Merge branch 'for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mchehab...
[deliverable/linux.git] / kernel / exit.c
1 /*
2 * linux/kernel/exit.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 #include <linux/mm.h>
8 #include <linux/slab.h>
9 #include <linux/interrupt.h>
10 #include <linux/module.h>
11 #include <linux/capability.h>
12 #include <linux/completion.h>
13 #include <linux/personality.h>
14 #include <linux/tty.h>
15 #include <linux/mnt_namespace.h>
16 #include <linux/iocontext.h>
17 #include <linux/key.h>
18 #include <linux/security.h>
19 #include <linux/cpu.h>
20 #include <linux/acct.h>
21 #include <linux/tsacct_kern.h>
22 #include <linux/file.h>
23 #include <linux/fdtable.h>
24 #include <linux/binfmts.h>
25 #include <linux/nsproxy.h>
26 #include <linux/pid_namespace.h>
27 #include <linux/ptrace.h>
28 #include <linux/profile.h>
29 #include <linux/mount.h>
30 #include <linux/proc_fs.h>
31 #include <linux/kthread.h>
32 #include <linux/mempolicy.h>
33 #include <linux/taskstats_kern.h>
34 #include <linux/delayacct.h>
35 #include <linux/freezer.h>
36 #include <linux/cgroup.h>
37 #include <linux/syscalls.h>
38 #include <linux/signal.h>
39 #include <linux/posix-timers.h>
40 #include <linux/cn_proc.h>
41 #include <linux/mutex.h>
42 #include <linux/futex.h>
43 #include <linux/pipe_fs_i.h>
44 #include <linux/audit.h> /* for audit_free() */
45 #include <linux/resource.h>
46 #include <linux/blkdev.h>
47 #include <linux/task_io_accounting_ops.h>
48 #include <linux/tracehook.h>
49 #include <linux/fs_struct.h>
50 #include <linux/init_task.h>
51 #include <trace/sched.h>
52
53 #include <asm/uaccess.h>
54 #include <asm/unistd.h>
55 #include <asm/pgtable.h>
56 #include <asm/mmu_context.h>
57 #include "cred-internals.h"
58
59 DEFINE_TRACE(sched_process_free);
60 DEFINE_TRACE(sched_process_exit);
61 DEFINE_TRACE(sched_process_wait);
62
63 static void exit_mm(struct task_struct * tsk);
64
65 static void __unhash_process(struct task_struct *p)
66 {
67 nr_threads--;
68 detach_pid(p, PIDTYPE_PID);
69 if (thread_group_leader(p)) {
70 detach_pid(p, PIDTYPE_PGID);
71 detach_pid(p, PIDTYPE_SID);
72
73 list_del_rcu(&p->tasks);
74 __get_cpu_var(process_counts)--;
75 }
76 list_del_rcu(&p->thread_group);
77 list_del_init(&p->sibling);
78 }
79
80 /*
81 * This function expects the tasklist_lock write-locked.
82 */
83 static void __exit_signal(struct task_struct *tsk)
84 {
85 struct signal_struct *sig = tsk->signal;
86 struct sighand_struct *sighand;
87
88 BUG_ON(!sig);
89 BUG_ON(!atomic_read(&sig->count));
90
91 sighand = rcu_dereference(tsk->sighand);
92 spin_lock(&sighand->siglock);
93
94 posix_cpu_timers_exit(tsk);
95 if (atomic_dec_and_test(&sig->count))
96 posix_cpu_timers_exit_group(tsk);
97 else {
98 /*
99 * If there is any task waiting for the group exit
100 * then notify it:
101 */
102 if (sig->group_exit_task && atomic_read(&sig->count) == sig->notify_count)
103 wake_up_process(sig->group_exit_task);
104
105 if (tsk == sig->curr_target)
106 sig->curr_target = next_thread(tsk);
107 /*
108 * Accumulate here the counters for all threads but the
109 * group leader as they die, so they can be added into
110 * the process-wide totals when those are taken.
111 * The group leader stays around as a zombie as long
112 * as there are other threads. When it gets reaped,
113 * the exit.c code will add its counts into these totals.
114 * We won't ever get here for the group leader, since it
115 * will have been the last reference on the signal_struct.
116 */
117 sig->utime = cputime_add(sig->utime, task_utime(tsk));
118 sig->stime = cputime_add(sig->stime, task_stime(tsk));
119 sig->gtime = cputime_add(sig->gtime, task_gtime(tsk));
120 sig->min_flt += tsk->min_flt;
121 sig->maj_flt += tsk->maj_flt;
122 sig->nvcsw += tsk->nvcsw;
123 sig->nivcsw += tsk->nivcsw;
124 sig->inblock += task_io_get_inblock(tsk);
125 sig->oublock += task_io_get_oublock(tsk);
126 task_io_accounting_add(&sig->ioac, &tsk->ioac);
127 sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
128 sig = NULL; /* Marker for below. */
129 }
130
131 __unhash_process(tsk);
132
133 /*
134 * Do this under ->siglock, we can race with another thread
135 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
136 */
137 flush_sigqueue(&tsk->pending);
138
139 tsk->signal = NULL;
140 tsk->sighand = NULL;
141 spin_unlock(&sighand->siglock);
142
143 __cleanup_sighand(sighand);
144 clear_tsk_thread_flag(tsk,TIF_SIGPENDING);
145 if (sig) {
146 flush_sigqueue(&sig->shared_pending);
147 taskstats_tgid_free(sig);
148 /*
149 * Make sure ->signal can't go away under rq->lock,
150 * see account_group_exec_runtime().
151 */
152 task_rq_unlock_wait(tsk);
153 __cleanup_signal(sig);
154 }
155 }
156
157 static void delayed_put_task_struct(struct rcu_head *rhp)
158 {
159 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
160
161 trace_sched_process_free(tsk);
162 put_task_struct(tsk);
163 }
164
165
166 void release_task(struct task_struct * p)
167 {
168 struct task_struct *leader;
169 int zap_leader;
170 repeat:
171 tracehook_prepare_release_task(p);
172 /* don't need to get the RCU readlock here - the process is dead and
173 * can't be modifying its own credentials */
174 atomic_dec(&__task_cred(p)->user->processes);
175
176 proc_flush_task(p);
177 write_lock_irq(&tasklist_lock);
178 tracehook_finish_release_task(p);
179 __exit_signal(p);
180
181 /*
182 * If we are the last non-leader member of the thread
183 * group, and the leader is zombie, then notify the
184 * group leader's parent process. (if it wants notification.)
185 */
186 zap_leader = 0;
187 leader = p->group_leader;
188 if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) {
189 BUG_ON(task_detached(leader));
190 do_notify_parent(leader, leader->exit_signal);
191 /*
192 * If we were the last child thread and the leader has
193 * exited already, and the leader's parent ignores SIGCHLD,
194 * then we are the one who should release the leader.
195 *
196 * do_notify_parent() will have marked it self-reaping in
197 * that case.
