da28745f7c3869854b9486ecc9d4b893f7571b19
[deliverable/linux.git] / kernel / exit.c
1 /*
2 * linux/kernel/exit.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 #include <linux/mm.h>
8 #include <linux/slab.h>
9 #include <linux/interrupt.h>
10 #include <linux/module.h>
11 #include <linux/capability.h>
12 #include <linux/completion.h>
13 #include <linux/personality.h>
14 #include <linux/tty.h>
15 #include <linux/mnt_namespace.h>
16 #include <linux/iocontext.h>
17 #include <linux/key.h>
18 #include <linux/security.h>
19 #include <linux/cpu.h>
20 #include <linux/acct.h>
21 #include <linux/tsacct_kern.h>
22 #include <linux/file.h>
23 #include <linux/fdtable.h>
24 #include <linux/binfmts.h>
25 #include <linux/nsproxy.h>
26 #include <linux/pid_namespace.h>
27 #include <linux/ptrace.h>
28 #include <linux/profile.h>
29 #include <linux/mount.h>
30 #include <linux/proc_fs.h>
31 #include <linux/kthread.h>
32 #include <linux/mempolicy.h>
33 #include <linux/taskstats_kern.h>
34 #include <linux/delayacct.h>
35 #include <linux/freezer.h>
36 #include <linux/cgroup.h>
37 #include <linux/syscalls.h>
38 #include <linux/signal.h>
39 #include <linux/posix-timers.h>
40 #include <linux/cn_proc.h>
41 #include <linux/mutex.h>
42 #include <linux/futex.h>
43 #include <linux/compat.h>
44 #include <linux/pipe_fs_i.h>
45 #include <linux/audit.h> /* for audit_free() */
46 #include <linux/resource.h>
47 #include <linux/blkdev.h>
48 #include <linux/task_io_accounting_ops.h>
49 #include <linux/tracehook.h>
50
51 #include <asm/uaccess.h>
52 #include <asm/unistd.h>
53 #include <asm/pgtable.h>
54 #include <asm/mmu_context.h>
55
56 static void exit_mm(struct task_struct * tsk);
57
58 static inline int task_detached(struct task_struct *p)
59 {
60 return p->exit_signal == -1;
61 }
62
63 static void __unhash_process(struct task_struct *p)
64 {
65 nr_threads--;
66 detach_pid(p, PIDTYPE_PID);
67 if (thread_group_leader(p)) {
68 detach_pid(p, PIDTYPE_PGID);
69 detach_pid(p, PIDTYPE_SID);
70
71 list_del_rcu(&p->tasks);
72 __get_cpu_var(process_counts)--;
73 }
74 list_del_rcu(&p->thread_group);
75 list_del_init(&p->sibling);
76 }
77
78 /*
79 * This function expects the tasklist_lock write-locked.
80 */
81 static void __exit_signal(struct task_struct *tsk)
82 {
83 struct signal_struct *sig = tsk->signal;
84 struct sighand_struct *sighand;
85
86 BUG_ON(!sig);
87 BUG_ON(!atomic_read(&sig->count));
88
89 sighand = rcu_dereference(tsk->sighand);
90 spin_lock(&sighand->siglock);
91
92 posix_cpu_timers_exit(tsk);
93 if (atomic_dec_and_test(&sig->count))
94 posix_cpu_timers_exit_group(tsk);
95 else {
96 /*
97 * If there is any task waiting for the group exit
98 * then notify it:
99 */
100 if (sig->group_exit_task && atomic_read(&sig->count) == sig->notify_count)
101 wake_up_process(sig->group_exit_task);
102
103 if (tsk == sig->curr_target)
104 sig->curr_target = next_thread(tsk);
105 /*
106 * Accumulate here the counters for all threads but the
107 * group leader as they die, so they can be added into
108 * the process-wide totals when those are taken.
109 * The group leader stays around as a zombie as long
110 * as there are other threads. When it gets reaped,
111 * the exit.c code will add its counts into these totals.
112 * We won't ever get here for the group leader, since it
113 * will have been the last reference on the signal_struct.
114 */
115 sig->utime = cputime_add(sig->utime, tsk->utime);
116 sig->stime = cputime_add(sig->stime, tsk->stime);
117 sig->gtime = cputime_add(sig->gtime, tsk->gtime);
118 sig->min_flt += tsk->min_flt;
119 sig->maj_flt += tsk->maj_flt;
120 sig->nvcsw += tsk->nvcsw;
121 sig->nivcsw += tsk->nivcsw;
122 sig->inblock += task_io_get_inblock(tsk);
123 sig->oublock += task_io_get_oublock(tsk);
124 #ifdef CONFIG_TASK_XACCT
125 sig->rchar += tsk->rchar;
126 sig->wchar += tsk->wchar;
127 sig->syscr += tsk->syscr;
128 sig->syscw += tsk->syscw;
129 #endif /* CONFIG_TASK_XACCT */
130 #ifdef CONFIG_TASK_IO_ACCOUNTING
131 sig->ioac.read_bytes += tsk->ioac.read_bytes;
132 sig->ioac.write_bytes += tsk->ioac.write_bytes;
133 sig->ioac.cancelled_write_bytes +=
134 tsk->ioac.cancelled_write_bytes;
135 #endif /* CONFIG_TASK_IO_ACCOUNTING */
136 sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
137 sig = NULL; /* Marker for below. */
138 }
139
140 __unhash_process(tsk);
141
142 /*
143 * Do this under ->siglock, we can race with another thread
144 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
145 */
146 flush_sigqueue(&tsk->pending);
147
148 tsk->signal = NULL;
149 tsk->sighand = NULL;
150 spin_unlock(&sighand->siglock);
151
152 __cleanup_sighand(sighand);
153 clear_tsk_thread_flag(tsk,TIF_SIGPENDING);
154 if (sig) {
155 flush_sigqueue(&sig->shared_pending);
156 taskstats_tgid_free(sig);
157 __cleanup_signal(sig);
158 }
159 }
160
161 static void delayed_put_task_struct(struct rcu_head *rhp)
162 {
163 put_task_struct(container_of(rhp, struct task_struct, rcu));
164 }
165
166
167 void release_task(struct task_struct * p)
168 {
169 struct task_struct *leader;
170 int zap_leader;
171 repeat:
172 tracehook_prepare_release_task(p);
173 atomic_dec(&p->user->processes);
174 proc_flush_task(p);
175 write_lock_irq(&tasklist_lock);
176 tracehook_finish_release_task(p);
177 __exit_signal(p);
178
179 /*
180 * If we are the last non-leader member of the thread
181 * group, and the leader is zombie, then notify the
182 * group leader's parent process. (if it wants notification.)
183 */
184 zap_leader = 0;
185 leader = p->group_leader;
186 if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) {
187 BUG_ON(task_detached(leader));
188 do_notify_parent(leader, leader->exit_signal);
189 /*
190 * If we were the last child thread and the leader has
191 * exited already, and the leader's parent ignores SIGCHLD,
192 * then we are the one who should release the leader.
193 *
194 * do_notify_parent() will have marked it self-reaping in
195 * that case.
196 */
197 zap_leader = task_detached(leader);
198
199 /*
200 * This maintains the invariant that release_task()
201 * only runs on a task in EXIT_DEAD, just for sanity.
202 */
203 if (zap_leader)
204 leader->exit_state = EXIT_DEAD;
205 }
206
207 write_unlock_irq(&tasklist_lock);
208 release_thread(p);
209 call_rcu(&p->rcu, delayed_put_task_struct);
210
211 p = leader;
212 if (unlikely(zap_leader))
213 goto repeat;
214 }
215
216 /*
217 * This checks not only the pgrp, but falls back on the pid if no
218 * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
219 * without this...
