Merge tag 'defconfig-for-3.17' of git://git.kernel.org/pub/scm/linux/kernel/git/arm...
[deliverable/linux.git] / kernel / exit.c
1 /*
2 * linux/kernel/exit.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 #include <linux/mm.h>
8 #include <linux/slab.h>
9 #include <linux/interrupt.h>
10 #include <linux/module.h>
11 #include <linux/capability.h>
12 #include <linux/completion.h>
13 #include <linux/personality.h>
14 #include <linux/tty.h>
15 #include <linux/iocontext.h>
16 #include <linux/key.h>
17 #include <linux/security.h>
18 #include <linux/cpu.h>
19 #include <linux/acct.h>
20 #include <linux/tsacct_kern.h>
21 #include <linux/file.h>
22 #include <linux/fdtable.h>
23 #include <linux/freezer.h>
24 #include <linux/binfmts.h>
25 #include <linux/nsproxy.h>
26 #include <linux/pid_namespace.h>
27 #include <linux/ptrace.h>
28 #include <linux/profile.h>
29 #include <linux/mount.h>
30 #include <linux/proc_fs.h>
31 #include <linux/kthread.h>
32 #include <linux/mempolicy.h>
33 #include <linux/taskstats_kern.h>
34 #include <linux/delayacct.h>
35 #include <linux/cgroup.h>
36 #include <linux/syscalls.h>
37 #include <linux/signal.h>
38 #include <linux/posix-timers.h>
39 #include <linux/cn_proc.h>
40 #include <linux/mutex.h>
41 #include <linux/futex.h>
42 #include <linux/pipe_fs_i.h>
43 #include <linux/audit.h> /* for audit_free() */
44 #include <linux/resource.h>
45 #include <linux/blkdev.h>
46 #include <linux/task_io_accounting_ops.h>
47 #include <linux/tracehook.h>
48 #include <linux/fs_struct.h>
49 #include <linux/init_task.h>
50 #include <linux/perf_event.h>
51 #include <trace/events/sched.h>
52 #include <linux/hw_breakpoint.h>
53 #include <linux/oom.h>
54 #include <linux/writeback.h>
55 #include <linux/shm.h>
56
57 #include <asm/uaccess.h>
58 #include <asm/unistd.h>
59 #include <asm/pgtable.h>
60 #include <asm/mmu_context.h>
61
62 static void exit_mm(struct task_struct * tsk);
63
64 static void __unhash_process(struct task_struct *p, bool group_dead)
65 {
66 nr_threads--;
67 detach_pid(p, PIDTYPE_PID);
68 if (group_dead) {
69 detach_pid(p, PIDTYPE_PGID);
70 detach_pid(p, PIDTYPE_SID);
71
72 list_del_rcu(&p->tasks);
73 list_del_init(&p->sibling);
74 __this_cpu_dec(process_counts);
75 }
76 list_del_rcu(&p->thread_group);
77 list_del_rcu(&p->thread_node);
78 }
79
80 /*
81 * This function expects the tasklist_lock write-locked.
82 */
83 static void __exit_signal(struct task_struct *tsk)
84 {
85 struct signal_struct *sig = tsk->signal;
86 bool group_dead = thread_group_leader(tsk);
87 struct sighand_struct *sighand;
88 struct tty_struct *uninitialized_var(tty);
89 cputime_t utime, stime;
90
91 sighand = rcu_dereference_check(tsk->sighand,
92 lockdep_tasklist_lock_is_held());
93 spin_lock(&sighand->siglock);
94
95 posix_cpu_timers_exit(tsk);
96 if (group_dead) {
97 posix_cpu_timers_exit_group(tsk);
98 tty = sig->tty;
99 sig->tty = NULL;
100 } else {
101 /*
102 * This can only happen if the caller is de_thread().
103 * FIXME: this is the temporary hack, we should teach
104 * posix-cpu-timers to handle this case correctly.
105 */
106 if (unlikely(has_group_leader_pid(tsk)))
107 posix_cpu_timers_exit_group(tsk);
108
109 /*
110 * If there is any task waiting for the group exit
111 * then notify it:
112 */
113 if (sig->notify_count > 0 && !--sig->notify_count)
114 wake_up_process(sig->group_exit_task);
115
116 if (tsk == sig->curr_target)
117 sig->curr_target = next_thread(tsk);
118 /*
119 * Accumulate here the counters for all threads but the
120 * group leader as they die, so they can be added into
121 * the process-wide totals when those are taken.
122 * The group leader stays around as a zombie as long
123 * as there are other threads. When it gets reaped,
124 * the exit.c code will add its counts into these totals.
125 * We won't ever get here for the group leader, since it
126 * will have been the last reference on the signal_struct.
127 */
128 task_cputime(tsk, &utime, &stime);
129 sig->utime += utime;
130 sig->stime += stime;
131 sig->gtime += task_gtime(tsk);
132 sig->min_flt += tsk->min_flt;
133 sig->maj_flt += tsk->maj_flt;
134 sig->nvcsw += tsk->nvcsw;
135 sig->nivcsw += tsk->nivcsw;
136 sig->inblock += task_io_get_inblock(tsk);
137 sig->oublock += task_io_get_oublock(tsk);
138 task_io_accounting_add(&sig->ioac, &tsk->ioac);
139 sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
140 }
141
142 sig->nr_threads--;
143 __unhash_process(tsk, group_dead);
144
145 /*
146 * Do this under ->siglock, we can race with another thread
147 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
148 */
149 flush_sigqueue(&tsk->pending);
150 tsk->sighand = NULL;
151 spin_unlock(&sighand->siglock);
152
153 __cleanup_sighand(sighand);
154 clear_tsk_thread_flag(tsk,TIF_SIGPENDING);
155 if (group_dead) {
156 flush_sigqueue(&sig->shared_pending);
157 tty_kref_put(tty);
158 }
159 }
160
161 static void delayed_put_task_struct(struct rcu_head *rhp)
162 {
163 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
164
165 perf_event_delayed_put(tsk);
166 trace_sched_process_free(tsk);
167 put_task_struct(tsk);
168 }
169
170
171 void release_task(struct task_struct * p)
172 {
173 struct task_struct *leader;
174 int zap_leader;
175 repeat:
176 /* don't need to get the RCU readlock here - the process is dead and
177 * can't be modifying its own credentials. But shut RCU-lockdep up */
178 rcu_read_lock();
179 atomic_dec(&__task_cred(p)->user->processes);
180 rcu_read_unlock();
181
182 proc_flush_task(p);
183
184 write_lock_irq(&tasklist_lock);
185 ptrace_release_task(p);
186 __exit_signal(p);
187
188 /*
189 * If we are the last non-leader member of the thread
190 * group, and the leader is zombie, then notify the
191 * group leader's parent process. (if it wants notification.)
