exit: reparent: cleanup the usage of reparent_leader()
[deliverable/linux.git] / kernel / exit.c
1 /*
2 * linux/kernel/exit.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 #include <linux/mm.h>
8 #include <linux/slab.h>
9 #include <linux/interrupt.h>
10 #include <linux/module.h>
11 #include <linux/capability.h>
12 #include <linux/completion.h>
13 #include <linux/personality.h>
14 #include <linux/tty.h>
15 #include <linux/iocontext.h>
16 #include <linux/key.h>
17 #include <linux/security.h>
18 #include <linux/cpu.h>
19 #include <linux/acct.h>
20 #include <linux/tsacct_kern.h>
21 #include <linux/file.h>
22 #include <linux/fdtable.h>
23 #include <linux/freezer.h>
24 #include <linux/binfmts.h>
25 #include <linux/nsproxy.h>
26 #include <linux/pid_namespace.h>
27 #include <linux/ptrace.h>
28 #include <linux/profile.h>
29 #include <linux/mount.h>
30 #include <linux/proc_fs.h>
31 #include <linux/kthread.h>
32 #include <linux/mempolicy.h>
33 #include <linux/taskstats_kern.h>
34 #include <linux/delayacct.h>
35 #include <linux/cgroup.h>
36 #include <linux/syscalls.h>
37 #include <linux/signal.h>
38 #include <linux/posix-timers.h>
39 #include <linux/cn_proc.h>
40 #include <linux/mutex.h>
41 #include <linux/futex.h>
42 #include <linux/pipe_fs_i.h>
43 #include <linux/audit.h> /* for audit_free() */
44 #include <linux/resource.h>
45 #include <linux/blkdev.h>
46 #include <linux/task_io_accounting_ops.h>
47 #include <linux/tracehook.h>
48 #include <linux/fs_struct.h>
49 #include <linux/init_task.h>
50 #include <linux/perf_event.h>
51 #include <trace/events/sched.h>
52 #include <linux/hw_breakpoint.h>
53 #include <linux/oom.h>
54 #include <linux/writeback.h>
55 #include <linux/shm.h>
56
57 #include <asm/uaccess.h>
58 #include <asm/unistd.h>
59 #include <asm/pgtable.h>
60 #include <asm/mmu_context.h>
61
62 static void exit_mm(struct task_struct *tsk);
63
64 static void __unhash_process(struct task_struct *p, bool group_dead)
65 {
66 nr_threads--;
67 detach_pid(p, PIDTYPE_PID);
68 if (group_dead) {
69 detach_pid(p, PIDTYPE_PGID);
70 detach_pid(p, PIDTYPE_SID);
71
72 list_del_rcu(&p->tasks);
73 list_del_init(&p->sibling);
74 __this_cpu_dec(process_counts);
75 }
76 list_del_rcu(&p->thread_group);
77 list_del_rcu(&p->thread_node);
78 }
79
80 /*
81 * This function expects the tasklist_lock write-locked.
82 */
83 static void __exit_signal(struct task_struct *tsk)
84 {
85 struct signal_struct *sig = tsk->signal;
86 bool group_dead = thread_group_leader(tsk);
87 struct sighand_struct *sighand;
88 struct tty_struct *uninitialized_var(tty);
89 cputime_t utime, stime;
90
91 sighand = rcu_dereference_check(tsk->sighand,
92 lockdep_tasklist_lock_is_held());
93 spin_lock(&sighand->siglock);
94
95 posix_cpu_timers_exit(tsk);
96 if (group_dead) {
97 posix_cpu_timers_exit_group(tsk);
98 tty = sig->tty;
99 sig->tty = NULL;
100 } else {
101 /*
102 * This can only happen if the caller is de_thread().
103 * FIXME: this is the temporary hack, we should teach
104 * posix-cpu-timers to handle this case correctly.
105 */
106 if (unlikely(has_group_leader_pid(tsk)))
107 posix_cpu_timers_exit_group(tsk);
108
109 /*
110 * If there is any task waiting for the group exit
111 * then notify it:
112 */
113 if (sig->notify_count > 0 && !--sig->notify_count)
114 wake_up_process(sig->group_exit_task);
115
116 if (tsk == sig->curr_target)
117 sig->curr_target = next_thread(tsk);
118 }
119
120 /*
121 * Accumulate here the counters for all threads but the group leader
122 * as they die, so they can be added into the process-wide totals
123 * when those are taken. The group leader stays around as a zombie as
124 * long as there are other threads. When it gets reaped, the exit.c
125 * code will add its counts into these totals. We won't ever get here
126 * for the group leader, since it will have been the last reference on
127 * the signal_struct.
128 */
129 task_cputime(tsk, &utime, &stime);
130 write_seqlock(&sig->stats_lock);
131 sig->utime += utime;
132 sig->stime += stime;
133 sig->gtime += task_gtime(tsk);
134 sig->min_flt += tsk->min_flt;
135 sig->maj_flt += tsk->maj_flt;
136 sig->nvcsw += tsk->nvcsw;
137 sig->nivcsw += tsk->nivcsw;
138 sig->inblock += task_io_get_inblock(tsk);
139 sig->oublock += task_io_get_oublock(tsk);
140 task_io_accounting_add(&sig->ioac, &tsk->ioac);
141 sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
142 sig->nr_threads--;
143 __unhash_process(tsk, group_dead);
144 write_sequnlock(&sig->stats_lock);
145
146 /*
147 * Do this under ->siglock, we can race with another thread
148 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
149 */
150 flush_sigqueue(&tsk->pending);
151 tsk->sighand = NULL;
152 spin_unlock(&sighand->siglock);
153
154 __cleanup_sighand(sighand);
155 clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
156 if (group_dead) {
157 flush_sigqueue(&sig->shared_pending);
158 tty_kref_put(tty);
159 }
160 }
161
162 static void delayed_put_task_struct(struct rcu_head *rhp)
163 {
164 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
165
166 perf_event_delayed_put(tsk);
167 trace_sched_process_free(tsk);
168 put_task_struct(tsk);
169 }
170
171
172 void release_task(struct task_struct *p)
173 {
174 struct task_struct *leader;
175 int zap_leader;
176 repeat:
177 /* don't need to get the RCU readlock here - the process is dead and
178 * can't be modifying its own credentials. But shut RCU-lockdep up */
179 rcu_read_lock();
180 atomic_dec(&__task_cred(p)->user->processes);
181 rcu_read_unlock();
182
183 proc_flush_task(p);
184
185 write_lock_irq(&tasklist_lock);
186 ptrace_release_task(p);
187 __exit_signal(p);
188
189 /*
190 * If we are the last non-leader member of the thread
191 * group, and the leader is zombie, then notify the
192 * group leader's parent process. (if it wants notification.)
