Merge branch 'master' into next
[deliverable/linux.git] / kernel / exit.c
1 /*
2 * linux/kernel/exit.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 #include <linux/mm.h>
8 #include <linux/slab.h>
9 #include <linux/interrupt.h>
10 #include <linux/module.h>
11 #include <linux/capability.h>
12 #include <linux/completion.h>
13 #include <linux/personality.h>
14 #include <linux/tty.h>
15 #include <linux/mnt_namespace.h>
16 #include <linux/iocontext.h>
17 #include <linux/key.h>
18 #include <linux/security.h>
19 #include <linux/cpu.h>
20 #include <linux/acct.h>
21 #include <linux/tsacct_kern.h>
22 #include <linux/file.h>
23 #include <linux/fdtable.h>
24 #include <linux/binfmts.h>
25 #include <linux/nsproxy.h>
26 #include <linux/pid_namespace.h>
27 #include <linux/ptrace.h>
28 #include <linux/profile.h>
29 #include <linux/mount.h>
30 #include <linux/proc_fs.h>
31 #include <linux/kthread.h>
32 #include <linux/mempolicy.h>
33 #include <linux/taskstats_kern.h>
34 #include <linux/delayacct.h>
35 #include <linux/freezer.h>
36 #include <linux/cgroup.h>
37 #include <linux/syscalls.h>
38 #include <linux/signal.h>
39 #include <linux/posix-timers.h>
40 #include <linux/cn_proc.h>
41 #include <linux/mutex.h>
42 #include <linux/futex.h>
43 #include <linux/pipe_fs_i.h>
44 #include <linux/audit.h> /* for audit_free() */
45 #include <linux/resource.h>
46 #include <linux/blkdev.h>
47 #include <linux/task_io_accounting_ops.h>
48 #include <linux/tracehook.h>
49 #include <linux/init_task.h>
50 #include <trace/sched.h>
51
52 #include <asm/uaccess.h>
53 #include <asm/unistd.h>
54 #include <asm/pgtable.h>
55 #include <asm/mmu_context.h>
56 #include "cred-internals.h"
57
58 static void exit_mm(struct task_struct * tsk);
59
60 static inline int task_detached(struct task_struct *p)
61 {
62 return p->exit_signal == -1;
63 }
64
65 static void __unhash_process(struct task_struct *p)
66 {
67 nr_threads--;
68 detach_pid(p, PIDTYPE_PID);
69 if (thread_group_leader(p)) {
70 detach_pid(p, PIDTYPE_PGID);
71 detach_pid(p, PIDTYPE_SID);
72
73 list_del_rcu(&p->tasks);
74 __get_cpu_var(process_counts)--;
75 }
76 list_del_rcu(&p->thread_group);
77 list_del_init(&p->sibling);
78 }
79
80 /*
81 * This function expects the tasklist_lock write-locked.
82 */
83 static void __exit_signal(struct task_struct *tsk)
84 {
85 struct signal_struct *sig = tsk->signal;
86 struct sighand_struct *sighand;
87
88 BUG_ON(!sig);
89 BUG_ON(!atomic_read(&sig->count));
90
91 sighand = rcu_dereference(tsk->sighand);
92 spin_lock(&sighand->siglock);
93
94 posix_cpu_timers_exit(tsk);
95 if (atomic_dec_and_test(&sig->count))
96 posix_cpu_timers_exit_group(tsk);
97 else {
98 /*
99 * If there is any task waiting for the group exit
100 * then notify it:
101 */
102 if (sig->group_exit_task && atomic_read(&sig->count) == sig->notify_count)
103 wake_up_process(sig->group_exit_task);
104
105 if (tsk == sig->curr_target)
106 sig->curr_target = next_thread(tsk);
107 /*
108 * Accumulate here the counters for all threads but the
109 * group leader as they die, so they can be added into
110 * the process-wide totals when those are taken.
111 * The group leader stays around as a zombie as long
112 * as there are other threads. When it gets reaped,
113 * the exit.c code will add its counts into these totals.
114 * We won't ever get here for the group leader, since it
115 * will have been the last reference on the signal_struct.
116 */
117 sig->gtime = cputime_add(sig->gtime, task_gtime(tsk));
118 sig->min_flt += tsk->min_flt;
119 sig->maj_flt += tsk->maj_flt;
120 sig->nvcsw += tsk->nvcsw;
121 sig->nivcsw += tsk->nivcsw;
122 sig->inblock += task_io_get_inblock(tsk);
123 sig->oublock += task_io_get_oublock(tsk);
124 task_io_accounting_add(&sig->ioac, &tsk->ioac);
125 sig = NULL; /* Marker for below. */
126 }
127
128 __unhash_process(tsk);
129
130 /*
131 * Do this under ->siglock, we can race with another thread
132 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
133 */
134 flush_sigqueue(&tsk->pending);
135
136 tsk->signal = NULL;
137 tsk->sighand = NULL;
138 spin_unlock(&sighand->siglock);
139
140 __cleanup_sighand(sighand);
141 clear_tsk_thread_flag(tsk,TIF_SIGPENDING);
142 if (sig) {
143 flush_sigqueue(&sig->shared_pending);
144 taskstats_tgid_free(sig);
145 /*
146 * Make sure ->signal can't go away under rq->lock,
147 * see account_group_exec_runtime().
148 */
149 task_rq_unlock_wait(tsk);
150 __cleanup_signal(sig);
151 }
152 }
153
154 static void delayed_put_task_struct(struct rcu_head *rhp)
155 {
156 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
157
158 trace_sched_process_free(tsk);
159 put_task_struct(tsk);
160 }
161
162
163 void release_task(struct task_struct * p)
164 {
165 struct task_struct *leader;
166 int zap_leader;
167 repeat:
168 tracehook_prepare_release_task(p);
169 /* don't need to get the RCU readlock here - the process is dead and
170 * can't be modifying its own credentials */
171 atomic_dec(&__task_cred(p)->user->processes);
172
173 proc_flush_task(p);
174 write_lock_irq(&tasklist_lock);
175 tracehook_finish_release_task(p);
176 __exit_signal(p);
177
178 /*
179 * If we are the last non-leader member of the thread
180 * group, and the leader is zombie, then notify the
181 * group leader's parent process. (if it wants notification.)
182 */
183 zap_leader = 0;
184 leader = p->group_leader;
185 if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) {
186 BUG_ON(task_detached(leader));
187 do_notify_parent(leader, leader->exit_signal);
188 /*
189 * If we were the last child thread and the leader has
190 * exited already, and the leader's parent ignores SIGCHLD,
191 * then we are the one who should release the leader.
192 *
193 * do_notify_parent() will have marked it self-reaping in
194 * that case.
195 */
196 zap_leader = task_detached(leader);
197
198 /*
199 * This maintains the invariant that release_task()
200 * only runs on a task in EXIT_DEAD, just for sanity.
201 */
202 if (zap_leader)
203 leader->exit_state = EXIT_DEAD;
204 }
205
206 write_unlock_irq(&tasklist_lock);
207 release_thread(p);
208 call_rcu(&p->rcu, delayed_put_task_struct);
209
210 p = leader;
211 if (unlikely(zap_leader))
212 goto repeat;
213 }
214
215 /*
216 * This checks not only the pgrp, but falls back on the pid if no
217 * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
218 * without this...
219 *
220 * The caller must hold rcu lock or the tasklist lock.
