sched: nominate preferred wakeup cpu, fix
[deliverable/linux.git] / kernel / exit.c
1 /*
2 * linux/kernel/exit.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 #include <linux/mm.h>
8 #include <linux/slab.h>
9 #include <linux/interrupt.h>
10 #include <linux/module.h>
11 #include <linux/capability.h>
12 #include <linux/completion.h>
13 #include <linux/personality.h>
14 #include <linux/tty.h>
15 #include <linux/mnt_namespace.h>
16 #include <linux/iocontext.h>
17 #include <linux/key.h>
18 #include <linux/security.h>
19 #include <linux/cpu.h>
20 #include <linux/acct.h>
21 #include <linux/tsacct_kern.h>
22 #include <linux/file.h>
23 #include <linux/fdtable.h>
24 #include <linux/binfmts.h>
25 #include <linux/nsproxy.h>
26 #include <linux/pid_namespace.h>
27 #include <linux/ptrace.h>
28 #include <linux/profile.h>
29 #include <linux/mount.h>
30 #include <linux/proc_fs.h>
31 #include <linux/kthread.h>
32 #include <linux/mempolicy.h>
33 #include <linux/taskstats_kern.h>
34 #include <linux/delayacct.h>
35 #include <linux/freezer.h>
36 #include <linux/cgroup.h>
37 #include <linux/syscalls.h>
38 #include <linux/signal.h>
39 #include <linux/posix-timers.h>
40 #include <linux/cn_proc.h>
41 #include <linux/mutex.h>
42 #include <linux/futex.h>
43 #include <linux/pipe_fs_i.h>
44 #include <linux/audit.h> /* for audit_free() */
45 #include <linux/resource.h>
46 #include <linux/blkdev.h>
47 #include <linux/task_io_accounting_ops.h>
48 #include <linux/tracehook.h>
49 #include <trace/sched.h>
50
51 #include <asm/uaccess.h>
52 #include <asm/unistd.h>
53 #include <asm/pgtable.h>
54 #include <asm/mmu_context.h>
55
56 DEFINE_TRACE(sched_process_free);
57 DEFINE_TRACE(sched_process_exit);
58 DEFINE_TRACE(sched_process_wait);
59
60 static void exit_mm(struct task_struct * tsk);
61
62 static inline int task_detached(struct task_struct *p)
63 {
64 return p->exit_signal == -1;
65 }
66
67 static void __unhash_process(struct task_struct *p)
68 {
69 nr_threads--;
70 detach_pid(p, PIDTYPE_PID);
71 if (thread_group_leader(p)) {
72 detach_pid(p, PIDTYPE_PGID);
73 detach_pid(p, PIDTYPE_SID);
74
75 list_del_rcu(&p->tasks);
76 __get_cpu_var(process_counts)--;
77 }
78 list_del_rcu(&p->thread_group);
79 list_del_init(&p->sibling);
80 }
81
82 /*
83 * This function expects the tasklist_lock write-locked.
84 */
85 static void __exit_signal(struct task_struct *tsk)
86 {
87 struct signal_struct *sig = tsk->signal;
88 struct sighand_struct *sighand;
89
90 BUG_ON(!sig);
91 BUG_ON(!atomic_read(&sig->count));
92
93 sighand = rcu_dereference(tsk->sighand);
94 spin_lock(&sighand->siglock);
95
96 posix_cpu_timers_exit(tsk);
97 if (atomic_dec_and_test(&sig->count))
98 posix_cpu_timers_exit_group(tsk);
99 else {
100 /*
101 * If there is any task waiting for the group exit
102 * then notify it:
103 */
104 if (sig->group_exit_task && atomic_read(&sig->count) == sig->notify_count)
105 wake_up_process(sig->group_exit_task);
106
107 if (tsk == sig->curr_target)
108 sig->curr_target = next_thread(tsk);
109 /*
110 * Accumulate here the counters for all threads but the
111 * group leader as they die, so they can be added into
112 * the process-wide totals when those are taken.
113 * The group leader stays around as a zombie as long
114 * as there are other threads. When it gets reaped,
115 * the exit.c code will add its counts into these totals.
116 * We won't ever get here for the group leader, since it
117 * will have been the last reference on the signal_struct.
118 */
119 sig->gtime = cputime_add(sig->gtime, task_gtime(tsk));
120 sig->min_flt += tsk->min_flt;
121 sig->maj_flt += tsk->maj_flt;
122 sig->nvcsw += tsk->nvcsw;
123 sig->nivcsw += tsk->nivcsw;
124 sig->inblock += task_io_get_inblock(tsk);
125 sig->oublock += task_io_get_oublock(tsk);
126 task_io_accounting_add(&sig->ioac, &tsk->ioac);
127 sig = NULL; /* Marker for below. */
128 }
129
130 __unhash_process(tsk);
131
132 /*
133 * Do this under ->siglock, we can race with another thread
134 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
135 */
136 flush_sigqueue(&tsk->pending);
137
138 tsk->signal = NULL;
139 tsk->sighand = NULL;
140 spin_unlock(&sighand->siglock);
141
142 __cleanup_sighand(sighand);
143 clear_tsk_thread_flag(tsk,TIF_SIGPENDING);
144 if (sig) {
145 flush_sigqueue(&sig->shared_pending);
146 taskstats_tgid_free(sig);
147 /*
148 * Make sure ->signal can't go away under rq->lock,
149 * see account_group_exec_runtime().
150 */
151 task_rq_unlock_wait(tsk);
152 __cleanup_signal(sig);
153 }
154 }
155
156 static void delayed_put_task_struct(struct rcu_head *rhp)
157 {
158 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
159
160 trace_sched_process_free(tsk);
161 put_task_struct(tsk);
162 }
163
164
165 void release_task(struct task_struct * p)
166 {
167 struct task_struct *leader;
168 int zap_leader;
169 repeat:
170 tracehook_prepare_release_task(p);
171 atomic_dec(&p->user->processes);
172 proc_flush_task(p);
173 write_lock_irq(&tasklist_lock);
174 tracehook_finish_release_task(p);
175 __exit_signal(p);
176
177 /*
178 * If we are the last non-leader member of the thread
179 * group, and the leader is zombie, then notify the
180 * group leader's parent process. (if it wants notification.)
181 */
182 zap_leader = 0;
183 leader = p->group_leader;
184 if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) {
185 BUG_ON(task_detached(leader));
186 do_notify_parent(leader, leader->exit_signal);
187 /*
188 * If we were the last child thread and the leader has
189 * exited already, and the leader's parent ignores SIGCHLD,
190 * then we are the one who should release the leader.
191 *
192 * do_notify_parent() will have marked it self-reaping in
193 * that case.
194 */
195 zap_leader = task_detached(leader);
196
197 /*
198 * This maintains the invariant that release_task()
199 * only runs on a task in EXIT_DEAD, just for sanity.
200 */
201 if (zap_leader)
202 leader->exit_state = EXIT_DEAD;
203 }
204
205 write_unlock_irq(&tasklist_lock);
206 release_thread(p);
207 call_rcu(&p->rcu, delayed_put_task_struct);
208
209 p = leader;
210 if (unlikely(zap_leader))
211 goto repeat;
212 }
213
214 /*
215 * This checks not only the pgrp, but falls back on the pid if no
216 * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
217 * without this...
218 *
219 * The caller must hold rcu lock or the tasklist lock.
