Merge branch 'docs-next' of git://git.lwn.net/linux-2.6
[deliverable/linux.git] / kernel / exit.c
1 /*
2 * linux/kernel/exit.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 #include <linux/mm.h>
8 #include <linux/slab.h>
9 #include <linux/interrupt.h>
10 #include <linux/module.h>
11 #include <linux/capability.h>
12 #include <linux/completion.h>
13 #include <linux/personality.h>
14 #include <linux/tty.h>
15 #include <linux/iocontext.h>
16 #include <linux/key.h>
17 #include <linux/security.h>
18 #include <linux/cpu.h>
19 #include <linux/acct.h>
20 #include <linux/tsacct_kern.h>
21 #include <linux/file.h>
22 #include <linux/fdtable.h>
23 #include <linux/binfmts.h>
24 #include <linux/nsproxy.h>
25 #include <linux/pid_namespace.h>
26 #include <linux/ptrace.h>
27 #include <linux/profile.h>
28 #include <linux/mount.h>
29 #include <linux/proc_fs.h>
30 #include <linux/kthread.h>
31 #include <linux/mempolicy.h>
32 #include <linux/taskstats_kern.h>
33 #include <linux/delayacct.h>
34 #include <linux/freezer.h>
35 #include <linux/cgroup.h>
36 #include <linux/syscalls.h>
37 #include <linux/signal.h>
38 #include <linux/posix-timers.h>
39 #include <linux/cn_proc.h>
40 #include <linux/mutex.h>
41 #include <linux/futex.h>
42 #include <linux/pipe_fs_i.h>
43 #include <linux/audit.h> /* for audit_free() */
44 #include <linux/resource.h>
45 #include <linux/blkdev.h>
46 #include <linux/task_io_accounting_ops.h>
47 #include <linux/tracehook.h>
48 #include <linux/fs_struct.h>
49 #include <linux/init_task.h>
50 #include <linux/perf_event.h>
51 #include <trace/events/sched.h>
52 #include <linux/hw_breakpoint.h>
53
54 #include <asm/uaccess.h>
55 #include <asm/unistd.h>
56 #include <asm/pgtable.h>
57 #include <asm/mmu_context.h>
58
59 static void exit_mm(struct task_struct * tsk);
60
61 static void __unhash_process(struct task_struct *p)
62 {
63 nr_threads--;
64 detach_pid(p, PIDTYPE_PID);
65 if (thread_group_leader(p)) {
66 detach_pid(p, PIDTYPE_PGID);
67 detach_pid(p, PIDTYPE_SID);
68
69 list_del_rcu(&p->tasks);
70 list_del_init(&p->sibling);
71 __get_cpu_var(process_counts)--;
72 }
73 list_del_rcu(&p->thread_group);
74 }
75
76 /*
77 * This function expects the tasklist_lock write-locked.
78 */
79 static void __exit_signal(struct task_struct *tsk)
80 {
81 struct signal_struct *sig = tsk->signal;
82 struct sighand_struct *sighand;
83
84 BUG_ON(!sig);
85 BUG_ON(!atomic_read(&sig->count));
86
87 sighand = rcu_dereference_check(tsk->sighand,
88 rcu_read_lock_held() ||
89 lockdep_tasklist_lock_is_held());
90 spin_lock(&sighand->siglock);
91
92 posix_cpu_timers_exit(tsk);
93 if (atomic_dec_and_test(&sig->count))
94 posix_cpu_timers_exit_group(tsk);
95 else {
96 /*
97 * If there is any task waiting for the group exit
98 * then notify it:
99 */
100 if (sig->group_exit_task && atomic_read(&sig->count) == sig->notify_count)
101 wake_up_process(sig->group_exit_task);
102
103 if (tsk == sig->curr_target)
104 sig->curr_target = next_thread(tsk);
105 /*
106 * Accumulate here the counters for all threads but the
107 * group leader as they die, so they can be added into
108 * the process-wide totals when those are taken.
109 * The group leader stays around as a zombie as long
110 * as there are other threads. When it gets reaped,
111 * the exit.c code will add its counts into these totals.
112 * We won't ever get here for the group leader, since it
113 * will have been the last reference on the signal_struct.
114 */
115 sig->utime = cputime_add(sig->utime, tsk->utime);
116 sig->stime = cputime_add(sig->stime, tsk->stime);
117 sig->gtime = cputime_add(sig->gtime, tsk->gtime);
118 sig->min_flt += tsk->min_flt;
119 sig->maj_flt += tsk->maj_flt;
120 sig->nvcsw += tsk->nvcsw;
121 sig->nivcsw += tsk->nivcsw;
122 sig->inblock += task_io_get_inblock(tsk);
123 sig->oublock += task_io_get_oublock(tsk);
124 task_io_accounting_add(&sig->ioac, &tsk->ioac);
125 sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
126 sig = NULL; /* Marker for below. */
127 }
128
129 __unhash_process(tsk);
130
131 /*
132 * Do this under ->siglock, we can race with another thread
133 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
134 */
135 flush_sigqueue(&tsk->pending);
136
137 tsk->signal = NULL;
138 tsk->sighand = NULL;
139 spin_unlock(&sighand->siglock);
140
141 __cleanup_sighand(sighand);
142 clear_tsk_thread_flag(tsk,TIF_SIGPENDING);
143 if (sig) {
144 flush_sigqueue(&sig->shared_pending);
145 taskstats_tgid_free(sig);
146 /*
147 * Make sure ->signal can't go away under rq->lock,
148 * see account_group_exec_runtime().
149 */
150 task_rq_unlock_wait(tsk);
151 __cleanup_signal(sig);
152 }
153 }
154
155 static void delayed_put_task_struct(struct rcu_head *rhp)
156 {
157 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
158
159 #ifdef CONFIG_PERF_EVENTS
160 WARN_ON_ONCE(tsk->perf_event_ctxp);
161 #endif
162 trace_sched_process_free(tsk);
163 put_task_struct(tsk);
164 }
165
166
167 void release_task(struct task_struct * p)
168 {
169 struct task_struct *leader;
170 int zap_leader;
171 repeat:
172 tracehook_prepare_release_task(p);
173 /* don't need to get the RCU readlock here - the process is dead and
174 * can't be modifying its own credentials. But shut RCU-lockdep up */
175 rcu_read_lock();
176 atomic_dec(&__task_cred(p)->user->processes);
177 rcu_read_unlock();
178
179 proc_flush_task(p);
180
181 write_lock_irq(&tasklist_lock);
182 tracehook_finish_release_task(p);
183 __exit_signal(p);
184
185 /*
186 * If we are the last non-leader member of the thread
187 * group, and the leader is zombie, then notify the
188 * group leader's parent process. (if it wants notification.)
189 */
190 zap_leader = 0;
191 leader = p->group_leader;
192 if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) {
193 BUG_ON(task_detached(leader));
194 do_notify_parent(leader, leader->exit_signal);
195 /*
196 * If we were the last child thread and the leader has
197 * exited already, and the leader's parent ignores SIGCHLD,
198 * then we are the one who should release the leader.
199 *
200 * do_notify_parent() will have marked it self-reaping in
201 * that case.