193 */
194 zap_leader = 0;
195 leader = p->group_leader;
196 if (leader != p && thread_group_empty(leader)
197 && leader->exit_state == EXIT_ZOMBIE) {
198 /*
199 * If we were the last child thread and the leader has
200 * exited already, and the leader's parent ignores SIGCHLD,
201 * then we are the one who should release the leader.
202 */
203 zap_leader = do_notify_parent(leader, leader->exit_signal);
204 if (zap_leader)
205 leader->exit_state = EXIT_DEAD;
206 }
207
208 write_unlock_irq(&tasklist_lock);
209 release_thread(p);
210 call_rcu(&p->rcu, delayed_put_task_struct);
211
212 p = leader;
213 if (unlikely(zap_leader))
214 goto repeat;
215 }
216
217 /*
218 * This checks not only the pgrp, but falls back on the pid if no
219 * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
220 * without this...
221 *
222 * The caller must hold rcu lock or the tasklist lock.
223 */
224 struct pid *session_of_pgrp(struct pid *pgrp)
225 {
226 struct task_struct *p;
227 struct pid *sid = NULL;
228
229 p = pid_task(pgrp, PIDTYPE_PGID);
230 if (p == NULL)
231 p = pid_task(pgrp, PIDTYPE_PID);
232 if (p != NULL)
233 sid = task_session(p);
234
235 return sid;
236 }
237
238 /*
239 * Determine if a process group is "orphaned", according to the POSIX
240 * definition in 2.2.2.52. Orphaned process groups are not to be affected
241 * by terminal-generated stop signals. Newly orphaned process groups are
242 * to receive a SIGHUP and a SIGCONT.
243 *
244 * "I ask you, have you ever known what it is to be an orphan?"
245 */
246 static int will_become_orphaned_pgrp(struct pid *pgrp,
247 struct task_struct *ignored_task)
248 {
249 struct task_struct *p;
250
251 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
252 if ((p == ignored_task) ||
253 (p->exit_state && thread_group_empty(p)) ||
254 is_global_init(p->real_parent))
255 continue;
256
257 if (task_pgrp(p->real_parent) != pgrp &&
258 task_session(p->real_parent) == task_session(p))
259 return 0;
260 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
261
262 return 1;
263 }
264
265 int is_current_pgrp_orphaned(void)
266 {
267 int retval;
268
269 read_lock(&tasklist_lock);
270 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
271 read_unlock(&tasklist_lock);
272
273 return retval;
274 }
275
276 static bool has_stopped_jobs(struct pid *pgrp)
277 {
278 struct task_struct *p;
279
280 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
281 if (p->signal->flags & SIGNAL_STOP_STOPPED)
282 return true;
283 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
284
285 return false;
286 }
287
288 /*
289 * Check to see if any process groups have become orphaned as
290 * a result of our exiting, and if they have any stopped jobs,
291 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
292 */
293 static void
294 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
295 {
296 struct pid *pgrp = task_pgrp(tsk);
297 struct task_struct *ignored_task = tsk;
298
299 if (!parent)
300 /* exit: our father is in a different pgrp than
301 * we are and we were the only connection outside.
302 */
303 parent = tsk->real_parent;
304 else
305 /* reparent: our child is in a different pgrp than
306 * we are, and it was the only connection outside.
307 */
308 ignored_task = NULL;
309
310 if (task_pgrp(parent) != pgrp &&
311 task_session(parent) == task_session(tsk) &&
312 will_become_orphaned_pgrp(pgrp, ignored_task) &&
313 has_stopped_jobs(pgrp)) {
314 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
315 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
316 }
317 }
318
319 #ifdef CONFIG_MEMCG
320 /*
321 * A task is exiting. If it owned this mm, find a new owner for the mm.
322 */
323 void mm_update_next_owner(struct mm_struct *mm)
324 {
325 struct task_struct *c, *g, *p = current;
326
327 retry:
328 /*
329 * If the exiting or execing task is not the owner, it's
330 * someone else's problem.
331 */
332 if (mm->owner != p)
333 return;
334 /*
335 * The current owner is exiting/execing and there are no other
336 * candidates. Do not leave the mm pointing to a possibly
337 * freed task structure.
338 */
339 if (atomic_read(&mm->mm_users) <= 1) {
340 mm->owner = NULL;
341 return;
342 }
343
344 read_lock(&tasklist_lock);
345 /*
346 * Search in the children
347 */
348 list_for_each_entry(c, &p->children, sibling) {
349 if (c->mm == mm)
350 goto assign_new_owner;
351 }
352
353 /*
354 * Search in the siblings
355 */
356 list_for_each_entry(c, &p->real_parent->children, sibling) {
357 if (c->mm == mm)
358 goto assign_new_owner;
359 }
360
361 /*
362 * Search through everything else, we should not get here often.
363 */
364 for_each_process(g) {
365 if (g->flags & PF_KTHREAD)
366 continue;
367 for_each_thread(g, c) {
368 if (c->mm == mm)
369 goto assign_new_owner;
370 if (c->mm)
371 break;
372 }
373 }
374 read_unlock(&tasklist_lock);
375 /*
376 * We found no owner yet mm_users > 1: this implies that we are
377 * most likely racing with swapoff (try_to_unuse()) or /proc or
378 * ptrace or page migration (get_task_mm()). Mark owner as NULL.
379 */
380 mm->owner = NULL;
381 return;
382
383 assign_new_owner:
384 BUG_ON(c == p);
385 get_task_struct(c);
386 /*
387 * The task_lock protects c->mm from changing.
388 * We always want mm->owner->mm == mm
389 */
390 task_lock(c);
391 /*
392 * Delay read_unlock() till we have the task_lock()
393 * to ensure that c does not slip away underneath us
394 */
395 read_unlock(&tasklist_lock);
396 if (c->mm != mm) {
397 task_unlock(c);
398 put_task_struct(c);
399 goto retry;
400 }
401 mm->owner = c;
402 task_unlock(c);
403 put_task_struct(c);
404 }
405 #endif /* CONFIG_MEMCG */
406
407 /*
408 * Turn us into a lazy TLB process if we
409 * aren't already..
410 */
411 static void exit_mm(struct task_struct *tsk)
412 {
413 struct mm_struct *mm = tsk->mm;
414 struct core_state *core_state;
415
416 mm_release(tsk, mm);
417 if (!mm)
418 return;
419 sync_mm_rss(mm);
420 /*
421 * Serialize with any possible pending coredump.
422 * We must hold mmap_sem around checking core_state
423 * and clearing tsk->mm. The core-inducing thread
424 * will increment ->nr_threads for each thread in the
425 * group with ->mm != NULL.
