fork/exit: move tty_kref_put() outside of __cleanup_signal()
[deliverable/linux.git] / kernel / exit.c
1 /*
2 * linux/kernel/exit.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 #include <linux/mm.h>
8 #include <linux/slab.h>
9 #include <linux/interrupt.h>
10 #include <linux/module.h>
11 #include <linux/capability.h>
12 #include <linux/completion.h>
13 #include <linux/personality.h>
14 #include <linux/tty.h>
15 #include <linux/iocontext.h>
16 #include <linux/key.h>
17 #include <linux/security.h>
18 #include <linux/cpu.h>
19 #include <linux/acct.h>
20 #include <linux/tsacct_kern.h>
21 #include <linux/file.h>
22 #include <linux/fdtable.h>
23 #include <linux/binfmts.h>
24 #include <linux/nsproxy.h>
25 #include <linux/pid_namespace.h>
26 #include <linux/ptrace.h>
27 #include <linux/profile.h>
28 #include <linux/mount.h>
29 #include <linux/proc_fs.h>
30 #include <linux/kthread.h>
31 #include <linux/mempolicy.h>
32 #include <linux/taskstats_kern.h>
33 #include <linux/delayacct.h>
34 #include <linux/freezer.h>
35 #include <linux/cgroup.h>
36 #include <linux/syscalls.h>
37 #include <linux/signal.h>
38 #include <linux/posix-timers.h>
39 #include <linux/cn_proc.h>
40 #include <linux/mutex.h>
41 #include <linux/futex.h>
42 #include <linux/pipe_fs_i.h>
43 #include <linux/audit.h> /* for audit_free() */
44 #include <linux/resource.h>
45 #include <linux/blkdev.h>
46 #include <linux/task_io_accounting_ops.h>
47 #include <linux/tracehook.h>
48 #include <linux/fs_struct.h>
49 #include <linux/init_task.h>
50 #include <linux/perf_event.h>
51 #include <trace/events/sched.h>
52 #include <linux/hw_breakpoint.h>
53
54 #include <asm/uaccess.h>
55 #include <asm/unistd.h>
56 #include <asm/pgtable.h>
57 #include <asm/mmu_context.h>
58
59 static void exit_mm(struct task_struct * tsk);
60
61 static void __unhash_process(struct task_struct *p)
62 {
63 nr_threads--;
64 detach_pid(p, PIDTYPE_PID);
65 if (thread_group_leader(p)) {
66 detach_pid(p, PIDTYPE_PGID);
67 detach_pid(p, PIDTYPE_SID);
68
69 list_del_rcu(&p->tasks);
70 list_del_init(&p->sibling);
71 __get_cpu_var(process_counts)--;
72 }
73 list_del_rcu(&p->thread_group);
74 }
75
76 /*
77 * This function expects the tasklist_lock write-locked.
78 */
79 static void __exit_signal(struct task_struct *tsk)
80 {
81 struct signal_struct *sig = tsk->signal;
82 struct sighand_struct *sighand;
83
84 BUG_ON(!sig);
85 BUG_ON(!atomic_read(&sig->count));
86
87 sighand = rcu_dereference_check(tsk->sighand,
88 rcu_read_lock_held() ||
89 lockdep_tasklist_lock_is_held());
90 spin_lock(&sighand->siglock);
91 atomic_dec(&sig->count);
92
93 posix_cpu_timers_exit(tsk);
94 if (thread_group_leader(tsk)) {
95 posix_cpu_timers_exit_group(tsk);
96 } else {
97 /*
98 * If there is any task waiting for the group exit
99 * then notify it:
100 */
101 if (sig->notify_count > 0 && !--sig->notify_count)
102 wake_up_process(sig->group_exit_task);
103
104 if (tsk == sig->curr_target)
105 sig->curr_target = next_thread(tsk);
106 /*
107 * Accumulate here the counters for all threads but the
108 * group leader as they die, so they can be added into
109 * the process-wide totals when those are taken.
110 * The group leader stays around as a zombie as long
111 * as there are other threads. When it gets reaped,
112 * the exit.c code will add its counts into these totals.
113 * We won't ever get here for the group leader, since it
114 * will have been the last reference on the signal_struct.
115 */
116 sig->utime = cputime_add(sig->utime, tsk->utime);
117 sig->stime = cputime_add(sig->stime, tsk->stime);
118 sig->gtime = cputime_add(sig->gtime, tsk->gtime);
119 sig->min_flt += tsk->min_flt;
120 sig->maj_flt += tsk->maj_flt;
121 sig->nvcsw += tsk->nvcsw;
122 sig->nivcsw += tsk->nivcsw;
123 sig->inblock += task_io_get_inblock(tsk);
124 sig->oublock += task_io_get_oublock(tsk);
125 task_io_accounting_add(&sig->ioac, &tsk->ioac);
126 sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
127 sig = NULL; /* Marker for below. */
128 }
129
130 __unhash_process(tsk);
131
132 /*
133 * Do this under ->siglock, we can race with another thread
134 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
135 */
136 flush_sigqueue(&tsk->pending);
137
138 tsk->signal = NULL;
139 tsk->sighand = NULL;
140 spin_unlock(&sighand->siglock);
141
142 __cleanup_sighand(sighand);
143 clear_tsk_thread_flag(tsk,TIF_SIGPENDING);
144 if (sig) {
145 flush_sigqueue(&sig->shared_pending);
146 taskstats_tgid_free(sig);
147 /*
148 * Make sure ->signal can't go away under rq->lock,
149 * see account_group_exec_runtime().
150 */
151 task_rq_unlock_wait(tsk);
152 tty_kref_put(sig->tty);
153 __cleanup_signal(sig);
154 }
155 }
156
157 static void delayed_put_task_struct(struct rcu_head *rhp)
158 {
159 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
160
161 #ifdef CONFIG_PERF_EVENTS
162 WARN_ON_ONCE(tsk->perf_event_ctxp);
163 #endif
164 trace_sched_process_free(tsk);
165 put_task_struct(tsk);
166 }
167
168
169 void release_task(struct task_struct * p)
170 {
171 struct task_struct *leader;
172 int zap_leader;
173 repeat:
174 tracehook_prepare_release_task(p);
175 /* don't need to get the RCU readlock here - the process is dead and
176 * can't be modifying its own credentials. But shut RCU-lockdep up */
177 rcu_read_lock();
178 atomic_dec(&__task_cred(p)->user->processes);
179 rcu_read_unlock();
180
181 proc_flush_task(p);
182
183 write_lock_irq(&tasklist_lock);
184 tracehook_finish_release_task(p);
185 __exit_signal(p);
186
187 /*
188 * If we are the last non-leader member of the thread
189 * group, and the leader is zombie, then notify the
190 * group leader's parent process. (if it wants notification.)
191 */
192 zap_leader = 0;
193 leader = p->group_leader;
194 if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) {
195 BUG_ON(task_detached(leader));
196 do_notify_parent(leader, leader->exit_signal);
197 /*
198 * If we were the last child thread and the leader has
199 * exited already, and the leader's parent ignores SIGCHLD,
200 * then we are the one who should release the leader.
201 *
202 * do_notify_parent() will have marked it self-reaping in
203 * that case.
