Merge tag 'iommu-updates-v3.16' of git://git.kernel.org/pub/scm/linux/kernel/git...
[deliverable/linux.git] / kernel / exit.c
1 /*
2 * linux/kernel/exit.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 #include <linux/mm.h>
8 #include <linux/slab.h>
9 #include <linux/interrupt.h>
10 #include <linux/module.h>
11 #include <linux/capability.h>
12 #include <linux/completion.h>
13 #include <linux/personality.h>
14 #include <linux/tty.h>
15 #include <linux/iocontext.h>
16 #include <linux/key.h>
17 #include <linux/security.h>
18 #include <linux/cpu.h>
19 #include <linux/acct.h>
20 #include <linux/tsacct_kern.h>
21 #include <linux/file.h>
22 #include <linux/fdtable.h>
23 #include <linux/freezer.h>
24 #include <linux/binfmts.h>
25 #include <linux/nsproxy.h>
26 #include <linux/pid_namespace.h>
27 #include <linux/ptrace.h>
28 #include <linux/profile.h>
29 #include <linux/mount.h>
30 #include <linux/proc_fs.h>
31 #include <linux/kthread.h>
32 #include <linux/mempolicy.h>
33 #include <linux/taskstats_kern.h>
34 #include <linux/delayacct.h>
35 #include <linux/cgroup.h>
36 #include <linux/syscalls.h>
37 #include <linux/signal.h>
38 #include <linux/posix-timers.h>
39 #include <linux/cn_proc.h>
40 #include <linux/mutex.h>
41 #include <linux/futex.h>
42 #include <linux/pipe_fs_i.h>
43 #include <linux/audit.h> /* for audit_free() */
44 #include <linux/resource.h>
45 #include <linux/blkdev.h>
46 #include <linux/task_io_accounting_ops.h>
47 #include <linux/tracehook.h>
48 #include <linux/fs_struct.h>
49 #include <linux/init_task.h>
50 #include <linux/perf_event.h>
51 #include <trace/events/sched.h>
52 #include <linux/hw_breakpoint.h>
53 #include <linux/oom.h>
54 #include <linux/writeback.h>
55 #include <linux/shm.h>
56
57 #include <asm/uaccess.h>
58 #include <asm/unistd.h>
59 #include <asm/pgtable.h>
60 #include <asm/mmu_context.h>
61
62 static void exit_mm(struct task_struct * tsk);
63
64 static void __unhash_process(struct task_struct *p, bool group_dead)
65 {
66 nr_threads--;
67 detach_pid(p, PIDTYPE_PID);
68 if (group_dead) {
69 detach_pid(p, PIDTYPE_PGID);
70 detach_pid(p, PIDTYPE_SID);
71
72 list_del_rcu(&p->tasks);
73 list_del_init(&p->sibling);
74 __this_cpu_dec(process_counts);
75 }
76 list_del_rcu(&p->thread_group);
77 list_del_rcu(&p->thread_node);
78 }
79
80 /*
81 * This function expects the tasklist_lock write-locked.
82 */
83 static void __exit_signal(struct task_struct *tsk)
84 {
85 struct signal_struct *sig = tsk->signal;
86 bool group_dead = thread_group_leader(tsk);
87 struct sighand_struct *sighand;
88 struct tty_struct *uninitialized_var(tty);
89 cputime_t utime, stime;
90
91 sighand = rcu_dereference_check(tsk->sighand,
92 lockdep_tasklist_lock_is_held());
93 spin_lock(&sighand->siglock);
94
95 posix_cpu_timers_exit(tsk);
96 if (group_dead) {
97 posix_cpu_timers_exit_group(tsk);
98 tty = sig->tty;
99 sig->tty = NULL;
100 } else {
101 /*
102 * This can only happen if the caller is de_thread().
103 * FIXME: this is the temporary hack, we should teach
104 * posix-cpu-timers to handle this case correctly.
105 */
106 if (unlikely(has_group_leader_pid(tsk)))
107 posix_cpu_timers_exit_group(tsk);
108
109 /*
110 * If there is any task waiting for the group exit
111 * then notify it:
112 */
113 if (sig->notify_count > 0 && !--sig->notify_count)
114 wake_up_process(sig->group_exit_task);
115
116 if (tsk == sig->curr_target)
117 sig->curr_target = next_thread(tsk);
118 /*
119 * Accumulate here the counters for all threads but the
120 * group leader as they die, so they can be added into
121 * the process-wide totals when those are taken.
122 * The group leader stays around as a zombie as long
123 * as there are other threads. When it gets reaped,
124 * the exit.c code will add its counts into these totals.
125 * We won't ever get here for the group leader, since it
126 * will have been the last reference on the signal_struct.
127 */
128 task_cputime(tsk, &utime, &stime);
129 sig->utime += utime;
130 sig->stime += stime;
131 sig->gtime += task_gtime(tsk);
132 sig->min_flt += tsk->min_flt;
133 sig->maj_flt += tsk->maj_flt;
134 sig->nvcsw += tsk->nvcsw;
135 sig->nivcsw += tsk->nivcsw;
136 sig->inblock += task_io_get_inblock(tsk);
137 sig->oublock += task_io_get_oublock(tsk);
138 task_io_accounting_add(&sig->ioac, &tsk->ioac);
139 sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
140 }
141
142 sig->nr_threads--;
143 __unhash_process(tsk, group_dead);
144
145 /*
146 * Do this under ->siglock, we can race with another thread
147 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
148 */
149 flush_sigqueue(&tsk->pending);
150 tsk->sighand = NULL;
151 spin_unlock(&sighand->siglock);
152
153 __cleanup_sighand(sighand);
154 clear_tsk_thread_flag(tsk,TIF_SIGPENDING);
155 if (group_dead) {
156 flush_sigqueue(&sig->shared_pending);
157 tty_kref_put(tty);
158 }
159 }
160
161 static void delayed_put_task_struct(struct rcu_head *rhp)
162 {
163 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
164
165 perf_event_delayed_put(tsk);
166 trace_sched_process_free(tsk);
167 put_task_struct(tsk);
168 }
169
170
171 void release_task(struct task_struct * p)
172 {
173 struct task_struct *leader;
174 int zap_leader;
175 repeat:
176 /* don't need to get the RCU readlock here - the process is dead and
177 * can't be modifying its own credentials. But shut RCU-lockdep up */
178 rcu_read_lock();
179 atomic_dec(&__task_cred(p)->user->processes);
180 rcu_read_unlock();
181
182 proc_flush_task(p);
183
184 write_lock_irq(&tasklist_lock);
185 ptrace_release_task(p);
186 __exit_signal(p);
187
188 /*
189 * If we are the last non-leader member of the thread
190 * group, and the leader is zombie, then notify the
191 * group leader's parent process. (if it wants notification.)