220 *
221 * The caller must hold rcu lock or the tasklist lock.
222 */
223 struct pid *session_of_pgrp(struct pid *pgrp)
224 {
225 struct task_struct *p;
226 struct pid *sid = NULL;
227
228 p = pid_task(pgrp, PIDTYPE_PGID);
229 if (p == NULL)
230 p = pid_task(pgrp, PIDTYPE_PID);
231 if (p != NULL)
232 sid = task_session(p);
233
234 return sid;
235 }
236
237 /*
238 * Determine if a process group is "orphaned", according to the POSIX
239 * definition in 2.2.2.52. Orphaned process groups are not to be affected
240 * by terminal-generated stop signals. Newly orphaned process groups are
241 * to receive a SIGHUP and a SIGCONT.
242 *
243 * "I ask you, have you ever known what it is to be an orphan?"
244 */
245 static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task)
246 {
247 struct task_struct *p;
248
249 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
250 if ((p == ignored_task) ||
251 (p->exit_state && thread_group_empty(p)) ||
252 is_global_init(p->real_parent))
253 continue;
254
255 if (task_pgrp(p->real_parent) != pgrp &&
256 task_session(p->real_parent) == task_session(p))
257 return 0;
258 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
259
260 return 1;
261 }
262
263 int is_current_pgrp_orphaned(void)
264 {
265 int retval;
266
267 read_lock(&tasklist_lock);
268 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
269 read_unlock(&tasklist_lock);
270
271 return retval;
272 }
273
274 static int has_stopped_jobs(struct pid *pgrp)
275 {
276 int retval = 0;
277 struct task_struct *p;
278
279 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
280 if (!task_is_stopped(p))
281 continue;
282 retval = 1;
283 break;
284 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
285 return retval;
286 }
287
288 /*
289 * Check to see if any process groups have become orphaned as
290 * a result of our exiting, and if they have any stopped jobs,
291 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
292 */
293 static void
294 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
295 {
296 struct pid *pgrp = task_pgrp(tsk);
297 struct task_struct *ignored_task = tsk;
298
299 if (!parent)
300 /* exit: our father is in a different pgrp than
301 * we are and we were the only connection outside.
302 */
303 parent = tsk->real_parent;
304 else
305 /* reparent: our child is in a different pgrp than
306 * we are, and it was the only connection outside.
307 */
308 ignored_task = NULL;
309
310 if (task_pgrp(parent) != pgrp &&
311 task_session(parent) == task_session(tsk) &&
312 will_become_orphaned_pgrp(pgrp, ignored_task) &&
313 has_stopped_jobs(pgrp)) {
314 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
315 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
316 }
317 }
318
319 /**
320 * reparent_to_kthreadd - Reparent the calling kernel thread to kthreadd
321 *
322 * If a kernel thread is launched as a result of a system call, or if
323 * it ever exits, it should generally reparent itself to kthreadd so it
324 * isn't in the way of other processes and is correctly cleaned up on exit.
325 *
326 * The various task state such as scheduling policy and priority may have
327 * been inherited from a user process, so we reset them to sane values here.
328 *
329 * NOTE that reparent_to_kthreadd() gives the caller full capabilities.
330 */
331 static void reparent_to_kthreadd(void)
332 {
333 write_lock_irq(&tasklist_lock);
334
335 ptrace_unlink(current);
336 /* Reparent to init */
337 current->real_parent = current->parent = kthreadd_task;
338 list_move_tail(&current->sibling, &current->real_parent->children);
339
340 /* Set the exit signal to SIGCHLD so we signal init on exit */
341 current->exit_signal = SIGCHLD;
342
343 if (task_nice(current) < 0)
344 set_user_nice(current, 0);
345 /* cpus_allowed? */
346 /* rt_priority? */
347 /* signals? */
348 security_task_reparent_to_init(current);
349 memcpy(current->signal->rlim, init_task.signal->rlim,
350 sizeof(current->signal->rlim));
351 atomic_inc(&(INIT_USER->__count));
352 write_unlock_irq(&tasklist_lock);
353 switch_uid(INIT_USER);
354 }
355
356 void __set_special_pids(struct pid *pid)
357 {
358 struct task_struct *curr = current->group_leader;
359 pid_t nr = pid_nr(pid);
360
361 if (task_session(curr) != pid) {
362 change_pid(curr, PIDTYPE_SID, pid);
363 set_task_session(curr, nr);
364 }
365 if (task_pgrp(curr) != pid) {
366 change_pid(curr, PIDTYPE_PGID, pid);
367 set_task_pgrp(curr, nr);
368 }
369 }
370
371 static void set_special_pids(struct pid *pid)
372 {
373 write_lock_irq(&tasklist_lock);
374 __set_special_pids(pid);
375 write_unlock_irq(&tasklist_lock);
376 }
377
378 /*
379 * Let kernel threads use this to say that they
380 * allow a certain signal (since daemonize() will
381 * have disabled all of them by default).
382 */
383 int allow_signal(int sig)
384 {
385 if (!valid_signal(sig) || sig < 1)
386 return -EINVAL;
387
388 spin_lock_irq(&current->sighand->siglock);
389 sigdelset(&current->blocked, sig);
390 if (!current->mm) {
391 /* Kernel threads handle their own signals.
392 Let the signal code know it'll be handled, so
393 that they don't get converted to SIGKILL or
394 just silently dropped */
395 current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2;
396 }
397 recalc_sigpending();
398 spin_unlock_irq(&current->sighand->siglock);
399 return 0;
400 }
401
402 EXPORT_SYMBOL(allow_signal);
403
404 int disallow_signal(int sig)
405 {
406 if (!valid_signal(sig) || sig < 1)
407 return -EINVAL;
408
409 spin_lock_irq(&current->sighand->siglock);
410 current->sighand->action[(sig)-1].sa.sa_handler = SIG_IGN;
411 recalc_sigpending();
412 spin_unlock_irq(&current->sighand->siglock);
413 return 0;
414 }
415
416 EXPORT_SYMBOL(disallow_signal);
417
418 /*
419 * Put all the gunge required to become a kernel thread without
420 * attached user resources in one place where it belongs.
421 */
422
423 void daemonize(const char *name, ...)
424 {
425 va_list args;
426 struct fs_struct *fs;
427 sigset_t blocked;
428
429 va_start(args, name);
430 vsnprintf(current->comm, sizeof(current->comm), name, args);
431 va_end(args);
432
433 /*
434 * If we were started as result of loading a module, close all of the
435 * user space pages. We don't need them, and if we didn't close them
436 * they would be locked into memory.
437 */
438 exit_mm(current);
439 /*
440 * We don't want to have TIF_FREEZE set if the system-wide hibernation
441 * or suspend transition begins right now.
442 */
443 current->flags |= (PF_NOFREEZE | PF_KTHREAD);
444
445 if (current->nsproxy != &init_nsproxy) {
446 get_nsproxy(&init_nsproxy);
447 switch_task_namespaces(current, &init_nsproxy);
448 }
449 set_special_pids(&init_struct_pid);
450 proc_clear_tty(current);
451
452 /* Block and flush all signals */
453 sigfillset(&blocked);
454 sigprocmask(SIG_BLOCK, &blocked, NULL);
455 flush_signals(current);
456
457 /* Become as one with the init task */
458
459 exit_fs(current); /* current->fs->count--; */
460 fs = init_task.fs;
461 current->fs = fs;
462 atomic_inc(&fs->count);
463
464 exit_files(current);
465 current->files = init_task.files;
466 atomic_inc(&current->files->count);
467
468 reparent_to_kthreadd();
469 }
470
471 EXPORT_SYMBOL(daemonize);
472
473 static void close_files(struct files_struct * files)
474 {
475 int i, j;
476 struct fdtable *fdt;
477
478 j = 0;
479
480 /*
481 * It is safe to dereference the fd table without RCU or
482 * ->file_lock because this is the last reference to the
483 * files structure.
