ARM: support generic per-device coherent dma mem
[deliverable/linux.git] / kernel / exit.c
1 /*
2 * linux/kernel/exit.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 #include <linux/mm.h>
8 #include <linux/slab.h>
9 #include <linux/interrupt.h>
10 #include <linux/module.h>
11 #include <linux/capability.h>
12 #include <linux/completion.h>
13 #include <linux/personality.h>
14 #include <linux/tty.h>
15 #include <linux/mnt_namespace.h>
16 #include <linux/iocontext.h>
17 #include <linux/key.h>
18 #include <linux/security.h>
19 #include <linux/cpu.h>
20 #include <linux/acct.h>
21 #include <linux/tsacct_kern.h>
22 #include <linux/file.h>
23 #include <linux/fdtable.h>
24 #include <linux/binfmts.h>
25 #include <linux/nsproxy.h>
26 #include <linux/pid_namespace.h>
27 #include <linux/ptrace.h>
28 #include <linux/profile.h>
29 #include <linux/mount.h>
30 #include <linux/proc_fs.h>
31 #include <linux/kthread.h>
32 #include <linux/mempolicy.h>
33 #include <linux/taskstats_kern.h>
34 #include <linux/delayacct.h>
35 #include <linux/freezer.h>
36 #include <linux/cgroup.h>
37 #include <linux/syscalls.h>
38 #include <linux/signal.h>
39 #include <linux/posix-timers.h>
40 #include <linux/cn_proc.h>
41 #include <linux/mutex.h>
42 #include <linux/futex.h>
43 #include <linux/compat.h>
44 #include <linux/pipe_fs_i.h>
45 #include <linux/audit.h> /* for audit_free() */
46 #include <linux/resource.h>
47 #include <linux/blkdev.h>
48 #include <linux/task_io_accounting_ops.h>
49
50 #include <asm/uaccess.h>
51 #include <asm/unistd.h>
52 #include <asm/pgtable.h>
53 #include <asm/mmu_context.h>
54
55 static void exit_mm(struct task_struct * tsk);
56
57 static inline int task_detached(struct task_struct *p)
58 {
59 return p->exit_signal == -1;
60 }
61
62 static void __unhash_process(struct task_struct *p)
63 {
64 nr_threads--;
65 detach_pid(p, PIDTYPE_PID);
66 if (thread_group_leader(p)) {
67 detach_pid(p, PIDTYPE_PGID);
68 detach_pid(p, PIDTYPE_SID);
69
70 list_del_rcu(&p->tasks);
71 __get_cpu_var(process_counts)--;
72 }
73 list_del_rcu(&p->thread_group);
74 list_del_init(&p->sibling);
75 }
76
77 /*
78 * This function expects the tasklist_lock write-locked.
79 */
80 static void __exit_signal(struct task_struct *tsk)
81 {
82 struct signal_struct *sig = tsk->signal;
83 struct sighand_struct *sighand;
84
85 BUG_ON(!sig);
86 BUG_ON(!atomic_read(&sig->count));
87
88 rcu_read_lock();
89 sighand = rcu_dereference(tsk->sighand);
90 spin_lock(&sighand->siglock);
91
92 posix_cpu_timers_exit(tsk);
93 if (atomic_dec_and_test(&sig->count))
94 posix_cpu_timers_exit_group(tsk);
95 else {
96 /*
97 * If there is any task waiting for the group exit
98 * then notify it:
99 */
100 if (sig->group_exit_task && atomic_read(&sig->count) == sig->notify_count)
101 wake_up_process(sig->group_exit_task);
102
103 if (tsk == sig->curr_target)
104 sig->curr_target = next_thread(tsk);
105 /*
106 * Accumulate here the counters for all threads but the
107 * group leader as they die, so they can be added into
108 * the process-wide totals when those are taken.
109 * The group leader stays around as a zombie as long
110 * as there are other threads. When it gets reaped,
111 * the exit.c code will add its counts into these totals.
112 * We won't ever get here for the group leader, since it
113 * will have been the last reference on the signal_struct.
114 */
115 sig->utime = cputime_add(sig->utime, tsk->utime);
116 sig->stime = cputime_add(sig->stime, tsk->stime);
117 sig->gtime = cputime_add(sig->gtime, tsk->gtime);
118 sig->min_flt += tsk->min_flt;
119 sig->maj_flt += tsk->maj_flt;
120 sig->nvcsw += tsk->nvcsw;
121 sig->nivcsw += tsk->nivcsw;
122 sig->inblock += task_io_get_inblock(tsk);
123 sig->oublock += task_io_get_oublock(tsk);
124 sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
125 sig = NULL; /* Marker for below. */
126 }
127
128 __unhash_process(tsk);
129
130 /*
131 * Do this under ->siglock, we can race with another thread
132 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
133 */
134 flush_sigqueue(&tsk->pending);
135
136 tsk->signal = NULL;
137 tsk->sighand = NULL;
138 spin_unlock(&sighand->siglock);
139 rcu_read_unlock();
140
141 __cleanup_sighand(sighand);
142 clear_tsk_thread_flag(tsk,TIF_SIGPENDING);
143 if (sig) {
144 flush_sigqueue(&sig->shared_pending);
145 taskstats_tgid_free(sig);
146 __cleanup_signal(sig);
147 }
148 }
149
150 static void delayed_put_task_struct(struct rcu_head *rhp)
151 {
152 put_task_struct(container_of(rhp, struct task_struct, rcu));
153 }
154
155 /*
156 * Do final ptrace-related cleanup of a zombie being reaped.
157 *
158 * Called with write_lock(&tasklist_lock) held.
159 */
160 static void ptrace_release_task(struct task_struct *p)
161 {
162 BUG_ON(!list_empty(&p->ptraced));
163 ptrace_unlink(p);
164 BUG_ON(!list_empty(&p->ptrace_entry));
165 }
166
167 void release_task(struct task_struct * p)
168 {
169 struct task_struct *leader;
170 int zap_leader;
171 repeat:
172 atomic_dec(&p->user->processes);
173 proc_flush_task(p);
174 write_lock_irq(&tasklist_lock);
175 ptrace_release_task(p);
176 __exit_signal(p);
177
178 /*
179 * If we are the last non-leader member of the thread
180 * group, and the leader is zombie, then notify the
181 * group leader's parent process. (if it wants notification.)
182 */
183 zap_leader = 0;
184 leader = p->group_leader;
185 if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) {
186 BUG_ON(task_detached(leader));
187 do_notify_parent(leader, leader->exit_signal);
188 /*
189 * If we were the last child thread and the leader has
190 * exited already, and the leader's parent ignores SIGCHLD,
191 * then we are the one who should release the leader.
192 *
193 * do_notify_parent() will have marked it self-reaping in
194 * that case.
195 */
196 zap_leader = task_detached(leader);
197 }
198
199 write_unlock_irq(&tasklist_lock);
200 release_thread(p);
201 call_rcu(&p->rcu, delayed_put_task_struct);
202
203 p = leader;
204 if (unlikely(zap_leader))
205 goto repeat;
206 }
207
208 /*
209 * This checks not only the pgrp, but falls back on the pid if no
210 * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
211 * without this...
212 *
213 * The caller must hold rcu lock or the tasklist lock.
