f68d137ffeb460566978aa3065dd07932062f0aa
[deliverable/linux.git] / kernel / exit.c
1 /*
2 * linux/kernel/exit.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 #include <linux/mm.h>
8 #include <linux/slab.h>
9 #include <linux/interrupt.h>
10 #include <linux/module.h>
11 #include <linux/capability.h>
12 #include <linux/completion.h>
13 #include <linux/personality.h>
14 #include <linux/tty.h>
15 #include <linux/iocontext.h>
16 #include <linux/key.h>
17 #include <linux/security.h>
18 #include <linux/cpu.h>
19 #include <linux/acct.h>
20 #include <linux/tsacct_kern.h>
21 #include <linux/file.h>
22 #include <linux/fdtable.h>
23 #include <linux/binfmts.h>
24 #include <linux/nsproxy.h>
25 #include <linux/pid_namespace.h>
26 #include <linux/ptrace.h>
27 #include <linux/profile.h>
28 #include <linux/mount.h>
29 #include <linux/proc_fs.h>
30 #include <linux/kthread.h>
31 #include <linux/mempolicy.h>
32 #include <linux/taskstats_kern.h>
33 #include <linux/delayacct.h>
34 #include <linux/freezer.h>
35 #include <linux/cgroup.h>
36 #include <linux/syscalls.h>
37 #include <linux/signal.h>
38 #include <linux/posix-timers.h>
39 #include <linux/cn_proc.h>
40 #include <linux/mutex.h>
41 #include <linux/futex.h>
42 #include <linux/pipe_fs_i.h>
43 #include <linux/audit.h> /* for audit_free() */
44 #include <linux/resource.h>
45 #include <linux/blkdev.h>
46 #include <linux/task_io_accounting_ops.h>
47 #include <linux/tracehook.h>
48 #include <linux/fs_struct.h>
49 #include <linux/init_task.h>
50 #include <linux/perf_event.h>
51 #include <trace/events/sched.h>
52 #include <linux/hw_breakpoint.h>
53 #include <linux/oom.h>
54
55 #include <asm/uaccess.h>
56 #include <asm/unistd.h>
57 #include <asm/pgtable.h>
58 #include <asm/mmu_context.h>
59
60 static void exit_mm(struct task_struct * tsk);
61
62 static void __unhash_process(struct task_struct *p, bool group_dead)
63 {
64 nr_threads--;
65 detach_pid(p, PIDTYPE_PID);
66 if (group_dead) {
67 detach_pid(p, PIDTYPE_PGID);
68 detach_pid(p, PIDTYPE_SID);
69
70 list_del_rcu(&p->tasks);
71 list_del_init(&p->sibling);
72 __this_cpu_dec(process_counts);
73 }
74 list_del_rcu(&p->thread_group);
75 }
76
77 /*
78 * This function expects the tasklist_lock write-locked.
79 */
80 static void __exit_signal(struct task_struct *tsk)
81 {
82 struct signal_struct *sig = tsk->signal;
83 bool group_dead = thread_group_leader(tsk);
84 struct sighand_struct *sighand;
85 struct tty_struct *uninitialized_var(tty);
86
87 sighand = rcu_dereference_check(tsk->sighand,
88 rcu_read_lock_held() ||
89 lockdep_tasklist_lock_is_held());
90 spin_lock(&sighand->siglock);
91
92 posix_cpu_timers_exit(tsk);
93 if (group_dead) {
94 posix_cpu_timers_exit_group(tsk);
95 tty = sig->tty;
96 sig->tty = NULL;
97 } else {
98 /*
99 * This can only happen if the caller is de_thread().
100 * FIXME: this is the temporary hack, we should teach
101 * posix-cpu-timers to handle this case correctly.
102 */
103 if (unlikely(has_group_leader_pid(tsk)))
104 posix_cpu_timers_exit_group(tsk);
105
106 /*
107 * If there is any task waiting for the group exit
108 * then notify it:
109 */
110 if (sig->notify_count > 0 && !--sig->notify_count)
111 wake_up_process(sig->group_exit_task);
112
113 if (tsk == sig->curr_target)
114 sig->curr_target = next_thread(tsk);
115 /*
116 * Accumulate here the counters for all threads but the
117 * group leader as they die, so they can be added into
118 * the process-wide totals when those are taken.
119 * The group leader stays around as a zombie as long
120 * as there are other threads. When it gets reaped,
121 * the exit.c code will add its counts into these totals.
122 * We won't ever get here for the group leader, since it
123 * will have been the last reference on the signal_struct.
124 */
125 sig->utime = cputime_add(sig->utime, tsk->utime);
126 sig->stime = cputime_add(sig->stime, tsk->stime);
127 sig->gtime = cputime_add(sig->gtime, tsk->gtime);
128 sig->min_flt += tsk->min_flt;
129 sig->maj_flt += tsk->maj_flt;
130 sig->nvcsw += tsk->nvcsw;
131 sig->nivcsw += tsk->nivcsw;
132 sig->inblock += task_io_get_inblock(tsk);
133 sig->oublock += task_io_get_oublock(tsk);
134 task_io_accounting_add(&sig->ioac, &tsk->ioac);
135 sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
136 }
137
138 sig->nr_threads--;
139 __unhash_process(tsk, group_dead);
140
141 /*
142 * Do this under ->siglock, we can race with another thread
143 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
144 */
145 flush_sigqueue(&tsk->pending);
146 tsk->sighand = NULL;
147 spin_unlock(&sighand->siglock);
148
149 __cleanup_sighand(sighand);
150 clear_tsk_thread_flag(tsk,TIF_SIGPENDING);
151 if (group_dead) {
152 flush_sigqueue(&sig->shared_pending);
153 tty_kref_put(tty);
154 }
155 }
156
157 static void delayed_put_task_struct(struct rcu_head *rhp)
158 {
159 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
160
161 perf_event_delayed_put(tsk);
162 trace_sched_process_free(tsk);
163 put_task_struct(tsk);
164 }
165
166
167 void release_task(struct task_struct * p)
168 {
169 struct task_struct *leader;
170 int zap_leader;
171 repeat:
172 /* don't need to get the RCU readlock here - the process is dead and
173 * can't be modifying its own credentials. But shut RCU-lockdep up */
174 rcu_read_lock();
175 atomic_dec(&__task_cred(p)->user->processes);
176 rcu_read_unlock();
177
178 proc_flush_task(p);
179
180 write_lock_irq(&tasklist_lock);
181 ptrace_release_task(p);
182 __exit_signal(p);
183
184 /*
185 * If we are the last non-leader member of the thread
186 * group, and the leader is zombie, then notify the
187 * group leader's parent process. (if it wants notification.)
188 */
189 zap_leader = 0;
190 leader = p->group_leader;
191 if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) {
192 BUG_ON(task_detached(leader));
193 /*
194 * If we were the last child thread and the leader has
195 * exited already, and the leader's parent ignores SIGCHLD,
196 * then we are the one who should release the leader.
197 */
198 zap_leader = do_notify_parent(leader, leader->exit_signal);
199 if (zap_leader)
200 leader->exit_state = EXIT_DEAD;
201 }
202
203 write_unlock_irq(&tasklist_lock);
204 release_thread(p);
205 call_rcu(&p->rcu, delayed_put_task_struct);
206
207 p = leader;
208 if (unlikely(zap_leader))
209 goto repeat;
210 }
211
212 /*
213 * This checks not only the pgrp, but falls back on the pid if no
214 * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
215 * without this...
216 *
217 * The caller must hold rcu lock or the tasklist lock.