426 */
427 down_read(&mm->mmap_sem);
428 core_state = mm->core_state;
429 if (core_state) {
430 struct core_thread self;
431
432 up_read(&mm->mmap_sem);
433
434 self.task = tsk;
435 self.next = xchg(&core_state->dumper.next, &self);
436 /*
437 * Implies mb(), the result of xchg() must be visible
438 * to core_state->dumper.
439 */
440 if (atomic_dec_and_test(&core_state->nr_threads))
441 complete(&core_state->startup);
442
443 for (;;) {
444 set_task_state(tsk, TASK_UNINTERRUPTIBLE);
445 if (!self.task) /* see coredump_finish() */
446 break;
447 freezable_schedule();
448 }
449 __set_task_state(tsk, TASK_RUNNING);
450 down_read(&mm->mmap_sem);
451 }
452 atomic_inc(&mm->mm_count);
453 BUG_ON(mm != tsk->active_mm);
454 /* more a memory barrier than a real lock */
455 task_lock(tsk);
456 tsk->mm = NULL;
457 up_read(&mm->mmap_sem);
458 enter_lazy_tlb(mm, current);
459 task_unlock(tsk);
460 mm_update_next_owner(mm);
461 mmput(mm);
462 clear_thread_flag(TIF_MEMDIE);
463 }
464
465 /*
466 * When we die, we re-parent all our children, and try to:
467 * 1. give them to another thread in our thread group, if such a member exists
468 * 2. give it to the first ancestor process which prctl'd itself as a
469 * child_subreaper for its children (like a service manager)
470 * 3. give it to the init process (PID 1) in our pid namespace
471 */
472 static struct task_struct *find_new_reaper(struct task_struct *father)
473 __releases(&tasklist_lock)
474 __acquires(&tasklist_lock)
475 {
476 struct pid_namespace *pid_ns = task_active_pid_ns(father);
477 struct task_struct *thread;
478
479 thread = father;
480 while_each_thread(father, thread) {
481 if (thread->flags & PF_EXITING)
482 continue;
483 if (unlikely(pid_ns->child_reaper == father))
484 pid_ns->child_reaper = thread;
485 return thread;
486 }
487
488 if (unlikely(pid_ns->child_reaper == father)) {
489 write_unlock_irq(&tasklist_lock);
490 if (unlikely(pid_ns == &init_pid_ns)) {
491 panic("Attempted to kill init! exitcode=0x%08x\n",
492 father->signal->group_exit_code ?:
493 father->exit_code);
494 }
495
496 zap_pid_ns_processes(pid_ns);
497 write_lock_irq(&tasklist_lock);
498 } else if (father->signal->has_child_subreaper) {
499 struct task_struct *reaper;
500
501 /*
502 * Find the first ancestor marked as child_subreaper.
503 * Note that the code below checks same_thread_group(reaper,
504 * pid_ns->child_reaper). This is what we need to DTRT in a
505 * PID namespace. However we still need the check above, see
506 * http://marc.info/?l=linux-kernel&m=131385460420380
507 */
508 for (reaper = father->real_parent;
509 reaper != &init_task;
510 reaper = reaper->real_parent) {
511 if (same_thread_group(reaper, pid_ns->child_reaper))
512 break;
513 if (!reaper->signal->is_child_subreaper)
514 continue;
515 thread = reaper;
516 do {
517 if (!(thread->flags & PF_EXITING))
518 return reaper;
519 } while_each_thread(reaper, thread);
520 }
521 }
522
523 return pid_ns->child_reaper;
524 }
525
526 /*
527 * Any that need to be release_task'd are put on the @dead list.
528 */
529 static void reparent_leader(struct task_struct *father, struct task_struct *p,
530 struct list_head *dead)
531 {
532 if (unlikely(p->exit_state == EXIT_DEAD))
533 return;
534
535 /* We don't want people slaying init. */
536 p->exit_signal = SIGCHLD;
537
538 /* If it has exited notify the new parent about this child's death. */
539 if (!p->ptrace &&
540 p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
541 if (do_notify_parent(p, p->exit_signal)) {
542 p->exit_state = EXIT_DEAD;
543 list_add(&p->ptrace_entry, dead);
544 }
545 }
546
547 kill_orphaned_pgrp(p, father);
548 }
549
550 static void forget_original_parent(struct task_struct *father)
551 {
552 struct task_struct *p, *t, *n, *reaper;
553 LIST_HEAD(dead_children);
554
555 write_lock_irq(&tasklist_lock);
556 /*
557 * Note that exit_ptrace() and find_new_reaper() might
558 * drop tasklist_lock and reacquire it.
559 */
560 exit_ptrace(father);
561 reaper = find_new_reaper(father);
562
563 list_for_each_entry(p, &father->children, sibling) {
564 for_each_thread(p, t) {
565 t->real_parent = reaper;
566 BUG_ON((!t->ptrace) != (t->parent == father));
567 if (likely(!t->ptrace))
568 t->parent = t->real_parent;
569 if (t->pdeath_signal)
570 group_send_sig_info(t->pdeath_signal,
571 SEND_SIG_NOINFO, t);
572 }
573 /*
574 * If this is a threaded reparent there is no need to
575 * notify anyone anything has happened.
576 */
577 if (!same_thread_group(reaper, father))
578 reparent_leader(father, p, &dead_children);
579 }
580 list_splice_tail_init(&father->children, &reaper->children);
581 write_unlock_irq(&tasklist_lock);
582
583 list_for_each_entry_safe(p, n, &dead_children, ptrace_entry) {
584 list_del_init(&p->ptrace_entry);
585 release_task(p);
586 }
587 }
588
589 /*
590 * Send signals to all our closest relatives so that they know
591 * to properly mourn us..
592 */
593 static void exit_notify(struct task_struct *tsk, int group_dead)
594 {
595 bool autoreap;
596
597 /*
598 * This does two things:
599 *
600 * A. Make init inherit all the child processes
601 * B. Check to see if any process groups have become orphaned
602 * as a result of our exiting, and if they have any stopped
603 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
604 */
605 forget_original_parent(tsk);
606
607 write_lock_irq(&tasklist_lock);
608 if (group_dead)
609 kill_orphaned_pgrp(tsk->group_leader, NULL);
610
611 if (unlikely(tsk->ptrace)) {
612 int sig = thread_group_leader(tsk) &&
613 thread_group_empty(tsk) &&
614 !ptrace_reparented(tsk) ?