214 */
215 struct pid *session_of_pgrp(struct pid *pgrp)
216 {
217 struct task_struct *p;
218 struct pid *sid = NULL;
219
220 p = pid_task(pgrp, PIDTYPE_PGID);
221 if (p == NULL)
222 p = pid_task(pgrp, PIDTYPE_PID);
223 if (p != NULL)
224 sid = task_session(p);
225
226 return sid;
227 }
228
229 /*
230 * Determine if a process group is "orphaned", according to the POSIX
231 * definition in 2.2.2.52. Orphaned process groups are not to be affected
232 * by terminal-generated stop signals. Newly orphaned process groups are
233 * to receive a SIGHUP and a SIGCONT.
234 *
235 * "I ask you, have you ever known what it is to be an orphan?"
236 */
237 static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task)
238 {
239 struct task_struct *p;
240
241 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
242 if ((p == ignored_task) ||
243 (p->exit_state && thread_group_empty(p)) ||
244 is_global_init(p->real_parent))
245 continue;
246
247 if (task_pgrp(p->real_parent) != pgrp &&
248 task_session(p->real_parent) == task_session(p))
249 return 0;
250 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
251
252 return 1;
253 }
254
255 int is_current_pgrp_orphaned(void)
256 {
257 int retval;
258
259 read_lock(&tasklist_lock);
260 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
261 read_unlock(&tasklist_lock);
262
263 return retval;
264 }
265
266 static int has_stopped_jobs(struct pid *pgrp)
267 {
268 int retval = 0;
269 struct task_struct *p;
270
271 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
272 if (!task_is_stopped(p))
273 continue;
274 retval = 1;
275 break;
276 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
277 return retval;
278 }
279
280 /*
281 * Check to see if any process groups have become orphaned as
282 * a result of our exiting, and if they have any stopped jobs,
283 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
284 */
285 static void
286 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
287 {
288 struct pid *pgrp = task_pgrp(tsk);
289 struct task_struct *ignored_task = tsk;
290
291 if (!parent)
292 /* exit: our father is in a different pgrp than
293 * we are and we were the only connection outside.
294 */
295 parent = tsk->real_parent;
296 else
297 /* reparent: our child is in a different pgrp than
298 * we are, and it was the only connection outside.
299 */
300 ignored_task = NULL;
301
302 if (task_pgrp(parent) != pgrp &&
303 task_session(parent) == task_session(tsk) &&
304 will_become_orphaned_pgrp(pgrp, ignored_task) &&
305 has_stopped_jobs(pgrp)) {
306 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
307 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
308 }
309 }
310
311 /**
312 * reparent_to_kthreadd - Reparent the calling kernel thread to kthreadd
313 *
314 * If a kernel thread is launched as a result of a system call, or if
315 * it ever exits, it should generally reparent itself to kthreadd so it
316 * isn't in the way of other processes and is correctly cleaned up on exit.
317 *
318 * The various task state such as scheduling policy and priority may have
319 * been inherited from a user process, so we reset them to sane values here.
320 *
321 * NOTE that reparent_to_kthreadd() gives the caller full capabilities.
322 */
323 static void reparent_to_kthreadd(void)
324 {
325 write_lock_irq(&tasklist_lock);
326
327 ptrace_unlink(current);
328 /* Reparent to init */
329 current->real_parent = current->parent = kthreadd_task;
330 list_move_tail(&current->sibling, &current->real_parent->children);
331
332 /* Set the exit signal to SIGCHLD so we signal init on exit */
333 current->exit_signal = SIGCHLD;
334
335 if (task_nice(current) < 0)
336 set_user_nice(current, 0);
337 /* cpus_allowed? */
338 /* rt_priority? */
339 /* signals? */
340 security_task_reparent_to_init(current);
341 memcpy(current->signal->rlim, init_task.signal->rlim,
342 sizeof(current->signal->rlim));
343 atomic_inc(&(INIT_USER->__count));
344 write_unlock_irq(&tasklist_lock);
345 switch_uid(INIT_USER);
346 }
347
348 void __set_special_pids(struct pid *pid)
349 {
350 struct task_struct *curr = current->group_leader;
351 pid_t nr = pid_nr(pid);
352
353 if (task_session(curr) != pid) {
354 change_pid(curr, PIDTYPE_SID, pid);
355 set_task_session(curr, nr);
356 }
357 if (task_pgrp(curr) != pid) {
358 change_pid(curr, PIDTYPE_PGID, pid);
359 set_task_pgrp(curr, nr);
360 }
361 }
362
363 static void set_special_pids(struct pid *pid)
364 {
365 write_lock_irq(&tasklist_lock);
366 __set_special_pids(pid);
367 write_unlock_irq(&tasklist_lock);
368 }
369
370 /*
371 * Let kernel threads use this to say that they
372 * allow a certain signal (since daemonize() will
373 * have disabled all of them by default).
374 */
375 int allow_signal(int sig)
376 {
377 if (!valid_signal(sig) || sig < 1)
378 return -EINVAL;
379
380 spin_lock_irq(&current->sighand->siglock);
381 sigdelset(&current->blocked, sig);
382 if (!current->mm) {
383 /* Kernel threads handle their own signals.
384 Let the signal code know it'll be handled, so
385 that they don't get converted to SIGKILL or
386 just silently dropped */
387 current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2;
388 }
389 recalc_sigpending();
390 spin_unlock_irq(&current->sighand->siglock);
391 return 0;
392 }
393
394 EXPORT_SYMBOL(allow_signal);
395
396 int disallow_signal(int sig)
397 {
398 if (!valid_signal(sig) || sig < 1)
399 return -EINVAL;
400
401 spin_lock_irq(&current->sighand->siglock);
402 current->sighand->action[(sig)-1].sa.sa_handler = SIG_IGN;
403 recalc_sigpending();
404 spin_unlock_irq(&current->sighand->siglock);
405 return 0;
406 }
407
408 EXPORT_SYMBOL(disallow_signal);
409
410 /*
411 * Put all the gunge required to become a kernel thread without
412 * attached user resources in one place where it belongs.
413 */
414
415 void daemonize(const char *name, ...)
416 {
417 va_list args;
418 struct fs_struct *fs;
419 sigset_t blocked;
420
421 va_start(args, name);
422 vsnprintf(current->comm, sizeof(current->comm), name, args);
423 va_end(args);
424
425 /*
426 * If we were started as result of loading a module, close all of the
427 * user space pages. We don't need them, and if we didn't close them
428 * they would be locked into memory.
429 */
430 exit_mm(current);
431 /*
432 * We don't want to have TIF_FREEZE set if the system-wide hibernation
433 * or suspend transition begins right now.
434 */
435 current->flags |= PF_NOFREEZE;
436
437 if (current->nsproxy != &init_nsproxy) {
438 get_nsproxy(&init_nsproxy);
439 switch_task_namespaces(current, &init_nsproxy);
440 }
441 set_special_pids(&init_struct_pid);
442 proc_clear_tty(current);
443
444 /* Block and flush all signals */
445 sigfillset(&blocked);
446 sigprocmask(SIG_BLOCK, &blocked, NULL);
447 flush_signals(current);
448
449 /* Become as one with the init task */
450
451 exit_fs(current); /* current->fs->count--; */
452 fs = init_task.fs;
453 current->fs = fs;
454 atomic_inc(&fs->count);
455
456 exit_files(current);
457 current->files = init_task.files;
458 atomic_inc(&current->files->count);
459
460 reparent_to_kthreadd();
461 }
462
463 EXPORT_SYMBOL(daemonize);
464
465 static void close_files(struct files_struct * files)
466 {
467 int i, j;
468 struct fdtable *fdt;
469
470 j = 0;
471
472 /*
473 * It is safe to dereference the fd table without RCU or
474 * ->file_lock because this is the last reference to the
475 * files structure.
