tracehook: exit
[deliverable/linux.git] / kernel / exit.c
1 /*
2 * linux/kernel/exit.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 #include <linux/mm.h>
8 #include <linux/slab.h>
9 #include <linux/interrupt.h>
10 #include <linux/module.h>
11 #include <linux/capability.h>
12 #include <linux/completion.h>
13 #include <linux/personality.h>
14 #include <linux/tty.h>
15 #include <linux/mnt_namespace.h>
16 #include <linux/iocontext.h>
17 #include <linux/key.h>
18 #include <linux/security.h>
19 #include <linux/cpu.h>
20 #include <linux/acct.h>
21 #include <linux/tsacct_kern.h>
22 #include <linux/file.h>
23 #include <linux/fdtable.h>
24 #include <linux/binfmts.h>
25 #include <linux/nsproxy.h>
26 #include <linux/pid_namespace.h>
27 #include <linux/ptrace.h>
28 #include <linux/profile.h>
29 #include <linux/mount.h>
30 #include <linux/proc_fs.h>
31 #include <linux/kthread.h>
32 #include <linux/mempolicy.h>
33 #include <linux/taskstats_kern.h>
34 #include <linux/delayacct.h>
35 #include <linux/freezer.h>
36 #include <linux/cgroup.h>
37 #include <linux/syscalls.h>
38 #include <linux/signal.h>
39 #include <linux/posix-timers.h>
40 #include <linux/cn_proc.h>
41 #include <linux/mutex.h>
42 #include <linux/futex.h>
43 #include <linux/compat.h>
44 #include <linux/pipe_fs_i.h>
45 #include <linux/audit.h> /* for audit_free() */
46 #include <linux/resource.h>
47 #include <linux/blkdev.h>
48 #include <linux/task_io_accounting_ops.h>
49 #include <linux/tracehook.h>
50
51 #include <asm/uaccess.h>
52 #include <asm/unistd.h>
53 #include <asm/pgtable.h>
54 #include <asm/mmu_context.h>
55
56 static void exit_mm(struct task_struct * tsk);
57
58 static inline int task_detached(struct task_struct *p)
59 {
60 return p->exit_signal == -1;
61 }
62
63 static void __unhash_process(struct task_struct *p)
64 {
65 nr_threads--;
66 detach_pid(p, PIDTYPE_PID);
67 if (thread_group_leader(p)) {
68 detach_pid(p, PIDTYPE_PGID);
69 detach_pid(p, PIDTYPE_SID);
70
71 list_del_rcu(&p->tasks);
72 __get_cpu_var(process_counts)--;
73 }
74 list_del_rcu(&p->thread_group);
75 list_del_init(&p->sibling);
76 }
77
78 /*
79 * This function expects the tasklist_lock write-locked.
80 */
81 static void __exit_signal(struct task_struct *tsk)
82 {
83 struct signal_struct *sig = tsk->signal;
84 struct sighand_struct *sighand;
85
86 BUG_ON(!sig);
87 BUG_ON(!atomic_read(&sig->count));
88
89 sighand = rcu_dereference(tsk->sighand);
90 spin_lock(&sighand->siglock);
91
92 posix_cpu_timers_exit(tsk);
93 if (atomic_dec_and_test(&sig->count))
94 posix_cpu_timers_exit_group(tsk);
95 else {
96 /*
97 * If there is any task waiting for the group exit
98 * then notify it:
99 */
100 if (sig->group_exit_task && atomic_read(&sig->count) == sig->notify_count)
101 wake_up_process(sig->group_exit_task);
102
103 if (tsk == sig->curr_target)
104 sig->curr_target = next_thread(tsk);
105 /*
106 * Accumulate here the counters for all threads but the
107 * group leader as they die, so they can be added into
108 * the process-wide totals when those are taken.
109 * The group leader stays around as a zombie as long
110 * as there are other threads. When it gets reaped,
111 * the exit.c code will add its counts into these totals.
112 * We won't ever get here for the group leader, since it
113 * will have been the last reference on the signal_struct.
114 */
115 sig->utime = cputime_add(sig->utime, tsk->utime);
116 sig->stime = cputime_add(sig->stime, tsk->stime);
117 sig->gtime = cputime_add(sig->gtime, tsk->gtime);
118 sig->min_flt += tsk->min_flt;
119 sig->maj_flt += tsk->maj_flt;
120 sig->nvcsw += tsk->nvcsw;
121 sig->nivcsw += tsk->nivcsw;
122 sig->inblock += task_io_get_inblock(tsk);
123 sig->oublock += task_io_get_oublock(tsk);
124 #ifdef CONFIG_TASK_XACCT
125 sig->rchar += tsk->rchar;
126 sig->wchar += tsk->wchar;
127 sig->syscr += tsk->syscr;
128 sig->syscw += tsk->syscw;
129 #endif /* CONFIG_TASK_XACCT */
130 #ifdef CONFIG_TASK_IO_ACCOUNTING
131 sig->ioac.read_bytes += tsk->ioac.read_bytes;
132 sig->ioac.write_bytes += tsk->ioac.write_bytes;
133 sig->ioac.cancelled_write_bytes +=
134 tsk->ioac.cancelled_write_bytes;
135 #endif /* CONFIG_TASK_IO_ACCOUNTING */
136 sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
137 sig = NULL; /* Marker for below. */
138 }
139
140 __unhash_process(tsk);
141
142 /*
143 * Do this under ->siglock, we can race with another thread
144 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
145 */
146 flush_sigqueue(&tsk->pending);
147
148 tsk->signal = NULL;
149 tsk->sighand = NULL;
150 spin_unlock(&sighand->siglock);
151
152 __cleanup_sighand(sighand);
153 clear_tsk_thread_flag(tsk,TIF_SIGPENDING);
154 if (sig) {
155 flush_sigqueue(&sig->shared_pending);
156 taskstats_tgid_free(sig);
157 __cleanup_signal(sig);
158 }
159 }
160
161 static void delayed_put_task_struct(struct rcu_head *rhp)
162 {
163 put_task_struct(container_of(rhp, struct task_struct, rcu));
164 }
165
166 /*
167 * Do final ptrace-related cleanup of a zombie being reaped.
168 *
169 * Called with write_lock(&tasklist_lock) held.
170 */
171 static void ptrace_release_task(struct task_struct *p)
172 {
173 BUG_ON(!list_empty(&p->ptraced));
174 ptrace_unlink(p);
175 BUG_ON(!list_empty(&p->ptrace_entry));
176 }
177
178 void release_task(struct task_struct * p)
179 {
180 struct task_struct *leader;
181 int zap_leader;
182 repeat:
183 atomic_dec(&p->user->processes);
184 proc_flush_task(p);
185 write_lock_irq(&tasklist_lock);
186 ptrace_release_task(p);
187 __exit_signal(p);
188
189 /*
190 * If we are the last non-leader member of the thread
191 * group, and the leader is zombie, then notify the
192 * group leader's parent process. (if it wants notification.)
193 */
194 zap_leader = 0;
195 leader = p->group_leader;
196 if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) {
197 BUG_ON(task_detached(leader));
198 do_notify_parent(leader, leader->exit_signal);
199 /*
200 * If we were the last child thread and the leader has
201 * exited already, and the leader's parent ignores SIGCHLD,
202 * then we are the one who should release the leader.
203 *
204 * do_notify_parent() will have marked it self-reaping in
205 * that case.
206 */
207 zap_leader = task_detached(leader);
208 }
209
210 write_unlock_irq(&tasklist_lock);
211 release_thread(p);
212 call_rcu(&p->rcu, delayed_put_task_struct);
213
214 p = leader;
215 if (unlikely(zap_leader))
216 goto repeat;
217 }
218
219 /*
220 * This checks not only the pgrp, but falls back on the pid if no
221 * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
222 * without this...