484 */
485 fdt = files_fdtable(files);
486 for (;;) {
487 unsigned long set;
488 i = j * __NFDBITS;
489 if (i >= fdt->max_fds)
490 break;
491 set = fdt->open_fds->fds_bits[j++];
492 while (set) {
493 if (set & 1) {
494 struct file * file = xchg(&fdt->fd[i], NULL);
495 if (file) {
496 filp_close(file, files);
497 cond_resched();
498 }
499 }
500 i++;
501 set >>= 1;
502 }
503 }
504 }
505
506 struct files_struct *get_files_struct(struct task_struct *task)
507 {
508 struct files_struct *files;
509
510 task_lock(task);
511 files = task->files;
512 if (files)
513 atomic_inc(&files->count);
514 task_unlock(task);
515
516 return files;
517 }
518
519 void put_files_struct(struct files_struct *files)
520 {
521 struct fdtable *fdt;
522
523 if (atomic_dec_and_test(&files->count)) {
524 close_files(files);
525 /*
526 * Free the fd and fdset arrays if we expanded them.
527 * If the fdtable was embedded, pass files for freeing
528 * at the end of the RCU grace period. Otherwise,
529 * you can free files immediately.
530 */
531 fdt = files_fdtable(files);
532 if (fdt != &files->fdtab)
533 kmem_cache_free(files_cachep, files);
534 free_fdtable(fdt);
535 }
536 }
537
538 void reset_files_struct(struct files_struct *files)
539 {
540 struct task_struct *tsk = current;
541 struct files_struct *old;
542
543 old = tsk->files;
544 task_lock(tsk);
545 tsk->files = files;
546 task_unlock(tsk);
547 put_files_struct(old);
548 }
549
550 void exit_files(struct task_struct *tsk)
551 {
552 struct files_struct * files = tsk->files;
553
554 if (files) {
555 task_lock(tsk);
556 tsk->files = NULL;
557 task_unlock(tsk);
558 put_files_struct(files);
559 }
560 }
561
562 void put_fs_struct(struct fs_struct *fs)
563 {
564 /* No need to hold fs->lock if we are killing it */
565 if (atomic_dec_and_test(&fs->count)) {
566 path_put(&fs->root);
567 path_put(&fs->pwd);
568 if (fs->altroot.dentry)
569 path_put(&fs->altroot);
570 kmem_cache_free(fs_cachep, fs);
571 }
572 }
573
574 void exit_fs(struct task_struct *tsk)
575 {
576 struct fs_struct * fs = tsk->fs;
577
578 if (fs) {
579 task_lock(tsk);
580 tsk->fs = NULL;
581 task_unlock(tsk);
582 put_fs_struct(fs);
583 }
584 }
585
586 EXPORT_SYMBOL_GPL(exit_fs);
587
588 #ifdef CONFIG_MM_OWNER
589 /*
590 * Task p is exiting and it owned mm, lets find a new owner for it
591 */
592 static inline int
593 mm_need_new_owner(struct mm_struct *mm, struct task_struct *p)
594 {
595 /*
596 * If there are other users of the mm and the owner (us) is exiting
597 * we need to find a new owner to take on the responsibility.
598 */
599 if (!mm)
600 return 0;
601 if (atomic_read(&mm->mm_users) <= 1)
602 return 0;
603 if (mm->owner != p)
604 return 0;
605 return 1;
606 }
607
608 void mm_update_next_owner(struct mm_struct *mm)
609 {
610 struct task_struct *c, *g, *p = current;
611
612 retry:
613 if (!mm_need_new_owner(mm, p))
614 return;
615
616 read_lock(&tasklist_lock);
617 /*
618 * Search in the children
619 */
620 list_for_each_entry(c, &p->children, sibling) {
621 if (c->mm == mm)
622 goto assign_new_owner;
623 }
624
625 /*
626 * Search in the siblings
627 */
628 list_for_each_entry(c, &p->parent->children, sibling) {
629 if (c->mm == mm)
630 goto assign_new_owner;
631 }
632
633 /*
634 * Search through everything else. We should not get
635 * here often
636 */
637 do_each_thread(g, c) {
638 if (c->mm == mm)
639 goto assign_new_owner;
640 } while_each_thread(g, c);
641
642 read_unlock(&tasklist_lock);
643 return;
644
645 assign_new_owner:
646 BUG_ON(c == p);
647 get_task_struct(c);
648 /*
649 * The task_lock protects c->mm from changing.
650 * We always want mm->owner->mm == mm
651 */
652 task_lock(c);
653 /*
654 * Delay read_unlock() till we have the task_lock()
655 * to ensure that c does not slip away underneath us
656 */
657 read_unlock(&tasklist_lock);
658 if (c->mm != mm) {
659 task_unlock(c);
660 put_task_struct(c);
661 goto retry;
662 }
663 cgroup_mm_owner_callbacks(mm->owner, c);
664 mm->owner = c;
665 task_unlock(c);
666 put_task_struct(c);
667 }
668 #endif /* CONFIG_MM_OWNER */
669
670 /*
671 * Turn us into a lazy TLB process if we
672 * aren't already..
673 */
674 static void exit_mm(struct task_struct * tsk)
675 {
676 struct mm_struct *mm = tsk->mm;
677 struct core_state *core_state;
678
679 mm_release(tsk, mm);
680 if (!mm)
681 return;
682 /*
683 * Serialize with any possible pending coredump.
684 * We must hold mmap_sem around checking core_state
685 * and clearing tsk->mm. The core-inducing thread
686 * will increment ->nr_threads for each thread in the
687 * group with ->mm != NULL.
688 */
689 down_read(&mm->mmap_sem);
690 core_state = mm->core_state;
691 if (core_state) {
692 struct core_thread self;
693 up_read(&mm->mmap_sem);
694
695 self.task = tsk;
696 self.next = xchg(&core_state->dumper.next, &self);
697 /*
698 * Implies mb(), the result of xchg() must be visible
699 * to core_state->dumper.
700 */
701 if (atomic_dec_and_test(&core_state->nr_threads))
702 complete(&core_state->startup);
703
704 for (;;) {
705 set_task_state(tsk, TASK_UNINTERRUPTIBLE);
706 if (!self.task) /* see coredump_finish() */
707 break;
708 schedule();
709 }
710 __set_task_state(tsk, TASK_RUNNING);
711 down_read(&mm->mmap_sem);
712 }
713 atomic_inc(&mm->mm_count);
714 BUG_ON(mm != tsk->active_mm);
715 /* more a memory barrier than a real lock */
716 task_lock(tsk);
717 tsk->mm = NULL;
718 up_read(&mm->mmap_sem);
719 enter_lazy_tlb(mm, current);
720 /* We don't want this task to be frozen prematurely */
721 clear_freeze_flag(tsk);
722 task_unlock(tsk);
723 mm_update_next_owner(mm);
724 mmput(mm);
725 }
726
727 /*
728 * Return nonzero if @parent's children should reap themselves.
729 *
730 * Called with write_lock_irq(&tasklist_lock) held.
731 */
732 static int ignoring_children(struct task_struct *parent)
733 {
734 int ret;
735 struct sighand_struct *psig = parent->sighand;
736 unsigned long flags;
737 spin_lock_irqsave(&psig->siglock, flags);
738 ret = (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
739 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT));
740 spin_unlock_irqrestore(&psig->siglock, flags);
741 return ret;
742 }
743
744 /*
745 * Detach all tasks we were using ptrace on.
746 * Any that need to be release_task'd are put on the @dead list.
747 *
748 * Called with write_lock(&tasklist_lock) held.