192 */
193 zap_leader = 0;
194 leader = p->group_leader;
195 if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) {
196 /*
197 * If we were the last child thread and the leader has
198 * exited already, and the leader's parent ignores SIGCHLD,
199 * then we are the one who should release the leader.
200 */
201 zap_leader = do_notify_parent(leader, leader->exit_signal);
202 if (zap_leader)
203 leader->exit_state = EXIT_DEAD;
204 }
205
206 write_unlock_irq(&tasklist_lock);
207 release_thread(p);
208 call_rcu(&p->rcu, delayed_put_task_struct);
209
210 p = leader;
211 if (unlikely(zap_leader))
212 goto repeat;
213 }
214
215 /*
216 * This checks not only the pgrp, but falls back on the pid if no
217 * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
218 * without this...
219 *
220 * The caller must hold rcu lock or the tasklist lock.
221 */
222 struct pid *session_of_pgrp(struct pid *pgrp)
223 {
224 struct task_struct *p;
225 struct pid *sid = NULL;
226
227 p = pid_task(pgrp, PIDTYPE_PGID);
228 if (p == NULL)
229 p = pid_task(pgrp, PIDTYPE_PID);
230 if (p != NULL)
231 sid = task_session(p);
232
233 return sid;
234 }
235
236 /*
237 * Determine if a process group is "orphaned", according to the POSIX
238 * definition in 2.2.2.52. Orphaned process groups are not to be affected
239 * by terminal-generated stop signals. Newly orphaned process groups are
240 * to receive a SIGHUP and a SIGCONT.
241 *
242 * "I ask you, have you ever known what it is to be an orphan?"
243 */
244 static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task)
245 {
246 struct task_struct *p;
247
248 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
249 if ((p == ignored_task) ||
250 (p->exit_state && thread_group_empty(p)) ||
251 is_global_init(p->real_parent))
252 continue;
253
254 if (task_pgrp(p->real_parent) != pgrp &&
255 task_session(p->real_parent) == task_session(p))
256 return 0;
257 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
258
259 return 1;
260 }
261
262 int is_current_pgrp_orphaned(void)
263 {
264 int retval;
265
266 read_lock(&tasklist_lock);
267 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
268 read_unlock(&tasklist_lock);
269
270 return retval;
271 }
272
273 static bool has_stopped_jobs(struct pid *pgrp)
274 {
275 struct task_struct *p;
276
277 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
278 if (p->signal->flags & SIGNAL_STOP_STOPPED)
279 return true;
280 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
281
282 return false;
283 }
284
285 /*
286 * Check to see if any process groups have become orphaned as
287 * a result of our exiting, and if they have any stopped jobs,
288 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
289 */
290 static void
291 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
292 {
293 struct pid *pgrp = task_pgrp(tsk);
294 struct task_struct *ignored_task = tsk;
295
296 if (!parent)
297 /* exit: our father is in a different pgrp than
298 * we are and we were the only connection outside.
299 */
300 parent = tsk->real_parent;
301 else
302 /* reparent: our child is in a different pgrp than
303 * we are, and it was the only connection outside.
304 */
305 ignored_task = NULL;
306
307 if (task_pgrp(parent) != pgrp &&
308 task_session(parent) == task_session(tsk) &&
309 will_become_orphaned_pgrp(pgrp, ignored_task) &&
310 has_stopped_jobs(pgrp)) {
311 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
312 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
313 }
314 }
315
316 #ifdef CONFIG_MEMCG
317 /*
318 * A task is exiting. If it owned this mm, find a new owner for the mm.
319 */
320 void mm_update_next_owner(struct mm_struct *mm)
321 {
322 struct task_struct *c, *g, *p = current;
323
324 retry:
325 /*
326 * If the exiting or execing task is not the owner, it's
327 * someone else's problem.
328 */
329 if (mm->owner != p)
330 return;
331 /*
332 * The current owner is exiting/execing and there are no other
333 * candidates. Do not leave the mm pointing to a possibly
334 * freed task structure.
335 */
336 if (atomic_read(&mm->mm_users) <= 1) {
337 mm->owner = NULL;
338 return;
339 }
340
341 read_lock(&tasklist_lock);
342 /*
343 * Search in the children
344 */
345 list_for_each_entry(c, &p->children, sibling) {
346 if (c->mm == mm)
347 goto assign_new_owner;
348 }
349
350 /*
351 * Search in the siblings
352 */
353 list_for_each_entry(c, &p->real_parent->children, sibling) {
354 if (c->mm == mm)
355 goto assign_new_owner;
356 }
357
358 /*
359 * Search through everything else, we should not get here often.
360 */
361 for_each_process(g) {
362 if (g->flags & PF_KTHREAD)
363 continue;
364 for_each_thread(g, c) {
365 if (c->mm == mm)
366 goto assign_new_owner;
367 if (c->mm)
368 break;
369 }
370 }
371 read_unlock(&tasklist_lock);
372 /*
373 * We found no owner yet mm_users > 1: this implies that we are
374 * most likely racing with swapoff (try_to_unuse()) or /proc or
375 * ptrace or page migration (get_task_mm()). Mark owner as NULL.
376 */
377 mm->owner = NULL;
378 return;
379
380 assign_new_owner:
381 BUG_ON(c == p);
382 get_task_struct(c);
383 /*
384 * The task_lock protects c->mm from changing.
385 * We always want mm->owner->mm == mm
386 */
387 task_lock(c);
388 /*
389 * Delay read_unlock() till we have the task_lock()
390 * to ensure that c does not slip away underneath us
391 */
392 read_unlock(&tasklist_lock);
393 if (c->mm != mm) {
394 task_unlock(c);
395 put_task_struct(c);
396 goto retry;
397 }
398 mm->owner = c;
399 task_unlock(c);
400 put_task_struct(c);
401 }
402 #endif /* CONFIG_MEMCG */
403
404 /*
405 * Turn us into a lazy TLB process if we
406 * aren't already..
407 */
408 static void exit_mm(struct task_struct * tsk)
409 {
410 struct mm_struct *mm = tsk->mm;
411 struct core_state *core_state;
412
413 mm_release(tsk, mm);
414 if (!mm)
415 return;
416 sync_mm_rss(mm);
417 /*
418 * Serialize with any possible pending coredump.
419 * We must hold mmap_sem around checking core_state
420 * and clearing tsk->mm. The core-inducing thread
421 * will increment ->nr_threads for each thread in the
422 * group with ->mm != NULL.