204 */
205 zap_leader = task_detached(leader);
206
207 /*
208 * This maintains the invariant that release_task()
209 * only runs on a task in EXIT_DEAD, just for sanity.
210 */
211 if (zap_leader)
212 leader->exit_state = EXIT_DEAD;
213 }
214
215 write_unlock_irq(&tasklist_lock);
216 release_thread(p);
217 call_rcu(&p->rcu, delayed_put_task_struct);
218
219 p = leader;
220 if (unlikely(zap_leader))
221 goto repeat;
222 }
223
224 /*
225 * This checks not only the pgrp, but falls back on the pid if no
226 * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
227 * without this...
228 *
229 * The caller must hold rcu lock or the tasklist lock.
230 */
231 struct pid *session_of_pgrp(struct pid *pgrp)
232 {
233 struct task_struct *p;
234 struct pid *sid = NULL;
235
236 p = pid_task(pgrp, PIDTYPE_PGID);
237 if (p == NULL)
238 p = pid_task(pgrp, PIDTYPE_PID);
239 if (p != NULL)
240 sid = task_session(p);
241
242 return sid;
243 }
244
245 /*
246 * Determine if a process group is "orphaned", according to the POSIX
247 * definition in 2.2.2.52. Orphaned process groups are not to be affected
248 * by terminal-generated stop signals. Newly orphaned process groups are
249 * to receive a SIGHUP and a SIGCONT.
250 *
251 * "I ask you, have you ever known what it is to be an orphan?"
252 */
253 static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task)
254 {
255 struct task_struct *p;
256
257 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
258 if ((p == ignored_task) ||
259 (p->exit_state && thread_group_empty(p)) ||
260 is_global_init(p->real_parent))
261 continue;
262
263 if (task_pgrp(p->real_parent) != pgrp &&
264 task_session(p->real_parent) == task_session(p))
265 return 0;
266 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
267
268 return 1;
269 }
270
271 int is_current_pgrp_orphaned(void)
272 {
273 int retval;
274
275 read_lock(&tasklist_lock);
276 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
277 read_unlock(&tasklist_lock);
278
279 return retval;
280 }
281
282 static int has_stopped_jobs(struct pid *pgrp)
283 {
284 int retval = 0;
285 struct task_struct *p;
286
287 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
288 if (!task_is_stopped(p))
289 continue;
290 retval = 1;
291 break;
292 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
293 return retval;
294 }
295
296 /*
297 * Check to see if any process groups have become orphaned as
298 * a result of our exiting, and if they have any stopped jobs,
299 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
300 */
301 static void
302 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
303 {
304 struct pid *pgrp = task_pgrp(tsk);
305 struct task_struct *ignored_task = tsk;
306
307 if (!parent)
308 /* exit: our father is in a different pgrp than
309 * we are and we were the only connection outside.
310 */
311 parent = tsk->real_parent;
312 else
313 /* reparent: our child is in a different pgrp than
314 * we are, and it was the only connection outside.
315 */
316 ignored_task = NULL;
317
318 if (task_pgrp(parent) != pgrp &&
319 task_session(parent) == task_session(tsk) &&
320 will_become_orphaned_pgrp(pgrp, ignored_task) &&
321 has_stopped_jobs(pgrp)) {
322 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
323 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
324 }
325 }
326
327 /**
328 * reparent_to_kthreadd - Reparent the calling kernel thread to kthreadd
329 *
330 * If a kernel thread is launched as a result of a system call, or if
331 * it ever exits, it should generally reparent itself to kthreadd so it
332 * isn't in the way of other processes and is correctly cleaned up on exit.
333 *
334 * The various task state such as scheduling policy and priority may have
335 * been inherited from a user process, so we reset them to sane values here.
336 *
337 * NOTE that reparent_to_kthreadd() gives the caller full capabilities.
338 */
339 static void reparent_to_kthreadd(void)
340 {
341 write_lock_irq(&tasklist_lock);
342
343 ptrace_unlink(current);
344 /* Reparent to init */
345 current->real_parent = current->parent = kthreadd_task;
346 list_move_tail(&current->sibling, &current->real_parent->children);
347
348 /* Set the exit signal to SIGCHLD so we signal init on exit */
349 current->exit_signal = SIGCHLD;
350
351 if (task_nice(current) < 0)
352 set_user_nice(current, 0);
353 /* cpus_allowed? */
354 /* rt_priority? */
355 /* signals? */
356 memcpy(current->signal->rlim, init_task.signal->rlim,
357 sizeof(current->signal->rlim));
358
359 atomic_inc(&init_cred.usage);
360 commit_creds(&init_cred);
361 write_unlock_irq(&tasklist_lock);
362 }
363
364 void __set_special_pids(struct pid *pid)
365 {
366 struct task_struct *curr = current->group_leader;
367
368 if (task_session(curr) != pid)
369 change_pid(curr, PIDTYPE_SID, pid);
370
371 if (task_pgrp(curr) != pid)
372 change_pid(curr, PIDTYPE_PGID, pid);
373 }
374
375 static void set_special_pids(struct pid *pid)
376 {
377 write_lock_irq(&tasklist_lock);
378 __set_special_pids(pid);
379 write_unlock_irq(&tasklist_lock);
380 }
381
382 /*
383 * Let kernel threads use this to say that they allow a certain signal.
384 * Must not be used if kthread was cloned with CLONE_SIGHAND.
385 */
386 int allow_signal(int sig)
387 {
388 if (!valid_signal(sig) || sig < 1)
389 return -EINVAL;
390
391 spin_lock_irq(&current->sighand->siglock);
392 /* This is only needed for daemonize()'ed kthreads */
393 sigdelset(&current->blocked, sig);
394 /*
395 * Kernel threads handle their own signals. Let the signal code
396 * know it'll be handled, so that they don't get converted to
397 * SIGKILL or just silently dropped.
398 */
399 current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2;
400 recalc_sigpending();
401 spin_unlock_irq(&current->sighand->siglock);
402 return 0;
403 }
404
405 EXPORT_SYMBOL(allow_signal);
406
407 int disallow_signal(int sig)
408 {
409 if (!valid_signal(sig) || sig < 1)
410 return -EINVAL;
411
412 spin_lock_irq(&current->sighand->siglock);
413 current->sighand->action[(sig)-1].sa.sa_handler = SIG_IGN;
414 recalc_sigpending();
415 spin_unlock_irq(&current->sighand->siglock);
416 return 0;
417 }
418
419 EXPORT_SYMBOL(disallow_signal);
420
421 /*
422 * Put all the gunge required to become a kernel thread without
423 * attached user resources in one place where it belongs.
424 */
425
426 void daemonize(const char *name, ...)
427 {
428 va_list args;
429 sigset_t blocked;
430
431 va_start(args, name);
432 vsnprintf(current->comm, sizeof(current->comm), name, args);
433 va_end(args);
434
435 /*
436 * If we were started as result of loading a module, close all of the
437 * user space pages. We don't need them, and if we didn't close them
438 * they would be locked into memory.
439 */
440 exit_mm(current);
441 /*
442 * We don't want to have TIF_FREEZE set if the system-wide hibernation
443 * or suspend transition begins right now.