220 */
221 struct pid *session_of_pgrp(struct pid *pgrp)
222 {
223 struct task_struct *p;
224 struct pid *sid = NULL;
225
226 p = pid_task(pgrp, PIDTYPE_PGID);
227 if (p == NULL)
228 p = pid_task(pgrp, PIDTYPE_PID);
229 if (p != NULL)
230 sid = task_session(p);
231
232 return sid;
233 }
234
235 /*
236 * Determine if a process group is "orphaned", according to the POSIX
237 * definition in 2.2.2.52. Orphaned process groups are not to be affected
238 * by terminal-generated stop signals. Newly orphaned process groups are
239 * to receive a SIGHUP and a SIGCONT.
240 *
241 * "I ask you, have you ever known what it is to be an orphan?"
242 */
243 static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task)
244 {
245 struct task_struct *p;
246
247 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
248 if ((p == ignored_task) ||
249 (p->exit_state && thread_group_empty(p)) ||
250 is_global_init(p->real_parent))
251 continue;
252
253 if (task_pgrp(p->real_parent) != pgrp &&
254 task_session(p->real_parent) == task_session(p))
255 return 0;
256 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
257
258 return 1;
259 }
260
261 int is_current_pgrp_orphaned(void)
262 {
263 int retval;
264
265 read_lock(&tasklist_lock);
266 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
267 read_unlock(&tasklist_lock);
268
269 return retval;
270 }
271
272 static int has_stopped_jobs(struct pid *pgrp)
273 {
274 int retval = 0;
275 struct task_struct *p;
276
277 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
278 if (!task_is_stopped(p))
279 continue;
280 retval = 1;
281 break;
282 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
283 return retval;
284 }
285
286 /*
287 * Check to see if any process groups have become orphaned as
288 * a result of our exiting, and if they have any stopped jobs,
289 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
290 */
291 static void
292 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
293 {
294 struct pid *pgrp = task_pgrp(tsk);
295 struct task_struct *ignored_task = tsk;
296
297 if (!parent)
298 /* exit: our father is in a different pgrp than
299 * we are and we were the only connection outside.
300 */
301 parent = tsk->real_parent;
302 else
303 /* reparent: our child is in a different pgrp than
304 * we are, and it was the only connection outside.
305 */
306 ignored_task = NULL;
307
308 if (task_pgrp(parent) != pgrp &&
309 task_session(parent) == task_session(tsk) &&
310 will_become_orphaned_pgrp(pgrp, ignored_task) &&
311 has_stopped_jobs(pgrp)) {
312 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
313 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
314 }
315 }
316
317 /**
318 * reparent_to_kthreadd - Reparent the calling kernel thread to kthreadd
319 *
320 * If a kernel thread is launched as a result of a system call, or if
321 * it ever exits, it should generally reparent itself to kthreadd so it
322 * isn't in the way of other processes and is correctly cleaned up on exit.
323 *
324 * The various task state such as scheduling policy and priority may have
325 * been inherited from a user process, so we reset them to sane values here.
326 *
327 * NOTE that reparent_to_kthreadd() gives the caller full capabilities.
328 */
329 static void reparent_to_kthreadd(void)
330 {
331 write_lock_irq(&tasklist_lock);
332
333 ptrace_unlink(current);
334 /* Reparent to init */
335 current->real_parent = current->parent = kthreadd_task;
336 list_move_tail(&current->sibling, &current->real_parent->children);
337
338 /* Set the exit signal to SIGCHLD so we signal init on exit */
339 current->exit_signal = SIGCHLD;
340
341 if (task_nice(current) < 0)
342 set_user_nice(current, 0);
343 /* cpus_allowed? */
344 /* rt_priority? */
345 /* signals? */
346 security_task_reparent_to_init(current);
347 memcpy(current->signal->rlim, init_task.signal->rlim,
348 sizeof(current->signal->rlim));
349 atomic_inc(&(INIT_USER->__count));
350 write_unlock_irq(&tasklist_lock);
351 switch_uid(INIT_USER);
352 }
353
354 void __set_special_pids(struct pid *pid)
355 {
356 struct task_struct *curr = current->group_leader;
357 pid_t nr = pid_nr(pid);
358
359 if (task_session(curr) != pid) {
360 change_pid(curr, PIDTYPE_SID, pid);
361 set_task_session(curr, nr);
362 }
363 if (task_pgrp(curr) != pid) {
364 change_pid(curr, PIDTYPE_PGID, pid);
365 set_task_pgrp(curr, nr);
366 }
367 }
368
369 static void set_special_pids(struct pid *pid)
370 {
371 write_lock_irq(&tasklist_lock);
372 __set_special_pids(pid);
373 write_unlock_irq(&tasklist_lock);
374 }
375
376 /*
377 * Let kernel threads use this to say that they
378 * allow a certain signal (since daemonize() will
379 * have disabled all of them by default).
380 */
381 int allow_signal(int sig)
382 {
383 if (!valid_signal(sig) || sig < 1)
384 return -EINVAL;
385
386 spin_lock_irq(&current->sighand->siglock);
387 sigdelset(&current->blocked, sig);
388 if (!current->mm) {
389 /* Kernel threads handle their own signals.
390 Let the signal code know it'll be handled, so
391 that they don't get converted to SIGKILL or
392 just silently dropped */
393 current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2;
394 }
395 recalc_sigpending();
396 spin_unlock_irq(&current->sighand->siglock);
397 return 0;
398 }
399
400 EXPORT_SYMBOL(allow_signal);
401
402 int disallow_signal(int sig)
403 {
404 if (!valid_signal(sig) || sig < 1)
405 return -EINVAL;
406
407 spin_lock_irq(&current->sighand->siglock);
408 current->sighand->action[(sig)-1].sa.sa_handler = SIG_IGN;
409 recalc_sigpending();
410 spin_unlock_irq(&current->sighand->siglock);
411 return 0;
412 }
413
414 EXPORT_SYMBOL(disallow_signal);
415
416 /*
417 * Put all the gunge required to become a kernel thread without
418 * attached user resources in one place where it belongs.
419 */
420
421 void daemonize(const char *name, ...)
422 {
423 va_list args;
424 struct fs_struct *fs;
425 sigset_t blocked;
426
427 va_start(args, name);
428 vsnprintf(current->comm, sizeof(current->comm), name, args);
429 va_end(args);
430
431 /*
432 * If we were started as result of loading a module, close all of the
433 * user space pages. We don't need them, and if we didn't close them
434 * they would be locked into memory.
435 */
436 exit_mm(current);
437 /*
438 * We don't want to have TIF_FREEZE set if the system-wide hibernation
439 * or suspend transition begins right now.
440 */
441 current->flags |= (PF_NOFREEZE | PF_KTHREAD);
442
443 if (current->nsproxy != &init_nsproxy) {
444 get_nsproxy(&init_nsproxy);
445 switch_task_namespaces(current, &init_nsproxy);
446 }
447 set_special_pids(&init_struct_pid);
448 proc_clear_tty(current);
449
450 /* Block and flush all signals */
451 sigfillset(&blocked);
452 sigprocmask(SIG_BLOCK, &blocked, NULL);
453 flush_signals(current);
454
455 /* Become as one with the init task */
456
457 exit_fs(current); /* current->fs->count--; */
458 fs = init_task.fs;
459 current->fs = fs;
460 atomic_inc(&fs->count);
461
462 exit_files(current);
463 current->files = init_task.files;
464 atomic_inc(&current->files->count);
465
466 reparent_to_kthreadd();
467 }
468
469 EXPORT_SYMBOL(daemonize);
470
471 static void close_files(struct files_struct * files)
472 {
473 int i, j;
474 struct fdtable *fdt;
475
476 j = 0;
477
478 /*
479 * It is safe to dereference the fd table without RCU or
480 * ->file_lock because this is the last reference to the
481 * files structure.