223 *
224 * The caller must hold rcu lock or the tasklist lock.
225 */
226 struct pid *session_of_pgrp(struct pid *pgrp)
227 {
228 struct task_struct *p;
229 struct pid *sid = NULL;
230
231 p = pid_task(pgrp, PIDTYPE_PGID);
232 if (p == NULL)
233 p = pid_task(pgrp, PIDTYPE_PID);
234 if (p != NULL)
235 sid = task_session(p);
236
237 return sid;
238 }
239
240 /*
241 * Determine if a process group is "orphaned", according to the POSIX
242 * definition in 2.2.2.52. Orphaned process groups are not to be affected
243 * by terminal-generated stop signals. Newly orphaned process groups are
244 * to receive a SIGHUP and a SIGCONT.
245 *
246 * "I ask you, have you ever known what it is to be an orphan?"
247 */
248 static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task)
249 {
250 struct task_struct *p;
251
252 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
253 if ((p == ignored_task) ||
254 (p->exit_state && thread_group_empty(p)) ||
255 is_global_init(p->real_parent))
256 continue;
257
258 if (task_pgrp(p->real_parent) != pgrp &&
259 task_session(p->real_parent) == task_session(p))
260 return 0;
261 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
262
263 return 1;
264 }
265
266 int is_current_pgrp_orphaned(void)
267 {
268 int retval;
269
270 read_lock(&tasklist_lock);
271 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
272 read_unlock(&tasklist_lock);
273
274 return retval;
275 }
276
277 static int has_stopped_jobs(struct pid *pgrp)
278 {
279 int retval = 0;
280 struct task_struct *p;
281
282 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
283 if (!task_is_stopped(p))
284 continue;
285 retval = 1;
286 break;
287 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
288 return retval;
289 }
290
291 /*
292 * Check to see if any process groups have become orphaned as
293 * a result of our exiting, and if they have any stopped jobs,
294 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
295 */
296 static void
297 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
298 {
299 struct pid *pgrp = task_pgrp(tsk);
300 struct task_struct *ignored_task = tsk;
301
302 if (!parent)
303 /* exit: our father is in a different pgrp than
304 * we are and we were the only connection outside.
305 */
306 parent = tsk->real_parent;
307 else
308 /* reparent: our child is in a different pgrp than
309 * we are, and it was the only connection outside.
310 */
311 ignored_task = NULL;
312
313 if (task_pgrp(parent) != pgrp &&
314 task_session(parent) == task_session(tsk) &&
315 will_become_orphaned_pgrp(pgrp, ignored_task) &&
316 has_stopped_jobs(pgrp)) {
317 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
318 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
319 }
320 }
321
322 /**
323 * reparent_to_kthreadd - Reparent the calling kernel thread to kthreadd
324 *
325 * If a kernel thread is launched as a result of a system call, or if
326 * it ever exits, it should generally reparent itself to kthreadd so it
327 * isn't in the way of other processes and is correctly cleaned up on exit.
328 *
329 * The various task state such as scheduling policy and priority may have
330 * been inherited from a user process, so we reset them to sane values here.
331 *
332 * NOTE that reparent_to_kthreadd() gives the caller full capabilities.
333 */
334 static void reparent_to_kthreadd(void)
335 {
336 write_lock_irq(&tasklist_lock);
337
338 ptrace_unlink(current);
339 /* Reparent to init */
340 current->real_parent = current->parent = kthreadd_task;
341 list_move_tail(&current->sibling, &current->real_parent->children);
342
343 /* Set the exit signal to SIGCHLD so we signal init on exit */
344 current->exit_signal = SIGCHLD;
345
346 if (task_nice(current) < 0)
347 set_user_nice(current, 0);
348 /* cpus_allowed? */
349 /* rt_priority? */
350 /* signals? */
351 security_task_reparent_to_init(current);
352 memcpy(current->signal->rlim, init_task.signal->rlim,
353 sizeof(current->signal->rlim));
354 atomic_inc(&(INIT_USER->__count));
355 write_unlock_irq(&tasklist_lock);
356 switch_uid(INIT_USER);
357 }
358
359 void __set_special_pids(struct pid *pid)
360 {
361 struct task_struct *curr = current->group_leader;
362 pid_t nr = pid_nr(pid);
363
364 if (task_session(curr) != pid) {
365 change_pid(curr, PIDTYPE_SID, pid);
366 set_task_session(curr, nr);
367 }
368 if (task_pgrp(curr) != pid) {
369 change_pid(curr, PIDTYPE_PGID, pid);
370 set_task_pgrp(curr, nr);
371 }
372 }
373
374 static void set_special_pids(struct pid *pid)
375 {
376 write_lock_irq(&tasklist_lock);
377 __set_special_pids(pid);
378 write_unlock_irq(&tasklist_lock);
379 }
380
381 /*
382 * Let kernel threads use this to say that they
383 * allow a certain signal (since daemonize() will
384 * have disabled all of them by default).
385 */
386 int allow_signal(int sig)
387 {
388 if (!valid_signal(sig) || sig < 1)
389 return -EINVAL;
390
391 spin_lock_irq(&current->sighand->siglock);
392 sigdelset(&current->blocked, sig);
393 if (!current->mm) {
394 /* Kernel threads handle their own signals.
395 Let the signal code know it'll be handled, so
396 that they don't get converted to SIGKILL or
397 just silently dropped */
398 current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2;
399 }
400 recalc_sigpending();
401 spin_unlock_irq(&current->sighand->siglock);
402 return 0;
403 }
404
405 EXPORT_SYMBOL(allow_signal);
406
407 int disallow_signal(int sig)
408 {
409 if (!valid_signal(sig) || sig < 1)
410 return -EINVAL;
411
412 spin_lock_irq(&current->sighand->siglock);
413 current->sighand->action[(sig)-1].sa.sa_handler = SIG_IGN;
414 recalc_sigpending();
415 spin_unlock_irq(&current->sighand->siglock);
416 return 0;
417 }
418
419 EXPORT_SYMBOL(disallow_signal);
420
421 /*
422 * Put all the gunge required to become a kernel thread without
423 * attached user resources in one place where it belongs.
424 */
425
426 void daemonize(const char *name, ...)
427 {
428 va_list args;
429 struct fs_struct *fs;
430 sigset_t blocked;
431
432 va_start(args, name);
433 vsnprintf(current->comm, sizeof(current->comm), name, args);
434 va_end(args);
435
436 /*
437 * If we were started as result of loading a module, close all of the
438 * user space pages. We don't need them, and if we didn't close them
439 * they would be locked into memory.
440 */
441 exit_mm(current);
442 /*
443 * We don't want to have TIF_FREEZE set if the system-wide hibernation
444 * or suspend transition begins right now.
445 */
446 current->flags |= (PF_NOFREEZE | PF_KTHREAD);
447
448 if (current->nsproxy != &init_nsproxy) {
449 get_nsproxy(&init_nsproxy);
450 switch_task_namespaces(current, &init_nsproxy);
451 }
452 set_special_pids(&init_struct_pid);
453 proc_clear_tty(current);
454
455 /* Block and flush all signals */
456 sigfillset(&blocked);
457 sigprocmask(SIG_BLOCK, &blocked, NULL);
458 flush_signals(current);
459
460 /* Become as one with the init task */
461
462 exit_fs(current); /* current->fs->count--; */
463 fs = init_task.fs;
464 current->fs = fs;
465 atomic_inc(&fs->count);
466
467 exit_files(current);
468 current->files = init_task.files;
469 atomic_inc(&current->files->count);
470
471 reparent_to_kthreadd();
472 }
473
474 EXPORT_SYMBOL(daemonize);
475
476 static void close_files(struct files_struct * files)
477 {
478 int i, j;
479 struct fdtable *fdt;
480
481 j = 0;
482
483 /*
484 * It is safe to dereference the fd table without RCU or
485 * ->file_lock because this is the last reference to the
486 * files structure.