444 */
445 current->flags |= (PF_NOFREEZE | PF_KTHREAD);
446
447 if (current->nsproxy != &init_nsproxy) {
448 get_nsproxy(&init_nsproxy);
449 switch_task_namespaces(current, &init_nsproxy);
450 }
451 set_special_pids(&init_struct_pid);
452 proc_clear_tty(current);
453
454 /* Block and flush all signals */
455 sigfillset(&blocked);
456 sigprocmask(SIG_BLOCK, &blocked, NULL);
457 flush_signals(current);
458
459 /* Become as one with the init task */
460
461 daemonize_fs_struct();
462 exit_files(current);
463 current->files = init_task.files;
464 atomic_inc(&current->files->count);
465
466 reparent_to_kthreadd();
467 }
468
469 EXPORT_SYMBOL(daemonize);
470
471 static void close_files(struct files_struct * files)
472 {
473 int i, j;
474 struct fdtable *fdt;
475
476 j = 0;
477
478 /*
479 * It is safe to dereference the fd table without RCU or
480 * ->file_lock because this is the last reference to the
481 * files structure. But use RCU to shut RCU-lockdep up.
482 */
483 rcu_read_lock();
484 fdt = files_fdtable(files);
485 rcu_read_unlock();
486 for (;;) {
487 unsigned long set;
488 i = j * __NFDBITS;
489 if (i >= fdt->max_fds)
490 break;
491 set = fdt->open_fds->fds_bits[j++];
492 while (set) {
493 if (set & 1) {
494 struct file * file = xchg(&fdt->fd[i], NULL);
495 if (file) {
496 filp_close(file, files);
497 cond_resched();
498 }
499 }
500 i++;
501 set >>= 1;
502 }
503 }
504 }
505
506 struct files_struct *get_files_struct(struct task_struct *task)
507 {
508 struct files_struct *files;
509
510 task_lock(task);
511 files = task->files;
512 if (files)
513 atomic_inc(&files->count);
514 task_unlock(task);
515
516 return files;
517 }
518
519 void put_files_struct(struct files_struct *files)
520 {
521 struct fdtable *fdt;
522
523 if (atomic_dec_and_test(&files->count)) {
524 close_files(files);
525 /*
526 * Free the fd and fdset arrays if we expanded them.
527 * If the fdtable was embedded, pass files for freeing
528 * at the end of the RCU grace period. Otherwise,
529 * you can free files immediately.
530 */
531 rcu_read_lock();
532 fdt = files_fdtable(files);
533 if (fdt != &files->fdtab)
534 kmem_cache_free(files_cachep, files);
535 free_fdtable(fdt);
536 rcu_read_unlock();
537 }
538 }
539
540 void reset_files_struct(struct files_struct *files)
541 {
542 struct task_struct *tsk = current;
543 struct files_struct *old;
544
545 old = tsk->files;
546 task_lock(tsk);
547 tsk->files = files;
548 task_unlock(tsk);
549 put_files_struct(old);
550 }
551
552 void exit_files(struct task_struct *tsk)
553 {
554 struct files_struct * files = tsk->files;
555
556 if (files) {
557 task_lock(tsk);
558 tsk->files = NULL;
559 task_unlock(tsk);
560 put_files_struct(files);
561 }
562 }
563
564 #ifdef CONFIG_MM_OWNER
565 /*
566 * Task p is exiting and it owned mm, lets find a new owner for it
567 */
568 static inline int
569 mm_need_new_owner(struct mm_struct *mm, struct task_struct *p)
570 {
571 /*
572 * If there are other users of the mm and the owner (us) is exiting
573 * we need to find a new owner to take on the responsibility.
574 */
575 if (atomic_read(&mm->mm_users) <= 1)
576 return 0;
577 if (mm->owner != p)
578 return 0;
579 return 1;
580 }
581
582 void mm_update_next_owner(struct mm_struct *mm)
583 {
584 struct task_struct *c, *g, *p = current;
585
586 retry:
587 if (!mm_need_new_owner(mm, p))
588 return;
589
590 read_lock(&tasklist_lock);
591 /*
592 * Search in the children
593 */
594 list_for_each_entry(c, &p->children, sibling) {
595 if (c->mm == mm)
596 goto assign_new_owner;
597 }
598
599 /*
600 * Search in the siblings
601 */
602 list_for_each_entry(c, &p->real_parent->children, sibling) {
603 if (c->mm == mm)
604 goto assign_new_owner;
605 }
606
607 /*
608 * Search through everything else. We should not get
609 * here often
610 */
611 do_each_thread(g, c) {
612 if (c->mm == mm)
613 goto assign_new_owner;
614 } while_each_thread(g, c);
615
616 read_unlock(&tasklist_lock);
617 /*
618 * We found no owner yet mm_users > 1: this implies that we are
619 * most likely racing with swapoff (try_to_unuse()) or /proc or
620 * ptrace or page migration (get_task_mm()). Mark owner as NULL.
621 */
622 mm->owner = NULL;
623 return;
624
625 assign_new_owner:
626 BUG_ON(c == p);
627 get_task_struct(c);
628 /*
629 * The task_lock protects c->mm from changing.
630 * We always want mm->owner->mm == mm
631 */
632 task_lock(c);
633 /*
634 * Delay read_unlock() till we have the task_lock()
635 * to ensure that c does not slip away underneath us
636 */
637 read_unlock(&tasklist_lock);
638 if (c->mm != mm) {
639 task_unlock(c);
640 put_task_struct(c);
641 goto retry;
642 }
643 mm->owner = c;
644 task_unlock(c);
645 put_task_struct(c);
646 }
647 #endif /* CONFIG_MM_OWNER */
648
649 /*
650 * Turn us into a lazy TLB process if we
651 * aren't already..
652 */
653 static void exit_mm(struct task_struct * tsk)
654 {
655 struct mm_struct *mm = tsk->mm;
656 struct core_state *core_state;
657
658 mm_release(tsk, mm);
659 if (!mm)
660 return;
661 /*
662 * Serialize with any possible pending coredump.
663 * We must hold mmap_sem around checking core_state
664 * and clearing tsk->mm. The core-inducing thread
665 * will increment ->nr_threads for each thread in the
666 * group with ->mm != NULL.
667 */
668 down_read(&mm->mmap_sem);
669 core_state = mm->core_state;
670 if (core_state) {
671 struct core_thread self;
672 up_read(&mm->mmap_sem);
673
674 self.task = tsk;
675 self.next = xchg(&core_state->dumper.next, &self);
676 /*
677 * Implies mb(), the result of xchg() must be visible
678 * to core_state->dumper.
679 */
680 if (atomic_dec_and_test(&core_state->nr_threads))
681 complete(&core_state->startup);
682
683 for (;;) {
684 set_task_state(tsk, TASK_UNINTERRUPTIBLE);
685 if (!self.task) /* see coredump_finish() */
686 break;
687 schedule();
688 }
689 __set_task_state(tsk, TASK_RUNNING);
690 down_read(&mm->mmap_sem);
691 }
692 atomic_inc(&mm->mm_count);
693 BUG_ON(mm != tsk->active_mm);
694 /* more a memory barrier than a real lock */
695 task_lock(tsk);
696 tsk->mm = NULL;
697 up_read(&mm->mmap_sem);
698 enter_lazy_tlb(mm, current);
699 /* We don't want this task to be frozen prematurely */
700 clear_freeze_flag(tsk);
701 task_unlock(tsk);
702 mm_update_next_owner(mm);
703 mmput(mm);
704 }
705
706 /*
707 * When we die, we re-parent all our children.