749 */
750 static void ptrace_exit(struct task_struct *parent, struct list_head *dead)
751 {
752 struct task_struct *p, *n;
753 int ign = -1;
754
755 list_for_each_entry_safe(p, n, &parent->ptraced, ptrace_entry) {
756 __ptrace_unlink(p);
757
758 if (p->exit_state != EXIT_ZOMBIE)
759 continue;
760
761 /*
762 * If it's a zombie, our attachedness prevented normal
763 * parent notification or self-reaping. Do notification
764 * now if it would have happened earlier. If it should
765 * reap itself, add it to the @dead list. We can't call
766 * release_task() here because we already hold tasklist_lock.
767 *
768 * If it's our own child, there is no notification to do.
769 * But if our normal children self-reap, then this child
770 * was prevented by ptrace and we must reap it now.
771 */
772 if (!task_detached(p) && thread_group_empty(p)) {
773 if (!same_thread_group(p->real_parent, parent))
774 do_notify_parent(p, p->exit_signal);
775 else {
776 if (ign < 0)
777 ign = ignoring_children(parent);
778 if (ign)
779 p->exit_signal = -1;
780 }
781 }
782
783 if (task_detached(p)) {
784 /*
785 * Mark it as in the process of being reaped.
786 */
787 p->exit_state = EXIT_DEAD;
788 list_add(&p->ptrace_entry, dead);
789 }
790 }
791 }
792
793 /*
794 * Finish up exit-time ptrace cleanup.
795 *
796 * Called without locks.
797 */
798 static void ptrace_exit_finish(struct task_struct *parent,
799 struct list_head *dead)
800 {
801 struct task_struct *p, *n;
802
803 BUG_ON(!list_empty(&parent->ptraced));
804
805 list_for_each_entry_safe(p, n, dead, ptrace_entry) {
806 list_del_init(&p->ptrace_entry);
807 release_task(p);
808 }
809 }
810
811 static void reparent_thread(struct task_struct *p, struct task_struct *father)
812 {
813 if (p->pdeath_signal)
814 /* We already hold the tasklist_lock here. */
815 group_send_sig_info(p->pdeath_signal, SEND_SIG_NOINFO, p);
816
817 list_move_tail(&p->sibling, &p->real_parent->children);
818
819 /* If this is a threaded reparent there is no need to
820 * notify anyone anything has happened.
821 */
822 if (same_thread_group(p->real_parent, father))
823 return;
824
825 /* We don't want people slaying init. */
826 if (!task_detached(p))
827 p->exit_signal = SIGCHLD;
828
829 /* If we'd notified the old parent about this child's death,
830 * also notify the new parent.
831 */
832 if (!ptrace_reparented(p) &&
833 p->exit_state == EXIT_ZOMBIE &&
834 !task_detached(p) && thread_group_empty(p))
835 do_notify_parent(p, p->exit_signal);
836
837 kill_orphaned_pgrp(p, father);
838 }
839
840 /*
841 * When we die, we re-parent all our children.
842 * Try to give them to another thread in our thread
843 * group, and if no such member exists, give it to
844 * the child reaper process (ie "init") in our pid
845 * space.
846 */
847 static void forget_original_parent(struct task_struct *father)
848 {
849 struct task_struct *p, *n, *reaper = father;
850 LIST_HEAD(ptrace_dead);
851
852 write_lock_irq(&tasklist_lock);
853
854 /*
855 * First clean up ptrace if we were using it.
856 */
857 ptrace_exit(father, &ptrace_dead);
858
859 do {
860 reaper = next_thread(reaper);
861 if (reaper == father) {
862 reaper = task_child_reaper(father);
863 break;
864 }
865 } while (reaper->flags & PF_EXITING);
866
867 list_for_each_entry_safe(p, n, &father->children, sibling) {
868 p->real_parent = reaper;
869 if (p->parent == father) {
870 BUG_ON(p->ptrace);
871 p->parent = p->real_parent;
872 }
873 reparent_thread(p, father);
874 }
875
876 write_unlock_irq(&tasklist_lock);
877 BUG_ON(!list_empty(&father->children));
878
879 ptrace_exit_finish(father, &ptrace_dead);
880 }
881
882 /*
883 * Send signals to all our closest relatives so that they know
884 * to properly mourn us..
885 */
886 static void exit_notify(struct task_struct *tsk, int group_dead)
887 {
888 int state;
889
890 /*
891 * This does two things:
892 *
893 * A. Make init inherit all the child processes
894 * B. Check to see if any process groups have become orphaned
895 * as a result of our exiting, and if they have any stopped
896 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
897 */
898 forget_original_parent(tsk);
899 exit_task_namespaces(tsk);
900
901 write_lock_irq(&tasklist_lock);
902 if (group_dead)
903 kill_orphaned_pgrp(tsk->group_leader, NULL);
904
905 /* Let father know we died
906 *
907 * Thread signals are configurable, but you aren't going to use
908 * that to send signals to arbitary processes.
909 * That stops right now.
910 *
911 * If the parent exec id doesn't match the exec id we saved
912 * when we started then we know the parent has changed security
913 * domain.
914 *
915 * If our self_exec id doesn't match our parent_exec_id then
916 * we have changed execution domain as these two values started
917 * the same after a fork.
918 */
919 if (tsk->exit_signal != SIGCHLD && !task_detached(tsk) &&
920 (tsk->parent_exec_id != tsk->real_parent->self_exec_id ||
921 tsk->self_exec_id != tsk->parent_exec_id) &&
922 !capable(CAP_KILL))
923 tsk->exit_signal = SIGCHLD;
924
925 /* If something other than our normal parent is ptracing us, then
926 * send it a SIGCHLD instead of honoring exit_signal. exit_signal
927 * only has special meaning to our real parent.
928 */
929 if (!task_detached(tsk) && thread_group_empty(tsk)) {
930 int signal = ptrace_reparented(tsk) ?
931 SIGCHLD : tsk->exit_signal;
932 do_notify_parent(tsk, signal);
933 } else if (tsk->ptrace) {
934 do_notify_parent(tsk, SIGCHLD);
935 }
936
937 state = EXIT_ZOMBIE;
938 if (task_detached(tsk) && likely(!tsk->ptrace))
939 state = EXIT_DEAD;
940 tsk->exit_state = state;
941
942 /* mt-exec, de_thread() is waiting for us */
943 if (thread_group_leader(tsk) &&
944 tsk->signal->notify_count < 0 &&
945 tsk->signal->group_exit_task)
946 wake_up_process(tsk->signal->group_exit_task);
947
948 write_unlock_irq(&tasklist_lock);
949
950 /* If the process is dead, release it - nobody will wait for it */
951 if (state == EXIT_DEAD)
952 release_task(tsk);
953 }
954
955 #ifdef CONFIG_DEBUG_STACK_USAGE
956 static void check_stack_usage(void)
957 {
958 static DEFINE_SPINLOCK(low_water_lock);
959 static int lowest_to_date = THREAD_SIZE;
960 unsigned long *n = end_of_stack(current);
961 unsigned long free;
962
963 while (*n == 0)
964 n++;
965 free = (unsigned long)n - (unsigned long)end_of_stack(current);
966
967 if (free >= lowest_to_date)
968 return;
969
970 spin_lock(&low_water_lock);
971 if (free < lowest_to_date) {
972 printk(KERN_WARNING "%s used greatest stack depth: %lu bytes "
973 "left\n",
974 current->comm, free);
975 lowest_to_date = free;
976 }
977 spin_unlock(&low_water_lock);
978 }
979 #else
980 static inline void check_stack_usage(void) {}
981 #endif
982
983 static inline void exit_child_reaper(struct task_struct *tsk)
984 {
985 if (likely(tsk->group_leader != task_child_reaper(tsk)))
986 return;
987
988 if (tsk->nsproxy->pid_ns == &init_pid_ns)
989 panic("Attempted to kill init!");
990
991 /*
992 * @tsk is the last thread in the 'cgroup-init' and is exiting.
