime,
1219 sig->cstime));
1220 psig->cgtime =
1221 cputime_add(psig->cgtime,
1222 cputime_add(p->gtime,
1223 cputime_add(sig->gtime,
1224 sig->cgtime)));
1225 psig->cmin_flt +=
1226 p->min_flt + sig->min_flt + sig->cmin_flt;
1227 psig->cmaj_flt +=
1228 p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1229 psig->cnvcsw +=
1230 p->nvcsw + sig->nvcsw + sig->cnvcsw;
1231 psig->cnivcsw +=
1232 p->nivcsw + sig->nivcsw + sig->cnivcsw;
1233 psig->cinblock +=
1234 task_io_get_inblock(p) +
1235 sig->inblock + sig->cinblock;
1236 psig->coublock +=
1237 task_io_get_oublock(p) +
1238 sig->oublock + sig->coublock;
1239 task_io_accounting_add(&psig->ioac, &p->ioac);
1240 task_io_accounting_add(&psig->ioac, &sig->ioac);
1241 spin_unlock_irq(&p->parent->sighand->siglock);
1242 }
1243
1244 /*
1245 * Now we are sure this task is interesting, and no other
1246 * thread can reap it because we set its state to EXIT_DEAD.
1247 */
1248 read_unlock(&tasklist_lock);
1249
1250 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1251 status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1252 ? p->signal->group_exit_code : p->exit_code;
1253 if (!retval && stat_addr)
1254 retval = put_user(status, stat_addr);
1255 if (!retval && infop)
1256 retval = put_user(SIGCHLD, &infop->si_signo);
1257 if (!retval && infop)
1258 retval = put_user(0, &infop->si_errno);
1259 if (!retval && infop) {
1260 int why;
1261
1262 if ((status & 0x7f) == 0) {
1263 why = CLD_EXITED;
1264 status >>= 8;
1265 } else {
1266 why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1267 status &= 0x7f;
1268 }
1269 retval = put_user((short)why, &infop->si_code);
1270 if (!retval)
1271 retval = put_user(status, &infop->si_status);
1272 }
1273 if (!retval && infop)
1274 retval = put_user(pid, &infop->si_pid);
1275 if (!retval && infop)
1276 retval = put_user(uid, &infop->si_uid);
1277 if (!retval)
1278 retval = pid;
1279
1280 if (traced) {
1281 write_lock_irq(&tasklist_lock);
1282 /* We dropped tasklist, ptracer could die and untrace */
1283 ptrace_unlink(p);
1284 /*
1285 * If this is not a detached task, notify the parent.
1286 * If it's still not detached after that, don't release
1287 * it now.
1288 */
1289 if (!task_detached(p)) {
1290 do_notify_parent(p, p->exit_signal);
1291 if (!task_detached(p)) {
1292 p->exit_state = EXIT_ZOMBIE;
1293 p = NULL;
1294 }
1295 }
1296 write_unlock_irq(&tasklist_lock);
1297 }
1298 if (p != NULL)
1299 release_task(p);
1300
1301 return retval;
1302 }
1303
1304 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1305 {
1306 if (ptrace) {
1307 if (task_is_stopped_or_traced(p))
1308 return &p->exit_code;
1309 } else {
1310 if (p->signal->flags & SIGNAL_STOP_STOPPED)
1311 return &p->signal->group_exit_code;
1312 }
1313 return NULL;
1314 }
1315
1316 /*
1317 * Handle sys_wait4 work for one task in state TASK_STOPPED. We hold
1318 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1319 * the lock and this task is uninteresting. If we return nonzero, we have
1320 * released the lock and the system call should return.
1321 */
1322 static int wait_task_stopped(int ptrace, struct task_struct *p,
1323 int options, struct siginfo __user *infop,
1324 int __user *stat_addr, struct rusage __user *ru)
1325 {
1326 int retval, exit_code, *p_code, why;
1327 uid_t uid = 0; /* unneeded, required by compiler */
1328 pid_t pid;
1329
1330 if (!(options & WUNTRACED))
1331 return 0;
1332
1333 exit_code = 0;
1334 spin_lock_irq(&p->sighand->siglock);
1335
1336 p_code = task_stopped_code(p, ptrace);
1337 if (unlikely(!p_code))
1338 goto unlock_sig;
1339
1340 exit_code = *p_code;
1341 if (!exit_code)
1342 goto unlock_sig;
1343
1344 if (!unlikely(options & WNOWAIT))
1345 *p_code = 0;
1346
1347 /* don't need the RCU readlock here as we're holding a spinlock */
1348 uid = __task_cred(p)->uid;
1349 unlock_sig:
1350 spin_unlock_irq(&p->sighand->siglock);
1351 if (!exit_code)
1352 return 0;
1353
1354 /*
1355 * Now we are pretty sure this task is interesting.