218 */
219 struct pid *session_of_pgrp(struct pid *pgrp)
220 {
221 struct task_struct *p;
222 struct pid *sid = NULL;
223
224 p = pid_task(pgrp, PIDTYPE_PGID);
225 if (p == NULL)
226 p = pid_task(pgrp, PIDTYPE_PID);
227 if (p != NULL)
228 sid = task_session(p);
229
230 return sid;
231 }
232
233 /*
234 * Determine if a process group is "orphaned", according to the POSIX
235 * definition in 2.2.2.52. Orphaned process groups are not to be affected
236 * by terminal-generated stop signals. Newly orphaned process groups are
237 * to receive a SIGHUP and a SIGCONT.
238 *
239 * "I ask you, have you ever known what it is to be an orphan?"
240 */
241 static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task)
242 {
243 struct task_struct *p;
244
245 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
246 if ((p == ignored_task) ||
247 (p->exit_state && thread_group_empty(p)) ||
248 is_global_init(p->real_parent))
249 continue;
250
251 if (task_pgrp(p->real_parent) != pgrp &&
252 task_session(p->real_parent) == task_session(p))
253 return 0;
254 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
255
256 return 1;
257 }
258
259 int is_current_pgrp_orphaned(void)
260 {
261 int retval;
262
263 read_lock(&tasklist_lock);
264 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
265 read_unlock(&tasklist_lock);
266
267 return retval;
268 }
269
270 static int has_stopped_jobs(struct pid *pgrp)
271 {
272 int retval = 0;
273 struct task_struct *p;
274
275 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
276 if (!task_is_stopped(p))
277 continue;
278 retval = 1;
279 break;
280 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
281 return retval;
282 }
283
284 /*
285 * Check to see if any process groups have become orphaned as
286 * a result of our exiting, and if they have any stopped jobs,
287 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
288 */
289 static void
290 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
291 {
292 struct pid *pgrp = task_pgrp(tsk);
293 struct task_struct *ignored_task = tsk;
294
295 if (!parent)
296 /* exit: our father is in a different pgrp than
297 * we are and we were the only connection outside.
298 */
299 parent = tsk->real_parent;
300 else
301 /* reparent: our child is in a different pgrp than
302 * we are, and it was the only connection outside.
303 */
304 ignored_task = NULL;
305
306 if (task_pgrp(parent) != pgrp &&
307 task_session(parent) == task_session(tsk) &&
308 will_become_orphaned_pgrp(pgrp, ignored_task) &&
309 has_stopped_jobs(pgrp)) {
310 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
311 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
312 }
313 }
314
315 /**
316 * reparent_to_kthreadd - Reparent the calling kernel thread to kthreadd
317 *
318 * If a kernel thread is launched as a result of a system call, or if
319 * it ever exits, it should generally reparent itself to kthreadd so it
320 * isn't in the way of other processes and is correctly cleaned up on exit.
321 *
322 * The various task state such as scheduling policy and priority may have
323 * been inherited from a user process, so we reset them to sane values here.
324 *
325 * NOTE that reparent_to_kthreadd() gives the caller full capabilities.
326 */
327 static void reparent_to_kthreadd(void)
328 {
329 write_lock_irq(&tasklist_lock);
330
331 ptrace_unlink(current);
332 /* Reparent to init */
333 current->real_parent = current->parent = kthreadd_task;
334 list_move_tail(&current->sibling, &current->real_parent->children);
335
336 /* Set the exit signal to SIGCHLD so we signal init on exit */
337 current->exit_signal = SIGCHLD;
338
339 if (task_nice(current) < 0)
340 set_user_nice(current, 0);
341 /* cpus_allowed? */
342 /* rt_priority? */
343 /* signals? */
344 memcpy(current->signal->rlim, init_task.signal->rlim,
345 sizeof(current->signal->rlim));
346
347 atomic_inc(&init_cred.usage);
348 commit_creds(&init_cred);
349 write_unlock_irq(&tasklist_lock);
350 }
351
352 void __set_special_pids(struct pid *pid)
353 {
354 struct task_struct *curr = current->group_leader;
355
356 if (task_session(curr) != pid)
357 change_pid(curr, PIDTYPE_SID, pid);
358
359 if (task_pgrp(curr) != pid)
360 change_pid(curr, PIDTYPE_PGID, pid);
361 }
362
363 static void set_special_pids(struct pid *pid)
364 {
365 write_lock_irq(&tasklist_lock);
366 __set_special_pids(pid);
367 write_unlock_irq(&tasklist_lock);
368 }
369
370 /*
371 * Let kernel threads use this to say that they allow a certain signal.
372 * Must not be used if kthread was cloned with CLONE_SIGHAND.
373 */
374 int allow_signal(int sig)
375 {
376 if (!valid_signal(sig) || sig < 1)
377 return -EINVAL;
378
379 spin_lock_irq(&current->sighand->siglock);
380 /* This is only needed for daemonize()'ed kthreads */
381 sigdelset(&current->blocked, sig);
382 /*
383 * Kernel threads handle their own signals. Let the signal code
384 * know it'll be handled, so that they don't get converted to
385 * SIGKILL or just silently dropped.
386 */
387 current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2;
388 recalc_sigpending();
389 spin_unlock_irq(&current->sighand->siglock);
390 return 0;
391 }
392
393 EXPORT_SYMBOL(allow_signal);
394
395 int disallow_signal(int sig)
396 {
397 if (!valid_signal(sig) || sig < 1)
398 return -EINVAL;
399
400 spin_lock_irq(&current->sighand->siglock);
401 current->sighand->action[(sig)-1].sa.sa_handler = SIG_IGN;
402 recalc_sigpending();
403 spin_unlock_irq(&current->sighand->siglock);
404 return 0;
405 }
406
407 EXPORT_SYMBOL(disallow_signal);
408
409 /*
410 * Put all the gunge required to become a kernel thread without
411 * attached user resources in one place where it belongs.
412 */
413
414 void daemonize(const char *name, ...)
415 {
416 va_list args;
417 sigset_t blocked;
418
419 va_start(args, name);
420 vsnprintf(current->comm, sizeof(current->comm), name, args);
421 va_end(args);
422
423 /*
424 * If we were started as result of loading a module, close all of the
425 * user space pages. We don't need them, and if we didn't close them
426 * they would be locked into memory.
427 */
428 exit_mm(current);
429 /*
430 * We don't want to have TIF_FREEZE set if the system-wide hibernation
431 * or suspend transition begins right now.
432 */
433 current->flags |= (PF_NOFREEZE | PF_KTHREAD);
434
435 if (current->nsproxy != &init_nsproxy) {
436 get_nsproxy(&init_nsproxy);
437 switch_task_namespaces(current, &init_nsproxy);
438 }
439 set_special_pids(&init_struct_pid);
440 proc_clear_tty(current);
441
442 /* Block and flush all signals */
443 sigfillset(&blocked);
444 sigprocmask(SIG_BLOCK, &blocked, NULL);
445 flush_signals(current);
446
447 /* Become as one with the init task */
448
449 daemonize_fs_struct();
450 exit_files(current);
451 current->files = init_task.files;
452 atomic_inc(&current->files->count);
453
454 reparent_to_kthreadd();
455 }
456
457 EXPORT_SYMBOL(daemonize);
458
459 static void close_files(struct files_struct * files)
460 {
461 int i, j;
462 struct fdtable *fdt;
463
464 j = 0;
465
466 /*
467 * It is safe to dereference the fd table without RCU or
468 * ->file_lock because this is the last reference to the
469 * files structure. But use RCU to shut RCU-lockdep up.
