Merge branch 'locking-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[deliverable/linux.git] / kernel / exit.c
1 /*
2 * linux/kernel/exit.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 #include <linux/mm.h>
8 #include <linux/slab.h>
9 #include <linux/interrupt.h>
10 #include <linux/module.h>
11 #include <linux/capability.h>
12 #include <linux/completion.h>
13 #include <linux/personality.h>
14 #include <linux/tty.h>
15 #include <linux/iocontext.h>
16 #include <linux/key.h>
17 #include <linux/security.h>
18 #include <linux/cpu.h>
19 #include <linux/acct.h>
20 #include <linux/tsacct_kern.h>
21 #include <linux/file.h>
22 #include <linux/fdtable.h>
23 #include <linux/freezer.h>
24 #include <linux/binfmts.h>
25 #include <linux/nsproxy.h>
26 #include <linux/pid_namespace.h>
27 #include <linux/ptrace.h>
28 #include <linux/profile.h>
29 #include <linux/mount.h>
30 #include <linux/proc_fs.h>
31 #include <linux/kthread.h>
32 #include <linux/mempolicy.h>
33 #include <linux/taskstats_kern.h>
34 #include <linux/delayacct.h>
35 #include <linux/cgroup.h>
36 #include <linux/syscalls.h>
37 #include <linux/signal.h>
38 #include <linux/posix-timers.h>
39 #include <linux/cn_proc.h>
40 #include <linux/mutex.h>
41 #include <linux/futex.h>
42 #include <linux/pipe_fs_i.h>
43 #include <linux/audit.h> /* for audit_free() */
44 #include <linux/resource.h>
45 #include <linux/blkdev.h>
46 #include <linux/task_io_accounting_ops.h>
47 #include <linux/tracehook.h>
48 #include <linux/fs_struct.h>
49 #include <linux/init_task.h>
50 #include <linux/perf_event.h>
51 #include <trace/events/sched.h>
52 #include <linux/hw_breakpoint.h>
53 #include <linux/oom.h>
54 #include <linux/writeback.h>
55 #include <linux/shm.h>
56
57 #include <asm/uaccess.h>
58 #include <asm/unistd.h>
59 #include <asm/pgtable.h>
60 #include <asm/mmu_context.h>
61
62 static void exit_mm(struct task_struct *tsk);
63
64 static void __unhash_process(struct task_struct *p, bool group_dead)
65 {
66 nr_threads--;
67 detach_pid(p, PIDTYPE_PID);
68 if (group_dead) {
69 detach_pid(p, PIDTYPE_PGID);
70 detach_pid(p, PIDTYPE_SID);
71
72 list_del_rcu(&p->tasks);
73 list_del_init(&p->sibling);
74 __this_cpu_dec(process_counts);
75 }
76 list_del_rcu(&p->thread_group);
77 list_del_rcu(&p->thread_node);
78 }
79
80 /*
81 * This function expects the tasklist_lock write-locked.
82 */
83 static void __exit_signal(struct task_struct *tsk)
84 {
85 struct signal_struct *sig = tsk->signal;
86 bool group_dead = thread_group_leader(tsk);
87 struct sighand_struct *sighand;
88 struct tty_struct *uninitialized_var(tty);
89 cputime_t utime, stime;
90
91 sighand = rcu_dereference_check(tsk->sighand,
92 lockdep_tasklist_lock_is_held());
93 spin_lock(&sighand->siglock);
94
95 posix_cpu_timers_exit(tsk);
96 if (group_dead) {
97 posix_cpu_timers_exit_group(tsk);
98 tty = sig->tty;
99 sig->tty = NULL;
100 } else {
101 /*
102 * This can only happen if the caller is de_thread().
103 * FIXME: this is the temporary hack, we should teach
104 * posix-cpu-timers to handle this case correctly.
105 */
106 if (unlikely(has_group_leader_pid(tsk)))
107 posix_cpu_timers_exit_group(tsk);
108
109 /*
110 * If there is any task waiting for the group exit
111 * then notify it:
112 */
113 if (sig->notify_count > 0 && !--sig->notify_count)
114 wake_up_process(sig->group_exit_task);
115
116 if (tsk == sig->curr_target)
117 sig->curr_target = next_thread(tsk);
118 /*
119 * Accumulate here the counters for all threads but the
120 * group leader as they die, so they can be added into
121 * the process-wide totals when those are taken.
122 * The group leader stays around as a zombie as long
123 * as there are other threads. When it gets reaped,
124 * the exit.c code will add its counts into these totals.
125 * We won't ever get here for the group leader, since it
126 * will have been the last reference on the signal_struct.