708 * Try to give them to another thread in our thread
709 * group, and if no such member exists, give it to
710 * the child reaper process (ie "init") in our pid
711 * space.
712 */
713 static struct task_struct *find_new_reaper(struct task_struct *father)
714 {
715 struct pid_namespace *pid_ns = task_active_pid_ns(father);
716 struct task_struct *thread;
717
718 thread = father;
719 while_each_thread(father, thread) {
720 if (thread->flags & PF_EXITING)
721 continue;
722 if (unlikely(pid_ns->child_reaper == father))
723 pid_ns->child_reaper = thread;
724 return thread;
725 }
726
727 if (unlikely(pid_ns->child_reaper == father)) {
728 write_unlock_irq(&tasklist_lock);
729 if (unlikely(pid_ns == &init_pid_ns))
730 panic("Attempted to kill init!");
731
732 zap_pid_ns_processes(pid_ns);
733 write_lock_irq(&tasklist_lock);
734 /*
735 * We can not clear ->child_reaper or leave it alone.
736 * There may by stealth EXIT_DEAD tasks on ->children,
737 * forget_original_parent() must move them somewhere.
738 */
739 pid_ns->child_reaper = init_pid_ns.child_reaper;
740 }
741
742 return pid_ns->child_reaper;
743 }
744
745 /*
746 * Any that need to be release_task'd are put on the @dead list.
747 */
748 static void reparent_leader(struct task_struct *father, struct task_struct *p,
749 struct list_head *dead)
750 {
751 list_move_tail(&p->sibling, &p->real_parent->children);
752
753 if (task_detached(p))
754 return;
755 /*
756 * If this is a threaded reparent there is no need to
757 * notify anyone anything has happened.
758 */
759 if (same_thread_group(p->real_parent, father))
760 return;
761
762 /* We don't want people slaying init. */
763 p->exit_signal = SIGCHLD;
764
765 /* If it has exited notify the new parent about this child's death. */
766 if (!task_ptrace(p) &&
767 p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
768 do_notify_parent(p, p->exit_signal);
769 if (task_detached(p)) {
770 p->exit_state = EXIT_DEAD;
771 list_move_tail(&p->sibling, dead);
772 }
773 }
774
775 kill_orphaned_pgrp(p, father);
776 }
777
778 static void forget_original_parent(struct task_struct *father)
779 {
780 struct task_struct *p, *n, *reaper;
781 LIST_HEAD(dead_children);
782
783 exit_ptrace(father);
784
785 write_lock_irq(&tasklist_lock);
786 reaper = find_new_reaper(father);
787
788 list_for_each_entry_safe(p, n, &father->children, sibling) {
789 struct task_struct *t = p;
790 do {
791 t->real_parent = reaper;
792 if (t->parent == father) {
793 BUG_ON(task_ptrace(t));
794 t->parent = t->real_parent;
795 }
796 if (t->pdeath_signal)
797 group_send_sig_info(t->pdeath_signal,
798 SEND_SIG_NOINFO, t);
799 } while_each_thread(p, t);
800 reparent_leader(father, p, &dead_children);
801 }
802 write_unlock_irq(&tasklist_lock);
803
804 BUG_ON(!list_empty(&father->children));
805
806 list_for_each_entry_safe(p, n, &dead_children, sibling) {
807 list_del_init(&p->sibling);
808 release_task(p);
809 }
810 }
811
812 /*
813 * Send signals to all our closest relatives so that they know
814 * to properly mourn us..
815 */
816 static void exit_notify(struct task_struct *tsk, int group_dead)
817 {
818 int signal;
819 void *cookie;
820
821 /*
822 * This does two things:
823 *
824 * A. Make init inherit all the child processes
825 * B. Check to see if any process groups have become orphaned
826 * as a result of our exiting, and if they have any stopped
827 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
828 */
829 forget_original_parent(tsk);
830 exit_task_namespaces(tsk);
831
832 write_lock_irq(&tasklist_lock);
833 if (group_dead)
834 kill_orphaned_pgrp(tsk->group_leader, NULL);
835
836 /* Let father know we died
837 *
838 * Thread signals are configurable, but you aren't going to use
839 * that to send signals to arbitary processes.
840 * That stops right now.
841 *
842 * If the parent exec id doesn't match the exec id we saved
843 * when we started then we know the parent has changed security
844 * domain.
845 *
846 * If our self_exec id doesn't match our parent_exec_id then
847 * we have changed execution domain as these two values started
848 * the same after a fork.
849 */
850 if (tsk->exit_signal != SIGCHLD && !task_detached(tsk) &&
851 (tsk->parent_exec_id != tsk->real_parent->self_exec_id ||
852 tsk->self_exec_id != tsk->parent_exec_id))
853 tsk->exit_signal = SIGCHLD;
854
855 signal = tracehook_notify_death(tsk, &cookie, group_dead);
856 if (signal >= 0)
857 signal = do_notify_parent(tsk, signal);
858
859 tsk->exit_state = signal == DEATH_REAP ? EXIT_DEAD : EXIT_ZOMBIE;
860
861 /* mt-exec, de_thread() is waiting for group leader */
862 if (unlikely(tsk->signal->notify_count < 0))
863 wake_up_process(tsk->signal->group_exit_task);
864 write_unlock_irq(&tasklist_lock);
865
866 tracehook_report_death(tsk, signal, cookie, group_dead);
867
868 /* If the process is dead, release it - nobody will wait for it */
869 if (signal == DEATH_REAP)
870 release_task(tsk);
871 }
872
873 #ifdef CONFIG_DEBUG_STACK_USAGE
874 static void check_stack_usage(void)
875 {
876 static DEFINE_SPINLOCK(low_water_lock);
877 static int lowest_to_date = THREAD_SIZE;
878 unsigned long free;
879
880 free = stack_not_used(current);
881
882 if (free >= lowest_to_date)
883 return;
884
885 spin_lock(&low_water_lock);
886 if (free < lowest_to_date) {
887 printk(KERN_WARNING "%s used greatest stack depth: %lu bytes "
888 "left\n",
889 current->comm, free);
890 lowest_to_date = free;
891 }
892 spin_unlock(&low_water_lock);
893 }
894 #else
895 static inline void check_stack_usage(void) {}
896 #endif
897
898 NORET_TYPE void do_exit(long code)
899 {
900 struct task_struct *tsk = current;
901 int group_dead;
902
903 profile_task_exit(tsk);
904
905 WARN_ON(atomic_read(&tsk->fs_excl));
906
907 if (unlikely(in_interrupt()))
908 panic("Aiee, killing interrupt handler!");
909 if (unlikely(!tsk->pid))
910 panic("Attempted to kill the idle task!");
911
912 tracehook_report_exit(&code);
913
914 validate_creds_for_do_exit(tsk);
915
916 /*
917 * We're taking recursive faults here in do_exit. Safest is to just
918 * leave this task alone and wait for reboot.