1356 * Make sure it doesn't get reaped out from under us while we
1357 * give up the lock and then examine it below. We don't want to
1358 * keep holding onto the tasklist_lock while we call getrusage and
1359 * possibly take page faults for user memory.
1360 */
1361 get_task_struct(p);
1362 pid = task_pid_vnr(p);
1363 why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1364 read_unlock(&tasklist_lock);
1365
1366 if (unlikely(options & WNOWAIT))
1367 return wait_noreap_copyout(p, pid, uid,
1368 why, exit_code,
1369 infop, ru);
1370
1371 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1372 if (!retval && stat_addr)
1373 retval = put_user((exit_code << 8) | 0x7f, stat_addr);
1374 if (!retval && infop)
1375 retval = put_user(SIGCHLD, &infop->si_signo);
1376 if (!retval && infop)
1377 retval = put_user(0, &infop->si_errno);
1378 if (!retval && infop)
1379 retval = put_user((short)why, &infop->si_code);
1380 if (!retval && infop)
1381 retval = put_user(exit_code, &infop->si_status);
1382 if (!retval && infop)
1383 retval = put_user(pid, &infop->si_pid);
1384 if (!retval && infop)
1385 retval = put_user(uid, &infop->si_uid);
1386 if (!retval)
1387 retval = pid;
1388 put_task_struct(p);
1389
1390 BUG_ON(!retval);
1391 return retval;
1392 }
1393
1394 /*
1395 * Handle do_wait work for one task in a live, non-stopped state.
1396 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1397 * the lock and this task is uninteresting. If we return nonzero, we have
1398 * released the lock and the system call should return.
1399 */
1400 static int wait_task_continued(struct task_struct *p, int options,
1401 struct siginfo __user *infop,
1402 int __user *stat_addr, struct rusage __user *ru)
1403 {
1404 int retval;
1405 pid_t pid;
1406 uid_t uid;
1407
1408 if (!unlikely(options & WCONTINUED))
1409 return 0;
1410
1411 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1412 return 0;
1413
1414 spin_lock_irq(&p->sighand->siglock);
1415 /* Re-check with the lock held. */
1416 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1417 spin_unlock_irq(&p->sighand->siglock);
1418 return 0;
1419 }
1420 if (!unlikely(options & WNOWAIT))
1421 p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1422 uid = __task_cred(p)->uid;
1423 spin_unlock_irq(&p->sighand->siglock);
1424
1425 pid = task_pid_vnr(p);
1426 get_task_struct(p);
1427 read_unlock(&tasklist_lock);
1428
1429 if (!infop) {
1430 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1431 put_task_struct(p);
1432 if (!retval && stat_addr)
1433 retval = put_user(0xffff, stat_addr);
1434 if (!retval)
1435 retval = pid;
1436 } else {
1437 retval = wait_noreap_copyout(p, pid, uid,
1438 CLD_CONTINUED, SIGCONT,
1439 infop, ru);
1440 BUG_ON(retval == 0);
1441 }
1442
1443 return retval;
1444 }
1445
1446 /*
1447 * Consider @p for a wait by @parent.
1448 *
1449 * -ECHILD should be in *@notask_error before the first call.
1450 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1451 * Returns zero if the search for a child should continue;
1452 * then *@notask_error is 0 if @p is an eligible child,
1453 * or another error from security_task_wait(), or still -ECHILD.
1454 */
1455 static int wait_consider_task(struct task_struct *parent, int ptrace,
1456 struct task_struct *p, int *notask_error,
1457 enum pid_type type, struct pid *pid, int options,
1458 struct siginfo __user *infop,
1459 int __user *stat_addr, struct rusage __user *ru)
1460 {
1461 int ret = eligible_child(type, pid, options, p);
1462 if (!ret)
1463 return ret;
1464
1465 if (unlikely(ret < 0)) {
1466 /*
1467 * If we have not yet seen any eligible child,
1468 * then let this error code replace -ECHILD.