615 tsk->exit_signal : SIGCHLD;
616 autoreap = do_notify_parent(tsk, sig);
617 } else if (thread_group_leader(tsk)) {
618 autoreap = thread_group_empty(tsk) &&
619 do_notify_parent(tsk, tsk->exit_signal);
620 } else {
621 autoreap = true;
622 }
623
624 tsk->exit_state = autoreap ? EXIT_DEAD : EXIT_ZOMBIE;
625
626 /* mt-exec, de_thread() is waiting for group leader */
627 if (unlikely(tsk->signal->notify_count < 0))
628 wake_up_process(tsk->signal->group_exit_task);
629 write_unlock_irq(&tasklist_lock);
630
631 /* If the process is dead, release it - nobody will wait for it */
632 if (autoreap)
633 release_task(tsk);
634 }
635
636 #ifdef CONFIG_DEBUG_STACK_USAGE
637 static void check_stack_usage(void)
638 {
639 static DEFINE_SPINLOCK(low_water_lock);
640 static int lowest_to_date = THREAD_SIZE;
641 unsigned long free;
642
643 free = stack_not_used(current);
644
645 if (free >= lowest_to_date)
646 return;
647
648 spin_lock(&low_water_lock);
649 if (free < lowest_to_date) {
650 pr_warn("%s (%d) used greatest stack depth: %lu bytes left\n",
651 current->comm, task_pid_nr(current), free);
652 lowest_to_date = free;
653 }
654 spin_unlock(&low_water_lock);
655 }
656 #else
657 static inline void check_stack_usage(void) {}
658 #endif
659
660 void do_exit(long code)
661 {
662 struct task_struct *tsk = current;
663 int group_dead;
664 TASKS_RCU(int tasks_rcu_i);
665
666 profile_task_exit(tsk);
667
668 WARN_ON(blk_needs_flush_plug(tsk));
669
670 if (unlikely(in_interrupt()))
671 panic("Aiee, killing interrupt handler!");
672 if (unlikely(!tsk->pid))
673 panic("Attempted to kill the idle task!");
674
675 /*
676 * If do_exit is called because this processes oopsed, it's possible
677 * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before
678 * continuing. Amongst other possible reasons, this is to prevent
679 * mm_release()->clear_child_tid() from writing to a user-controlled
680 * kernel address.
681 */
682 set_fs(USER_DS);
683
684 ptrace_event(PTRACE_EVENT_EXIT, code);
685
686 validate_creds_for_do_exit(tsk);
687
688 /*
689 * We're taking recursive faults here in do_exit. Safest is to just
690 * leave this task alone and wait for reboot.
691 */
692 if (unlikely(tsk->flags & PF_EXITING)) {
693 pr_alert("Fixing recursive fault but reboot is needed!\n");
694 /*
695 * We can do this unlocked here. The futex code uses
696 * this flag just to verify whether the pi state
697 * cleanup has been done or not. In the worst case it
698 * loops once more. We pretend that the cleanup was
699 * done as there is no way to return. Either the
700 * OWNER_DIED bit is set by now or we push the blocked
701 * task into the wait for ever nirwana as well.
702 */
703 tsk->flags |= PF_EXITPIDONE;
704 set_current_state(TASK_UNINTERRUPTIBLE);
705 schedule();
706 }
707
708 exit_signals(tsk); /* sets PF_EXITING */
709 /*
710 * tsk->flags are checked in the futex code to protect against
711 * an exiting task cleaning up the robust pi futexes.
712 */
713 smp_mb();
714 raw_spin_unlock_wait(&tsk->pi_lock);
715
716 if (unlikely(in_atomic()))
717 pr_info("note: %s[%d] exited with preempt_count %d\n",
718 current->comm, task_pid_nr(current),
719 preempt_count());
720
721 acct_update_integrals(tsk);
722 /* sync mm's RSS info before statistics gathering */
723 if (tsk->mm)
724 sync_mm_rss(tsk->mm);
725 group_dead = atomic_dec_and_test(&tsk->signal->live);
726 if (group_dead) {
727 hrtimer_cancel(&tsk->signal->real_timer);
728 exit_itimers(tsk->signal);
729 if (tsk->mm)
730 setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
731 }
732 acct_collect(code, group_dead);
733 if (group_dead)
734 tty_audit_exit();
735 audit_free(tsk);
736
737 tsk->exit_code = code;
738 taskstats_exit(tsk, group_dead);
739
740 exit_mm(tsk);
741
742 if (group_dead)
743 acct_process();
744 trace_sched_process_exit(tsk);
745
746 exit_sem(tsk);
747 exit_shm(tsk);
748 exit_files(tsk);
749 exit_fs(tsk);
750 if (group_dead)
751 disassociate_ctty(1);
752 exit_task_namespaces(tsk);
753 exit_task_work(tsk);
754 exit_thread();
755
756 /*
757 * Flush inherited counters to the parent - before the parent
758 * gets woken up by child-exit notifications.
759 *
760 * because of cgroup mode, must be called before cgroup_exit()
761 */
762 perf_event_exit_task(tsk);
763
764 cgroup_exit(tsk);
765
766 module_put(task_thread_info(tsk)->exec_domain->module);
767
768 /*
769 * FIXME: do that only when needed, using sched_exit tracepoint
770 */
771 flush_ptrace_hw_breakpoint(tsk);
772
773 TASKS_RCU(tasks_rcu_i = __srcu_read_lock(&tasks_rcu_exit_srcu));
774 exit_notify(tsk, group_dead);
775 proc_exit_connector(tsk);
776 #ifdef CONFIG_NUMA
777 task_lock(tsk);
778 mpol_put(tsk->mempolicy);
779 tsk->mempolicy = NULL;
780 task_unlock(tsk);
781 #endif
782 #ifdef CONFIG_FUTEX
783 if (unlikely(current->pi_state_cache))
784 kfree(current->pi_state_cache);
785 #endif
786 /*
787 * Make sure we are holding no locks:
788 */
789 debug_check_no_locks_held();
790 /*
791 * We can do this unlocked here. The futex code uses this flag
792 * just to verify whether the pi state cleanup has been done
793 * or not. In the worst case it loops once more.
794 */
795 tsk->flags |= PF_EXITPIDONE;
796
797 if (tsk->io_context)
798 exit_io_context(tsk);
799
800 if (tsk->splice_pipe)
801 free_pipe_info(tsk->splice_pipe);
802
803 if (tsk->task_frag.page)
804 put_page(tsk->task_frag.page);
805
806 validate_creds_for_do_exit(tsk);
807
808 check_stack_usage();
809 preempt_disable();
810 if (tsk->nr_dirtied)
811 __this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
812 exit_rcu();
813 TASKS_RCU(__srcu_read_unlock(&tasks_rcu_exit_srcu, tasks_rcu_i));
814
815 /*
816 * The setting of TASK_RUNNING by try_to_wake_up() may be delayed
817 * when the following two conditions become true.
818 * - There is race condition of mmap_sem (It is acquired by
819 * exit_mm()), and
820 * - SMI occurs before setting TASK_RUNINNG.