423 */
424 down_read(&mm->mmap_sem);
425 core_state = mm->core_state;
426 if (core_state) {
427 struct core_thread self;
428 up_read(&mm->mmap_sem);
429
430 self.task = tsk;
431 self.next = xchg(&core_state->dumper.next, &self);
432 /*
433 * Implies mb(), the result of xchg() must be visible
434 * to core_state->dumper.
435 */
436 if (atomic_dec_and_test(&core_state->nr_threads))
437 complete(&core_state->startup);
438
439 for (;;) {
440 set_task_state(tsk, TASK_UNINTERRUPTIBLE);
441 if (!self.task) /* see coredump_finish() */
442 break;
443 freezable_schedule();
444 }
445 __set_task_state(tsk, TASK_RUNNING);
446 down_read(&mm->mmap_sem);
447 }
448 atomic_inc(&mm->mm_count);
449 BUG_ON(mm != tsk->active_mm);
450 /* more a memory barrier than a real lock */
451 task_lock(tsk);
452 tsk->mm = NULL;
453 up_read(&mm->mmap_sem);
454 enter_lazy_tlb(mm, current);
455 task_unlock(tsk);
456 mm_update_next_owner(mm);
457 mmput(mm);
458 clear_thread_flag(TIF_MEMDIE);
459 }
460
461 /*
462 * When we die, we re-parent all our children, and try to:
463 * 1. give them to another thread in our thread group, if such a member exists
464 * 2. give it to the first ancestor process which prctl'd itself as a
465 * child_subreaper for its children (like a service manager)
466 * 3. give it to the init process (PID 1) in our pid namespace
467 */
468 static struct task_struct *find_new_reaper(struct task_struct *father)
469 __releases(&tasklist_lock)
470 __acquires(&tasklist_lock)
471 {
472 struct pid_namespace *pid_ns = task_active_pid_ns(father);
473 struct task_struct *thread;
474
475 thread = father;
476 while_each_thread(father, thread) {
477 if (thread->flags & PF_EXITING)
478 continue;
479 if (unlikely(pid_ns->child_reaper == father))
480 pid_ns->child_reaper = thread;
481 return thread;
482 }
483
484 if (unlikely(pid_ns->child_reaper == father)) {
485 write_unlock_irq(&tasklist_lock);
486 if (unlikely(pid_ns == &init_pid_ns)) {
487 panic("Attempted to kill init! exitcode=0x%08x\n",
488 father->signal->group_exit_code ?:
489 father->exit_code);
490 }
491
492 zap_pid_ns_processes(pid_ns);
493 write_lock_irq(&tasklist_lock);
494 } else if (father->signal->has_child_subreaper) {
495 struct task_struct *reaper;
496
497 /*
498 * Find the first ancestor marked as child_subreaper.
499 * Note that the code below checks same_thread_group(reaper,
500 * pid_ns->child_reaper). This is what we need to DTRT in a
501 * PID namespace. However we still need the check above, see
502 * http://marc.info/?l=linux-kernel&m=131385460420380
503 */
504 for (reaper = father->real_parent;
505 reaper != &init_task;
506 reaper = reaper->real_parent) {
507 if (same_thread_group(reaper, pid_ns->child_reaper))
508 break;
509 if (!reaper->signal->is_child_subreaper)
510 continue;
511 thread = reaper;
512 do {
513 if (!(thread->flags & PF_EXITING))
514 return reaper;
515 } while_each_thread(reaper, thread);
516 }
517 }
518
519 return pid_ns->child_reaper;
520 }
521
522 /*
523 * Any that need to be release_task'd are put on the @dead list.
524 */
525 static void reparent_leader(struct task_struct *father, struct task_struct *p,
526 struct list_head *dead)
527 {
528 list_move_tail(&p->sibling, &p->real_parent->children);
529
530 if (p->exit_state == EXIT_DEAD)
531 return;
532 /*
533 * If this is a threaded reparent there is no need to
534 * notify anyone anything has happened.
535 */
536 if (same_thread_group(p->real_parent, father))
537 return;
538
539 /* We don't want people slaying init. */
540 p->exit_signal = SIGCHLD;
541
542 /* If it has exited notify the new parent about this child's death. */
543 if (!p->ptrace &&
544 p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
545 if (do_notify_parent(p, p->exit_signal)) {
546 p->exit_state = EXIT_DEAD;
547 list_move_tail(&p->sibling, dead);
548 }
549 }
550
551 kill_orphaned_pgrp(p, father);
552 }
553
554 static void forget_original_parent(struct task_struct *father)
555 {
556 struct task_struct *p, *n, *reaper;
557 LIST_HEAD(dead_children);
558
559 write_lock_irq(&tasklist_lock);
560 /*
561 * Note that exit_ptrace() and find_new_reaper() might
562 * drop tasklist_lock and reacquire it.
563 */
564 exit_ptrace(father);
565 reaper = find_new_reaper(father);
566
567 list_for_each_entry_safe(p, n, &father->children, sibling) {
568 struct task_struct *t = p;
569 do {
570 t->real_parent = reaper;
571 if (t->parent == father) {
572 BUG_ON(t->ptrace);
573 t->parent = t->real_parent;
574 }
575 if (t->pdeath_signal)
576 group_send_sig_info(t->pdeath_signal,
577 SEND_SIG_NOINFO, t);
578 } while_each_thread(p, t);
579 reparent_leader(father, p, &dead_children);
580 }
581 write_unlock_irq(&tasklist_lock);
582
583 BUG_ON(!list_empty(&father->children));
584
585 list_for_each_entry_safe(p, n, &dead_children, sibling) {
586 list_del_init(&p->sibling);
587 release_task(p);
588 }
589 }
590
591 /*
592 * Send signals to all our closest relatives so that they know
593 * to properly mourn us..
594 */
595 static void exit_notify(struct task_struct *tsk, int group_dead)
596 {
597 bool autoreap;
598
599 /*
600 * This does two things:
601 *
602 * A. Make init inherit all the child processes
603 * B. Check to see if any process groups have become orphaned
604 * as a result of our exiting, and if they have any stopped
605 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
606 */
607 forget_original_parent(tsk);
608
609 write_lock_irq(&tasklist_lock);
610 if (group_dead)
611 kill_orphaned_pgrp(tsk->group_leader, NULL);
612
613 if (unlikely(tsk->ptrace)) {
614 int sig = thread_group_leader(tsk) &&
615 thread_group_empty(tsk) &&
616 !ptrace_reparented(tsk) ?