487 */
488 fdt = files_fdtable(files);
489 for (;;) {
490 unsigned long set;
491 i = j * __NFDBITS;
492 if (i >= fdt->max_fds)
493 break;
494 set = fdt->open_fds->fds_bits[j++];
495 while (set) {
496 if (set & 1) {
497 struct file * file = xchg(&fdt->fd[i], NULL);
498 if (file) {
499 filp_close(file, files);
500 cond_resched();
501 }
502 }
503 i++;
504 set >>= 1;
505 }
506 }
507 }
508
509 struct files_struct *get_files_struct(struct task_struct *task)
510 {
511 struct files_struct *files;
512
513 task_lock(task);
514 files = task->files;
515 if (files)
516 atomic_inc(&files->count);
517 task_unlock(task);
518
519 return files;
520 }
521
522 void put_files_struct(struct files_struct *files)
523 {
524 struct fdtable *fdt;
525
526 if (atomic_dec_and_test(&files->count)) {
527 close_files(files);
528 /*
529 * Free the fd and fdset arrays if we expanded them.
530 * If the fdtable was embedded, pass files for freeing
531 * at the end of the RCU grace period. Otherwise,
532 * you can free files immediately.
533 */
534 fdt = files_fdtable(files);
535 if (fdt != &files->fdtab)
536 kmem_cache_free(files_cachep, files);
537 free_fdtable(fdt);
538 }
539 }
540
541 void reset_files_struct(struct files_struct *files)
542 {
543 struct task_struct *tsk = current;
544 struct files_struct *old;
545
546 old = tsk->files;
547 task_lock(tsk);
548 tsk->files = files;
549 task_unlock(tsk);
550 put_files_struct(old);
551 }
552
553 void exit_files(struct task_struct *tsk)
554 {
555 struct files_struct * files = tsk->files;
556
557 if (files) {
558 task_lock(tsk);
559 tsk->files = NULL;
560 task_unlock(tsk);
561 put_files_struct(files);
562 }
563 }
564
565 void put_fs_struct(struct fs_struct *fs)
566 {
567 /* No need to hold fs->lock if we are killing it */
568 if (atomic_dec_and_test(&fs->count)) {
569 path_put(&fs->root);
570 path_put(&fs->pwd);
571 if (fs->altroot.dentry)
572 path_put(&fs->altroot);
573 kmem_cache_free(fs_cachep, fs);
574 }
575 }
576
577 void exit_fs(struct task_struct *tsk)
578 {
579 struct fs_struct * fs = tsk->fs;
580
581 if (fs) {
582 task_lock(tsk);
583 tsk->fs = NULL;
584 task_unlock(tsk);
585 put_fs_struct(fs);
586 }
587 }
588
589 EXPORT_SYMBOL_GPL(exit_fs);
590
591 #ifdef CONFIG_MM_OWNER
592 /*
593 * Task p is exiting and it owned mm, lets find a new owner for it
594 */
595 static inline int
596 mm_need_new_owner(struct mm_struct *mm, struct task_struct *p)
597 {
598 /*
599 * If there are other users of the mm and the owner (us) is exiting
600 * we need to find a new owner to take on the responsibility.
601 */
602 if (!mm)
603 return 0;
604 if (atomic_read(&mm->mm_users) <= 1)
605 return 0;
606 if (mm->owner != p)
607 return 0;
608 return 1;
609 }
610
611 void mm_update_next_owner(struct mm_struct *mm)
612 {
613 struct task_struct *c, *g, *p = current;
614
615 retry:
616 if (!mm_need_new_owner(mm, p))
617 return;
618
619 read_lock(&tasklist_lock);
620 /*
621 * Search in the children
622 */
623 list_for_each_entry(c, &p->children, sibling) {
624 if (c->mm == mm)
625 goto assign_new_owner;
626 }
627
628 /*
629 * Search in the siblings
630 */
631 list_for_each_entry(c, &p->parent->children, sibling) {
632 if (c->mm == mm)
633 goto assign_new_owner;
634 }
635
636 /*
637 * Search through everything else. We should not get
638 * here often
639 */
640 do_each_thread(g, c) {
641 if (c->mm == mm)
642 goto assign_new_owner;
643 } while_each_thread(g, c);
644
645 read_unlock(&tasklist_lock);
646 return;
647
648 assign_new_owner:
649 BUG_ON(c == p);
650 get_task_struct(c);
651 /*
652 * The task_lock protects c->mm from changing.
653 * We always want mm->owner->mm == mm
654 */
655 task_lock(c);
656 /*
657 * Delay read_unlock() till we have the task_lock()
658 * to ensure that c does not slip away underneath us
659 */
660 read_unlock(&tasklist_lock);
661 if (c->mm != mm) {
662 task_unlock(c);
663 put_task_struct(c);
664 goto retry;
665 }
666 cgroup_mm_owner_callbacks(mm->owner, c);
667 mm->owner = c;
668 task_unlock(c);
669 put_task_struct(c);
670 }
671 #endif /* CONFIG_MM_OWNER */
672
673 /*
674 * Turn us into a lazy TLB process if we
675 * aren't already..
676 */
677 static void exit_mm(struct task_struct * tsk)
678 {
679 struct mm_struct *mm = tsk->mm;
680 struct core_state *core_state;
681
682 mm_release(tsk, mm);
683 if (!mm)
684 return;
685 /*
686 * Serialize with any possible pending coredump.
687 * We must hold mmap_sem around checking core_state
688 * and clearing tsk->mm. The core-inducing thread
689 * will increment ->nr_threads for each thread in the
690 * group with ->mm != NULL.
691 */
692 down_read(&mm->mmap_sem);
693 core_state = mm->core_state;
694 if (core_state) {
695 struct core_thread self;
696 up_read(&mm->mmap_sem);
697
698 self.task = tsk;
699 self.next = xchg(&core_state->dumper.next, &self);
700 /*
701 * Implies mb(), the result of xchg() must be visible
702 * to core_state->dumper.
703 */
704 if (atomic_dec_and_test(&core_state->nr_threads))
705 complete(&core_state->startup);
706
707 for (;;) {
708 set_task_state(tsk, TASK_UNINTERRUPTIBLE);
709 if (!self.task) /* see coredump_finish() */
710 break;
711 schedule();
712 }
713 __set_task_state(tsk, TASK_RUNNING);
714 down_read(&mm->mmap_sem);
715 }
716 atomic_inc(&mm->mm_count);
717 BUG_ON(mm != tsk->active_mm);
718 /* more a memory barrier than a real lock */
719 task_lock(tsk);
720 tsk->mm = NULL;
721 up_read(&mm->mmap_sem);
722 enter_lazy_tlb(mm, current);
723 /* We don't want this task to be frozen prematurely */
724 clear_freeze_flag(tsk);
725 task_unlock(tsk);
726 mm_update_next_owner(mm);
727 mmput(mm);
728 }
729
730 /*
731 * Return nonzero if @parent's children should reap themselves.
732 *
733 * Called with write_lock_irq(&tasklist_lock) held.
734 */
735 static int ignoring_children(struct task_struct *parent)
736 {
737 int ret;
738 struct sighand_struct *psig = parent->sighand;
739 unsigned long flags;
740 spin_lock_irqsave(&psig->siglock, flags);
741 ret = (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
742 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT));
743 spin_unlock_irqrestore(&psig->siglock, flags);
744 return ret;
745 }
746
747 /*
748 * Detach all tasks we were using ptrace on.
749 * Any that need to be release_task'd are put on the @dead list.
750 *
751 * Called with write_lock(&tasklist_lock) held.