127 */
128 task_cputime(tsk, &utime, &stime);
129 sig->utime += utime;
130 sig->stime += stime;
131 sig->gtime += task_gtime(tsk);
132 sig->min_flt += tsk->min_flt;
133 sig->maj_flt += tsk->maj_flt;
134 sig->nvcsw += tsk->nvcsw;
135 sig->nivcsw += tsk->nivcsw;
136 sig->inblock += task_io_get_inblock(tsk);
137 sig->oublock += task_io_get_oublock(tsk);
138 task_io_accounting_add(&sig->ioac, &tsk->ioac);
139 sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
140 }
141
142 sig->nr_threads--;
143 __unhash_process(tsk, group_dead);
144
145 /*
146 * Do this under ->siglock, we can race with another thread
147 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
148 */
149 flush_sigqueue(&tsk->pending);
150 tsk->sighand = NULL;
151 spin_unlock(&sighand->siglock);
152
153 __cleanup_sighand(sighand);
154 clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
155 if (group_dead) {
156 flush_sigqueue(&sig->shared_pending);
157 tty_kref_put(tty);
158 }
159 }
160
161 static void delayed_put_task_struct(struct rcu_head *rhp)
162 {
163 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
164
165 perf_event_delayed_put(tsk);
166 trace_sched_process_free(tsk);
167 put_task_struct(tsk);
168 }
169
170
171 void release_task(struct task_struct *p)
172 {
173 struct task_struct *leader;
174 int zap_leader;
175 repeat:
176 /* don't need to get the RCU readlock here - the process is dead and
177 * can't be modifying its own credentials. But shut RCU-lockdep up */
178 rcu_read_lock();
179 atomic_dec(&__task_cred(p)->user->processes);
180 rcu_read_unlock();
181
182 proc_flush_task(p);
183
184 write_lock_irq(&tasklist_lock);
185 ptrace_release_task(p);
186 __exit_signal(p);
187
188 /*
189 * If we are the last non-leader member of the thread
190 * group, and the leader is zombie, then notify the
191 * group leader's parent process. (if it wants notification.)
192 */
193 zap_leader = 0;
194 leader = p->group_leader;
195 if (leader != p && thread_group_empty(leader)
196 && leader->exit_state == EXIT_ZOMBIE) {
197 /*
198 * If we were the last child thread and the leader has
199 * exited already, and the leader's parent ignores SIGCHLD,
200 * then we are the one who should release the leader.
201 */
202 zap_leader = do_notify_parent(leader, leader->exit_signal);
203 if (zap_leader)
204 leader->exit_state = EXIT_DEAD;
205 }
206
207 write_unlock_irq(&tasklist_lock);
208 release_thread(p);
209 call_rcu(&p->rcu, delayed_put_task_struct);
210
211 p = leader;
212 if (unlikely(zap_leader))
213 goto repeat;
214 }
215
216 /*
217 * This checks not only the pgrp, but falls back on the pid if no
218 * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
219 * without this...
220 *
221 * The caller must hold rcu lock or the tasklist lock.
222 */
223 struct pid *session_of_pgrp(struct pid *pgrp)
224 {
225 struct task_struct *p;
226 struct pid *sid = NULL;
227
228 p = pid_task(pgrp, PIDTYPE_PGID);
229 if (p == NULL)
230 p = pid_task(pgrp, PIDTYPE_PID);
231 if (p != NULL)
232 sid = task_session(p);
233
234 return sid;
235 }
236
237 /*
238 * Determine if a process group is "orphaned", according to the POSIX
239 * definition in 2.2.2.52. Orphaned process groups are not to be affected
240 * by terminal-generated stop signals. Newly orphaned process groups are
241 * to receive a SIGHUP and a SIGCONT.
242 *
243 * "I ask you, have you ever known what it is to be an orphan?"
244 */
245 static int will_become_orphaned_pgrp(struct pid *pgrp,
246 struct task_struct *ignored_task)
247 {
248 struct task_struct *p;
249
250 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
251 if ((p == ignored_task) ||
252 (p->exit_state && thread_group_empty(p)) ||
253 is_global_init(p->real_parent))
254 continue;
255
256 if (task_pgrp(p->real_parent) != pgrp &&
257 task_session(p->real_parent) == task_session(p))
258 return 0;
259 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
260
261 return 1;
262 }
263
264 int is_current_pgrp_orphaned(void)
265 {
266 int retval;
267
268 read_lock(&tasklist_lock);
269 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
270 read_unlock(&tasklist_lock);
271
272 return retval;
273 }
274
275 static bool has_stopped_jobs(struct pid *pgrp)
276 {
277 struct task_struct *p;
278
279 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
280 if (p->signal->flags & SIGNAL_STOP_STOPPED)
281 return true;
282 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
283
284 return false;
285 }
286
287 /*
288 * Check to see if any process groups have become orphaned as
289 * a result of our exiting, and if they have any stopped jobs,
290 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
291 */
292 static void
293 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
294 {
295 struct pid *pgrp = task_pgrp(tsk);
296 struct task_struct *ignored_task = tsk;
297
298 if (!parent)
299 /* exit: our father is in a different pgrp than
300 * we are and we were the only connection outside.