919 */
920 if (unlikely(tsk->flags & PF_EXITING)) {
921 printk(KERN_ALERT
922 "Fixing recursive fault but reboot is needed!\n");
923 /*
924 * We can do this unlocked here. The futex code uses
925 * this flag just to verify whether the pi state
926 * cleanup has been done or not. In the worst case it
927 * loops once more. We pretend that the cleanup was
928 * done as there is no way to return. Either the
929 * OWNER_DIED bit is set by now or we push the blocked
930 * task into the wait for ever nirwana as well.
931 */
932 tsk->flags |= PF_EXITPIDONE;
933 set_current_state(TASK_UNINTERRUPTIBLE);
934 schedule();
935 }
936
937 exit_irq_thread();
938
939 exit_signals(tsk); /* sets PF_EXITING */
940 /*
941 * tsk->flags are checked in the futex code to protect against
942 * an exiting task cleaning up the robust pi futexes.
943 */
944 smp_mb();
945 raw_spin_unlock_wait(&tsk->pi_lock);
946
947 if (unlikely(in_atomic()))
948 printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n",
949 current->comm, task_pid_nr(current),
950 preempt_count());
951
952 acct_update_integrals(tsk);
953 /* sync mm's RSS info before statistics gathering */
954 if (tsk->mm)
955 sync_mm_rss(tsk, tsk->mm);
956 group_dead = atomic_dec_and_test(&tsk->signal->live);
957 if (group_dead) {
958 hrtimer_cancel(&tsk->signal->real_timer);
959 exit_itimers(tsk->signal);
960 if (tsk->mm)
961 setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
962 }
963 acct_collect(code, group_dead);
964 if (group_dead)
965 tty_audit_exit();
966 if (unlikely(tsk->audit_context))
967 audit_free(tsk);
968
969 tsk->exit_code = code;
970 taskstats_exit(tsk, group_dead);
971
972 exit_mm(tsk);
973
974 if (group_dead)
975 acct_process();
976 trace_sched_process_exit(tsk);
977
978 exit_sem(tsk);
979 exit_files(tsk);
980 exit_fs(tsk);
981 check_stack_usage();
982 exit_thread();
983 cgroup_exit(tsk, 1);
984
985 if (group_dead)
986 disassociate_ctty(1);
987
988 module_put(task_thread_info(tsk)->exec_domain->module);
989
990 proc_exit_connector(tsk);
991
992 /*
993 * FIXME: do that only when needed, using sched_exit tracepoint
994 */
995 flush_ptrace_hw_breakpoint(tsk);
996 /*
997 * Flush inherited counters to the parent - before the parent
998 * gets woken up by child-exit notifications.
999 */
1000 perf_event_exit_task(tsk);
1001
1002 exit_notify(tsk, group_dead);
1003 #ifdef CONFIG_NUMA
1004 task_lock(tsk);
1005 mpol_put(tsk->mempolicy);
1006 tsk->mempolicy = NULL;
1007 task_unlock(tsk);
1008 #endif
1009 #ifdef CONFIG_FUTEX
1010 if (unlikely(current->pi_state_cache))
1011 kfree(current->pi_state_cache);
1012 #endif
1013 /*
1014 * Make sure we are holding no locks:
1015 */
1016 debug_check_no_locks_held(tsk);
1017 /*
1018 * We can do this unlocked here. The futex code uses this flag
1019 * just to verify whether the pi state cleanup has been done
1020 * or not. In the worst case it loops once more.
1021 */
1022 tsk->flags |= PF_EXITPIDONE;
1023
1024 if (tsk->io_context)
1025 exit_io_context(tsk);
1026
1027 if (tsk->splice_pipe)
1028 __free_pipe_info(tsk->splice_pipe);
1029
1030 validate_creds_for_do_exit(tsk);
1031
1032 preempt_disable();
1033 exit_rcu();
1034 /* causes final put_task_struct in finish_task_switch(). */
1035 tsk->state = TASK_DEAD;
1036 schedule();
1037 BUG();
1038 /* Avoid "noreturn function does return". */
1039 for (;;)
1040 cpu_relax(); /* For when BUG is null */
1041 }
1042
1043 EXPORT_SYMBOL_GPL(do_exit);
1044
1045 NORET_TYPE void complete_and_exit(struct completion *comp, long code)
1046 {
1047 if (comp)
1048 complete(comp);
1049
1050 do_exit(code);
1051 }
1052
1053 EXPORT_SYMBOL(complete_and_exit);
1054
1055 SYSCALL_DEFINE1(exit, int, error_code)
1056 {
1057 do_exit((error_code&0xff)<<8);
1058 }
1059
1060 /*
1061 * Take down every thread in the group. This is called by fatal signals
1062 * as well as by sys_exit_group (below).
1063 */
1064 NORET_TYPE void
1065 do_group_exit(int exit_code)
1066 {
1067 struct signal_struct *sig = current->signal;
1068
1069 BUG_ON(exit_code & 0x80); /* core dumps don't get here */
1070
1071 if (signal_group_exit(sig))
1072 exit_code = sig->group_exit_code;
1073 else if (!thread_group_empty(current)) {
1074 struct sighand_struct *const sighand = current->sighand;
1075 spin_lock_irq(&sighand->siglock);
1076 if (signal_group_exit(sig))
1077 /* Another thread got here before we took the lock. */
1078 exit_code = sig->group_exit_code;
1079 else {
1080 sig->group_exit_code = exit_code;
1081 sig->flags = SIGNAL_GROUP_EXIT;
1082 zap_other_threads(current);
1083 }
1084 spin_unlock_irq(&sighand->siglock);
1085 }
1086
1087 do_exit(exit_code);
1088 /* NOTREACHED */
1089 }
1090
1091 /*
1092 * this kills every thread in the thread group. Note that any externally
1093 * wait4()-ing process will get the correct exit code - even if this
1094 * thread is not the thread group leader.