470 */
471 rcu_read_lock();
472 fdt = files_fdtable(files);
473 rcu_read_unlock();
474 for (;;) {
475 unsigned long set;
476 i = j * __NFDBITS;
477 if (i >= fdt->max_fds)
478 break;
479 set = fdt->open_fds->fds_bits[j++];
480 while (set) {
481 if (set & 1) {
482 struct file * file = xchg(&fdt->fd[i], NULL);
483 if (file) {
484 filp_close(file, files);
485 cond_resched();
486 }
487 }
488 i++;
489 set >>= 1;
490 }
491 }
492 }
493
494 struct files_struct *get_files_struct(struct task_struct *task)
495 {
496 struct files_struct *files;
497
498 task_lock(task);
499 files = task->files;
500 if (files)
501 atomic_inc(&files->count);
502 task_unlock(task);
503
504 return files;
505 }
506
507 void put_files_struct(struct files_struct *files)
508 {
509 struct fdtable *fdt;
510
511 if (atomic_dec_and_test(&files->count)) {
512 close_files(files);
513 /*
514 * Free the fd and fdset arrays if we expanded them.
515 * If the fdtable was embedded, pass files for freeing
516 * at the end of the RCU grace period. Otherwise,
517 * you can free files immediately.
518 */
519 rcu_read_lock();
520 fdt = files_fdtable(files);
521 if (fdt != &files->fdtab)
522 kmem_cache_free(files_cachep, files);
523 free_fdtable(fdt);
524 rcu_read_unlock();
525 }
526 }
527
528 void reset_files_struct(struct files_struct *files)
529 {
530 struct task_struct *tsk = current;
531 struct files_struct *old;
532
533 old = tsk->files;
534 task_lock(tsk);
535 tsk->files = files;
536 task_unlock(tsk);
537 put_files_struct(old);
538 }
539
540 void exit_files(struct task_struct *tsk)
541 {
542 struct files_struct * files = tsk->files;
543
544 if (files) {
545 task_lock(tsk);
546 tsk->files = NULL;
547 task_unlock(tsk);
548 put_files_struct(files);
549 }
550 }
551
552 #ifdef CONFIG_MM_OWNER
553 /*
554 * Task p is exiting and it owned mm, lets find a new owner for it
555 */
556 static inline int
557 mm_need_new_owner(struct mm_struct *mm, struct task_struct *p)
558 {
559 /*
560 * If there are other users of the mm and the owner (us) is exiting
561 * we need to find a new owner to take on the responsibility.
562 */
563 if (atomic_read(&mm->mm_users) <= 1)
564 return 0;
565 if (mm->owner != p)
566 return 0;
567 return 1;
568 }
569
570 void mm_update_next_owner(struct mm_struct *mm)
571 {
572 struct task_struct *c, *g, *p = current;
573
574 retry:
575 if (!mm_need_new_owner(mm, p))
576 return;
577
578 read_lock(&tasklist_lock);
579 /*
580 * Search in the children
581 */
582 list_for_each_entry(c, &p->children, sibling) {
583 if (c->mm == mm)
584 goto assign_new_owner;
585 }
586
587 /*
588 * Search in the siblings
589 */
590 list_for_each_entry(c, &p->real_parent->children, sibling) {
591 if (c->mm == mm)
592 goto assign_new_owner;
593 }
594
595 /*
596 * Search through everything else. We should not get
597 * here often
598 */
599 do_each_thread(g, c) {
600 if (c->mm == mm)
601 goto assign_new_owner;
602 } while_each_thread(g, c);
603
604 read_unlock(&tasklist_lock);
605 /*
606 * We found no owner yet mm_users > 1: this implies that we are
607 * most likely racing with swapoff (try_to_unuse()) or /proc or
608 * ptrace or page migration (get_task_mm()). Mark owner as NULL.
609 */
610 mm->owner = NULL;
611 return;
612
613 assign_new_owner:
614 BUG_ON(c == p);
615 get_task_struct(c);
616 /*
617 * The task_lock protects c->mm from changing.
618 * We always want mm->owner->mm == mm
619 */
620 task_lock(c);
621 /*
622 * Delay read_unlock() till we have the task_lock()
623 * to ensure that c does not slip away underneath us
624 */
625 read_unlock(&tasklist_lock);
626 if (c->mm != mm) {
627 task_unlock(c);
628 put_task_struct(c);
629 goto retry;
630 }
631 mm->owner = c;
632 task_unlock(c);
633 put_task_struct(c);
634 }
635 #endif /* CONFIG_MM_OWNER */
636
637 /*
638 * Turn us into a lazy TLB process if we
639 * aren't already..
640 */
641 static void exit_mm(struct task_struct * tsk)
642 {
643 struct mm_struct *mm = tsk->mm;
644 struct core_state *core_state;
645
646 mm_release(tsk, mm);
647 if (!mm)
648 return;
649 /*
650 * Serialize with any possible pending coredump.
651 * We must hold mmap_sem around checking core_state
652 * and clearing tsk->mm. The core-inducing thread
653 * will increment ->nr_threads for each thread in the
654 * group with ->mm != NULL.
655 */
656 down_read(&mm->mmap_sem);
657 core_state = mm->core_state;
658 if (core_state) {
659 struct core_thread self;
660 up_read(&mm->mmap_sem);
661
662 self.task = tsk;
663 self.next = xchg(&core_state->dumper.next, &self);
664 /*
665 * Implies mb(), the result of xchg() must be visible
666 * to core_state->dumper.
667 */
668 if (atomic_dec_and_test(&core_state->nr_threads))
669 complete(&core_state->startup);
670
671 for (;;) {
672 set_task_state(tsk, TASK_UNINTERRUPTIBLE);
673 if (!self.task) /* see coredump_finish() */
674 break;
675 schedule();
676 }
677 __set_task_state(tsk, TASK_RUNNING);
678 down_read(&mm->mmap_sem);
679 }
680 atomic_inc(&mm->mm_count);
681 BUG_ON(mm != tsk->active_mm);
682 /* more a memory barrier than a real lock */
683 task_lock(tsk);
684 tsk->mm = NULL;
685 up_read(&mm->mmap_sem);
686 enter_lazy_tlb(mm, current);
687 /* We don't want this task to be frozen prematurely */
688 clear_freeze_flag(tsk);
689 if (tsk->signal->oom_score_adj == OOM_SCORE_ADJ_MIN)
690 atomic_dec(&mm->oom_disable_count);
691 task_unlock(tsk);
692 mm_update_next_owner(mm);
693 mmput(mm);
694 }
695
696 /*
697 * When we die, we re-parent all our children.
698 * Try to give them to another thread in our thread
699 * group, and if no such member exists, give it to
700 * the child reaper process (ie "init") in our pid
701 * space.
702 */
703 static struct task_struct *find_new_reaper(struct task_struct *father)
704 __releases(&tasklist_lock)
705 __acquires(&tasklist_lock)
706 {
707 struct pid_namespace *pid_ns = task_active_pid_ns(father);
708 struct task_struct *thread;
709
710 thread = father;
711 while_each_thread(father, thread) {
712 if (thread->flags & PF_EXITING)
713 continue;
714 if (unlikely(pid_ns->child_reaper == father))
715 pid_ns->child_reaper = thread;
716 return thread;
717 }
718
719 if (unlikely(pid_ns->child_reaper == father)) {
720 write_unlock_irq(&tasklist_lock);
721 if (unlikely(pid_ns == &init_pid_ns))
722 panic("Attempted to kill init!");
723
724 zap_pid_ns_processes(pid_ns);
725 write_lock_irq(&tasklist_lock);
726 /*
727 * We can not clear ->child_reaper or leave it alone.