192 */
193 zap_leader = 0;
194 leader = p->group_leader;
195 if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) {
196 /*
197 * If we were the last child thread and the leader has
198 * exited already, and the leader's parent ignores SIGCHLD,
199 * then we are the one who should release the leader.
200 */
201 zap_leader = do_notify_parent(leader, leader->exit_signal);
202 if (zap_leader)
203 leader->exit_state = EXIT_DEAD;
204 }
205
206 write_unlock_irq(&tasklist_lock);
207 release_thread(p);
208 call_rcu(&p->rcu, delayed_put_task_struct);
209
210 p = leader;
211 if (unlikely(zap_leader))
212 goto repeat;
213 }
214
215 /*
216 * This checks not only the pgrp, but falls back on the pid if no
217 * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
218 * without this...
219 *
220 * The caller must hold rcu lock or the tasklist lock.
221 */
222 struct pid *session_of_pgrp(struct pid *pgrp)
223 {
224 struct task_struct *p;
225 struct pid *sid = NULL;
226
227 p = pid_task(pgrp, PIDTYPE_PGID);
228 if (p == NULL)
229 p = pid_task(pgrp, PIDTYPE_PID);
230 if (p != NULL)
231 sid = task_session(p);
232
233 return sid;
234 }
235
236 /*
237 * Determine if a process group is "orphaned", according to the POSIX
238 * definition in 2.2.2.52. Orphaned process groups are not to be affected
239 * by terminal-generated stop signals. Newly orphaned process groups are
240 * to receive a SIGHUP and a SIGCONT.
241 *
242 * "I ask you, have you ever known what it is to be an orphan?"
243 */
244 static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task)
245 {
246 struct task_struct *p;
247
248 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
249 if ((p == ignored_task) ||
250 (p->exit_state && thread_group_empty(p)) ||
251 is_global_init(p->real_parent))
252 continue;
253
254 if (task_pgrp(p->real_parent) != pgrp &&
255 task_session(p->real_parent) == task_session(p))
256 return 0;
257 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
258
259 return 1;
260 }
261
262 int is_current_pgrp_orphaned(void)
263 {
264 int retval;
265
266 read_lock(&tasklist_lock);
267 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
268 read_unlock(&tasklist_lock);
269
270 return retval;
271 }
272
273 static bool has_stopped_jobs(struct pid *pgrp)
274 {
275 struct task_struct *p;
276
277 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
278 if (p->signal->flags & SIGNAL_STOP_STOPPED)
279 return true;
280 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
281
282 return false;
283 }
284
285 /*
286 * Check to see if any process groups have become orphaned as
287 * a result of our exiting, and if they have any stopped jobs,
288 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
289 */
290 static void
291 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
292 {
293 struct pid *pgrp = task_pgrp(tsk);
294 struct task_struct *ignored_task = tsk;
295
296 if (!parent)
297 /* exit: our father is in a different pgrp than
298 * we are and we were the only connection outside.
299 */
300 parent = tsk->real_parent;
301 else
302 /* reparent: our child is in a different pgrp than
303 * we are, and it was the only connection outside.
304 */
305 ignored_task = NULL;
306
307 if (task_pgrp(parent) != pgrp &&
308 task_session(parent) == task_session(tsk) &&
309 will_become_orphaned_pgrp(pgrp, ignored_task) &&
310 has_stopped_jobs(pgrp)) {
311 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
312 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
313 }
314 }
315
316 /*
317 * Let kernel threads use this to say that they allow a certain signal.
318 * Must not be used if kthread was cloned with CLONE_SIGHAND.
319 */
320 int allow_signal(int sig)
321 {
322 if (!valid_signal(sig) || sig < 1)
323 return -EINVAL;
324
325 spin_lock_irq(&current->sighand->siglock);
326 /* This is only needed for daemonize()'ed kthreads */
327 sigdelset(&current->blocked, sig);
328 /*
329 * Kernel threads handle their own signals. Let the signal code
330 * know it'll be handled, so that they don't get converted to
331 * SIGKILL or just silently dropped.
332 */
333 current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2;
334 recalc_sigpending();
335 spin_unlock_irq(&current->sighand->siglock);
336 return 0;
337 }
338
339 EXPORT_SYMBOL(allow_signal);
340
341 int disallow_signal(int sig)
342 {
343 if (!valid_signal(sig) || sig < 1)
344 return -EINVAL;
345
346 spin_lock_irq(&current->sighand->siglock);
347 current->sighand->action[(sig)-1].sa.sa_handler = SIG_IGN;
348 recalc_sigpending();
349 spin_unlock_irq(&current->sighand->siglock);
350 return 0;
351 }
352
353 EXPORT_SYMBOL(disallow_signal);
354
355 #ifdef CONFIG_MEMCG
356 /*
357 * A task is exiting. If it owned this mm, find a new owner for the mm.
358 */
359 void mm_update_next_owner(struct mm_struct *mm)
360 {
361 struct task_struct *c, *g, *p = current;
362
363 retry:
364 /*
365 * If the exiting or execing task is not the owner, it's
366 * someone else's problem.
367 */
368 if (mm->owner != p)
369 return;
370 /*
371 * The current owner is exiting/execing and there are no other
372 * candidates. Do not leave the mm pointing to a possibly
373 * freed task structure.
374 */
375 if (atomic_read(&mm->mm_users) <= 1) {
376 mm->owner = NULL;
377 return;
378 }
379
380 read_lock(&tasklist_lock);
381 /*
382 * Search in the children
383 */
384 list_for_each_entry(c, &p->children, sibling) {
385 if (c->mm == mm)
386 goto assign_new_owner;
387 }
388
389 /*
390 * Search in the siblings
391 */
392 list_for_each_entry(c, &p->real_parent->children, sibling) {
393 if (c->mm == mm)
394 goto assign_new_owner;
395 }
396
397 /*
398 * Search through everything else, we should not get here often.
399 */
400 for_each_process(g) {
401 if (g->flags & PF_KTHREAD)
402 continue;
403 for_each_thread(g, c) {
404 if (c->mm == mm)
405 goto assign_new_owner;
406 if (c->mm)
407 break;
408 }
409 }
410 read_unlock(&tasklist_lock);
411 /*
412 * We found no owner yet mm_users > 1: this implies that we are
413 * most likely racing with swapoff (try_to_unuse()) or /proc or
414 * ptrace or page migration (get_task_mm()). Mark owner as NULL.
415 */
416 mm->owner = NULL;
417 return;
418
419 assign_new_owner:
420 BUG_ON(c == p);
421 get_task_struct(c);
422 /*
423 * The task_lock protects c->mm from changing.