482 */
483 fdt = files_fdtable(files);
484 for (;;) {
485 unsigned long set;
486 i = j * __NFDBITS;
487 if (i >= fdt->max_fds)
488 break;
489 set = fdt->open_fds->fds_bits[j++];
490 while (set) {
491 if (set & 1) {
492 struct file * file = xchg(&fdt->fd[i], NULL);
493 if (file) {
494 filp_close(file, files);
495 cond_resched();
496 }
497 }
498 i++;
499 set >>= 1;
500 }
501 }
502 }
503
504 struct files_struct *get_files_struct(struct task_struct *task)
505 {
506 struct files_struct *files;
507
508 task_lock(task);
509 files = task->files;
510 if (files)
511 atomic_inc(&files->count);
512 task_unlock(task);
513
514 return files;
515 }
516
517 void put_files_struct(struct files_struct *files)
518 {
519 struct fdtable *fdt;
520
521 if (atomic_dec_and_test(&files->count)) {
522 close_files(files);
523 /*
524 * Free the fd and fdset arrays if we expanded them.
525 * If the fdtable was embedded, pass files for freeing
526 * at the end of the RCU grace period. Otherwise,
527 * you can free files immediately.
528 */
529 fdt = files_fdtable(files);
530 if (fdt != &files->fdtab)
531 kmem_cache_free(files_cachep, files);
532 free_fdtable(fdt);
533 }
534 }
535
536 void reset_files_struct(struct files_struct *files)
537 {
538 struct task_struct *tsk = current;
539 struct files_struct *old;
540
541 old = tsk->files;
542 task_lock(tsk);
543 tsk->files = files;
544 task_unlock(tsk);
545 put_files_struct(old);
546 }
547
548 void exit_files(struct task_struct *tsk)
549 {
550 struct files_struct * files = tsk->files;
551
552 if (files) {
553 task_lock(tsk);
554 tsk->files = NULL;
555 task_unlock(tsk);
556 put_files_struct(files);
557 }
558 }
559
560 void put_fs_struct(struct fs_struct *fs)
561 {
562 /* No need to hold fs->lock if we are killing it */
563 if (atomic_dec_and_test(&fs->count)) {
564 path_put(&fs->root);
565 path_put(&fs->pwd);
566 kmem_cache_free(fs_cachep, fs);
567 }
568 }
569
570 void exit_fs(struct task_struct *tsk)
571 {
572 struct fs_struct * fs = tsk->fs;
573
574 if (fs) {
575 task_lock(tsk);
576 tsk->fs = NULL;
577 task_unlock(tsk);
578 put_fs_struct(fs);
579 }
580 }
581
582 EXPORT_SYMBOL_GPL(exit_fs);
583
584 #ifdef CONFIG_MM_OWNER
585 /*
586 * Task p is exiting and it owned mm, lets find a new owner for it
587 */
588 static inline int
589 mm_need_new_owner(struct mm_struct *mm, struct task_struct *p)
590 {
591 /*
592 * If there are other users of the mm and the owner (us) is exiting
593 * we need to find a new owner to take on the responsibility.
594 */
595 if (atomic_read(&mm->mm_users) <= 1)
596 return 0;
597 if (mm->owner != p)
598 return 0;
599 return 1;
600 }
601
602 void mm_update_next_owner(struct mm_struct *mm)
603 {
604 struct task_struct *c, *g, *p = current;
605
606 retry:
607 if (!mm_need_new_owner(mm, p))
608 return;
609
610 read_lock(&tasklist_lock);
611 /*
612 * Search in the children
613 */
614 list_for_each_entry(c, &p->children, sibling) {
615 if (c->mm == mm)
616 goto assign_new_owner;
617 }
618
619 /*
620 * Search in the siblings
621 */
622 list_for_each_entry(c, &p->parent->children, sibling) {
623 if (c->mm == mm)
624 goto assign_new_owner;
625 }
626
627 /*
628 * Search through everything else. We should not get
629 * here often
630 */
631 do_each_thread(g, c) {
632 if (c->mm == mm)
633 goto assign_new_owner;
634 } while_each_thread(g, c);
635
636 read_unlock(&tasklist_lock);
637 /*
638 * We found no owner yet mm_users > 1: this implies that we are
639 * most likely racing with swapoff (try_to_unuse()) or /proc or
640 * ptrace or page migration (get_task_mm()). Mark owner as NULL,
641 * so that subsystems can understand the callback and take action.
642 */
643 down_write(&mm->mmap_sem);
644 cgroup_mm_owner_callbacks(mm->owner, NULL);
645 mm->owner = NULL;
646 up_write(&mm->mmap_sem);
647 return;
648
649 assign_new_owner:
650 BUG_ON(c == p);
651 get_task_struct(c);
652 read_unlock(&tasklist_lock);
653 down_write(&mm->mmap_sem);
654 /*
655 * The task_lock protects c->mm from changing.
656 * We always want mm->owner->mm == mm
657 */
658 task_lock(c);
659 if (c->mm != mm) {
660 task_unlock(c);
661 up_write(&mm->mmap_sem);
662 put_task_struct(c);
663 goto retry;
664 }
665 cgroup_mm_owner_callbacks(mm->owner, c);
666 mm->owner = c;
667 task_unlock(c);
668 up_write(&mm->mmap_sem);
669 put_task_struct(c);
670 }
671 #endif /* CONFIG_MM_OWNER */
672
673 /*
674 * Turn us into a lazy TLB process if we
675 * aren't already..
676 */
677 static void exit_mm(struct task_struct * tsk)
678 {
679 struct mm_struct *mm = tsk->mm;
680 struct core_state *core_state;
681
682 mm_release(tsk, mm);
683 if (!mm)
684 return;
685 /*
686 * Serialize with any possible pending coredump.
687 * We must hold mmap_sem around checking core_state
688 * and clearing tsk->mm. The core-inducing thread
689 * will increment ->nr_threads for each thread in the
690 * group with ->mm != NULL.
691 */
692 down_read(&mm->mmap_sem);
693 core_state = mm->core_state;
694 if (core_state) {
695 struct core_thread self;
696 up_read(&mm->mmap_sem);
697
698 self.task = tsk;
699 self.next = xchg(&core_state->dumper.next, &self);
700 /*
701 * Implies mb(), the result of xchg() must be visible
702 * to core_state->dumper.
703 */
704 if (atomic_dec_and_test(&core_state->nr_threads))
705 complete(&core_state->startup);
706
707 for (;;) {
708 set_task_state(tsk, TASK_UNINTERRUPTIBLE);
709 if (!self.task) /* see coredump_finish() */
710 break;
711 schedule();
712 }
713 __set_task_state(tsk, TASK_RUNNING);
714 down_read(&mm->mmap_sem);
715 }
716 atomic_inc(&mm->mm_count);
717 BUG_ON(mm != tsk->active_mm);
718 /* more a memory barrier than a real lock */
719 task_lock(tsk);
720 tsk->mm = NULL;
721 up_read(&mm->mmap_sem);
722 enter_lazy_tlb(mm, current);
723 /* We don't want this task to be frozen prematurely */
724 clear_freeze_flag(tsk);
725 task_unlock(tsk);
726 mm_update_next_owner(mm);
727 mmput(mm);
728 }
729
730 /*
731 * Return nonzero if @parent's children should reap themselves.
732 *
733 * Called with write_lock_irq(&tasklist_lock) held.