1095 */
1096 SYSCALL_DEFINE1(exit_group, int, error_code)
1097 {
1098 do_group_exit((error_code & 0xff) << 8);
1099 /* NOTREACHED */
1100 return 0;
1101 }
1102
1103 struct wait_opts {
1104 enum pid_type wo_type;
1105 int wo_flags;
1106 struct pid *wo_pid;
1107
1108 struct siginfo __user *wo_info;
1109 int __user *wo_stat;
1110 struct rusage __user *wo_rusage;
1111
1112 wait_queue_t child_wait;
1113 int notask_error;
1114 };
1115
1116 static inline
1117 struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
1118 {
1119 if (type != PIDTYPE_PID)
1120 task = task->group_leader;
1121 return task->pids[type].pid;
1122 }
1123
1124 static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
1125 {
1126 return wo->wo_type == PIDTYPE_MAX ||
1127 task_pid_type(p, wo->wo_type) == wo->wo_pid;
1128 }
1129
1130 static int eligible_child(struct wait_opts *wo, struct task_struct *p)
1131 {
1132 if (!eligible_pid(wo, p))
1133 return 0;
1134 /* Wait for all children (clone and not) if __WALL is set;
1135 * otherwise, wait for clone children *only* if __WCLONE is
1136 * set; otherwise, wait for non-clone children *only*. (Note:
1137 * A "clone" child here is one that reports to its parent
1138 * using a signal other than SIGCHLD.) */
1139 if (((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
1140 && !(wo->wo_flags & __WALL))
1141 return 0;
1142
1143 return 1;
1144 }
1145
1146 static int wait_noreap_copyout(struct wait_opts *wo, struct task_struct *p,
1147 pid_t pid, uid_t uid, int why, int status)
1148 {
1149 struct siginfo __user *infop;
1150 int retval = wo->wo_rusage
1151 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1152
1153 put_task_struct(p);
1154 infop = wo->wo_info;
1155 if (infop) {
1156 if (!retval)
1157 retval = put_user(SIGCHLD, &infop->si_signo);
1158 if (!retval)
1159 retval = put_user(0, &infop->si_errno);
1160 if (!retval)
1161 retval = put_user((short)why, &infop->si_code);
1162 if (!retval)
1163 retval = put_user(pid, &infop->si_pid);
1164 if (!retval)
1165 retval = put_user(uid, &infop->si_uid);
1166 if (!retval)
1167 retval = put_user(status, &infop->si_status);
1168 }
1169 if (!retval)
1170 retval = pid;
1171 return retval;
1172 }
1173
1174 /*
1175 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold
1176 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1177 * the lock and this task is uninteresting. If we return nonzero, we have
1178 * released the lock and the system call should return.
1179 */
1180 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
1181 {
1182 unsigned long state;
1183 int retval, status, traced;
1184 pid_t pid = task_pid_vnr(p);
1185 uid_t uid = __task_cred(p)->uid;
1186 struct siginfo __user *infop;
1187
1188 if (!likely(wo->wo_flags & WEXITED))
1189 return 0;
1190
1191 if (unlikely(wo->wo_flags & WNOWAIT)) {
1192 int exit_code = p->exit_code;
1193 int why;
1194
1195 get_task_struct(p);
1196 read_unlock(&tasklist_lock);
1197 if ((exit_code & 0x7f) == 0) {
1198 why = CLD_EXITED;
1199 status = exit_code >> 8;
1200 } else {
1201 why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
1202 status = exit_code & 0x7f;
1203 }
1204 return wait_noreap_copyout(wo, p, pid, uid, why, status);
1205 }
1206
1207 /*
1208 * Try to move the task's state to DEAD
1209 * only one thread is allowed to do this:
1210 */
1211 state = xchg(&p->exit_state, EXIT_DEAD);
1212 if (state != EXIT_ZOMBIE) {
1213 BUG_ON(state != EXIT_DEAD);
1214 return 0;
1215 }
1216
1217 traced = ptrace_reparented(p);
1218 /*
1219 * It can be ptraced but not reparented, check
1220 * !task_detached() to filter out sub-threads.
1221 */
1222 if (likely(!traced) && likely(!task_detached(p))) {
1223 struct signal_struct *psig;
1224 struct signal_struct *sig;
1225 unsigned long maxrss;
1226 cputime_t tgutime, tgstime;
1227
1228 /*
1229 * The resource counters for the group leader are in its
1230 * own task_struct. Those for dead threads in the group
1231 * are in its signal_struct, as are those for the child
1232 * processes it has previously reaped. All these
1233 * accumulate in the parent's signal_struct c* fields.
1234 *
1235 * We don't bother to take a lock here to protect these
1236 * p->signal fields, because they are only touched by
1237 * __exit_signal, which runs with tasklist_lock
1238 * write-locked anyway, and so is excluded here. We do
1239 * need to protect the access to parent->signal fields,
1240 * as other threads in the parent group can be right
1241 * here reaping other children at the same time.
1242 *
1243 * We use thread_group_times() to get times for the thread
1244 * group, which consolidates times for all threads in the
1245 * group including the group leader.
1246 */
1247 thread_group_times(p, &tgutime, &tgstime);
1248 spin_lock_irq(&p->real_parent->sighand->siglock);
1249 psig = p->real_parent->signal;
1250 sig = p->signal;
1251 psig->cutime =
1252 cputime_add(psig->cutime,
1253 cputime_add(tgutime,
1254 sig->cutime));
1255 psig->cstime =
1256 cputime_add(psig->cstime,
1257 cputime_add(tgstime,
1258 sig->cstime));
1259 psig->cgtime =
1260 cputime_add(psig->cgtime,
1261 cputime_add(p->gtime,
1262 cputime_add(sig->gtime,
1263 sig->cgtime)));
1264 psig->cmin_flt +=
1265 p->min_flt + sig->min_flt + sig->cmin_flt;
1266 psig->cmaj_flt +=
1267 p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1268 psig->cnvcsw +=
1269 p->nvcsw + sig->nvcsw + sig->cnvcsw;
1270 psig->cnivcsw +=
1271 p->nivcsw + sig->nivcsw + sig->cnivcsw;
1272 psig->cinblock +=
1273 task_io_get_inblock(p) +
1274 sig->inblock + sig->cinblock;
1275 psig->coublock +=
1276 task_io_get_oublock(p) +
1277 sig->oublock + sig->coublock;
1278 maxrss = max(sig->maxrss, sig->cmaxrss);
1279 if (psig->cmaxrss < maxrss)
1280 psig->cmaxrss = maxrss;
1281 task_io_accounting_add(&psig->ioac, &p->ioac);
1282 task_io_accounting_add(&psig->ioac, &sig->ioac);
1283 spin_unlock_irq(&p->real_parent->sighand->siglock);
1284 }
1285
1286 /*
1287 * Now we are sure this task is interesting, and no other
1288 * thread can reap it because we set its state to EXIT_DEAD.
1289 */
1290 read_unlock(&tasklist_lock);
1291
1292 retval = wo->wo_rusage
1293 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1294 status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1295 ? p->signal->group_exit_code : p->exit_code;
1296 if (!retval && wo->wo_stat)
1297 retval = put_user(status, wo->wo_stat);
1298
1299 infop = wo->wo_info;
1300 if (!retval && infop)
1301 retval = put_user(SIGCHLD, &infop->si_signo);
1302 if (!retval && infop)
1303 retval = put_user(0, &infop->si_errno);
1304 if (!retval && infop) {
1305 int why;
1306
1307 if ((status & 0x7f) == 0) {
1308 why = CLD_EXITED;
1309 status >>= 8;
1310 } else {
1311 why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1312 status &= 0x7f;
1313 }
1314 retval = put_user((short)why, &infop->si_code);
1315 if (!retval)
1316 retval = put_user(status, &infop->si_status);
1317 }
1318 if (!retval && infop)
1319 retval = put_user(pid, &infop->si_pid);
1320 if (!retval && infop)
1321 retval = put_user(uid, &infop->si_uid);
1322 if (!retval)
1323 retval = pid;
1324
1325 if (traced) {
1326 write_lock_irq(&tasklist_lock);
1327 /* We dropped tasklist, ptracer could die and untrace */
1328 ptrace_unlink(p);
1329 /*
1330 * If this is not a detached task, notify the parent.