821 * (or hypervisor of virtual machine switches to other guest)
822 * As a result, we may become TASK_RUNNING after becoming TASK_DEAD
823 *
824 * To avoid it, we have to wait for releasing tsk->pi_lock which
825 * is held by try_to_wake_up()
826 */
827 smp_mb();
828 raw_spin_unlock_wait(&tsk->pi_lock);
829
830 /* causes final put_task_struct in finish_task_switch(). */
831 tsk->state = TASK_DEAD;
832 tsk->flags |= PF_NOFREEZE; /* tell freezer to ignore us */
833 schedule();
834 BUG();
835 /* Avoid "noreturn function does return". */
836 for (;;)
837 cpu_relax(); /* For when BUG is null */
838 }
839 EXPORT_SYMBOL_GPL(do_exit);
840
841 void complete_and_exit(struct completion *comp, long code)
842 {
843 if (comp)
844 complete(comp);
845
846 do_exit(code);
847 }
848 EXPORT_SYMBOL(complete_and_exit);
849
850 SYSCALL_DEFINE1(exit, int, error_code)
851 {
852 do_exit((error_code&0xff)<<8);
853 }
854
855 /*
856 * Take down every thread in the group. This is called by fatal signals
857 * as well as by sys_exit_group (below).
858 */
859 void
860 do_group_exit(int exit_code)
861 {
862 struct signal_struct *sig = current->signal;
863
864 BUG_ON(exit_code & 0x80); /* core dumps don't get here */
865
866 if (signal_group_exit(sig))
867 exit_code = sig->group_exit_code;
868 else if (!thread_group_empty(current)) {
869 struct sighand_struct *const sighand = current->sighand;
870
871 spin_lock_irq(&sighand->siglock);
872 if (signal_group_exit(sig))
873 /* Another thread got here before we took the lock. */
874 exit_code = sig->group_exit_code;
875 else {
876 sig->group_exit_code = exit_code;
877 sig->flags = SIGNAL_GROUP_EXIT;
878 zap_other_threads(current);
879 }
880 spin_unlock_irq(&sighand->siglock);
881 }
882
883 do_exit(exit_code);
884 /* NOTREACHED */
885 }
886
887 /*
888 * this kills every thread in the thread group. Note that any externally
889 * wait4()-ing process will get the correct exit code - even if this
890 * thread is not the thread group leader.
891 */
892 SYSCALL_DEFINE1(exit_group, int, error_code)
893 {
894 do_group_exit((error_code & 0xff) << 8);
895 /* NOTREACHED */
896 return 0;
897 }
898
899 struct wait_opts {
900 enum pid_type wo_type;
901 int wo_flags;
902 struct pid *wo_pid;
903
904 struct siginfo __user *wo_info;
905 int __user *wo_stat;
906 struct rusage __user *wo_rusage;
907
908 wait_queue_t child_wait;
909 int notask_error;
910 };
911
912 static inline
913 struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
914 {
915 if (type != PIDTYPE_PID)
916 task = task->group_leader;
917 return task->pids[type].pid;
918 }
919
920 static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
921 {
922 return wo->wo_type == PIDTYPE_MAX ||
923 task_pid_type(p, wo->wo_type) == wo->wo_pid;
924 }
925
926 static int eligible_child(struct wait_opts *wo, struct task_struct *p)
927 {
928 if (!eligible_pid(wo, p))
929 return 0;
930 /* Wait for all children (clone and not) if __WALL is set;
931 * otherwise, wait for clone children *only* if __WCLONE is
932 * set; otherwise, wait for non-clone children *only*. (Note:
933 * A "clone" child here is one that reports to its parent
934 * using a signal other than SIGCHLD.) */
935 if (((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
936 && !(wo->wo_flags & __WALL))
937 return 0;
938
939 return 1;
940 }
941
942 static int wait_noreap_copyout(struct wait_opts *wo, struct task_struct *p,
943 pid_t pid, uid_t uid, int why, int status)
944 {
945 struct siginfo __user *infop;
946 int retval = wo->wo_rusage
947 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
948
949 put_task_struct(p);
950 infop = wo->wo_info;
951 if (infop) {
952 if (!retval)
953 retval = put_user(SIGCHLD, &infop->si_signo);
954 if (!retval)
955 retval = put_user(0, &infop->si_errno);
956 if (!retval)
957 retval = put_user((short)why, &infop->si_code);
958 if (!retval)
959 retval = put_user(pid, &infop->si_pid);
960 if (!retval)
961 retval = put_user(uid, &infop->si_uid);
962 if (!retval)
963 retval = put_user(status, &infop->si_status);
964 }
965 if (!retval)
966 retval = pid;
967 return retval;
968 }
969
970 /*
971 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold
972 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
973 * the lock and this task is uninteresting. If we return nonzero, we have
974 * released the lock and the system call should return.
975 */
976 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
977 {
978 unsigned long state;
979 int retval, status, traced;
980 pid_t pid = task_pid_vnr(p);
981 uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
982 struct siginfo __user *infop;
983
984 if (!likely(wo->wo_flags & WEXITED))
985 return 0;
986
987 if (unlikely(wo->wo_flags & WNOWAIT)) {
988 int exit_code = p->exit_code;
989 int why;
990
991 get_task_struct(p);
992 read_unlock(&tasklist_lock);
993 sched_annotate_sleep();
994
995 if ((exit_code & 0x7f) == 0) {
996 why = CLD_EXITED;
997 status = exit_code >> 8;
998 } else {
999 why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
1000 status = exit_code & 0x7f;
1001 }
1002 return wait_noreap_copyout(wo, p, pid, uid, why, status);
1003 }
1004
1005 traced = ptrace_reparented(p);
1006 /*
1007 * Move the task's state to DEAD/TRACE, only one thread can do this.
1008 */
1009 state = traced && thread_group_leader(p) ? EXIT_TRACE : EXIT_DEAD;
1010 if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE)
1011 return 0;
1012 /*
1013 * It can be ptraced but not reparented, check
1014 * thread_group_leader() to filter out sub-threads.
1015 */
1016 if (likely(!traced) && thread_group_leader(p)) {
1017 struct signal_struct *psig;
1018 struct signal_struct *sig;
1019 unsigned long maxrss;
1020 cputime_t tgutime, tgstime;
1021
1022 /*
1023 * The resource counters for the group leader are in its
1024 * own task_struct. Those for dead threads in the group
1025 * are in its signal_struct, as are those for the child
1026 * processes it has previously reaped. All these
1027 * accumulate in the parent's signal_struct c* fields.
1028 *
1029 * We don't bother to take a lock here to protect these
1030 * p->signal fields, because they are only touched by
1031 * __exit_signal, which runs with tasklist_lock
1032 * write-locked anyway, and so is excluded here. We do
1033 * need to protect the access to parent->signal fields,
1034 * as other threads in the parent group can be right
1035 * here reaping other children at the same time.