1469 * A permission error will give the user a clue
1470 * to look for security policy problems, rather
1471 * than for mysterious wait bugs.
1472 */
1473 if (*notask_error)
1474 *notask_error = ret;
1475 return 0;
1476 }
1477
1478 if (likely(!ptrace) && unlikely(p->ptrace)) {
1479 /*
1480 * This child is hidden by ptrace.
1481 * We aren't allowed to see it now, but eventually we will.
1482 */
1483 *notask_error = 0;
1484 return 0;
1485 }
1486
1487 if (p->exit_state == EXIT_DEAD)
1488 return 0;
1489
1490 /*
1491 * We don't reap group leaders with subthreads.
1492 */
1493 if (p->exit_state == EXIT_ZOMBIE && !delay_group_leader(p))
1494 return wait_task_zombie(p, options, infop, stat_addr, ru);
1495
1496 /*
1497 * It's stopped or running now, so it might
1498 * later continue, exit, or stop again.
1499 */
1500 *notask_error = 0;
1501
1502 if (task_stopped_code(p, ptrace))
1503 return wait_task_stopped(ptrace, p, options,
1504 infop, stat_addr, ru);
1505
1506 return wait_task_continued(p, options, infop, stat_addr, ru);
1507 }
1508
1509 /*
1510 * Do the work of do_wait() for one thread in the group, @tsk.
1511 *
1512 * -ECHILD should be in *@notask_error before the first call.
1513 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1514 * Returns zero if the search for a child should continue; then
1515 * *@notask_error is 0 if there were any eligible children,
1516 * or another error from security_task_wait(), or still -ECHILD.
1517 */
1518 static int do_wait_thread(struct task_struct *tsk, int *notask_error,
1519 enum pid_type type, struct pid *pid, int options,
1520 struct siginfo __user *infop, int __user *stat_addr,
1521 struct rusage __user *ru)
1522 {
1523 struct task_struct *p;
1524
1525 list_for_each_entry(p, &tsk->children, sibling) {
1526 /*
1527 * Do not consider detached threads.
1528 */
1529 if (!task_detached(p)) {
1530 int ret = wait_consider_task(tsk, 0, p, notask_error,
1531 type, pid, options,
1532 infop, stat_addr, ru);
1533 if (ret)
1534 return ret;
1535 }
1536 }
1537
1538 return 0;
1539 }
1540
1541 static int ptrace_do_wait(struct task_struct *tsk, int *notask_error,
1542 enum pid_type type, struct pid *pid, int options,
1543 struct siginfo __user *infop, int __user *stat_addr,
1544 struct rusage __user *ru)
1545 {
1546 struct task_struct *p;
1547
1548 /*
1549 * Traditionally we see ptrace'd stopped tasks regardless of options.
1550 */
1551 options |= WUNTRACED;
1552
1553 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1554 int ret = wait_consider_task(tsk, 1, p, notask_error,
1555 type, pid, options,
1556 infop, stat_addr, ru);
1557 if (ret)
1558 return ret;
1559 }
1560
1561 return 0;
1562 }
1563
1564 static long do_wait(enum pid_type type, struct pid *pid, int options,
1565 struct siginfo __user *infop, int __user *stat_addr,
1566 struct rusage __user *ru)
1567 {
1568 DECLARE_WAITQUEUE(wait, current);
1569 struct task_struct *tsk;
1570 int retval;
1571
1572 trace_sched_process_wait(pid);
1573
1574 add_wait_queue(&current->signal->wait_chldexit,&wait);
1575 repeat:
1576 /*
1577 * If there is nothing that can match our critiera just get out.
1578 * We will clear @retval to zero if we see any child that might later
1579 * match our criteria, even if we are not able to reap it yet.
1580 */
1581 retval = -ECHILD;
1582 if ((type < PIDTYPE_MAX) && (!pid || hlist_empty(&pid->tasks[type])))
1583 goto end;
1584
1585 current->state = TASK_INTERRUPTIBLE;
1586 read_lock(&tasklist_lock);
1587 tsk = current;
1588 do {
1589 int tsk_result = do_wait_thread(tsk, &retval,
1590 type, pid, options,
1591 infop, stat_addr, ru);
1592 if (!tsk_result)
1593 tsk_result = ptrace_do_wait(tsk, &retval,
1594 type, pid, options,
1595 infop, stat_addr, ru);
1596 if (tsk_result) {
1597 /*
1598 * tasklist_lock is unlocked and we have a final result.