617 tsk->exit_signal : SIGCHLD;
618 autoreap = do_notify_parent(tsk, sig);
619 } else if (thread_group_leader(tsk)) {
620 autoreap = thread_group_empty(tsk) &&
621 do_notify_parent(tsk, tsk->exit_signal);
622 } else {
623 autoreap = true;
624 }
625
626 tsk->exit_state = autoreap ? EXIT_DEAD : EXIT_ZOMBIE;
627
628 /* mt-exec, de_thread() is waiting for group leader */
629 if (unlikely(tsk->signal->notify_count < 0))
630 wake_up_process(tsk->signal->group_exit_task);
631 write_unlock_irq(&tasklist_lock);
632
633 /* If the process is dead, release it - nobody will wait for it */
634 if (autoreap)
635 release_task(tsk);
636 }
637
638 #ifdef CONFIG_DEBUG_STACK_USAGE
639 static void check_stack_usage(void)
640 {
641 static DEFINE_SPINLOCK(low_water_lock);
642 static int lowest_to_date = THREAD_SIZE;
643 unsigned long free;
644
645 free = stack_not_used(current);
646
647 if (free >= lowest_to_date)
648 return;
649
650 spin_lock(&low_water_lock);
651 if (free < lowest_to_date) {
652 printk(KERN_WARNING "%s (%d) used greatest stack depth: "
653 "%lu bytes left\n",
654 current->comm, task_pid_nr(current), free);
655 lowest_to_date = free;
656 }
657 spin_unlock(&low_water_lock);
658 }
659 #else
660 static inline void check_stack_usage(void) {}
661 #endif
662
663 void do_exit(long code)
664 {
665 struct task_struct *tsk = current;
666 int group_dead;
667
668 profile_task_exit(tsk);
669
670 WARN_ON(blk_needs_flush_plug(tsk));
671
672 if (unlikely(in_interrupt()))
673 panic("Aiee, killing interrupt handler!");
674 if (unlikely(!tsk->pid))
675 panic("Attempted to kill the idle task!");
676
677 /*
678 * If do_exit is called because this processes oopsed, it's possible
679 * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before
680 * continuing. Amongst other possible reasons, this is to prevent
681 * mm_release()->clear_child_tid() from writing to a user-controlled
682 * kernel address.
683 */
684 set_fs(USER_DS);
685
686 ptrace_event(PTRACE_EVENT_EXIT, code);
687
688 validate_creds_for_do_exit(tsk);
689
690 /*
691 * We're taking recursive faults here in do_exit. Safest is to just
692 * leave this task alone and wait for reboot.
693 */
694 if (unlikely(tsk->flags & PF_EXITING)) {
695 printk(KERN_ALERT
696 "Fixing recursive fault but reboot is needed!\n");
697 /*
698 * We can do this unlocked here. The futex code uses
699 * this flag just to verify whether the pi state
700 * cleanup has been done or not. In the worst case it
701 * loops once more. We pretend that the cleanup was
702 * done as there is no way to return. Either the
703 * OWNER_DIED bit is set by now or we push the blocked
704 * task into the wait for ever nirwana as well.
705 */
706 tsk->flags |= PF_EXITPIDONE;
707 set_current_state(TASK_UNINTERRUPTIBLE);
708 schedule();
709 }
710
711 exit_signals(tsk); /* sets PF_EXITING */
712 /*
713 * tsk->flags are checked in the futex code to protect against
714 * an exiting task cleaning up the robust pi futexes.
715 */
716 smp_mb();
717 raw_spin_unlock_wait(&tsk->pi_lock);
718
719 if (unlikely(in_atomic()))
720 printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n",
721 current->comm, task_pid_nr(current),
722 preempt_count());
723
724 acct_update_integrals(tsk);
725 /* sync mm's RSS info before statistics gathering */
726 if (tsk->mm)
727 sync_mm_rss(tsk->mm);
728 group_dead = atomic_dec_and_test(&tsk->signal->live);
729 if (group_dead) {
730 hrtimer_cancel(&tsk->signal->real_timer);
731 exit_itimers(tsk->signal);
732 if (tsk->mm)
733 setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
734 }
735 acct_collect(code, group_dead);
736 if (group_dead)
737 tty_audit_exit();
738 audit_free(tsk);
739
740 tsk->exit_code = code;
741 taskstats_exit(tsk, group_dead);
742
743 exit_mm(tsk);
744
745 if (group_dead)
746 acct_process();
747 trace_sched_process_exit(tsk);
748
749 exit_sem(tsk);
750 exit_shm(tsk);
751 exit_files(tsk);
752 exit_fs(tsk);
753 if (group_dead)
754 disassociate_ctty(1);
755 exit_task_namespaces(tsk);
756 exit_task_work(tsk);
757 exit_thread();
758
759 /*
760 * Flush inherited counters to the parent - before the parent
761 * gets woken up by child-exit notifications.
762 *
763 * because of cgroup mode, must be called before cgroup_exit()
764 */
765 perf_event_exit_task(tsk);
766
767 cgroup_exit(tsk);
768
769 module_put(task_thread_info(tsk)->exec_domain->module);
770
771 /*
772 * FIXME: do that only when needed, using sched_exit tracepoint
773 */
774 flush_ptrace_hw_breakpoint(tsk);
775
776 exit_notify(tsk, group_dead);
777 proc_exit_connector(tsk);
778 #ifdef CONFIG_NUMA
779 task_lock(tsk);
780 mpol_put(tsk->mempolicy);
781 tsk->mempolicy = NULL;
782 task_unlock(tsk);
783 #endif
784 #ifdef CONFIG_FUTEX
785 if (unlikely(current->pi_state_cache))
786 kfree(current->pi_state_cache);
787 #endif
788 /*
789 * Make sure we are holding no locks:
790 */
791 debug_check_no_locks_held();
792 /*
793 * We can do this unlocked here. The futex code uses this flag
794 * just to verify whether the pi state cleanup has been done
795 * or not. In the worst case it loops once more.
796 */
797 tsk->flags |= PF_EXITPIDONE;
798
799 if (tsk->io_context)
800 exit_io_context(tsk);
801
802 if (tsk->splice_pipe)
803 free_pipe_info(tsk->splice_pipe);
804
805 if (tsk->task_frag.page)
806 put_page(tsk->task_frag.page);
807
808 validate_creds_for_do_exit(tsk);
809
810 check_stack_usage();
811 preempt_disable();
812 if (tsk->nr_dirtied)
813 __this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
814 exit_rcu();
815
816 /*
817 * The setting of TASK_RUNNING by try_to_wake_up() may be delayed
818 * when the following two conditions become true.
819 * - There is race condition of mmap_sem (It is acquired by
820 * exit_mm()), and
821 * - SMI occurs before setting TASK_RUNINNG.