1036 *
1037 * We use thread_group_cputime_adjusted() to get times for
1038 * the thread group, which consolidates times for all threads
1039 * in the group including the group leader.
1040 */
1041 thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1042 spin_lock_irq(&p->real_parent->sighand->siglock);
1043 psig = p->real_parent->signal;
1044 sig = p->signal;
1045 write_seqlock(&psig->stats_lock);
1046 psig->cutime += tgutime + sig->cutime;
1047 psig->cstime += tgstime + sig->cstime;
1048 psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime;
1049 psig->cmin_flt +=
1050 p->min_flt + sig->min_flt + sig->cmin_flt;
1051 psig->cmaj_flt +=
1052 p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1053 psig->cnvcsw +=
1054 p->nvcsw + sig->nvcsw + sig->cnvcsw;
1055 psig->cnivcsw +=
1056 p->nivcsw + sig->nivcsw + sig->cnivcsw;
1057 psig->cinblock +=
1058 task_io_get_inblock(p) +
1059 sig->inblock + sig->cinblock;
1060 psig->coublock +=
1061 task_io_get_oublock(p) +
1062 sig->oublock + sig->coublock;
1063 maxrss = max(sig->maxrss, sig->cmaxrss);
1064 if (psig->cmaxrss < maxrss)
1065 psig->cmaxrss = maxrss;
1066 task_io_accounting_add(&psig->ioac, &p->ioac);
1067 task_io_accounting_add(&psig->ioac, &sig->ioac);
1068 write_sequnlock(&psig->stats_lock);
1069 spin_unlock_irq(&p->real_parent->sighand->siglock);
1070 }
1071
1072 /*
1073 * Now we are sure this task is interesting, and no other
1074 * thread can reap it because we its state == DEAD/TRACE.
1075 */
1076 read_unlock(&tasklist_lock);
1077 sched_annotate_sleep();
1078
1079 retval = wo->wo_rusage
1080 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1081 status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1082 ? p->signal->group_exit_code : p->exit_code;
1083 if (!retval && wo->wo_stat)
1084 retval = put_user(status, wo->wo_stat);
1085
1086 infop = wo->wo_info;
1087 if (!retval && infop)
1088 retval = put_user(SIGCHLD, &infop->si_signo);
1089 if (!retval && infop)
1090 retval = put_user(0, &infop->si_errno);
1091 if (!retval && infop) {
1092 int why;
1093
1094 if ((status & 0x7f) == 0) {
1095 why = CLD_EXITED;
1096 status >>= 8;
1097 } else {
1098 why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1099 status &= 0x7f;
1100 }
1101 retval = put_user((short)why, &infop->si_code);
1102 if (!retval)
1103 retval = put_user(status, &infop->si_status);
1104 }
1105 if (!retval && infop)
1106 retval = put_user(pid, &infop->si_pid);
1107 if (!retval && infop)
1108 retval = put_user(uid, &infop->si_uid);
1109 if (!retval)
1110 retval = pid;
1111
1112 if (state == EXIT_TRACE) {
1113 write_lock_irq(&tasklist_lock);
1114 /* We dropped tasklist, ptracer could die and untrace */
1115 ptrace_unlink(p);
1116
1117 /* If parent wants a zombie, don't release it now */
1118 state = EXIT_ZOMBIE;
1119 if (do_notify_parent(p, p->exit_signal))
1120 state = EXIT_DEAD;
1121 p->exit_state = state;
1122 write_unlock_irq(&tasklist_lock);
1123 }
1124 if (state == EXIT_DEAD)
1125 release_task(p);
1126
1127 return retval;
1128 }
1129
1130 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1131 {
1132 if (ptrace) {
1133 if (task_is_stopped_or_traced(p) &&
1134 !(p->jobctl & JOBCTL_LISTENING))
1135 return &p->exit_code;
1136 } else {
1137 if (p->signal->flags & SIGNAL_STOP_STOPPED)
1138 return &p->signal->group_exit_code;
1139 }
1140 return NULL;
1141 }
1142
1143 /**
1144 * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1145 * @wo: wait options
1146 * @ptrace: is the wait for ptrace
1147 * @p: task to wait for
1148 *
1149 * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1150 *
1151 * CONTEXT:
1152 * read_lock(&tasklist_lock), which is released if return value is
1153 * non-zero. Also, grabs and releases @p->sighand->siglock.
1154 *
1155 * RETURNS:
1156 * 0 if wait condition didn't exist and search for other wait conditions
1157 * should continue. Non-zero return, -errno on failure and @p's pid on
1158 * success, implies that tasklist_lock is released and wait condition
1159 * search should terminate.
1160 */
1161 static int wait_task_stopped(struct wait_opts *wo,
1162 int ptrace, struct task_struct *p)
1163 {
1164 struct siginfo __user *infop;
1165 int retval, exit_code, *p_code, why;
1166 uid_t uid = 0; /* unneeded, required by compiler */
1167 pid_t pid;
1168
1169 /*
1170 * Traditionally we see ptrace'd stopped tasks regardless of options.
1171 */
1172 if (!ptrace && !(wo->wo_flags & WUNTRACED))
1173 return 0;
1174
1175 if (!task_stopped_code(p, ptrace))
1176 return 0;
1177
1178 exit_code = 0;
1179 spin_lock_irq(&p->sighand->siglock);
1180
1181 p_code = task_stopped_code(p, ptrace);
1182 if (unlikely(!p_code))
1183 goto unlock_sig;
1184
1185 exit_code = *p_code;
1186 if (!exit_code)
1187 goto unlock_sig;
1188
1189 if (!unlikely(wo->wo_flags & WNOWAIT))
1190 *p_code = 0;
1191
1192 uid = from_kuid_munged(current_user_ns(), task_uid(p));
1193 unlock_sig:
1194 spin_unlock_irq(&p->sighand->siglock);
1195 if (!exit_code)
1196 return 0;
1197
1198 /*
1199 * Now we are pretty sure this task is interesting.
1200 * Make sure it doesn't get reaped out from under us while we
1201 * give up the lock and then examine it below. We don't want to
1202 * keep holding onto the tasklist_lock while we call getrusage and
1203 * possibly take page faults for user memory.