1599 */
1600 retval = tsk_result;
1601 goto end;
1602 }
1603
1604 if (options & __WNOTHREAD)
1605 break;
1606 tsk = next_thread(tsk);
1607 BUG_ON(tsk->signal != current->signal);
1608 } while (tsk != current);
1609 read_unlock(&tasklist_lock);
1610
1611 if (!retval && !(options & WNOHANG)) {
1612 retval = -ERESTARTSYS;
1613 if (!signal_pending(current)) {
1614 schedule();
1615 goto repeat;
1616 }
1617 }
1618
1619 end:
1620 current->state = TASK_RUNNING;
1621 remove_wait_queue(&current->signal->wait_chldexit,&wait);
1622 if (infop) {
1623 if (retval > 0)
1624 retval = 0;
1625 else {
1626 /*
1627 * For a WNOHANG return, clear out all the fields
1628 * we would set so the user can easily tell the
1629 * difference.
1630 */
1631 if (!retval)
1632 retval = put_user(0, &infop->si_signo);
1633 if (!retval)
1634 retval = put_user(0, &infop->si_errno);
1635 if (!retval)
1636 retval = put_user(0, &infop->si_code);
1637 if (!retval)
1638 retval = put_user(0, &infop->si_pid);
1639 if (!retval)
1640 retval = put_user(0, &infop->si_uid);
1641 if (!retval)
1642 retval = put_user(0, &infop->si_status);
1643 }
1644 }
1645 return retval;
1646 }
1647
1648 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1649 infop, int, options, struct rusage __user *, ru)
1650 {
1651 struct pid *pid = NULL;
1652 enum pid_type type;
1653 long ret;
1654
1655 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED))
1656 return -EINVAL;
1657 if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1658 return -EINVAL;
1659
1660 switch (which) {
1661 case P_ALL:
1662 type = PIDTYPE_MAX;
1663 break;
1664 case P_PID:
1665 type = PIDTYPE_PID;
1666 if (upid <= 0)
1667 return -EINVAL;
1668 break;
1669 case P_PGID:
1670 type = PIDTYPE_PGID;
1671 if (upid <= 0)
1672 return -EINVAL;
1673 break;
1674 default:
1675 return -EINVAL;
1676 }
1677
1678 if (type < PIDTYPE_MAX)
1679 pid = find_get_pid(upid);
1680 ret = do_wait(type, pid, options, infop, NULL, ru);
1681 put_pid(pid);
1682
1683 /* avoid REGPARM breakage on x86: */
1684 asmlinkage_protect(5, ret, which, upid, infop, options, ru);
1685 return ret;
1686 }
1687
1688 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1689 int, options, struct rusage __user *, ru)
1690 {
1691 struct pid *pid = NULL;
1692 enum pid_type type;
1693 long ret;
1694
1695 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1696 __WNOTHREAD|__WCLONE|__WALL))
1697 return -EINVAL;
1698
1699 if (upid == -1)
1700 type = PIDTYPE_MAX;
1701 else if (upid < 0) {
1702 type = PIDTYPE_PGID;
1703 pid = find_get_pid(-upid);
1704 } else if (upid == 0) {
1705 type = PIDTYPE_PGID;
1706 pid = get_task_pid(current, PIDTYPE_PGID);
1707 } else /* upid > 0 */ {
1708 type = PIDTYPE_PID;
1709 pid = find_get_pid(upid);
1710 }
1711
1712 ret = do_wait(type, pid, options | WEXITED, NULL, stat_addr, ru);
1713 put_pid(pid);
1714
1715 /* avoid REGPARM breakage on x86: */
1716 asmlinkage_protect(4, ret, upid, stat_addr, options, ru);
1717 return ret;
1718 }
1719
1720 #ifdef __ARCH_WANT_SYS_WAITPID
1721
1722 /*
1723 * sys_waitpid() remains for compatibility. waitpid() should be
1724 * implemented by calling sys_wait4() from libc.a.
1725 */
1726 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1727 {
1728 return sys_wait4(pid, stat_addr, options, NULL);
1729 }
1730
1731 #endif
This page took 0.067083 seconds and 5 git commands to generate.