198 */
199 zap_leader = task_detached(leader);
200
201 /*
202 * This maintains the invariant that release_task()
203 * only runs on a task in EXIT_DEAD, just for sanity.
204 */
205 if (zap_leader)
206 leader->exit_state = EXIT_DEAD;
207 }
208
209 write_unlock_irq(&tasklist_lock);
210 release_thread(p);
211 call_rcu(&p->rcu, delayed_put_task_struct);
212
213 p = leader;
214 if (unlikely(zap_leader))
215 goto repeat;
216 }
217
218 /*
219 * This checks not only the pgrp, but falls back on the pid if no
220 * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
221 * without this...
222 *
223 * The caller must hold rcu lock or the tasklist lock.
224 */
225 struct pid *session_of_pgrp(struct pid *pgrp)
226 {
227 struct task_struct *p;
228 struct pid *sid = NULL;
229
230 p = pid_task(pgrp, PIDTYPE_PGID);
231 if (p == NULL)
232 p = pid_task(pgrp, PIDTYPE_PID);
233 if (p != NULL)
234 sid = task_session(p);
235
236 return sid;
237 }
238
239 /*
240 * Determine if a process group is "orphaned", according to the POSIX
241 * definition in 2.2.2.52. Orphaned process groups are not to be affected
242 * by terminal-generated stop signals. Newly orphaned process groups are
243 * to receive a SIGHUP and a SIGCONT.
244 *
245 * "I ask you, have you ever known what it is to be an orphan?"
246 */
247 static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task)
248 {
249 struct task_struct *p;
250
251 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
252 if ((p == ignored_task) ||
253 (p->exit_state && thread_group_empty(p)) ||
254 is_global_init(p->real_parent))
255 continue;
256
257 if (task_pgrp(p->real_parent) != pgrp &&
258 task_session(p->real_parent) == task_session(p))
259 return 0;
260 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
261
262 return 1;
263 }
264
265 int is_current_pgrp_orphaned(void)
266 {
267 int retval;
268
269 read_lock(&tasklist_lock);
270 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
271 read_unlock(&tasklist_lock);
272
273 return retval;
274 }
275
276 static int has_stopped_jobs(struct pid *pgrp)
277 {
278 int retval = 0;
279 struct task_struct *p;
280
281 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
282 if (!task_is_stopped(p))
283 continue;
284 retval = 1;
285 break;
286 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
287 return retval;
288 }
289
290 /*
291 * Check to see if any process groups have become orphaned as
292 * a result of our exiting, and if they have any stopped jobs,
293 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
294 */
295 static void
296 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
297 {
298 struct pid *pgrp = task_pgrp(tsk);
299 struct task_struct *ignored_task = tsk;
300
301 if (!parent)
302 /* exit: our father is in a different pgrp than
303 * we are and we were the only connection outside.
304 */
305 parent = tsk->real_parent;
306 else
307 /* reparent: our child is in a different pgrp than
308 * we are, and it was the only connection outside.
309 */
310 ignored_task = NULL;
311
312 if (task_pgrp(parent) != pgrp &&
313 task_session(parent) == task_session(tsk) &&
314 will_become_orphaned_pgrp(pgrp, ignored_task) &&
315 has_stopped_jobs(pgrp)) {
316 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
317 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
318 }
319 }
320
321 /**
322 * reparent_to_kthreadd - Reparent the calling kernel thread to kthreadd
323 *
324 * If a kernel thread is launched as a result of a system call, or if
325 * it ever exits, it should generally reparent itself to kthreadd so it
326 * isn't in the way of other processes and is correctly cleaned up on exit.
327 *
328 * The various task state such as scheduling policy and priority may have
329 * been inherited from a user process, so we reset them to sane values here.
330 *
331 * NOTE that reparent_to_kthreadd() gives the caller full capabilities.
332 */
333 static void reparent_to_kthreadd(void)
334 {
335 write_lock_irq(&tasklist_lock);
336
337 ptrace_unlink(current);
338 /* Reparent to init */
339 current->real_parent = current->parent = kthreadd_task;
340 list_move_tail(&current->sibling, &current->real_parent->children);
341
342 /* Set the exit signal to SIGCHLD so we signal init on exit */
343 current->exit_signal = SIGCHLD;
344
345 if (task_nice(current) < 0)
346 set_user_nice(current, 0);
347 /* cpus_allowed? */
348 /* rt_priority? */
349 /* signals? */
350 memcpy(current->signal->rlim, init_task.signal->rlim,
351 sizeof(current->signal->rlim));
352
353 atomic_inc(&init_cred.usage);
354 commit_creds(&init_cred);
355 write_unlock_irq(&tasklist_lock);
356 }
357
358 void __set_special_pids(struct pid *pid)
359 {
360 struct task_struct *curr = current->group_leader;
361
362 if (task_session(curr) != pid)
363 change_pid(curr, PIDTYPE_SID, pid);
364
365 if (task_pgrp(curr) != pid)
366 change_pid(curr, PIDTYPE_PGID, pid);
367 }
368
369 static void set_special_pids(struct pid *pid)
370 {
371 write_lock_irq(&tasklist_lock);
372 __set_special_pids(pid);
373 write_unlock_irq(&tasklist_lock);
374 }
375
376 /*
377 * Let kernel threads use this to say that they
378 * allow a certain signal (since daemonize() will
379 * have disabled all of them by default).
380 */
381 int allow_signal(int sig)
382 {
383 if (!valid_signal(sig) || sig < 1)
384 return -EINVAL;
385
386 spin_lock_irq(&current->sighand->siglock);
387 sigdelset(&current->blocked, sig);
388 if (!current->mm) {
389 /* Kernel threads handle their own signals.
390 Let the signal code know it'll be handled, so
391 that they don't get converted to SIGKILL or
392 just silently dropped */
393 current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2;
394 }
395 recalc_sigpending();
396 spin_unlock_irq(&current->sighand->siglock);
397 return 0;
398 }
399
400 EXPORT_SYMBOL(allow_signal);
401
402 int disallow_signal(int sig)
403 {
404 if (!valid_signal(sig) || sig < 1)
405 return -EINVAL;
406
407 spin_lock_irq(&current->sighand->siglock);
408 current->sighand->action[(sig)-1].sa.sa_handler = SIG_IGN;
409 recalc_sigpending();
410 spin_unlock_irq(&current->sighand->siglock);
411 return 0;
412 }
413
414 EXPORT_SYMBOL(disallow_signal);
415
416 /*
417 * Put all the gunge required to become a kernel thread without
418 * attached user resources in one place where it belongs.
419 */
420
421 void daemonize(const char *name, ...)
422 {
423 va_list args;
424 sigset_t blocked;
425
426 va_start(args, name);
427 vsnprintf(current->comm, sizeof(current->comm), name, args);
428 va_end(args);
429
430 /*
431 * If we were started as result of loading a module, close all of the
432 * user space pages. We don't need them, and if we didn't close them
433 * they would be locked into memory.
434 */
435 exit_mm(current);
436 /*
437 * We don't want to have TIF_FREEZE set if the system-wide hibernation
438 * or suspend transition begins right now.