476 */
477 fdt = files_fdtable(files);
478 for (;;) {
479 unsigned long set;
480 i = j * __NFDBITS;
481 if (i >= fdt->max_fds)
482 break;
483 set = fdt->open_fds->fds_bits[j++];
484 while (set) {
485 if (set & 1) {
486 struct file * file = xchg(&fdt->fd[i], NULL);
487 if (file) {
488 filp_close(file, files);
489 cond_resched();
490 }
491 }
492 i++;
493 set >>= 1;
494 }
495 }
496 }
497
498 struct files_struct *get_files_struct(struct task_struct *task)
499 {
500 struct files_struct *files;
501
502 task_lock(task);
503 files = task->files;
504 if (files)
505 atomic_inc(&files->count);
506 task_unlock(task);
507
508 return files;
509 }
510
511 void put_files_struct(struct files_struct *files)
512 {
513 struct fdtable *fdt;
514
515 if (atomic_dec_and_test(&files->count)) {
516 close_files(files);
517 /*
518 * Free the fd and fdset arrays if we expanded them.
519 * If the fdtable was embedded, pass files for freeing
520 * at the end of the RCU grace period. Otherwise,
521 * you can free files immediately.
522 */
523 fdt = files_fdtable(files);
524 if (fdt != &files->fdtab)
525 kmem_cache_free(files_cachep, files);
526 free_fdtable(fdt);
527 }
528 }
529
530 void reset_files_struct(struct files_struct *files)
531 {
532 struct task_struct *tsk = current;
533 struct files_struct *old;
534
535 old = tsk->files;
536 task_lock(tsk);
537 tsk->files = files;
538 task_unlock(tsk);
539 put_files_struct(old);
540 }
541
542 void exit_files(struct task_struct *tsk)
543 {
544 struct files_struct * files = tsk->files;
545
546 if (files) {
547 task_lock(tsk);
548 tsk->files = NULL;
549 task_unlock(tsk);
550 put_files_struct(files);
551 }
552 }
553
554 void put_fs_struct(struct fs_struct *fs)
555 {
556 /* No need to hold fs->lock if we are killing it */
557 if (atomic_dec_and_test(&fs->count)) {
558 path_put(&fs->root);
559 path_put(&fs->pwd);
560 if (fs->altroot.dentry)
561 path_put(&fs->altroot);
562 kmem_cache_free(fs_cachep, fs);
563 }
564 }
565
566 void exit_fs(struct task_struct *tsk)
567 {
568 struct fs_struct * fs = tsk->fs;
569
570 if (fs) {
571 task_lock(tsk);
572 tsk->fs = NULL;
573 task_unlock(tsk);
574 put_fs_struct(fs);
575 }
576 }
577
578 EXPORT_SYMBOL_GPL(exit_fs);
579
580 #ifdef CONFIG_MM_OWNER
581 /*
582 * Task p is exiting and it owned mm, lets find a new owner for it
583 */
584 static inline int
585 mm_need_new_owner(struct mm_struct *mm, struct task_struct *p)
586 {
587 /*
588 * If there are other users of the mm and the owner (us) is exiting
589 * we need to find a new owner to take on the responsibility.
590 */
591 if (!mm)
592 return 0;
593 if (atomic_read(&mm->mm_users) <= 1)
594 return 0;
595 if (mm->owner != p)
596 return 0;
597 return 1;
598 }
599
600 void mm_update_next_owner(struct mm_struct *mm)
601 {
602 struct task_struct *c, *g, *p = current;
603
604 retry:
605 if (!mm_need_new_owner(mm, p))
606 return;
607
608 read_lock(&tasklist_lock);
609 /*
610 * Search in the children
611 */
612 list_for_each_entry(c, &p->children, sibling) {
613 if (c->mm == mm)
614 goto assign_new_owner;
615 }
616
617 /*
618 * Search in the siblings
619 */
620 list_for_each_entry(c, &p->parent->children, sibling) {
621 if (c->mm == mm)
622 goto assign_new_owner;
623 }
624
625 /*
626 * Search through everything else. We should not get
627 * here often
628 */
629 do_each_thread(g, c) {
630 if (c->mm == mm)
631 goto assign_new_owner;
632 } while_each_thread(g, c);
633
634 read_unlock(&tasklist_lock);
635 return;
636
637 assign_new_owner:
638 BUG_ON(c == p);
639 get_task_struct(c);
640 /*
641 * The task_lock protects c->mm from changing.
642 * We always want mm->owner->mm == mm
643 */
644 task_lock(c);
645 /*
646 * Delay read_unlock() till we have the task_lock()
647 * to ensure that c does not slip away underneath us
648 */
649 read_unlock(&tasklist_lock);
650 if (c->mm != mm) {
651 task_unlock(c);
652 put_task_struct(c);
653 goto retry;
654 }
655 cgroup_mm_owner_callbacks(mm->owner, c);
656 mm->owner = c;
657 task_unlock(c);
658 put_task_struct(c);
659 }
660 #endif /* CONFIG_MM_OWNER */
661
662 /*
663 * Turn us into a lazy TLB process if we
664 * aren't already..
665 */
666 static void exit_mm(struct task_struct * tsk)
667 {
668 struct mm_struct *mm = tsk->mm;
669
670 mm_release(tsk, mm);
671 if (!mm)
672 return;
673 /*
674 * Serialize with any possible pending coredump.
675 * We must hold mmap_sem around checking core_waiters
676 * and clearing tsk->mm. The core-inducing thread
677 * will increment core_waiters for each thread in the
678 * group with ->mm != NULL.
679 */
680 down_read(&mm->mmap_sem);
681 if (mm->core_waiters) {
682 up_read(&mm->mmap_sem);
683 down_write(&mm->mmap_sem);
684 if (!--mm->core_waiters)
685 complete(mm->core_startup_done);
686 up_write(&mm->mmap_sem);
687
688 wait_for_completion(&mm->core_done);
689 down_read(&mm->mmap_sem);
690 }
691 atomic_inc(&mm->mm_count);
692 BUG_ON(mm != tsk->active_mm);
693 /* more a memory barrier than a real lock */
694 task_lock(tsk);
695 tsk->mm = NULL;
696 up_read(&mm->mmap_sem);
697 enter_lazy_tlb(mm, current);
698 /* We don't want this task to be frozen prematurely */
699 clear_freeze_flag(tsk);
700 task_unlock(tsk);
701 mm_update_next_owner(mm);
702 mmput(mm);
703 }
704
705 /*
706 * Return nonzero if @parent's children should reap themselves.
707 *
708 * Called with write_lock_irq(&tasklist_lock) held.
709 */
710 static int ignoring_children(struct task_struct *parent)
711 {
712 int ret;
713 struct sighand_struct *psig = parent->sighand;
714 unsigned long flags;
715 spin_lock_irqsave(&psig->siglock, flags);
716 ret = (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
717 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT));
718 spin_unlock_irqrestore(&psig->siglock, flags);
719 return ret;
720 }
721
722 /*
723 * Detach all tasks we were using ptrace on.
724 * Any that need to be release_task'd are put on the @dead list.
725 *
726 * Called with write_lock(&tasklist_lock) held.
727 */
728 static void ptrace_exit(struct task_struct *parent, struct list_head *dead)
729 {
730 struct task_struct *p, *n;
731 int ign = -1;
732
733 list_for_each_entry_safe(p, n, &parent->ptraced, ptrace_entry) {
734 __ptrace_unlink(p);
735
736 if (p->exit_state != EXIT_ZOMBIE)
737 continue;
738
739 /*
740 * If it's a zombie, our attachedness prevented normal
741 * parent notification or self-reaping. Do notification
742 * now if it would have happened earlier. If it should
743 * reap itself, add it to the @dead list. We can't call
744 * release_task() here because we already hold tasklist_lock.