424 * We always want mm->owner->mm == mm
425 */
426 task_lock(c);
427 /*
428 * Delay read_unlock() till we have the task_lock()
429 * to ensure that c does not slip away underneath us
430 */
431 read_unlock(&tasklist_lock);
432 if (c->mm != mm) {
433 task_unlock(c);
434 put_task_struct(c);
435 goto retry;
436 }
437 mm->owner = c;
438 task_unlock(c);
439 put_task_struct(c);
440 }
441 #endif /* CONFIG_MEMCG */
442
443 /*
444 * Turn us into a lazy TLB process if we
445 * aren't already..
446 */
447 static void exit_mm(struct task_struct * tsk)
448 {
449 struct mm_struct *mm = tsk->mm;
450 struct core_state *core_state;
451
452 mm_release(tsk, mm);
453 if (!mm)
454 return;
455 sync_mm_rss(mm);
456 /*
457 * Serialize with any possible pending coredump.
458 * We must hold mmap_sem around checking core_state
459 * and clearing tsk->mm. The core-inducing thread
460 * will increment ->nr_threads for each thread in the
461 * group with ->mm != NULL.
462 */
463 down_read(&mm->mmap_sem);
464 core_state = mm->core_state;
465 if (core_state) {
466 struct core_thread self;
467 up_read(&mm->mmap_sem);
468
469 self.task = tsk;
470 self.next = xchg(&core_state->dumper.next, &self);
471 /*
472 * Implies mb(), the result of xchg() must be visible
473 * to core_state->dumper.
474 */
475 if (atomic_dec_and_test(&core_state->nr_threads))
476 complete(&core_state->startup);
477
478 for (;;) {
479 set_task_state(tsk, TASK_UNINTERRUPTIBLE);
480 if (!self.task) /* see coredump_finish() */
481 break;
482 freezable_schedule();
483 }
484 __set_task_state(tsk, TASK_RUNNING);
485 down_read(&mm->mmap_sem);
486 }
487 atomic_inc(&mm->mm_count);
488 BUG_ON(mm != tsk->active_mm);
489 /* more a memory barrier than a real lock */
490 task_lock(tsk);
491 tsk->mm = NULL;
492 up_read(&mm->mmap_sem);
493 enter_lazy_tlb(mm, current);
494 task_unlock(tsk);
495 mm_update_next_owner(mm);
496 mmput(mm);
497 }
498
499 /*
500 * When we die, we re-parent all our children, and try to:
501 * 1. give them to another thread in our thread group, if such a member exists
502 * 2. give it to the first ancestor process which prctl'd itself as a
503 * child_subreaper for its children (like a service manager)
504 * 3. give it to the init process (PID 1) in our pid namespace
505 */
506 static struct task_struct *find_new_reaper(struct task_struct *father)
507 __releases(&tasklist_lock)
508 __acquires(&tasklist_lock)
509 {
510 struct pid_namespace *pid_ns = task_active_pid_ns(father);
511 struct task_struct *thread;
512
513 thread = father;
514 while_each_thread(father, thread) {
515 if (thread->flags & PF_EXITING)
516 continue;
517 if (unlikely(pid_ns->child_reaper == father))
518 pid_ns->child_reaper = thread;
519 return thread;
520 }
521
522 if (unlikely(pid_ns->child_reaper == father)) {
523 write_unlock_irq(&tasklist_lock);
524 if (unlikely(pid_ns == &init_pid_ns)) {
525 panic("Attempted to kill init! exitcode=0x%08x\n",
526 father->signal->group_exit_code ?:
527 father->exit_code);
528 }
529
530 zap_pid_ns_processes(pid_ns);
531 write_lock_irq(&tasklist_lock);
532 } else if (father->signal->has_child_subreaper) {
533 struct task_struct *reaper;
534
535 /*
536 * Find the first ancestor marked as child_subreaper.
537 * Note that the code below checks same_thread_group(reaper,
538 * pid_ns->child_reaper). This is what we need to DTRT in a
539 * PID namespace. However we still need the check above, see
540 * http://marc.info/?l=linux-kernel&m=131385460420380
541 */
542 for (reaper = father->real_parent;
543 reaper != &init_task;
544 reaper = reaper->real_parent) {
545 if (same_thread_group(reaper, pid_ns->child_reaper))
546 break;
547 if (!reaper->signal->is_child_subreaper)
548 continue;
549 thread = reaper;
550 do {
551 if (!(thread->flags & PF_EXITING))
552 return reaper;
553 } while_each_thread(reaper, thread);
554 }
555 }
556
557 return pid_ns->child_reaper;
558 }
559
560 /*
561 * Any that need to be release_task'd are put on the @dead list.
562 */
563 static void reparent_leader(struct task_struct *father, struct task_struct *p,
564 struct list_head *dead)
565 {
566 list_move_tail(&p->sibling, &p->real_parent->children);
567
568 if (p->exit_state == EXIT_DEAD)
569 return;
570 /*
571 * If this is a threaded reparent there is no need to
572 * notify anyone anything has happened.
573 */
574 if (same_thread_group(p->real_parent, father))
575 return;
576
577 /* We don't want people slaying init. */
578 p->exit_signal = SIGCHLD;
579
580 /* If it has exited notify the new parent about this child's death. */
581 if (!p->ptrace &&
582 p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
583 if (do_notify_parent(p, p->exit_signal)) {
584 p->exit_state = EXIT_DEAD;
585 list_move_tail(&p->sibling, dead);
586 }
587 }
588
589 kill_orphaned_pgrp(p, father);
590 }
591
592 static void forget_original_parent(struct task_struct *father)
593 {
594 struct task_struct *p, *n, *reaper;
595 LIST_HEAD(dead_children);
596
597 write_lock_irq(&tasklist_lock);
598 /*
599 * Note that exit_ptrace() and find_new_reaper() might
600 * drop tasklist_lock and reacquire it.
601 */
602 exit_ptrace(father);
603 reaper = find_new_reaper(father);
604
605 list_for_each_entry_safe(p, n, &father->children, sibling) {
606 struct task_struct *t = p;
607 do {
608 t->real_parent = reaper;
609 if (t->parent == father) {
610 BUG_ON(t->ptrace);
611 t->parent = t->real_parent;
612 }
613 if (t->pdeath_signal)
614 group_send_sig_info(t->pdeath_signal,
615 SEND_SIG_NOINFO, t);
616 } while_each_thread(p, t);
617 reparent_leader(father, p, &dead_children);
618 }
619 write_unlock_irq(&tasklist_lock);
620
621 BUG_ON(!list_empty(&father->children));
622
623 list_for_each_entry_safe(p, n, &dead_children, sibling) {
624 list_del_init(&p->sibling);
625 release_task(p);
626 }
627 }
628
629 /*
630 * Send signals to all our closest relatives so that they know
631 * to properly mourn us..