822 * (or hypervisor of virtual machine switches to other guest)
823 * As a result, we may become TASK_RUNNING after becoming TASK_DEAD
824 *
825 * To avoid it, we have to wait for releasing tsk->pi_lock which
826 * is held by try_to_wake_up()
827 */
828 smp_mb();
829 raw_spin_unlock_wait(&tsk->pi_lock);
830
831 /* causes final put_task_struct in finish_task_switch(). */
832 tsk->state = TASK_DEAD;
833 tsk->flags |= PF_NOFREEZE; /* tell freezer to ignore us */
834 schedule();
835 BUG();
836 /* Avoid "noreturn function does return". */
837 for (;;)
838 cpu_relax(); /* For when BUG is null */
839 }
840
841 EXPORT_SYMBOL_GPL(do_exit);
842
843 void complete_and_exit(struct completion *comp, long code)
844 {
845 if (comp)
846 complete(comp);
847
848 do_exit(code);
849 }
850
851 EXPORT_SYMBOL(complete_and_exit);
852
853 SYSCALL_DEFINE1(exit, int, error_code)
854 {
855 do_exit((error_code&0xff)<<8);
856 }
857
858 /*
859 * Take down every thread in the group. This is called by fatal signals
860 * as well as by sys_exit_group (below).
861 */
862 void
863 do_group_exit(int exit_code)
864 {
865 struct signal_struct *sig = current->signal;
866
867 BUG_ON(exit_code & 0x80); /* core dumps don't get here */
868
869 if (signal_group_exit(sig))
870 exit_code = sig->group_exit_code;
871 else if (!thread_group_empty(current)) {
872 struct sighand_struct *const sighand = current->sighand;
873 spin_lock_irq(&sighand->siglock);
874 if (signal_group_exit(sig))
875 /* Another thread got here before we took the lock. */
876 exit_code = sig->group_exit_code;
877 else {
878 sig->group_exit_code = exit_code;
879 sig->flags = SIGNAL_GROUP_EXIT;
880 zap_other_threads(current);
881 }
882 spin_unlock_irq(&sighand->siglock);
883 }
884
885 do_exit(exit_code);
886 /* NOTREACHED */
887 }
888
889 /*
890 * this kills every thread in the thread group. Note that any externally
891 * wait4()-ing process will get the correct exit code - even if this
892 * thread is not the thread group leader.
893 */
894 SYSCALL_DEFINE1(exit_group, int, error_code)
895 {
896 do_group_exit((error_code & 0xff) << 8);
897 /* NOTREACHED */
898 return 0;
899 }
900
901 struct wait_opts {
902 enum pid_type wo_type;
903 int wo_flags;
904 struct pid *wo_pid;
905
906 struct siginfo __user *wo_info;
907 int __user *wo_stat;
908 struct rusage __user *wo_rusage;
909
910 wait_queue_t child_wait;
911 int notask_error;
912 };
913
914 static inline
915 struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
916 {
917 if (type != PIDTYPE_PID)
918 task = task->group_leader;
919 return task->pids[type].pid;
920 }
921
922 static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
923 {
924 return wo->wo_type == PIDTYPE_MAX ||
925 task_pid_type(p, wo->wo_type) == wo->wo_pid;
926 }
927
928 static int eligible_child(struct wait_opts *wo, struct task_struct *p)
929 {
930 if (!eligible_pid(wo, p))
931 return 0;
932 /* Wait for all children (clone and not) if __WALL is set;
933 * otherwise, wait for clone children *only* if __WCLONE is
934 * set; otherwise, wait for non-clone children *only*. (Note:
935 * A "clone" child here is one that reports to its parent
936 * using a signal other than SIGCHLD.) */
937 if (((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
938 && !(wo->wo_flags & __WALL))
939 return 0;
940
941 return 1;
942 }
943
944 static int wait_noreap_copyout(struct wait_opts *wo, struct task_struct *p,
945 pid_t pid, uid_t uid, int why, int status)
946 {
947 struct siginfo __user *infop;
948 int retval = wo->wo_rusage
949 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
950
951 put_task_struct(p);
952 infop = wo->wo_info;
953 if (infop) {
954 if (!retval)
955 retval = put_user(SIGCHLD, &infop->si_signo);
956 if (!retval)
957 retval = put_user(0, &infop->si_errno);
958 if (!retval)
959 retval = put_user((short)why, &infop->si_code);
960 if (!retval)
961 retval = put_user(pid, &infop->si_pid);
962 if (!retval)
963 retval = put_user(uid, &infop->si_uid);
964 if (!retval)
965 retval = put_user(status, &infop->si_status);
966 }
967 if (!retval)
968 retval = pid;
969 return retval;
970 }
971
972 /*
973 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold
974 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
975 * the lock and this task is uninteresting. If we return nonzero, we have
976 * released the lock and the system call should return.
977 */
978 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
979 {
980 unsigned long state;
981 int retval, status, traced;
982 pid_t pid = task_pid_vnr(p);
983 uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
984 struct siginfo __user *infop;
985
986 if (!likely(wo->wo_flags & WEXITED))
987 return 0;
988
989 if (unlikely(wo->wo_flags & WNOWAIT)) {
990 int exit_code = p->exit_code;
991 int why;
992
993 get_task_struct(p);
994 read_unlock(&tasklist_lock);
995 if ((exit_code & 0x7f) == 0) {
996 why = CLD_EXITED;
997 status = exit_code >> 8;
998 } else {
999 why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
1000 status = exit_code & 0x7f;
1001 }
1002 return wait_noreap_copyout(wo, p, pid, uid, why, status);
1003 }
1004
1005 traced = ptrace_reparented(p);
1006 /*
1007 * Move the task's state to DEAD/TRACE, only one thread can do this.
1008 */
1009 state = traced && thread_group_leader(p) ? EXIT_TRACE : EXIT_DEAD;
1010 if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE)
1011 return 0;
1012 /*
1013 * It can be ptraced but not reparented, check
1014 * thread_group_leader() to filter out sub-threads.
1015 */
1016 if (likely(!traced) && thread_group_leader(p)) {
1017 struct signal_struct *psig;
1018 struct signal_struct *sig;
1019 unsigned long maxrss;
1020 cputime_t tgutime, tgstime;
1021
1022 /*
1023 * The resource counters for the group leader are in its
1024 * own task_struct. Those for dead threads in the group
1025 * are in its signal_struct, as are those for the child
1026 * processes it has previously reaped. All these
1027 * accumulate in the parent's signal_struct c* fields.
1028 *
1029 * We don't bother to take a lock here to protect these
1030 * p->signal fields, because they are only touched by
1031 * __exit_signal, which runs with tasklist_lock
1032 * write-locked anyway, and so is excluded here. We do
1033 * need to protect the access to parent->signal fields,
1034 * as other threads in the parent group can be right
1035 * here reaping other children at the same time.