301 */
302 parent = tsk->real_parent;
303 else
304 /* reparent: our child is in a different pgrp than
305 * we are, and it was the only connection outside.
306 */
307 ignored_task = NULL;
308
309 if (task_pgrp(parent) != pgrp &&
310 task_session(parent) == task_session(tsk) &&
311 will_become_orphaned_pgrp(pgrp, ignored_task) &&
312 has_stopped_jobs(pgrp)) {
313 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
314 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
315 }
316 }
317
318 #ifdef CONFIG_MEMCG
319 /*
320 * A task is exiting. If it owned this mm, find a new owner for the mm.
321 */
322 void mm_update_next_owner(struct mm_struct *mm)
323 {
324 struct task_struct *c, *g, *p = current;
325
326 retry:
327 /*
328 * If the exiting or execing task is not the owner, it's
329 * someone else's problem.
330 */
331 if (mm->owner != p)
332 return;
333 /*
334 * The current owner is exiting/execing and there are no other
335 * candidates. Do not leave the mm pointing to a possibly
336 * freed task structure.
337 */
338 if (atomic_read(&mm->mm_users) <= 1) {
339 mm->owner = NULL;
340 return;
341 }
342
343 read_lock(&tasklist_lock);
344 /*
345 * Search in the children
346 */
347 list_for_each_entry(c, &p->children, sibling) {
348 if (c->mm == mm)
349 goto assign_new_owner;
350 }
351
352 /*
353 * Search in the siblings
354 */
355 list_for_each_entry(c, &p->real_parent->children, sibling) {
356 if (c->mm == mm)
357 goto assign_new_owner;
358 }
359
360 /*
361 * Search through everything else, we should not get here often.
362 */
363 for_each_process(g) {
364 if (g->flags & PF_KTHREAD)
365 continue;
366 for_each_thread(g, c) {
367 if (c->mm == mm)
368 goto assign_new_owner;
369 if (c->mm)
370 break;
371 }
372 }
373 read_unlock(&tasklist_lock);
374 /*
375 * We found no owner yet mm_users > 1: this implies that we are
376 * most likely racing with swapoff (try_to_unuse()) or /proc or
377 * ptrace or page migration (get_task_mm()). Mark owner as NULL.
378 */
379 mm->owner = NULL;
380 return;
381
382 assign_new_owner:
383 BUG_ON(c == p);
384 get_task_struct(c);
385 /*
386 * The task_lock protects c->mm from changing.
387 * We always want mm->owner->mm == mm
388 */
389 task_lock(c);
390 /*
391 * Delay read_unlock() till we have the task_lock()
392 * to ensure that c does not slip away underneath us
393 */
394 read_unlock(&tasklist_lock);
395 if (c->mm != mm) {
396 task_unlock(c);
397 put_task_struct(c);
398 goto retry;
399 }
400 mm->owner = c;
401 task_unlock(c);
402 put_task_struct(c);
403 }
404 #endif /* CONFIG_MEMCG */
405
406 /*
407 * Turn us into a lazy TLB process if we
408 * aren't already..
409 */
410 static void exit_mm(struct task_struct *tsk)
411 {
412 struct mm_struct *mm = tsk->mm;
413 struct core_state *core_state;
414
415 mm_release(tsk, mm);
416 if (!mm)
417 return;
418 sync_mm_rss(mm);
419 /*
420 * Serialize with any possible pending coredump.
421 * We must hold mmap_sem around checking core_state
422 * and clearing tsk->mm. The core-inducing thread
423 * will increment ->nr_threads for each thread in the
424 * group with ->mm != NULL.
425 */
426 down_read(&mm->mmap_sem);
427 core_state = mm->core_state;
428 if (core_state) {
429 struct core_thread self;
430
431 up_read(&mm->mmap_sem);
432
433 self.task = tsk;
434 self.next = xchg(&core_state->dumper.next, &self);
435 /*
436 * Implies mb(), the result of xchg() must be visible
437 * to core_state->dumper.