752 */
753 static void ptrace_exit(struct task_struct *parent, struct list_head *dead)
754 {
755 struct task_struct *p, *n;
756 int ign = -1;
757
758 list_for_each_entry_safe(p, n, &parent->ptraced, ptrace_entry) {
759 __ptrace_unlink(p);
760
761 if (p->exit_state != EXIT_ZOMBIE)
762 continue;
763
764 /*
765 * If it's a zombie, our attachedness prevented normal
766 * parent notification or self-reaping. Do notification
767 * now if it would have happened earlier. If it should
768 * reap itself, add it to the @dead list. We can't call
769 * release_task() here because we already hold tasklist_lock.
770 *
771 * If it's our own child, there is no notification to do.
772 * But if our normal children self-reap, then this child
773 * was prevented by ptrace and we must reap it now.
774 */
775 if (!task_detached(p) && thread_group_empty(p)) {
776 if (!same_thread_group(p->real_parent, parent))
777 do_notify_parent(p, p->exit_signal);
778 else {
779 if (ign < 0)
780 ign = ignoring_children(parent);
781 if (ign)
782 p->exit_signal = -1;
783 }
784 }
785
786 if (task_detached(p)) {
787 /*
788 * Mark it as in the process of being reaped.
789 */
790 p->exit_state = EXIT_DEAD;
791 list_add(&p->ptrace_entry, dead);
792 }
793 }
794 }
795
796 /*
797 * Finish up exit-time ptrace cleanup.
798 *
799 * Called without locks.
800 */
801 static void ptrace_exit_finish(struct task_struct *parent,
802 struct list_head *dead)
803 {
804 struct task_struct *p, *n;
805
806 BUG_ON(!list_empty(&parent->ptraced));
807
808 list_for_each_entry_safe(p, n, dead, ptrace_entry) {
809 list_del_init(&p->ptrace_entry);
810 release_task(p);
811 }
812 }
813
814 static void reparent_thread(struct task_struct *p, struct task_struct *father)
815 {
816 if (p->pdeath_signal)
817 /* We already hold the tasklist_lock here. */
818 group_send_sig_info(p->pdeath_signal, SEND_SIG_NOINFO, p);
819
820 list_move_tail(&p->sibling, &p->real_parent->children);
821
822 /* If this is a threaded reparent there is no need to
823 * notify anyone anything has happened.
824 */
825 if (same_thread_group(p->real_parent, father))
826 return;
827
828 /* We don't want people slaying init. */
829 if (!task_detached(p))
830 p->exit_signal = SIGCHLD;
831
832 /* If we'd notified the old parent about this child's death,
833 * also notify the new parent.
834 */
835 if (!ptrace_reparented(p) &&
836 p->exit_state == EXIT_ZOMBIE &&
837 !task_detached(p) && thread_group_empty(p))
838 do_notify_parent(p, p->exit_signal);
839
840 kill_orphaned_pgrp(p, father);
841 }
842
843 /*
844 * When we die, we re-parent all our children.
845 * Try to give them to another thread in our thread
846 * group, and if no such member exists, give it to
847 * the child reaper process (ie "init") in our pid
848 * space.
849 */
850 static void forget_original_parent(struct task_struct *father)
851 {
852 struct task_struct *p, *n, *reaper = father;
853 LIST_HEAD(ptrace_dead);
854
855 write_lock_irq(&tasklist_lock);
856
857 /*
858 * First clean up ptrace if we were using it.
859 */
860 ptrace_exit(father, &ptrace_dead);
861
862 do {
863 reaper = next_thread(reaper);
864 if (reaper == father) {
865 reaper = task_child_reaper(father);
866 break;
867 }
868 } while (reaper->flags & PF_EXITING);
869
870 list_for_each_entry_safe(p, n, &father->children, sibling) {
871 p->real_parent = reaper;
872 if (p->parent == father) {
873 BUG_ON(p->ptrace);
874 p->parent = p->real_parent;
875 }
876 reparent_thread(p, father);
877 }
878
879 write_unlock_irq(&tasklist_lock);
880 BUG_ON(!list_empty(&father->children));
881
882 ptrace_exit_finish(father, &ptrace_dead);
883 }
884
885 /*
886 * Send signals to all our closest relatives so that they know
887 * to properly mourn us..
888 */
889 static void exit_notify(struct task_struct *tsk, int group_dead)
890 {
891 int state;
892
893 /*
894 * This does two things:
895 *
896 * A. Make init inherit all the child processes
897 * B. Check to see if any process groups have become orphaned
898 * as a result of our exiting, and if they have any stopped
899 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
900 */
901 forget_original_parent(tsk);
902 exit_task_namespaces(tsk);
903
904 write_lock_irq(&tasklist_lock);
905 if (group_dead)
906 kill_orphaned_pgrp(tsk->group_leader, NULL);
907
908 /* Let father know we died
909 *
910 * Thread signals are configurable, but you aren't going to use
911 * that to send signals to arbitary processes.
912 * That stops right now.
913 *
914 * If the parent exec id doesn't match the exec id we saved
915 * when we started then we know the parent has changed security
916 * domain.
917 *
918 * If our self_exec id doesn't match our parent_exec_id then
919 * we have changed execution domain as these two values started
920 * the same after a fork.
921 */
922 if (tsk->exit_signal != SIGCHLD && !task_detached(tsk) &&
923 (tsk->parent_exec_id != tsk->real_parent->self_exec_id ||
924 tsk->self_exec_id != tsk->parent_exec_id) &&
925 !capable(CAP_KILL))
926 tsk->exit_signal = SIGCHLD;
927
928 /* If something other than our normal parent is ptracing us, then
929 * send it a SIGCHLD instead of honoring exit_signal. exit_signal
930 * only has special meaning to our real parent.
931 */
932 if (!task_detached(tsk) && thread_group_empty(tsk)) {
933 int signal = ptrace_reparented(tsk) ?
934 SIGCHLD : tsk->exit_signal;
935 do_notify_parent(tsk, signal);
936 } else if (tsk->ptrace) {
937 do_notify_parent(tsk, SIGCHLD);
938 }
939
940 state = EXIT_ZOMBIE;
941 if (task_detached(tsk) && likely(!tsk->ptrace))
942 state = EXIT_DEAD;
943 tsk->exit_state = state;
944
945 /* mt-exec, de_thread() is waiting for us */
946 if (thread_group_leader(tsk) &&
947 tsk->signal->notify_count < 0 &&
948 tsk->signal->group_exit_task)
949 wake_up_process(tsk->signal->group_exit_task);
950
951 write_unlock_irq(&tasklist_lock);
952
953 /* If the process is dead, release it - nobody will wait for it */
954 if (state == EXIT_DEAD)
955 release_task(tsk);
956 }
957
958 #ifdef CONFIG_DEBUG_STACK_USAGE
959 static void check_stack_usage(void)
960 {
961 static DEFINE_SPINLOCK(low_water_lock);
962 static int lowest_to_date = THREAD_SIZE;
963 unsigned long *n = end_of_stack(current);
964 unsigned long free;
965
966 while (*n == 0)
967 n++;
968 free = (unsigned long)n - (unsigned long)end_of_stack(current);
969
970 if (free >= lowest_to_date)
971 return;
972
973 spin_lock(&low_water_lock);
974 if (free < lowest_to_date) {
975 printk(KERN_WARNING "%s used greatest stack depth: %lu bytes "
976 "left\n",
977 current->comm, free);
978 lowest_to_date = free;
979 }
980 spin_unlock(&low_water_lock);
981 }
982 #else
983 static inline void check_stack_usage(void) {}
984 #endif
985
986 static inline void exit_child_reaper(struct task_struct *tsk)
987 {
988 if (likely(tsk->group_leader != task_child_reaper(tsk)))
989 return;
990
991 if (tsk->nsproxy->pid_ns == &init_pid_ns)
992 panic("Attempted to kill init!");
993
994 /*
995 * @tsk is the last thread in the 'cgroup-init' and is exiting.