728 * There may by stealth EXIT_DEAD tasks on ->children,
729 * forget_original_parent() must move them somewhere.
730 */
731 pid_ns->child_reaper = init_pid_ns.child_reaper;
732 }
733
734 return pid_ns->child_reaper;
735 }
736
737 /*
738 * Any that need to be release_task'd are put on the @dead list.
739 */
740 static void reparent_leader(struct task_struct *father, struct task_struct *p,
741 struct list_head *dead)
742 {
743 list_move_tail(&p->sibling, &p->real_parent->children);
744
745 if (task_detached(p))
746 return;
747 /*
748 * If this is a threaded reparent there is no need to
749 * notify anyone anything has happened.
750 */
751 if (same_thread_group(p->real_parent, father))
752 return;
753
754 /* We don't want people slaying init. */
755 p->exit_signal = SIGCHLD;
756
757 /* If it has exited notify the new parent about this child's death. */
758 if (!p->ptrace &&
759 p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
760 if (do_notify_parent(p, p->exit_signal)) {
761 p->exit_state = EXIT_DEAD;
762 list_move_tail(&p->sibling, dead);
763 }
764 }
765
766 kill_orphaned_pgrp(p, father);
767 }
768
769 static void forget_original_parent(struct task_struct *father)
770 {
771 struct task_struct *p, *n, *reaper;
772 LIST_HEAD(dead_children);
773
774 write_lock_irq(&tasklist_lock);
775 /*
776 * Note that exit_ptrace() and find_new_reaper() might
777 * drop tasklist_lock and reacquire it.
778 */
779 exit_ptrace(father);
780 reaper = find_new_reaper(father);
781
782 list_for_each_entry_safe(p, n, &father->children, sibling) {
783 struct task_struct *t = p;
784 do {
785 t->real_parent = reaper;
786 if (t->parent == father) {
787 BUG_ON(t->ptrace);
788 t->parent = t->real_parent;
789 }
790 if (t->pdeath_signal)
791 group_send_sig_info(t->pdeath_signal,
792 SEND_SIG_NOINFO, t);
793 } while_each_thread(p, t);
794 reparent_leader(father, p, &dead_children);
795 }
796 write_unlock_irq(&tasklist_lock);
797
798 BUG_ON(!list_empty(&father->children));
799
800 list_for_each_entry_safe(p, n, &dead_children, sibling) {
801 list_del_init(&p->sibling);
802 release_task(p);
803 }
804 }
805
806 /*
807 * Send signals to all our closest relatives so that they know
808 * to properly mourn us..
809 */
810 static void exit_notify(struct task_struct *tsk, int group_dead)
811 {
812 bool autoreap;
813
814 /*
815 * This does two things:
816 *
817 * A. Make init inherit all the child processes
818 * B. Check to see if any process groups have become orphaned
819 * as a result of our exiting, and if they have any stopped
820 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
821 */
822 forget_original_parent(tsk);
823 exit_task_namespaces(tsk);
824
825 write_lock_irq(&tasklist_lock);
826 if (group_dead)
827 kill_orphaned_pgrp(tsk->group_leader, NULL);
828
829 /* Let father know we died
830 *
831 * Thread signals are configurable, but you aren't going to use
832 * that to send signals to arbitrary processes.
833 * That stops right now.
834 *
835 * If the parent exec id doesn't match the exec id we saved
836 * when we started then we know the parent has changed security
837 * domain.
838 *
839 * If our self_exec id doesn't match our parent_exec_id then
840 * we have changed execution domain as these two values started
841 * the same after a fork.
842 */
843 if (thread_group_leader(tsk) && tsk->exit_signal != SIGCHLD &&
844 (tsk->parent_exec_id != tsk->real_parent->self_exec_id ||
845 tsk->self_exec_id != tsk->parent_exec_id))
846 tsk->exit_signal = SIGCHLD;
847
848 if (unlikely(tsk->ptrace)) {
849 int sig = thread_group_leader(tsk) &&
850 thread_group_empty(tsk) &&
851 !ptrace_reparented(tsk) ?
852 tsk->exit_signal : SIGCHLD;
853 autoreap = do_notify_parent(tsk, sig);
854 } else if (thread_group_leader(tsk)) {
855 autoreap = thread_group_empty(tsk) &&
856 do_notify_parent(tsk, tsk->exit_signal);
857 } else {
858 autoreap = true;
859 }
860
861 tsk->exit_state = autoreap ? EXIT_DEAD : EXIT_ZOMBIE;
862
863 /* mt-exec, de_thread() is waiting for group leader */
864 if (unlikely(tsk->signal->notify_count < 0))
865 wake_up_process(tsk->signal->group_exit_task);
866 write_unlock_irq(&tasklist_lock);
867
868 /* If the process is dead, release it - nobody will wait for it */
869 if (autoreap)
870 release_task(tsk);
871 }
872
873 #ifdef CONFIG_DEBUG_STACK_USAGE
874 static void check_stack_usage(void)
875 {
876 static DEFINE_SPINLOCK(low_water_lock);
877 static int lowest_to_date = THREAD_SIZE;
878 unsigned long free;
879
880 free = stack_not_used(current);
881
882 if (free >= lowest_to_date)
883 return;
884
885 spin_lock(&low_water_lock);
886 if (free < lowest_to_date) {
887 printk(KERN_WARNING "%s used greatest stack depth: %lu bytes "
888 "left\n",
889 current->comm, free);
890 lowest_to_date = free;
891 }
892 spin_unlock(&low_water_lock);
893 }
894 #else
895 static inline void check_stack_usage(void) {}
896 #endif
897
898 NORET_TYPE void do_exit(long code)
899 {
900 struct task_struct *tsk = current;
901 int group_dead;
902
903 profile_task_exit(tsk);
904
905 WARN_ON(atomic_read(&tsk->fs_excl));
906 WARN_ON(blk_needs_flush_plug(tsk));
907
908 if (unlikely(in_interrupt()))
909 panic("Aiee, killing interrupt handler!");
910 if (unlikely(!tsk->pid))
911 panic("Attempted to kill the idle task!");
912
913 /*
914 * If do_exit is called because this processes oopsed, it's possible
915 * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before
916 * continuing. Amongst other possible reasons, this is to prevent
917 * mm_release()->clear_child_tid() from writing to a user-controlled
918 * kernel address.
919 */
920 set_fs(USER_DS);
921
922 ptrace_event(PTRACE_EVENT_EXIT, code);
923
924 validate_creds_for_do_exit(tsk);
925
926 /*
927 * We're taking recursive faults here in do_exit. Safest is to just
928 * leave this task alone and wait for reboot.
929 */
930 if (unlikely(tsk->flags & PF_EXITING)) {
931 printk(KERN_ALERT
932 "Fixing recursive fault but reboot is needed!\n");
933 /*
934 * We can do this unlocked here. The futex code uses
935 * this flag just to verify whether the pi state
936 * cleanup has been done or not. In the worst case it
937 * loops once more. We pretend that the cleanup was
938 * done as there is no way to return. Either the
939 * OWNER_DIED bit is set by now or we push the blocked
940 * task into the wait for ever nirwana as well.
941 */
942 tsk->flags |= PF_EXITPIDONE;
943 set_current_state(TASK_UNINTERRUPTIBLE);
944 schedule();
945 }
946
947 exit_irq_thread();
948
949 exit_signals(tsk); /* sets PF_EXITING */
950 /*
951 * tsk->flags are checked in the futex code to protect against
952 * an exiting task cleaning up the robust pi futexes.