632 */
633 static void exit_notify(struct task_struct *tsk, int group_dead)
634 {
635 bool autoreap;
636
637 /*
638 * This does two things:
639 *
640 * A. Make init inherit all the child processes
641 * B. Check to see if any process groups have become orphaned
642 * as a result of our exiting, and if they have any stopped
643 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
644 */
645 forget_original_parent(tsk);
646
647 write_lock_irq(&tasklist_lock);
648 if (group_dead)
649 kill_orphaned_pgrp(tsk->group_leader, NULL);
650
651 if (unlikely(tsk->ptrace)) {
652 int sig = thread_group_leader(tsk) &&
653 thread_group_empty(tsk) &&
654 !ptrace_reparented(tsk) ?
655 tsk->exit_signal : SIGCHLD;
656 autoreap = do_notify_parent(tsk, sig);
657 } else if (thread_group_leader(tsk)) {
658 autoreap = thread_group_empty(tsk) &&
659 do_notify_parent(tsk, tsk->exit_signal);
660 } else {
661 autoreap = true;
662 }
663
664 tsk->exit_state = autoreap ? EXIT_DEAD : EXIT_ZOMBIE;
665
666 /* mt-exec, de_thread() is waiting for group leader */
667 if (unlikely(tsk->signal->notify_count < 0))
668 wake_up_process(tsk->signal->group_exit_task);
669 write_unlock_irq(&tasklist_lock);
670
671 /* If the process is dead, release it - nobody will wait for it */
672 if (autoreap)
673 release_task(tsk);
674 }
675
676 #ifdef CONFIG_DEBUG_STACK_USAGE
677 static void check_stack_usage(void)
678 {
679 static DEFINE_SPINLOCK(low_water_lock);
680 static int lowest_to_date = THREAD_SIZE;
681 unsigned long free;
682
683 free = stack_not_used(current);
684
685 if (free >= lowest_to_date)
686 return;
687
688 spin_lock(&low_water_lock);
689 if (free < lowest_to_date) {
690 printk(KERN_WARNING "%s (%d) used greatest stack depth: "
691 "%lu bytes left\n",
692 current->comm, task_pid_nr(current), free);
693 lowest_to_date = free;
694 }
695 spin_unlock(&low_water_lock);
696 }
697 #else
698 static inline void check_stack_usage(void) {}
699 #endif
700
701 void do_exit(long code)
702 {
703 struct task_struct *tsk = current;
704 int group_dead;
705
706 profile_task_exit(tsk);
707
708 WARN_ON(blk_needs_flush_plug(tsk));
709
710 if (unlikely(in_interrupt()))
711 panic("Aiee, killing interrupt handler!");
712 if (unlikely(!tsk->pid))
713 panic("Attempted to kill the idle task!");
714
715 /*
716 * If do_exit is called because this processes oopsed, it's possible
717 * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before
718 * continuing. Amongst other possible reasons, this is to prevent
719 * mm_release()->clear_child_tid() from writing to a user-controlled
720 * kernel address.
721 */
722 set_fs(USER_DS);
723
724 ptrace_event(PTRACE_EVENT_EXIT, code);
725
726 validate_creds_for_do_exit(tsk);
727
728 /*
729 * We're taking recursive faults here in do_exit. Safest is to just
730 * leave this task alone and wait for reboot.
731 */
732 if (unlikely(tsk->flags & PF_EXITING)) {
733 printk(KERN_ALERT
734 "Fixing recursive fault but reboot is needed!\n");
735 /*
736 * We can do this unlocked here. The futex code uses
737 * this flag just to verify whether the pi state
738 * cleanup has been done or not. In the worst case it
739 * loops once more. We pretend that the cleanup was
740 * done as there is no way to return. Either the
741 * OWNER_DIED bit is set by now or we push the blocked
742 * task into the wait for ever nirwana as well.
743 */
744 tsk->flags |= PF_EXITPIDONE;
745 set_current_state(TASK_UNINTERRUPTIBLE);
746 schedule();
747 }
748
749 exit_signals(tsk); /* sets PF_EXITING */
750 /*
751 * tsk->flags are checked in the futex code to protect against
752 * an exiting task cleaning up the robust pi futexes.
753 */
754 smp_mb();
755 raw_spin_unlock_wait(&tsk->pi_lock);
756
757 if (unlikely(in_atomic()))
758 printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n",
759 current->comm, task_pid_nr(current),
760 preempt_count());
761
762 acct_update_integrals(tsk);
763 /* sync mm's RSS info before statistics gathering */
764 if (tsk->mm)
765 sync_mm_rss(tsk->mm);
766 group_dead = atomic_dec_and_test(&tsk->signal->live);
767 if (group_dead) {
768 hrtimer_cancel(&tsk->signal->real_timer);
769 exit_itimers(tsk->signal);
770 if (tsk->mm)
771 setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
772 }
773 acct_collect(code, group_dead);
774 if (group_dead)
775 tty_audit_exit();
776 audit_free(tsk);
777
778 tsk->exit_code = code;
779 taskstats_exit(tsk, group_dead);
780
781 exit_mm(tsk);
782
783 if (group_dead)
784 acct_process();
785 trace_sched_process_exit(tsk);
786
787 exit_sem(tsk);
788 exit_shm(tsk);
789 exit_files(tsk);
790 exit_fs(tsk);
791 if (group_dead)
792 disassociate_ctty(1);
793 exit_task_namespaces(tsk);
794 exit_task_work(tsk);
795 exit_thread();
796
797 /*
798 * Flush inherited counters to the parent - before the parent
799 * gets woken up by child-exit notifications.
800 *
801 * because of cgroup mode, must be called before cgroup_exit()
802 */
803 perf_event_exit_task(tsk);
804
805 cgroup_exit(tsk);
806
807 module_put(task_thread_info(tsk)->exec_domain->module);
808
809 /*
810 * FIXME: do that only when needed, using sched_exit tracepoint
811 */
812 flush_ptrace_hw_breakpoint(tsk);
813
814 exit_notify(tsk, group_dead);
815 proc_exit_connector(tsk);
816 #ifdef CONFIG_NUMA
817 task_lock(tsk);
818 mpol_put(tsk->mempolicy);
819 tsk->mempolicy = NULL;
820 task_unlock(tsk);
821 #endif
822 #ifdef CONFIG_FUTEX
823 if (unlikely(current->pi_state_cache))
824 kfree(current->pi_state_cache);
825 #endif
826 /*
827 * Make sure we are holding no locks:
828 */
829 debug_check_no_locks_held();
830 /*
831 * We can do this unlocked here. The futex code uses this flag
832 * just to verify whether the pi state cleanup has been done
833 * or not. In the worst case it loops once more.