996 * Terminate all remaining processes in the namespace and reap them
997 * before exiting @tsk.
998 *
999 * Note that @tsk (last thread of cgroup-init) may not necessarily
1000 * be the child-reaper (i.e main thread of cgroup-init) of the
1001 * namespace i.e the child_reaper may have already exited.
1002 *
1003 * Even after a child_reaper exits, we let it inherit orphaned children,
1004 * because, pid_ns->child_reaper remains valid as long as there is
1005 * at least one living sub-thread in the cgroup init.
1006
1007 * This living sub-thread of the cgroup-init will be notified when
1008 * a child inherited by the 'child-reaper' exits (do_notify_parent()
1009 * uses __group_send_sig_info()). Further, when reaping child processes,
1010 * do_wait() iterates over children of all living sub threads.
1011
1012 * i.e even though 'child_reaper' thread is listed as the parent of the
1013 * orphaned children, any living sub-thread in the cgroup-init can
1014 * perform the role of the child_reaper.
1015 */
1016 zap_pid_ns_processes(tsk->nsproxy->pid_ns);
1017 }
1018
1019 NORET_TYPE void do_exit(long code)
1020 {
1021 struct task_struct *tsk = current;
1022 int group_dead;
1023
1024 profile_task_exit(tsk);
1025
1026 WARN_ON(atomic_read(&tsk->fs_excl));
1027
1028 if (unlikely(in_interrupt()))
1029 panic("Aiee, killing interrupt handler!");
1030 if (unlikely(!tsk->pid))
1031 panic("Attempted to kill the idle task!");
1032
1033 tracehook_report_exit(&code);
1034
1035 /*
1036 * We're taking recursive faults here in do_exit. Safest is to just
1037 * leave this task alone and wait for reboot.
1038 */
1039 if (unlikely(tsk->flags & PF_EXITING)) {
1040 printk(KERN_ALERT
1041 "Fixing recursive fault but reboot is needed!\n");
1042 /*
1043 * We can do this unlocked here. The futex code uses
1044 * this flag just to verify whether the pi state
1045 * cleanup has been done or not. In the worst case it
1046 * loops once more. We pretend that the cleanup was
1047 * done as there is no way to return. Either the
1048 * OWNER_DIED bit is set by now or we push the blocked
1049 * task into the wait for ever nirwana as well.
1050 */
1051 tsk->flags |= PF_EXITPIDONE;
1052 if (tsk->io_context)
1053 exit_io_context();
1054 set_current_state(TASK_UNINTERRUPTIBLE);
1055 schedule();
1056 }
1057
1058 exit_signals(tsk); /* sets PF_EXITING */
1059 /*
1060 * tsk->flags are checked in the futex code to protect against
1061 * an exiting task cleaning up the robust pi futexes.
1062 */
1063 smp_mb();
1064 spin_unlock_wait(&tsk->pi_lock);
1065
1066 if (unlikely(in_atomic()))
1067 printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n",
1068 current->comm, task_pid_nr(current),
1069 preempt_count());
1070
1071 acct_update_integrals(tsk);
1072 if (tsk->mm) {
1073 update_hiwater_rss(tsk->mm);
1074 update_hiwater_vm(tsk->mm);
1075 }
1076 group_dead = atomic_dec_and_test(&tsk->signal->live);
1077 if (group_dead) {
1078 exit_child_reaper(tsk);
1079 hrtimer_cancel(&tsk->signal->real_timer);
1080 exit_itimers(tsk->signal);
1081 }
1082 acct_collect(code, group_dead);
1083 #ifdef CONFIG_FUTEX
1084 if (unlikely(tsk->robust_list))
1085 exit_robust_list(tsk);
1086 #ifdef CONFIG_COMPAT
1087 if (unlikely(tsk->compat_robust_list))
1088 compat_exit_robust_list(tsk);
1089 #endif
1090 #endif
1091 if (group_dead)
1092 tty_audit_exit();
1093 if (unlikely(tsk->audit_context))
1094 audit_free(tsk);
1095
1096 tsk->exit_code = code;
1097 taskstats_exit(tsk, group_dead);
1098
1099 exit_mm(tsk);
1100
1101 if (group_dead)
1102 acct_process();
1103 exit_sem(tsk);
1104 exit_files(tsk);
1105 exit_fs(tsk);
1106 check_stack_usage();
1107 exit_thread();
1108 cgroup_exit(tsk, 1);
1109 exit_keys(tsk);
1110
1111 if (group_dead && tsk->signal->leader)
1112 disassociate_ctty(1);
1113
1114 module_put(task_thread_info(tsk)->exec_domain->module);
1115 if (tsk->binfmt)
1116 module_put(tsk->binfmt->module);
1117
1118 proc_exit_connector(tsk);
1119 exit_notify(tsk, group_dead);
1120 #ifdef CONFIG_NUMA
1121 mpol_put(tsk->mempolicy);
1122 tsk->mempolicy = NULL;
1123 #endif
1124 #ifdef CONFIG_FUTEX
1125 /*
1126 * This must happen late, after the PID is not
1127 * hashed anymore:
1128 */
1129 if (unlikely(!list_empty(&tsk->pi_state_list)))
1130 exit_pi_state_list(tsk);
1131 if (unlikely(current->pi_state_cache))
1132 kfree(current->pi_state_cache);
1133 #endif
1134 /*
1135 * Make sure we are holding no locks:
1136 */
1137 debug_check_no_locks_held(tsk);
1138 /*
1139 * We can do this unlocked here. The futex code uses this flag
1140 * just to verify whether the pi state cleanup has been done
1141 * or not. In the worst case it loops once more.
1142 */
1143 tsk->flags |= PF_EXITPIDONE;
1144
1145 if (tsk->io_context)
1146 exit_io_context();
1147
1148 if (tsk->splice_pipe)
1149 __free_pipe_info(tsk->splice_pipe);
1150
1151 preempt_disable();
1152 /* causes final put_task_struct in finish_task_switch(). */
1153 tsk->state = TASK_DEAD;
1154
1155 schedule();
1156 BUG();
1157 /* Avoid "noreturn function does return". */
1158 for (;;)
1159 cpu_relax(); /* For when BUG is null */
1160 }
1161
1162 EXPORT_SYMBOL_GPL(do_exit);
1163
1164 NORET_TYPE void complete_and_exit(struct completion *comp, long code)
1165 {
1166 if (comp)
1167 complete(comp);
1168
1169 do_exit(code);
1170 }
1171
1172 EXPORT_SYMBOL(complete_and_exit);
1173
1174 asmlinkage long sys_exit(int error_code)
1175 {
1176 do_exit((error_code&0xff)<<8);
1177 }
1178
1179 /*
1180 * Take down every thread in the group. This is called by fatal signals
1181 * as well as by sys_exit_group (below).
1182 */
1183 NORET_TYPE void
1184 do_group_exit(int exit_code)
1185 {
1186 struct signal_struct *sig = current->signal;
1187
1188 BUG_ON(exit_code & 0x80); /* core dumps don't get here */
1189
1190 if (signal_group_exit(sig))
1191 exit_code = sig->group_exit_code;
1192 else if (!thread_group_empty(current)) {
1193 struct sighand_struct *const sighand = current->sighand;
1194 spin_lock_irq(&sighand->siglock);
1195 if (signal_group_exit(sig))
1196 /* Another thread got here before we took the lock. */
1197 exit_code = sig->group_exit_code;
1198 else {
1199 sig->group_exit_code = exit_code;
1200 sig->flags = SIGNAL_GROUP_EXIT;
1201 zap_other_threads(current);
1202 }
1203 spin_unlock_irq(&sighand->siglock);
1204 }
1205
1206 do_exit(exit_code);
1207 /* NOTREACHED */
1208 }
1209
1210 /*
1211 * this kills every thread in the thread group. Note that any externally
1212 * wait4()-ing process will get the correct exit code - even if this
1213 * thread is not the thread group leader.