221 */
222 struct pid *session_of_pgrp(struct pid *pgrp)
223 {
224 struct task_struct *p;
225 struct pid *sid = NULL;
226
227 p = pid_task(pgrp, PIDTYPE_PGID);
228 if (p == NULL)
229 p = pid_task(pgrp, PIDTYPE_PID);
230 if (p != NULL)
231 sid = task_session(p);
232
233 return sid;
234 }
235
236 /*
237 * Determine if a process group is "orphaned", according to the POSIX
238 * definition in 2.2.2.52. Orphaned process groups are not to be affected
239 * by terminal-generated stop signals. Newly orphaned process groups are
240 * to receive a SIGHUP and a SIGCONT.
241 *
242 * "I ask you, have you ever known what it is to be an orphan?"
243 */
244 static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task)
245 {
246 struct task_struct *p;
247
248 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
249 if ((p == ignored_task) ||
250 (p->exit_state && thread_group_empty(p)) ||
251 is_global_init(p->real_parent))
252 continue;
253
254 if (task_pgrp(p->real_parent) != pgrp &&
255 task_session(p->real_parent) == task_session(p))
256 return 0;
257 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
258
259 return 1;
260 }
261
262 int is_current_pgrp_orphaned(void)
263 {
264 int retval;
265
266 read_lock(&tasklist_lock);
267 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
268 read_unlock(&tasklist_lock);
269
270 return retval;
271 }
272
273 static int has_stopped_jobs(struct pid *pgrp)
274 {
275 int retval = 0;
276 struct task_struct *p;
277
278 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
279 if (!task_is_stopped(p))
280 continue;
281 retval = 1;
282 break;
283 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
284 return retval;
285 }
286
287 /*
288 * Check to see if any process groups have become orphaned as
289 * a result of our exiting, and if they have any stopped jobs,
290 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
291 */
292 static void
293 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
294 {
295 struct pid *pgrp = task_pgrp(tsk);
296 struct task_struct *ignored_task = tsk;
297
298 if (!parent)
299 /* exit: our father is in a different pgrp than
300 * we are and we were the only connection outside.
301 */
302 parent = tsk->real_parent;
303 else
304 /* reparent: our child is in a different pgrp than
305 * we are, and it was the only connection outside.
306 */
307 ignored_task = NULL;
308
309 if (task_pgrp(parent) != pgrp &&
310 task_session(parent) == task_session(tsk) &&
311 will_become_orphaned_pgrp(pgrp, ignored_task) &&
312 has_stopped_jobs(pgrp)) {
313 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
314 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
315 }
316 }
317
318 /**
319 * reparent_to_kthreadd - Reparent the calling kernel thread to kthreadd
320 *
321 * If a kernel thread is launched as a result of a system call, or if
322 * it ever exits, it should generally reparent itself to kthreadd so it
323 * isn't in the way of other processes and is correctly cleaned up on exit.
324 *
325 * The various task state such as scheduling policy and priority may have
326 * been inherited from a user process, so we reset them to sane values here.
327 *
328 * NOTE that reparent_to_kthreadd() gives the caller full capabilities.
329 */
330 static void reparent_to_kthreadd(void)
331 {
332 write_lock_irq(&tasklist_lock);
333
334 ptrace_unlink(current);
335 /* Reparent to init */
336 current->real_parent = current->parent = kthreadd_task;
337 list_move_tail(&current->sibling, &current->real_parent->children);
338
339 /* Set the exit signal to SIGCHLD so we signal init on exit */
340 current->exit_signal = SIGCHLD;
341
342 if (task_nice(current) < 0)
343 set_user_nice(current, 0);
344 /* cpus_allowed? */
345 /* rt_priority? */
346 /* signals? */
347 memcpy(current->signal->rlim, init_task.signal->rlim,
348 sizeof(current->signal->rlim));
349
350 atomic_inc(&init_cred.usage);
351 commit_creds(&init_cred);
352 write_unlock_irq(&tasklist_lock);
353 }
354
355 void __set_special_pids(struct pid *pid)
356 {
357 struct task_struct *curr = current->group_leader;
358 pid_t nr = pid_nr(pid);
359
360 if (task_session(curr) != pid) {
361 change_pid(curr, PIDTYPE_SID, pid);
362 set_task_session(curr, nr);
363 }
364 if (task_pgrp(curr) != pid) {
365 change_pid(curr, PIDTYPE_PGID, pid);
366 set_task_pgrp(curr, nr);
367 }
368 }
369
370 static void set_special_pids(struct pid *pid)
371 {
372 write_lock_irq(&tasklist_lock);
373 __set_special_pids(pid);
374 write_unlock_irq(&tasklist_lock);
375 }
376
377 /*
378 * Let kernel threads use this to say that they
379 * allow a certain signal (since daemonize() will
380 * have disabled all of them by default).
381 */
382 int allow_signal(int sig)
383 {
384 if (!valid_signal(sig) || sig < 1)
385 return -EINVAL;
386
387 spin_lock_irq(&current->sighand->siglock);
388 sigdelset(&current->blocked, sig);
389 if (!current->mm) {
390 /* Kernel threads handle their own signals.
391 Let the signal code know it'll be handled, so
392 that they don't get converted to SIGKILL or
393 just silently dropped */
394 current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2;
395 }
396 recalc_sigpending();
397 spin_unlock_irq(&current->sighand->siglock);
398 return 0;
399 }
400
401 EXPORT_SYMBOL(allow_signal);
402
403 int disallow_signal(int sig)
404 {
405 if (!valid_signal(sig) || sig < 1)
406 return -EINVAL;
407
408 spin_lock_irq(&current->sighand->siglock);
409 current->sighand->action[(sig)-1].sa.sa_handler = SIG_IGN;
410 recalc_sigpending();
411 spin_unlock_irq(&current->sighand->siglock);
412 return 0;
413 }
414
415 EXPORT_SYMBOL(disallow_signal);
416
417 /*
418 * Put all the gunge required to become a kernel thread without
419 * attached user resources in one place where it belongs.
420 */
421
422 void daemonize(const char *name, ...)
423 {
424 va_list args;
425 struct fs_struct *fs;
426 sigset_t blocked;
427
428 va_start(args, name);
429 vsnprintf(current->comm, sizeof(current->comm), name, args);
430 va_end(args);
431
432 /*
433 * If we were started as result of loading a module, close all of the
434 * user space pages. We don't need them, and if we didn't close them
435 * they would be locked into memory.
436 */
437 exit_mm(current);
438 /*
439 * We don't want to have TIF_FREEZE set if the system-wide hibernation
440 * or suspend transition begins right now.
441 */
442 current->flags |= (PF_NOFREEZE | PF_KTHREAD);
443
444 if (current->nsproxy != &init_nsproxy) {
445 get_nsproxy(&init_nsproxy);
446 switch_task_namespaces(current, &init_nsproxy);
447 }
448 set_special_pids(&init_struct_pid);
449 proc_clear_tty(current);
450
451 /* Block and flush all signals */
452 sigfillset(&blocked);
453 sigprocmask(SIG_BLOCK, &blocked, NULL);
454 flush_signals(current);
455
456 /* Become as one with the init task */
457
458 exit_fs(current); /* current->fs->count--; */
459 fs = init_task.fs;
460 current->fs = fs;
461 atomic_inc(&fs->count);
462
463 exit_files(current);
464 current->files = init_task.files;
465 atomic_inc(&current->files->count);
466
467 reparent_to_kthreadd();
468 }
469
470 EXPORT_SYMBOL(daemonize);
471
472 static void close_files(struct files_struct * files)
473 {
474 int i, j;
475 struct fdtable *fdt;
476
477 j = 0;
478
479 /*
480 * It is safe to dereference the fd table without RCU or
481 * ->file_lock because this is the last reference to the
482 * files structure.