834 */
835 tsk->flags |= PF_EXITPIDONE;
836
837 if (tsk->io_context)
838 exit_io_context(tsk);
839
840 if (tsk->splice_pipe)
841 free_pipe_info(tsk->splice_pipe);
842
843 if (tsk->task_frag.page)
844 put_page(tsk->task_frag.page);
845
846 validate_creds_for_do_exit(tsk);
847
848 check_stack_usage();
849 preempt_disable();
850 if (tsk->nr_dirtied)
851 __this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
852 exit_rcu();
853
854 /*
855 * The setting of TASK_RUNNING by try_to_wake_up() may be delayed
856 * when the following two conditions become true.
857 * - There is race condition of mmap_sem (It is acquired by
858 * exit_mm()), and
859 * - SMI occurs before setting TASK_RUNINNG.
860 * (or hypervisor of virtual machine switches to other guest)
861 * As a result, we may become TASK_RUNNING after becoming TASK_DEAD
862 *
863 * To avoid it, we have to wait for releasing tsk->pi_lock which
864 * is held by try_to_wake_up()
865 */
866 smp_mb();
867 raw_spin_unlock_wait(&tsk->pi_lock);
868
869 /* causes final put_task_struct in finish_task_switch(). */
870 tsk->state = TASK_DEAD;
871 tsk->flags |= PF_NOFREEZE; /* tell freezer to ignore us */
872 schedule();
873 BUG();
874 /* Avoid "noreturn function does return". */
875 for (;;)
876 cpu_relax(); /* For when BUG is null */
877 }
878
879 EXPORT_SYMBOL_GPL(do_exit);
880
881 void complete_and_exit(struct completion *comp, long code)
882 {
883 if (comp)
884 complete(comp);
885
886 do_exit(code);
887 }
888
889 EXPORT_SYMBOL(complete_and_exit);
890
891 SYSCALL_DEFINE1(exit, int, error_code)
892 {
893 do_exit((error_code&0xff)<<8);
894 }
895
896 /*
897 * Take down every thread in the group. This is called by fatal signals
898 * as well as by sys_exit_group (below).
899 */
900 void
901 do_group_exit(int exit_code)
902 {
903 struct signal_struct *sig = current->signal;
904
905 BUG_ON(exit_code & 0x80); /* core dumps don't get here */
906
907 if (signal_group_exit(sig))
908 exit_code = sig->group_exit_code;
909 else if (!thread_group_empty(current)) {
910 struct sighand_struct *const sighand = current->sighand;
911 spin_lock_irq(&sighand->siglock);
912 if (signal_group_exit(sig))
913 /* Another thread got here before we took the lock. */
914 exit_code = sig->group_exit_code;
915 else {
916 sig->group_exit_code = exit_code;
917 sig->flags = SIGNAL_GROUP_EXIT;
918 zap_other_threads(current);
919 }
920 spin_unlock_irq(&sighand->siglock);
921 }
922
923 do_exit(exit_code);
924 /* NOTREACHED */
925 }
926
927 /*
928 * this kills every thread in the thread group. Note that any externally
929 * wait4()-ing process will get the correct exit code - even if this
930 * thread is not the thread group leader.
931 */
932 SYSCALL_DEFINE1(exit_group, int, error_code)
933 {
934 do_group_exit((error_code & 0xff) << 8);
935 /* NOTREACHED */
936 return 0;
937 }
938
939 struct wait_opts {
940 enum pid_type wo_type;
941 int wo_flags;
942 struct pid *wo_pid;
943
944 struct siginfo __user *wo_info;
945 int __user *wo_stat;
946 struct rusage __user *wo_rusage;
947
948 wait_queue_t child_wait;
949 int notask_error;
950 };
951
952 static inline
953 struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
954 {
955 if (type != PIDTYPE_PID)
956 task = task->group_leader;
957 return task->pids[type].pid;
958 }
959
960 static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
961 {
962 return wo->wo_type == PIDTYPE_MAX ||
963 task_pid_type(p, wo->wo_type) == wo->wo_pid;
964 }
965
966 static int eligible_child(struct wait_opts *wo, struct task_struct *p)
967 {
968 if (!eligible_pid(wo, p))
969 return 0;
970 /* Wait for all children (clone and not) if __WALL is set;
971 * otherwise, wait for clone children *only* if __WCLONE is
972 * set; otherwise, wait for non-clone children *only*. (Note:
973 * A "clone" child here is one that reports to its parent
974 * using a signal other than SIGCHLD.) */
975 if (((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
976 && !(wo->wo_flags & __WALL))
977 return 0;
978
979 return 1;
980 }
981
982 static int wait_noreap_copyout(struct wait_opts *wo, struct task_struct *p,
983 pid_t pid, uid_t uid, int why, int status)
984 {
985 struct siginfo __user *infop;
986 int retval = wo->wo_rusage
987 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
988
989 put_task_struct(p);
990 infop = wo->wo_info;
991 if (infop) {
992 if (!retval)
993 retval = put_user(SIGCHLD, &infop->si_signo);
994 if (!retval)
995 retval = put_user(0, &infop->si_errno);
996 if (!retval)
997 retval = put_user((short)why, &infop->si_code);
998 if (!retval)
999 retval = put_user(pid, &infop->si_pid);
1000 if (!retval)
1001 retval = put_user(uid, &infop->si_uid);
1002 if (!retval)
1003 retval = put_user(status, &infop->si_status);
1004 }
1005 if (!retval)
1006 retval = pid;
1007 return retval;
1008 }
1009
1010 /*
1011 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold
1012 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1013 * the lock and this task is uninteresting. If we return nonzero, we have
1014 * released the lock and the system call should return.
1015 */
1016 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
1017 {
1018 unsigned long state;
1019 int retval, status, traced;
1020 pid_t pid = task_pid_vnr(p);
1021 uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
1022 struct siginfo __user *infop;
1023
1024 if (!likely(wo->wo_flags & WEXITED))
1025 return 0;
1026
1027 if (unlikely(wo->wo_flags & WNOWAIT)) {
1028 int exit_code = p->exit_code;
1029 int why;
1030
1031 get_task_struct(p);
1032 read_unlock(&tasklist_lock);
1033 if ((exit_code & 0x7f) == 0) {
1034 why = CLD_EXITED;
1035 status = exit_code >> 8;
1036 } else {
1037 why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
1038 status = exit_code & 0x7f;
1039 }
1040 return wait_noreap_copyout(wo, p, pid, uid, why, status);
1041 }
1042
1043 traced = ptrace_reparented(p);
1044 /*
1045 * Move the task's state to DEAD/TRACE, only one thread can do this.
1046 */
1047 state = traced && thread_group_leader(p) ? EXIT_TRACE : EXIT_DEAD;
1048 if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE)
1049 return 0;
1050 /*
1051 * It can be ptraced but not reparented, check
1052 * thread_group_leader() to filter out sub-threads.