1036 *
1037 * We use thread_group_cputime_adjusted() to get times for the thread
1038 * group, which consolidates times for all threads in the
1039 * group including the group leader.
1040 */
1041 thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1042 spin_lock_irq(&p->real_parent->sighand->siglock);
1043 psig = p->real_parent->signal;
1044 sig = p->signal;
1045 psig->cutime += tgutime + sig->cutime;
1046 psig->cstime += tgstime + sig->cstime;
1047 psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime;
1048 psig->cmin_flt +=
1049 p->min_flt + sig->min_flt + sig->cmin_flt;
1050 psig->cmaj_flt +=
1051 p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1052 psig->cnvcsw +=
1053 p->nvcsw + sig->nvcsw + sig->cnvcsw;
1054 psig->cnivcsw +=
1055 p->nivcsw + sig->nivcsw + sig->cnivcsw;
1056 psig->cinblock +=
1057 task_io_get_inblock(p) +
1058 sig->inblock + sig->cinblock;
1059 psig->coublock +=
1060 task_io_get_oublock(p) +
1061 sig->oublock + sig->coublock;
1062 maxrss = max(sig->maxrss, sig->cmaxrss);
1063 if (psig->cmaxrss < maxrss)
1064 psig->cmaxrss = maxrss;
1065 task_io_accounting_add(&psig->ioac, &p->ioac);
1066 task_io_accounting_add(&psig->ioac, &sig->ioac);
1067 spin_unlock_irq(&p->real_parent->sighand->siglock);
1068 }
1069
1070 /*
1071 * Now we are sure this task is interesting, and no other
1072 * thread can reap it because we its state == DEAD/TRACE.
1073 */
1074 read_unlock(&tasklist_lock);
1075
1076 retval = wo->wo_rusage
1077 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1078 status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1079 ? p->signal->group_exit_code : p->exit_code;
1080 if (!retval && wo->wo_stat)
1081 retval = put_user(status, wo->wo_stat);
1082
1083 infop = wo->wo_info;
1084 if (!retval && infop)
1085 retval = put_user(SIGCHLD, &infop->si_signo);
1086 if (!retval && infop)
1087 retval = put_user(0, &infop->si_errno);
1088 if (!retval && infop) {
1089 int why;
1090
1091 if ((status & 0x7f) == 0) {
1092 why = CLD_EXITED;
1093 status >>= 8;
1094 } else {
1095 why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1096 status &= 0x7f;
1097 }
1098 retval = put_user((short)why, &infop->si_code);
1099 if (!retval)
1100 retval = put_user(status, &infop->si_status);
1101 }
1102 if (!retval && infop)
1103 retval = put_user(pid, &infop->si_pid);
1104 if (!retval && infop)
1105 retval = put_user(uid, &infop->si_uid);
1106 if (!retval)
1107 retval = pid;
1108
1109 if (state == EXIT_TRACE) {
1110 write_lock_irq(&tasklist_lock);
1111 /* We dropped tasklist, ptracer could die and untrace */
1112 ptrace_unlink(p);
1113
1114 /* If parent wants a zombie, don't release it now */
1115 state = EXIT_ZOMBIE;
1116 if (do_notify_parent(p, p->exit_signal))
1117 state = EXIT_DEAD;
1118 p->exit_state = state;
1119 write_unlock_irq(&tasklist_lock);
1120 }
1121 if (state == EXIT_DEAD)
1122 release_task(p);
1123
1124 return retval;
1125 }
1126
1127 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1128 {
1129 if (ptrace) {
1130 if (task_is_stopped_or_traced(p) &&
1131 !(p->jobctl & JOBCTL_LISTENING))
1132 return &p->exit_code;
1133 } else {
1134 if (p->signal->flags & SIGNAL_STOP_STOPPED)
1135 return &p->signal->group_exit_code;
1136 }
1137 return NULL;
1138 }
1139
1140 /**
1141 * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1142 * @wo: wait options
1143 * @ptrace: is the wait for ptrace
1144 * @p: task to wait for
1145 *
1146 * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1147 *
1148 * CONTEXT:
1149 * read_lock(&tasklist_lock), which is released if return value is
1150 * non-zero. Also, grabs and releases @p->sighand->siglock.
1151 *
1152 * RETURNS:
1153 * 0 if wait condition didn't exist and search for other wait conditions
1154 * should continue. Non-zero return, -errno on failure and @p's pid on
1155 * success, implies that tasklist_lock is released and wait condition
1156 * search should terminate.
1157 */
1158 static int wait_task_stopped(struct wait_opts *wo,
1159 int ptrace, struct task_struct *p)
1160 {
1161 struct siginfo __user *infop;
1162 int retval, exit_code, *p_code, why;
1163 uid_t uid = 0; /* unneeded, required by compiler */
1164 pid_t pid;
1165
1166 /*
1167 * Traditionally we see ptrace'd stopped tasks regardless of options.
1168 */
1169 if (!ptrace && !(wo->wo_flags & WUNTRACED))
1170 return 0;
1171
1172 if (!task_stopped_code(p, ptrace))
1173 return 0;
1174
1175 exit_code = 0;
1176 spin_lock_irq(&p->sighand->siglock);
1177
1178 p_code = task_stopped_code(p, ptrace);
1179 if (unlikely(!p_code))
1180 goto unlock_sig;
1181
1182 exit_code = *p_code;
1183 if (!exit_code)
1184 goto unlock_sig;
1185
1186 if (!unlikely(wo->wo_flags & WNOWAIT))
1187 *p_code = 0;
1188
1189 uid = from_kuid_munged(current_user_ns(), task_uid(p));
1190 unlock_sig:
1191 spin_unlock_irq(&p->sighand->siglock);
1192 if (!exit_code)
1193 return 0;
1194
1195 /*
1196 * Now we are pretty sure this task is interesting.
1197 * Make sure it doesn't get reaped out from under us while we
1198 * give up the lock and then examine it below. We don't want to
1199 * keep holding onto the tasklist_lock while we call getrusage and
1200 * possibly take page faults for user memory.