745 *
746 * If it's our own child, there is no notification to do.
747 * But if our normal children self-reap, then this child
748 * was prevented by ptrace and we must reap it now.
749 */
750 if (!task_detached(p) && thread_group_empty(p)) {
751 if (!same_thread_group(p->real_parent, parent))
752 do_notify_parent(p, p->exit_signal);
753 else {
754 if (ign < 0)
755 ign = ignoring_children(parent);
756 if (ign)
757 p->exit_signal = -1;
758 }
759 }
760
761 if (task_detached(p)) {
762 /*
763 * Mark it as in the process of being reaped.
764 */
765 p->exit_state = EXIT_DEAD;
766 list_add(&p->ptrace_entry, dead);
767 }
768 }
769 }
770
771 /*
772 * Finish up exit-time ptrace cleanup.
773 *
774 * Called without locks.
775 */
776 static void ptrace_exit_finish(struct task_struct *parent,
777 struct list_head *dead)
778 {
779 struct task_struct *p, *n;
780
781 BUG_ON(!list_empty(&parent->ptraced));
782
783 list_for_each_entry_safe(p, n, dead, ptrace_entry) {
784 list_del_init(&p->ptrace_entry);
785 release_task(p);
786 }
787 }
788
789 static void reparent_thread(struct task_struct *p, struct task_struct *father)
790 {
791 if (p->pdeath_signal)
792 /* We already hold the tasklist_lock here. */
793 group_send_sig_info(p->pdeath_signal, SEND_SIG_NOINFO, p);
794
795 list_move_tail(&p->sibling, &p->real_parent->children);
796
797 /* If this is a threaded reparent there is no need to
798 * notify anyone anything has happened.
799 */
800 if (same_thread_group(p->real_parent, father))
801 return;
802
803 /* We don't want people slaying init. */
804 if (!task_detached(p))
805 p->exit_signal = SIGCHLD;
806
807 /* If we'd notified the old parent about this child's death,
808 * also notify the new parent.
809 */
810 if (!ptrace_reparented(p) &&
811 p->exit_state == EXIT_ZOMBIE &&
812 !task_detached(p) && thread_group_empty(p))
813 do_notify_parent(p, p->exit_signal);
814
815 kill_orphaned_pgrp(p, father);
816 }
817
818 /*
819 * When we die, we re-parent all our children.
820 * Try to give them to another thread in our thread
821 * group, and if no such member exists, give it to
822 * the child reaper process (ie "init") in our pid
823 * space.
824 */
825 static void forget_original_parent(struct task_struct *father)
826 {
827 struct task_struct *p, *n, *reaper = father;
828 LIST_HEAD(ptrace_dead);
829
830 write_lock_irq(&tasklist_lock);
831
832 /*
833 * First clean up ptrace if we were using it.
834 */
835 ptrace_exit(father, &ptrace_dead);
836
837 do {
838 reaper = next_thread(reaper);
839 if (reaper == father) {
840 reaper = task_child_reaper(father);
841 break;
842 }
843 } while (reaper->flags & PF_EXITING);
844
845 list_for_each_entry_safe(p, n, &father->children, sibling) {
846 p->real_parent = reaper;
847 if (p->parent == father) {
848 BUG_ON(p->ptrace);
849 p->parent = p->real_parent;
850 }
851 reparent_thread(p, father);
852 }
853
854 write_unlock_irq(&tasklist_lock);
855 BUG_ON(!list_empty(&father->children));
856
857 ptrace_exit_finish(father, &ptrace_dead);
858 }
859
860 /*
861 * Send signals to all our closest relatives so that they know
862 * to properly mourn us..
863 */
864 static void exit_notify(struct task_struct *tsk, int group_dead)
865 {
866 int state;
867
868 /*
869 * This does two things:
870 *
871 * A. Make init inherit all the child processes
872 * B. Check to see if any process groups have become orphaned
873 * as a result of our exiting, and if they have any stopped
874 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
875 */
876 forget_original_parent(tsk);
877 exit_task_namespaces(tsk);
878
879 write_lock_irq(&tasklist_lock);
880 if (group_dead)
881 kill_orphaned_pgrp(tsk->group_leader, NULL);
882
883 /* Let father know we died
884 *
885 * Thread signals are configurable, but you aren't going to use
886 * that to send signals to arbitary processes.
887 * That stops right now.
888 *
889 * If the parent exec id doesn't match the exec id we saved
890 * when we started then we know the parent has changed security
891 * domain.
892 *
893 * If our self_exec id doesn't match our parent_exec_id then
894 * we have changed execution domain as these two values started
895 * the same after a fork.
896 */
897 if (tsk->exit_signal != SIGCHLD && !task_detached(tsk) &&
898 (tsk->parent_exec_id != tsk->real_parent->self_exec_id ||
899 tsk->self_exec_id != tsk->parent_exec_id) &&
900 !capable(CAP_KILL))
901 tsk->exit_signal = SIGCHLD;
902
903 /* If something other than our normal parent is ptracing us, then
904 * send it a SIGCHLD instead of honoring exit_signal. exit_signal
905 * only has special meaning to our real parent.
906 */
907 if (!task_detached(tsk) && thread_group_empty(tsk)) {
908 int signal = ptrace_reparented(tsk) ?
909 SIGCHLD : tsk->exit_signal;
910 do_notify_parent(tsk, signal);
911 } else if (tsk->ptrace) {
912 do_notify_parent(tsk, SIGCHLD);
913 }
914
915 state = EXIT_ZOMBIE;
916 if (task_detached(tsk) && likely(!tsk->ptrace))
917 state = EXIT_DEAD;
918 tsk->exit_state = state;
919
920 /* mt-exec, de_thread() is waiting for us */
921 if (thread_group_leader(tsk) &&
922 tsk->signal->notify_count < 0 &&
923 tsk->signal->group_exit_task)
924 wake_up_process(tsk->signal->group_exit_task);
925
926 write_unlock_irq(&tasklist_lock);
927
928 /* If the process is dead, release it - nobody will wait for it */
929 if (state == EXIT_DEAD)
930 release_task(tsk);
931 }
932
933 #ifdef CONFIG_DEBUG_STACK_USAGE
934 static void check_stack_usage(void)
935 {
936 static DEFINE_SPINLOCK(low_water_lock);
937 static int lowest_to_date = THREAD_SIZE;
938 unsigned long *n = end_of_stack(current);
939 unsigned long free;
940
941 while (*n == 0)
942 n++;
943 free = (unsigned long)n - (unsigned long)end_of_stack(current);
944
945 if (free >= lowest_to_date)
946 return;
947
948 spin_lock(&low_water_lock);
949 if (free < lowest_to_date) {
950 printk(KERN_WARNING "%s used greatest stack depth: %lu bytes "
951 "left\n",
952 current->comm, free);
953 lowest_to_date = free;
954 }
955 spin_unlock(&low_water_lock);
956 }
957 #else
958 static inline void check_stack_usage(void) {}
959 #endif
960
961 static inline void exit_child_reaper(struct task_struct *tsk)
962 {
963 if (likely(tsk->group_leader != task_child_reaper(tsk)))
964 return;
965
966 if (tsk->nsproxy->pid_ns == &init_pid_ns)
967 panic("Attempted to kill init!");
968
969 /*
970 * @tsk is the last thread in the 'cgroup-init' and is exiting.