439 */
440 current->flags |= (PF_NOFREEZE | PF_KTHREAD);
441
442 if (current->nsproxy != &init_nsproxy) {
443 get_nsproxy(&init_nsproxy);
444 switch_task_namespaces(current, &init_nsproxy);
445 }
446 set_special_pids(&init_struct_pid);
447 proc_clear_tty(current);
448
449 /* Block and flush all signals */
450 sigfillset(&blocked);
451 sigprocmask(SIG_BLOCK, &blocked, NULL);
452 flush_signals(current);
453
454 /* Become as one with the init task */
455
456 daemonize_fs_struct();
457 exit_files(current);
458 current->files = init_task.files;
459 atomic_inc(&current->files->count);
460
461 reparent_to_kthreadd();
462 }
463
464 EXPORT_SYMBOL(daemonize);
465
466 static void close_files(struct files_struct * files)
467 {
468 int i, j;
469 struct fdtable *fdt;
470
471 j = 0;
472
473 /*
474 * It is safe to dereference the fd table without RCU or
475 * ->file_lock because this is the last reference to the
476 * files structure.
477 */
478 fdt = files_fdtable(files);
479 for (;;) {
480 unsigned long set;
481 i = j * __NFDBITS;
482 if (i >= fdt->max_fds)
483 break;
484 set = fdt->open_fds->fds_bits[j++];
485 while (set) {
486 if (set & 1) {
487 struct file * file = xchg(&fdt->fd[i], NULL);
488 if (file) {
489 filp_close(file, files);
490 cond_resched();
491 }
492 }
493 i++;
494 set >>= 1;
495 }
496 }
497 }
498
499 struct files_struct *get_files_struct(struct task_struct *task)
500 {
501 struct files_struct *files;
502
503 task_lock(task);
504 files = task->files;
505 if (files)
506 atomic_inc(&files->count);
507 task_unlock(task);
508
509 return files;
510 }
511
512 void put_files_struct(struct files_struct *files)
513 {
514 struct fdtable *fdt;
515
516 if (atomic_dec_and_test(&files->count)) {
517 close_files(files);
518 /*
519 * Free the fd and fdset arrays if we expanded them.
520 * If the fdtable was embedded, pass files for freeing
521 * at the end of the RCU grace period. Otherwise,
522 * you can free files immediately.
523 */
524 fdt = files_fdtable(files);
525 if (fdt != &files->fdtab)
526 kmem_cache_free(files_cachep, files);
527 free_fdtable(fdt);
528 }
529 }
530
531 void reset_files_struct(struct files_struct *files)
532 {
533 struct task_struct *tsk = current;
534 struct files_struct *old;
535
536 old = tsk->files;
537 task_lock(tsk);
538 tsk->files = files;
539 task_unlock(tsk);
540 put_files_struct(old);
541 }
542
543 void exit_files(struct task_struct *tsk)
544 {
545 struct files_struct * files = tsk->files;
546
547 if (files) {
548 task_lock(tsk);
549 tsk->files = NULL;
550 task_unlock(tsk);
551 put_files_struct(files);
552 }
553 }
554
555 #ifdef CONFIG_MM_OWNER
556 /*
557 * Task p is exiting and it owned mm, lets find a new owner for it
558 */
559 static inline int
560 mm_need_new_owner(struct mm_struct *mm, struct task_struct *p)
561 {
562 /*
563 * If there are other users of the mm and the owner (us) is exiting
564 * we need to find a new owner to take on the responsibility.
565 */
566 if (atomic_read(&mm->mm_users) <= 1)
567 return 0;
568 if (mm->owner != p)
569 return 0;
570 return 1;
571 }
572
573 void mm_update_next_owner(struct mm_struct *mm)
574 {
575 struct task_struct *c, *g, *p = current;
576
577 retry:
578 if (!mm_need_new_owner(mm, p))
579 return;
580
581 read_lock(&tasklist_lock);
582 /*
583 * Search in the children
584 */
585 list_for_each_entry(c, &p->children, sibling) {
586 if (c->mm == mm)
587 goto assign_new_owner;
588 }
589
590 /*
591 * Search in the siblings
592 */
593 list_for_each_entry(c, &p->parent->children, sibling) {
594 if (c->mm == mm)
595 goto assign_new_owner;
596 }
597
598 /*
599 * Search through everything else. We should not get
600 * here often
601 */
602 do_each_thread(g, c) {
603 if (c->mm == mm)
604 goto assign_new_owner;
605 } while_each_thread(g, c);
606
607 read_unlock(&tasklist_lock);
608 /*
609 * We found no owner yet mm_users > 1: this implies that we are
610 * most likely racing with swapoff (try_to_unuse()) or /proc or
611 * ptrace or page migration (get_task_mm()). Mark owner as NULL.
612 */
613 mm->owner = NULL;
614 return;
615
616 assign_new_owner:
617 BUG_ON(c == p);
618 get_task_struct(c);
619 /*
620 * The task_lock protects c->mm from changing.
621 * We always want mm->owner->mm == mm
622 */
623 task_lock(c);
624 /*
625 * Delay read_unlock() till we have the task_lock()
626 * to ensure that c does not slip away underneath us
627 */
628 read_unlock(&tasklist_lock);
629 if (c->mm != mm) {
630 task_unlock(c);
631 put_task_struct(c);
632 goto retry;
633 }
634 mm->owner = c;
635 task_unlock(c);
636 put_task_struct(c);
637 }
638 #endif /* CONFIG_MM_OWNER */
639
640 /*
641 * Turn us into a lazy TLB process if we
642 * aren't already..
643 */
644 static void exit_mm(struct task_struct * tsk)
645 {
646 struct mm_struct *mm = tsk->mm;
647 struct core_state *core_state;
648
649 mm_release(tsk, mm);
650 if (!mm)
651 return;
652 /*
653 * Serialize with any possible pending coredump.
654 * We must hold mmap_sem around checking core_state
655 * and clearing tsk->mm. The core-inducing thread
656 * will increment ->nr_threads for each thread in the
657 * group with ->mm != NULL.
658 */
659 down_read(&mm->mmap_sem);
660 core_state = mm->core_state;
661 if (core_state) {
662 struct core_thread self;
663 up_read(&mm->mmap_sem);
664
665 self.task = tsk;
666 self.next = xchg(&core_state->dumper.next, &self);
667 /*
668 * Implies mb(), the result of xchg() must be visible
669 * to core_state->dumper.
670 */
671 if (atomic_dec_and_test(&core_state->nr_threads))
672 complete(&core_state->startup);
673
674 for (;;) {
675 set_task_state(tsk, TASK_UNINTERRUPTIBLE);
676 if (!self.task) /* see coredump_finish() */
677 break;
678 schedule();
679 }
680 __set_task_state(tsk, TASK_RUNNING);
681 down_read(&mm->mmap_sem);
682 }
683 atomic_inc(&mm->mm_count);
684 BUG_ON(mm != tsk->active_mm);
685 /* more a memory barrier than a real lock */
686 task_lock(tsk);
687 tsk->mm = NULL;
688 up_read(&mm->mmap_sem);
689 enter_lazy_tlb(mm, current);
690 /* We don't want this task to be frozen prematurely */
691 clear_freeze_flag(tsk);
692 task_unlock(tsk);
693 mm_update_next_owner(mm);
694 mmput(mm);
695 }
696
697 /*
698 * When we die, we re-parent all our children.