953 */
954 smp_mb();
955 raw_spin_unlock_wait(&tsk->pi_lock);
956
957 if (unlikely(in_atomic()))
958 printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n",
959 current->comm, task_pid_nr(current),
960 preempt_count());
961
962 acct_update_integrals(tsk);
963 /* sync mm's RSS info before statistics gathering */
964 if (tsk->mm)
965 sync_mm_rss(tsk, tsk->mm);
966 group_dead = atomic_dec_and_test(&tsk->signal->live);
967 if (group_dead) {
968 hrtimer_cancel(&tsk->signal->real_timer);
969 exit_itimers(tsk->signal);
970 if (tsk->mm)
971 setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
972 }
973 acct_collect(code, group_dead);
974 if (group_dead)
975 tty_audit_exit();
976 if (unlikely(tsk->audit_context))
977 audit_free(tsk);
978
979 tsk->exit_code = code;
980 taskstats_exit(tsk, group_dead);
981
982 exit_mm(tsk);
983
984 if (group_dead)
985 acct_process();
986 trace_sched_process_exit(tsk);
987
988 exit_sem(tsk);
989 exit_files(tsk);
990 exit_fs(tsk);
991 check_stack_usage();
992 exit_thread();
993
994 /*
995 * Flush inherited counters to the parent - before the parent
996 * gets woken up by child-exit notifications.
997 *
998 * because of cgroup mode, must be called before cgroup_exit()
999 */
1000 perf_event_exit_task(tsk);
1001
1002 cgroup_exit(tsk, 1);
1003
1004 if (group_dead)
1005 disassociate_ctty(1);
1006
1007 module_put(task_thread_info(tsk)->exec_domain->module);
1008
1009 proc_exit_connector(tsk);
1010
1011 /*
1012 * FIXME: do that only when needed, using sched_exit tracepoint
1013 */
1014 ptrace_put_breakpoints(tsk);
1015
1016 exit_notify(tsk, group_dead);
1017 #ifdef CONFIG_NUMA
1018 task_lock(tsk);
1019 mpol_put(tsk->mempolicy);
1020 tsk->mempolicy = NULL;
1021 task_unlock(tsk);
1022 #endif
1023 #ifdef CONFIG_FUTEX
1024 if (unlikely(current->pi_state_cache))
1025 kfree(current->pi_state_cache);
1026 #endif
1027 /*
1028 * Make sure we are holding no locks:
1029 */
1030 debug_check_no_locks_held(tsk);
1031 /*
1032 * We can do this unlocked here. The futex code uses this flag
1033 * just to verify whether the pi state cleanup has been done
1034 * or not. In the worst case it loops once more.
1035 */
1036 tsk->flags |= PF_EXITPIDONE;
1037
1038 if (tsk->io_context)
1039 exit_io_context(tsk);
1040
1041 if (tsk->splice_pipe)
1042 __free_pipe_info(tsk->splice_pipe);
1043
1044 validate_creds_for_do_exit(tsk);
1045
1046 preempt_disable();
1047 exit_rcu();
1048 /* causes final put_task_struct in finish_task_switch(). */
1049 tsk->state = TASK_DEAD;
1050 schedule();
1051 BUG();
1052 /* Avoid "noreturn function does return". */
1053 for (;;)
1054 cpu_relax(); /* For when BUG is null */
1055 }
1056
1057 EXPORT_SYMBOL_GPL(do_exit);
1058
1059 NORET_TYPE void complete_and_exit(struct completion *comp, long code)
1060 {
1061 if (comp)
1062 complete(comp);
1063
1064 do_exit(code);
1065 }
1066
1067 EXPORT_SYMBOL(complete_and_exit);
1068
1069 SYSCALL_DEFINE1(exit, int, error_code)
1070 {
1071 do_exit((error_code&0xff)<<8);
1072 }
1073
1074 /*
1075 * Take down every thread in the group. This is called by fatal signals
1076 * as well as by sys_exit_group (below).
1077 */
1078 NORET_TYPE void
1079 do_group_exit(int exit_code)
1080 {
1081 struct signal_struct *sig = current->signal;
1082
1083 BUG_ON(exit_code & 0x80); /* core dumps don't get here */
1084
1085 if (signal_group_exit(sig))
1086 exit_code = sig->group_exit_code;
1087 else if (!thread_group_empty(current)) {
1088 struct sighand_struct *const sighand = current->sighand;
1089 spin_lock_irq(&sighand->siglock);
1090 if (signal_group_exit(sig))
1091 /* Another thread got here before we took the lock. */
1092 exit_code = sig->group_exit_code;
1093 else {
1094 sig->group_exit_code = exit_code;
1095 sig->flags = SIGNAL_GROUP_EXIT;
1096 zap_other_threads(current);
1097 }
1098 spin_unlock_irq(&sighand->siglock);
1099 }
1100
1101 do_exit(exit_code);
1102 /* NOTREACHED */
1103 }
1104
1105 /*
1106 * this kills every thread in the thread group. Note that any externally
1107 * wait4()-ing process will get the correct exit code - even if this
1108 * thread is not the thread group leader.
1109 */
1110 SYSCALL_DEFINE1(exit_group, int, error_code)
1111 {
1112 do_group_exit((error_code & 0xff) << 8);
1113 /* NOTREACHED */
1114 return 0;
1115 }
1116
1117 struct wait_opts {
1118 enum pid_type wo_type;
1119 int wo_flags;
1120 struct pid *wo_pid;
1121
1122 struct siginfo __user *wo_info;
1123 int __user *wo_stat;
1124 struct rusage __user *wo_rusage;
1125
1126 wait_queue_t child_wait;
1127 int notask_error;
1128 };
1129
1130 static inline
1131 struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
1132 {
1133 if (type != PIDTYPE_PID)
1134 task = task->group_leader;
1135 return task->pids[type].pid;
1136 }
1137
1138 static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
1139 {
1140 return wo->wo_type == PIDTYPE_MAX ||
1141 task_pid_type(p, wo->wo_type) == wo->wo_pid;
1142 }
1143
1144 static int eligible_child(struct wait_opts *wo, struct task_struct *p)
1145 {
1146 if (!eligible_pid(wo, p))
1147 return 0;
1148 /* Wait for all children (clone and not) if __WALL is set;
1149 * otherwise, wait for clone children *only* if __WCLONE is
1150 * set; otherwise, wait for non-clone children *only*. (Note:
1151 * A "clone" child here is one that reports to its parent
1152 * using a signal other than SIGCHLD.) */
1153 if (((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
1154 && !(wo->wo_flags & __WALL))
1155 return 0;
1156
1157 return 1;
1158 }
1159
1160 static int wait_noreap_copyout(struct wait_opts *wo, struct task_struct *p,
1161 pid_t pid, uid_t uid, int why, int status)
1162 {
1163 struct siginfo __user *infop;
1164 int retval = wo->wo_rusage
1165 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1166
1167 put_task_struct(p);
1168 infop = wo->wo_info;
1169 if (infop) {
1170 if (!retval)
1171 retval = put_user(SIGCHLD, &infop->si_signo);
1172 if (!retval)
1173 retval = put_user(0, &infop->si_errno);
1174 if (!retval)
1175 retval = put_user((short)why, &infop->si_code);
1176 if (!retval)
1177 retval = put_user(pid, &infop->si_pid);
1178 if (!retval)
1179 retval = put_user(uid, &infop->si_uid);
1180 if (!retval)
1181 retval = put_user(status, &infop->si_status);
1182 }
1183 if (!retval)
1184 retval = pid;
1185 return retval;
1186 }
1187
1188 /*
1189 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold
1190 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1191 * the lock and this task is uninteresting. If we return nonzero, we have
1192 * released the lock and the system call should return.