971 * Terminate all remaining processes in the namespace and reap them
972 * before exiting @tsk.
973 *
974 * Note that @tsk (last thread of cgroup-init) may not necessarily
975 * be the child-reaper (i.e main thread of cgroup-init) of the
976 * namespace i.e the child_reaper may have already exited.
977 *
978 * Even after a child_reaper exits, we let it inherit orphaned children,
979 * because, pid_ns->child_reaper remains valid as long as there is
980 * at least one living sub-thread in the cgroup init.
981
982 * This living sub-thread of the cgroup-init will be notified when
983 * a child inherited by the 'child-reaper' exits (do_notify_parent()
984 * uses __group_send_sig_info()). Further, when reaping child processes,
985 * do_wait() iterates over children of all living sub threads.
986
987 * i.e even though 'child_reaper' thread is listed as the parent of the
988 * orphaned children, any living sub-thread in the cgroup-init can
989 * perform the role of the child_reaper.
990 */
991 zap_pid_ns_processes(tsk->nsproxy->pid_ns);
992 }
993
994 NORET_TYPE void do_exit(long code)
995 {
996 struct task_struct *tsk = current;
997 int group_dead;
998
999 profile_task_exit(tsk);
1000
1001 WARN_ON(atomic_read(&tsk->fs_excl));
1002
1003 if (unlikely(in_interrupt()))
1004 panic("Aiee, killing interrupt handler!");
1005 if (unlikely(!tsk->pid))
1006 panic("Attempted to kill the idle task!");
1007
1008 if (unlikely(current->ptrace & PT_TRACE_EXIT)) {
1009 current->ptrace_message = code;
1010 ptrace_notify((PTRACE_EVENT_EXIT << 8) | SIGTRAP);
1011 }
1012
1013 /*
1014 * We're taking recursive faults here in do_exit. Safest is to just
1015 * leave this task alone and wait for reboot.
1016 */
1017 if (unlikely(tsk->flags & PF_EXITING)) {
1018 printk(KERN_ALERT
1019 "Fixing recursive fault but reboot is needed!\n");
1020 /*
1021 * We can do this unlocked here. The futex code uses
1022 * this flag just to verify whether the pi state
1023 * cleanup has been done or not. In the worst case it
1024 * loops once more. We pretend that the cleanup was
1025 * done as there is no way to return. Either the
1026 * OWNER_DIED bit is set by now or we push the blocked
1027 * task into the wait for ever nirwana as well.
1028 */
1029 tsk->flags |= PF_EXITPIDONE;
1030 if (tsk->io_context)
1031 exit_io_context();
1032 set_current_state(TASK_UNINTERRUPTIBLE);
1033 schedule();
1034 }
1035
1036 exit_signals(tsk); /* sets PF_EXITING */
1037 /*
1038 * tsk->flags are checked in the futex code to protect against
1039 * an exiting task cleaning up the robust pi futexes.
1040 */
1041 smp_mb();
1042 spin_unlock_wait(&tsk->pi_lock);
1043
1044 if (unlikely(in_atomic()))
1045 printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n",
1046 current->comm, task_pid_nr(current),
1047 preempt_count());
1048
1049 acct_update_integrals(tsk);
1050 if (tsk->mm) {
1051 update_hiwater_rss(tsk->mm);
1052 update_hiwater_vm(tsk->mm);
1053 }
1054 group_dead = atomic_dec_and_test(&tsk->signal->live);
1055 if (group_dead) {
1056 exit_child_reaper(tsk);
1057 hrtimer_cancel(&tsk->signal->real_timer);
1058 exit_itimers(tsk->signal);
1059 }
1060 acct_collect(code, group_dead);
1061 #ifdef CONFIG_FUTEX
1062 if (unlikely(tsk->robust_list))
1063 exit_robust_list(tsk);
1064 #ifdef CONFIG_COMPAT
1065 if (unlikely(tsk->compat_robust_list))
1066 compat_exit_robust_list(tsk);
1067 #endif
1068 #endif
1069 if (group_dead)
1070 tty_audit_exit();
1071 if (unlikely(tsk->audit_context))
1072 audit_free(tsk);
1073
1074 tsk->exit_code = code;
1075 taskstats_exit(tsk, group_dead);
1076
1077 exit_mm(tsk);
1078
1079 if (group_dead)
1080 acct_process();
1081 exit_sem(tsk);
1082 exit_files(tsk);
1083 exit_fs(tsk);
1084 check_stack_usage();
1085 exit_thread();
1086 cgroup_exit(tsk, 1);
1087 exit_keys(tsk);
1088
1089 if (group_dead && tsk->signal->leader)
1090 disassociate_ctty(1);
1091
1092 module_put(task_thread_info(tsk)->exec_domain->module);
1093 if (tsk->binfmt)
1094 module_put(tsk->binfmt->module);
1095
1096 proc_exit_connector(tsk);
1097 exit_notify(tsk, group_dead);
1098 #ifdef CONFIG_NUMA
1099 mpol_put(tsk->mempolicy);
1100 tsk->mempolicy = NULL;
1101 #endif
1102 #ifdef CONFIG_FUTEX
1103 /*
1104 * This must happen late, after the PID is not
1105 * hashed anymore:
1106 */
1107 if (unlikely(!list_empty(&tsk->pi_state_list)))
1108 exit_pi_state_list(tsk);
1109 if (unlikely(current->pi_state_cache))
1110 kfree(current->pi_state_cache);
1111 #endif
1112 /*
1113 * Make sure we are holding no locks:
1114 */
1115 debug_check_no_locks_held(tsk);
1116 /*
1117 * We can do this unlocked here. The futex code uses this flag
1118 * just to verify whether the pi state cleanup has been done
1119 * or not. In the worst case it loops once more.
1120 */
1121 tsk->flags |= PF_EXITPIDONE;
1122
1123 if (tsk->io_context)
1124 exit_io_context();
1125
1126 if (tsk->splice_pipe)
1127 __free_pipe_info(tsk->splice_pipe);
1128
1129 preempt_disable();
1130 /* causes final put_task_struct in finish_task_switch(). */
1131 tsk->state = TASK_DEAD;
1132
1133 schedule();
1134 BUG();
1135 /* Avoid "noreturn function does return". */
1136 for (;;)
1137 cpu_relax(); /* For when BUG is null */
1138 }
1139
1140 EXPORT_SYMBOL_GPL(do_exit);
1141
1142 NORET_TYPE void complete_and_exit(struct completion *comp, long code)
1143 {
1144 if (comp)
1145 complete(comp);
1146
1147 do_exit(code);
1148 }
1149
1150 EXPORT_SYMBOL(complete_and_exit);
1151
1152 asmlinkage long sys_exit(int error_code)
1153 {
1154 do_exit((error_code&0xff)<<8);
1155 }
1156
1157 /*
1158 * Take down every thread in the group. This is called by fatal signals
1159 * as well as by sys_exit_group (below).