699 * Try to give them to another thread in our thread
700 * group, and if no such member exists, give it to
701 * the child reaper process (ie "init") in our pid
702 * space.
703 */
704 static struct task_struct *find_new_reaper(struct task_struct *father)
705 {
706 struct pid_namespace *pid_ns = task_active_pid_ns(father);
707 struct task_struct *thread;
708
709 thread = father;
710 while_each_thread(father, thread) {
711 if (thread->flags & PF_EXITING)
712 continue;
713 if (unlikely(pid_ns->child_reaper == father))
714 pid_ns->child_reaper = thread;
715 return thread;
716 }
717
718 if (unlikely(pid_ns->child_reaper == father)) {
719 write_unlock_irq(&tasklist_lock);
720 if (unlikely(pid_ns == &init_pid_ns))
721 panic("Attempted to kill init!");
722
723 zap_pid_ns_processes(pid_ns);
724 write_lock_irq(&tasklist_lock);
725 /*
726 * We can not clear ->child_reaper or leave it alone.
727 * There may by stealth EXIT_DEAD tasks on ->children,
728 * forget_original_parent() must move them somewhere.
729 */
730 pid_ns->child_reaper = init_pid_ns.child_reaper;
731 }
732
733 return pid_ns->child_reaper;
734 }
735
736 /*
737 * Any that need to be release_task'd are put on the @dead list.
738 */
739 static void reparent_thread(struct task_struct *father, struct task_struct *p,
740 struct list_head *dead)
741 {
742 if (p->pdeath_signal)
743 group_send_sig_info(p->pdeath_signal, SEND_SIG_NOINFO, p);
744
745 list_move_tail(&p->sibling, &p->real_parent->children);
746
747 if (task_detached(p))
748 return;
749 /*
750 * If this is a threaded reparent there is no need to
751 * notify anyone anything has happened.
752 */
753 if (same_thread_group(p->real_parent, father))
754 return;
755
756 /* We don't want people slaying init. */
757 p->exit_signal = SIGCHLD;
758
759 /* If it has exited notify the new parent about this child's death. */
760 if (!p->ptrace &&
761 p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
762 do_notify_parent(p, p->exit_signal);
763 if (task_detached(p)) {
764 p->exit_state = EXIT_DEAD;
765 list_move_tail(&p->sibling, dead);
766 }
767 }
768
769 kill_orphaned_pgrp(p, father);
770 }
771
772 static void forget_original_parent(struct task_struct *father)
773 {
774 struct task_struct *p, *n, *reaper;
775 LIST_HEAD(dead_children);
776
777 exit_ptrace(father);
778
779 write_lock_irq(&tasklist_lock);
780 reaper = find_new_reaper(father);
781
782 list_for_each_entry_safe(p, n, &father->children, sibling) {
783 p->real_parent = reaper;
784 if (p->parent == father) {
785 BUG_ON(p->ptrace);
786 p->parent = p->real_parent;
787 }
788 reparent_thread(father, p, &dead_children);
789 }
790 write_unlock_irq(&tasklist_lock);
791
792 BUG_ON(!list_empty(&father->children));
793
794 list_for_each_entry_safe(p, n, &dead_children, sibling) {
795 list_del_init(&p->sibling);
796 release_task(p);
797 }
798 }
799
800 /*
801 * Send signals to all our closest relatives so that they know
802 * to properly mourn us..
803 */
804 static void exit_notify(struct task_struct *tsk, int group_dead)
805 {
806 int signal;
807 void *cookie;
808
809 /*
810 * This does two things:
811 *
812 * A. Make init inherit all the child processes
813 * B. Check to see if any process groups have become orphaned
814 * as a result of our exiting, and if they have any stopped
815 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
816 */
817 forget_original_parent(tsk);
818 exit_task_namespaces(tsk);
819
820 write_lock_irq(&tasklist_lock);
821 if (group_dead)
822 kill_orphaned_pgrp(tsk->group_leader, NULL);
823
824 /* Let father know we died
825 *
826 * Thread signals are configurable, but you aren't going to use
827 * that to send signals to arbitary processes.
828 * That stops right now.
829 *
830 * If the parent exec id doesn't match the exec id we saved
831 * when we started then we know the parent has changed security
832 * domain.
833 *
834 * If our self_exec id doesn't match our parent_exec_id then
835 * we have changed execution domain as these two values started
836 * the same after a fork.
837 */
838 if (tsk->exit_signal != SIGCHLD && !task_detached(tsk) &&
839 (tsk->parent_exec_id != tsk->real_parent->self_exec_id ||
840 tsk->self_exec_id != tsk->parent_exec_id))
841 tsk->exit_signal = SIGCHLD;
842
843 signal = tracehook_notify_death(tsk, &cookie, group_dead);
844 if (signal >= 0)
845 signal = do_notify_parent(tsk, signal);
846
847 tsk->exit_state = signal == DEATH_REAP ? EXIT_DEAD : EXIT_ZOMBIE;
848
849 /* mt-exec, de_thread() is waiting for us */
850 if (thread_group_leader(tsk) &&
851 tsk->signal->group_exit_task &&
852 tsk->signal->notify_count < 0)
853 wake_up_process(tsk->signal->group_exit_task);
854
855 write_unlock_irq(&tasklist_lock);
856
857 tracehook_report_death(tsk, signal, cookie, group_dead);
858
859 /* If the process is dead, release it - nobody will wait for it */
860 if (signal == DEATH_REAP)
861 release_task(tsk);
862 }
863
864 #ifdef CONFIG_DEBUG_STACK_USAGE
865 static void check_stack_usage(void)
866 {
867 static DEFINE_SPINLOCK(low_water_lock);
868 static int lowest_to_date = THREAD_SIZE;
869 unsigned long free;
870
871 free = stack_not_used(current);
872
873 if (free >= lowest_to_date)
874 return;
875
876 spin_lock(&low_water_lock);
877 if (free < lowest_to_date) {
878 printk(KERN_WARNING "%s used greatest stack depth: %lu bytes "
879 "left\n",
880 current->comm, free);
881 lowest_to_date = free;
882 }
883 spin_unlock(&low_water_lock);
884 }
885 #else
886 static inline void check_stack_usage(void) {}
887 #endif
888
889 NORET_TYPE void do_exit(long code)
890 {
891 struct task_struct *tsk = current;
892 int group_dead;
893
894 profile_task_exit(tsk);
895
896 WARN_ON(atomic_read(&tsk->fs_excl));
897
898 if (unlikely(in_interrupt()))
899 panic("Aiee, killing interrupt handler!");
900 if (unlikely(!tsk->pid))
901 panic("Attempted to kill the idle task!");
902
903 tracehook_report_exit(&code);
904
905 /*
906 * We're taking recursive faults here in do_exit. Safest is to just
907 * leave this task alone and wait for reboot.