734 */
735 static int ignoring_children(struct task_struct *parent)
736 {
737 int ret;
738 struct sighand_struct *psig = parent->sighand;
739 unsigned long flags;
740 spin_lock_irqsave(&psig->siglock, flags);
741 ret = (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
742 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT));
743 spin_unlock_irqrestore(&psig->siglock, flags);
744 return ret;
745 }
746
747 /*
748 * Detach all tasks we were using ptrace on.
749 * Any that need to be release_task'd are put on the @dead list.
750 *
751 * Called with write_lock(&tasklist_lock) held.
752 */
753 static void ptrace_exit(struct task_struct *parent, struct list_head *dead)
754 {
755 struct task_struct *p, *n;
756 int ign = -1;
757
758 list_for_each_entry_safe(p, n, &parent->ptraced, ptrace_entry) {
759 __ptrace_unlink(p);
760
761 if (p->exit_state != EXIT_ZOMBIE)
762 continue;
763
764 /*
765 * If it's a zombie, our attachedness prevented normal
766 * parent notification or self-reaping. Do notification
767 * now if it would have happened earlier. If it should
768 * reap itself, add it to the @dead list. We can't call
769 * release_task() here because we already hold tasklist_lock.
770 *
771 * If it's our own child, there is no notification to do.
772 * But if our normal children self-reap, then this child
773 * was prevented by ptrace and we must reap it now.
774 */
775 if (!task_detached(p) && thread_group_empty(p)) {
776 if (!same_thread_group(p->real_parent, parent))
777 do_notify_parent(p, p->exit_signal);
778 else {
779 if (ign < 0)
780 ign = ignoring_children(parent);
781 if (ign)
782 p->exit_signal = -1;
783 }
784 }
785
786 if (task_detached(p)) {
787 /*
788 * Mark it as in the process of being reaped.
789 */
790 p->exit_state = EXIT_DEAD;
791 list_add(&p->ptrace_entry, dead);
792 }
793 }
794 }
795
796 /*
797 * Finish up exit-time ptrace cleanup.
798 *
799 * Called without locks.
800 */
801 static void ptrace_exit_finish(struct task_struct *parent,
802 struct list_head *dead)
803 {
804 struct task_struct *p, *n;
805
806 BUG_ON(!list_empty(&parent->ptraced));
807
808 list_for_each_entry_safe(p, n, dead, ptrace_entry) {
809 list_del_init(&p->ptrace_entry);
810 release_task(p);
811 }
812 }
813
814 static void reparent_thread(struct task_struct *p, struct task_struct *father)
815 {
816 if (p->pdeath_signal)
817 /* We already hold the tasklist_lock here. */
818 group_send_sig_info(p->pdeath_signal, SEND_SIG_NOINFO, p);
819
820 list_move_tail(&p->sibling, &p->real_parent->children);
821
822 /* If this is a threaded reparent there is no need to
823 * notify anyone anything has happened.
824 */
825 if (same_thread_group(p->real_parent, father))
826 return;
827
828 /* We don't want people slaying init. */
829 if (!task_detached(p))
830 p->exit_signal = SIGCHLD;
831
832 /* If we'd notified the old parent about this child's death,
833 * also notify the new parent.
834 */
835 if (!ptrace_reparented(p) &&
836 p->exit_state == EXIT_ZOMBIE &&
837 !task_detached(p) && thread_group_empty(p))
838 do_notify_parent(p, p->exit_signal);
839
840 kill_orphaned_pgrp(p, father);
841 }
842
843 /*
844 * When we die, we re-parent all our children.
845 * Try to give them to another thread in our thread
846 * group, and if no such member exists, give it to
847 * the child reaper process (ie "init") in our pid
848 * space.
849 */
850 static struct task_struct *find_new_reaper(struct task_struct *father)
851 {
852 struct pid_namespace *pid_ns = task_active_pid_ns(father);
853 struct task_struct *thread;
854
855 thread = father;
856 while_each_thread(father, thread) {
857 if (thread->flags & PF_EXITING)
858 continue;
859 if (unlikely(pid_ns->child_reaper == father))
860 pid_ns->child_reaper = thread;
861 return thread;
862 }
863
864 if (unlikely(pid_ns->child_reaper == father)) {
865 write_unlock_irq(&tasklist_lock);
866 if (unlikely(pid_ns == &init_pid_ns))
867 panic("Attempted to kill init!");
868
869 zap_pid_ns_processes(pid_ns);
870 write_lock_irq(&tasklist_lock);
871 /*
872 * We can not clear ->child_reaper or leave it alone.
873 * There may by stealth EXIT_DEAD tasks on ->children,
874 * forget_original_parent() must move them somewhere.
875 */
876 pid_ns->child_reaper = init_pid_ns.child_reaper;
877 }
878
879 return pid_ns->child_reaper;
880 }
881
882 static void forget_original_parent(struct task_struct *father)
883 {
884 struct task_struct *p, *n, *reaper;
885 LIST_HEAD(ptrace_dead);
886
887 write_lock_irq(&tasklist_lock);
888 reaper = find_new_reaper(father);
889 /*
890 * First clean up ptrace if we were using it.
891 */
892 ptrace_exit(father, &ptrace_dead);
893
894 list_for_each_entry_safe(p, n, &father->children, sibling) {
895 p->real_parent = reaper;
896 if (p->parent == father) {
897 BUG_ON(p->ptrace);
898 p->parent = p->real_parent;
899 }
900 reparent_thread(p, father);
901 }
902
903 write_unlock_irq(&tasklist_lock);
904 BUG_ON(!list_empty(&father->children));
905
906 ptrace_exit_finish(father, &ptrace_dead);
907 }
908
909 /*
910 * Send signals to all our closest relatives so that they know
911 * to properly mourn us..
912 */
913 static void exit_notify(struct task_struct *tsk, int group_dead)
914 {
915 int signal;
916 void *cookie;
917
918 /*
919 * This does two things:
920 *
921 * A. Make init inherit all the child processes
922 * B. Check to see if any process groups have become orphaned
923 * as a result of our exiting, and if they have any stopped
924 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
925 */
926 forget_original_parent(tsk);
927 exit_task_namespaces(tsk);
928
929 write_lock_irq(&tasklist_lock);
930 if (group_dead)
931 kill_orphaned_pgrp(tsk->group_leader, NULL);
932
933 /* Let father know we died
934 *
935 * Thread signals are configurable, but you aren't going to use
936 * that to send signals to arbitary processes.
937 * That stops right now.
938 *
939 * If the parent exec id doesn't match the exec id we saved
940 * when we started then we know the parent has changed security
941 * domain.
942 *
943 * If our self_exec id doesn't match our parent_exec_id then
944 * we have changed execution domain as these two values started
945 * the same after a fork.