1160 */
1161 NORET_TYPE void
1162 do_group_exit(int exit_code)
1163 {
1164 struct signal_struct *sig = current->signal;
1165
1166 BUG_ON(exit_code & 0x80); /* core dumps don't get here */
1167
1168 if (signal_group_exit(sig))
1169 exit_code = sig->group_exit_code;
1170 else if (!thread_group_empty(current)) {
1171 struct sighand_struct *const sighand = current->sighand;
1172 spin_lock_irq(&sighand->siglock);
1173 if (signal_group_exit(sig))
1174 /* Another thread got here before we took the lock. */
1175 exit_code = sig->group_exit_code;
1176 else {
1177 sig->group_exit_code = exit_code;
1178 sig->flags = SIGNAL_GROUP_EXIT;
1179 zap_other_threads(current);
1180 }
1181 spin_unlock_irq(&sighand->siglock);
1182 }
1183
1184 do_exit(exit_code);
1185 /* NOTREACHED */
1186 }
1187
1188 /*
1189 * this kills every thread in the thread group. Note that any externally
1190 * wait4()-ing process will get the correct exit code - even if this
1191 * thread is not the thread group leader.
1192 */
1193 asmlinkage void sys_exit_group(int error_code)
1194 {
1195 do_group_exit((error_code & 0xff) << 8);
1196 }
1197
1198 static struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
1199 {
1200 struct pid *pid = NULL;
1201 if (type == PIDTYPE_PID)
1202 pid = task->pids[type].pid;
1203 else if (type < PIDTYPE_MAX)
1204 pid = task->group_leader->pids[type].pid;
1205 return pid;
1206 }
1207
1208 static int eligible_child(enum pid_type type, struct pid *pid, int options,
1209 struct task_struct *p)
1210 {
1211 int err;
1212
1213 if (type < PIDTYPE_MAX) {
1214 if (task_pid_type(p, type) != pid)
1215 return 0;
1216 }
1217
1218 /* Wait for all children (clone and not) if __WALL is set;
1219 * otherwise, wait for clone children *only* if __WCLONE is
1220 * set; otherwise, wait for non-clone children *only*. (Note:
1221 * A "clone" child here is one that reports to its parent
1222 * using a signal other than SIGCHLD.) */
1223 if (((p->exit_signal != SIGCHLD) ^ ((options & __WCLONE) != 0))
1224 && !(options & __WALL))
1225 return 0;
1226
1227 err = security_task_wait(p);
1228 if (err)
1229 return err;
1230
1231 return 1;
1232 }
1233
1234 static int wait_noreap_copyout(struct task_struct *p, pid_t pid, uid_t uid,
1235 int why, int status,
1236 struct siginfo __user *infop,
1237 struct rusage __user *rusagep)
1238 {
1239 int retval = rusagep ? getrusage(p, RUSAGE_BOTH, rusagep) : 0;
1240
1241 put_task_struct(p);
1242 if (!retval)
1243 retval = put_user(SIGCHLD, &infop->si_signo);
1244 if (!retval)
1245 retval = put_user(0, &infop->si_errno);
1246 if (!retval)
1247 retval = put_user((short)why, &infop->si_code);
1248 if (!retval)
1249 retval = put_user(pid, &infop->si_pid);
1250 if (!retval)
1251 retval = put_user(uid, &infop->si_uid);
1252 if (!retval)
1253 retval = put_user(status, &infop->si_status);
1254 if (!retval)
1255 retval = pid;
1256 return retval;
1257 }
1258
1259 /*
1260 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold
1261 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1262 * the lock and this task is uninteresting. If we return nonzero, we have
1263 * released the lock and the system call should return.
1264 */
1265 static int wait_task_zombie(struct task_struct *p, int options,
1266 struct siginfo __user *infop,
1267 int __user *stat_addr, struct rusage __user *ru)
1268 {
1269 unsigned long state;
1270 int retval, status, traced;
1271 pid_t pid = task_pid_vnr(p);
1272
1273 if (!likely(options & WEXITED))
1274 return 0;
1275
1276 if (unlikely(options & WNOWAIT)) {
1277 uid_t uid = p->uid;
1278 int exit_code = p->exit_code;
1279 int why, status;
1280
1281 get_task_struct(p);
1282 read_unlock(&tasklist_lock);
1283 if ((exit_code & 0x7f) == 0) {
1284 why = CLD_EXITED;
1285 status = exit_code >> 8;
1286 } else {
1287 why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
1288 status = exit_code & 0x7f;
1289 }
1290 return wait_noreap_copyout(p, pid, uid, why,
1291 status, infop, ru);
1292 }
1293
1294 /*
1295 * Try to move the task's state to DEAD
1296 * only one thread is allowed to do this:
1297 */
1298 state = xchg(&p->exit_state, EXIT_DEAD);
1299 if (state != EXIT_ZOMBIE) {
1300 BUG_ON(state != EXIT_DEAD);
1301 return 0;
1302 }
1303
1304 traced = ptrace_reparented(p);
1305
1306 if (likely(!traced)) {
1307 struct signal_struct *psig;
1308 struct signal_struct *sig;
1309
1310 /*
1311 * The resource counters for the group leader are in its
1312 * own task_struct. Those for dead threads in the group
1313 * are in its signal_struct, as are those for the child
1314 * processes it has previously reaped. All these
1315 * accumulate in the parent's signal_struct c* fields.
1316 *
1317 * We don't bother to take a lock here to protect these
1318 * p->signal fields, because they are only touched by
1319 * __exit_signal, which runs with tasklist_lock
1320 * write-locked anyway, and so is excluded here. We do
1321 * need to protect the access to p->parent->signal fields,
1322 * as other threads in the parent group can be right
1323 * here reaping other children at the same time.
1324 */
1325 spin_lock_irq(&p->parent->sighand->siglock);
1326 psig = p->parent->signal;
1327 sig = p->signal;
1328 psig->cutime =
1329 cputime_add(psig->cutime,
1330 cputime_add(p->utime,
1331 cputime_add(sig->utime,
1332 sig->cutime)));
1333 psig->cstime =
1334 cputime_add(psig->cstime,
1335 cputime_add(p->stime,
1336 cputime_add(sig->stime,
1337 sig->cstime)));
1338 psig->cgtime =
1339 cputime_add(psig->cgtime,
1340 cputime_add(p->gtime,
1341 cputime_add(sig->gtime,
1342 sig->cgtime)));
1343 psig->cmin_flt +=
1344 p->min_flt + sig->min_flt + sig->cmin_flt;
1345 psig->cmaj_flt +=
1346 p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1347 psig->cnvcsw +=
1348 p->nvcsw + sig->nvcsw + sig->cnvcsw;
1349 psig->cnivcsw +=
1350 p->nivcsw + sig->nivcsw + sig->cnivcsw;
1351 psig->cinblock +=
1352 task_io_get_inblock(p) +
1353 sig->inblock + sig->cinblock;
1354 psig->coublock +=
1355 task_io_get_oublock(p) +
1356 sig->oublock + sig->coublock;
1357 spin_unlock_irq(&p->parent->sighand->siglock);
1358 }
1359
1360 /*
1361 * Now we are sure this task is interesting, and no other
1362 * thread can reap it because we set its state to EXIT_DEAD.
1363 */
1364 read_unlock(&tasklist_lock);
1365
1366 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1367 status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1368 ? p->signal->group_exit_code : p->exit_code;
1369 if (!retval && stat_addr)
1370 retval = put_user(status, stat_addr);
1371 if (!retval && infop)
1372 retval = put_user(SIGCHLD, &infop->si_signo);
1373 if (!retval && infop)
1374 retval = put_user(0, &infop->si_errno);
1375 if (!retval && infop) {
1376 int why;
1377
1378 if ((status & 0x7f) == 0) {
1379 why = CLD_EXITED;
1380 status >>= 8;
1381 } else {
1382 why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1383 status &= 0x7f;
1384 }
1385 retval = put_user((short)why, &infop->si_code);
1386 if (!retval)
1387 retval = put_user(status, &infop->si_status);
1388 }
1389 if (!retval && infop)
1390 retval = put_user(pid, &infop->si_pid);
1391 if (!retval && infop)
1392 retval = put_user(p->uid, &infop->si_uid);
1393 if (!retval)
1394 retval = pid;
1395
1396 if (traced) {
1397 write_lock_irq(&tasklist_lock);
1398 /* We dropped tasklist, ptracer could die and untrace */
1399 ptrace_unlink(p);
1400 /*
1401 * If this is not a detached task, notify the parent.