1201 */
1202 get_task_struct(p);
1203 pid = task_pid_vnr(p);
1204 why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1205 read_unlock(&tasklist_lock);
1206
1207 if (unlikely(wo->wo_flags & WNOWAIT))
1208 return wait_noreap_copyout(wo, p, pid, uid, why, exit_code);
1209
1210 retval = wo->wo_rusage
1211 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1212 if (!retval && wo->wo_stat)
1213 retval = put_user((exit_code << 8) | 0x7f, wo->wo_stat);
1214
1215 infop = wo->wo_info;
1216 if (!retval && infop)
1217 retval = put_user(SIGCHLD, &infop->si_signo);
1218 if (!retval && infop)
1219 retval = put_user(0, &infop->si_errno);
1220 if (!retval && infop)
1221 retval = put_user((short)why, &infop->si_code);
1222 if (!retval && infop)
1223 retval = put_user(exit_code, &infop->si_status);
1224 if (!retval && infop)
1225 retval = put_user(pid, &infop->si_pid);
1226 if (!retval && infop)
1227 retval = put_user(uid, &infop->si_uid);
1228 if (!retval)
1229 retval = pid;
1230 put_task_struct(p);
1231
1232 BUG_ON(!retval);
1233 return retval;
1234 }
1235
1236 /*
1237 * Handle do_wait work for one task in a live, non-stopped state.
1238 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1239 * the lock and this task is uninteresting. If we return nonzero, we have
1240 * released the lock and the system call should return.
1241 */
1242 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1243 {
1244 int retval;
1245 pid_t pid;
1246 uid_t uid;
1247
1248 if (!unlikely(wo->wo_flags & WCONTINUED))
1249 return 0;
1250
1251 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1252 return 0;
1253
1254 spin_lock_irq(&p->sighand->siglock);
1255 /* Re-check with the lock held. */
1256 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1257 spin_unlock_irq(&p->sighand->siglock);
1258 return 0;
1259 }
1260 if (!unlikely(wo->wo_flags & WNOWAIT))
1261 p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1262 uid = from_kuid_munged(current_user_ns(), task_uid(p));
1263 spin_unlock_irq(&p->sighand->siglock);
1264
1265 pid = task_pid_vnr(p);
1266 get_task_struct(p);
1267 read_unlock(&tasklist_lock);
1268
1269 if (!wo->wo_info) {
1270 retval = wo->wo_rusage
1271 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1272 put_task_struct(p);
1273 if (!retval && wo->wo_stat)
1274 retval = put_user(0xffff, wo->wo_stat);
1275 if (!retval)
1276 retval = pid;
1277 } else {
1278 retval = wait_noreap_copyout(wo, p, pid, uid,
1279 CLD_CONTINUED, SIGCONT);
1280 BUG_ON(retval == 0);
1281 }
1282
1283 return retval;
1284 }
1285
1286 /*
1287 * Consider @p for a wait by @parent.
1288 *
1289 * -ECHILD should be in ->notask_error before the first call.
1290 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1291 * Returns zero if the search for a child should continue;
1292 * then ->notask_error is 0 if @p is an eligible child,
1293 * or another error from security_task_wait(), or still -ECHILD.
1294 */
1295 static int wait_consider_task(struct wait_opts *wo, int ptrace,
1296 struct task_struct *p)
1297 {
1298 int ret;
1299
1300 if (unlikely(p->exit_state == EXIT_DEAD))
1301 return 0;
1302
1303 ret = eligible_child(wo, p);
1304 if (!ret)
1305 return ret;
1306
1307 ret = security_task_wait(p);
1308 if (unlikely(ret < 0)) {
1309 /*
1310 * If we have not yet seen any eligible child,
1311 * then let this error code replace -ECHILD.
1312 * A permission error will give the user a clue
1313 * to look for security policy problems, rather
1314 * than for mysterious wait bugs.
1315 */
1316 if (wo->notask_error)
1317 wo->notask_error = ret;
1318 return 0;
1319 }
1320
1321 if (unlikely(p->exit_state == EXIT_TRACE)) {
1322 /*
1323 * ptrace == 0 means we are the natural parent. In this case
1324 * we should clear notask_error, debugger will notify us.
1325 */
1326 if (likely(!ptrace))
1327 wo->notask_error = 0;
1328 return 0;
1329 }
1330
1331 if (likely(!ptrace) && unlikely(p->ptrace)) {
1332 /*
1333 * If it is traced by its real parent's group, just pretend
1334 * the caller is ptrace_do_wait() and reap this child if it
1335 * is zombie.
1336 *
1337 * This also hides group stop state from real parent; otherwise
1338 * a single stop can be reported twice as group and ptrace stop.
1339 * If a ptracer wants to distinguish these two events for its
1340 * own children it should create a separate process which takes
1341 * the role of real parent.
1342 */
1343 if (!ptrace_reparented(p))
1344 ptrace = 1;
1345 }
1346
1347 /* slay zombie? */
1348 if (p->exit_state == EXIT_ZOMBIE) {
1349 /* we don't reap group leaders with subthreads */
1350 if (!delay_group_leader(p)) {
1351 /*
1352 * A zombie ptracee is only visible to its ptracer.
1353 * Notification and reaping will be cascaded to the
1354 * real parent when the ptracer detaches.
1355 */
1356 if (unlikely(ptrace) || likely(!p->ptrace))
1357 return wait_task_zombie(wo, p);
1358 }
1359
1360 /*
1361 * Allow access to stopped/continued state via zombie by
1362 * falling through. Clearing of notask_error is complex.
1363 *
1364 * When !@ptrace:
1365 *
1366 * If WEXITED is set, notask_error should naturally be
1367 * cleared. If not, subset of WSTOPPED|WCONTINUED is set,
1368 * so, if there are live subthreads, there are events to
1369 * wait for. If all subthreads are dead, it's still safe
1370 * to clear - this function will be called again in finite
1371 * amount time once all the subthreads are released and
1372 * will then return without clearing.
1373 *
1374 * When @ptrace:
1375 *
1376 * Stopped state is per-task and thus can't change once the
1377 * target task dies. Only continued and exited can happen.
1378 * Clear notask_error if WCONTINUED | WEXITED.
1379 */
1380 if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1381 wo->notask_error = 0;
1382 } else {
1383 /*
1384 * @p is alive and it's gonna stop, continue or exit, so
1385 * there always is something to wait for.
1386 */
1387 wo->notask_error = 0;
1388 }
1389
1390 /*
1391 * Wait for stopped. Depending on @ptrace, different stopped state
1392 * is used and the two don't interact with each other.
1393 */
1394 ret = wait_task_stopped(wo, ptrace, p);
1395 if (ret)
1396 return ret;
1397
1398 /*
1399 * Wait for continued. There's only one continued state and the
1400 * ptracer can consume it which can confuse the real parent. Don't
1401 * use WCONTINUED from ptracer. You don't need or want it.
1402 */
1403 return wait_task_continued(wo, p);
1404 }
1405
1406 /*
1407 * Do the work of do_wait() for one thread in the group, @tsk.
1408 *
1409 * -ECHILD should be in ->notask_error before the first call.