1053 */
1054 if (likely(!traced) && thread_group_leader(p)) {
1055 struct signal_struct *psig;
1056 struct signal_struct *sig;
1057 unsigned long maxrss;
1058 cputime_t tgutime, tgstime;
1059
1060 /*
1061 * The resource counters for the group leader are in its
1062 * own task_struct. Those for dead threads in the group
1063 * are in its signal_struct, as are those for the child
1064 * processes it has previously reaped. All these
1065 * accumulate in the parent's signal_struct c* fields.
1066 *
1067 * We don't bother to take a lock here to protect these
1068 * p->signal fields, because they are only touched by
1069 * __exit_signal, which runs with tasklist_lock
1070 * write-locked anyway, and so is excluded here. We do
1071 * need to protect the access to parent->signal fields,
1072 * as other threads in the parent group can be right
1073 * here reaping other children at the same time.
1074 *
1075 * We use thread_group_cputime_adjusted() to get times for the thread
1076 * group, which consolidates times for all threads in the
1077 * group including the group leader.
1078 */
1079 thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1080 spin_lock_irq(&p->real_parent->sighand->siglock);
1081 psig = p->real_parent->signal;
1082 sig = p->signal;
1083 psig->cutime += tgutime + sig->cutime;
1084 psig->cstime += tgstime + sig->cstime;
1085 psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime;
1086 psig->cmin_flt +=
1087 p->min_flt + sig->min_flt + sig->cmin_flt;
1088 psig->cmaj_flt +=
1089 p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1090 psig->cnvcsw +=
1091 p->nvcsw + sig->nvcsw + sig->cnvcsw;
1092 psig->cnivcsw +=
1093 p->nivcsw + sig->nivcsw + sig->cnivcsw;
1094 psig->cinblock +=
1095 task_io_get_inblock(p) +
1096 sig->inblock + sig->cinblock;
1097 psig->coublock +=
1098 task_io_get_oublock(p) +
1099 sig->oublock + sig->coublock;
1100 maxrss = max(sig->maxrss, sig->cmaxrss);
1101 if (psig->cmaxrss < maxrss)
1102 psig->cmaxrss = maxrss;
1103 task_io_accounting_add(&psig->ioac, &p->ioac);
1104 task_io_accounting_add(&psig->ioac, &sig->ioac);
1105 spin_unlock_irq(&p->real_parent->sighand->siglock);
1106 }
1107
1108 /*
1109 * Now we are sure this task is interesting, and no other
1110 * thread can reap it because we its state == DEAD/TRACE.
1111 */
1112 read_unlock(&tasklist_lock);
1113
1114 retval = wo->wo_rusage
1115 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1116 status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1117 ? p->signal->group_exit_code : p->exit_code;
1118 if (!retval && wo->wo_stat)
1119 retval = put_user(status, wo->wo_stat);
1120
1121 infop = wo->wo_info;
1122 if (!retval && infop)
1123 retval = put_user(SIGCHLD, &infop->si_signo);
1124 if (!retval && infop)
1125 retval = put_user(0, &infop->si_errno);
1126 if (!retval && infop) {
1127 int why;
1128
1129 if ((status & 0x7f) == 0) {
1130 why = CLD_EXITED;
1131 status >>= 8;
1132 } else {
1133 why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1134 status &= 0x7f;
1135 }
1136 retval = put_user((short)why, &infop->si_code);
1137 if (!retval)
1138 retval = put_user(status, &infop->si_status);
1139 }
1140 if (!retval && infop)
1141 retval = put_user(pid, &infop->si_pid);
1142 if (!retval && infop)
1143 retval = put_user(uid, &infop->si_uid);
1144 if (!retval)
1145 retval = pid;
1146
1147 if (state == EXIT_TRACE) {
1148 write_lock_irq(&tasklist_lock);
1149 /* We dropped tasklist, ptracer could die and untrace */
1150 ptrace_unlink(p);
1151
1152 /* If parent wants a zombie, don't release it now */
1153 state = EXIT_ZOMBIE;
1154 if (do_notify_parent(p, p->exit_signal))
1155 state = EXIT_DEAD;
1156 p->exit_state = state;
1157 write_unlock_irq(&tasklist_lock);
1158 }
1159 if (state == EXIT_DEAD)
1160 release_task(p);
1161
1162 return retval;
1163 }
1164
1165 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1166 {
1167 if (ptrace) {
1168 if (task_is_stopped_or_traced(p) &&
1169 !(p->jobctl & JOBCTL_LISTENING))
1170 return &p->exit_code;
1171 } else {
1172 if (p->signal->flags & SIGNAL_STOP_STOPPED)
1173 return &p->signal->group_exit_code;
1174 }
1175 return NULL;
1176 }
1177
1178 /**
1179 * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1180 * @wo: wait options
1181 * @ptrace: is the wait for ptrace
1182 * @p: task to wait for
1183 *
1184 * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1185 *
1186 * CONTEXT:
1187 * read_lock(&tasklist_lock), which is released if return value is
1188 * non-zero. Also, grabs and releases @p->sighand->siglock.
1189 *
1190 * RETURNS:
1191 * 0 if wait condition didn't exist and search for other wait conditions
1192 * should continue. Non-zero return, -errno on failure and @p's pid on
1193 * success, implies that tasklist_lock is released and wait condition
1194 * search should terminate.
1195 */
1196 static int wait_task_stopped(struct wait_opts *wo,
1197 int ptrace, struct task_struct *p)
1198 {
1199 struct siginfo __user *infop;
1200 int retval, exit_code, *p_code, why;
1201 uid_t uid = 0; /* unneeded, required by compiler */
1202 pid_t pid;
1203
1204 /*
1205 * Traditionally we see ptrace'd stopped tasks regardless of options.
1206 */
1207 if (!ptrace && !(wo->wo_flags & WUNTRACED))
1208 return 0;
1209
1210 if (!task_stopped_code(p, ptrace))
1211 return 0;
1212
1213 exit_code = 0;
1214 spin_lock_irq(&p->sighand->siglock);
1215
1216 p_code = task_stopped_code(p, ptrace);
1217 if (unlikely(!p_code))
1218 goto unlock_sig;
1219
1220 exit_code = *p_code;
1221 if (!exit_code)
1222 goto unlock_sig;
1223
1224 if (!unlikely(wo->wo_flags & WNOWAIT))
1225 *p_code = 0;
1226
1227 uid = from_kuid_munged(current_user_ns(), task_uid(p));
1228 unlock_sig:
1229 spin_unlock_irq(&p->sighand->siglock);
1230 if (!exit_code)
1231 return 0;
1232
1233 /*
1234 * Now we are pretty sure this task is interesting.
1235 * Make sure it doesn't get reaped out from under us while we
1236 * give up the lock and then examine it below. We don't want to
1237 * keep holding onto the tasklist_lock while we call getrusage and
1238 * possibly take page faults for user memory.