438 */
439 if (atomic_dec_and_test(&core_state->nr_threads))
440 complete(&core_state->startup);
441
442 for (;;) {
443 set_task_state(tsk, TASK_UNINTERRUPTIBLE);
444 if (!self.task) /* see coredump_finish() */
445 break;
446 freezable_schedule();
447 }
448 __set_task_state(tsk, TASK_RUNNING);
449 down_read(&mm->mmap_sem);
450 }
451 atomic_inc(&mm->mm_count);
452 BUG_ON(mm != tsk->active_mm);
453 /* more a memory barrier than a real lock */
454 task_lock(tsk);
455 tsk->mm = NULL;
456 up_read(&mm->mmap_sem);
457 enter_lazy_tlb(mm, current);
458 task_unlock(tsk);
459 mm_update_next_owner(mm);
460 mmput(mm);
461 clear_thread_flag(TIF_MEMDIE);
462 }
463
464 /*
465 * When we die, we re-parent all our children, and try to:
466 * 1. give them to another thread in our thread group, if such a member exists
467 * 2. give it to the first ancestor process which prctl'd itself as a
468 * child_subreaper for its children (like a service manager)
469 * 3. give it to the init process (PID 1) in our pid namespace
470 */
471 static struct task_struct *find_new_reaper(struct task_struct *father)
472 __releases(&tasklist_lock)
473 __acquires(&tasklist_lock)
474 {
475 struct pid_namespace *pid_ns = task_active_pid_ns(father);
476 struct task_struct *thread;
477
478 thread = father;
479 while_each_thread(father, thread) {
480 if (thread->flags & PF_EXITING)
481 continue;
482 if (unlikely(pid_ns->child_reaper == father))
483 pid_ns->child_reaper = thread;
484 return thread;
485 }
486
487 if (unlikely(pid_ns->child_reaper == father)) {
488 write_unlock_irq(&tasklist_lock);
489 if (unlikely(pid_ns == &init_pid_ns)) {
490 panic("Attempted to kill init! exitcode=0x%08x\n",
491 father->signal->group_exit_code ?:
492 father->exit_code);
493 }
494
495 zap_pid_ns_processes(pid_ns);
496 write_lock_irq(&tasklist_lock);
497 } else if (father->signal->has_child_subreaper) {
498 struct task_struct *reaper;
499
500 /*
501 * Find the first ancestor marked as child_subreaper.
502 * Note that the code below checks same_thread_group(reaper,
503 * pid_ns->child_reaper). This is what we need to DTRT in a
504 * PID namespace. However we still need the check above, see
505 * http://marc.info/?l=linux-kernel&m=131385460420380
506 */
507 for (reaper = father->real_parent;
508 reaper != &init_task;
509 reaper = reaper->real_parent) {
510 if (same_thread_group(reaper, pid_ns->child_reaper))
511 break;
512 if (!reaper->signal->is_child_subreaper)
513 continue;
514 thread = reaper;
515 do {
516 if (!(thread->flags & PF_EXITING))
517 return reaper;
518 } while_each_thread(reaper, thread);
519 }
520 }
521
522 return pid_ns->child_reaper;
523 }
524
525 /*
526 * Any that need to be release_task'd are put on the @dead list.
527 */
528 static void reparent_leader(struct task_struct *father, struct task_struct *p,
529 struct list_head *dead)
530 {
531 list_move_tail(&p->sibling, &p->real_parent->children);
532
533 if (p->exit_state == EXIT_DEAD)
534 return;
535 /*
536 * If this is a threaded reparent there is no need to
537 * notify anyone anything has happened.
538 */
539 if (same_thread_group(p->real_parent, father))
540 return;
541
542 /* We don't want people slaying init. */
543 p->exit_signal = SIGCHLD;
544
545 /* If it has exited notify the new parent about this child's death. */
546 if (!p->ptrace &&
547 p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
548 if (do_notify_parent(p, p->exit_signal)) {
549 p->exit_state = EXIT_DEAD;
550 list_move_tail(&p->sibling, dead);
551 }
552 }
553
554 kill_orphaned_pgrp(p, father);
555 }
556
557 static void forget_original_parent(struct task_struct *father)
558 {
559 struct task_struct *p, *n, *reaper;
560 LIST_HEAD(dead_children);
561
562 write_lock_irq(&tasklist_lock);
563 /*
564 * Note that exit_ptrace() and find_new_reaper() might
565 * drop tasklist_lock and reacquire it.