1331 * If it's still not detached after that, don't release
1332 * it now.
1333 */
1334 if (!task_detached(p)) {
1335 do_notify_parent(p, p->exit_signal);
1336 if (!task_detached(p)) {
1337 p->exit_state = EXIT_ZOMBIE;
1338 p = NULL;
1339 }
1340 }
1341 write_unlock_irq(&tasklist_lock);
1342 }
1343 if (p != NULL)
1344 release_task(p);
1345
1346 return retval;
1347 }
1348
1349 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1350 {
1351 if (ptrace) {
1352 if (task_is_stopped_or_traced(p))
1353 return &p->exit_code;
1354 } else {
1355 if (p->signal->flags & SIGNAL_STOP_STOPPED)
1356 return &p->signal->group_exit_code;
1357 }
1358 return NULL;
1359 }
1360
1361 /*
1362 * Handle sys_wait4 work for one task in state TASK_STOPPED. We hold
1363 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1364 * the lock and this task is uninteresting. If we return nonzero, we have
1365 * released the lock and the system call should return.
1366 */
1367 static int wait_task_stopped(struct wait_opts *wo,
1368 int ptrace, struct task_struct *p)
1369 {
1370 struct siginfo __user *infop;
1371 int retval, exit_code, *p_code, why;
1372 uid_t uid = 0; /* unneeded, required by compiler */
1373 pid_t pid;
1374
1375 /*
1376 * Traditionally we see ptrace'd stopped tasks regardless of options.
1377 */
1378 if (!ptrace && !(wo->wo_flags & WUNTRACED))
1379 return 0;
1380
1381 exit_code = 0;
1382 spin_lock_irq(&p->sighand->siglock);
1383
1384 p_code = task_stopped_code(p, ptrace);
1385 if (unlikely(!p_code))
1386 goto unlock_sig;
1387
1388 exit_code = *p_code;
1389 if (!exit_code)
1390 goto unlock_sig;
1391
1392 if (!unlikely(wo->wo_flags & WNOWAIT))
1393 *p_code = 0;
1394
1395 /* don't need the RCU readlock here as we're holding a spinlock */
1396 uid = __task_cred(p)->uid;
1397 unlock_sig:
1398 spin_unlock_irq(&p->sighand->siglock);
1399 if (!exit_code)
1400 return 0;
1401
1402 /*
1403 * Now we are pretty sure this task is interesting.
1404 * Make sure it doesn't get reaped out from under us while we
1405 * give up the lock and then examine it below. We don't want to
1406 * keep holding onto the tasklist_lock while we call getrusage and
1407 * possibly take page faults for user memory.
1408 */
1409 get_task_struct(p);
1410 pid = task_pid_vnr(p);
1411 why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1412 read_unlock(&tasklist_lock);
1413
1414 if (unlikely(wo->wo_flags & WNOWAIT))
1415 return wait_noreap_copyout(wo, p, pid, uid, why, exit_code);
1416
1417 retval = wo->wo_rusage
1418 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1419 if (!retval && wo->wo_stat)
1420 retval = put_user((exit_code << 8) | 0x7f, wo->wo_stat);
1421
1422 infop = wo->wo_info;
1423 if (!retval && infop)
1424 retval = put_user(SIGCHLD, &infop->si_signo);
1425 if (!retval && infop)
1426 retval = put_user(0, &infop->si_errno);
1427 if (!retval && infop)
1428 retval = put_user((short)why, &infop->si_code);
1429 if (!retval && infop)
1430 retval = put_user(exit_code, &infop->si_status);
1431 if (!retval && infop)
1432 retval = put_user(pid, &infop->si_pid);
1433 if (!retval && infop)
1434 retval = put_user(uid, &infop->si_uid);
1435 if (!retval)
1436 retval = pid;
1437 put_task_struct(p);
1438
1439 BUG_ON(!retval);
1440 return retval;
1441 }
1442
1443 /*
1444 * Handle do_wait work for one task in a live, non-stopped state.
1445 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1446 * the lock and this task is uninteresting. If we return nonzero, we have
1447 * released the lock and the system call should return.
1448 */
1449 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1450 {
1451 int retval;
1452 pid_t pid;
1453 uid_t uid;
1454
1455 if (!unlikely(wo->wo_flags & WCONTINUED))
1456 return 0;
1457
1458 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1459 return 0;
1460
1461 spin_lock_irq(&p->sighand->siglock);
1462 /* Re-check with the lock held. */
1463 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1464 spin_unlock_irq(&p->sighand->siglock);
1465 return 0;
1466 }
1467 if (!unlikely(wo->wo_flags & WNOWAIT))
1468 p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1469 uid = __task_cred(p)->uid;
1470 spin_unlock_irq(&p->sighand->siglock);
1471
1472 pid = task_pid_vnr(p);
1473 get_task_struct(p);
1474 read_unlock(&tasklist_lock);
1475
1476 if (!wo->wo_info) {
1477 retval = wo->wo_rusage
1478 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1479 put_task_struct(p);
1480 if (!retval && wo->wo_stat)
1481 retval = put_user(0xffff, wo->wo_stat);
1482 if (!retval)
1483 retval = pid;
1484 } else {
1485 retval = wait_noreap_copyout(wo, p, pid, uid,
1486 CLD_CONTINUED, SIGCONT);
1487 BUG_ON(retval == 0);
1488 }
1489
1490 return retval;
1491 }
1492
1493 /*
1494 * Consider @p for a wait by @parent.
1495 *
1496 * -ECHILD should be in ->notask_error before the first call.
1497 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1498 * Returns zero if the search for a child should continue;
1499 * then ->notask_error is 0 if @p is an eligible child,
1500 * or another error from security_task_wait(), or still -ECHILD.
1501 */
1502 static int wait_consider_task(struct wait_opts *wo, int ptrace,
1503 struct task_struct *p)
1504 {
1505 int ret = eligible_child(wo, p);
1506 if (!ret)
1507 return ret;
1508
1509 ret = security_task_wait(p);
1510 if (unlikely(ret < 0)) {
1511 /*
1512 * If we have not yet seen any eligible child,
1513 * then let this error code replace -ECHILD.
1514 * A permission error will give the user a clue
1515 * to look for security policy problems, rather
1516 * than for mysterious wait bugs.
1517 */
1518 if (wo->notask_error)
1519 wo->notask_error = ret;
1520 return 0;
1521 }
1522
1523 if (likely(!ptrace) && unlikely(task_ptrace(p))) {
1524 /*
1525 * This child is hidden by ptrace.
1526 * We aren't allowed to see it now, but eventually we will.
1527 */
1528 wo->notask_error = 0;
1529 return 0;
1530 }
1531
1532 if (p->exit_state == EXIT_DEAD)
1533 return 0;
1534
1535 /*
1536 * We don't reap group leaders with subthreads.
1537 */
1538 if (p->exit_state == EXIT_ZOMBIE && !delay_group_leader(p))
1539 return wait_task_zombie(wo, p);
1540
1541 /*
1542 * It's stopped or running now, so it might
1543 * later continue, exit, or stop again.