1204 */
1205 get_task_struct(p);
1206 pid = task_pid_vnr(p);
1207 why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1208 read_unlock(&tasklist_lock);
1209 sched_annotate_sleep();
1210
1211 if (unlikely(wo->wo_flags & WNOWAIT))
1212 return wait_noreap_copyout(wo, p, pid, uid, why, exit_code);
1213
1214 retval = wo->wo_rusage
1215 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1216 if (!retval && wo->wo_stat)
1217 retval = put_user((exit_code << 8) | 0x7f, wo->wo_stat);
1218
1219 infop = wo->wo_info;
1220 if (!retval && infop)
1221 retval = put_user(SIGCHLD, &infop->si_signo);
1222 if (!retval && infop)
1223 retval = put_user(0, &infop->si_errno);
1224 if (!retval && infop)
1225 retval = put_user((short)why, &infop->si_code);
1226 if (!retval && infop)
1227 retval = put_user(exit_code, &infop->si_status);
1228 if (!retval && infop)
1229 retval = put_user(pid, &infop->si_pid);
1230 if (!retval && infop)
1231 retval = put_user(uid, &infop->si_uid);
1232 if (!retval)
1233 retval = pid;
1234 put_task_struct(p);
1235
1236 BUG_ON(!retval);
1237 return retval;
1238 }
1239
1240 /*
1241 * Handle do_wait work for one task in a live, non-stopped state.
1242 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1243 * the lock and this task is uninteresting. If we return nonzero, we have
1244 * released the lock and the system call should return.
1245 */
1246 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1247 {
1248 int retval;
1249 pid_t pid;
1250 uid_t uid;
1251
1252 if (!unlikely(wo->wo_flags & WCONTINUED))
1253 return 0;
1254
1255 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1256 return 0;
1257
1258 spin_lock_irq(&p->sighand->siglock);
1259 /* Re-check with the lock held. */
1260 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1261 spin_unlock_irq(&p->sighand->siglock);
1262 return 0;
1263 }
1264 if (!unlikely(wo->wo_flags & WNOWAIT))
1265 p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1266 uid = from_kuid_munged(current_user_ns(), task_uid(p));
1267 spin_unlock_irq(&p->sighand->siglock);
1268
1269 pid = task_pid_vnr(p);
1270 get_task_struct(p);
1271 read_unlock(&tasklist_lock);
1272 sched_annotate_sleep();
1273
1274 if (!wo->wo_info) {
1275 retval = wo->wo_rusage
1276 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1277 put_task_struct(p);
1278 if (!retval && wo->wo_stat)
1279 retval = put_user(0xffff, wo->wo_stat);
1280 if (!retval)
1281 retval = pid;
1282 } else {
1283 retval = wait_noreap_copyout(wo, p, pid, uid,
1284 CLD_CONTINUED, SIGCONT);
1285 BUG_ON(retval == 0);
1286 }
1287
1288 return retval;
1289 }
1290
1291 /*
1292 * Consider @p for a wait by @parent.
1293 *
1294 * -ECHILD should be in ->notask_error before the first call.
1295 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1296 * Returns zero if the search for a child should continue;
1297 * then ->notask_error is 0 if @p is an eligible child,
1298 * or another error from security_task_wait(), or still -ECHILD.
1299 */
1300 static int wait_consider_task(struct wait_opts *wo, int ptrace,
1301 struct task_struct *p)
1302 {
1303 int ret;
1304
1305 if (unlikely(p->exit_state == EXIT_DEAD))
1306 return 0;
1307
1308 ret = eligible_child(wo, p);
1309 if (!ret)
1310 return ret;
1311
1312 ret = security_task_wait(p);
1313 if (unlikely(ret < 0)) {
1314 /*
1315 * If we have not yet seen any eligible child,
1316 * then let this error code replace -ECHILD.
1317 * A permission error will give the user a clue
1318 * to look for security policy problems, rather
1319 * than for mysterious wait bugs.
1320 */
1321 if (wo->notask_error)
1322 wo->notask_error = ret;
1323 return 0;
1324 }
1325
1326 if (unlikely(p->exit_state == EXIT_TRACE)) {
1327 /*
1328 * ptrace == 0 means we are the natural parent. In this case
1329 * we should clear notask_error, debugger will notify us.
1330 */
1331 if (likely(!ptrace))
1332 wo->notask_error = 0;
1333 return 0;
1334 }
1335
1336 if (likely(!ptrace) && unlikely(p->ptrace)) {
1337 /*
1338 * If it is traced by its real parent's group, just pretend
1339 * the caller is ptrace_do_wait() and reap this child if it
1340 * is zombie.
1341 *
1342 * This also hides group stop state from real parent; otherwise
1343 * a single stop can be reported twice as group and ptrace stop.
1344 * If a ptracer wants to distinguish these two events for its
1345 * own children it should create a separate process which takes
1346 * the role of real parent.
1347 */
1348 if (!ptrace_reparented(p))
1349 ptrace = 1;
1350 }
1351
1352 /* slay zombie? */
1353 if (p->exit_state == EXIT_ZOMBIE) {
1354 /* we don't reap group leaders with subthreads */
1355 if (!delay_group_leader(p)) {
1356 /*
1357 * A zombie ptracee is only visible to its ptracer.
1358 * Notification and reaping will be cascaded to the
1359 * real parent when the ptracer detaches.
1360 */
1361 if (unlikely(ptrace) || likely(!p->ptrace))
1362 return wait_task_zombie(wo, p);
1363 }
1364
1365 /*
1366 * Allow access to stopped/continued state via zombie by
1367 * falling through. Clearing of notask_error is complex.
1368 *
1369 * When !@ptrace:
1370 *
1371 * If WEXITED is set, notask_error should naturally be
1372 * cleared. If not, subset of WSTOPPED|WCONTINUED is set,
1373 * so, if there are live subthreads, there are events to
1374 * wait for. If all subthreads are dead, it's still safe
1375 * to clear - this function will be called again in finite
1376 * amount time once all the subthreads are released and
1377 * will then return without clearing.
1378 *
1379 * When @ptrace:
1380 *
1381 * Stopped state is per-task and thus can't change once the
1382 * target task dies. Only continued and exited can happen.
1383 * Clear notask_error if WCONTINUED | WEXITED.
1384 */
1385 if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1386 wo->notask_error = 0;
1387 } else {
1388 /*
1389 * @p is alive and it's gonna stop, continue or exit, so
1390 * there always is something to wait for.
1391 */
1392 wo->notask_error = 0;
1393 }
1394
1395 /*
1396 * Wait for stopped. Depending on @ptrace, different stopped state
1397 * is used and the two don't interact with each other.
1398 */
1399 ret = wait_task_stopped(wo, ptrace, p);
1400 if (ret)
1401 return ret;
1402
1403 /*
1404 * Wait for continued. There's only one continued state and the
1405 * ptracer can consume it which can confuse the real parent. Don't
1406 * use WCONTINUED from ptracer. You don't need or want it.
1407 */
1408 return wait_task_continued(wo, p);
1409 }
1410
1411 /*
1412 * Do the work of do_wait() for one thread in the group, @tsk.