202 */
203 zap_leader = task_detached(leader);
204
205 /*
206 * This maintains the invariant that release_task()
207 * only runs on a task in EXIT_DEAD, just for sanity.
208 */
209 if (zap_leader)
210 leader->exit_state = EXIT_DEAD;
211 }
212
213 write_unlock_irq(&tasklist_lock);
214 release_thread(p);
215 call_rcu(&p->rcu, delayed_put_task_struct);
216
217 p = leader;
218 if (unlikely(zap_leader))
219 goto repeat;
220 }
221
222 /*
223 * This checks not only the pgrp, but falls back on the pid if no
224 * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
225 * without this...
226 *
227 * The caller must hold rcu lock or the tasklist lock.
228 */
229 struct pid *session_of_pgrp(struct pid *pgrp)
230 {
231 struct task_struct *p;
232 struct pid *sid = NULL;
233
234 p = pid_task(pgrp, PIDTYPE_PGID);
235 if (p == NULL)
236 p = pid_task(pgrp, PIDTYPE_PID);
237 if (p != NULL)
238 sid = task_session(p);
239
240 return sid;
241 }
242
243 /*
244 * Determine if a process group is "orphaned", according to the POSIX
245 * definition in 2.2.2.52. Orphaned process groups are not to be affected
246 * by terminal-generated stop signals. Newly orphaned process groups are
247 * to receive a SIGHUP and a SIGCONT.
248 *
249 * "I ask you, have you ever known what it is to be an orphan?"
250 */
251 static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task)
252 {
253 struct task_struct *p;
254
255 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
256 if ((p == ignored_task) ||
257 (p->exit_state && thread_group_empty(p)) ||
258 is_global_init(p->real_parent))
259 continue;
260
261 if (task_pgrp(p->real_parent) != pgrp &&
262 task_session(p->real_parent) == task_session(p))
263 return 0;
264 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
265
266 return 1;
267 }
268
269 int is_current_pgrp_orphaned(void)
270 {
271 int retval;
272
273 read_lock(&tasklist_lock);
274 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
275 read_unlock(&tasklist_lock);
276
277 return retval;
278 }
279
280 static int has_stopped_jobs(struct pid *pgrp)
281 {
282 int retval = 0;
283 struct task_struct *p;
284
285 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
286 if (!task_is_stopped(p))
287 continue;
288 retval = 1;
289 break;
290 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
291 return retval;
292 }
293
294 /*
295 * Check to see if any process groups have become orphaned as
296 * a result of our exiting, and if they have any stopped jobs,
297 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
298 */
299 static void
300 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
301 {
302 struct pid *pgrp = task_pgrp(tsk);
303 struct task_struct *ignored_task = tsk;
304
305 if (!parent)
306 /* exit: our father is in a different pgrp than
307 * we are and we were the only connection outside.
308 */
309 parent = tsk->real_parent;
310 else
311 /* reparent: our child is in a different pgrp than
312 * we are, and it was the only connection outside.
313 */
314 ignored_task = NULL;
315
316 if (task_pgrp(parent) != pgrp &&
317 task_session(parent) == task_session(tsk) &&
318 will_become_orphaned_pgrp(pgrp, ignored_task) &&
319 has_stopped_jobs(pgrp)) {
320 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
321 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
322 }
323 }
324
325 /**
326 * reparent_to_kthreadd - Reparent the calling kernel thread to kthreadd
327 *
328 * If a kernel thread is launched as a result of a system call, or if
329 * it ever exits, it should generally reparent itself to kthreadd so it
330 * isn't in the way of other processes and is correctly cleaned up on exit.
331 *
332 * The various task state such as scheduling policy and priority may have
333 * been inherited from a user process, so we reset them to sane values here.
334 *
335 * NOTE that reparent_to_kthreadd() gives the caller full capabilities.
336 */
337 static void reparent_to_kthreadd(void)
338 {
339 write_lock_irq(&tasklist_lock);
340
341 ptrace_unlink(current);
342 /* Reparent to init */
343 current->real_parent = current->parent = kthreadd_task;
344 list_move_tail(&current->sibling, &current->real_parent->children);
345
346 /* Set the exit signal to SIGCHLD so we signal init on exit */
347 current->exit_signal = SIGCHLD;
348
349 if (task_nice(current) < 0)
350 set_user_nice(current, 0);
351 /* cpus_allowed? */
352 /* rt_priority? */
353 /* signals? */
354 memcpy(current->signal->rlim, init_task.signal->rlim,
355 sizeof(current->signal->rlim));
356
357 atomic_inc(&init_cred.usage);
358 commit_creds(&init_cred);
359 write_unlock_irq(&tasklist_lock);
360 }
361
362 void __set_special_pids(struct pid *pid)
363 {
364 struct task_struct *curr = current->group_leader;
365
366 if (task_session(curr) != pid)
367 change_pid(curr, PIDTYPE_SID, pid);
368
369 if (task_pgrp(curr) != pid)
370 change_pid(curr, PIDTYPE_PGID, pid);
371 }
372
373 static void set_special_pids(struct pid *pid)
374 {
375 write_lock_irq(&tasklist_lock);
376 __set_special_pids(pid);
377 write_unlock_irq(&tasklist_lock);
378 }
379
380 /*
381 * Let kernel threads use this to say that they allow a certain signal.
382 * Must not be used if kthread was cloned with CLONE_SIGHAND.
383 */
384 int allow_signal(int sig)
385 {
386 if (!valid_signal(sig) || sig < 1)
387 return -EINVAL;
388
389 spin_lock_irq(&current->sighand->siglock);
390 /* This is only needed for daemonize()'ed kthreads */
391 sigdelset(&current->blocked, sig);
392 /*
393 * Kernel threads handle their own signals. Let the signal code
394 * know it'll be handled, so that they don't get converted to
395 * SIGKILL or just silently dropped.
396 */
397 current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2;
398 recalc_sigpending();
399 spin_unlock_irq(&current->sighand->siglock);
400 return 0;
401 }
402
403 EXPORT_SYMBOL(allow_signal);
404
405 int disallow_signal(int sig)
406 {
407 if (!valid_signal(sig) || sig < 1)
408 return -EINVAL;
409
410 spin_lock_irq(&current->sighand->siglock);
411 current->sighand->action[(sig)-1].sa.sa_handler = SIG_IGN;
412 recalc_sigpending();
413 spin_unlock_irq(&current->sighand->siglock);
414 return 0;
415 }
416
417 EXPORT_SYMBOL(disallow_signal);
418
419 /*
420 * Put all the gunge required to become a kernel thread without
421 * attached user resources in one place where it belongs.
422 */
423
424 void daemonize(const char *name, ...)
425 {
426 va_list args;
427 sigset_t blocked;
428
429 va_start(args, name);
430 vsnprintf(current->comm, sizeof(current->comm), name, args);
431 va_end(args);
432
433 /*
434 * If we were started as result of loading a module, close all of the
435 * user space pages. We don't need them, and if we didn't close them
436 * they would be locked into memory.
437 */
438 exit_mm(current);
439 /*
440 * We don't want to have TIF_FREEZE set if the system-wide hibernation
441 * or suspend transition begins right now.