1193 */
1194 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
1195 {
1196 unsigned long state;
1197 int retval, status, traced;
1198 pid_t pid = task_pid_vnr(p);
1199 uid_t uid = __task_cred(p)->uid;
1200 struct siginfo __user *infop;
1201
1202 if (!likely(wo->wo_flags & WEXITED))
1203 return 0;
1204
1205 if (unlikely(wo->wo_flags & WNOWAIT)) {
1206 int exit_code = p->exit_code;
1207 int why;
1208
1209 get_task_struct(p);
1210 read_unlock(&tasklist_lock);
1211 if ((exit_code & 0x7f) == 0) {
1212 why = CLD_EXITED;
1213 status = exit_code >> 8;
1214 } else {
1215 why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
1216 status = exit_code & 0x7f;
1217 }
1218 return wait_noreap_copyout(wo, p, pid, uid, why, status);
1219 }
1220
1221 /*
1222 * Try to move the task's state to DEAD
1223 * only one thread is allowed to do this:
1224 */
1225 state = xchg(&p->exit_state, EXIT_DEAD);
1226 if (state != EXIT_ZOMBIE) {
1227 BUG_ON(state != EXIT_DEAD);
1228 return 0;
1229 }
1230
1231 traced = ptrace_reparented(p);
1232 /*
1233 * It can be ptraced but not reparented, check
1234 * !task_detached() to filter out sub-threads.
1235 */
1236 if (likely(!traced) && likely(!task_detached(p))) {
1237 struct signal_struct *psig;
1238 struct signal_struct *sig;
1239 unsigned long maxrss;
1240 cputime_t tgutime, tgstime;
1241
1242 /*
1243 * The resource counters for the group leader are in its
1244 * own task_struct. Those for dead threads in the group
1245 * are in its signal_struct, as are those for the child
1246 * processes it has previously reaped. All these
1247 * accumulate in the parent's signal_struct c* fields.
1248 *
1249 * We don't bother to take a lock here to protect these
1250 * p->signal fields, because they are only touched by
1251 * __exit_signal, which runs with tasklist_lock
1252 * write-locked anyway, and so is excluded here. We do
1253 * need to protect the access to parent->signal fields,
1254 * as other threads in the parent group can be right
1255 * here reaping other children at the same time.
1256 *
1257 * We use thread_group_times() to get times for the thread
1258 * group, which consolidates times for all threads in the
1259 * group including the group leader.
1260 */
1261 thread_group_times(p, &tgutime, &tgstime);
1262 spin_lock_irq(&p->real_parent->sighand->siglock);
1263 psig = p->real_parent->signal;
1264 sig = p->signal;
1265 psig->cutime =
1266 cputime_add(psig->cutime,
1267 cputime_add(tgutime,
1268 sig->cutime));
1269 psig->cstime =
1270 cputime_add(psig->cstime,
1271 cputime_add(tgstime,
1272 sig->cstime));
1273 psig->cgtime =
1274 cputime_add(psig->cgtime,
1275 cputime_add(p->gtime,
1276 cputime_add(sig->gtime,
1277 sig->cgtime)));
1278 psig->cmin_flt +=
1279 p->min_flt + sig->min_flt + sig->cmin_flt;
1280 psig->cmaj_flt +=
1281 p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1282 psig->cnvcsw +=
1283 p->nvcsw + sig->nvcsw + sig->cnvcsw;
1284 psig->cnivcsw +=
1285 p->nivcsw + sig->nivcsw + sig->cnivcsw;
1286 psig->cinblock +=
1287 task_io_get_inblock(p) +
1288 sig->inblock + sig->cinblock;
1289 psig->coublock +=
1290 task_io_get_oublock(p) +
1291 sig->oublock + sig->coublock;
1292 maxrss = max(sig->maxrss, sig->cmaxrss);
1293 if (psig->cmaxrss < maxrss)
1294 psig->cmaxrss = maxrss;
1295 task_io_accounting_add(&psig->ioac, &p->ioac);
1296 task_io_accounting_add(&psig->ioac, &sig->ioac);
1297 spin_unlock_irq(&p->real_parent->sighand->siglock);
1298 }
1299
1300 /*
1301 * Now we are sure this task is interesting, and no other
1302 * thread can reap it because we set its state to EXIT_DEAD.
1303 */
1304 read_unlock(&tasklist_lock);
1305
1306 retval = wo->wo_rusage
1307 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1308 status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1309 ? p->signal->group_exit_code : p->exit_code;
1310 if (!retval && wo->wo_stat)
1311 retval = put_user(status, wo->wo_stat);
1312
1313 infop = wo->wo_info;
1314 if (!retval && infop)
1315 retval = put_user(SIGCHLD, &infop->si_signo);
1316 if (!retval && infop)
1317 retval = put_user(0, &infop->si_errno);
1318 if (!retval && infop) {
1319 int why;
1320
1321 if ((status & 0x7f) == 0) {
1322 why = CLD_EXITED;
1323 status >>= 8;
1324 } else {
1325 why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1326 status &= 0x7f;
1327 }
1328 retval = put_user((short)why, &infop->si_code);
1329 if (!retval)
1330 retval = put_user(status, &infop->si_status);
1331 }
1332 if (!retval && infop)
1333 retval = put_user(pid, &infop->si_pid);
1334 if (!retval && infop)
1335 retval = put_user(uid, &infop->si_uid);
1336 if (!retval)
1337 retval = pid;
1338
1339 if (traced) {
1340 write_lock_irq(&tasklist_lock);
1341 /* We dropped tasklist, ptracer could die and untrace */
1342 ptrace_unlink(p);
1343 /*
1344 * If this is not a sub-thread, notify the parent.
1345 * If parent wants a zombie, don't release it now.
1346 */
1347 if (thread_group_leader(p) &&
1348 !do_notify_parent(p, p->exit_signal)) {
1349 p->exit_state = EXIT_ZOMBIE;
1350 p = NULL;
1351 }
1352 write_unlock_irq(&tasklist_lock);
1353 }
1354 if (p != NULL)
1355 release_task(p);
1356
1357 return retval;
1358 }
1359
1360 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1361 {
1362 if (ptrace) {
1363 if (task_is_stopped_or_traced(p) &&
1364 !(p->jobctl & JOBCTL_LISTENING))
1365 return &p->exit_code;
1366 } else {
1367 if (p->signal->flags & SIGNAL_STOP_STOPPED)
1368 return &p->signal->group_exit_code;
1369 }
1370 return NULL;
1371 }
1372
1373 /**
1374 * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1375 * @wo: wait options
1376 * @ptrace: is the wait for ptrace
1377 * @p: task to wait for
1378 *
1379 * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1380 *
1381 * CONTEXT:
1382 * read_lock(&tasklist_lock), which is released if return value is
1383 * non-zero. Also, grabs and releases @p->sighand->siglock.
1384 *
1385 * RETURNS:
1386 * 0 if wait condition didn't exist and search for other wait conditions
1387 * should continue. Non-zero return, -errno on failure and @p's pid on
1388 * success, implies that tasklist_lock is released and wait condition
1389 * search should terminate.