1413 *
1414 * -ECHILD should be in ->notask_error before the first call.
1415 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1416 * Returns zero if the search for a child should continue; then
1417 * ->notask_error is 0 if there were any eligible children,
1418 * or another error from security_task_wait(), or still -ECHILD.
1419 */
1420 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1421 {
1422 struct task_struct *p;
1423
1424 list_for_each_entry(p, &tsk->children, sibling) {
1425 int ret = wait_consider_task(wo, 0, p);
1426
1427 if (ret)
1428 return ret;
1429 }
1430
1431 return 0;
1432 }
1433
1434 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1435 {
1436 struct task_struct *p;
1437
1438 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1439 int ret = wait_consider_task(wo, 1, p);
1440
1441 if (ret)
1442 return ret;
1443 }
1444
1445 return 0;
1446 }
1447
1448 static int child_wait_callback(wait_queue_t *wait, unsigned mode,
1449 int sync, void *key)
1450 {
1451 struct wait_opts *wo = container_of(wait, struct wait_opts,
1452 child_wait);
1453 struct task_struct *p = key;
1454
1455 if (!eligible_pid(wo, p))
1456 return 0;
1457
1458 if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1459 return 0;
1460
1461 return default_wake_function(wait, mode, sync, key);
1462 }
1463
1464 void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1465 {
1466 __wake_up_sync_key(&parent->signal->wait_chldexit,
1467 TASK_INTERRUPTIBLE, 1, p);
1468 }
1469
1470 static long do_wait(struct wait_opts *wo)
1471 {
1472 struct task_struct *tsk;
1473 int retval;
1474
1475 trace_sched_process_wait(wo->wo_pid);
1476
1477 init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1478 wo->child_wait.private = current;
1479 add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1480 repeat:
1481 /*
1482 * If there is nothing that can match our critiera just get out.
1483 * We will clear ->notask_error to zero if we see any child that
1484 * might later match our criteria, even if we are not able to reap
1485 * it yet.
1486 */
1487 wo->notask_error = -ECHILD;
1488 if ((wo->wo_type < PIDTYPE_MAX) &&
1489 (!wo->wo_pid || hlist_empty(&wo->wo_pid->tasks[wo->wo_type])))
1490 goto notask;
1491
1492 set_current_state(TASK_INTERRUPTIBLE);
1493 read_lock(&tasklist_lock);
1494 tsk = current;
1495 do {
1496 retval = do_wait_thread(wo, tsk);
1497 if (retval)
1498 goto end;
1499
1500 retval = ptrace_do_wait(wo, tsk);
1501 if (retval)
1502 goto end;
1503
1504 if (wo->wo_flags & __WNOTHREAD)
1505 break;
1506 } while_each_thread(current, tsk);
1507 read_unlock(&tasklist_lock);
1508
1509 notask:
1510 retval = wo->notask_error;
1511 if (!retval && !(wo->wo_flags & WNOHANG)) {
1512 retval = -ERESTARTSYS;
1513 if (!signal_pending(current)) {
1514 schedule();
1515 goto repeat;
1516 }
1517 }
1518 end:
1519 __set_current_state(TASK_RUNNING);
1520 remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1521 return retval;
1522 }
1523
1524 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1525 infop, int, options, struct rusage __user *, ru)
1526 {
1527 struct wait_opts wo;
1528 struct pid *pid = NULL;
1529 enum pid_type type;
1530 long ret;
1531
1532 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED))
1533 return -EINVAL;
1534 if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1535 return -EINVAL;
1536
1537 switch (which) {
1538 case P_ALL:
1539 type = PIDTYPE_MAX;
1540 break;
1541 case P_PID:
1542 type = PIDTYPE_PID;
1543 if (upid <= 0)
1544 return -EINVAL;
1545 break;
1546 case P_PGID:
1547 type = PIDTYPE_PGID;
1548 if (upid <= 0)
1549 return -EINVAL;
1550 break;
1551 default:
1552 return -EINVAL;
1553 }
1554
1555 if (type < PIDTYPE_MAX)
1556 pid = find_get_pid(upid);
1557
1558 wo.wo_type = type;
1559 wo.wo_pid = pid;
1560 wo.wo_flags = options;
1561 wo.wo_info = infop;
1562 wo.wo_stat = NULL;
1563 wo.wo_rusage = ru;
1564 ret = do_wait(&wo);
1565
1566 if (ret > 0) {
1567 ret = 0;
1568 } else if (infop) {
1569 /*
1570 * For a WNOHANG return, clear out all the fields
1571 * we would set so the user can easily tell the
1572 * difference.
1573 */
1574 if (!ret)
1575 ret = put_user(0, &infop->si_signo);
1576 if (!ret)
1577 ret = put_user(0, &infop->si_errno);
1578 if (!ret)
1579 ret = put_user(0, &infop->si_code);
1580 if (!ret)
1581 ret = put_user(0, &infop->si_pid);
1582 if (!ret)
1583 ret = put_user(0, &infop->si_uid);
1584 if (!ret)
1585 ret = put_user(0, &infop->si_status);
1586 }
1587
1588 put_pid(pid);
1589 return ret;
1590 }
1591
1592 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1593 int, options, struct rusage __user *, ru)
1594 {
1595 struct wait_opts wo;
1596 struct pid *pid = NULL;
1597 enum pid_type type;
1598 long ret;
1599
1600 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1601 __WNOTHREAD|__WCLONE|__WALL))
1602 return -EINVAL;
1603
1604 if (upid == -1)
1605 type = PIDTYPE_MAX;
1606 else if (upid < 0) {
1607 type = PIDTYPE_PGID;
1608 pid = find_get_pid(-upid);
1609 } else if (upid == 0) {
1610 type = PIDTYPE_PGID;
1611 pid = get_task_pid(current, PIDTYPE_PGID);
1612 } else /* upid > 0 */ {
1613 type = PIDTYPE_PID;
1614 pid = find_get_pid(upid);
1615 }
1616
1617 wo.wo_type = type;
1618 wo.wo_pid = pid;
1619 wo.wo_flags = options | WEXITED;
1620 wo.wo_info = NULL;
1621 wo.wo_stat = stat_addr;
1622 wo.wo_rusage = ru;
1623 ret = do_wait(&wo);
1624 put_pid(pid);
1625
1626 return ret;
1627 }
1628
1629 #ifdef __ARCH_WANT_SYS_WAITPID
1630
1631 /*
1632 * sys_waitpid() remains for compatibility. waitpid() should be
1633 * implemented by calling sys_wait4() from libc.a.
1634 */
1635 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1636 {
1637 return sys_wait4(pid, stat_addr, options, NULL);
1638 }
1639
1640 #endif
This page took 0.066771 seconds and 6 git commands to generate.