442 */
443 current->flags |= (PF_NOFREEZE | PF_KTHREAD);
444
445 if (current->nsproxy != &init_nsproxy) {
446 get_nsproxy(&init_nsproxy);
447 switch_task_namespaces(current, &init_nsproxy);
448 }
449 set_special_pids(&init_struct_pid);
450 proc_clear_tty(current);
451
452 /* Block and flush all signals */
453 sigfillset(&blocked);
454 sigprocmask(SIG_BLOCK, &blocked, NULL);
455 flush_signals(current);
456
457 /* Become as one with the init task */
458
459 daemonize_fs_struct();
460 exit_files(current);
461 current->files = init_task.files;
462 atomic_inc(&current->files->count);
463
464 reparent_to_kthreadd();
465 }
466
467 EXPORT_SYMBOL(daemonize);
468
469 static void close_files(struct files_struct * files)
470 {
471 int i, j;
472 struct fdtable *fdt;
473
474 j = 0;
475
476 /*
477 * It is safe to dereference the fd table without RCU or
478 * ->file_lock because this is the last reference to the
479 * files structure. But use RCU to shut RCU-lockdep up.
480 */
481 rcu_read_lock();
482 fdt = files_fdtable(files);
483 rcu_read_unlock();
484 for (;;) {
485 unsigned long set;
486 i = j * __NFDBITS;
487 if (i >= fdt->max_fds)
488 break;
489 set = fdt->open_fds->fds_bits[j++];
490 while (set) {
491 if (set & 1) {
492 struct file * file = xchg(&fdt->fd[i], NULL);
493 if (file) {
494 filp_close(file, files);
495 cond_resched();
496 }
497 }
498 i++;
499 set >>= 1;
500 }
501 }
502 }
503
504 struct files_struct *get_files_struct(struct task_struct *task)
505 {
506 struct files_struct *files;
507
508 task_lock(task);
509 files = task->files;
510 if (files)
511 atomic_inc(&files->count);
512 task_unlock(task);
513
514 return files;
515 }
516
517 void put_files_struct(struct files_struct *files)
518 {
519 struct fdtable *fdt;
520
521 if (atomic_dec_and_test(&files->count)) {
522 close_files(files);
523 /*
524 * Free the fd and fdset arrays if we expanded them.
525 * If the fdtable was embedded, pass files for freeing
526 * at the end of the RCU grace period. Otherwise,
527 * you can free files immediately.
528 */
529 rcu_read_lock();
530 fdt = files_fdtable(files);
531 if (fdt != &files->fdtab)
532 kmem_cache_free(files_cachep, files);
533 free_fdtable(fdt);
534 rcu_read_unlock();
535 }
536 }
537
538 void reset_files_struct(struct files_struct *files)
539 {
540 struct task_struct *tsk = current;
541 struct files_struct *old;
542
543 old = tsk->files;
544 task_lock(tsk);
545 tsk->files = files;
546 task_unlock(tsk);
547 put_files_struct(old);
548 }
549
550 void exit_files(struct task_struct *tsk)
551 {
552 struct files_struct * files = tsk->files;
553
554 if (files) {
555 task_lock(tsk);
556 tsk->files = NULL;
557 task_unlock(tsk);
558 put_files_struct(files);
559 }
560 }
561
562 #ifdef CONFIG_MM_OWNER
563 /*
564 * Task p is exiting and it owned mm, lets find a new owner for it
565 */
566 static inline int
567 mm_need_new_owner(struct mm_struct *mm, struct task_struct *p)
568 {
569 /*
570 * If there are other users of the mm and the owner (us) is exiting
571 * we need to find a new owner to take on the responsibility.
572 */
573 if (atomic_read(&mm->mm_users) <= 1)
574 return 0;
575 if (mm->owner != p)
576 return 0;
577 return 1;
578 }
579
580 void mm_update_next_owner(struct mm_struct *mm)
581 {
582 struct task_struct *c, *g, *p = current;
583
584 retry:
585 if (!mm_need_new_owner(mm, p))
586 return;
587
588 read_lock(&tasklist_lock);
589 /*
590 * Search in the children
591 */
592 list_for_each_entry(c, &p->children, sibling) {
593 if (c->mm == mm)
594 goto assign_new_owner;
595 }
596
597 /*
598 * Search in the siblings
599 */
600 list_for_each_entry(c, &p->real_parent->children, sibling) {
601 if (c->mm == mm)
602 goto assign_new_owner;
603 }
604
605 /*
606 * Search through everything else. We should not get
607 * here often
608 */
609 do_each_thread(g, c) {
610 if (c->mm == mm)
611 goto assign_new_owner;
612 } while_each_thread(g, c);
613
614 read_unlock(&tasklist_lock);
615 /*
616 * We found no owner yet mm_users > 1: this implies that we are
617 * most likely racing with swapoff (try_to_unuse()) or /proc or
618 * ptrace or page migration (get_task_mm()). Mark owner as NULL.
619 */
620 mm->owner = NULL;
621 return;
622
623 assign_new_owner:
624 BUG_ON(c == p);
625 get_task_struct(c);
626 /*
627 * The task_lock protects c->mm from changing.
628 * We always want mm->owner->mm == mm
629 */
630 task_lock(c);
631 /*
632 * Delay read_unlock() till we have the task_lock()
633 * to ensure that c does not slip away underneath us
634 */
635 read_unlock(&tasklist_lock);
636 if (c->mm != mm) {
637 task_unlock(c);
638 put_task_struct(c);
639 goto retry;
640 }
641 mm->owner = c;
642 task_unlock(c);
643 put_task_struct(c);
644 }
645 #endif /* CONFIG_MM_OWNER */
646
647 /*
648 * Turn us into a lazy TLB process if we
649 * aren't already..
650 */
651 static void exit_mm(struct task_struct * tsk)
652 {
653 struct mm_struct *mm = tsk->mm;
654 struct core_state *core_state;
655
656 mm_release(tsk, mm);
657 if (!mm)
658 return;
659 /*
660 * Serialize with any possible pending coredump.
661 * We must hold mmap_sem around checking core_state
662 * and clearing tsk->mm. The core-inducing thread
663 * will increment ->nr_threads for each thread in the
664 * group with ->mm != NULL.
665 */
666 down_read(&mm->mmap_sem);
667 core_state = mm->core_state;
668 if (core_state) {
669 struct core_thread self;
670 up_read(&mm->mmap_sem);
671
672 self.task = tsk;
673 self.next = xchg(&core_state->dumper.next, &self);
674 /*
675 * Implies mb(), the result of xchg() must be visible
676 * to core_state->dumper.
677 */
678 if (atomic_dec_and_test(&core_state->nr_threads))
679 complete(&core_state->startup);
680
681 for (;;) {
682 set_task_state(tsk, TASK_UNINTERRUPTIBLE);
683 if (!self.task) /* see coredump_finish() */
684 break;
685 schedule();
686 }
687 __set_task_state(tsk, TASK_RUNNING);
688 down_read(&mm->mmap_sem);
689 }
690 atomic_inc(&mm->mm_count);
691 BUG_ON(mm != tsk->active_mm);
692 /* more a memory barrier than a real lock */
693 task_lock(tsk);
694 tsk->mm = NULL;
695 up_read(&mm->mmap_sem);
696 enter_lazy_tlb(mm, current);
697 /* We don't want this task to be frozen prematurely */
698 clear_freeze_flag(tsk);
699 task_unlock(tsk);
700 mm_update_next_owner(mm);
701 mmput(mm);
702 }
703
704 /*
705 * When we die, we re-parent all our children.