1390 */
1391 static int wait_task_stopped(struct wait_opts *wo,
1392 int ptrace, struct task_struct *p)
1393 {
1394 struct siginfo __user *infop;
1395 int retval, exit_code, *p_code, why;
1396 uid_t uid = 0; /* unneeded, required by compiler */
1397 pid_t pid;
1398
1399 /*
1400 * Traditionally we see ptrace'd stopped tasks regardless of options.
1401 */
1402 if (!ptrace && !(wo->wo_flags & WUNTRACED))
1403 return 0;
1404
1405 if (!task_stopped_code(p, ptrace))
1406 return 0;
1407
1408 exit_code = 0;
1409 spin_lock_irq(&p->sighand->siglock);
1410
1411 p_code = task_stopped_code(p, ptrace);
1412 if (unlikely(!p_code))
1413 goto unlock_sig;
1414
1415 exit_code = *p_code;
1416 if (!exit_code)
1417 goto unlock_sig;
1418
1419 if (!unlikely(wo->wo_flags & WNOWAIT))
1420 *p_code = 0;
1421
1422 uid = task_uid(p);
1423 unlock_sig:
1424 spin_unlock_irq(&p->sighand->siglock);
1425 if (!exit_code)
1426 return 0;
1427
1428 /*
1429 * Now we are pretty sure this task is interesting.
1430 * Make sure it doesn't get reaped out from under us while we
1431 * give up the lock and then examine it below. We don't want to
1432 * keep holding onto the tasklist_lock while we call getrusage and
1433 * possibly take page faults for user memory.
1434 */
1435 get_task_struct(p);
1436 pid = task_pid_vnr(p);
1437 why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1438 read_unlock(&tasklist_lock);
1439
1440 if (unlikely(wo->wo_flags & WNOWAIT))
1441 return wait_noreap_copyout(wo, p, pid, uid, why, exit_code);
1442
1443 retval = wo->wo_rusage
1444 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1445 if (!retval && wo->wo_stat)
1446 retval = put_user((exit_code << 8) | 0x7f, wo->wo_stat);
1447
1448 infop = wo->wo_info;
1449 if (!retval && infop)
1450 retval = put_user(SIGCHLD, &infop->si_signo);
1451 if (!retval && infop)
1452 retval = put_user(0, &infop->si_errno);
1453 if (!retval && infop)
1454 retval = put_user((short)why, &infop->si_code);
1455 if (!retval && infop)
1456 retval = put_user(exit_code, &infop->si_status);
1457 if (!retval && infop)
1458 retval = put_user(pid, &infop->si_pid);
1459 if (!retval && infop)
1460 retval = put_user(uid, &infop->si_uid);
1461 if (!retval)
1462 retval = pid;
1463 put_task_struct(p);
1464
1465 BUG_ON(!retval);
1466 return retval;
1467 }
1468
1469 /*
1470 * Handle do_wait work for one task in a live, non-stopped state.
1471 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1472 * the lock and this task is uninteresting. If we return nonzero, we have
1473 * released the lock and the system call should return.
1474 */
1475 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1476 {
1477 int retval;
1478 pid_t pid;
1479 uid_t uid;
1480
1481 if (!unlikely(wo->wo_flags & WCONTINUED))
1482 return 0;
1483
1484 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1485 return 0;
1486
1487 spin_lock_irq(&p->sighand->siglock);
1488 /* Re-check with the lock held. */
1489 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1490 spin_unlock_irq(&p->sighand->siglock);
1491 return 0;
1492 }
1493 if (!unlikely(wo->wo_flags & WNOWAIT))
1494 p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1495 uid = task_uid(p);
1496 spin_unlock_irq(&p->sighand->siglock);
1497
1498 pid = task_pid_vnr(p);
1499 get_task_struct(p);
1500 read_unlock(&tasklist_lock);
1501
1502 if (!wo->wo_info) {
1503 retval = wo->wo_rusage
1504 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1505 put_task_struct(p);
1506 if (!retval && wo->wo_stat)
1507 retval = put_user(0xffff, wo->wo_stat);
1508 if (!retval)
1509 retval = pid;
1510 } else {
1511 retval = wait_noreap_copyout(wo, p, pid, uid,
1512 CLD_CONTINUED, SIGCONT);
1513 BUG_ON(retval == 0);
1514 }
1515
1516 return retval;
1517 }
1518
1519 /*
1520 * Consider @p for a wait by @parent.
1521 *
1522 * -ECHILD should be in ->notask_error before the first call.
1523 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1524 * Returns zero if the search for a child should continue;
1525 * then ->notask_error is 0 if @p is an eligible child,
1526 * or another error from security_task_wait(), or still -ECHILD.
1527 */
1528 static int wait_consider_task(struct wait_opts *wo, int ptrace,
1529 struct task_struct *p)
1530 {
1531 int ret = eligible_child(wo, p);
1532 if (!ret)
1533 return ret;
1534
1535 ret = security_task_wait(p);
1536 if (unlikely(ret < 0)) {
1537 /*
1538 * If we have not yet seen any eligible child,
1539 * then let this error code replace -ECHILD.
1540 * A permission error will give the user a clue
1541 * to look for security policy problems, rather
1542 * than for mysterious wait bugs.
1543 */
1544 if (wo->notask_error)
1545 wo->notask_error = ret;
1546 return 0;
1547 }
1548
1549 /* dead body doesn't have much to contribute */
1550 if (p->exit_state == EXIT_DEAD)
1551 return 0;
1552
1553 /* slay zombie? */
1554 if (p->exit_state == EXIT_ZOMBIE) {
1555 /*
1556 * A zombie ptracee is only visible to its ptracer.
1557 * Notification and reaping will be cascaded to the real
1558 * parent when the ptracer detaches.
1559 */
1560 if (likely(!ptrace) && unlikely(p->ptrace)) {
1561 /* it will become visible, clear notask_error */
1562 wo->notask_error = 0;
1563 return 0;
1564 }
1565
1566 /* we don't reap group leaders with subthreads */
1567 if (!delay_group_leader(p))
1568 return wait_task_zombie(wo, p);
1569
1570 /*
1571 * Allow access to stopped/continued state via zombie by
1572 * falling through. Clearing of notask_error is complex.
1573 *
1574 * When !@ptrace:
1575 *
1576 * If WEXITED is set, notask_error should naturally be
1577 * cleared. If not, subset of WSTOPPED|WCONTINUED is set,
1578 * so, if there are live subthreads, there are events to
1579 * wait for. If all subthreads are dead, it's still safe
1580 * to clear - this function will be called again in finite
1581 * amount time once all the subthreads are released and
1582 * will then return without clearing.
1583 *
1584 * When @ptrace:
1585 *
1586 * Stopped state is per-task and thus can't change once the
1587 * target task dies. Only continued and exited can happen.
1588 * Clear notask_error if WCONTINUED | WEXITED.
1589 */
1590 if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1591 wo->notask_error = 0;
1592 } else {
1593 /*
1594 * If @p is ptraced by a task in its real parent's group,
1595 * hide group stop/continued state when looking at @p as
1596 * the real parent; otherwise, a single stop can be
1597 * reported twice as group and ptrace stops.
1598 *
1599 * If a ptracer wants to distinguish the two events for its
1600 * own children, it should create a separate process which
1601 * takes the role of real parent.
1602 */
1603 if (likely(!ptrace) && p->ptrace &&
1604 same_thread_group(p->parent, p->real_parent))
1605 return 0;
1606
1607 /*
1608 * @p is alive and it's gonna stop, continue or exit, so
1609 * there always is something to wait for.
1610 */
1611 wo->notask_error = 0;
1612 }
1613
1614 /*
1615 * Wait for stopped. Depending on @ptrace, different stopped state
1616 * is used and the two don't interact with each other.