483 */
484 fdt = files_fdtable(files);
485 for (;;) {
486 unsigned long set;
487 i = j * __NFDBITS;
488 if (i >= fdt->max_fds)
489 break;
490 set = fdt->open_fds->fds_bits[j++];
491 while (set) {
492 if (set & 1) {
493 struct file * file = xchg(&fdt->fd[i], NULL);
494 if (file) {
495 filp_close(file, files);
496 cond_resched();
497 }
498 }
499 i++;
500 set >>= 1;
501 }
502 }
503 }
504
505 struct files_struct *get_files_struct(struct task_struct *task)
506 {
507 struct files_struct *files;
508
509 task_lock(task);
510 files = task->files;
511 if (files)
512 atomic_inc(&files->count);
513 task_unlock(task);
514
515 return files;
516 }
517
518 void put_files_struct(struct files_struct *files)
519 {
520 struct fdtable *fdt;
521
522 if (atomic_dec_and_test(&files->count)) {
523 close_files(files);
524 /*
525 * Free the fd and fdset arrays if we expanded them.
526 * If the fdtable was embedded, pass files for freeing
527 * at the end of the RCU grace period. Otherwise,
528 * you can free files immediately.
529 */
530 fdt = files_fdtable(files);
531 if (fdt != &files->fdtab)
532 kmem_cache_free(files_cachep, files);
533 free_fdtable(fdt);
534 }
535 }
536
537 void reset_files_struct(struct files_struct *files)
538 {
539 struct task_struct *tsk = current;
540 struct files_struct *old;
541
542 old = tsk->files;
543 task_lock(tsk);
544 tsk->files = files;
545 task_unlock(tsk);
546 put_files_struct(old);
547 }
548
549 void exit_files(struct task_struct *tsk)
550 {
551 struct files_struct * files = tsk->files;
552
553 if (files) {
554 task_lock(tsk);
555 tsk->files = NULL;
556 task_unlock(tsk);
557 put_files_struct(files);
558 }
559 }
560
561 void put_fs_struct(struct fs_struct *fs)
562 {
563 /* No need to hold fs->lock if we are killing it */
564 if (atomic_dec_and_test(&fs->count)) {
565 path_put(&fs->root);
566 path_put(&fs->pwd);
567 kmem_cache_free(fs_cachep, fs);
568 }
569 }
570
571 void exit_fs(struct task_struct *tsk)
572 {
573 struct fs_struct * fs = tsk->fs;
574
575 if (fs) {
576 task_lock(tsk);
577 tsk->fs = NULL;
578 task_unlock(tsk);
579 put_fs_struct(fs);
580 }
581 }
582
583 EXPORT_SYMBOL_GPL(exit_fs);
584
585 #ifdef CONFIG_MM_OWNER
586 /*
587 * Task p is exiting and it owned mm, lets find a new owner for it
588 */
589 static inline int
590 mm_need_new_owner(struct mm_struct *mm, struct task_struct *p)
591 {
592 /*
593 * If there are other users of the mm and the owner (us) is exiting
594 * we need to find a new owner to take on the responsibility.
595 */
596 if (atomic_read(&mm->mm_users) <= 1)
597 return 0;
598 if (mm->owner != p)
599 return 0;
600 return 1;
601 }
602
603 void mm_update_next_owner(struct mm_struct *mm)
604 {
605 struct task_struct *c, *g, *p = current;
606
607 retry:
608 if (!mm_need_new_owner(mm, p))
609 return;
610
611 read_lock(&tasklist_lock);
612 /*
613 * Search in the children
614 */
615 list_for_each_entry(c, &p->children, sibling) {
616 if (c->mm == mm)
617 goto assign_new_owner;
618 }
619
620 /*
621 * Search in the siblings
622 */
623 list_for_each_entry(c, &p->parent->children, sibling) {
624 if (c->mm == mm)
625 goto assign_new_owner;
626 }
627
628 /*
629 * Search through everything else. We should not get
630 * here often
631 */
632 do_each_thread(g, c) {
633 if (c->mm == mm)
634 goto assign_new_owner;
635 } while_each_thread(g, c);
636
637 read_unlock(&tasklist_lock);
638 /*
639 * We found no owner yet mm_users > 1: this implies that we are
640 * most likely racing with swapoff (try_to_unuse()) or /proc or
641 * ptrace or page migration (get_task_mm()). Mark owner as NULL,
642 * so that subsystems can understand the callback and take action.
643 */
644 down_write(&mm->mmap_sem);
645 cgroup_mm_owner_callbacks(mm->owner, NULL);
646 mm->owner = NULL;
647 up_write(&mm->mmap_sem);
648 return;
649
650 assign_new_owner:
651 BUG_ON(c == p);
652 get_task_struct(c);
653 read_unlock(&tasklist_lock);
654 down_write(&mm->mmap_sem);
655 /*
656 * The task_lock protects c->mm from changing.
657 * We always want mm->owner->mm == mm
658 */
659 task_lock(c);
660 if (c->mm != mm) {
661 task_unlock(c);
662 up_write(&mm->mmap_sem);
663 put_task_struct(c);
664 goto retry;
665 }
666 cgroup_mm_owner_callbacks(mm->owner, c);
667 mm->owner = c;
668 task_unlock(c);
669 up_write(&mm->mmap_sem);
670 put_task_struct(c);
671 }
672 #endif /* CONFIG_MM_OWNER */
673
674 /*
675 * Turn us into a lazy TLB process if we
676 * aren't already..
677 */
678 static void exit_mm(struct task_struct * tsk)
679 {
680 struct mm_struct *mm = tsk->mm;
681 struct core_state *core_state;
682
683 mm_release(tsk, mm);
684 if (!mm)
685 return;
686 /*
687 * Serialize with any possible pending coredump.
688 * We must hold mmap_sem around checking core_state
689 * and clearing tsk->mm. The core-inducing thread
690 * will increment ->nr_threads for each thread in the
691 * group with ->mm != NULL.
692 */
693 down_read(&mm->mmap_sem);
694 core_state = mm->core_state;
695 if (core_state) {
696 struct core_thread self;
697 up_read(&mm->mmap_sem);
698
699 self.task = tsk;
700 self.next = xchg(&core_state->dumper.next, &self);
701 /*
702 * Implies mb(), the result of xchg() must be visible
703 * to core_state->dumper.
704 */
705 if (atomic_dec_and_test(&core_state->nr_threads))
706 complete(&core_state->startup);
707
708 for (;;) {
709 set_task_state(tsk, TASK_UNINTERRUPTIBLE);
710 if (!self.task) /* see coredump_finish() */
711 break;
712 schedule();
713 }
714 __set_task_state(tsk, TASK_RUNNING);
715 down_read(&mm->mmap_sem);
716 }
717 atomic_inc(&mm->mm_count);
718 BUG_ON(mm != tsk->active_mm);
719 /* more a memory barrier than a real lock */
720 task_lock(tsk);
721 tsk->mm = NULL;
722 up_read(&mm->mmap_sem);
723 enter_lazy_tlb(mm, current);
724 /* We don't want this task to be frozen prematurely */
725 clear_freeze_flag(tsk);
726 task_unlock(tsk);
727 mm_update_next_owner(mm);
728 mmput(mm);
729 }
730
731 /*
732 * Return nonzero if @parent's children should reap themselves.
733 *
734 * Called with write_lock_irq(&tasklist_lock) held.