706 * Try to give them to another thread in our thread
707 * group, and if no such member exists, give it to
708 * the child reaper process (ie "init") in our pid
709 * space.
710 */
711 static struct task_struct *find_new_reaper(struct task_struct *father)
712 {
713 struct pid_namespace *pid_ns = task_active_pid_ns(father);
714 struct task_struct *thread;
715
716 thread = father;
717 while_each_thread(father, thread) {
718 if (thread->flags & PF_EXITING)
719 continue;
720 if (unlikely(pid_ns->child_reaper == father))
721 pid_ns->child_reaper = thread;
722 return thread;
723 }
724
725 if (unlikely(pid_ns->child_reaper == father)) {
726 write_unlock_irq(&tasklist_lock);
727 if (unlikely(pid_ns == &init_pid_ns))
728 panic("Attempted to kill init!");
729
730 zap_pid_ns_processes(pid_ns);
731 write_lock_irq(&tasklist_lock);
732 /*
733 * We can not clear ->child_reaper or leave it alone.
734 * There may by stealth EXIT_DEAD tasks on ->children,
735 * forget_original_parent() must move them somewhere.
736 */
737 pid_ns->child_reaper = init_pid_ns.child_reaper;
738 }
739
740 return pid_ns->child_reaper;
741 }
742
743 /*
744 * Any that need to be release_task'd are put on the @dead list.
745 */
746 static void reparent_leader(struct task_struct *father, struct task_struct *p,
747 struct list_head *dead)
748 {
749 list_move_tail(&p->sibling, &p->real_parent->children);
750
751 if (task_detached(p))
752 return;
753 /*
754 * If this is a threaded reparent there is no need to
755 * notify anyone anything has happened.
756 */
757 if (same_thread_group(p->real_parent, father))
758 return;
759
760 /* We don't want people slaying init. */
761 p->exit_signal = SIGCHLD;
762
763 /* If it has exited notify the new parent about this child's death. */
764 if (!task_ptrace(p) &&
765 p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
766 do_notify_parent(p, p->exit_signal);
767 if (task_detached(p)) {
768 p->exit_state = EXIT_DEAD;
769 list_move_tail(&p->sibling, dead);
770 }
771 }
772
773 kill_orphaned_pgrp(p, father);
774 }
775
776 static void forget_original_parent(struct task_struct *father)
777 {
778 struct task_struct *p, *n, *reaper;
779 LIST_HEAD(dead_children);
780
781 exit_ptrace(father);
782
783 write_lock_irq(&tasklist_lock);
784 reaper = find_new_reaper(father);
785
786 list_for_each_entry_safe(p, n, &father->children, sibling) {
787 struct task_struct *t = p;
788 do {
789 t->real_parent = reaper;
790 if (t->parent == father) {
791 BUG_ON(task_ptrace(t));
792 t->parent = t->real_parent;
793 }
794 if (t->pdeath_signal)
795 group_send_sig_info(t->pdeath_signal,
796 SEND_SIG_NOINFO, t);
797 } while_each_thread(p, t);
798 reparent_leader(father, p, &dead_children);
799 }
800 write_unlock_irq(&tasklist_lock);
801
802 BUG_ON(!list_empty(&father->children));
803
804 list_for_each_entry_safe(p, n, &dead_children, sibling) {
805 list_del_init(&p->sibling);
806 release_task(p);
807 }
808 }
809
810 /*
811 * Send signals to all our closest relatives so that they know
812 * to properly mourn us..
813 */
814 static void exit_notify(struct task_struct *tsk, int group_dead)
815 {
816 int signal;
817 void *cookie;
818
819 /*
820 * This does two things:
821 *
822 * A. Make init inherit all the child processes
823 * B. Check to see if any process groups have become orphaned
824 * as a result of our exiting, and if they have any stopped
825 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
826 */
827 forget_original_parent(tsk);
828 exit_task_namespaces(tsk);
829
830 write_lock_irq(&tasklist_lock);
831 if (group_dead)
832 kill_orphaned_pgrp(tsk->group_leader, NULL);
833
834 /* Let father know we died
835 *
836 * Thread signals are configurable, but you aren't going to use
837 * that to send signals to arbitary processes.
838 * That stops right now.
839 *
840 * If the parent exec id doesn't match the exec id we saved
841 * when we started then we know the parent has changed security
842 * domain.
843 *
844 * If our self_exec id doesn't match our parent_exec_id then
845 * we have changed execution domain as these two values started
846 * the same after a fork.
847 */
848 if (tsk->exit_signal != SIGCHLD && !task_detached(tsk) &&
849 (tsk->parent_exec_id != tsk->real_parent->self_exec_id ||
850 tsk->self_exec_id != tsk->parent_exec_id))
851 tsk->exit_signal = SIGCHLD;
852
853 signal = tracehook_notify_death(tsk, &cookie, group_dead);
854 if (signal >= 0)
855 signal = do_notify_parent(tsk, signal);
856
857 tsk->exit_state = signal == DEATH_REAP ? EXIT_DEAD : EXIT_ZOMBIE;
858
859 /* mt-exec, de_thread() is waiting for us */
860 if (thread_group_leader(tsk) &&
861 tsk->signal->group_exit_task &&
862 tsk->signal->notify_count < 0)
863 wake_up_process(tsk->signal->group_exit_task);
864
865 write_unlock_irq(&tasklist_lock);
866
867 tracehook_report_death(tsk, signal, cookie, group_dead);
868
869 /* If the process is dead, release it - nobody will wait for it */
870 if (signal == DEATH_REAP)
871 release_task(tsk);
872 }
873
874 #ifdef CONFIG_DEBUG_STACK_USAGE
875 static void check_stack_usage(void)
876 {
877 static DEFINE_SPINLOCK(low_water_lock);
878 static int lowest_to_date = THREAD_SIZE;
879 unsigned long free;
880
881 free = stack_not_used(current);
882
883 if (free >= lowest_to_date)
884 return;
885
886 spin_lock(&low_water_lock);
887 if (free < lowest_to_date) {
888 printk(KERN_WARNING "%s used greatest stack depth: %lu bytes "
889 "left\n",
890 current->comm, free);
891 lowest_to_date = free;
892 }
893 spin_unlock(&low_water_lock);
894 }
895 #else
896 static inline void check_stack_usage(void) {}
897 #endif
898
899 NORET_TYPE void do_exit(long code)
900 {
901 struct task_struct *tsk = current;
902 int group_dead;
903
904 profile_task_exit(tsk);
905
906 WARN_ON(atomic_read(&tsk->fs_excl));
907
908 if (unlikely(in_interrupt()))
909 panic("Aiee, killing interrupt handler!");
910 if (unlikely(!tsk->pid))
911 panic("Attempted to kill the idle task!");
912
913 tracehook_report_exit(&code);
914
915 validate_creds_for_do_exit(tsk);
916
917 /*
918 * We're taking recursive faults here in do_exit. Safest is to just
919 * leave this task alone and wait for reboot.