1410 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1411 * Returns zero if the search for a child should continue; then
1412 * ->notask_error is 0 if there were any eligible children,
1413 * or another error from security_task_wait(), or still -ECHILD.
1414 */
1415 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1416 {
1417 struct task_struct *p;
1418
1419 list_for_each_entry(p, &tsk->children, sibling) {
1420 int ret = wait_consider_task(wo, 0, p);
1421 if (ret)
1422 return ret;
1423 }
1424
1425 return 0;
1426 }
1427
1428 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1429 {
1430 struct task_struct *p;
1431
1432 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1433 int ret = wait_consider_task(wo, 1, p);
1434 if (ret)
1435 return ret;
1436 }
1437
1438 return 0;
1439 }
1440
1441 static int child_wait_callback(wait_queue_t *wait, unsigned mode,
1442 int sync, void *key)
1443 {
1444 struct wait_opts *wo = container_of(wait, struct wait_opts,
1445 child_wait);
1446 struct task_struct *p = key;
1447
1448 if (!eligible_pid(wo, p))
1449 return 0;
1450
1451 if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1452 return 0;
1453
1454 return default_wake_function(wait, mode, sync, key);
1455 }
1456
1457 void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1458 {
1459 __wake_up_sync_key(&parent->signal->wait_chldexit,
1460 TASK_INTERRUPTIBLE, 1, p);
1461 }
1462
1463 static long do_wait(struct wait_opts *wo)
1464 {
1465 struct task_struct *tsk;
1466 int retval;
1467
1468 trace_sched_process_wait(wo->wo_pid);
1469
1470 init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1471 wo->child_wait.private = current;
1472 add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1473 repeat:
1474 /*
1475 * If there is nothing that can match our critiera just get out.
1476 * We will clear ->notask_error to zero if we see any child that
1477 * might later match our criteria, even if we are not able to reap
1478 * it yet.
1479 */
1480 wo->notask_error = -ECHILD;
1481 if ((wo->wo_type < PIDTYPE_MAX) &&
1482 (!wo->wo_pid || hlist_empty(&wo->wo_pid->tasks[wo->wo_type])))
1483 goto notask;
1484
1485 set_current_state(TASK_INTERRUPTIBLE);
1486 read_lock(&tasklist_lock);
1487 tsk = current;
1488 do {
1489 retval = do_wait_thread(wo, tsk);
1490 if (retval)
1491 goto end;
1492
1493 retval = ptrace_do_wait(wo, tsk);
1494 if (retval)
1495 goto end;
1496
1497 if (wo->wo_flags & __WNOTHREAD)
1498 break;
1499 } while_each_thread(current, tsk);
1500 read_unlock(&tasklist_lock);
1501
1502 notask:
1503 retval = wo->notask_error;
1504 if (!retval && !(wo->wo_flags & WNOHANG)) {
1505 retval = -ERESTARTSYS;
1506 if (!signal_pending(current)) {
1507 schedule();
1508 goto repeat;
1509 }
1510 }
1511 end:
1512 __set_current_state(TASK_RUNNING);
1513 remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1514 return retval;
1515 }
1516
1517 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1518 infop, int, options, struct rusage __user *, ru)
1519 {
1520 struct wait_opts wo;
1521 struct pid *pid = NULL;
1522 enum pid_type type;
1523 long ret;
1524
1525 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED))
1526 return -EINVAL;
1527 if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1528 return -EINVAL;
1529
1530 switch (which) {
1531 case P_ALL:
1532 type = PIDTYPE_MAX;
1533 break;
1534 case P_PID:
1535 type = PIDTYPE_PID;
1536 if (upid <= 0)
1537 return -EINVAL;
1538 break;
1539 case P_PGID:
1540 type = PIDTYPE_PGID;
1541 if (upid <= 0)
1542 return -EINVAL;
1543 break;
1544 default:
1545 return -EINVAL;
1546 }
1547
1548 if (type < PIDTYPE_MAX)
1549 pid = find_get_pid(upid);
1550
1551 wo.wo_type = type;
1552 wo.wo_pid = pid;
1553 wo.wo_flags = options;
1554 wo.wo_info = infop;
1555 wo.wo_stat = NULL;
1556 wo.wo_rusage = ru;
1557 ret = do_wait(&wo);
1558
1559 if (ret > 0) {
1560 ret = 0;
1561 } else if (infop) {
1562 /*
1563 * For a WNOHANG return, clear out all the fields
1564 * we would set so the user can easily tell the
1565 * difference.
1566 */
1567 if (!ret)
1568 ret = put_user(0, &infop->si_signo);
1569 if (!ret)
1570 ret = put_user(0, &infop->si_errno);
1571 if (!ret)
1572 ret = put_user(0, &infop->si_code);
1573 if (!ret)
1574 ret = put_user(0, &infop->si_pid);
1575 if (!ret)
1576 ret = put_user(0, &infop->si_uid);
1577 if (!ret)
1578 ret = put_user(0, &infop->si_status);
1579 }
1580
1581 put_pid(pid);
1582 return ret;
1583 }
1584
1585 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1586 int, options, struct rusage __user *, ru)
1587 {
1588 struct wait_opts wo;
1589 struct pid *pid = NULL;
1590 enum pid_type type;
1591 long ret;
1592
1593 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1594 __WNOTHREAD|__WCLONE|__WALL))
1595 return -EINVAL;
1596
1597 if (upid == -1)
1598 type = PIDTYPE_MAX;
1599 else if (upid < 0) {
1600 type = PIDTYPE_PGID;
1601 pid = find_get_pid(-upid);
1602 } else if (upid == 0) {
1603 type = PIDTYPE_PGID;
1604 pid = get_task_pid(current, PIDTYPE_PGID);
1605 } else /* upid > 0 */ {
1606 type = PIDTYPE_PID;
1607 pid = find_get_pid(upid);
1608 }
1609
1610 wo.wo_type = type;
1611 wo.wo_pid = pid;
1612 wo.wo_flags = options | WEXITED;
1613 wo.wo_info = NULL;
1614 wo.wo_stat = stat_addr;
1615 wo.wo_rusage = ru;
1616 ret = do_wait(&wo);
1617 put_pid(pid);
1618
1619 return ret;
1620 }
1621
1622 #ifdef __ARCH_WANT_SYS_WAITPID
1623
1624 /*
1625 * sys_waitpid() remains for compatibility. waitpid() should be
1626 * implemented by calling sys_wait4() from libc.a.
1627 */
1628 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1629 {
1630 return sys_wait4(pid, stat_addr, options, NULL);
1631 }
1632
1633 #endif
This page took 0.084336 seconds and 5 git commands to generate.