993 * Terminate all remaining processes in the namespace and reap them
994 * before exiting @tsk.
995 *
996 * Note that @tsk (last thread of cgroup-init) may not necessarily
997 * be the child-reaper (i.e main thread of cgroup-init) of the
998 * namespace i.e the child_reaper may have already exited.
999 *
1000 * Even after a child_reaper exits, we let it inherit orphaned children,
1001 * because, pid_ns->child_reaper remains valid as long as there is
1002 * at least one living sub-thread in the cgroup init.
1003
1004 * This living sub-thread of the cgroup-init will be notified when
1005 * a child inherited by the 'child-reaper' exits (do_notify_parent()
1006 * uses __group_send_sig_info()). Further, when reaping child processes,
1007 * do_wait() iterates over children of all living sub threads.
1008
1009 * i.e even though 'child_reaper' thread is listed as the parent of the
1010 * orphaned children, any living sub-thread in the cgroup-init can
1011 * perform the role of the child_reaper.
1012 */
1013 zap_pid_ns_processes(tsk->nsproxy->pid_ns);
1014 }
1015
1016 NORET_TYPE void do_exit(long code)
1017 {
1018 struct task_struct *tsk = current;
1019 int group_dead;
1020
1021 profile_task_exit(tsk);
1022
1023 WARN_ON(atomic_read(&tsk->fs_excl));
1024
1025 if (unlikely(in_interrupt()))
1026 panic("Aiee, killing interrupt handler!");
1027 if (unlikely(!tsk->pid))
1028 panic("Attempted to kill the idle task!");
1029
1030 tracehook_report_exit(&code);
1031
1032 /*
1033 * We're taking recursive faults here in do_exit. Safest is to just
1034 * leave this task alone and wait for reboot.
1035 */
1036 if (unlikely(tsk->flags & PF_EXITING)) {
1037 printk(KERN_ALERT
1038 "Fixing recursive fault but reboot is needed!\n");
1039 /*
1040 * We can do this unlocked here. The futex code uses
1041 * this flag just to verify whether the pi state
1042 * cleanup has been done or not. In the worst case it
1043 * loops once more. We pretend that the cleanup was
1044 * done as there is no way to return. Either the
1045 * OWNER_DIED bit is set by now or we push the blocked
1046 * task into the wait for ever nirwana as well.
1047 */
1048 tsk->flags |= PF_EXITPIDONE;
1049 if (tsk->io_context)
1050 exit_io_context();
1051 set_current_state(TASK_UNINTERRUPTIBLE);
1052 schedule();
1053 }
1054
1055 exit_signals(tsk); /* sets PF_EXITING */
1056 /*
1057 * tsk->flags are checked in the futex code to protect against
1058 * an exiting task cleaning up the robust pi futexes.
1059 */
1060 smp_mb();
1061 spin_unlock_wait(&tsk->pi_lock);
1062
1063 if (unlikely(in_atomic()))
1064 printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n",
1065 current->comm, task_pid_nr(current),
1066 preempt_count());
1067
1068 acct_update_integrals(tsk);
1069 if (tsk->mm) {
1070 update_hiwater_rss(tsk->mm);
1071 update_hiwater_vm(tsk->mm);
1072 }
1073 group_dead = atomic_dec_and_test(&tsk->signal->live);
1074 if (group_dead) {
1075 exit_child_reaper(tsk);
1076 hrtimer_cancel(&tsk->signal->real_timer);
1077 exit_itimers(tsk->signal);
1078 }
1079 acct_collect(code, group_dead);
1080 #ifdef CONFIG_FUTEX
1081 if (unlikely(tsk->robust_list))
1082 exit_robust_list(tsk);
1083 #ifdef CONFIG_COMPAT
1084 if (unlikely(tsk->compat_robust_list))
1085 compat_exit_robust_list(tsk);
1086 #endif
1087 #endif
1088 if (group_dead)
1089 tty_audit_exit();
1090 if (unlikely(tsk->audit_context))
1091 audit_free(tsk);
1092
1093 tsk->exit_code = code;
1094 taskstats_exit(tsk, group_dead);
1095
1096 exit_mm(tsk);
1097
1098 if (group_dead)
1099 acct_process();
1100 exit_sem(tsk);
1101 exit_files(tsk);
1102 exit_fs(tsk);
1103 check_stack_usage();
1104 exit_thread();
1105 cgroup_exit(tsk, 1);
1106 exit_keys(tsk);
1107
1108 if (group_dead && tsk->signal->leader)
1109 disassociate_ctty(1);
1110
1111 module_put(task_thread_info(tsk)->exec_domain->module);
1112 if (tsk->binfmt)
1113 module_put(tsk->binfmt->module);
1114
1115 proc_exit_connector(tsk);
1116 exit_notify(tsk, group_dead);
1117 #ifdef CONFIG_NUMA
1118 mpol_put(tsk->mempolicy);
1119 tsk->mempolicy = NULL;
1120 #endif
1121 #ifdef CONFIG_FUTEX
1122 /*
1123 * This must happen late, after the PID is not
1124 * hashed anymore:
1125 */
1126 if (unlikely(!list_empty(&tsk->pi_state_list)))
1127 exit_pi_state_list(tsk);
1128 if (unlikely(current->pi_state_cache))
1129 kfree(current->pi_state_cache);
1130 #endif
1131 /*
1132 * Make sure we are holding no locks:
1133 */
1134 debug_check_no_locks_held(tsk);
1135 /*
1136 * We can do this unlocked here. The futex code uses this flag
1137 * just to verify whether the pi state cleanup has been done
1138 * or not. In the worst case it loops once more.
1139 */
1140 tsk->flags |= PF_EXITPIDONE;
1141
1142 if (tsk->io_context)
1143 exit_io_context();
1144
1145 if (tsk->splice_pipe)
1146 __free_pipe_info(tsk->splice_pipe);
1147
1148 preempt_disable();
1149 /* causes final put_task_struct in finish_task_switch(). */
1150 tsk->state = TASK_DEAD;
1151
1152 schedule();
1153 BUG();
1154 /* Avoid "noreturn function does return". */
1155 for (;;)
1156 cpu_relax(); /* For when BUG is null */
1157 }
1158
1159 EXPORT_SYMBOL_GPL(do_exit);
1160
1161 NORET_TYPE void complete_and_exit(struct completion *comp, long code)
1162 {
1163 if (comp)
1164 complete(comp);
1165
1166 do_exit(code);
1167 }
1168
1169 EXPORT_SYMBOL(complete_and_exit);
1170
1171 asmlinkage long sys_exit(int error_code)
1172 {
1173 do_exit((error_code&0xff)<<8);
1174 }
1175
1176 /*
1177 * Take down every thread in the group. This is called by fatal signals
1178 * as well as by sys_exit_group (below).
1179 */
1180 NORET_TYPE void
1181 do_group_exit(int exit_code)
1182 {
1183 struct signal_struct *sig = current->signal;
1184
1185 BUG_ON(exit_code & 0x80); /* core dumps don't get here */
1186
1187 if (signal_group_exit(sig))
1188 exit_code = sig->group_exit_code;
1189 else if (!thread_group_empty(current)) {
1190 struct sighand_struct *const sighand = current->sighand;
1191 spin_lock_irq(&sighand->siglock);
1192 if (signal_group_exit(sig))
1193 /* Another thread got here before we took the lock. */
1194 exit_code = sig->group_exit_code;
1195 else {
1196 sig->group_exit_code = exit_code;
1197 sig->flags = SIGNAL_GROUP_EXIT;
1198 zap_other_threads(current);
1199 }
1200 spin_unlock_irq(&sighand->siglock);
1201 }
1202
1203 do_exit(exit_code);
1204 /* NOTREACHED */
1205 }
1206
1207 /*
1208 * this kills every thread in the thread group. Note that any externally
1209 * wait4()-ing process will get the correct exit code - even if this
1210 * thread is not the thread group leader.