920 */
921 if (unlikely(tsk->flags & PF_EXITING)) {
922 printk(KERN_ALERT
923 "Fixing recursive fault but reboot is needed!\n");
924 /*
925 * We can do this unlocked here. The futex code uses
926 * this flag just to verify whether the pi state
927 * cleanup has been done or not. In the worst case it
928 * loops once more. We pretend that the cleanup was
929 * done as there is no way to return. Either the
930 * OWNER_DIED bit is set by now or we push the blocked
931 * task into the wait for ever nirwana as well.
932 */
933 tsk->flags |= PF_EXITPIDONE;
934 set_current_state(TASK_UNINTERRUPTIBLE);
935 schedule();
936 }
937
938 exit_irq_thread();
939
940 exit_signals(tsk); /* sets PF_EXITING */
941 /*
942 * tsk->flags are checked in the futex code to protect against
943 * an exiting task cleaning up the robust pi futexes.
944 */
945 smp_mb();
946 raw_spin_unlock_wait(&tsk->pi_lock);
947
948 if (unlikely(in_atomic()))
949 printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n",
950 current->comm, task_pid_nr(current),
951 preempt_count());
952
953 acct_update_integrals(tsk);
954 /* sync mm's RSS info before statistics gathering */
955 if (tsk->mm)
956 sync_mm_rss(tsk, tsk->mm);
957 group_dead = atomic_dec_and_test(&tsk->signal->live);
958 if (group_dead) {
959 hrtimer_cancel(&tsk->signal->real_timer);
960 exit_itimers(tsk->signal);
961 if (tsk->mm)
962 setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
963 }
964 acct_collect(code, group_dead);
965 if (group_dead)
966 tty_audit_exit();
967 if (unlikely(tsk->audit_context))
968 audit_free(tsk);
969
970 tsk->exit_code = code;
971 taskstats_exit(tsk, group_dead);
972
973 exit_mm(tsk);
974
975 if (group_dead)
976 acct_process();
977 trace_sched_process_exit(tsk);
978
979 exit_sem(tsk);
980 exit_files(tsk);
981 exit_fs(tsk);
982 check_stack_usage();
983 exit_thread();
984 cgroup_exit(tsk, 1);
985
986 if (group_dead)
987 disassociate_ctty(1);
988
989 module_put(task_thread_info(tsk)->exec_domain->module);
990
991 proc_exit_connector(tsk);
992
993 /*
994 * FIXME: do that only when needed, using sched_exit tracepoint
995 */
996 flush_ptrace_hw_breakpoint(tsk);
997 /*
998 * Flush inherited counters to the parent - before the parent
999 * gets woken up by child-exit notifications.
1000 */
1001 perf_event_exit_task(tsk);
1002
1003 exit_notify(tsk, group_dead);
1004 #ifdef CONFIG_NUMA
1005 mpol_put(tsk->mempolicy);
1006 tsk->mempolicy = NULL;
1007 #endif
1008 #ifdef CONFIG_FUTEX
1009 if (unlikely(current->pi_state_cache))
1010 kfree(current->pi_state_cache);
1011 #endif
1012 /*
1013 * Make sure we are holding no locks:
1014 */
1015 debug_check_no_locks_held(tsk);
1016 /*
1017 * We can do this unlocked here. The futex code uses this flag
1018 * just to verify whether the pi state cleanup has been done
1019 * or not. In the worst case it loops once more.
1020 */
1021 tsk->flags |= PF_EXITPIDONE;
1022
1023 if (tsk->io_context)
1024 exit_io_context(tsk);
1025
1026 if (tsk->splice_pipe)
1027 __free_pipe_info(tsk->splice_pipe);
1028
1029 validate_creds_for_do_exit(tsk);
1030
1031 preempt_disable();
1032 exit_rcu();
1033 /* causes final put_task_struct in finish_task_switch(). */
1034 tsk->state = TASK_DEAD;
1035 schedule();
1036 BUG();
1037 /* Avoid "noreturn function does return". */
1038 for (;;)
1039 cpu_relax(); /* For when BUG is null */
1040 }
1041
1042 EXPORT_SYMBOL_GPL(do_exit);
1043
1044 NORET_TYPE void complete_and_exit(struct completion *comp, long code)
1045 {
1046 if (comp)
1047 complete(comp);
1048
1049 do_exit(code);
1050 }
1051
1052 EXPORT_SYMBOL(complete_and_exit);
1053
1054 SYSCALL_DEFINE1(exit, int, error_code)
1055 {
1056 do_exit((error_code&0xff)<<8);
1057 }
1058
1059 /*
1060 * Take down every thread in the group. This is called by fatal signals
1061 * as well as by sys_exit_group (below).
1062 */
1063 NORET_TYPE void
1064 do_group_exit(int exit_code)
1065 {
1066 struct signal_struct *sig = current->signal;
1067
1068 BUG_ON(exit_code & 0x80); /* core dumps don't get here */
1069
1070 if (signal_group_exit(sig))
1071 exit_code = sig->group_exit_code;
1072 else if (!thread_group_empty(current)) {
1073 struct sighand_struct *const sighand = current->sighand;
1074 spin_lock_irq(&sighand->siglock);
1075 if (signal_group_exit(sig))
1076 /* Another thread got here before we took the lock. */
1077 exit_code = sig->group_exit_code;
1078 else {
1079 sig->group_exit_code = exit_code;
1080 sig->flags = SIGNAL_GROUP_EXIT;
1081 zap_other_threads(current);
1082 }
1083 spin_unlock_irq(&sighand->siglock);
1084 }
1085
1086 do_exit(exit_code);
1087 /* NOTREACHED */
1088 }
1089
1090 /*
1091 * this kills every thread in the thread group. Note that any externally
1092 * wait4()-ing process will get the correct exit code - even if this
1093 * thread is not the thread group leader.