1214 */
1215 asmlinkage void sys_exit_group(int error_code)
1216 {
1217 do_group_exit((error_code & 0xff) << 8);
1218 }
1219
1220 static struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
1221 {
1222 struct pid *pid = NULL;
1223 if (type == PIDTYPE_PID)
1224 pid = task->pids[type].pid;
1225 else if (type < PIDTYPE_MAX)
1226 pid = task->group_leader->pids[type].pid;
1227 return pid;
1228 }
1229
1230 static int eligible_child(enum pid_type type, struct pid *pid, int options,
1231 struct task_struct *p)
1232 {
1233 int err;
1234
1235 if (type < PIDTYPE_MAX) {
1236 if (task_pid_type(p, type) != pid)
1237 return 0;
1238 }
1239
1240 /* Wait for all children (clone and not) if __WALL is set;
1241 * otherwise, wait for clone children *only* if __WCLONE is
1242 * set; otherwise, wait for non-clone children *only*. (Note:
1243 * A "clone" child here is one that reports to its parent
1244 * using a signal other than SIGCHLD.) */
1245 if (((p->exit_signal != SIGCHLD) ^ ((options & __WCLONE) != 0))
1246 && !(options & __WALL))
1247 return 0;
1248
1249 err = security_task_wait(p);
1250 if (err)
1251 return err;
1252
1253 return 1;
1254 }
1255
1256 static int wait_noreap_copyout(struct task_struct *p, pid_t pid, uid_t uid,
1257 int why, int status,
1258 struct siginfo __user *infop,
1259 struct rusage __user *rusagep)
1260 {
1261 int retval = rusagep ? getrusage(p, RUSAGE_BOTH, rusagep) : 0;
1262
1263 put_task_struct(p);
1264 if (!retval)
1265 retval = put_user(SIGCHLD, &infop->si_signo);
1266 if (!retval)
1267 retval = put_user(0, &infop->si_errno);
1268 if (!retval)
1269 retval = put_user((short)why, &infop->si_code);
1270 if (!retval)
1271 retval = put_user(pid, &infop->si_pid);
1272 if (!retval)
1273 retval = put_user(uid, &infop->si_uid);
1274 if (!retval)
1275 retval = put_user(status, &infop->si_status);
1276 if (!retval)
1277 retval = pid;
1278 return retval;
1279 }
1280
1281 /*
1282 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold
1283 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1284 * the lock and this task is uninteresting. If we return nonzero, we have
1285 * released the lock and the system call should return.
1286 */
1287 static int wait_task_zombie(struct task_struct *p, int options,
1288 struct siginfo __user *infop,
1289 int __user *stat_addr, struct rusage __user *ru)
1290 {
1291 unsigned long state;
1292 int retval, status, traced;
1293 pid_t pid = task_pid_vnr(p);
1294
1295 if (!likely(options & WEXITED))
1296 return 0;
1297
1298 if (unlikely(options & WNOWAIT)) {
1299 uid_t uid = p->uid;
1300 int exit_code = p->exit_code;
1301 int why, status;
1302
1303 get_task_struct(p);
1304 read_unlock(&tasklist_lock);
1305 if ((exit_code & 0x7f) == 0) {
1306 why = CLD_EXITED;
1307 status = exit_code >> 8;
1308 } else {
1309 why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
1310 status = exit_code & 0x7f;
1311 }
1312 return wait_noreap_copyout(p, pid, uid, why,
1313 status, infop, ru);
1314 }
1315
1316 /*
1317 * Try to move the task's state to DEAD
1318 * only one thread is allowed to do this:
1319 */
1320 state = xchg(&p->exit_state, EXIT_DEAD);
1321 if (state != EXIT_ZOMBIE) {
1322 BUG_ON(state != EXIT_DEAD);
1323 return 0;
1324 }
1325
1326 traced = ptrace_reparented(p);
1327
1328 if (likely(!traced)) {
1329 struct signal_struct *psig;
1330 struct signal_struct *sig;
1331
1332 /*
1333 * The resource counters for the group leader are in its
1334 * own task_struct. Those for dead threads in the group
1335 * are in its signal_struct, as are those for the child
1336 * processes it has previously reaped. All these
1337 * accumulate in the parent's signal_struct c* fields.
1338 *
1339 * We don't bother to take a lock here to protect these
1340 * p->signal fields, because they are only touched by
1341 * __exit_signal, which runs with tasklist_lock
1342 * write-locked anyway, and so is excluded here. We do
1343 * need to protect the access to p->parent->signal fields,
1344 * as other threads in the parent group can be right
1345 * here reaping other children at the same time.
1346 */
1347 spin_lock_irq(&p->parent->sighand->siglock);
1348 psig = p->parent->signal;
1349 sig = p->signal;
1350 psig->cutime =
1351 cputime_add(psig->cutime,
1352 cputime_add(p->utime,
1353 cputime_add(sig->utime,
1354 sig->cutime)));
1355 psig->cstime =
1356 cputime_add(psig->cstime,
1357 cputime_add(p->stime,
1358 cputime_add(sig->stime,
1359 sig->cstime)));
1360 psig->cgtime =
1361 cputime_add(psig->cgtime,
1362 cputime_add(p->gtime,
1363 cputime_add(sig->gtime,
1364 sig->cgtime)));
1365 psig->cmin_flt +=
1366 p->min_flt + sig->min_flt + sig->cmin_flt;
1367 psig->cmaj_flt +=
1368 p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1369 psig->cnvcsw +=
1370 p->nvcsw + sig->nvcsw + sig->cnvcsw;
1371 psig->cnivcsw +=
1372 p->nivcsw + sig->nivcsw + sig->cnivcsw;
1373 psig->cinblock +=
1374 task_io_get_inblock(p) +
1375 sig->inblock + sig->cinblock;
1376 psig->coublock +=
1377 task_io_get_oublock(p) +
1378 sig->oublock + sig->coublock;
1379 #ifdef CONFIG_TASK_XACCT
1380 psig->rchar += p->rchar + sig->rchar;
1381 psig->wchar += p->wchar + sig->wchar;
1382 psig->syscr += p->syscr + sig->syscr;
1383 psig->syscw += p->syscw + sig->syscw;
1384 #endif /* CONFIG_TASK_XACCT */
1385 #ifdef CONFIG_TASK_IO_ACCOUNTING
1386 psig->ioac.read_bytes +=
1387 p->ioac.read_bytes + sig->ioac.read_bytes;
1388 psig->ioac.write_bytes +=
1389 p->ioac.write_bytes + sig->ioac.write_bytes;
1390 psig->ioac.cancelled_write_bytes +=
1391 p->ioac.cancelled_write_bytes +
1392 sig->ioac.cancelled_write_bytes;
1393 #endif /* CONFIG_TASK_IO_ACCOUNTING */
1394 spin_unlock_irq(&p->parent->sighand->siglock);
1395 }
1396
1397 /*
1398 * Now we are sure this task is interesting, and no other
1399 * thread can reap it because we set its state to EXIT_DEAD.