1402 * If it's still not detached after that, don't release
1403 * it now.
1404 */
1405 if (!task_detached(p)) {
1406 do_notify_parent(p, p->exit_signal);
1407 if (!task_detached(p)) {
1408 p->exit_state = EXIT_ZOMBIE;
1409 p = NULL;
1410 }
1411 }
1412 write_unlock_irq(&tasklist_lock);
1413 }
1414 if (p != NULL)
1415 release_task(p);
1416
1417 return retval;
1418 }
1419
1420 /*
1421 * Handle sys_wait4 work for one task in state TASK_STOPPED. We hold
1422 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1423 * the lock and this task is uninteresting. If we return nonzero, we have
1424 * released the lock and the system call should return.
1425 */
1426 static int wait_task_stopped(int ptrace, struct task_struct *p,
1427 int options, struct siginfo __user *infop,
1428 int __user *stat_addr, struct rusage __user *ru)
1429 {
1430 int retval, exit_code, why;
1431 uid_t uid = 0; /* unneeded, required by compiler */
1432 pid_t pid;
1433
1434 if (!(options & WUNTRACED))
1435 return 0;
1436
1437 exit_code = 0;
1438 spin_lock_irq(&p->sighand->siglock);
1439
1440 if (unlikely(!task_is_stopped_or_traced(p)))
1441 goto unlock_sig;
1442
1443 if (!ptrace && p->signal->group_stop_count > 0)
1444 /*
1445 * A group stop is in progress and this is the group leader.
1446 * We won't report until all threads have stopped.
1447 */
1448 goto unlock_sig;
1449
1450 exit_code = p->exit_code;
1451 if (!exit_code)
1452 goto unlock_sig;
1453
1454 if (!unlikely(options & WNOWAIT))
1455 p->exit_code = 0;
1456
1457 uid = p->uid;
1458 unlock_sig:
1459 spin_unlock_irq(&p->sighand->siglock);
1460 if (!exit_code)
1461 return 0;
1462
1463 /*
1464 * Now we are pretty sure this task is interesting.
1465 * Make sure it doesn't get reaped out from under us while we
1466 * give up the lock and then examine it below. We don't want to
1467 * keep holding onto the tasklist_lock while we call getrusage and
1468 * possibly take page faults for user memory.
1469 */
1470 get_task_struct(p);
1471 pid = task_pid_vnr(p);
1472 why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1473 read_unlock(&tasklist_lock);
1474
1475 if (unlikely(options & WNOWAIT))
1476 return wait_noreap_copyout(p, pid, uid,
1477 why, exit_code,
1478 infop, ru);
1479
1480 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1481 if (!retval && stat_addr)
1482 retval = put_user((exit_code << 8) | 0x7f, stat_addr);
1483 if (!retval && infop)
1484 retval = put_user(SIGCHLD, &infop->si_signo);
1485 if (!retval && infop)
1486 retval = put_user(0, &infop->si_errno);
1487 if (!retval && infop)
1488 retval = put_user((short)why, &infop->si_code);
1489 if (!retval && infop)
1490 retval = put_user(exit_code, &infop->si_status);
1491 if (!retval && infop)
1492 retval = put_user(pid, &infop->si_pid);
1493 if (!retval && infop)
1494 retval = put_user(uid, &infop->si_uid);
1495 if (!retval)
1496 retval = pid;
1497 put_task_struct(p);
1498
1499 BUG_ON(!retval);
1500 return retval;
1501 }
1502
1503 /*
1504 * Handle do_wait work for one task in a live, non-stopped state.
1505 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1506 * the lock and this task is uninteresting. If we return nonzero, we have
1507 * released the lock and the system call should return.
1508 */
1509 static int wait_task_continued(struct task_struct *p, int options,
1510 struct siginfo __user *infop,
1511 int __user *stat_addr, struct rusage __user *ru)
1512 {
1513 int retval;
1514 pid_t pid;
1515 uid_t uid;
1516
1517 if (!unlikely(options & WCONTINUED))
1518 return 0;
1519
1520 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1521 return 0;
1522
1523 spin_lock_irq(&p->sighand->siglock);
1524 /* Re-check with the lock held. */
1525 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1526 spin_unlock_irq(&p->sighand->siglock);
1527 return 0;
1528 }
1529 if (!unlikely(options & WNOWAIT))
1530 p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1531 spin_unlock_irq(&p->sighand->siglock);
1532
1533 pid = task_pid_vnr(p);
1534 uid = p->uid;
1535 get_task_struct(p);
1536 read_unlock(&tasklist_lock);
1537
1538 if (!infop) {
1539 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1540 put_task_struct(p);
1541 if (!retval && stat_addr)
1542 retval = put_user(0xffff, stat_addr);
1543 if (!retval)
1544 retval = pid;
1545 } else {
1546 retval = wait_noreap_copyout(p, pid, uid,
1547 CLD_CONTINUED, SIGCONT,
1548 infop, ru);
1549 BUG_ON(retval == 0);
1550 }
1551
1552 return retval;
1553 }
1554
1555 /*
1556 * Consider @p for a wait by @parent.
1557 *
1558 * -ECHILD should be in *@notask_error before the first call.
1559 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1560 * Returns zero if the search for a child should continue;
1561 * then *@notask_error is 0 if @p is an eligible child,
1562 * or another error from security_task_wait(), or still -ECHILD.
1563 */
1564 static int wait_consider_task(struct task_struct *parent, int ptrace,
1565 struct task_struct *p, int *notask_error,
1566 enum pid_type type, struct pid *pid, int options,
1567 struct siginfo __user *infop,
1568 int __user *stat_addr, struct rusage __user *ru)
1569 {
1570 int ret = eligible_child(type, pid, options, p);
1571 if (!ret)
1572 return ret;
1573
1574 if (unlikely(ret < 0)) {
1575 /*
1576 * If we have not yet seen any eligible child,
1577 * then let this error code replace -ECHILD.
1578 * A permission error will give the user a clue
1579 * to look for security policy problems, rather
1580 * than for mysterious wait bugs.
1581 */
1582 if (*notask_error)
1583 *notask_error = ret;
1584 }
1585
1586 if (likely(!ptrace) && unlikely(p->ptrace)) {
1587 /*
1588 * This child is hidden by ptrace.
1589 * We aren't allowed to see it now, but eventually we will.
1590 */
1591 *notask_error = 0;
1592 return 0;
1593 }
1594
1595 if (p->exit_state == EXIT_DEAD)
1596 return 0;
1597
1598 /*
1599 * We don't reap group leaders with subthreads.
1600 */
1601 if (p->exit_state == EXIT_ZOMBIE && !delay_group_leader(p))
1602 return wait_task_zombie(p, options, infop, stat_addr, ru);
1603
1604 /*
1605 * It's stopped or running now, so it might
1606 * later continue, exit, or stop again.
1607 */
1608 *notask_error = 0;
1609
1610 if (task_is_stopped_or_traced(p))
1611 return wait_task_stopped(ptrace, p, options,
1612 infop, stat_addr, ru);
1613
1614 return wait_task_continued(p, options, infop, stat_addr, ru);
1615 }
1616
1617 /*
1618 * Do the work of do_wait() for one thread in the group, @tsk.