735 */
736 static int ignoring_children(struct task_struct *parent)
737 {
738 int ret;
739 struct sighand_struct *psig = parent->sighand;
740 unsigned long flags;
741 spin_lock_irqsave(&psig->siglock, flags);
742 ret = (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
743 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT));
744 spin_unlock_irqrestore(&psig->siglock, flags);
745 return ret;
746 }
747
748 /*
749 * Detach all tasks we were using ptrace on.
750 * Any that need to be release_task'd are put on the @dead list.
751 *
752 * Called with write_lock(&tasklist_lock) held.
753 */
754 static void ptrace_exit(struct task_struct *parent, struct list_head *dead)
755 {
756 struct task_struct *p, *n;
757 int ign = -1;
758
759 list_for_each_entry_safe(p, n, &parent->ptraced, ptrace_entry) {
760 __ptrace_unlink(p);
761
762 if (p->exit_state != EXIT_ZOMBIE)
763 continue;
764
765 /*
766 * If it's a zombie, our attachedness prevented normal
767 * parent notification or self-reaping. Do notification
768 * now if it would have happened earlier. If it should
769 * reap itself, add it to the @dead list. We can't call
770 * release_task() here because we already hold tasklist_lock.
771 *
772 * If it's our own child, there is no notification to do.
773 * But if our normal children self-reap, then this child
774 * was prevented by ptrace and we must reap it now.
775 */
776 if (!task_detached(p) && thread_group_empty(p)) {
777 if (!same_thread_group(p->real_parent, parent))
778 do_notify_parent(p, p->exit_signal);
779 else {
780 if (ign < 0)
781 ign = ignoring_children(parent);
782 if (ign)
783 p->exit_signal = -1;
784 }
785 }
786
787 if (task_detached(p)) {
788 /*
789 * Mark it as in the process of being reaped.
790 */
791 p->exit_state = EXIT_DEAD;
792 list_add(&p->ptrace_entry, dead);
793 }
794 }
795 }
796
797 /*
798 * Finish up exit-time ptrace cleanup.
799 *
800 * Called without locks.
801 */
802 static void ptrace_exit_finish(struct task_struct *parent,
803 struct list_head *dead)
804 {
805 struct task_struct *p, *n;
806
807 BUG_ON(!list_empty(&parent->ptraced));
808
809 list_for_each_entry_safe(p, n, dead, ptrace_entry) {
810 list_del_init(&p->ptrace_entry);
811 release_task(p);
812 }
813 }
814
815 static void reparent_thread(struct task_struct *p, struct task_struct *father)
816 {
817 if (p->pdeath_signal)
818 /* We already hold the tasklist_lock here. */
819 group_send_sig_info(p->pdeath_signal, SEND_SIG_NOINFO, p);
820
821 list_move_tail(&p->sibling, &p->real_parent->children);
822
823 /* If this is a threaded reparent there is no need to
824 * notify anyone anything has happened.
825 */
826 if (same_thread_group(p->real_parent, father))
827 return;
828
829 /* We don't want people slaying init. */
830 if (!task_detached(p))
831 p->exit_signal = SIGCHLD;
832
833 /* If we'd notified the old parent about this child's death,
834 * also notify the new parent.
835 */
836 if (!ptrace_reparented(p) &&
837 p->exit_state == EXIT_ZOMBIE &&
838 !task_detached(p) && thread_group_empty(p))
839 do_notify_parent(p, p->exit_signal);
840
841 kill_orphaned_pgrp(p, father);
842 }
843
844 /*
845 * When we die, we re-parent all our children.
846 * Try to give them to another thread in our thread
847 * group, and if no such member exists, give it to
848 * the child reaper process (ie "init") in our pid
849 * space.
850 */
851 static struct task_struct *find_new_reaper(struct task_struct *father)
852 {
853 struct pid_namespace *pid_ns = task_active_pid_ns(father);
854 struct task_struct *thread;
855
856 thread = father;
857 while_each_thread(father, thread) {
858 if (thread->flags & PF_EXITING)
859 continue;
860 if (unlikely(pid_ns->child_reaper == father))
861 pid_ns->child_reaper = thread;
862 return thread;
863 }
864
865 if (unlikely(pid_ns->child_reaper == father)) {
866 write_unlock_irq(&tasklist_lock);
867 if (unlikely(pid_ns == &init_pid_ns))
868 panic("Attempted to kill init!");
869
870 zap_pid_ns_processes(pid_ns);
871 write_lock_irq(&tasklist_lock);
872 /*
873 * We can not clear ->child_reaper or leave it alone.
874 * There may by stealth EXIT_DEAD tasks on ->children,
875 * forget_original_parent() must move them somewhere.
876 */
877 pid_ns->child_reaper = init_pid_ns.child_reaper;
878 }
879
880 return pid_ns->child_reaper;
881 }
882
883 static void forget_original_parent(struct task_struct *father)
884 {
885 struct task_struct *p, *n, *reaper;
886 LIST_HEAD(ptrace_dead);
887
888 write_lock_irq(&tasklist_lock);
889 reaper = find_new_reaper(father);
890 /*
891 * First clean up ptrace if we were using it.
892 */
893 ptrace_exit(father, &ptrace_dead);
894
895 list_for_each_entry_safe(p, n, &father->children, sibling) {
896 p->real_parent = reaper;
897 if (p->parent == father) {
898 BUG_ON(p->ptrace);
899 p->parent = p->real_parent;
900 }
901 reparent_thread(p, father);
902 }
903
904 write_unlock_irq(&tasklist_lock);
905 BUG_ON(!list_empty(&father->children));
906
907 ptrace_exit_finish(father, &ptrace_dead);
908 }
909
910 /*
911 * Send signals to all our closest relatives so that they know
912 * to properly mourn us..
913 */
914 static void exit_notify(struct task_struct *tsk, int group_dead)
915 {
916 int signal;
917 void *cookie;
918
919 /*
920 * This does two things:
921 *
922 * A. Make init inherit all the child processes
923 * B. Check to see if any process groups have become orphaned
924 * as a result of our exiting, and if they have any stopped
925 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
926 */
927 forget_original_parent(tsk);
928 exit_task_namespaces(tsk);
929
930 write_lock_irq(&tasklist_lock);
931 if (group_dead)
932 kill_orphaned_pgrp(tsk->group_leader, NULL);
933
934 /* Let father know we died
935 *
936 * Thread signals are configurable, but you aren't going to use
937 * that to send signals to arbitary processes.
938 * That stops right now.
939 *
940 * If the parent exec id doesn't match the exec id we saved
941 * when we started then we know the parent has changed security
942 * domain.
943 *
944 * If our self_exec id doesn't match our parent_exec_id then
945 * we have changed execution domain as these two values started
946 * the same after a fork.