566 */
567 exit_ptrace(father);
568 reaper = find_new_reaper(father);
569
570 list_for_each_entry_safe(p, n, &father->children, sibling) {
571 struct task_struct *t = p;
572
573 do {
574 t->real_parent = reaper;
575 if (t->parent == father) {
576 BUG_ON(t->ptrace);
577 t->parent = t->real_parent;
578 }
579 if (t->pdeath_signal)
580 group_send_sig_info(t->pdeath_signal,
581 SEND_SIG_NOINFO, t);
582 } while_each_thread(p, t);
583 reparent_leader(father, p, &dead_children);
584 }
585 write_unlock_irq(&tasklist_lock);
586
587 BUG_ON(!list_empty(&father->children));
588
589 list_for_each_entry_safe(p, n, &dead_children, sibling) {
590 list_del_init(&p->sibling);
591 release_task(p);
592 }
593 }
594
595 /*
596 * Send signals to all our closest relatives so that they know
597 * to properly mourn us..
598 */
599 static void exit_notify(struct task_struct *tsk, int group_dead)
600 {
601 bool autoreap;
602
603 /*
604 * This does two things:
605 *
606 * A. Make init inherit all the child processes
607 * B. Check to see if any process groups have become orphaned
608 * as a result of our exiting, and if they have any stopped
609 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
610 */
611 forget_original_parent(tsk);
612
613 write_lock_irq(&tasklist_lock);
614 if (group_dead)
615 kill_orphaned_pgrp(tsk->group_leader, NULL);
616
617 if (unlikely(tsk->ptrace)) {
618 int sig = thread_group_leader(tsk) &&
619 thread_group_empty(tsk) &&
620 !ptrace_reparented(tsk) ?
621 tsk->exit_signal : SIGCHLD;
622 autoreap = do_notify_parent(tsk, sig);
623 } else if (thread_group_leader(tsk)) {
624 autoreap = thread_group_empty(tsk) &&
625 do_notify_parent(tsk, tsk->exit_signal);
626 } else {
627 autoreap = true;
628 }
629
630 tsk->exit_state = autoreap ? EXIT_DEAD : EXIT_ZOMBIE;
631
632 /* mt-exec, de_thread() is waiting for group leader */
633 if (unlikely(tsk->signal->notify_count < 0))
634 wake_up_process(tsk->signal->group_exit_task);
635 write_unlock_irq(&tasklist_lock);
636
637 /* If the process is dead, release it - nobody will wait for it */
638 if (autoreap)
639 release_task(tsk);
640 }
641
642 #ifdef CONFIG_DEBUG_STACK_USAGE
643 static void check_stack_usage(void)
644 {
645 static DEFINE_SPINLOCK(low_water_lock);
646 static int lowest_to_date = THREAD_SIZE;
647 unsigned long free;
648
649 free = stack_not_used(current);
650
651 if (free >= lowest_to_date)
652 return;
653
654 spin_lock(&low_water_lock);
655 if (free < lowest_to_date) {
656 pr_warn("%s (%d) used greatest stack depth: %lu bytes left\n",
657 current->comm, task_pid_nr(current), free);
658 lowest_to_date = free;
659 }
660 spin_unlock(&low_water_lock);
661 }
662 #else
663 static inline void check_stack_usage(void) {}
664 #endif
665
666 void do_exit(long code)
667 {
668 struct task_struct *tsk = current;
669 int group_dead;
670 TASKS_RCU(int tasks_rcu_i);
671
672 profile_task_exit(tsk);
673
674 WARN_ON(blk_needs_flush_plug(tsk));
675
676 if (unlikely(in_interrupt()))
677 panic("Aiee, killing interrupt handler!");
678 if (unlikely(!tsk->pid))
679 panic("Attempted to kill the idle task!");
680
681 /*
682 * If do_exit is called because this processes oopsed, it's possible
683 * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before
684 * continuing. Amongst other possible reasons, this is to prevent
685 * mm_release()->clear_child_tid() from writing to a user-controlled
686 * kernel address.
687 */
688 set_fs(USER_DS);
689
690 ptrace_event(PTRACE_EVENT_EXIT, code);
691
692 validate_creds_for_do_exit(tsk);
693
694 /*
695 * We're taking recursive faults here in do_exit. Safest is to just
696 * leave this task alone and wait for reboot.
697 */
698 if (unlikely(tsk->flags & PF_EXITING)) {
699 pr_alert("Fixing recursive fault but reboot is needed!\n");
700 /*
701 * We can do this unlocked here. The futex code uses
702 * this flag just to verify whether the pi state
703 * cleanup has been done or not. In the worst case it
704 * loops once more. We pretend that the cleanup was
705 * done as there is no way to return. Either the
706 * OWNER_DIED bit is set by now or we push the blocked
707 * task into the wait for ever nirwana as well.