1400 */
1401 read_unlock(&tasklist_lock);
1402
1403 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1404 status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1405 ? p->signal->group_exit_code : p->exit_code;
1406 if (!retval && stat_addr)
1407 retval = put_user(status, stat_addr);
1408 if (!retval && infop)
1409 retval = put_user(SIGCHLD, &infop->si_signo);
1410 if (!retval && infop)
1411 retval = put_user(0, &infop->si_errno);
1412 if (!retval && infop) {
1413 int why;
1414
1415 if ((status & 0x7f) == 0) {
1416 why = CLD_EXITED;
1417 status >>= 8;
1418 } else {
1419 why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1420 status &= 0x7f;
1421 }
1422 retval = put_user((short)why, &infop->si_code);
1423 if (!retval)
1424 retval = put_user(status, &infop->si_status);
1425 }
1426 if (!retval && infop)
1427 retval = put_user(pid, &infop->si_pid);
1428 if (!retval && infop)
1429 retval = put_user(p->uid, &infop->si_uid);
1430 if (!retval)
1431 retval = pid;
1432
1433 if (traced) {
1434 write_lock_irq(&tasklist_lock);
1435 /* We dropped tasklist, ptracer could die and untrace */
1436 ptrace_unlink(p);
1437 /*
1438 * If this is not a detached task, notify the parent.
1439 * If it's still not detached after that, don't release
1440 * it now.
1441 */
1442 if (!task_detached(p)) {
1443 do_notify_parent(p, p->exit_signal);
1444 if (!task_detached(p)) {
1445 p->exit_state = EXIT_ZOMBIE;
1446 p = NULL;
1447 }
1448 }
1449 write_unlock_irq(&tasklist_lock);
1450 }
1451 if (p != NULL)
1452 release_task(p);
1453
1454 return retval;
1455 }
1456
1457 /*
1458 * Handle sys_wait4 work for one task in state TASK_STOPPED. We hold
1459 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1460 * the lock and this task is uninteresting. If we return nonzero, we have
1461 * released the lock and the system call should return.
1462 */
1463 static int wait_task_stopped(int ptrace, struct task_struct *p,
1464 int options, struct siginfo __user *infop,
1465 int __user *stat_addr, struct rusage __user *ru)
1466 {
1467 int retval, exit_code, why;
1468 uid_t uid = 0; /* unneeded, required by compiler */
1469 pid_t pid;
1470
1471 if (!(options & WUNTRACED))
1472 return 0;
1473
1474 exit_code = 0;
1475 spin_lock_irq(&p->sighand->siglock);
1476
1477 if (unlikely(!task_is_stopped_or_traced(p)))
1478 goto unlock_sig;
1479
1480 if (!ptrace && p->signal->group_stop_count > 0)
1481 /*
1482 * A group stop is in progress and this is the group leader.
1483 * We won't report until all threads have stopped.
1484 */
1485 goto unlock_sig;
1486
1487 exit_code = p->exit_code;
1488 if (!exit_code)
1489 goto unlock_sig;
1490
1491 if (!unlikely(options & WNOWAIT))
1492 p->exit_code = 0;
1493
1494 uid = p->uid;
1495 unlock_sig:
1496 spin_unlock_irq(&p->sighand->siglock);
1497 if (!exit_code)
1498 return 0;
1499
1500 /*
1501 * Now we are pretty sure this task is interesting.
1502 * Make sure it doesn't get reaped out from under us while we
1503 * give up the lock and then examine it below. We don't want to
1504 * keep holding onto the tasklist_lock while we call getrusage and
1505 * possibly take page faults for user memory.
1506 */
1507 get_task_struct(p);
1508 pid = task_pid_vnr(p);
1509 why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1510 read_unlock(&tasklist_lock);
1511
1512 if (unlikely(options & WNOWAIT))
1513 return wait_noreap_copyout(p, pid, uid,
1514 why, exit_code,
1515 infop, ru);
1516
1517 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1518 if (!retval && stat_addr)
1519 retval = put_user((exit_code << 8) | 0x7f, stat_addr);
1520 if (!retval && infop)
1521 retval = put_user(SIGCHLD, &infop->si_signo);
1522 if (!retval && infop)
1523 retval = put_user(0, &infop->si_errno);
1524 if (!retval && infop)
1525 retval = put_user((short)why, &infop->si_code);
1526 if (!retval && infop)
1527 retval = put_user(exit_code, &infop->si_status);
1528 if (!retval && infop)
1529 retval = put_user(pid, &infop->si_pid);
1530 if (!retval && infop)
1531 retval = put_user(uid, &infop->si_uid);
1532 if (!retval)
1533 retval = pid;
1534 put_task_struct(p);
1535
1536 BUG_ON(!retval);
1537 return retval;
1538 }
1539
1540 /*
1541 * Handle do_wait work for one task in a live, non-stopped state.
1542 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1543 * the lock and this task is uninteresting. If we return nonzero, we have
1544 * released the lock and the system call should return.
1545 */
1546 static int wait_task_continued(struct task_struct *p, int options,
1547 struct siginfo __user *infop,
1548 int __user *stat_addr, struct rusage __user *ru)
1549 {
1550 int retval;
1551 pid_t pid;
1552 uid_t uid;
1553
1554 if (!unlikely(options & WCONTINUED))
1555 return 0;
1556
1557 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1558 return 0;
1559
1560 spin_lock_irq(&p->sighand->siglock);
1561 /* Re-check with the lock held. */
1562 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1563 spin_unlock_irq(&p->sighand->siglock);
1564 return 0;
1565 }
1566 if (!unlikely(options & WNOWAIT))
1567 p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1568 spin_unlock_irq(&p->sighand->siglock);
1569
1570 pid = task_pid_vnr(p);
1571 uid = p->uid;
1572 get_task_struct(p);
1573 read_unlock(&tasklist_lock);
1574
1575 if (!infop) {
1576 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1577 put_task_struct(p);
1578 if (!retval && stat_addr)
1579 retval = put_user(0xffff, stat_addr);
1580 if (!retval)
1581 retval = pid;
1582 } else {
1583 retval = wait_noreap_copyout(p, pid, uid,
1584 CLD_CONTINUED, SIGCONT,
1585 infop, ru);
1586 BUG_ON(retval == 0);
1587 }
1588
1589 return retval;
1590 }
1591
1592 /*
1593 * Consider @p for a wait by @parent.
1594 *
1595 * -ECHILD should be in *@notask_error before the first call.
1596 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1597 * Returns zero if the search for a child should continue;
1598 * then *@notask_error is 0 if @p is an eligible child,
1599 * or another error from security_task_wait(), or still -ECHILD.
1600 */
1601 static int wait_consider_task(struct task_struct *parent, int ptrace,
1602 struct task_struct *p, int *notask_error,
1603 enum pid_type type, struct pid *pid, int options,
1604 struct siginfo __user *infop,
1605 int __user *stat_addr, struct rusage __user *ru)
1606 {
1607 int ret = eligible_child(type, pid, options, p);
1608 if (!ret)
1609 return ret;
1610
1611 if (unlikely(ret < 0)) {
1612 /*
1613 * If we have not yet seen any eligible child,
1614 * then let this error code replace -ECHILD.
1615 * A permission error will give the user a clue
1616 * to look for security policy problems, rather
1617 * than for mysterious wait bugs.
1618 */
1619 if (*notask_error)
1620 *notask_error = ret;
1621 }
1622
1623 if (likely(!ptrace) && unlikely(p->ptrace)) {
1624 /*
1625 * This child is hidden by ptrace.
1626 * We aren't allowed to see it now, but eventually we will.
1627 */
1628 *notask_error = 0;
1629 return 0;
1630 }
1631
1632 if (p->exit_state == EXIT_DEAD)
1633 return 0;
1634
1635 /*
1636 * We don't reap group leaders with subthreads.
1637 */
1638 if (p->exit_state == EXIT_ZOMBIE && !delay_group_leader(p))
1639 return wait_task_zombie(p, options, infop, stat_addr, ru);
1640
1641 /*
1642 * It's stopped or running now, so it might
1643 * later continue, exit, or stop again.