1239 */
1240 get_task_struct(p);
1241 pid = task_pid_vnr(p);
1242 why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1243 read_unlock(&tasklist_lock);
1244
1245 if (unlikely(wo->wo_flags & WNOWAIT))
1246 return wait_noreap_copyout(wo, p, pid, uid, why, exit_code);
1247
1248 retval = wo->wo_rusage
1249 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1250 if (!retval && wo->wo_stat)
1251 retval = put_user((exit_code << 8) | 0x7f, wo->wo_stat);
1252
1253 infop = wo->wo_info;
1254 if (!retval && infop)
1255 retval = put_user(SIGCHLD, &infop->si_signo);
1256 if (!retval && infop)
1257 retval = put_user(0, &infop->si_errno);
1258 if (!retval && infop)
1259 retval = put_user((short)why, &infop->si_code);
1260 if (!retval && infop)
1261 retval = put_user(exit_code, &infop->si_status);
1262 if (!retval && infop)
1263 retval = put_user(pid, &infop->si_pid);
1264 if (!retval && infop)
1265 retval = put_user(uid, &infop->si_uid);
1266 if (!retval)
1267 retval = pid;
1268 put_task_struct(p);
1269
1270 BUG_ON(!retval);
1271 return retval;
1272 }
1273
1274 /*
1275 * Handle do_wait work for one task in a live, non-stopped state.
1276 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1277 * the lock and this task is uninteresting. If we return nonzero, we have
1278 * released the lock and the system call should return.
1279 */
1280 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1281 {
1282 int retval;
1283 pid_t pid;
1284 uid_t uid;
1285
1286 if (!unlikely(wo->wo_flags & WCONTINUED))
1287 return 0;
1288
1289 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1290 return 0;
1291
1292 spin_lock_irq(&p->sighand->siglock);
1293 /* Re-check with the lock held. */
1294 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1295 spin_unlock_irq(&p->sighand->siglock);
1296 return 0;
1297 }
1298 if (!unlikely(wo->wo_flags & WNOWAIT))
1299 p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1300 uid = from_kuid_munged(current_user_ns(), task_uid(p));
1301 spin_unlock_irq(&p->sighand->siglock);
1302
1303 pid = task_pid_vnr(p);
1304 get_task_struct(p);
1305 read_unlock(&tasklist_lock);
1306
1307 if (!wo->wo_info) {
1308 retval = wo->wo_rusage
1309 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1310 put_task_struct(p);
1311 if (!retval && wo->wo_stat)
1312 retval = put_user(0xffff, wo->wo_stat);
1313 if (!retval)
1314 retval = pid;
1315 } else {
1316 retval = wait_noreap_copyout(wo, p, pid, uid,
1317 CLD_CONTINUED, SIGCONT);
1318 BUG_ON(retval == 0);
1319 }
1320
1321 return retval;
1322 }
1323
1324 /*
1325 * Consider @p for a wait by @parent.
1326 *
1327 * -ECHILD should be in ->notask_error before the first call.
1328 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1329 * Returns zero if the search for a child should continue;
1330 * then ->notask_error is 0 if @p is an eligible child,
1331 * or another error from security_task_wait(), or still -ECHILD.
1332 */
1333 static int wait_consider_task(struct wait_opts *wo, int ptrace,
1334 struct task_struct *p)
1335 {
1336 int ret;
1337
1338 if (unlikely(p->exit_state == EXIT_DEAD))
1339 return 0;
1340
1341 ret = eligible_child(wo, p);
1342 if (!ret)
1343 return ret;
1344
1345 ret = security_task_wait(p);
1346 if (unlikely(ret < 0)) {
1347 /*
1348 * If we have not yet seen any eligible child,
1349 * then let this error code replace -ECHILD.
1350 * A permission error will give the user a clue
1351 * to look for security policy problems, rather
1352 * than for mysterious wait bugs.
1353 */
1354 if (wo->notask_error)
1355 wo->notask_error = ret;
1356 return 0;
1357 }
1358
1359 if (unlikely(p->exit_state == EXIT_TRACE)) {
1360 /*
1361 * ptrace == 0 means we are the natural parent. In this case
1362 * we should clear notask_error, debugger will notify us.
1363 */
1364 if (likely(!ptrace))
1365 wo->notask_error = 0;
1366 return 0;
1367 }
1368
1369 if (likely(!ptrace) && unlikely(p->ptrace)) {
1370 /*
1371 * If it is traced by its real parent's group, just pretend
1372 * the caller is ptrace_do_wait() and reap this child if it
1373 * is zombie.
1374 *
1375 * This also hides group stop state from real parent; otherwise
1376 * a single stop can be reported twice as group and ptrace stop.
1377 * If a ptracer wants to distinguish these two events for its
1378 * own children it should create a separate process which takes
1379 * the role of real parent.
1380 */
1381 if (!ptrace_reparented(p))
1382 ptrace = 1;
1383 }
1384
1385 /* slay zombie? */
1386 if (p->exit_state == EXIT_ZOMBIE) {
1387 /* we don't reap group leaders with subthreads */
1388 if (!delay_group_leader(p)) {
1389 /*
1390 * A zombie ptracee is only visible to its ptracer.
1391 * Notification and reaping will be cascaded to the
1392 * real parent when the ptracer detaches.
1393 */
1394 if (unlikely(ptrace) || likely(!p->ptrace))
1395 return wait_task_zombie(wo, p);
1396 }
1397
1398 /*
1399 * Allow access to stopped/continued state via zombie by
1400 * falling through. Clearing of notask_error is complex.
1401 *
1402 * When !@ptrace:
1403 *
1404 * If WEXITED is set, notask_error should naturally be
1405 * cleared. If not, subset of WSTOPPED|WCONTINUED is set,
1406 * so, if there are live subthreads, there are events to
1407 * wait for. If all subthreads are dead, it's still safe
1408 * to clear - this function will be called again in finite
1409 * amount time once all the subthreads are released and
1410 * will then return without clearing.
1411 *
1412 * When @ptrace:
1413 *
1414 * Stopped state is per-task and thus can't change once the
1415 * target task dies. Only continued and exited can happen.
1416 * Clear notask_error if WCONTINUED | WEXITED.
1417 */
1418 if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1419 wo->notask_error = 0;
1420 } else {
1421 /*
1422 * @p is alive and it's gonna stop, continue or exit, so
1423 * there always is something to wait for.
1424 */
1425 wo->notask_error = 0;
1426 }
1427
1428 /*
1429 * Wait for stopped. Depending on @ptrace, different stopped state
1430 * is used and the two don't interact with each other.
1431 */
1432 ret = wait_task_stopped(wo, ptrace, p);
1433 if (ret)
1434 return ret;
1435
1436 /*
1437 * Wait for continued. There's only one continued state and the
1438 * ptracer can consume it which can confuse the real parent. Don't
1439 * use WCONTINUED from ptracer. You don't need or want it.