1211 */
1212 asmlinkage void sys_exit_group(int error_code)
1213 {
1214 do_group_exit((error_code & 0xff) << 8);
1215 }
1216
1217 static struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
1218 {
1219 struct pid *pid = NULL;
1220 if (type == PIDTYPE_PID)
1221 pid = task->pids[type].pid;
1222 else if (type < PIDTYPE_MAX)
1223 pid = task->group_leader->pids[type].pid;
1224 return pid;
1225 }
1226
1227 static int eligible_child(enum pid_type type, struct pid *pid, int options,
1228 struct task_struct *p)
1229 {
1230 int err;
1231
1232 if (type < PIDTYPE_MAX) {
1233 if (task_pid_type(p, type) != pid)
1234 return 0;
1235 }
1236
1237 /* Wait for all children (clone and not) if __WALL is set;
1238 * otherwise, wait for clone children *only* if __WCLONE is
1239 * set; otherwise, wait for non-clone children *only*. (Note:
1240 * A "clone" child here is one that reports to its parent
1241 * using a signal other than SIGCHLD.) */
1242 if (((p->exit_signal != SIGCHLD) ^ ((options & __WCLONE) != 0))
1243 && !(options & __WALL))
1244 return 0;
1245
1246 err = security_task_wait(p);
1247 if (err)
1248 return err;
1249
1250 return 1;
1251 }
1252
1253 static int wait_noreap_copyout(struct task_struct *p, pid_t pid, uid_t uid,
1254 int why, int status,
1255 struct siginfo __user *infop,
1256 struct rusage __user *rusagep)
1257 {
1258 int retval = rusagep ? getrusage(p, RUSAGE_BOTH, rusagep) : 0;
1259
1260 put_task_struct(p);
1261 if (!retval)
1262 retval = put_user(SIGCHLD, &infop->si_signo);
1263 if (!retval)
1264 retval = put_user(0, &infop->si_errno);
1265 if (!retval)
1266 retval = put_user((short)why, &infop->si_code);
1267 if (!retval)
1268 retval = put_user(pid, &infop->si_pid);
1269 if (!retval)
1270 retval = put_user(uid, &infop->si_uid);
1271 if (!retval)
1272 retval = put_user(status, &infop->si_status);
1273 if (!retval)
1274 retval = pid;
1275 return retval;
1276 }
1277
1278 /*
1279 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold
1280 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1281 * the lock and this task is uninteresting. If we return nonzero, we have
1282 * released the lock and the system call should return.
1283 */
1284 static int wait_task_zombie(struct task_struct *p, int options,
1285 struct siginfo __user *infop,
1286 int __user *stat_addr, struct rusage __user *ru)
1287 {
1288 unsigned long state;
1289 int retval, status, traced;
1290 pid_t pid = task_pid_vnr(p);
1291
1292 if (!likely(options & WEXITED))
1293 return 0;
1294
1295 if (unlikely(options & WNOWAIT)) {
1296 uid_t uid = p->uid;
1297 int exit_code = p->exit_code;
1298 int why, status;
1299
1300 get_task_struct(p);
1301 read_unlock(&tasklist_lock);
1302 if ((exit_code & 0x7f) == 0) {
1303 why = CLD_EXITED;
1304 status = exit_code >> 8;
1305 } else {
1306 why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
1307 status = exit_code & 0x7f;
1308 }
1309 return wait_noreap_copyout(p, pid, uid, why,
1310 status, infop, ru);
1311 }
1312
1313 /*
1314 * Try to move the task's state to DEAD
1315 * only one thread is allowed to do this:
1316 */
1317 state = xchg(&p->exit_state, EXIT_DEAD);
1318 if (state != EXIT_ZOMBIE) {
1319 BUG_ON(state != EXIT_DEAD);
1320 return 0;
1321 }
1322
1323 traced = ptrace_reparented(p);
1324
1325 if (likely(!traced)) {
1326 struct signal_struct *psig;
1327 struct signal_struct *sig;
1328
1329 /*
1330 * The resource counters for the group leader are in its
1331 * own task_struct. Those for dead threads in the group
1332 * are in its signal_struct, as are those for the child
1333 * processes it has previously reaped. All these
1334 * accumulate in the parent's signal_struct c* fields.
1335 *
1336 * We don't bother to take a lock here to protect these
1337 * p->signal fields, because they are only touched by
1338 * __exit_signal, which runs with tasklist_lock
1339 * write-locked anyway, and so is excluded here. We do
1340 * need to protect the access to p->parent->signal fields,
1341 * as other threads in the parent group can be right
1342 * here reaping other children at the same time.
1343 */
1344 spin_lock_irq(&p->parent->sighand->siglock);
1345 psig = p->parent->signal;
1346 sig = p->signal;
1347 psig->cutime =
1348 cputime_add(psig->cutime,
1349 cputime_add(p->utime,
1350 cputime_add(sig->utime,
1351 sig->cutime)));
1352 psig->cstime =
1353 cputime_add(psig->cstime,
1354 cputime_add(p->stime,
1355 cputime_add(sig->stime,
1356 sig->cstime)));
1357 psig->cgtime =
1358 cputime_add(psig->cgtime,
1359 cputime_add(p->gtime,
1360 cputime_add(sig->gtime,
1361 sig->cgtime)));
1362 psig->cmin_flt +=
1363 p->min_flt + sig->min_flt + sig->cmin_flt;
1364 psig->cmaj_flt +=
1365 p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1366 psig->cnvcsw +=
1367 p->nvcsw + sig->nvcsw + sig->cnvcsw;
1368 psig->cnivcsw +=
1369 p->nivcsw + sig->nivcsw + sig->cnivcsw;
1370 psig->cinblock +=
1371 task_io_get_inblock(p) +
1372 sig->inblock + sig->cinblock;
1373 psig->coublock +=
1374 task_io_get_oublock(p) +
1375 sig->oublock + sig->coublock;
1376 #ifdef CONFIG_TASK_XACCT
1377 psig->rchar += p->rchar + sig->rchar;
1378 psig->wchar += p->wchar + sig->wchar;
1379 psig->syscr += p->syscr + sig->syscr;
1380 psig->syscw += p->syscw + sig->syscw;
1381 #endif /* CONFIG_TASK_XACCT */
1382 #ifdef CONFIG_TASK_IO_ACCOUNTING
1383 psig->ioac.read_bytes +=
1384 p->ioac.read_bytes + sig->ioac.read_bytes;
1385 psig->ioac.write_bytes +=
1386 p->ioac.write_bytes + sig->ioac.write_bytes;
1387 psig->ioac.cancelled_write_bytes +=
1388 p->ioac.cancelled_write_bytes +
1389 sig->ioac.cancelled_write_bytes;
1390 #endif /* CONFIG_TASK_IO_ACCOUNTING */
1391 spin_unlock_irq(&p->parent->sighand->siglock);
1392 }
1393
1394 /*
1395 * Now we are sure this task is interesting, and no other
1396 * thread can reap it because we set its state to EXIT_DEAD.