1094 */
1095 SYSCALL_DEFINE1(exit_group, int, error_code)
1096 {
1097 do_group_exit((error_code & 0xff) << 8);
1098 /* NOTREACHED */
1099 return 0;
1100 }
1101
1102 struct wait_opts {
1103 enum pid_type wo_type;
1104 int wo_flags;
1105 struct pid *wo_pid;
1106
1107 struct siginfo __user *wo_info;
1108 int __user *wo_stat;
1109 struct rusage __user *wo_rusage;
1110
1111 wait_queue_t child_wait;
1112 int notask_error;
1113 };
1114
1115 static inline
1116 struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
1117 {
1118 if (type != PIDTYPE_PID)
1119 task = task->group_leader;
1120 return task->pids[type].pid;
1121 }
1122
1123 static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
1124 {
1125 return wo->wo_type == PIDTYPE_MAX ||
1126 task_pid_type(p, wo->wo_type) == wo->wo_pid;
1127 }
1128
1129 static int eligible_child(struct wait_opts *wo, struct task_struct *p)
1130 {
1131 if (!eligible_pid(wo, p))
1132 return 0;
1133 /* Wait for all children (clone and not) if __WALL is set;
1134 * otherwise, wait for clone children *only* if __WCLONE is
1135 * set; otherwise, wait for non-clone children *only*. (Note:
1136 * A "clone" child here is one that reports to its parent
1137 * using a signal other than SIGCHLD.) */
1138 if (((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
1139 && !(wo->wo_flags & __WALL))
1140 return 0;
1141
1142 return 1;
1143 }
1144
1145 static int wait_noreap_copyout(struct wait_opts *wo, struct task_struct *p,
1146 pid_t pid, uid_t uid, int why, int status)
1147 {
1148 struct siginfo __user *infop;
1149 int retval = wo->wo_rusage
1150 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1151
1152 put_task_struct(p);
1153 infop = wo->wo_info;
1154 if (infop) {
1155 if (!retval)
1156 retval = put_user(SIGCHLD, &infop->si_signo);
1157 if (!retval)
1158 retval = put_user(0, &infop->si_errno);
1159 if (!retval)
1160 retval = put_user((short)why, &infop->si_code);
1161 if (!retval)
1162 retval = put_user(pid, &infop->si_pid);
1163 if (!retval)
1164 retval = put_user(uid, &infop->si_uid);
1165 if (!retval)
1166 retval = put_user(status, &infop->si_status);
1167 }
1168 if (!retval)
1169 retval = pid;
1170 return retval;
1171 }
1172
1173 /*
1174 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold
1175 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1176 * the lock and this task is uninteresting. If we return nonzero, we have
1177 * released the lock and the system call should return.
1178 */
1179 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
1180 {
1181 unsigned long state;
1182 int retval, status, traced;
1183 pid_t pid = task_pid_vnr(p);
1184 uid_t uid = __task_cred(p)->uid;
1185 struct siginfo __user *infop;
1186
1187 if (!likely(wo->wo_flags & WEXITED))
1188 return 0;
1189
1190 if (unlikely(wo->wo_flags & WNOWAIT)) {
1191 int exit_code = p->exit_code;
1192 int why;
1193
1194 get_task_struct(p);
1195 read_unlock(&tasklist_lock);
1196 if ((exit_code & 0x7f) == 0) {
1197 why = CLD_EXITED;
1198 status = exit_code >> 8;
1199 } else {
1200 why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
1201 status = exit_code & 0x7f;
1202 }
1203 return wait_noreap_copyout(wo, p, pid, uid, why, status);
1204 }
1205
1206 /*
1207 * Try to move the task's state to DEAD
1208 * only one thread is allowed to do this:
1209 */
1210 state = xchg(&p->exit_state, EXIT_DEAD);
1211 if (state != EXIT_ZOMBIE) {
1212 BUG_ON(state != EXIT_DEAD);
1213 return 0;
1214 }
1215
1216 traced = ptrace_reparented(p);
1217 /*
1218 * It can be ptraced but not reparented, check
1219 * !task_detached() to filter out sub-threads.
1220 */
1221 if (likely(!traced) && likely(!task_detached(p))) {
1222 struct signal_struct *psig;
1223 struct signal_struct *sig;
1224 unsigned long maxrss;
1225 cputime_t tgutime, tgstime;
1226
1227 /*
1228 * The resource counters for the group leader are in its
1229 * own task_struct. Those for dead threads in the group
1230 * are in its signal_struct, as are those for the child
1231 * processes it has previously reaped. All these
1232 * accumulate in the parent's signal_struct c* fields.
1233 *
1234 * We don't bother to take a lock here to protect these
1235 * p->signal fields, because they are only touched by
1236 * __exit_signal, which runs with tasklist_lock
1237 * write-locked anyway, and so is excluded here. We do
1238 * need to protect the access to parent->signal fields,
1239 * as other threads in the parent group can be right
1240 * here reaping other children at the same time.
1241 *
1242 * We use thread_group_times() to get times for the thread
1243 * group, which consolidates times for all threads in the
1244 * group including the group leader.
1245 */
1246 thread_group_times(p, &tgutime, &tgstime);
1247 spin_lock_irq(&p->real_parent->sighand->siglock);
1248 psig = p->real_parent->signal;
1249 sig = p->signal;
1250 psig->cutime =
1251 cputime_add(psig->cutime,
1252 cputime_add(tgutime,
1253 sig->cutime));
1254 psig->cstime =
1255 cputime_add(psig->cstime,
1256 cputime_add(tgstime,
1257 sig->cstime));
1258 psig->cgtime =
1259 cputime_add(psig->cgtime,
1260 cputime_add(p->gtime,
1261 cputime_add(sig->gtime,
1262 sig->cgtime)));
1263 psig->cmin_flt +=
1264 p->min_flt + sig->min_flt + sig->cmin_flt;
1265 psig->cmaj_flt +=
1266 p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1267 psig->cnvcsw +=
1268 p->nvcsw + sig->nvcsw + sig->cnvcsw;
1269 psig->cnivcsw +=
1270 p->nivcsw + sig->nivcsw + sig->cnivcsw;
1271 psig->cinblock +=
1272 task_io_get_inblock(p) +
1273 sig->inblock + sig->cinblock;
1274 psig->coublock +=
1275 task_io_get_oublock(p) +
1276 sig->oublock + sig->coublock;
1277 maxrss = max(sig->maxrss, sig->cmaxrss);
1278 if (psig->cmaxrss < maxrss)
1279 psig->cmaxrss = maxrss;
1280 task_io_accounting_add(&psig->ioac, &p->ioac);
1281 task_io_accounting_add(&psig->ioac, &sig->ioac);
1282 spin_unlock_irq(&p->real_parent->sighand->siglock);
1283 }
1284
1285 /*
1286 * Now we are sure this task is interesting, and no other
1287 * thread can reap it because we set its state to EXIT_DEAD.
1288 */
1289 read_unlock(&tasklist_lock);
1290
1291 retval = wo->wo_rusage
1292 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1293 status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1294 ? p->signal->group_exit_code : p->exit_code;
1295 if (!retval && wo->wo_stat)
1296 retval = put_user(status, wo->wo_stat);
1297
1298 infop = wo->wo_info;
1299 if (!retval && infop)
1300 retval = put_user(SIGCHLD, &infop->si_signo);
1301 if (!retval && infop)
1302 retval = put_user(0, &infop->si_errno);
1303 if (!retval && infop) {
1304 int why;
1305
1306 if ((status & 0x7f) == 0) {
1307 why = CLD_EXITED;
1308 status >>= 8;
1309 } else {
1310 why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1311 status &= 0x7f;
1312 }
1313 retval = put_user((short)why, &infop->si_code);
1314 if (!retval)
1315 retval = put_user(status, &infop->si_status);
1316 }
1317 if (!retval && infop)
1318 retval = put_user(pid, &infop->si_pid);
1319 if (!retval && infop)
1320 retval = put_user(uid, &infop->si_uid);
1321 if (!retval)
1322 retval = pid;
1323
1324 if (traced) {
1325 write_lock_irq(&tasklist_lock);
1326 /* We dropped tasklist, ptracer could die and untrace */
1327 ptrace_unlink(p);
1328 /*
1329 * If this is not a detached task, notify the parent.
1330 * If it's still not detached after that, don't release
1331 * it now.