1644 */
1645 *notask_error = 0;
1646
1647 if (task_is_stopped_or_traced(p))
1648 return wait_task_stopped(ptrace, p, options,
1649 infop, stat_addr, ru);
1650
1651 return wait_task_continued(p, options, infop, stat_addr, ru);
1652 }
1653
1654 /*
1655 * Do the work of do_wait() for one thread in the group, @tsk.
1656 *
1657 * -ECHILD should be in *@notask_error before the first call.
1658 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1659 * Returns zero if the search for a child should continue; then
1660 * *@notask_error is 0 if there were any eligible children,
1661 * or another error from security_task_wait(), or still -ECHILD.
1662 */
1663 static int do_wait_thread(struct task_struct *tsk, int *notask_error,
1664 enum pid_type type, struct pid *pid, int options,
1665 struct siginfo __user *infop, int __user *stat_addr,
1666 struct rusage __user *ru)
1667 {
1668 struct task_struct *p;
1669
1670 list_for_each_entry(p, &tsk->children, sibling) {
1671 /*
1672 * Do not consider detached threads.
1673 */
1674 if (!task_detached(p)) {
1675 int ret = wait_consider_task(tsk, 0, p, notask_error,
1676 type, pid, options,
1677 infop, stat_addr, ru);
1678 if (ret)
1679 return ret;
1680 }
1681 }
1682
1683 return 0;
1684 }
1685
1686 static int ptrace_do_wait(struct task_struct *tsk, int *notask_error,
1687 enum pid_type type, struct pid *pid, int options,
1688 struct siginfo __user *infop, int __user *stat_addr,
1689 struct rusage __user *ru)
1690 {
1691 struct task_struct *p;
1692
1693 /*
1694 * Traditionally we see ptrace'd stopped tasks regardless of options.
1695 */
1696 options |= WUNTRACED;
1697
1698 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1699 int ret = wait_consider_task(tsk, 1, p, notask_error,
1700 type, pid, options,
1701 infop, stat_addr, ru);
1702 if (ret)
1703 return ret;
1704 }
1705
1706 return 0;
1707 }
1708
1709 static long do_wait(enum pid_type type, struct pid *pid, int options,
1710 struct siginfo __user *infop, int __user *stat_addr,
1711 struct rusage __user *ru)
1712 {
1713 DECLARE_WAITQUEUE(wait, current);
1714 struct task_struct *tsk;
1715 int retval;
1716
1717 add_wait_queue(&current->signal->wait_chldexit,&wait);
1718 repeat:
1719 /*
1720 * If there is nothing that can match our critiera just get out.
1721 * We will clear @retval to zero if we see any child that might later
1722 * match our criteria, even if we are not able to reap it yet.
1723 */
1724 retval = -ECHILD;
1725 if ((type < PIDTYPE_MAX) && (!pid || hlist_empty(&pid->tasks[type])))
1726 goto end;
1727
1728 current->state = TASK_INTERRUPTIBLE;
1729 read_lock(&tasklist_lock);
1730 tsk = current;
1731 do {
1732 int tsk_result = do_wait_thread(tsk, &retval,
1733 type, pid, options,
1734 infop, stat_addr, ru);
1735 if (!tsk_result)
1736 tsk_result = ptrace_do_wait(tsk, &retval,
1737 type, pid, options,
1738 infop, stat_addr, ru);
1739 if (tsk_result) {
1740 /*
1741 * tasklist_lock is unlocked and we have a final result.
1742 */
1743 retval = tsk_result;
1744 goto end;
1745 }
1746
1747 if (options & __WNOTHREAD)
1748 break;
1749 tsk = next_thread(tsk);
1750 BUG_ON(tsk->signal != current->signal);
1751 } while (tsk != current);
1752 read_unlock(&tasklist_lock);
1753
1754 if (!retval && !(options & WNOHANG)) {
1755 retval = -ERESTARTSYS;
1756 if (!signal_pending(current)) {
1757 schedule();
1758 goto repeat;
1759 }
1760 }
1761
1762 end:
1763 current->state = TASK_RUNNING;
1764 remove_wait_queue(&current->signal->wait_chldexit,&wait);
1765 if (infop) {
1766 if (retval > 0)
1767 retval = 0;
1768 else {
1769 /*
1770 * For a WNOHANG return, clear out all the fields
1771 * we would set so the user can easily tell the
1772 * difference.
1773 */
1774 if (!retval)
1775 retval = put_user(0, &infop->si_signo);
1776 if (!retval)
1777 retval = put_user(0, &infop->si_errno);
1778 if (!retval)
1779 retval = put_user(0, &infop->si_code);
1780 if (!retval)
1781 retval = put_user(0, &infop->si_pid);
1782 if (!retval)
1783 retval = put_user(0, &infop->si_uid);
1784 if (!retval)
1785 retval = put_user(0, &infop->si_status);
1786 }
1787 }
1788 return retval;
1789 }
1790
1791 asmlinkage long sys_waitid(int which, pid_t upid,
1792 struct siginfo __user *infop, int options,
1793 struct rusage __user *ru)
1794 {
1795 struct pid *pid = NULL;
1796 enum pid_type type;
1797 long ret;
1798
1799 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED))
1800 return -EINVAL;
1801 if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1802 return -EINVAL;
1803
1804 switch (which) {
1805 case P_ALL:
1806 type = PIDTYPE_MAX;
1807 break;
1808 case P_PID:
1809 type = PIDTYPE_PID;
1810 if (upid <= 0)
1811 return -EINVAL;
1812 break;
1813 case P_PGID:
1814 type = PIDTYPE_PGID;
1815 if (upid <= 0)
1816 return -EINVAL;
1817 break;
1818 default:
1819 return -EINVAL;
1820 }
1821
1822 if (type < PIDTYPE_MAX)
1823 pid = find_get_pid(upid);
1824 ret = do_wait(type, pid, options, infop, NULL, ru);
1825 put_pid(pid);
1826
1827 /* avoid REGPARM breakage on x86: */
1828 asmlinkage_protect(5, ret, which, upid, infop, options, ru);
1829 return ret;
1830 }
1831
1832 asmlinkage long sys_wait4(pid_t upid, int __user *stat_addr,
1833 int options, struct rusage __user *ru)
1834 {
1835 struct pid *pid = NULL;
1836 enum pid_type type;
1837 long ret;
1838
1839 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1840 __WNOTHREAD|__WCLONE|__WALL))
1841 return -EINVAL;
1842
1843 if (upid == -1)
1844 type = PIDTYPE_MAX;
1845 else if (upid < 0) {
1846 type = PIDTYPE_PGID;
1847 pid = find_get_pid(-upid);
1848 } else if (upid == 0) {
1849 type = PIDTYPE_PGID;
1850 pid = get_pid(task_pgrp(current));
1851 } else /* upid > 0 */ {
1852 type = PIDTYPE_PID;
1853 pid = find_get_pid(upid);
1854 }
1855
1856 ret = do_wait(type, pid, options | WEXITED, NULL, stat_addr, ru);
1857 put_pid(pid);
1858
1859 /* avoid REGPARM breakage on x86: */
1860 asmlinkage_protect(4, ret, upid, stat_addr, options, ru);
1861 return ret;
1862 }
1863
1864 #ifdef __ARCH_WANT_SYS_WAITPID
1865
1866 /*
1867 * sys_waitpid() remains for compatibility. waitpid() should be
1868 * implemented by calling sys_wait4() from libc.a.
1869 */
1870 asmlinkage long sys_waitpid(pid_t pid, int __user *stat_addr, int options)
1871 {
1872 return sys_wait4(pid, stat_addr, options, NULL);
1873 }
1874
1875 #endif
This page took 0.065457 seconds and 6 git commands to generate.