947 */
948 if (tsk->exit_signal != SIGCHLD && !task_detached(tsk) &&
949 (tsk->parent_exec_id != tsk->real_parent->self_exec_id ||
950 tsk->self_exec_id != tsk->parent_exec_id) &&
951 !capable(CAP_KILL))
952 tsk->exit_signal = SIGCHLD;
953
954 signal = tracehook_notify_death(tsk, &cookie, group_dead);
955 if (signal >= 0)
956 signal = do_notify_parent(tsk, signal);
957
958 tsk->exit_state = signal == DEATH_REAP ? EXIT_DEAD : EXIT_ZOMBIE;
959
960 /* mt-exec, de_thread() is waiting for us */
961 if (thread_group_leader(tsk) &&
962 tsk->signal->group_exit_task &&
963 tsk->signal->notify_count < 0)
964 wake_up_process(tsk->signal->group_exit_task);
965
966 write_unlock_irq(&tasklist_lock);
967
968 tracehook_report_death(tsk, signal, cookie, group_dead);
969
970 /* If the process is dead, release it - nobody will wait for it */
971 if (signal == DEATH_REAP)
972 release_task(tsk);
973 }
974
975 #ifdef CONFIG_DEBUG_STACK_USAGE
976 static void check_stack_usage(void)
977 {
978 static DEFINE_SPINLOCK(low_water_lock);
979 static int lowest_to_date = THREAD_SIZE;
980 unsigned long *n = end_of_stack(current);
981 unsigned long free;
982
983 while (*n == 0)
984 n++;
985 free = (unsigned long)n - (unsigned long)end_of_stack(current);
986
987 if (free >= lowest_to_date)
988 return;
989
990 spin_lock(&low_water_lock);
991 if (free < lowest_to_date) {
992 printk(KERN_WARNING "%s used greatest stack depth: %lu bytes "
993 "left\n",
994 current->comm, free);
995 lowest_to_date = free;
996 }
997 spin_unlock(&low_water_lock);
998 }
999 #else
1000 static inline void check_stack_usage(void) {}
1001 #endif
1002
1003 NORET_TYPE void do_exit(long code)
1004 {
1005 struct task_struct *tsk = current;
1006 int group_dead;
1007
1008 profile_task_exit(tsk);
1009
1010 WARN_ON(atomic_read(&tsk->fs_excl));
1011
1012 if (unlikely(in_interrupt()))
1013 panic("Aiee, killing interrupt handler!");
1014 if (unlikely(!tsk->pid))
1015 panic("Attempted to kill the idle task!");
1016
1017 tracehook_report_exit(&code);
1018
1019 /*
1020 * We're taking recursive faults here in do_exit. Safest is to just
1021 * leave this task alone and wait for reboot.
1022 */
1023 if (unlikely(tsk->flags & PF_EXITING)) {
1024 printk(KERN_ALERT
1025 "Fixing recursive fault but reboot is needed!\n");
1026 /*
1027 * We can do this unlocked here. The futex code uses
1028 * this flag just to verify whether the pi state
1029 * cleanup has been done or not. In the worst case it
1030 * loops once more. We pretend that the cleanup was
1031 * done as there is no way to return. Either the
1032 * OWNER_DIED bit is set by now or we push the blocked
1033 * task into the wait for ever nirwana as well.
1034 */
1035 tsk->flags |= PF_EXITPIDONE;
1036 if (tsk->io_context)
1037 exit_io_context();
1038 set_current_state(TASK_UNINTERRUPTIBLE);
1039 schedule();
1040 }
1041
1042 exit_signals(tsk); /* sets PF_EXITING */
1043 /*
1044 * tsk->flags are checked in the futex code to protect against
1045 * an exiting task cleaning up the robust pi futexes.
1046 */
1047 smp_mb();
1048 spin_unlock_wait(&tsk->pi_lock);
1049
1050 if (unlikely(in_atomic()))
1051 printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n",
1052 current->comm, task_pid_nr(current),
1053 preempt_count());
1054
1055 acct_update_integrals(tsk);
1056 if (tsk->mm) {
1057 update_hiwater_rss(tsk->mm);
1058 update_hiwater_vm(tsk->mm);
1059 }
1060 group_dead = atomic_dec_and_test(&tsk->signal->live);
1061 if (group_dead) {
1062 hrtimer_cancel(&tsk->signal->real_timer);
1063 exit_itimers(tsk->signal);
1064 }
1065 acct_collect(code, group_dead);
1066 if (group_dead)
1067 tty_audit_exit();
1068 if (unlikely(tsk->audit_context))
1069 audit_free(tsk);
1070
1071 tsk->exit_code = code;
1072 taskstats_exit(tsk, group_dead);
1073
1074 exit_mm(tsk);
1075
1076 if (group_dead)
1077 acct_process();
1078 trace_sched_process_exit(tsk);
1079
1080 exit_sem(tsk);
1081 exit_files(tsk);
1082 exit_fs(tsk);
1083 check_stack_usage();
1084 exit_thread();
1085 cgroup_exit(tsk, 1);
1086
1087 if (group_dead && tsk->signal->leader)
1088 disassociate_ctty(1);
1089
1090 module_put(task_thread_info(tsk)->exec_domain->module);
1091 if (tsk->binfmt)
1092 module_put(tsk->binfmt->module);
1093
1094 proc_exit_connector(tsk);
1095 exit_notify(tsk, group_dead);
1096 #ifdef CONFIG_NUMA
1097 mpol_put(tsk->mempolicy);
1098 tsk->mempolicy = NULL;
1099 #endif
1100 #ifdef CONFIG_FUTEX
1101 /*
1102 * This must happen late, after the PID is not
1103 * hashed anymore:
1104 */
1105 if (unlikely(!list_empty(&tsk->pi_state_list)))
1106 exit_pi_state_list(tsk);
1107 if (unlikely(current->pi_state_cache))
1108 kfree(current->pi_state_cache);
1109 #endif
1110 /*
1111 * Make sure we are holding no locks:
1112 */
1113 debug_check_no_locks_held(tsk);
1114 /*
1115 * We can do this unlocked here. The futex code uses this flag
1116 * just to verify whether the pi state cleanup has been done
1117 * or not. In the worst case it loops once more.
1118 */
1119 tsk->flags |= PF_EXITPIDONE;
1120
1121 if (tsk->io_context)
1122 exit_io_context();
1123
1124 if (tsk->splice_pipe)
1125 __free_pipe_info(tsk->splice_pipe);
1126
1127 preempt_disable();
1128 /* causes final put_task_struct in finish_task_switch(). */
1129 tsk->state = TASK_DEAD;
1130
1131 schedule();
1132 BUG();
1133 /* Avoid "noreturn function does return". */
1134 for (;;)
1135 cpu_relax(); /* For when BUG is null */
1136 }
1137
1138 EXPORT_SYMBOL_GPL(do_exit);
1139
1140 NORET_TYPE void complete_and_exit(struct completion *comp, long code)
1141 {
1142 if (comp)
1143 complete(comp);
1144
1145 do_exit(code);
1146 }
1147
1148 EXPORT_SYMBOL(complete_and_exit);
1149
1150 asmlinkage long sys_exit(int error_code)
1151 {
1152 do_exit((error_code&0xff)<<8);
1153 }
1154
1155 /*
1156 * Take down every thread in the group. This is called by fatal signals
1157 * as well as by sys_exit_group (below).
1158 */
1159 NORET_TYPE void
1160 do_group_exit(int exit_code)
1161 {
1162 struct signal_struct *sig = current->signal;
1163
1164 BUG_ON(exit_code & 0x80); /* core dumps don't get here */
1165
1166 if (signal_group_exit(sig))
1167 exit_code = sig->group_exit_code;
1168 else if (!thread_group_empty(current)) {
1169 struct sighand_struct *const sighand = current->sighand;
1170 spin_lock_irq(&sighand->siglock);
1171 if (signal_group_exit(sig))
1172 /* Another thread got here before we took the lock. */
1173 exit_code = sig->group_exit_code;
1174 else {
1175 sig->group_exit_code = exit_code;
1176 sig->flags = SIGNAL_GROUP_EXIT;
1177 zap_other_threads(current);
1178 }
1179 spin_unlock_irq(&sighand->siglock);
1180 }
1181
1182 do_exit(exit_code);
1183 /* NOTREACHED */
1184 }
1185
1186 /*
1187 * this kills every thread in the thread group. Note that any externally
1188 * wait4()-ing process will get the correct exit code - even if this
1189 * thread is not the thread group leader.