1332 */
1333 if (!task_detached(p)) {
1334 do_notify_parent(p, p->exit_signal);
1335 if (!task_detached(p)) {
1336 p->exit_state = EXIT_ZOMBIE;
1337 p = NULL;
1338 }
1339 }
1340 write_unlock_irq(&tasklist_lock);
1341 }
1342 if (p != NULL)
1343 release_task(p);
1344
1345 return retval;
1346 }
1347
1348 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1349 {
1350 if (ptrace) {
1351 if (task_is_stopped_or_traced(p))
1352 return &p->exit_code;
1353 } else {
1354 if (p->signal->flags & SIGNAL_STOP_STOPPED)
1355 return &p->signal->group_exit_code;
1356 }
1357 return NULL;
1358 }
1359
1360 /*
1361 * Handle sys_wait4 work for one task in state TASK_STOPPED. We hold
1362 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1363 * the lock and this task is uninteresting. If we return nonzero, we have
1364 * released the lock and the system call should return.
1365 */
1366 static int wait_task_stopped(struct wait_opts *wo,
1367 int ptrace, struct task_struct *p)
1368 {
1369 struct siginfo __user *infop;
1370 int retval, exit_code, *p_code, why;
1371 uid_t uid = 0; /* unneeded, required by compiler */
1372 pid_t pid;
1373
1374 /*
1375 * Traditionally we see ptrace'd stopped tasks regardless of options.
1376 */
1377 if (!ptrace && !(wo->wo_flags & WUNTRACED))
1378 return 0;
1379
1380 exit_code = 0;
1381 spin_lock_irq(&p->sighand->siglock);
1382
1383 p_code = task_stopped_code(p, ptrace);
1384 if (unlikely(!p_code))
1385 goto unlock_sig;
1386
1387 exit_code = *p_code;
1388 if (!exit_code)
1389 goto unlock_sig;
1390
1391 if (!unlikely(wo->wo_flags & WNOWAIT))
1392 *p_code = 0;
1393
1394 /* don't need the RCU readlock here as we're holding a spinlock */
1395 uid = __task_cred(p)->uid;
1396 unlock_sig:
1397 spin_unlock_irq(&p->sighand->siglock);
1398 if (!exit_code)
1399 return 0;
1400
1401 /*
1402 * Now we are pretty sure this task is interesting.
1403 * Make sure it doesn't get reaped out from under us while we
1404 * give up the lock and then examine it below. We don't want to
1405 * keep holding onto the tasklist_lock while we call getrusage and
1406 * possibly take page faults for user memory.
1407 */
1408 get_task_struct(p);
1409 pid = task_pid_vnr(p);
1410 why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1411 read_unlock(&tasklist_lock);
1412
1413 if (unlikely(wo->wo_flags & WNOWAIT))
1414 return wait_noreap_copyout(wo, p, pid, uid, why, exit_code);
1415
1416 retval = wo->wo_rusage
1417 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1418 if (!retval && wo->wo_stat)
1419 retval = put_user((exit_code << 8) | 0x7f, wo->wo_stat);
1420
1421 infop = wo->wo_info;
1422 if (!retval && infop)
1423 retval = put_user(SIGCHLD, &infop->si_signo);
1424 if (!retval && infop)
1425 retval = put_user(0, &infop->si_errno);
1426 if (!retval && infop)
1427 retval = put_user((short)why, &infop->si_code);
1428 if (!retval && infop)
1429 retval = put_user(exit_code, &infop->si_status);
1430 if (!retval && infop)
1431 retval = put_user(pid, &infop->si_pid);
1432 if (!retval && infop)
1433 retval = put_user(uid, &infop->si_uid);
1434 if (!retval)
1435 retval = pid;
1436 put_task_struct(p);
1437
1438 BUG_ON(!retval);
1439 return retval;
1440 }
1441
1442 /*
1443 * Handle do_wait work for one task in a live, non-stopped state.
1444 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1445 * the lock and this task is uninteresting. If we return nonzero, we have
1446 * released the lock and the system call should return.
1447 */
1448 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1449 {
1450 int retval;
1451 pid_t pid;
1452 uid_t uid;
1453
1454 if (!unlikely(wo->wo_flags & WCONTINUED))
1455 return 0;
1456
1457 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1458 return 0;
1459
1460 spin_lock_irq(&p->sighand->siglock);
1461 /* Re-check with the lock held. */
1462 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1463 spin_unlock_irq(&p->sighand->siglock);
1464 return 0;
1465 }
1466 if (!unlikely(wo->wo_flags & WNOWAIT))
1467 p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1468 uid = __task_cred(p)->uid;
1469 spin_unlock_irq(&p->sighand->siglock);
1470
1471 pid = task_pid_vnr(p);
1472 get_task_struct(p);
1473 read_unlock(&tasklist_lock);
1474
1475 if (!wo->wo_info) {
1476 retval = wo->wo_rusage
1477 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1478 put_task_struct(p);
1479 if (!retval && wo->wo_stat)
1480 retval = put_user(0xffff, wo->wo_stat);
1481 if (!retval)
1482 retval = pid;
1483 } else {
1484 retval = wait_noreap_copyout(wo, p, pid, uid,
1485 CLD_CONTINUED, SIGCONT);
1486 BUG_ON(retval == 0);
1487 }
1488
1489 return retval;
1490 }
1491
1492 /*
1493 * Consider @p for a wait by @parent.
1494 *
1495 * -ECHILD should be in ->notask_error before the first call.
1496 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1497 * Returns zero if the search for a child should continue;
1498 * then ->notask_error is 0 if @p is an eligible child,
1499 * or another error from security_task_wait(), or still -ECHILD.
1500 */
1501 static int wait_consider_task(struct wait_opts *wo, int ptrace,
1502 struct task_struct *p)
1503 {
1504 int ret = eligible_child(wo, p);
1505 if (!ret)
1506 return ret;
1507
1508 ret = security_task_wait(p);
1509 if (unlikely(ret < 0)) {
1510 /*
1511 * If we have not yet seen any eligible child,
1512 * then let this error code replace -ECHILD.
1513 * A permission error will give the user a clue
1514 * to look for security policy problems, rather
1515 * than for mysterious wait bugs.
1516 */
1517 if (wo->notask_error)
1518 wo->notask_error = ret;
1519 return 0;
1520 }
1521
1522 if (likely(!ptrace) && unlikely(task_ptrace(p))) {
1523 /*
1524 * This child is hidden by ptrace.
1525 * We aren't allowed to see it now, but eventually we will.
1526 */
1527 wo->notask_error = 0;
1528 return 0;
1529 }
1530
1531 if (p->exit_state == EXIT_DEAD)
1532 return 0;
1533
1534 /*
1535 * We don't reap group leaders with subthreads.
1536 */
1537 if (p->exit_state == EXIT_ZOMBIE && !delay_group_leader(p))
1538 return wait_task_zombie(wo, p);
1539
1540 /*
1541 * It's stopped or running now, so it might
1542 * later continue, exit, or stop again.