946 */
947 if (tsk->exit_signal != SIGCHLD && !task_detached(tsk) &&
948 (tsk->parent_exec_id != tsk->real_parent->self_exec_id ||
949 tsk->self_exec_id != tsk->parent_exec_id) &&
950 !capable(CAP_KILL))
951 tsk->exit_signal = SIGCHLD;
952
953 signal = tracehook_notify_death(tsk, &cookie, group_dead);
954 if (signal >= 0)
955 signal = do_notify_parent(tsk, signal);
956
957 tsk->exit_state = signal == DEATH_REAP ? EXIT_DEAD : EXIT_ZOMBIE;
958
959 /* mt-exec, de_thread() is waiting for us */
960 if (thread_group_leader(tsk) &&
961 tsk->signal->group_exit_task &&
962 tsk->signal->notify_count < 0)
963 wake_up_process(tsk->signal->group_exit_task);
964
965 write_unlock_irq(&tasklist_lock);
966
967 tracehook_report_death(tsk, signal, cookie, group_dead);
968
969 /* If the process is dead, release it - nobody will wait for it */
970 if (signal == DEATH_REAP)
971 release_task(tsk);
972 }
973
974 #ifdef CONFIG_DEBUG_STACK_USAGE
975 static void check_stack_usage(void)
976 {
977 static DEFINE_SPINLOCK(low_water_lock);
978 static int lowest_to_date = THREAD_SIZE;
979 unsigned long *n = end_of_stack(current);
980 unsigned long free;
981
982 while (*n == 0)
983 n++;
984 free = (unsigned long)n - (unsigned long)end_of_stack(current);
985
986 if (free >= lowest_to_date)
987 return;
988
989 spin_lock(&low_water_lock);
990 if (free < lowest_to_date) {
991 printk(KERN_WARNING "%s used greatest stack depth: %lu bytes "
992 "left\n",
993 current->comm, free);
994 lowest_to_date = free;
995 }
996 spin_unlock(&low_water_lock);
997 }
998 #else
999 static inline void check_stack_usage(void) {}
1000 #endif
1001
1002 NORET_TYPE void do_exit(long code)
1003 {
1004 struct task_struct *tsk = current;
1005 int group_dead;
1006
1007 profile_task_exit(tsk);
1008
1009 WARN_ON(atomic_read(&tsk->fs_excl));
1010
1011 if (unlikely(in_interrupt()))
1012 panic("Aiee, killing interrupt handler!");
1013 if (unlikely(!tsk->pid))
1014 panic("Attempted to kill the idle task!");
1015
1016 tracehook_report_exit(&code);
1017
1018 /*
1019 * We're taking recursive faults here in do_exit. Safest is to just
1020 * leave this task alone and wait for reboot.
1021 */
1022 if (unlikely(tsk->flags & PF_EXITING)) {
1023 printk(KERN_ALERT
1024 "Fixing recursive fault but reboot is needed!\n");
1025 /*
1026 * We can do this unlocked here. The futex code uses
1027 * this flag just to verify whether the pi state
1028 * cleanup has been done or not. In the worst case it
1029 * loops once more. We pretend that the cleanup was
1030 * done as there is no way to return. Either the
1031 * OWNER_DIED bit is set by now or we push the blocked
1032 * task into the wait for ever nirwana as well.
1033 */
1034 tsk->flags |= PF_EXITPIDONE;
1035 if (tsk->io_context)
1036 exit_io_context();
1037 set_current_state(TASK_UNINTERRUPTIBLE);
1038 schedule();
1039 }
1040
1041 exit_signals(tsk); /* sets PF_EXITING */
1042 /*
1043 * tsk->flags are checked in the futex code to protect against
1044 * an exiting task cleaning up the robust pi futexes.
1045 */
1046 smp_mb();
1047 spin_unlock_wait(&tsk->pi_lock);
1048
1049 if (unlikely(in_atomic()))
1050 printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n",
1051 current->comm, task_pid_nr(current),
1052 preempt_count());
1053
1054 acct_update_integrals(tsk);
1055 if (tsk->mm) {
1056 update_hiwater_rss(tsk->mm);
1057 update_hiwater_vm(tsk->mm);
1058 }
1059 group_dead = atomic_dec_and_test(&tsk->signal->live);
1060 if (group_dead) {
1061 hrtimer_cancel(&tsk->signal->real_timer);
1062 exit_itimers(tsk->signal);
1063 }
1064 acct_collect(code, group_dead);
1065 if (group_dead)
1066 tty_audit_exit();
1067 if (unlikely(tsk->audit_context))
1068 audit_free(tsk);
1069
1070 tsk->exit_code = code;
1071 taskstats_exit(tsk, group_dead);
1072
1073 exit_mm(tsk);
1074
1075 if (group_dead)
1076 acct_process();
1077 trace_sched_process_exit(tsk);
1078
1079 exit_sem(tsk);
1080 exit_files(tsk);
1081 exit_fs(tsk);
1082 check_stack_usage();
1083 exit_thread();
1084 cgroup_exit(tsk, 1);
1085 exit_keys(tsk);
1086
1087 if (group_dead && tsk->signal->leader)
1088 disassociate_ctty(1);
1089
1090 module_put(task_thread_info(tsk)->exec_domain->module);
1091 if (tsk->binfmt)
1092 module_put(tsk->binfmt->module);
1093
1094 proc_exit_connector(tsk);
1095 exit_notify(tsk, group_dead);
1096 #ifdef CONFIG_NUMA
1097 mpol_put(tsk->mempolicy);
1098 tsk->mempolicy = NULL;
1099 #endif
1100 #ifdef CONFIG_FUTEX
1101 /*
1102 * This must happen late, after the PID is not
1103 * hashed anymore:
1104 */
1105 if (unlikely(!list_empty(&tsk->pi_state_list)))
1106 exit_pi_state_list(tsk);
1107 if (unlikely(current->pi_state_cache))
1108 kfree(current->pi_state_cache);
1109 #endif
1110 /*
1111 * Make sure we are holding no locks:
1112 */
1113 debug_check_no_locks_held(tsk);
1114 /*
1115 * We can do this unlocked here. The futex code uses this flag
1116 * just to verify whether the pi state cleanup has been done
1117 * or not. In the worst case it loops once more.
1118 */
1119 tsk->flags |= PF_EXITPIDONE;
1120
1121 if (tsk->io_context)
1122 exit_io_context();
1123
1124 if (tsk->splice_pipe)
1125 __free_pipe_info(tsk->splice_pipe);
1126
1127 preempt_disable();
1128 /* causes final put_task_struct in finish_task_switch(). */
1129 tsk->state = TASK_DEAD;
1130 schedule();
1131 BUG();
1132 /* Avoid "noreturn function does return". */
1133 for (;;)
1134 cpu_relax(); /* For when BUG is null */
1135 }
1136
1137 EXPORT_SYMBOL_GPL(do_exit);
1138
1139 NORET_TYPE void complete_and_exit(struct completion *comp, long code)
1140 {
1141 if (comp)
1142 complete(comp);
1143
1144 do_exit(code);
1145 }
1146
1147 EXPORT_SYMBOL(complete_and_exit);
1148
1149 asmlinkage long sys_exit(int error_code)
1150 {
1151 do_exit((error_code&0xff)<<8);
1152 }
1153
1154 /*
1155 * Take down every thread in the group. This is called by fatal signals
1156 * as well as by sys_exit_group (below).
1157 */
1158 NORET_TYPE void
1159 do_group_exit(int exit_code)
1160 {
1161 struct signal_struct *sig = current->signal;
1162
1163 BUG_ON(exit_code & 0x80); /* core dumps don't get here */
1164
1165 if (signal_group_exit(sig))
1166 exit_code = sig->group_exit_code;
1167 else if (!thread_group_empty(current)) {
1168 struct sighand_struct *const sighand = current->sighand;
1169 spin_lock_irq(&sighand->siglock);
1170 if (signal_group_exit(sig))
1171 /* Another thread got here before we took the lock. */
1172 exit_code = sig->group_exit_code;
1173 else {
1174 sig->group_exit_code = exit_code;
1175 sig->flags = SIGNAL_GROUP_EXIT;
1176 zap_other_threads(current);
1177 }
1178 spin_unlock_irq(&sighand->siglock);
1179 }
1180
1181 do_exit(exit_code);
1182 /* NOTREACHED */
1183 }
1184
1185 /*
1186 * this kills every thread in the thread group. Note that any externally
1187 * wait4()-ing process will get the correct exit code - even if this
1188 * thread is not the thread group leader.