1617 */
1618 ret = wait_task_stopped(wo, ptrace, p);
1619 if (ret)
1620 return ret;
1621
1622 /*
1623 * Wait for continued. There's only one continued state and the
1624 * ptracer can consume it which can confuse the real parent. Don't
1625 * use WCONTINUED from ptracer. You don't need or want it.
1626 */
1627 return wait_task_continued(wo, p);
1628 }
1629
1630 /*
1631 * Do the work of do_wait() for one thread in the group, @tsk.
1632 *
1633 * -ECHILD should be in ->notask_error before the first call.
1634 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1635 * Returns zero if the search for a child should continue; then
1636 * ->notask_error is 0 if there were any eligible children,
1637 * or another error from security_task_wait(), or still -ECHILD.
1638 */
1639 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1640 {
1641 struct task_struct *p;
1642
1643 list_for_each_entry(p, &tsk->children, sibling) {
1644 int ret = wait_consider_task(wo, 0, p);
1645 if (ret)
1646 return ret;
1647 }
1648
1649 return 0;
1650 }
1651
1652 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1653 {
1654 struct task_struct *p;
1655
1656 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1657 int ret = wait_consider_task(wo, 1, p);
1658 if (ret)
1659 return ret;
1660 }
1661
1662 return 0;
1663 }
1664
1665 static int child_wait_callback(wait_queue_t *wait, unsigned mode,
1666 int sync, void *key)
1667 {
1668 struct wait_opts *wo = container_of(wait, struct wait_opts,
1669 child_wait);
1670 struct task_struct *p = key;
1671
1672 if (!eligible_pid(wo, p))
1673 return 0;
1674
1675 if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1676 return 0;
1677
1678 return default_wake_function(wait, mode, sync, key);
1679 }
1680
1681 void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1682 {
1683 __wake_up_sync_key(&parent->signal->wait_chldexit,
1684 TASK_INTERRUPTIBLE, 1, p);
1685 }
1686
1687 static long do_wait(struct wait_opts *wo)
1688 {
1689 struct task_struct *tsk;
1690 int retval;
1691
1692 trace_sched_process_wait(wo->wo_pid);
1693
1694 init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1695 wo->child_wait.private = current;
1696 add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1697 repeat:
1698 /*
1699 * If there is nothing that can match our critiera just get out.
1700 * We will clear ->notask_error to zero if we see any child that
1701 * might later match our criteria, even if we are not able to reap
1702 * it yet.
1703 */
1704 wo->notask_error = -ECHILD;
1705 if ((wo->wo_type < PIDTYPE_MAX) &&
1706 (!wo->wo_pid || hlist_empty(&wo->wo_pid->tasks[wo->wo_type])))
1707 goto notask;
1708
1709 set_current_state(TASK_INTERRUPTIBLE);
1710 read_lock(&tasklist_lock);
1711 tsk = current;
1712 do {
1713 retval = do_wait_thread(wo, tsk);
1714 if (retval)
1715 goto end;
1716
1717 retval = ptrace_do_wait(wo, tsk);
1718 if (retval)
1719 goto end;
1720
1721 if (wo->wo_flags & __WNOTHREAD)
1722 break;
1723 } while_each_thread(current, tsk);
1724 read_unlock(&tasklist_lock);
1725
1726 notask:
1727 retval = wo->notask_error;
1728 if (!retval && !(wo->wo_flags & WNOHANG)) {
1729 retval = -ERESTARTSYS;
1730 if (!signal_pending(current)) {
1731 schedule();
1732 goto repeat;
1733 }
1734 }
1735 end:
1736 __set_current_state(TASK_RUNNING);
1737 remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1738 return retval;
1739 }
1740
1741 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1742 infop, int, options, struct rusage __user *, ru)
1743 {
1744 struct wait_opts wo;
1745 struct pid *pid = NULL;
1746 enum pid_type type;
1747 long ret;
1748
1749 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED))
1750 return -EINVAL;
1751 if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1752 return -EINVAL;
1753
1754 switch (which) {
1755 case P_ALL:
1756 type = PIDTYPE_MAX;
1757 break;
1758 case P_PID:
1759 type = PIDTYPE_PID;
1760 if (upid <= 0)
1761 return -EINVAL;
1762 break;
1763 case P_PGID:
1764 type = PIDTYPE_PGID;
1765 if (upid <= 0)
1766 return -EINVAL;
1767 break;
1768 default:
1769 return -EINVAL;
1770 }
1771
1772 if (type < PIDTYPE_MAX)
1773 pid = find_get_pid(upid);
1774
1775 wo.wo_type = type;
1776 wo.wo_pid = pid;
1777 wo.wo_flags = options;
1778 wo.wo_info = infop;
1779 wo.wo_stat = NULL;
1780 wo.wo_rusage = ru;
1781 ret = do_wait(&wo);
1782
1783 if (ret > 0) {
1784 ret = 0;
1785 } else if (infop) {
1786 /*
1787 * For a WNOHANG return, clear out all the fields
1788 * we would set so the user can easily tell the
1789 * difference.
1790 */
1791 if (!ret)
1792 ret = put_user(0, &infop->si_signo);
1793 if (!ret)
1794 ret = put_user(0, &infop->si_errno);
1795 if (!ret)
1796 ret = put_user(0, &infop->si_code);
1797 if (!ret)
1798 ret = put_user(0, &infop->si_pid);
1799 if (!ret)
1800 ret = put_user(0, &infop->si_uid);
1801 if (!ret)
1802 ret = put_user(0, &infop->si_status);
1803 }
1804
1805 put_pid(pid);
1806
1807 /* avoid REGPARM breakage on x86: */
1808 asmlinkage_protect(5, ret, which, upid, infop, options, ru);
1809 return ret;
1810 }
1811
1812 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1813 int, options, struct rusage __user *, ru)
1814 {
1815 struct wait_opts wo;
1816 struct pid *pid = NULL;
1817 enum pid_type type;
1818 long ret;
1819
1820 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1821 __WNOTHREAD|__WCLONE|__WALL))
1822 return -EINVAL;
1823
1824 if (upid == -1)
1825 type = PIDTYPE_MAX;
1826 else if (upid < 0) {
1827 type = PIDTYPE_PGID;
1828 pid = find_get_pid(-upid);
1829 } else if (upid == 0) {
1830 type = PIDTYPE_PGID;
1831 pid = get_task_pid(current, PIDTYPE_PGID);
1832 } else /* upid > 0 */ {
1833 type = PIDTYPE_PID;
1834 pid = find_get_pid(upid);
1835 }
1836
1837 wo.wo_type = type;
1838 wo.wo_pid = pid;
1839 wo.wo_flags = options | WEXITED;
1840 wo.wo_info = NULL;
1841 wo.wo_stat = stat_addr;
1842 wo.wo_rusage = ru;
1843 ret = do_wait(&wo);
1844 put_pid(pid);
1845
1846 /* avoid REGPARM breakage on x86: */
1847 asmlinkage_protect(4, ret, upid, stat_addr, options, ru);
1848 return ret;
1849 }
1850
1851 #ifdef __ARCH_WANT_SYS_WAITPID
1852
1853 /*
1854 * sys_waitpid() remains for compatibility. waitpid() should be
1855 * implemented by calling sys_wait4() from libc.a.
1856 */
1857 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1858 {
1859 return sys_wait4(pid, stat_addr, options, NULL);
1860 }
1861
1862 #endif
This page took 0.067043 seconds and 4 git commands to generate.