1190 */
1191 asmlinkage void sys_exit_group(int error_code)
1192 {
1193 do_group_exit((error_code & 0xff) << 8);
1194 }
1195
1196 static struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
1197 {
1198 struct pid *pid = NULL;
1199 if (type == PIDTYPE_PID)
1200 pid = task->pids[type].pid;
1201 else if (type < PIDTYPE_MAX)
1202 pid = task->group_leader->pids[type].pid;
1203 return pid;
1204 }
1205
1206 static int eligible_child(enum pid_type type, struct pid *pid, int options,
1207 struct task_struct *p)
1208 {
1209 int err;
1210
1211 if (type < PIDTYPE_MAX) {
1212 if (task_pid_type(p, type) != pid)
1213 return 0;
1214 }
1215
1216 /* Wait for all children (clone and not) if __WALL is set;
1217 * otherwise, wait for clone children *only* if __WCLONE is
1218 * set; otherwise, wait for non-clone children *only*. (Note:
1219 * A "clone" child here is one that reports to its parent
1220 * using a signal other than SIGCHLD.) */
1221 if (((p->exit_signal != SIGCHLD) ^ ((options & __WCLONE) != 0))
1222 && !(options & __WALL))
1223 return 0;
1224
1225 err = security_task_wait(p);
1226 if (err)
1227 return err;
1228
1229 return 1;
1230 }
1231
1232 static int wait_noreap_copyout(struct task_struct *p, pid_t pid, uid_t uid,
1233 int why, int status,
1234 struct siginfo __user *infop,
1235 struct rusage __user *rusagep)
1236 {
1237 int retval = rusagep ? getrusage(p, RUSAGE_BOTH, rusagep) : 0;
1238
1239 put_task_struct(p);
1240 if (!retval)
1241 retval = put_user(SIGCHLD, &infop->si_signo);
1242 if (!retval)
1243 retval = put_user(0, &infop->si_errno);
1244 if (!retval)
1245 retval = put_user((short)why, &infop->si_code);
1246 if (!retval)
1247 retval = put_user(pid, &infop->si_pid);
1248 if (!retval)
1249 retval = put_user(uid, &infop->si_uid);
1250 if (!retval)
1251 retval = put_user(status, &infop->si_status);
1252 if (!retval)
1253 retval = pid;
1254 return retval;
1255 }
1256
1257 /*
1258 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold
1259 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1260 * the lock and this task is uninteresting. If we return nonzero, we have
1261 * released the lock and the system call should return.
1262 */
1263 static int wait_task_zombie(struct task_struct *p, int options,
1264 struct siginfo __user *infop,
1265 int __user *stat_addr, struct rusage __user *ru)
1266 {
1267 unsigned long state;
1268 int retval, status, traced;
1269 pid_t pid = task_pid_vnr(p);
1270 uid_t uid = __task_cred(p)->uid;
1271
1272 if (!likely(options & WEXITED))
1273 return 0;
1274
1275 if (unlikely(options & WNOWAIT)) {
1276 int exit_code = p->exit_code;
1277 int why, status;
1278
1279 get_task_struct(p);
1280 read_unlock(&tasklist_lock);
1281 if ((exit_code & 0x7f) == 0) {
1282 why = CLD_EXITED;
1283 status = exit_code >> 8;
1284 } else {
1285 why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
1286 status = exit_code & 0x7f;
1287 }
1288 return wait_noreap_copyout(p, pid, uid, why,
1289 status, infop, ru);
1290 }
1291
1292 /*
1293 * Try to move the task's state to DEAD
1294 * only one thread is allowed to do this:
1295 */
1296 state = xchg(&p->exit_state, EXIT_DEAD);
1297 if (state != EXIT_ZOMBIE) {
1298 BUG_ON(state != EXIT_DEAD);
1299 return 0;
1300 }
1301
1302 traced = ptrace_reparented(p);
1303
1304 if (likely(!traced)) {
1305 struct signal_struct *psig;
1306 struct signal_struct *sig;
1307 struct task_cputime cputime;
1308
1309 /*
1310 * The resource counters for the group leader are in its
1311 * own task_struct. Those for dead threads in the group
1312 * are in its signal_struct, as are those for the child
1313 * processes it has previously reaped. All these
1314 * accumulate in the parent's signal_struct c* fields.
1315 *
1316 * We don't bother to take a lock here to protect these
1317 * p->signal fields, because they are only touched by
1318 * __exit_signal, which runs with tasklist_lock
1319 * write-locked anyway, and so is excluded here. We do
1320 * need to protect the access to p->parent->signal fields,
1321 * as other threads in the parent group can be right
1322 * here reaping other children at the same time.
1323 *
1324 * We use thread_group_cputime() to get times for the thread
1325 * group, which consolidates times for all threads in the
1326 * group including the group leader.
1327 */
1328 spin_lock_irq(&p->parent->sighand->siglock);
1329 psig = p->parent->signal;
1330 sig = p->signal;
1331 thread_group_cputime(p, &cputime);
1332 psig->cutime =
1333 cputime_add(psig->cutime,
1334 cputime_add(cputime.utime,
1335 sig->cutime));
1336 psig->cstime =
1337 cputime_add(psig->cstime,
1338 cputime_add(cputime.stime,
1339 sig->cstime));
1340 psig->cgtime =
1341 cputime_add(psig->cgtime,
1342 cputime_add(p->gtime,
1343 cputime_add(sig->gtime,
1344 sig->cgtime)));
1345 psig->cmin_flt +=
1346 p->min_flt + sig->min_flt + sig->cmin_flt;
1347 psig->cmaj_flt +=
1348 p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1349 psig->cnvcsw +=
1350 p->nvcsw + sig->nvcsw + sig->cnvcsw;
1351 psig->cnivcsw +=
1352 p->nivcsw + sig->nivcsw + sig->cnivcsw;
1353 psig->cinblock +=
1354 task_io_get_inblock(p) +
1355 sig->inblock + sig->cinblock;
1356 psig->coublock +=
1357 task_io_get_oublock(p) +
1358 sig->oublock + sig->coublock;
1359 task_io_accounting_add(&psig->ioac, &p->ioac);
1360 task_io_accounting_add(&psig->ioac, &sig->ioac);
1361 spin_unlock_irq(&p->parent->sighand->siglock);
1362 }
1363
1364 /*
1365 * Now we are sure this task is interesting, and no other
1366 * thread can reap it because we set its state to EXIT_DEAD.
1367 */
1368 read_unlock(&tasklist_lock);
1369
1370 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1371 status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1372 ? p->signal->group_exit_code : p->exit_code;
1373 if (!retval && stat_addr)
1374 retval = put_user(status, stat_addr);
1375 if (!retval && infop)
1376 retval = put_user(SIGCHLD, &infop->si_signo);
1377 if (!retval && infop)
1378 retval = put_user(0, &infop->si_errno);
1379 if (!retval && infop) {
1380 int why;
1381
1382 if ((status & 0x7f) == 0) {
1383 why = CLD_EXITED;
1384 status >>= 8;
1385 } else {
1386 why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1387 status &= 0x7f;
1388 }
1389 retval = put_user((short)why, &infop->si_code);
1390 if (!retval)
1391 retval = put_user(status, &infop->si_status);
1392 }
1393 if (!retval && infop)
1394 retval = put_user(pid, &infop->si_pid);
1395 if (!retval && infop)
1396 retval = put_user(uid, &infop->si_uid);
1397 if (!retval)
1398 retval = pid;
1399
1400 if (traced) {
1401 write_lock_irq(&tasklist_lock);
1402 /* We dropped tasklist, ptracer could die and untrace */
1403 ptrace_unlink(p);
1404 /*
1405 * If this is not a detached task, notify the parent.