1189 */
1190 asmlinkage void sys_exit_group(int error_code)
1191 {
1192 do_group_exit((error_code & 0xff) << 8);
1193 }
1194
1195 static struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
1196 {
1197 struct pid *pid = NULL;
1198 if (type == PIDTYPE_PID)
1199 pid = task->pids[type].pid;
1200 else if (type < PIDTYPE_MAX)
1201 pid = task->group_leader->pids[type].pid;
1202 return pid;
1203 }
1204
1205 static int eligible_child(enum pid_type type, struct pid *pid, int options,
1206 struct task_struct *p)
1207 {
1208 int err;
1209
1210 if (type < PIDTYPE_MAX) {
1211 if (task_pid_type(p, type) != pid)
1212 return 0;
1213 }
1214
1215 /* Wait for all children (clone and not) if __WALL is set;
1216 * otherwise, wait for clone children *only* if __WCLONE is
1217 * set; otherwise, wait for non-clone children *only*. (Note:
1218 * A "clone" child here is one that reports to its parent
1219 * using a signal other than SIGCHLD.) */
1220 if (((p->exit_signal != SIGCHLD) ^ ((options & __WCLONE) != 0))
1221 && !(options & __WALL))
1222 return 0;
1223
1224 err = security_task_wait(p);
1225 if (err)
1226 return err;
1227
1228 return 1;
1229 }
1230
1231 static int wait_noreap_copyout(struct task_struct *p, pid_t pid, uid_t uid,
1232 int why, int status,
1233 struct siginfo __user *infop,
1234 struct rusage __user *rusagep)
1235 {
1236 int retval = rusagep ? getrusage(p, RUSAGE_BOTH, rusagep) : 0;
1237
1238 put_task_struct(p);
1239 if (!retval)
1240 retval = put_user(SIGCHLD, &infop->si_signo);
1241 if (!retval)
1242 retval = put_user(0, &infop->si_errno);
1243 if (!retval)
1244 retval = put_user((short)why, &infop->si_code);
1245 if (!retval)
1246 retval = put_user(pid, &infop->si_pid);
1247 if (!retval)
1248 retval = put_user(uid, &infop->si_uid);
1249 if (!retval)
1250 retval = put_user(status, &infop->si_status);
1251 if (!retval)
1252 retval = pid;
1253 return retval;
1254 }
1255
1256 /*
1257 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold
1258 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1259 * the lock and this task is uninteresting. If we return nonzero, we have
1260 * released the lock and the system call should return.
1261 */
1262 static int wait_task_zombie(struct task_struct *p, int options,
1263 struct siginfo __user *infop,
1264 int __user *stat_addr, struct rusage __user *ru)
1265 {
1266 unsigned long state;
1267 int retval, status, traced;
1268 pid_t pid = task_pid_vnr(p);
1269
1270 if (!likely(options & WEXITED))
1271 return 0;
1272
1273 if (unlikely(options & WNOWAIT)) {
1274 uid_t uid = p->uid;
1275 int exit_code = p->exit_code;
1276 int why, status;
1277
1278 get_task_struct(p);
1279 read_unlock(&tasklist_lock);
1280 if ((exit_code & 0x7f) == 0) {
1281 why = CLD_EXITED;
1282 status = exit_code >> 8;
1283 } else {
1284 why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
1285 status = exit_code & 0x7f;
1286 }
1287 return wait_noreap_copyout(p, pid, uid, why,
1288 status, infop, ru);
1289 }
1290
1291 /*
1292 * Try to move the task's state to DEAD
1293 * only one thread is allowed to do this:
1294 */
1295 state = xchg(&p->exit_state, EXIT_DEAD);
1296 if (state != EXIT_ZOMBIE) {
1297 BUG_ON(state != EXIT_DEAD);
1298 return 0;
1299 }
1300
1301 traced = ptrace_reparented(p);
1302
1303 if (likely(!traced)) {
1304 struct signal_struct *psig;
1305 struct signal_struct *sig;
1306 struct task_cputime cputime;
1307
1308 /*
1309 * The resource counters for the group leader are in its
1310 * own task_struct. Those for dead threads in the group
1311 * are in its signal_struct, as are those for the child
1312 * processes it has previously reaped. All these
1313 * accumulate in the parent's signal_struct c* fields.
1314 *
1315 * We don't bother to take a lock here to protect these
1316 * p->signal fields, because they are only touched by
1317 * __exit_signal, which runs with tasklist_lock
1318 * write-locked anyway, and so is excluded here. We do
1319 * need to protect the access to p->parent->signal fields,
1320 * as other threads in the parent group can be right
1321 * here reaping other children at the same time.
1322 *
1323 * We use thread_group_cputime() to get times for the thread
1324 * group, which consolidates times for all threads in the
1325 * group including the group leader.
1326 */
1327 thread_group_cputime(p, &cputime);
1328 spin_lock_irq(&p->parent->sighand->siglock);
1329 psig = p->parent->signal;
1330 sig = p->signal;
1331 psig->cutime =
1332 cputime_add(psig->cutime,
1333 cputime_add(cputime.utime,
1334 sig->cutime));
1335 psig->cstime =
1336 cputime_add(psig->cstime,
1337 cputime_add(cputime.stime,
1338 sig->cstime));
1339 psig->cgtime =
1340 cputime_add(psig->cgtime,
1341 cputime_add(p->gtime,
1342 cputime_add(sig->gtime,
1343 sig->cgtime)));
1344 psig->cmin_flt +=
1345 p->min_flt + sig->min_flt + sig->cmin_flt;
1346 psig->cmaj_flt +=
1347 p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1348 psig->cnvcsw +=
1349 p->nvcsw + sig->nvcsw + sig->cnvcsw;
1350 psig->cnivcsw +=
1351 p->nivcsw + sig->nivcsw + sig->cnivcsw;
1352 psig->cinblock +=
1353 task_io_get_inblock(p) +
1354 sig->inblock + sig->cinblock;
1355 psig->coublock +=
1356 task_io_get_oublock(p) +
1357 sig->oublock + sig->coublock;
1358 task_io_accounting_add(&psig->ioac, &p->ioac);
1359 task_io_accounting_add(&psig->ioac, &sig->ioac);
1360 spin_unlock_irq(&p->parent->sighand->siglock);
1361 }
1362
1363 /*
1364 * Now we are sure this task is interesting, and no other
1365 * thread can reap it because we set its state to EXIT_DEAD.
1366 */
1367 read_unlock(&tasklist_lock);
1368
1369 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1370 status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1371 ? p->signal->group_exit_code : p->exit_code;
1372 if (!retval && stat_addr)
1373 retval = put_user(status, stat_addr);
1374 if (!retval && infop)
1375 retval = put_user(SIGCHLD, &infop->si_signo);
1376 if (!retval && infop)
1377 retval = put_user(0, &infop->si_errno);
1378 if (!retval && infop) {
1379 int why;
1380
1381 if ((status & 0x7f) == 0) {
1382 why = CLD_EXITED;
1383 status >>= 8;
1384 } else {
1385 why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1386 status &= 0x7f;
1387 }
1388 retval = put_user((short)why, &infop->si_code);
1389 if (!retval)
1390 retval = put_user(status, &infop->si_status);
1391 }
1392 if (!retval && infop)
1393 retval = put_user(pid, &infop->si_pid);
1394 if (!retval && infop)
1395 retval = put_user(p->uid, &infop->si_uid);
1396 if (!retval)
1397 retval = pid;
1398
1399 if (traced) {
1400 write_lock_irq(&tasklist_lock);
1401 /* We dropped tasklist, ptracer could die and untrace */
1402 ptrace_unlink(p);
1403 /*
1404 * If this is not a detached task, notify the parent.