1397 */
1398 read_unlock(&tasklist_lock);
1399
1400 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1401 status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1402 ? p->signal->group_exit_code : p->exit_code;
1403 if (!retval && stat_addr)
1404 retval = put_user(status, stat_addr);
1405 if (!retval && infop)
1406 retval = put_user(SIGCHLD, &infop->si_signo);
1407 if (!retval && infop)
1408 retval = put_user(0, &infop->si_errno);
1409 if (!retval && infop) {
1410 int why;
1411
1412 if ((status & 0x7f) == 0) {
1413 why = CLD_EXITED;
1414 status >>= 8;
1415 } else {
1416 why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1417 status &= 0x7f;
1418 }
1419 retval = put_user((short)why, &infop->si_code);
1420 if (!retval)
1421 retval = put_user(status, &infop->si_status);
1422 }
1423 if (!retval && infop)
1424 retval = put_user(pid, &infop->si_pid);
1425 if (!retval && infop)
1426 retval = put_user(p->uid, &infop->si_uid);
1427 if (!retval)
1428 retval = pid;
1429
1430 if (traced) {
1431 write_lock_irq(&tasklist_lock);
1432 /* We dropped tasklist, ptracer could die and untrace */
1433 ptrace_unlink(p);
1434 /*
1435 * If this is not a detached task, notify the parent.
1436 * If it's still not detached after that, don't release
1437 * it now.
1438 */
1439 if (!task_detached(p)) {
1440 do_notify_parent(p, p->exit_signal);
1441 if (!task_detached(p)) {
1442 p->exit_state = EXIT_ZOMBIE;
1443 p = NULL;
1444 }
1445 }
1446 write_unlock_irq(&tasklist_lock);
1447 }
1448 if (p != NULL)
1449 release_task(p);
1450
1451 return retval;
1452 }
1453
1454 /*
1455 * Handle sys_wait4 work for one task in state TASK_STOPPED. We hold
1456 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1457 * the lock and this task is uninteresting. If we return nonzero, we have
1458 * released the lock and the system call should return.
1459 */
1460 static int wait_task_stopped(int ptrace, struct task_struct *p,
1461 int options, struct siginfo __user *infop,
1462 int __user *stat_addr, struct rusage __user *ru)
1463 {
1464 int retval, exit_code, why;
1465 uid_t uid = 0; /* unneeded, required by compiler */
1466 pid_t pid;
1467
1468 if (!(options & WUNTRACED))
1469 return 0;
1470
1471 exit_code = 0;
1472 spin_lock_irq(&p->sighand->siglock);
1473
1474 if (unlikely(!task_is_stopped_or_traced(p)))
1475 goto unlock_sig;
1476
1477 if (!ptrace && p->signal->group_stop_count > 0)
1478 /*
1479 * A group stop is in progress and this is the group leader.
1480 * We won't report until all threads have stopped.
1481 */
1482 goto unlock_sig;
1483
1484 exit_code = p->exit_code;
1485 if (!exit_code)
1486 goto unlock_sig;
1487
1488 if (!unlikely(options & WNOWAIT))
1489 p->exit_code = 0;
1490
1491 uid = p->uid;
1492 unlock_sig:
1493 spin_unlock_irq(&p->sighand->siglock);
1494 if (!exit_code)
1495 return 0;
1496
1497 /*
1498 * Now we are pretty sure this task is interesting.
1499 * Make sure it doesn't get reaped out from under us while we
1500 * give up the lock and then examine it below. We don't want to
1501 * keep holding onto the tasklist_lock while we call getrusage and
1502 * possibly take page faults for user memory.
1503 */
1504 get_task_struct(p);
1505 pid = task_pid_vnr(p);
1506 why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1507 read_unlock(&tasklist_lock);
1508
1509 if (unlikely(options & WNOWAIT))
1510 return wait_noreap_copyout(p, pid, uid,
1511 why, exit_code,
1512 infop, ru);
1513
1514 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1515 if (!retval && stat_addr)
1516 retval = put_user((exit_code << 8) | 0x7f, stat_addr);
1517 if (!retval && infop)
1518 retval = put_user(SIGCHLD, &infop->si_signo);
1519 if (!retval && infop)
1520 retval = put_user(0, &infop->si_errno);
1521 if (!retval && infop)
1522 retval = put_user((short)why, &infop->si_code);
1523 if (!retval && infop)
1524 retval = put_user(exit_code, &infop->si_status);
1525 if (!retval && infop)
1526 retval = put_user(pid, &infop->si_pid);
1527 if (!retval && infop)
1528 retval = put_user(uid, &infop->si_uid);
1529 if (!retval)
1530 retval = pid;
1531 put_task_struct(p);
1532
1533 BUG_ON(!retval);
1534 return retval;
1535 }
1536
1537 /*
1538 * Handle do_wait work for one task in a live, non-stopped state.
1539 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1540 * the lock and this task is uninteresting. If we return nonzero, we have
1541 * released the lock and the system call should return.
1542 */
1543 static int wait_task_continued(struct task_struct *p, int options,
1544 struct siginfo __user *infop,
1545 int __user *stat_addr, struct rusage __user *ru)
1546 {
1547 int retval;
1548 pid_t pid;
1549 uid_t uid;
1550
1551 if (!unlikely(options & WCONTINUED))
1552 return 0;
1553
1554 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1555 return 0;
1556
1557 spin_lock_irq(&p->sighand->siglock);
1558 /* Re-check with the lock held. */
1559 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1560 spin_unlock_irq(&p->sighand->siglock);
1561 return 0;
1562 }
1563 if (!unlikely(options & WNOWAIT))
1564 p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1565 spin_unlock_irq(&p->sighand->siglock);
1566
1567 pid = task_pid_vnr(p);
1568 uid = p->uid;
1569 get_task_struct(p);
1570 read_unlock(&tasklist_lock);
1571
1572 if (!infop) {
1573 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1574 put_task_struct(p);
1575 if (!retval && stat_addr)
1576 retval = put_user(0xffff, stat_addr);
1577 if (!retval)
1578 retval = pid;
1579 } else {
1580 retval = wait_noreap_copyout(p, pid, uid,
1581 CLD_CONTINUED, SIGCONT,
1582 infop, ru);
1583 BUG_ON(retval == 0);
1584 }
1585
1586 return retval;
1587 }
1588
1589 /*
1590 * Consider @p for a wait by @parent.
1591 *
1592 * -ECHILD should be in *@notask_error before the first call.
1593 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1594 * Returns zero if the search for a child should continue;
1595 * then *@notask_error is 0 if @p is an eligible child,
1596 * or another error from security_task_wait(), or still -ECHILD.
1597 */
1598 static int wait_consider_task(struct task_struct *parent, int ptrace,
1599 struct task_struct *p, int *notask_error,
1600 enum pid_type type, struct pid *pid, int options,
1601 struct siginfo __user *infop,
1602 int __user *stat_addr, struct rusage __user *ru)
1603 {
1604 int ret = eligible_child(type, pid, options, p);
1605 if (!ret)
1606 return ret;
1607
1608 if (unlikely(ret < 0)) {
1609 /*
1610 * If we have not yet seen any eligible child,
1611 * then let this error code replace -ECHILD.
1612 * A permission error will give the user a clue
1613 * to look for security policy problems, rather
1614 * than for mysterious wait bugs.
1615 */
1616 if (*notask_error)
1617 *notask_error = ret;
1618 }
1619
1620 if (likely(!ptrace) && unlikely(p->ptrace)) {
1621 /*
1622 * This child is hidden by ptrace.
1623 * We aren't allowed to see it now, but eventually we will.
1624 */
1625 *notask_error = 0;
1626 return 0;
1627 }
1628
1629 if (p->exit_state == EXIT_DEAD)
1630 return 0;
1631
1632 /*
1633 * We don't reap group leaders with subthreads.
1634 */
1635 if (p->exit_state == EXIT_ZOMBIE && !delay_group_leader(p))
1636 return wait_task_zombie(p, options, infop, stat_addr, ru);
1637
1638 /*
1639 * It's stopped or running now, so it might
1640 * later continue, exit, or stop again.