1406 * If it's still not detached after that, don't release
1407 * it now.
1408 */
1409 if (!task_detached(p)) {
1410 do_notify_parent(p, p->exit_signal);
1411 if (!task_detached(p)) {
1412 p->exit_state = EXIT_ZOMBIE;
1413 p = NULL;
1414 }
1415 }
1416 write_unlock_irq(&tasklist_lock);
1417 }
1418 if (p != NULL)
1419 release_task(p);
1420
1421 return retval;
1422 }
1423
1424 /*
1425 * Handle sys_wait4 work for one task in state TASK_STOPPED. We hold
1426 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1427 * the lock and this task is uninteresting. If we return nonzero, we have
1428 * released the lock and the system call should return.
1429 */
1430 static int wait_task_stopped(int ptrace, struct task_struct *p,
1431 int options, struct siginfo __user *infop,
1432 int __user *stat_addr, struct rusage __user *ru)
1433 {
1434 int retval, exit_code, why;
1435 uid_t uid = 0; /* unneeded, required by compiler */
1436 pid_t pid;
1437
1438 if (!(options & WUNTRACED))
1439 return 0;
1440
1441 exit_code = 0;
1442 spin_lock_irq(&p->sighand->siglock);
1443
1444 if (unlikely(!task_is_stopped_or_traced(p)))
1445 goto unlock_sig;
1446
1447 if (!ptrace && p->signal->group_stop_count > 0)
1448 /*
1449 * A group stop is in progress and this is the group leader.
1450 * We won't report until all threads have stopped.
1451 */
1452 goto unlock_sig;
1453
1454 exit_code = p->exit_code;
1455 if (!exit_code)
1456 goto unlock_sig;
1457
1458 if (!unlikely(options & WNOWAIT))
1459 p->exit_code = 0;
1460
1461 /* don't need the RCU readlock here as we're holding a spinlock */
1462 uid = __task_cred(p)->uid;
1463 unlock_sig:
1464 spin_unlock_irq(&p->sighand->siglock);
1465 if (!exit_code)
1466 return 0;
1467
1468 /*
1469 * Now we are pretty sure this task is interesting.
1470 * Make sure it doesn't get reaped out from under us while we
1471 * give up the lock and then examine it below. We don't want to
1472 * keep holding onto the tasklist_lock while we call getrusage and
1473 * possibly take page faults for user memory.
1474 */
1475 get_task_struct(p);
1476 pid = task_pid_vnr(p);
1477 why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1478 read_unlock(&tasklist_lock);
1479
1480 if (unlikely(options & WNOWAIT))
1481 return wait_noreap_copyout(p, pid, uid,
1482 why, exit_code,
1483 infop, ru);
1484
1485 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1486 if (!retval && stat_addr)
1487 retval = put_user((exit_code << 8) | 0x7f, stat_addr);
1488 if (!retval && infop)
1489 retval = put_user(SIGCHLD, &infop->si_signo);
1490 if (!retval && infop)
1491 retval = put_user(0, &infop->si_errno);
1492 if (!retval && infop)
1493 retval = put_user((short)why, &infop->si_code);
1494 if (!retval && infop)
1495 retval = put_user(exit_code, &infop->si_status);
1496 if (!retval && infop)
1497 retval = put_user(pid, &infop->si_pid);
1498 if (!retval && infop)
1499 retval = put_user(uid, &infop->si_uid);
1500 if (!retval)
1501 retval = pid;
1502 put_task_struct(p);
1503
1504 BUG_ON(!retval);
1505 return retval;
1506 }
1507
1508 /*
1509 * Handle do_wait work for one task in a live, non-stopped state.
1510 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1511 * the lock and this task is uninteresting. If we return nonzero, we have
1512 * released the lock and the system call should return.
1513 */
1514 static int wait_task_continued(struct task_struct *p, int options,
1515 struct siginfo __user *infop,
1516 int __user *stat_addr, struct rusage __user *ru)
1517 {
1518 int retval;
1519 pid_t pid;
1520 uid_t uid;
1521
1522 if (!unlikely(options & WCONTINUED))
1523 return 0;
1524
1525 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1526 return 0;
1527
1528 spin_lock_irq(&p->sighand->siglock);
1529 /* Re-check with the lock held. */
1530 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1531 spin_unlock_irq(&p->sighand->siglock);
1532 return 0;
1533 }
1534 if (!unlikely(options & WNOWAIT))
1535 p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1536 uid = __task_cred(p)->uid;
1537 spin_unlock_irq(&p->sighand->siglock);
1538
1539 pid = task_pid_vnr(p);
1540 get_task_struct(p);
1541 read_unlock(&tasklist_lock);
1542
1543 if (!infop) {
1544 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1545 put_task_struct(p);
1546 if (!retval && stat_addr)
1547 retval = put_user(0xffff, stat_addr);
1548 if (!retval)
1549 retval = pid;
1550 } else {
1551 retval = wait_noreap_copyout(p, pid, uid,
1552 CLD_CONTINUED, SIGCONT,
1553 infop, ru);
1554 BUG_ON(retval == 0);
1555 }
1556
1557 return retval;
1558 }
1559
1560 /*
1561 * Consider @p for a wait by @parent.
1562 *
1563 * -ECHILD should be in *@notask_error before the first call.
1564 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1565 * Returns zero if the search for a child should continue;
1566 * then *@notask_error is 0 if @p is an eligible child,
1567 * or another error from security_task_wait(), or still -ECHILD.
1568 */
1569 static int wait_consider_task(struct task_struct *parent, int ptrace,
1570 struct task_struct *p, int *notask_error,
1571 enum pid_type type, struct pid *pid, int options,
1572 struct siginfo __user *infop,
1573 int __user *stat_addr, struct rusage __user *ru)
1574 {
1575 int ret = eligible_child(type, pid, options, p);
1576 if (!ret)
1577 return ret;
1578
1579 if (unlikely(ret < 0)) {
1580 /*
1581 * If we have not yet seen any eligible child,
1582 * then let this error code replace -ECHILD.
1583 * A permission error will give the user a clue
1584 * to look for security policy problems, rather
1585 * than for mysterious wait bugs.
1586 */
1587 if (*notask_error)
1588 *notask_error = ret;
1589 }
1590
1591 if (likely(!ptrace) && unlikely(p->ptrace)) {
1592 /*
1593 * This child is hidden by ptrace.
1594 * We aren't allowed to see it now, but eventually we will.
1595 */
1596 *notask_error = 0;
1597 return 0;
1598 }
1599
1600 if (p->exit_state == EXIT_DEAD)
1601 return 0;
1602
1603 /*
1604 * We don't reap group leaders with subthreads.
1605 */
1606 if (p->exit_state == EXIT_ZOMBIE && !delay_group_leader(p))
1607 return wait_task_zombie(p, options, infop, stat_addr, ru);
1608
1609 /*
1610 * It's stopped or running now, so it might
1611 * later continue, exit, or stop again.
1612 */
1613 *notask_error = 0;
1614
1615 if (task_is_stopped_or_traced(p))
1616 return wait_task_stopped(ptrace, p, options,
1617 infop, stat_addr, ru);
1618
1619 return wait_task_continued(p, options, infop, stat_addr, ru);
1620 }
1621
1622 /*
1623 * Do the work of do_wait() for one thread in the group, @tsk.