908 */
909 if (unlikely(tsk->flags & PF_EXITING)) {
910 printk(KERN_ALERT
911 "Fixing recursive fault but reboot is needed!\n");
912 /*
913 * We can do this unlocked here. The futex code uses
914 * this flag just to verify whether the pi state
915 * cleanup has been done or not. In the worst case it
916 * loops once more. We pretend that the cleanup was
917 * done as there is no way to return. Either the
918 * OWNER_DIED bit is set by now or we push the blocked
919 * task into the wait for ever nirwana as well.
920 */
921 tsk->flags |= PF_EXITPIDONE;
922 set_current_state(TASK_UNINTERRUPTIBLE);
923 schedule();
924 }
925
926 exit_signals(tsk); /* sets PF_EXITING */
927 /*
928 * tsk->flags are checked in the futex code to protect against
929 * an exiting task cleaning up the robust pi futexes.
930 */
931 smp_mb();
932 spin_unlock_wait(&tsk->pi_lock);
933
934 if (unlikely(in_atomic()))
935 printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n",
936 current->comm, task_pid_nr(current),
937 preempt_count());
938
939 acct_update_integrals(tsk);
940
941 group_dead = atomic_dec_and_test(&tsk->signal->live);
942 if (group_dead) {
943 hrtimer_cancel(&tsk->signal->real_timer);
944 exit_itimers(tsk->signal);
945 }
946 acct_collect(code, group_dead);
947 if (group_dead)
948 tty_audit_exit();
949 if (unlikely(tsk->audit_context))
950 audit_free(tsk);
951
952 tsk->exit_code = code;
953 taskstats_exit(tsk, group_dead);
954
955 exit_mm(tsk);
956
957 if (group_dead)
958 acct_process();
959 trace_sched_process_exit(tsk);
960
961 exit_sem(tsk);
962 exit_files(tsk);
963 exit_fs(tsk);
964 check_stack_usage();
965 exit_thread();
966 cgroup_exit(tsk, 1);
967
968 if (group_dead && tsk->signal->leader)
969 disassociate_ctty(1);
970
971 module_put(task_thread_info(tsk)->exec_domain->module);
972 if (tsk->binfmt)
973 module_put(tsk->binfmt->module);
974
975 proc_exit_connector(tsk);
976 exit_notify(tsk, group_dead);
977 #ifdef CONFIG_NUMA
978 mpol_put(tsk->mempolicy);
979 tsk->mempolicy = NULL;
980 #endif
981 #ifdef CONFIG_FUTEX
982 /*
983 * This must happen late, after the PID is not
984 * hashed anymore:
985 */
986 if (unlikely(!list_empty(&tsk->pi_state_list)))
987 exit_pi_state_list(tsk);
988 if (unlikely(current->pi_state_cache))
989 kfree(current->pi_state_cache);
990 #endif
991 /*
992 * Make sure we are holding no locks:
993 */
994 debug_check_no_locks_held(tsk);
995 /*
996 * We can do this unlocked here. The futex code uses this flag
997 * just to verify whether the pi state cleanup has been done
998 * or not. In the worst case it loops once more.
999 */
1000 tsk->flags |= PF_EXITPIDONE;
1001
1002 if (tsk->io_context)
1003 exit_io_context();
1004
1005 if (tsk->splice_pipe)
1006 __free_pipe_info(tsk->splice_pipe);
1007
1008 preempt_disable();
1009 /* causes final put_task_struct in finish_task_switch(). */
1010 tsk->state = TASK_DEAD;
1011 schedule();
1012 BUG();
1013 /* Avoid "noreturn function does return". */
1014 for (;;)
1015 cpu_relax(); /* For when BUG is null */
1016 }
1017
1018 EXPORT_SYMBOL_GPL(do_exit);
1019
1020 NORET_TYPE void complete_and_exit(struct completion *comp, long code)
1021 {
1022 if (comp)
1023 complete(comp);
1024
1025 do_exit(code);
1026 }
1027
1028 EXPORT_SYMBOL(complete_and_exit);
1029
1030 SYSCALL_DEFINE1(exit, int, error_code)
1031 {
1032 do_exit((error_code&0xff)<<8);
1033 }
1034
1035 /*
1036 * Take down every thread in the group. This is called by fatal signals
1037 * as well as by sys_exit_group (below).
1038 */
1039 NORET_TYPE void
1040 do_group_exit(int exit_code)
1041 {
1042 struct signal_struct *sig = current->signal;
1043
1044 BUG_ON(exit_code & 0x80); /* core dumps don't get here */
1045
1046 if (signal_group_exit(sig))
1047 exit_code = sig->group_exit_code;
1048 else if (!thread_group_empty(current)) {
1049 struct sighand_struct *const sighand = current->sighand;
1050 spin_lock_irq(&sighand->siglock);
1051 if (signal_group_exit(sig))
1052 /* Another thread got here before we took the lock. */
1053 exit_code = sig->group_exit_code;
1054 else {
1055 sig->group_exit_code = exit_code;
1056 sig->flags = SIGNAL_GROUP_EXIT;
1057 zap_other_threads(current);
1058 }
1059 spin_unlock_irq(&sighand->siglock);
1060 }
1061
1062 do_exit(exit_code);
1063 /* NOTREACHED */
1064 }
1065
1066 /*
1067 * this kills every thread in the thread group. Note that any externally
1068 * wait4()-ing process will get the correct exit code - even if this
1069 * thread is not the thread group leader.
1070 */
1071 SYSCALL_DEFINE1(exit_group, int, error_code)
1072 {
1073 do_group_exit((error_code & 0xff) << 8);
1074 /* NOTREACHED */
1075 return 0;
1076 }
1077
1078 static struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
1079 {
1080 struct pid *pid = NULL;
1081 if (type == PIDTYPE_PID)
1082 pid = task->pids[type].pid;
1083 else if (type < PIDTYPE_MAX)
1084 pid = task->group_leader->pids[type].pid;
1085 return pid;
1086 }
1087
1088 static int eligible_child(enum pid_type type, struct pid *pid, int options,
1089 struct task_struct *p)
1090 {
1091 int err;
1092
1093 if (type < PIDTYPE_MAX) {
1094 if (task_pid_type(p, type) != pid)
1095 return 0;
1096 }
1097
1098 /* Wait for all children (clone and not) if __WALL is set;
1099 * otherwise, wait for clone children *only* if __WCLONE is
1100 * set; otherwise, wait for non-clone children *only*. (Note:
1101 * A "clone" child here is one that reports to its parent
1102 * using a signal other than SIGCHLD.) */
1103 if (((p->exit_signal != SIGCHLD) ^ ((options & __WCLONE) != 0))
1104 && !(options & __WALL))
1105 return 0;
1106
1107 err = security_task_wait(p);
1108 if (err)
1109 return err;
1110
1111 return 1;
1112 }
1113
1114 static int wait_noreap_copyout(struct task_struct *p, pid_t pid, uid_t uid,
1115 int why, int status,
1116 struct siginfo __user *infop,
1117 struct rusage __user *rusagep)
1118 {
1119 int retval = rusagep ? getrusage(p, RUSAGE_BOTH, rusagep) : 0;
1120
1121 put_task_struct(p);
1122 if (!retval)
1123 retval = put_user(SIGCHLD, &infop->si_signo);
1124 if (!retval)
1125 retval = put_user(0, &infop->si_errno);
1126 if (!retval)
1127 retval = put_user((short)why, &infop->si_code);
1128 if (!retval)
1129 retval = put_user(pid, &infop->si_pid);
1130 if (!retval)
1131 retval = put_user(uid, &infop->si_uid);
1132 if (!retval)
1133 retval = put_user(status, &infop->si_status);
1134 if (!retval)
1135 retval = pid;
1136 return retval;
1137 }
1138
1139 /*
1140 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold
1141 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1142 * the lock and this task is uninteresting. If we return nonzero, we have
1143 * released the lock and the system call should return.