1405 * If it's still not detached after that, don't release
1406 * it now.
1407 */
1408 if (!task_detached(p)) {
1409 do_notify_parent(p, p->exit_signal);
1410 if (!task_detached(p)) {
1411 p->exit_state = EXIT_ZOMBIE;
1412 p = NULL;
1413 }
1414 }
1415 write_unlock_irq(&tasklist_lock);
1416 }
1417 if (p != NULL)
1418 release_task(p);
1419
1420 return retval;
1421 }
1422
1423 /*
1424 * Handle sys_wait4 work for one task in state TASK_STOPPED. We hold
1425 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1426 * the lock and this task is uninteresting. If we return nonzero, we have
1427 * released the lock and the system call should return.
1428 */
1429 static int wait_task_stopped(int ptrace, struct task_struct *p,
1430 int options, struct siginfo __user *infop,
1431 int __user *stat_addr, struct rusage __user *ru)
1432 {
1433 int retval, exit_code, why;
1434 uid_t uid = 0; /* unneeded, required by compiler */
1435 pid_t pid;
1436
1437 if (!(options & WUNTRACED))
1438 return 0;
1439
1440 exit_code = 0;
1441 spin_lock_irq(&p->sighand->siglock);
1442
1443 if (unlikely(!task_is_stopped_or_traced(p)))
1444 goto unlock_sig;
1445
1446 if (!ptrace && p->signal->group_stop_count > 0)
1447 /*
1448 * A group stop is in progress and this is the group leader.
1449 * We won't report until all threads have stopped.
1450 */
1451 goto unlock_sig;
1452
1453 exit_code = p->exit_code;
1454 if (!exit_code)
1455 goto unlock_sig;
1456
1457 if (!unlikely(options & WNOWAIT))
1458 p->exit_code = 0;
1459
1460 uid = p->uid;
1461 unlock_sig:
1462 spin_unlock_irq(&p->sighand->siglock);
1463 if (!exit_code)
1464 return 0;
1465
1466 /*
1467 * Now we are pretty sure this task is interesting.
1468 * Make sure it doesn't get reaped out from under us while we
1469 * give up the lock and then examine it below. We don't want to
1470 * keep holding onto the tasklist_lock while we call getrusage and
1471 * possibly take page faults for user memory.
1472 */
1473 get_task_struct(p);
1474 pid = task_pid_vnr(p);
1475 why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1476 read_unlock(&tasklist_lock);
1477
1478 if (unlikely(options & WNOWAIT))
1479 return wait_noreap_copyout(p, pid, uid,
1480 why, exit_code,
1481 infop, ru);
1482
1483 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1484 if (!retval && stat_addr)
1485 retval = put_user((exit_code << 8) | 0x7f, stat_addr);
1486 if (!retval && infop)
1487 retval = put_user(SIGCHLD, &infop->si_signo);
1488 if (!retval && infop)
1489 retval = put_user(0, &infop->si_errno);
1490 if (!retval && infop)
1491 retval = put_user((short)why, &infop->si_code);
1492 if (!retval && infop)
1493 retval = put_user(exit_code, &infop->si_status);
1494 if (!retval && infop)
1495 retval = put_user(pid, &infop->si_pid);
1496 if (!retval && infop)
1497 retval = put_user(uid, &infop->si_uid);
1498 if (!retval)
1499 retval = pid;
1500 put_task_struct(p);
1501
1502 BUG_ON(!retval);
1503 return retval;
1504 }
1505
1506 /*
1507 * Handle do_wait work for one task in a live, non-stopped state.
1508 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1509 * the lock and this task is uninteresting. If we return nonzero, we have
1510 * released the lock and the system call should return.
1511 */
1512 static int wait_task_continued(struct task_struct *p, int options,
1513 struct siginfo __user *infop,
1514 int __user *stat_addr, struct rusage __user *ru)
1515 {
1516 int retval;
1517 pid_t pid;
1518 uid_t uid;
1519
1520 if (!unlikely(options & WCONTINUED))
1521 return 0;
1522
1523 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1524 return 0;
1525
1526 spin_lock_irq(&p->sighand->siglock);
1527 /* Re-check with the lock held. */
1528 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1529 spin_unlock_irq(&p->sighand->siglock);
1530 return 0;
1531 }
1532 if (!unlikely(options & WNOWAIT))
1533 p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1534 spin_unlock_irq(&p->sighand->siglock);
1535
1536 pid = task_pid_vnr(p);
1537 uid = p->uid;
1538 get_task_struct(p);
1539 read_unlock(&tasklist_lock);
1540
1541 if (!infop) {
1542 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1543 put_task_struct(p);
1544 if (!retval && stat_addr)
1545 retval = put_user(0xffff, stat_addr);
1546 if (!retval)
1547 retval = pid;
1548 } else {
1549 retval = wait_noreap_copyout(p, pid, uid,
1550 CLD_CONTINUED, SIGCONT,
1551 infop, ru);
1552 BUG_ON(retval == 0);
1553 }
1554
1555 return retval;
1556 }
1557
1558 /*
1559 * Consider @p for a wait by @parent.
1560 *
1561 * -ECHILD should be in *@notask_error before the first call.
1562 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1563 * Returns zero if the search for a child should continue;
1564 * then *@notask_error is 0 if @p is an eligible child,
1565 * or another error from security_task_wait(), or still -ECHILD.
1566 */
1567 static int wait_consider_task(struct task_struct *parent, int ptrace,
1568 struct task_struct *p, int *notask_error,
1569 enum pid_type type, struct pid *pid, int options,
1570 struct siginfo __user *infop,
1571 int __user *stat_addr, struct rusage __user *ru)
1572 {
1573 int ret = eligible_child(type, pid, options, p);
1574 if (!ret)
1575 return ret;
1576
1577 if (unlikely(ret < 0)) {
1578 /*
1579 * If we have not yet seen any eligible child,
1580 * then let this error code replace -ECHILD.
1581 * A permission error will give the user a clue
1582 * to look for security policy problems, rather
1583 * than for mysterious wait bugs.
1584 */
1585 if (*notask_error)
1586 *notask_error = ret;
1587 }
1588
1589 if (likely(!ptrace) && unlikely(p->ptrace)) {
1590 /*
1591 * This child is hidden by ptrace.
1592 * We aren't allowed to see it now, but eventually we will.
1593 */
1594 *notask_error = 0;
1595 return 0;
1596 }
1597
1598 if (p->exit_state == EXIT_DEAD)
1599 return 0;
1600
1601 /*
1602 * We don't reap group leaders with subthreads.
1603 */
1604 if (p->exit_state == EXIT_ZOMBIE && !delay_group_leader(p))
1605 return wait_task_zombie(p, options, infop, stat_addr, ru);
1606
1607 /*
1608 * It's stopped or running now, so it might
1609 * later continue, exit, or stop again.
1610 */
1611 *notask_error = 0;
1612
1613 if (task_is_stopped_or_traced(p))
1614 return wait_task_stopped(ptrace, p, options,
1615 infop, stat_addr, ru);
1616
1617 return wait_task_continued(p, options, infop, stat_addr, ru);
1618 }
1619
1620 /*
1621 * Do the work of do_wait() for one thread in the group, @tsk.