1440 */
1441 return wait_task_continued(wo, p);
1442 }
1443
1444 /*
1445 * Do the work of do_wait() for one thread in the group, @tsk.
1446 *
1447 * -ECHILD should be in ->notask_error before the first call.
1448 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1449 * Returns zero if the search for a child should continue; then
1450 * ->notask_error is 0 if there were any eligible children,
1451 * or another error from security_task_wait(), or still -ECHILD.
1452 */
1453 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1454 {
1455 struct task_struct *p;
1456
1457 list_for_each_entry(p, &tsk->children, sibling) {
1458 int ret = wait_consider_task(wo, 0, p);
1459 if (ret)
1460 return ret;
1461 }
1462
1463 return 0;
1464 }
1465
1466 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1467 {
1468 struct task_struct *p;
1469
1470 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1471 int ret = wait_consider_task(wo, 1, p);
1472 if (ret)
1473 return ret;
1474 }
1475
1476 return 0;
1477 }
1478
1479 static int child_wait_callback(wait_queue_t *wait, unsigned mode,
1480 int sync, void *key)
1481 {
1482 struct wait_opts *wo = container_of(wait, struct wait_opts,
1483 child_wait);
1484 struct task_struct *p = key;
1485
1486 if (!eligible_pid(wo, p))
1487 return 0;
1488
1489 if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1490 return 0;
1491
1492 return default_wake_function(wait, mode, sync, key);
1493 }
1494
1495 void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1496 {
1497 __wake_up_sync_key(&parent->signal->wait_chldexit,
1498 TASK_INTERRUPTIBLE, 1, p);
1499 }
1500
1501 static long do_wait(struct wait_opts *wo)
1502 {
1503 struct task_struct *tsk;
1504 int retval;
1505
1506 trace_sched_process_wait(wo->wo_pid);
1507
1508 init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1509 wo->child_wait.private = current;
1510 add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1511 repeat:
1512 /*
1513 * If there is nothing that can match our critiera just get out.
1514 * We will clear ->notask_error to zero if we see any child that
1515 * might later match our criteria, even if we are not able to reap
1516 * it yet.
1517 */
1518 wo->notask_error = -ECHILD;
1519 if ((wo->wo_type < PIDTYPE_MAX) &&
1520 (!wo->wo_pid || hlist_empty(&wo->wo_pid->tasks[wo->wo_type])))
1521 goto notask;
1522
1523 set_current_state(TASK_INTERRUPTIBLE);
1524 read_lock(&tasklist_lock);
1525 tsk = current;
1526 do {
1527 retval = do_wait_thread(wo, tsk);
1528 if (retval)
1529 goto end;
1530
1531 retval = ptrace_do_wait(wo, tsk);
1532 if (retval)
1533 goto end;
1534
1535 if (wo->wo_flags & __WNOTHREAD)
1536 break;
1537 } while_each_thread(current, tsk);
1538 read_unlock(&tasklist_lock);
1539
1540 notask:
1541 retval = wo->notask_error;
1542 if (!retval && !(wo->wo_flags & WNOHANG)) {
1543 retval = -ERESTARTSYS;
1544 if (!signal_pending(current)) {
1545 schedule();
1546 goto repeat;
1547 }
1548 }
1549 end:
1550 __set_current_state(TASK_RUNNING);
1551 remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1552 return retval;
1553 }
1554
1555 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1556 infop, int, options, struct rusage __user *, ru)
1557 {
1558 struct wait_opts wo;
1559 struct pid *pid = NULL;
1560 enum pid_type type;
1561 long ret;
1562
1563 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED))
1564 return -EINVAL;
1565 if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1566 return -EINVAL;
1567
1568 switch (which) {
1569 case P_ALL:
1570 type = PIDTYPE_MAX;
1571 break;
1572 case P_PID:
1573 type = PIDTYPE_PID;
1574 if (upid <= 0)
1575 return -EINVAL;
1576 break;
1577 case P_PGID:
1578 type = PIDTYPE_PGID;
1579 if (upid <= 0)
1580 return -EINVAL;
1581 break;
1582 default:
1583 return -EINVAL;
1584 }
1585
1586 if (type < PIDTYPE_MAX)
1587 pid = find_get_pid(upid);
1588
1589 wo.wo_type = type;
1590 wo.wo_pid = pid;
1591 wo.wo_flags = options;
1592 wo.wo_info = infop;
1593 wo.wo_stat = NULL;
1594 wo.wo_rusage = ru;
1595 ret = do_wait(&wo);
1596
1597 if (ret > 0) {
1598 ret = 0;
1599 } else if (infop) {
1600 /*
1601 * For a WNOHANG return, clear out all the fields
1602 * we would set so the user can easily tell the
1603 * difference.
1604 */
1605 if (!ret)
1606 ret = put_user(0, &infop->si_signo);
1607 if (!ret)
1608 ret = put_user(0, &infop->si_errno);
1609 if (!ret)
1610 ret = put_user(0, &infop->si_code);
1611 if (!ret)
1612 ret = put_user(0, &infop->si_pid);
1613 if (!ret)
1614 ret = put_user(0, &infop->si_uid);
1615 if (!ret)
1616 ret = put_user(0, &infop->si_status);
1617 }
1618
1619 put_pid(pid);
1620 return ret;
1621 }
1622
1623 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1624 int, options, struct rusage __user *, ru)
1625 {
1626 struct wait_opts wo;
1627 struct pid *pid = NULL;
1628 enum pid_type type;
1629 long ret;
1630
1631 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1632 __WNOTHREAD|__WCLONE|__WALL))
1633 return -EINVAL;
1634
1635 if (upid == -1)
1636 type = PIDTYPE_MAX;
1637 else if (upid < 0) {
1638 type = PIDTYPE_PGID;
1639 pid = find_get_pid(-upid);
1640 } else if (upid == 0) {
1641 type = PIDTYPE_PGID;
1642 pid = get_task_pid(current, PIDTYPE_PGID);
1643 } else /* upid > 0 */ {
1644 type = PIDTYPE_PID;
1645 pid = find_get_pid(upid);
1646 }
1647
1648 wo.wo_type = type;
1649 wo.wo_pid = pid;
1650 wo.wo_flags = options | WEXITED;
1651 wo.wo_info = NULL;
1652 wo.wo_stat = stat_addr;
1653 wo.wo_rusage = ru;
1654 ret = do_wait(&wo);
1655 put_pid(pid);
1656
1657 return ret;
1658 }
1659
1660 #ifdef __ARCH_WANT_SYS_WAITPID
1661
1662 /*
1663 * sys_waitpid() remains for compatibility. waitpid() should be
1664 * implemented by calling sys_wait4() from libc.a.
1665 */
1666 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1667 {
1668 return sys_wait4(pid, stat_addr, options, NULL);
1669 }
1670
1671 #endif
This page took 0.06562 seconds and 6 git commands to generate.