1144 */
1145 static int wait_task_zombie(struct task_struct *p, int options,
1146 struct siginfo __user *infop,
1147 int __user *stat_addr, struct rusage __user *ru)
1148 {
1149 unsigned long state;
1150 int retval, status, traced;
1151 pid_t pid = task_pid_vnr(p);
1152 uid_t uid = __task_cred(p)->uid;
1153
1154 if (!likely(options & WEXITED))
1155 return 0;
1156
1157 if (unlikely(options & WNOWAIT)) {
1158 int exit_code = p->exit_code;
1159 int why, status;
1160
1161 get_task_struct(p);
1162 read_unlock(&tasklist_lock);
1163 if ((exit_code & 0x7f) == 0) {
1164 why = CLD_EXITED;
1165 status = exit_code >> 8;
1166 } else {
1167 why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
1168 status = exit_code & 0x7f;
1169 }
1170 return wait_noreap_copyout(p, pid, uid, why,
1171 status, infop, ru);
1172 }
1173
1174 /*
1175 * Try to move the task's state to DEAD
1176 * only one thread is allowed to do this:
1177 */
1178 state = xchg(&p->exit_state, EXIT_DEAD);
1179 if (state != EXIT_ZOMBIE) {
1180 BUG_ON(state != EXIT_DEAD);
1181 return 0;
1182 }
1183
1184 traced = ptrace_reparented(p);
1185
1186 if (likely(!traced)) {
1187 struct signal_struct *psig;
1188 struct signal_struct *sig;
1189 struct task_cputime cputime;
1190
1191 /*
1192 * The resource counters for the group leader are in its
1193 * own task_struct. Those for dead threads in the group
1194 * are in its signal_struct, as are those for the child
1195 * processes it has previously reaped. All these
1196 * accumulate in the parent's signal_struct c* fields.
1197 *
1198 * We don't bother to take a lock here to protect these
1199 * p->signal fields, because they are only touched by
1200 * __exit_signal, which runs with tasklist_lock
1201 * write-locked anyway, and so is excluded here. We do
1202 * need to protect the access to p->parent->signal fields,
1203 * as other threads in the parent group can be right
1204 * here reaping other children at the same time.
1205 *
1206 * We use thread_group_cputime() to get times for the thread
1207 * group, which consolidates times for all threads in the
1208 * group including the group leader.
1209 */
1210 thread_group_cputime(p, &cputime);
1211 spin_lock_irq(&p->parent->sighand->siglock);
1212 psig = p->parent->signal;
1213 sig = p->signal;
1214 psig->cutime =
1215 cputime_add(psig->cutime,
1216 cputime_add(cputime.utime,
1217 sig->cutime));
1218 psig->cstime =
1219 cputime_add(psig->cstime,
1220 cputime_add(cputime.stime,
1221 sig->cstime));
1222 psig->cgtime =
1223 cputime_add(psig->cgtime,
1224 cputime_add(p->gtime,
1225 cputime_add(sig->gtime,
1226 sig->cgtime)));
1227 psig->cmin_flt +=
1228 p->min_flt + sig->min_flt + sig->cmin_flt;
1229 psig->cmaj_flt +=
1230 p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1231 psig->cnvcsw +=
1232 p->nvcsw + sig->nvcsw + sig->cnvcsw;
1233 psig->cnivcsw +=
1234 p->nivcsw + sig->nivcsw + sig->cnivcsw;
1235 psig->cinblock +=
1236 task_io_get_inblock(p) +
1237 sig->inblock + sig->cinblock;
1238 psig->coublock +=
1239 task_io_get_oublock(p) +
1240 sig->oublock + sig->coublock;
1241 task_io_accounting_add(&psig->ioac, &p->ioac);
1242 task_io_accounting_add(&psig->ioac, &sig->ioac);
1243 spin_unlock_irq(&p->parent->sighand->siglock);
1244 }
1245
1246 /*
1247 * Now we are sure this task is interesting, and no other
1248 * thread can reap it because we set its state to EXIT_DEAD.
1249 */
1250 read_unlock(&tasklist_lock);
1251
1252 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1253 status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1254 ? p->signal->group_exit_code : p->exit_code;
1255 if (!retval && stat_addr)
1256 retval = put_user(status, stat_addr);
1257 if (!retval && infop)
1258 retval = put_user(SIGCHLD, &infop->si_signo);
1259 if (!retval && infop)
1260 retval = put_user(0, &infop->si_errno);
1261 if (!retval && infop) {
1262 int why;
1263
1264 if ((status & 0x7f) == 0) {
1265 why = CLD_EXITED;
1266 status >>= 8;
1267 } else {
1268 why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1269 status &= 0x7f;
1270 }
1271 retval = put_user((short)why, &infop->si_code);
1272 if (!retval)
1273 retval = put_user(status, &infop->si_status);
1274 }
1275 if (!retval && infop)
1276 retval = put_user(pid, &infop->si_pid);
1277 if (!retval && infop)
1278 retval = put_user(uid, &infop->si_uid);
1279 if (!retval)
1280 retval = pid;
1281
1282 if (traced) {
1283 write_lock_irq(&tasklist_lock);
1284 /* We dropped tasklist, ptracer could die and untrace */
1285 ptrace_unlink(p);
1286 /*
1287 * If this is not a detached task, notify the parent.
1288 * If it's still not detached after that, don't release
1289 * it now.
1290 */
1291 if (!task_detached(p)) {
1292 do_notify_parent(p, p->exit_signal);
1293 if (!task_detached(p)) {
1294 p->exit_state = EXIT_ZOMBIE;
1295 p = NULL;
1296 }
1297 }
1298 write_unlock_irq(&tasklist_lock);
1299 }
1300 if (p != NULL)
1301 release_task(p);
1302
1303 return retval;
1304 }
1305
1306 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1307 {
1308 if (ptrace) {
1309 if (task_is_stopped_or_traced(p))
1310 return &p->exit_code;
1311 } else {
1312 if (p->signal->flags & SIGNAL_STOP_STOPPED)
1313 return &p->signal->group_exit_code;
1314 }
1315 return NULL;
1316 }
1317
1318 /*
1319 * Handle sys_wait4 work for one task in state TASK_STOPPED. We hold
1320 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1321 * the lock and this task is uninteresting. If we return nonzero, we have
1322 * released the lock and the system call should return.