708 */
709 tsk->flags |= PF_EXITPIDONE;
710 set_current_state(TASK_UNINTERRUPTIBLE);
711 schedule();
712 }
713
714 exit_signals(tsk); /* sets PF_EXITING */
715 /*
716 * tsk->flags are checked in the futex code to protect against
717 * an exiting task cleaning up the robust pi futexes.
718 */
719 smp_mb();
720 raw_spin_unlock_wait(&tsk->pi_lock);
721
722 if (unlikely(in_atomic()))
723 pr_info("note: %s[%d] exited with preempt_count %d\n",
724 current->comm, task_pid_nr(current),
725 preempt_count());
726
727 acct_update_integrals(tsk);
728 /* sync mm's RSS info before statistics gathering */
729 if (tsk->mm)
730 sync_mm_rss(tsk->mm);
731 group_dead = atomic_dec_and_test(&tsk->signal->live);
732 if (group_dead) {
733 hrtimer_cancel(&tsk->signal->real_timer);
734 exit_itimers(tsk->signal);
735 if (tsk->mm)
736 setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
737 }
738 acct_collect(code, group_dead);
739 if (group_dead)
740 tty_audit_exit();
741 audit_free(tsk);
742
743 tsk->exit_code = code;
744 taskstats_exit(tsk, group_dead);
745
746 exit_mm(tsk);
747
748 if (group_dead)
749 acct_process();
750 trace_sched_process_exit(tsk);
751
752 exit_sem(tsk);
753 exit_shm(tsk);
754 exit_files(tsk);
755 exit_fs(tsk);
756 if (group_dead)
757 disassociate_ctty(1);
758 exit_task_namespaces(tsk);
759 exit_task_work(tsk);
760 exit_thread();
761
762 /*
763 * Flush inherited counters to the parent - before the parent
764 * gets woken up by child-exit notifications.
765 *
766 * because of cgroup mode, must be called before cgroup_exit()
767 */
768 perf_event_exit_task(tsk);
769
770 cgroup_exit(tsk);
771
772 module_put(task_thread_info(tsk)->exec_domain->module);
773
774 /*
775 * FIXME: do that only when needed, using sched_exit tracepoint
776 */
777 flush_ptrace_hw_breakpoint(tsk);
778
779 TASKS_RCU(tasks_rcu_i = __srcu_read_lock(&tasks_rcu_exit_srcu));
780 exit_notify(tsk, group_dead);
781 proc_exit_connector(tsk);
782 #ifdef CONFIG_NUMA
783 task_lock(tsk);
784 mpol_put(tsk->mempolicy);
785 tsk->mempolicy = NULL;
786 task_unlock(tsk);
787 #endif
788 #ifdef CONFIG_FUTEX
789 if (unlikely(current->pi_state_cache))
790 kfree(current->pi_state_cache);
791 #endif
792 /*
793 * Make sure we are holding no locks:
794 */
795 debug_check_no_locks_held();
796 /*
797 * We can do this unlocked here. The futex code uses this flag
798 * just to verify whether the pi state cleanup has been done
799 * or not. In the worst case it loops once more.
800 */
801 tsk->flags |= PF_EXITPIDONE;
802
803 if (tsk->io_context)
804 exit_io_context(tsk);
805
806 if (tsk->splice_pipe)
807 free_pipe_info(tsk->splice_pipe);
808
809 if (tsk->task_frag.page)
810 put_page(tsk->task_frag.page);
811
812 validate_creds_for_do_exit(tsk);
813
814 check_stack_usage();
815 preempt_disable();
816 if (tsk->nr_dirtied)
817 __this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
818 exit_rcu();
819 TASKS_RCU(__srcu_read_unlock(&tasks_rcu_exit_srcu, tasks_rcu_i));
820
821 /*
822 * The setting of TASK_RUNNING by try_to_wake_up() may be delayed
823 * when the following two conditions become true.
824 * - There is race condition of mmap_sem (It is acquired by
825 * exit_mm()), and
826 * - SMI occurs before setting TASK_RUNINNG.
827 * (or hypervisor of virtual machine switches to other guest)
828 * As a result, we may become TASK_RUNNING after becoming TASK_DEAD
829 *
830 * To avoid it, we have to wait for releasing tsk->pi_lock which
831 * is held by try_to_wake_up()
832 */
833 smp_mb();
834 raw_spin_unlock_wait(&tsk->pi_lock);
835
836 /* causes final put_task_struct in finish_task_switch(). */
837 tsk->state = TASK_DEAD;
838 tsk->flags |= PF_NOFREEZE; /* tell freezer to ignore us */
839 schedule();
840 BUG();
841 /* Avoid "noreturn function does return". */
842 for (;;)
843 cpu_relax(); /* For when BUG is null */
844 }
845 EXPORT_SYMBOL_GPL(do_exit);
846
847 void complete_and_exit(struct completion *comp, long code)
848 {
849 if (comp)
850 complete(comp);
851
852 do_exit(code);
853 }
854 EXPORT_SYMBOL(complete_and_exit);
855
856 SYSCALL_DEFINE1(exit, int, error_code)
857 {
858 do_exit((error_code&0xff)<<8);
859 }
860
861 /*
862 * Take down every thread in the group. This is called by fatal signals
863 * as well as by sys_exit_group (below).