1543 */
1544 wo->notask_error = 0;
1545
1546 if (task_stopped_code(p, ptrace))
1547 return wait_task_stopped(wo, ptrace, p);
1548
1549 return wait_task_continued(wo, p);
1550 }
1551
1552 /*
1553 * Do the work of do_wait() for one thread in the group, @tsk.
1554 *
1555 * -ECHILD should be in ->notask_error before the first call.
1556 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1557 * Returns zero if the search for a child should continue; then
1558 * ->notask_error is 0 if there were any eligible children,
1559 * or another error from security_task_wait(), or still -ECHILD.
1560 */
1561 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1562 {
1563 struct task_struct *p;
1564
1565 list_for_each_entry(p, &tsk->children, sibling) {
1566 int ret = wait_consider_task(wo, 0, p);
1567 if (ret)
1568 return ret;
1569 }
1570
1571 return 0;
1572 }
1573
1574 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1575 {
1576 struct task_struct *p;
1577
1578 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1579 int ret = wait_consider_task(wo, 1, p);
1580 if (ret)
1581 return ret;
1582 }
1583
1584 return 0;
1585 }
1586
1587 static int child_wait_callback(wait_queue_t *wait, unsigned mode,
1588 int sync, void *key)
1589 {
1590 struct wait_opts *wo = container_of(wait, struct wait_opts,
1591 child_wait);
1592 struct task_struct *p = key;
1593
1594 if (!eligible_pid(wo, p))
1595 return 0;
1596
1597 if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1598 return 0;
1599
1600 return default_wake_function(wait, mode, sync, key);
1601 }
1602
1603 void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1604 {
1605 __wake_up_sync_key(&parent->signal->wait_chldexit,
1606 TASK_INTERRUPTIBLE, 1, p);
1607 }
1608
1609 static long do_wait(struct wait_opts *wo)
1610 {
1611 struct task_struct *tsk;
1612 int retval;
1613
1614 trace_sched_process_wait(wo->wo_pid);
1615
1616 init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1617 wo->child_wait.private = current;
1618 add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1619 repeat:
1620 /*
1621 * If there is nothing that can match our critiera just get out.
1622 * We will clear ->notask_error to zero if we see any child that
1623 * might later match our criteria, even if we are not able to reap
1624 * it yet.
1625 */
1626 wo->notask_error = -ECHILD;
1627 if ((wo->wo_type < PIDTYPE_MAX) &&
1628 (!wo->wo_pid || hlist_empty(&wo->wo_pid->tasks[wo->wo_type])))
1629 goto notask;
1630
1631 set_current_state(TASK_INTERRUPTIBLE);
1632 read_lock(&tasklist_lock);
1633 tsk = current;
1634 do {
1635 retval = do_wait_thread(wo, tsk);
1636 if (retval)
1637 goto end;
1638
1639 retval = ptrace_do_wait(wo, tsk);
1640 if (retval)
1641 goto end;
1642
1643 if (wo->wo_flags & __WNOTHREAD)
1644 break;
1645 } while_each_thread(current, tsk);
1646 read_unlock(&tasklist_lock);
1647
1648 notask:
1649 retval = wo->notask_error;
1650 if (!retval && !(wo->wo_flags & WNOHANG)) {
1651 retval = -ERESTARTSYS;
1652 if (!signal_pending(current)) {
1653 schedule();
1654 goto repeat;
1655 }
1656 }
1657 end:
1658 __set_current_state(TASK_RUNNING);
1659 remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1660 return retval;
1661 }
1662
1663 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1664 infop, int, options, struct rusage __user *, ru)
1665 {
1666 struct wait_opts wo;
1667 struct pid *pid = NULL;
1668 enum pid_type type;
1669 long ret;
1670
1671 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED))
1672 return -EINVAL;
1673 if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1674 return -EINVAL;
1675
1676 switch (which) {
1677 case P_ALL:
1678 type = PIDTYPE_MAX;
1679 break;
1680 case P_PID:
1681 type = PIDTYPE_PID;
1682 if (upid <= 0)
1683 return -EINVAL;
1684 break;
1685 case P_PGID:
1686 type = PIDTYPE_PGID;
1687 if (upid <= 0)
1688 return -EINVAL;
1689 break;
1690 default:
1691 return -EINVAL;
1692 }
1693
1694 if (type < PIDTYPE_MAX)
1695 pid = find_get_pid(upid);
1696
1697 wo.wo_type = type;
1698 wo.wo_pid = pid;
1699 wo.wo_flags = options;
1700 wo.wo_info = infop;
1701 wo.wo_stat = NULL;
1702 wo.wo_rusage = ru;
1703 ret = do_wait(&wo);
1704
1705 if (ret > 0) {
1706 ret = 0;
1707 } else if (infop) {
1708 /*
1709 * For a WNOHANG return, clear out all the fields
1710 * we would set so the user can easily tell the
1711 * difference.
1712 */
1713 if (!ret)
1714 ret = put_user(0, &infop->si_signo);
1715 if (!ret)
1716 ret = put_user(0, &infop->si_errno);
1717 if (!ret)
1718 ret = put_user(0, &infop->si_code);
1719 if (!ret)
1720 ret = put_user(0, &infop->si_pid);
1721 if (!ret)
1722 ret = put_user(0, &infop->si_uid);
1723 if (!ret)
1724 ret = put_user(0, &infop->si_status);
1725 }
1726
1727 put_pid(pid);
1728
1729 /* avoid REGPARM breakage on x86: */
1730 asmlinkage_protect(5, ret, which, upid, infop, options, ru);
1731 return ret;
1732 }
1733
1734 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1735 int, options, struct rusage __user *, ru)
1736 {
1737 struct wait_opts wo;
1738 struct pid *pid = NULL;
1739 enum pid_type type;
1740 long ret;
1741
1742 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1743 __WNOTHREAD|__WCLONE|__WALL))
1744 return -EINVAL;
1745
1746 if (upid == -1)
1747 type = PIDTYPE_MAX;
1748 else if (upid < 0) {
1749 type = PIDTYPE_PGID;
1750 pid = find_get_pid(-upid);
1751 } else if (upid == 0) {
1752 type = PIDTYPE_PGID;
1753 pid = get_task_pid(current, PIDTYPE_PGID);
1754 } else /* upid > 0 */ {
1755 type = PIDTYPE_PID;
1756 pid = find_get_pid(upid);
1757 }
1758
1759 wo.wo_type = type;
1760 wo.wo_pid = pid;
1761 wo.wo_flags = options | WEXITED;
1762 wo.wo_info = NULL;
1763 wo.wo_stat = stat_addr;
1764 wo.wo_rusage = ru;
1765 ret = do_wait(&wo);
1766 put_pid(pid);
1767
1768 /* avoid REGPARM breakage on x86: */
1769 asmlinkage_protect(4, ret, upid, stat_addr, options, ru);
1770 return ret;
1771 }
1772
1773 #ifdef __ARCH_WANT_SYS_WAITPID
1774
1775 /*
1776 * sys_waitpid() remains for compatibility. waitpid() should be
1777 * implemented by calling sys_wait4() from libc.a.
1778 */
1779 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1780 {
1781 return sys_wait4(pid, stat_addr, options, NULL);
1782 }
1783
1784 #endif
This page took 0.06558 seconds and 5 git commands to generate.