1323 */
1324 static int wait_task_stopped(int ptrace, struct task_struct *p,
1325 int options, struct siginfo __user *infop,
1326 int __user *stat_addr, struct rusage __user *ru)
1327 {
1328 int retval, exit_code, *p_code, why;
1329 uid_t uid = 0; /* unneeded, required by compiler */
1330 pid_t pid;
1331
1332 if (!(options & WUNTRACED))
1333 return 0;
1334
1335 exit_code = 0;
1336 spin_lock_irq(&p->sighand->siglock);
1337
1338 p_code = task_stopped_code(p, ptrace);
1339 if (unlikely(!p_code))
1340 goto unlock_sig;
1341
1342 exit_code = *p_code;
1343 if (!exit_code)
1344 goto unlock_sig;
1345
1346 if (!unlikely(options & WNOWAIT))
1347 *p_code = 0;
1348
1349 /* don't need the RCU readlock here as we're holding a spinlock */
1350 uid = __task_cred(p)->uid;
1351 unlock_sig:
1352 spin_unlock_irq(&p->sighand->siglock);
1353 if (!exit_code)
1354 return 0;
1355
1356 /*
1357 * Now we are pretty sure this task is interesting.
1358 * Make sure it doesn't get reaped out from under us while we
1359 * give up the lock and then examine it below. We don't want to
1360 * keep holding onto the tasklist_lock while we call getrusage and
1361 * possibly take page faults for user memory.
1362 */
1363 get_task_struct(p);
1364 pid = task_pid_vnr(p);
1365 why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1366 read_unlock(&tasklist_lock);
1367
1368 if (unlikely(options & WNOWAIT))
1369 return wait_noreap_copyout(p, pid, uid,
1370 why, exit_code,
1371 infop, ru);
1372
1373 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1374 if (!retval && stat_addr)
1375 retval = put_user((exit_code << 8) | 0x7f, stat_addr);
1376 if (!retval && infop)
1377 retval = put_user(SIGCHLD, &infop->si_signo);
1378 if (!retval && infop)
1379 retval = put_user(0, &infop->si_errno);
1380 if (!retval && infop)
1381 retval = put_user((short)why, &infop->si_code);
1382 if (!retval && infop)
1383 retval = put_user(exit_code, &infop->si_status);
1384 if (!retval && infop)
1385 retval = put_user(pid, &infop->si_pid);
1386 if (!retval && infop)
1387 retval = put_user(uid, &infop->si_uid);
1388 if (!retval)
1389 retval = pid;
1390 put_task_struct(p);
1391
1392 BUG_ON(!retval);
1393 return retval;
1394 }
1395
1396 /*
1397 * Handle do_wait work for one task in a live, non-stopped state.
1398 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1399 * the lock and this task is uninteresting. If we return nonzero, we have
1400 * released the lock and the system call should return.
1401 */
1402 static int wait_task_continued(struct task_struct *p, int options,
1403 struct siginfo __user *infop,
1404 int __user *stat_addr, struct rusage __user *ru)
1405 {
1406 int retval;
1407 pid_t pid;
1408 uid_t uid;
1409
1410 if (!unlikely(options & WCONTINUED))
1411 return 0;
1412
1413 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1414 return 0;
1415
1416 spin_lock_irq(&p->sighand->siglock);
1417 /* Re-check with the lock held. */
1418 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1419 spin_unlock_irq(&p->sighand->siglock);
1420 return 0;
1421 }
1422 if (!unlikely(options & WNOWAIT))
1423 p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1424 uid = __task_cred(p)->uid;
1425 spin_unlock_irq(&p->sighand->siglock);
1426
1427 pid = task_pid_vnr(p);
1428 get_task_struct(p);
1429 read_unlock(&tasklist_lock);
1430
1431 if (!infop) {
1432 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1433 put_task_struct(p);
1434 if (!retval && stat_addr)
1435 retval = put_user(0xffff, stat_addr);
1436 if (!retval)
1437 retval = pid;
1438 } else {
1439 retval = wait_noreap_copyout(p, pid, uid,
1440 CLD_CONTINUED, SIGCONT,
1441 infop, ru);
1442 BUG_ON(retval == 0);
1443 }
1444
1445 return retval;
1446 }
1447
1448 /*
1449 * Consider @p for a wait by @parent.
1450 *
1451 * -ECHILD should be in *@notask_error before the first call.
1452 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1453 * Returns zero if the search for a child should continue;
1454 * then *@notask_error is 0 if @p is an eligible child,
1455 * or another error from security_task_wait(), or still -ECHILD.
1456 */
1457 static int wait_consider_task(struct task_struct *parent, int ptrace,
1458 struct task_struct *p, int *notask_error,
1459 enum pid_type type, struct pid *pid, int options,
1460 struct siginfo __user *infop,
1461 int __user *stat_addr, struct rusage __user *ru)
1462 {
1463 int ret = eligible_child(type, pid, options, p);
1464 if (!ret)
1465 return ret;
1466
1467 if (unlikely(ret < 0)) {
1468 /*
1469 * If we have not yet seen any eligible child,
1470 * then let this error code replace -ECHILD.
1471 * A permission error will give the user a clue
1472 * to look for security policy problems, rather
1473 * than for mysterious wait bugs.
1474 */
1475 if (*notask_error)
1476 *notask_error = ret;
1477 }
1478
1479 if (likely(!ptrace) && unlikely(p->ptrace)) {
1480 /*
1481 * This child is hidden by ptrace.
1482 * We aren't allowed to see it now, but eventually we will.
1483 */
1484 *notask_error = 0;
1485 return 0;
1486 }
1487
1488 if (p->exit_state == EXIT_DEAD)
1489 return 0;
1490
1491 /*
1492 * We don't reap group leaders with subthreads.
1493 */
1494 if (p->exit_state == EXIT_ZOMBIE && !delay_group_leader(p))
1495 return wait_task_zombie(p, options, infop, stat_addr, ru);
1496
1497 /*
1498 * It's stopped or running now, so it might
1499 * later continue, exit, or stop again.
1500 */
1501 *notask_error = 0;
1502
1503 if (task_stopped_code(p, ptrace))
1504 return wait_task_stopped(ptrace, p, options,
1505 infop, stat_addr, ru);
1506
1507 return wait_task_continued(p, options, infop, stat_addr, ru);
1508 }
1509
1510 /*
1511 * Do the work of do_wait() for one thread in the group, @tsk.
1512 *
1513 * -ECHILD should be in *@notask_error before the first call.