864 */
865 void
866 do_group_exit(int exit_code)
867 {
868 struct signal_struct *sig = current->signal;
869
870 BUG_ON(exit_code & 0x80); /* core dumps don't get here */
871
872 if (signal_group_exit(sig))
873 exit_code = sig->group_exit_code;
874 else if (!thread_group_empty(current)) {
875 struct sighand_struct *const sighand = current->sighand;
876
877 spin_lock_irq(&sighand->siglock);
878 if (signal_group_exit(sig))
879 /* Another thread got here before we took the lock. */
880 exit_code = sig->group_exit_code;
881 else {
882 sig->group_exit_code = exit_code;
883 sig->flags = SIGNAL_GROUP_EXIT;
884 zap_other_threads(current);
885 }
886 spin_unlock_irq(&sighand->siglock);
887 }
888
889 do_exit(exit_code);
890 /* NOTREACHED */
891 }
892
893 /*
894 * this kills every thread in the thread group. Note that any externally
895 * wait4()-ing process will get the correct exit code - even if this
896 * thread is not the thread group leader.
897 */
898 SYSCALL_DEFINE1(exit_group, int, error_code)
899 {
900 do_group_exit((error_code & 0xff) << 8);
901 /* NOTREACHED */
902 return 0;
903 }
904
905 struct wait_opts {
906 enum pid_type wo_type;
907 int wo_flags;
908 struct pid *wo_pid;
909
910 struct siginfo __user *wo_info;
911 int __user *wo_stat;
912 struct rusage __user *wo_rusage;
913
914 wait_queue_t child_wait;
915 int notask_error;
916 };
917
918 static inline
919 struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
920 {
921 if (type != PIDTYPE_PID)
922 task = task->group_leader;
923 return task->pids[type].pid;
924 }
925
926 static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
927 {
928 return wo->wo_type == PIDTYPE_MAX ||
929 task_pid_type(p, wo->wo_type) == wo->wo_pid;
930 }
931
932 static int eligible_child(struct wait_opts *wo, struct task_struct *p)
933 {
934 if (!eligible_pid(wo, p))
935 return 0;
936 /* Wait for all children (clone and not) if __WALL is set;
937 * otherwise, wait for clone children *only* if __WCLONE is
938 * set; otherwise, wait for non-clone children *only*. (Note:
939 * A "clone" child here is one that reports to its parent
940 * using a signal other than SIGCHLD.) */
941 if (((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
942 && !(wo->wo_flags & __WALL))
943 return 0;
944
945 return 1;
946 }
947
948 static int wait_noreap_copyout(struct wait_opts *wo, struct task_struct *p,
949 pid_t pid, uid_t uid, int why, int status)
950 {
951 struct siginfo __user *infop;
952 int retval = wo->wo_rusage
953 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
954
955 put_task_struct(p);
956 infop = wo->wo_info;
957 if (infop) {
958 if (!retval)
959 retval = put_user(SIGCHLD, &infop->si_signo);
960 if (!retval)
961 retval = put_user(0, &infop->si_errno);
962 if (!retval)
963 retval = put_user((short)why, &infop->si_code);
964 if (!retval)
965 retval = put_user(pid, &infop->si_pid);
966 if (!retval)
967 retval = put_user(uid, &infop->si_uid);
968 if (!retval)
969 retval = put_user(status, &infop->si_status);
970 }
971 if (!retval)
972 retval = pid;
973 return retval;
974 }
975
976 /*
977 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold
978 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
979 * the lock and this task is uninteresting. If we return nonzero, we have
980 * released the lock and the system call should return.
981 */
982 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
983 {
984 unsigned long state;
985 int retval, status, traced;
986 pid_t pid = task_pid_vnr(p);
987 uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
988 struct siginfo __user *infop;
989
990 if (!likely(wo->wo_flags & WEXITED))
991 return 0;
992
993 if (unlikely(wo->wo_flags & WNOWAIT)) {
994 int exit_code = p->exit_code;
995 int why;
996
997 get_task_struct(p);
998 read_unlock(&tasklist_lock);
999 if ((exit_code & 0x7f) == 0) {
1000 why = CLD_EXITED;
1001 status = exit_code >> 8;
1002 } else {
1003 why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
1004 status = exit_code & 0x7f;
1005 }
1006 return wait_noreap_copyout(wo, p, pid, uid, why, status);
1007 }
1008
1009 traced = ptrace_reparented(p);
1010 /*
1011 * Move the task's state to DEAD/TRACE, only one thread can do this.