1641 */
1642 *notask_error = 0;
1643
1644 if (task_is_stopped_or_traced(p))
1645 return wait_task_stopped(ptrace, p, options,
1646 infop, stat_addr, ru);
1647
1648 return wait_task_continued(p, options, infop, stat_addr, ru);
1649 }
1650
1651 /*
1652 * Do the work of do_wait() for one thread in the group, @tsk.
1653 *
1654 * -ECHILD should be in *@notask_error before the first call.
1655 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1656 * Returns zero if the search for a child should continue; then
1657 * *@notask_error is 0 if there were any eligible children,
1658 * or another error from security_task_wait(), or still -ECHILD.
1659 */
1660 static int do_wait_thread(struct task_struct *tsk, int *notask_error,
1661 enum pid_type type, struct pid *pid, int options,
1662 struct siginfo __user *infop, int __user *stat_addr,
1663 struct rusage __user *ru)
1664 {
1665 struct task_struct *p;
1666
1667 list_for_each_entry(p, &tsk->children, sibling) {
1668 /*
1669 * Do not consider detached threads.
1670 */
1671 if (!task_detached(p)) {
1672 int ret = wait_consider_task(tsk, 0, p, notask_error,
1673 type, pid, options,
1674 infop, stat_addr, ru);
1675 if (ret)
1676 return ret;
1677 }
1678 }
1679
1680 return 0;
1681 }
1682
1683 static int ptrace_do_wait(struct task_struct *tsk, int *notask_error,
1684 enum pid_type type, struct pid *pid, int options,
1685 struct siginfo __user *infop, int __user *stat_addr,
1686 struct rusage __user *ru)
1687 {
1688 struct task_struct *p;
1689
1690 /*
1691 * Traditionally we see ptrace'd stopped tasks regardless of options.
1692 */
1693 options |= WUNTRACED;
1694
1695 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1696 int ret = wait_consider_task(tsk, 1, p, notask_error,
1697 type, pid, options,
1698 infop, stat_addr, ru);
1699 if (ret)
1700 return ret;
1701 }
1702
1703 return 0;
1704 }
1705
1706 static long do_wait(enum pid_type type, struct pid *pid, int options,
1707 struct siginfo __user *infop, int __user *stat_addr,
1708 struct rusage __user *ru)
1709 {
1710 DECLARE_WAITQUEUE(wait, current);
1711 struct task_struct *tsk;
1712 int retval;
1713
1714 add_wait_queue(&current->signal->wait_chldexit,&wait);
1715 repeat:
1716 /*
1717 * If there is nothing that can match our critiera just get out.
1718 * We will clear @retval to zero if we see any child that might later
1719 * match our criteria, even if we are not able to reap it yet.
1720 */
1721 retval = -ECHILD;
1722 if ((type < PIDTYPE_MAX) && (!pid || hlist_empty(&pid->tasks[type])))
1723 goto end;
1724
1725 current->state = TASK_INTERRUPTIBLE;
1726 read_lock(&tasklist_lock);
1727 tsk = current;
1728 do {
1729 int tsk_result = do_wait_thread(tsk, &retval,
1730 type, pid, options,
1731 infop, stat_addr, ru);
1732 if (!tsk_result)
1733 tsk_result = ptrace_do_wait(tsk, &retval,
1734 type, pid, options,
1735 infop, stat_addr, ru);
1736 if (tsk_result) {
1737 /*
1738 * tasklist_lock is unlocked and we have a final result.
1739 */
1740 retval = tsk_result;
1741 goto end;
1742 }
1743
1744 if (options & __WNOTHREAD)
1745 break;
1746 tsk = next_thread(tsk);
1747 BUG_ON(tsk->signal != current->signal);
1748 } while (tsk != current);
1749 read_unlock(&tasklist_lock);
1750
1751 if (!retval && !(options & WNOHANG)) {
1752 retval = -ERESTARTSYS;
1753 if (!signal_pending(current)) {
1754 schedule();
1755 goto repeat;
1756 }
1757 }
1758
1759 end:
1760 current->state = TASK_RUNNING;
1761 remove_wait_queue(&current->signal->wait_chldexit,&wait);
1762 if (infop) {
1763 if (retval > 0)
1764 retval = 0;
1765 else {
1766 /*
1767 * For a WNOHANG return, clear out all the fields
1768 * we would set so the user can easily tell the
1769 * difference.
1770 */
1771 if (!retval)
1772 retval = put_user(0, &infop->si_signo);
1773 if (!retval)
1774 retval = put_user(0, &infop->si_errno);
1775 if (!retval)
1776 retval = put_user(0, &infop->si_code);
1777 if (!retval)
1778 retval = put_user(0, &infop->si_pid);
1779 if (!retval)
1780 retval = put_user(0, &infop->si_uid);
1781 if (!retval)
1782 retval = put_user(0, &infop->si_status);
1783 }
1784 }
1785 return retval;
1786 }
1787
1788 asmlinkage long sys_waitid(int which, pid_t upid,
1789 struct siginfo __user *infop, int options,
1790 struct rusage __user *ru)
1791 {
1792 struct pid *pid = NULL;
1793 enum pid_type type;
1794 long ret;
1795
1796 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED))
1797 return -EINVAL;
1798 if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1799 return -EINVAL;
1800
1801 switch (which) {
1802 case P_ALL:
1803 type = PIDTYPE_MAX;
1804 break;
1805 case P_PID:
1806 type = PIDTYPE_PID;
1807 if (upid <= 0)
1808 return -EINVAL;
1809 break;
1810 case P_PGID:
1811 type = PIDTYPE_PGID;
1812 if (upid <= 0)
1813 return -EINVAL;
1814 break;
1815 default:
1816 return -EINVAL;
1817 }
1818
1819 if (type < PIDTYPE_MAX)
1820 pid = find_get_pid(upid);
1821 ret = do_wait(type, pid, options, infop, NULL, ru);
1822 put_pid(pid);
1823
1824 /* avoid REGPARM breakage on x86: */
1825 asmlinkage_protect(5, ret, which, upid, infop, options, ru);
1826 return ret;
1827 }
1828
1829 asmlinkage long sys_wait4(pid_t upid, int __user *stat_addr,
1830 int options, struct rusage __user *ru)
1831 {
1832 struct pid *pid = NULL;
1833 enum pid_type type;
1834 long ret;
1835
1836 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1837 __WNOTHREAD|__WCLONE|__WALL))
1838 return -EINVAL;
1839
1840 if (upid == -1)
1841 type = PIDTYPE_MAX;
1842 else if (upid < 0) {
1843 type = PIDTYPE_PGID;
1844 pid = find_get_pid(-upid);
1845 } else if (upid == 0) {
1846 type = PIDTYPE_PGID;
1847 pid = get_pid(task_pgrp(current));
1848 } else /* upid > 0 */ {
1849 type = PIDTYPE_PID;
1850 pid = find_get_pid(upid);
1851 }
1852
1853 ret = do_wait(type, pid, options | WEXITED, NULL, stat_addr, ru);
1854 put_pid(pid);
1855
1856 /* avoid REGPARM breakage on x86: */
1857 asmlinkage_protect(4, ret, upid, stat_addr, options, ru);
1858 return ret;
1859 }
1860
1861 #ifdef __ARCH_WANT_SYS_WAITPID
1862
1863 /*
1864 * sys_waitpid() remains for compatibility. waitpid() should be
1865 * implemented by calling sys_wait4() from libc.a.
1866 */
1867 asmlinkage long sys_waitpid(pid_t pid, int __user *stat_addr, int options)
1868 {
1869 return sys_wait4(pid, stat_addr, options, NULL);
1870 }
1871
1872 #endif
This page took 0.068632 seconds and 5 git commands to generate.