1544 */
1545 wo->notask_error = 0;
1546
1547 if (task_stopped_code(p, ptrace))
1548 return wait_task_stopped(wo, ptrace, p);
1549
1550 return wait_task_continued(wo, p);
1551 }
1552
1553 /*
1554 * Do the work of do_wait() for one thread in the group, @tsk.
1555 *
1556 * -ECHILD should be in ->notask_error before the first call.
1557 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1558 * Returns zero if the search for a child should continue; then
1559 * ->notask_error is 0 if there were any eligible children,
1560 * or another error from security_task_wait(), or still -ECHILD.
1561 */
1562 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1563 {
1564 struct task_struct *p;
1565
1566 list_for_each_entry(p, &tsk->children, sibling) {
1567 int ret = wait_consider_task(wo, 0, p);
1568 if (ret)
1569 return ret;
1570 }
1571
1572 return 0;
1573 }
1574
1575 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1576 {
1577 struct task_struct *p;
1578
1579 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1580 int ret = wait_consider_task(wo, 1, p);
1581 if (ret)
1582 return ret;
1583 }
1584
1585 return 0;
1586 }
1587
1588 static int child_wait_callback(wait_queue_t *wait, unsigned mode,
1589 int sync, void *key)
1590 {
1591 struct wait_opts *wo = container_of(wait, struct wait_opts,
1592 child_wait);
1593 struct task_struct *p = key;
1594
1595 if (!eligible_pid(wo, p))
1596 return 0;
1597
1598 if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1599 return 0;
1600
1601 return default_wake_function(wait, mode, sync, key);
1602 }
1603
1604 void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1605 {
1606 __wake_up_sync_key(&parent->signal->wait_chldexit,
1607 TASK_INTERRUPTIBLE, 1, p);
1608 }
1609
1610 static long do_wait(struct wait_opts *wo)
1611 {
1612 struct task_struct *tsk;
1613 int retval;
1614
1615 trace_sched_process_wait(wo->wo_pid);
1616
1617 init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1618 wo->child_wait.private = current;
1619 add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1620 repeat:
1621 /*
1622 * If there is nothing that can match our critiera just get out.
1623 * We will clear ->notask_error to zero if we see any child that
1624 * might later match our criteria, even if we are not able to reap
1625 * it yet.
1626 */
1627 wo->notask_error = -ECHILD;
1628 if ((wo->wo_type < PIDTYPE_MAX) &&
1629 (!wo->wo_pid || hlist_empty(&wo->wo_pid->tasks[wo->wo_type])))
1630 goto notask;
1631
1632 set_current_state(TASK_INTERRUPTIBLE);
1633 read_lock(&tasklist_lock);
1634 tsk = current;
1635 do {
1636 retval = do_wait_thread(wo, tsk);
1637 if (retval)
1638 goto end;
1639
1640 retval = ptrace_do_wait(wo, tsk);
1641 if (retval)
1642 goto end;
1643
1644 if (wo->wo_flags & __WNOTHREAD)
1645 break;
1646 } while_each_thread(current, tsk);
1647 read_unlock(&tasklist_lock);
1648
1649 notask:
1650 retval = wo->notask_error;
1651 if (!retval && !(wo->wo_flags & WNOHANG)) {
1652 retval = -ERESTARTSYS;
1653 if (!signal_pending(current)) {
1654 schedule();
1655 goto repeat;
1656 }
1657 }
1658 end:
1659 __set_current_state(TASK_RUNNING);
1660 remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1661 return retval;
1662 }
1663
1664 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1665 infop, int, options, struct rusage __user *, ru)
1666 {
1667 struct wait_opts wo;
1668 struct pid *pid = NULL;
1669 enum pid_type type;
1670 long ret;
1671
1672 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED))
1673 return -EINVAL;
1674 if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1675 return -EINVAL;
1676
1677 switch (which) {
1678 case P_ALL:
1679 type = PIDTYPE_MAX;
1680 break;
1681 case P_PID:
1682 type = PIDTYPE_PID;
1683 if (upid <= 0)
1684 return -EINVAL;
1685 break;
1686 case P_PGID:
1687 type = PIDTYPE_PGID;
1688 if (upid <= 0)
1689 return -EINVAL;
1690 break;
1691 default:
1692 return -EINVAL;
1693 }
1694
1695 if (type < PIDTYPE_MAX)
1696 pid = find_get_pid(upid);
1697
1698 wo.wo_type = type;
1699 wo.wo_pid = pid;
1700 wo.wo_flags = options;
1701 wo.wo_info = infop;
1702 wo.wo_stat = NULL;
1703 wo.wo_rusage = ru;
1704 ret = do_wait(&wo);
1705
1706 if (ret > 0) {
1707 ret = 0;
1708 } else if (infop) {
1709 /*
1710 * For a WNOHANG return, clear out all the fields
1711 * we would set so the user can easily tell the
1712 * difference.
1713 */
1714 if (!ret)
1715 ret = put_user(0, &infop->si_signo);
1716 if (!ret)
1717 ret = put_user(0, &infop->si_errno);
1718 if (!ret)
1719 ret = put_user(0, &infop->si_code);
1720 if (!ret)
1721 ret = put_user(0, &infop->si_pid);
1722 if (!ret)
1723 ret = put_user(0, &infop->si_uid);
1724 if (!ret)
1725 ret = put_user(0, &infop->si_status);
1726 }
1727
1728 put_pid(pid);
1729
1730 /* avoid REGPARM breakage on x86: */
1731 asmlinkage_protect(5, ret, which, upid, infop, options, ru);
1732 return ret;
1733 }
1734
1735 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1736 int, options, struct rusage __user *, ru)
1737 {
1738 struct wait_opts wo;
1739 struct pid *pid = NULL;
1740 enum pid_type type;
1741 long ret;
1742
1743 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1744 __WNOTHREAD|__WCLONE|__WALL))
1745 return -EINVAL;
1746
1747 if (upid == -1)
1748 type = PIDTYPE_MAX;
1749 else if (upid < 0) {
1750 type = PIDTYPE_PGID;
1751 pid = find_get_pid(-upid);
1752 } else if (upid == 0) {
1753 type = PIDTYPE_PGID;
1754 pid = get_task_pid(current, PIDTYPE_PGID);
1755 } else /* upid > 0 */ {
1756 type = PIDTYPE_PID;
1757 pid = find_get_pid(upid);
1758 }
1759
1760 wo.wo_type = type;
1761 wo.wo_pid = pid;
1762 wo.wo_flags = options | WEXITED;
1763 wo.wo_info = NULL;
1764 wo.wo_stat = stat_addr;
1765 wo.wo_rusage = ru;
1766 ret = do_wait(&wo);
1767 put_pid(pid);
1768
1769 /* avoid REGPARM breakage on x86: */
1770 asmlinkage_protect(4, ret, upid, stat_addr, options, ru);
1771 return ret;
1772 }
1773
1774 #ifdef __ARCH_WANT_SYS_WAITPID
1775
1776 /*
1777 * sys_waitpid() remains for compatibility. waitpid() should be
1778 * implemented by calling sys_wait4() from libc.a.
1779 */
1780 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1781 {
1782 return sys_wait4(pid, stat_addr, options, NULL);
1783 }
1784
1785 #endif
This page took 0.078051 seconds and 6 git commands to generate.