1624 *
1625 * -ECHILD should be in *@notask_error before the first call.
1626 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1627 * Returns zero if the search for a child should continue; then
1628 * *@notask_error is 0 if there were any eligible children,
1629 * or another error from security_task_wait(), or still -ECHILD.
1630 */
1631 static int do_wait_thread(struct task_struct *tsk, int *notask_error,
1632 enum pid_type type, struct pid *pid, int options,
1633 struct siginfo __user *infop, int __user *stat_addr,
1634 struct rusage __user *ru)
1635 {
1636 struct task_struct *p;
1637
1638 list_for_each_entry(p, &tsk->children, sibling) {
1639 /*
1640 * Do not consider detached threads.
1641 */
1642 if (!task_detached(p)) {
1643 int ret = wait_consider_task(tsk, 0, p, notask_error,
1644 type, pid, options,
1645 infop, stat_addr, ru);
1646 if (ret)
1647 return ret;
1648 }
1649 }
1650
1651 return 0;
1652 }
1653
1654 static int ptrace_do_wait(struct task_struct *tsk, int *notask_error,
1655 enum pid_type type, struct pid *pid, int options,
1656 struct siginfo __user *infop, int __user *stat_addr,
1657 struct rusage __user *ru)
1658 {
1659 struct task_struct *p;
1660
1661 /*
1662 * Traditionally we see ptrace'd stopped tasks regardless of options.
1663 */
1664 options |= WUNTRACED;
1665
1666 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1667 int ret = wait_consider_task(tsk, 1, p, notask_error,
1668 type, pid, options,
1669 infop, stat_addr, ru);
1670 if (ret)
1671 return ret;
1672 }
1673
1674 return 0;
1675 }
1676
1677 static long do_wait(enum pid_type type, struct pid *pid, int options,
1678 struct siginfo __user *infop, int __user *stat_addr,
1679 struct rusage __user *ru)
1680 {
1681 DECLARE_WAITQUEUE(wait, current);
1682 struct task_struct *tsk;
1683 int retval;
1684
1685 trace_sched_process_wait(pid);
1686
1687 add_wait_queue(&current->signal->wait_chldexit,&wait);
1688 repeat:
1689 /*
1690 * If there is nothing that can match our critiera just get out.
1691 * We will clear @retval to zero if we see any child that might later
1692 * match our criteria, even if we are not able to reap it yet.
1693 */
1694 retval = -ECHILD;
1695 if ((type < PIDTYPE_MAX) && (!pid || hlist_empty(&pid->tasks[type])))
1696 goto end;
1697
1698 current->state = TASK_INTERRUPTIBLE;
1699 read_lock(&tasklist_lock);
1700 tsk = current;
1701 do {
1702 int tsk_result = do_wait_thread(tsk, &retval,
1703 type, pid, options,
1704 infop, stat_addr, ru);
1705 if (!tsk_result)
1706 tsk_result = ptrace_do_wait(tsk, &retval,
1707 type, pid, options,
1708 infop, stat_addr, ru);
1709 if (tsk_result) {
1710 /*
1711 * tasklist_lock is unlocked and we have a final result.
1712 */
1713 retval = tsk_result;
1714 goto end;
1715 }
1716
1717 if (options & __WNOTHREAD)
1718 break;
1719 tsk = next_thread(tsk);
1720 BUG_ON(tsk->signal != current->signal);
1721 } while (tsk != current);
1722 read_unlock(&tasklist_lock);
1723
1724 if (!retval && !(options & WNOHANG)) {
1725 retval = -ERESTARTSYS;
1726 if (!signal_pending(current)) {
1727 schedule();
1728 goto repeat;
1729 }
1730 }
1731
1732 end:
1733 current->state = TASK_RUNNING;
1734 remove_wait_queue(&current->signal->wait_chldexit,&wait);
1735 if (infop) {
1736 if (retval > 0)
1737 retval = 0;
1738 else {
1739 /*
1740 * For a WNOHANG return, clear out all the fields
1741 * we would set so the user can easily tell the
1742 * difference.
1743 */
1744 if (!retval)
1745 retval = put_user(0, &infop->si_signo);
1746 if (!retval)
1747 retval = put_user(0, &infop->si_errno);
1748 if (!retval)
1749 retval = put_user(0, &infop->si_code);
1750 if (!retval)
1751 retval = put_user(0, &infop->si_pid);
1752 if (!retval)
1753 retval = put_user(0, &infop->si_uid);
1754 if (!retval)
1755 retval = put_user(0, &infop->si_status);
1756 }
1757 }
1758 return retval;
1759 }
1760
1761 asmlinkage long sys_waitid(int which, pid_t upid,
1762 struct siginfo __user *infop, int options,
1763 struct rusage __user *ru)
1764 {
1765 struct pid *pid = NULL;
1766 enum pid_type type;
1767 long ret;
1768
1769 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED))
1770 return -EINVAL;
1771 if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1772 return -EINVAL;
1773
1774 switch (which) {
1775 case P_ALL:
1776 type = PIDTYPE_MAX;
1777 break;
1778 case P_PID:
1779 type = PIDTYPE_PID;
1780 if (upid <= 0)
1781 return -EINVAL;
1782 break;
1783 case P_PGID:
1784 type = PIDTYPE_PGID;
1785 if (upid <= 0)
1786 return -EINVAL;
1787 break;
1788 default:
1789 return -EINVAL;
1790 }
1791
1792 if (type < PIDTYPE_MAX)
1793 pid = find_get_pid(upid);
1794 ret = do_wait(type, pid, options, infop, NULL, ru);
1795 put_pid(pid);
1796
1797 /* avoid REGPARM breakage on x86: */
1798 asmlinkage_protect(5, ret, which, upid, infop, options, ru);
1799 return ret;
1800 }
1801
1802 asmlinkage long sys_wait4(pid_t upid, int __user *stat_addr,
1803 int options, struct rusage __user *ru)
1804 {
1805 struct pid *pid = NULL;
1806 enum pid_type type;
1807 long ret;
1808
1809 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1810 __WNOTHREAD|__WCLONE|__WALL))
1811 return -EINVAL;
1812
1813 if (upid == -1)
1814 type = PIDTYPE_MAX;
1815 else if (upid < 0) {
1816 type = PIDTYPE_PGID;
1817 pid = find_get_pid(-upid);
1818 } else if (upid == 0) {
1819 type = PIDTYPE_PGID;
1820 pid = get_pid(task_pgrp(current));
1821 } else /* upid > 0 */ {
1822 type = PIDTYPE_PID;
1823 pid = find_get_pid(upid);
1824 }
1825
1826 ret = do_wait(type, pid, options | WEXITED, NULL, stat_addr, ru);
1827 put_pid(pid);
1828
1829 /* avoid REGPARM breakage on x86: */
1830 asmlinkage_protect(4, ret, upid, stat_addr, options, ru);
1831 return ret;
1832 }
1833
1834 #ifdef __ARCH_WANT_SYS_WAITPID
1835
1836 /*
1837 * sys_waitpid() remains for compatibility. waitpid() should be
1838 * implemented by calling sys_wait4() from libc.a.
1839 */
1840 asmlinkage long sys_waitpid(pid_t pid, int __user *stat_addr, int options)
1841 {
1842 return sys_wait4(pid, stat_addr, options, NULL);
1843 }
1844
1845 #endif
This page took 0.066791 seconds and 5 git commands to generate.