1619 *
1620 * -ECHILD should be in *@notask_error before the first call.
1621 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1622 * Returns zero if the search for a child should continue; then
1623 * *@notask_error is 0 if there were any eligible children,
1624 * or another error from security_task_wait(), or still -ECHILD.
1625 */
1626 static int do_wait_thread(struct task_struct *tsk, int *notask_error,
1627 enum pid_type type, struct pid *pid, int options,
1628 struct siginfo __user *infop, int __user *stat_addr,
1629 struct rusage __user *ru)
1630 {
1631 struct task_struct *p;
1632
1633 list_for_each_entry(p, &tsk->children, sibling) {
1634 /*
1635 * Do not consider detached threads.
1636 */
1637 if (!task_detached(p)) {
1638 int ret = wait_consider_task(tsk, 0, p, notask_error,
1639 type, pid, options,
1640 infop, stat_addr, ru);
1641 if (ret)
1642 return ret;
1643 }
1644 }
1645
1646 return 0;
1647 }
1648
1649 static int ptrace_do_wait(struct task_struct *tsk, int *notask_error,
1650 enum pid_type type, struct pid *pid, int options,
1651 struct siginfo __user *infop, int __user *stat_addr,
1652 struct rusage __user *ru)
1653 {
1654 struct task_struct *p;
1655
1656 /*
1657 * Traditionally we see ptrace'd stopped tasks regardless of options.
1658 */
1659 options |= WUNTRACED;
1660
1661 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1662 int ret = wait_consider_task(tsk, 1, p, notask_error,
1663 type, pid, options,
1664 infop, stat_addr, ru);
1665 if (ret)
1666 return ret;
1667 }
1668
1669 return 0;
1670 }
1671
1672 static long do_wait(enum pid_type type, struct pid *pid, int options,
1673 struct siginfo __user *infop, int __user *stat_addr,
1674 struct rusage __user *ru)
1675 {
1676 DECLARE_WAITQUEUE(wait, current);
1677 struct task_struct *tsk;
1678 int retval;
1679
1680 add_wait_queue(&current->signal->wait_chldexit,&wait);
1681 repeat:
1682 /*
1683 * If there is nothing that can match our critiera just get out.
1684 * We will clear @retval to zero if we see any child that might later
1685 * match our criteria, even if we are not able to reap it yet.
1686 */
1687 retval = -ECHILD;
1688 if ((type < PIDTYPE_MAX) && (!pid || hlist_empty(&pid->tasks[type])))
1689 goto end;
1690
1691 current->state = TASK_INTERRUPTIBLE;
1692 read_lock(&tasklist_lock);
1693 tsk = current;
1694 do {
1695 int tsk_result = do_wait_thread(tsk, &retval,
1696 type, pid, options,
1697 infop, stat_addr, ru);
1698 if (!tsk_result)
1699 tsk_result = ptrace_do_wait(tsk, &retval,
1700 type, pid, options,
1701 infop, stat_addr, ru);
1702 if (tsk_result) {
1703 /*
1704 * tasklist_lock is unlocked and we have a final result.
1705 */
1706 retval = tsk_result;
1707 goto end;
1708 }
1709
1710 if (options & __WNOTHREAD)
1711 break;
1712 tsk = next_thread(tsk);
1713 BUG_ON(tsk->signal != current->signal);
1714 } while (tsk != current);
1715 read_unlock(&tasklist_lock);
1716
1717 if (!retval && !(options & WNOHANG)) {
1718 retval = -ERESTARTSYS;
1719 if (!signal_pending(current)) {
1720 schedule();
1721 goto repeat;
1722 }
1723 }
1724
1725 end:
1726 current->state = TASK_RUNNING;
1727 remove_wait_queue(&current->signal->wait_chldexit,&wait);
1728 if (infop) {
1729 if (retval > 0)
1730 retval = 0;
1731 else {
1732 /*
1733 * For a WNOHANG return, clear out all the fields
1734 * we would set so the user can easily tell the
1735 * difference.
1736 */
1737 if (!retval)
1738 retval = put_user(0, &infop->si_signo);
1739 if (!retval)
1740 retval = put_user(0, &infop->si_errno);
1741 if (!retval)
1742 retval = put_user(0, &infop->si_code);
1743 if (!retval)
1744 retval = put_user(0, &infop->si_pid);
1745 if (!retval)
1746 retval = put_user(0, &infop->si_uid);
1747 if (!retval)
1748 retval = put_user(0, &infop->si_status);
1749 }
1750 }
1751 return retval;
1752 }
1753
1754 asmlinkage long sys_waitid(int which, pid_t upid,
1755 struct siginfo __user *infop, int options,
1756 struct rusage __user *ru)
1757 {
1758 struct pid *pid = NULL;
1759 enum pid_type type;
1760 long ret;
1761
1762 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED))
1763 return -EINVAL;
1764 if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1765 return -EINVAL;
1766
1767 switch (which) {
1768 case P_ALL:
1769 type = PIDTYPE_MAX;
1770 break;
1771 case P_PID:
1772 type = PIDTYPE_PID;
1773 if (upid <= 0)
1774 return -EINVAL;
1775 break;
1776 case P_PGID:
1777 type = PIDTYPE_PGID;
1778 if (upid <= 0)
1779 return -EINVAL;
1780 break;
1781 default:
1782 return -EINVAL;
1783 }
1784
1785 if (type < PIDTYPE_MAX)
1786 pid = find_get_pid(upid);
1787 ret = do_wait(type, pid, options, infop, NULL, ru);
1788 put_pid(pid);
1789
1790 /* avoid REGPARM breakage on x86: */
1791 asmlinkage_protect(5, ret, which, upid, infop, options, ru);
1792 return ret;
1793 }
1794
1795 asmlinkage long sys_wait4(pid_t upid, int __user *stat_addr,
1796 int options, struct rusage __user *ru)
1797 {
1798 struct pid *pid = NULL;
1799 enum pid_type type;
1800 long ret;
1801
1802 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1803 __WNOTHREAD|__WCLONE|__WALL))
1804 return -EINVAL;
1805
1806 if (upid == -1)
1807 type = PIDTYPE_MAX;
1808 else if (upid < 0) {
1809 type = PIDTYPE_PGID;
1810 pid = find_get_pid(-upid);
1811 } else if (upid == 0) {
1812 type = PIDTYPE_PGID;
1813 pid = get_pid(task_pgrp(current));
1814 } else /* upid > 0 */ {
1815 type = PIDTYPE_PID;
1816 pid = find_get_pid(upid);
1817 }
1818
1819 ret = do_wait(type, pid, options | WEXITED, NULL, stat_addr, ru);
1820 put_pid(pid);
1821
1822 /* avoid REGPARM breakage on x86: */
1823 asmlinkage_protect(4, ret, upid, stat_addr, options, ru);
1824 return ret;
1825 }
1826
1827 #ifdef __ARCH_WANT_SYS_WAITPID
1828
1829 /*
1830 * sys_waitpid() remains for compatibility. waitpid() should be
1831 * implemented by calling sys_wait4() from libc.a.
1832 */
1833 asmlinkage long sys_waitpid(pid_t pid, int __user *stat_addr, int options)
1834 {
1835 return sys_wait4(pid, stat_addr, options, NULL);
1836 }
1837
1838 #endif
This page took 0.067403 seconds and 5 git commands to generate.