1514 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1515 * Returns zero if the search for a child should continue; then
1516 * *@notask_error is 0 if there were any eligible children,
1517 * or another error from security_task_wait(), or still -ECHILD.
1518 */
1519 static int do_wait_thread(struct task_struct *tsk, int *notask_error,
1520 enum pid_type type, struct pid *pid, int options,
1521 struct siginfo __user *infop, int __user *stat_addr,
1522 struct rusage __user *ru)
1523 {
1524 struct task_struct *p;
1525
1526 list_for_each_entry(p, &tsk->children, sibling) {
1527 /*
1528 * Do not consider detached threads.
1529 */
1530 if (!task_detached(p)) {
1531 int ret = wait_consider_task(tsk, 0, p, notask_error,
1532 type, pid, options,
1533 infop, stat_addr, ru);
1534 if (ret)
1535 return ret;
1536 }
1537 }
1538
1539 return 0;
1540 }
1541
1542 static int ptrace_do_wait(struct task_struct *tsk, int *notask_error,
1543 enum pid_type type, struct pid *pid, int options,
1544 struct siginfo __user *infop, int __user *stat_addr,
1545 struct rusage __user *ru)
1546 {
1547 struct task_struct *p;
1548
1549 /*
1550 * Traditionally we see ptrace'd stopped tasks regardless of options.
1551 */
1552 options |= WUNTRACED;
1553
1554 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1555 int ret = wait_consider_task(tsk, 1, p, notask_error,
1556 type, pid, options,
1557 infop, stat_addr, ru);
1558 if (ret)
1559 return ret;
1560 }
1561
1562 return 0;
1563 }
1564
1565 static long do_wait(enum pid_type type, struct pid *pid, int options,
1566 struct siginfo __user *infop, int __user *stat_addr,
1567 struct rusage __user *ru)
1568 {
1569 DECLARE_WAITQUEUE(wait, current);
1570 struct task_struct *tsk;
1571 int retval;
1572
1573 trace_sched_process_wait(pid);
1574
1575 add_wait_queue(&current->signal->wait_chldexit,&wait);
1576 repeat:
1577 /*
1578 * If there is nothing that can match our critiera just get out.
1579 * We will clear @retval to zero if we see any child that might later
1580 * match our criteria, even if we are not able to reap it yet.
1581 */
1582 retval = -ECHILD;
1583 if ((type < PIDTYPE_MAX) && (!pid || hlist_empty(&pid->tasks[type])))
1584 goto end;
1585
1586 current->state = TASK_INTERRUPTIBLE;
1587 read_lock(&tasklist_lock);
1588 tsk = current;
1589 do {
1590 int tsk_result = do_wait_thread(tsk, &retval,
1591 type, pid, options,
1592 infop, stat_addr, ru);
1593 if (!tsk_result)
1594 tsk_result = ptrace_do_wait(tsk, &retval,
1595 type, pid, options,
1596 infop, stat_addr, ru);
1597 if (tsk_result) {
1598 /*
1599 * tasklist_lock is unlocked and we have a final result.
1600 */
1601 retval = tsk_result;
1602 goto end;
1603 }
1604
1605 if (options & __WNOTHREAD)
1606 break;
1607 tsk = next_thread(tsk);
1608 BUG_ON(tsk->signal != current->signal);
1609 } while (tsk != current);
1610 read_unlock(&tasklist_lock);
1611
1612 if (!retval && !(options & WNOHANG)) {
1613 retval = -ERESTARTSYS;
1614 if (!signal_pending(current)) {
1615 schedule();
1616 goto repeat;
1617 }
1618 }
1619
1620 end:
1621 current->state = TASK_RUNNING;
1622 remove_wait_queue(&current->signal->wait_chldexit,&wait);
1623 if (infop) {
1624 if (retval > 0)
1625 retval = 0;
1626 else {
1627 /*
1628 * For a WNOHANG return, clear out all the fields
1629 * we would set so the user can easily tell the
1630 * difference.
1631 */
1632 if (!retval)
1633 retval = put_user(0, &infop->si_signo);
1634 if (!retval)
1635 retval = put_user(0, &infop->si_errno);
1636 if (!retval)
1637 retval = put_user(0, &infop->si_code);
1638 if (!retval)
1639 retval = put_user(0, &infop->si_pid);
1640 if (!retval)
1641 retval = put_user(0, &infop->si_uid);
1642 if (!retval)
1643 retval = put_user(0, &infop->si_status);
1644 }
1645 }
1646 return retval;
1647 }
1648
1649 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1650 infop, int, options, struct rusage __user *, ru)
1651 {
1652 struct pid *pid = NULL;
1653 enum pid_type type;
1654 long ret;
1655
1656 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED))
1657 return -EINVAL;
1658 if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1659 return -EINVAL;
1660
1661 switch (which) {
1662 case P_ALL:
1663 type = PIDTYPE_MAX;
1664 break;
1665 case P_PID:
1666 type = PIDTYPE_PID;
1667 if (upid <= 0)
1668 return -EINVAL;
1669 break;
1670 case P_PGID:
1671 type = PIDTYPE_PGID;
1672 if (upid <= 0)
1673 return -EINVAL;
1674 break;
1675 default:
1676 return -EINVAL;
1677 }
1678
1679 if (type < PIDTYPE_MAX)
1680 pid = find_get_pid(upid);
1681 ret = do_wait(type, pid, options, infop, NULL, ru);
1682 put_pid(pid);
1683
1684 /* avoid REGPARM breakage on x86: */
1685 asmlinkage_protect(5, ret, which, upid, infop, options, ru);
1686 return ret;
1687 }
1688
1689 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1690 int, options, struct rusage __user *, ru)
1691 {
1692 struct pid *pid = NULL;
1693 enum pid_type type;
1694 long ret;
1695
1696 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1697 __WNOTHREAD|__WCLONE|__WALL))
1698 return -EINVAL;
1699
1700 if (upid == -1)
1701 type = PIDTYPE_MAX;
1702 else if (upid < 0) {
1703 type = PIDTYPE_PGID;
1704 pid = find_get_pid(-upid);
1705 } else if (upid == 0) {
1706 type = PIDTYPE_PGID;
1707 pid = get_task_pid(current, PIDTYPE_PGID);
1708 } else /* upid > 0 */ {
1709 type = PIDTYPE_PID;
1710 pid = find_get_pid(upid);
1711 }
1712
1713 ret = do_wait(type, pid, options | WEXITED, NULL, stat_addr, ru);
1714 put_pid(pid);
1715
1716 /* avoid REGPARM breakage on x86: */
1717 asmlinkage_protect(4, ret, upid, stat_addr, options, ru);
1718 return ret;
1719 }
1720
1721 #ifdef __ARCH_WANT_SYS_WAITPID
1722
1723 /*
1724 * sys_waitpid() remains for compatibility. waitpid() should be
1725 * implemented by calling sys_wait4() from libc.a.
1726 */
1727 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1728 {
1729 return sys_wait4(pid, stat_addr, options, NULL);
1730 }
1731
1732 #endif
This page took 0.063268 seconds and 6 git commands to generate.