1622 *
1623 * -ECHILD should be in *@notask_error before the first call.
1624 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1625 * Returns zero if the search for a child should continue; then
1626 * *@notask_error is 0 if there were any eligible children,
1627 * or another error from security_task_wait(), or still -ECHILD.
1628 */
1629 static int do_wait_thread(struct task_struct *tsk, int *notask_error,
1630 enum pid_type type, struct pid *pid, int options,
1631 struct siginfo __user *infop, int __user *stat_addr,
1632 struct rusage __user *ru)
1633 {
1634 struct task_struct *p;
1635
1636 list_for_each_entry(p, &tsk->children, sibling) {
1637 /*
1638 * Do not consider detached threads.
1639 */
1640 if (!task_detached(p)) {
1641 int ret = wait_consider_task(tsk, 0, p, notask_error,
1642 type, pid, options,
1643 infop, stat_addr, ru);
1644 if (ret)
1645 return ret;
1646 }
1647 }
1648
1649 return 0;
1650 }
1651
1652 static int ptrace_do_wait(struct task_struct *tsk, int *notask_error,
1653 enum pid_type type, struct pid *pid, int options,
1654 struct siginfo __user *infop, int __user *stat_addr,
1655 struct rusage __user *ru)
1656 {
1657 struct task_struct *p;
1658
1659 /*
1660 * Traditionally we see ptrace'd stopped tasks regardless of options.
1661 */
1662 options |= WUNTRACED;
1663
1664 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1665 int ret = wait_consider_task(tsk, 1, p, notask_error,
1666 type, pid, options,
1667 infop, stat_addr, ru);
1668 if (ret)
1669 return ret;
1670 }
1671
1672 return 0;
1673 }
1674
1675 static long do_wait(enum pid_type type, struct pid *pid, int options,
1676 struct siginfo __user *infop, int __user *stat_addr,
1677 struct rusage __user *ru)
1678 {
1679 DECLARE_WAITQUEUE(wait, current);
1680 struct task_struct *tsk;
1681 int retval;
1682
1683 trace_sched_process_wait(pid);
1684
1685 add_wait_queue(&current->signal->wait_chldexit,&wait);
1686 repeat:
1687 /*
1688 * If there is nothing that can match our critiera just get out.
1689 * We will clear @retval to zero if we see any child that might later
1690 * match our criteria, even if we are not able to reap it yet.
1691 */
1692 retval = -ECHILD;
1693 if ((type < PIDTYPE_MAX) && (!pid || hlist_empty(&pid->tasks[type])))
1694 goto end;
1695
1696 current->state = TASK_INTERRUPTIBLE;
1697 read_lock(&tasklist_lock);
1698 tsk = current;
1699 do {
1700 int tsk_result = do_wait_thread(tsk, &retval,
1701 type, pid, options,
1702 infop, stat_addr, ru);
1703 if (!tsk_result)
1704 tsk_result = ptrace_do_wait(tsk, &retval,
1705 type, pid, options,
1706 infop, stat_addr, ru);
1707 if (tsk_result) {
1708 /*
1709 * tasklist_lock is unlocked and we have a final result.
1710 */
1711 retval = tsk_result;
1712 goto end;
1713 }
1714
1715 if (options & __WNOTHREAD)
1716 break;
1717 tsk = next_thread(tsk);
1718 BUG_ON(tsk->signal != current->signal);
1719 } while (tsk != current);
1720 read_unlock(&tasklist_lock);
1721
1722 if (!retval && !(options & WNOHANG)) {
1723 retval = -ERESTARTSYS;
1724 if (!signal_pending(current)) {
1725 schedule();
1726 goto repeat;
1727 }
1728 }
1729
1730 end:
1731 current->state = TASK_RUNNING;
1732 remove_wait_queue(&current->signal->wait_chldexit,&wait);
1733 if (infop) {
1734 if (retval > 0)
1735 retval = 0;
1736 else {
1737 /*
1738 * For a WNOHANG return, clear out all the fields
1739 * we would set so the user can easily tell the
1740 * difference.
1741 */
1742 if (!retval)
1743 retval = put_user(0, &infop->si_signo);
1744 if (!retval)
1745 retval = put_user(0, &infop->si_errno);
1746 if (!retval)
1747 retval = put_user(0, &infop->si_code);
1748 if (!retval)
1749 retval = put_user(0, &infop->si_pid);
1750 if (!retval)
1751 retval = put_user(0, &infop->si_uid);
1752 if (!retval)
1753 retval = put_user(0, &infop->si_status);
1754 }
1755 }
1756 return retval;
1757 }
1758
1759 asmlinkage long sys_waitid(int which, pid_t upid,
1760 struct siginfo __user *infop, int options,
1761 struct rusage __user *ru)
1762 {
1763 struct pid *pid = NULL;
1764 enum pid_type type;
1765 long ret;
1766
1767 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED))
1768 return -EINVAL;
1769 if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1770 return -EINVAL;
1771
1772 switch (which) {
1773 case P_ALL:
1774 type = PIDTYPE_MAX;
1775 break;
1776 case P_PID:
1777 type = PIDTYPE_PID;
1778 if (upid <= 0)
1779 return -EINVAL;
1780 break;
1781 case P_PGID:
1782 type = PIDTYPE_PGID;
1783 if (upid <= 0)
1784 return -EINVAL;
1785 break;
1786 default:
1787 return -EINVAL;
1788 }
1789
1790 if (type < PIDTYPE_MAX)
1791 pid = find_get_pid(upid);
1792 ret = do_wait(type, pid, options, infop, NULL, ru);
1793 put_pid(pid);
1794
1795 /* avoid REGPARM breakage on x86: */
1796 asmlinkage_protect(5, ret, which, upid, infop, options, ru);
1797 return ret;
1798 }
1799
1800 asmlinkage long sys_wait4(pid_t upid, int __user *stat_addr,
1801 int options, struct rusage __user *ru)
1802 {
1803 struct pid *pid = NULL;
1804 enum pid_type type;
1805 long ret;
1806
1807 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1808 __WNOTHREAD|__WCLONE|__WALL))
1809 return -EINVAL;
1810
1811 if (upid == -1)
1812 type = PIDTYPE_MAX;
1813 else if (upid < 0) {
1814 type = PIDTYPE_PGID;
1815 pid = find_get_pid(-upid);
1816 } else if (upid == 0) {
1817 type = PIDTYPE_PGID;
1818 pid = get_pid(task_pgrp(current));
1819 } else /* upid > 0 */ {
1820 type = PIDTYPE_PID;
1821 pid = find_get_pid(upid);
1822 }
1823
1824 ret = do_wait(type, pid, options | WEXITED, NULL, stat_addr, ru);
1825 put_pid(pid);
1826
1827 /* avoid REGPARM breakage on x86: */
1828 asmlinkage_protect(4, ret, upid, stat_addr, options, ru);
1829 return ret;
1830 }
1831
1832 #ifdef __ARCH_WANT_SYS_WAITPID
1833
1834 /*
1835 * sys_waitpid() remains for compatibility. waitpid() should be
1836 * implemented by calling sys_wait4() from libc.a.
1837 */
1838 asmlinkage long sys_waitpid(pid_t pid, int __user *stat_addr, int options)
1839 {
1840 return sys_wait4(pid, stat_addr, options, NULL);
1841 }
1842
1843 #endif
This page took 0.069692 seconds and 5 git commands to generate.