1012 */
1013 state = traced && thread_group_leader(p) ? EXIT_TRACE : EXIT_DEAD;
1014 if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE)
1015 return 0;
1016 /*
1017 * It can be ptraced but not reparented, check
1018 * thread_group_leader() to filter out sub-threads.
1019 */
1020 if (likely(!traced) && thread_group_leader(p)) {
1021 struct signal_struct *psig;
1022 struct signal_struct *sig;
1023 unsigned long maxrss;
1024 cputime_t tgutime, tgstime;
1025
1026 /*
1027 * The resource counters for the group leader are in its
1028 * own task_struct. Those for dead threads in the group
1029 * are in its signal_struct, as are those for the child
1030 * processes it has previously reaped. All these
1031 * accumulate in the parent's signal_struct c* fields.
1032 *
1033 * We don't bother to take a lock here to protect these
1034 * p->signal fields, because they are only touched by
1035 * __exit_signal, which runs with tasklist_lock
1036 * write-locked anyway, and so is excluded here. We do
1037 * need to protect the access to parent->signal fields,
1038 * as other threads in the parent group can be right
1039 * here reaping other children at the same time.
1040 *
1041 * We use thread_group_cputime_adjusted() to get times for
1042 * the thread group, which consolidates times for all threads
1043 * in the group including the group leader.
1044 */
1045 thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1046 spin_lock_irq(&p->real_parent->sighand->siglock);
1047 psig = p->real_parent->signal;
1048 sig = p->signal;
1049 psig->cutime += tgutime + sig->cutime;
1050 psig->cstime += tgstime + sig->cstime;
1051 psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime;
1052 psig->cmin_flt +=
1053 p->min_flt + sig->min_flt + sig->cmin_flt;
1054 psig->cmaj_flt +=
1055 p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1056 psig->cnvcsw +=
1057 p->nvcsw + sig->nvcsw + sig->cnvcsw;
1058 psig->cnivcsw +=
1059 p->nivcsw + sig->nivcsw + sig->cnivcsw;
1060 psig->cinblock +=
1061 task_io_get_inblock(p) +
1062 sig->inblock + sig->cinblock;
1063 psig->coublock +=
1064 task_io_get_oublock(p) +
1065 sig->oublock + sig->coublock;
1066 maxrss = max(sig->maxrss, sig->cmaxrss);
1067 if (psig->cmaxrss < maxrss)
1068 psig->cmaxrss = maxrss;
1069 task_io_accounting_add(&psig->ioac, &p->ioac);
1070 task_io_accounting_add(&psig->ioac, &sig->ioac);
1071 spin_unlock_irq(&p->real_parent->sighand->siglock);
1072 }
1073
1074 /*
1075 * Now we are sure this task is interesting, and no other
1076 * thread can reap it because we its state == DEAD/TRACE.
1077 */
1078 read_unlock(&tasklist_lock);
1079
1080 retval = wo->wo_rusage
1081 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1082 status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1083 ? p->signal->group_exit_code : p->exit_code;
1084 if (!retval && wo->wo_stat)
1085 retval = put_user(status, wo->wo_stat);
1086
1087 infop = wo->wo_info;
1088 if (!retval && infop)
1089 retval = put_user(SIGCHLD, &infop->si_signo);
1090 if (!retval && infop)
1091 retval = put_user(0, &infop->si_errno);
1092 if (!retval && infop) {
1093 int why;
1094
1095 if ((status & 0x7f) == 0) {
1096 why = CLD_EXITED;
1097 status >>= 8;
1098 } else {
1099 why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1100 status &= 0x7f;
1101 }
1102 retval = put_user((short)why, &infop->si_code);
1103 if (!retval)
1104 retval = put_user(status, &infop->si_status);
1105 }
1106 if (!retval && infop)
1107 retval = put_user(pid, &infop->si_pid);
1108 if (!retval && infop)
1109 retval = put_user(uid, &infop->si_uid);
1110 if (!retval)
1111 retval = pid;
1112
1113 if (state == EXIT_TRACE) {
1114 write_lock_irq(&tasklist_lock);
1115 /* We dropped tasklist, ptracer could die and untrace */
1116 ptrace_unlink(p);
1117
1118 /* If parent wants a zombie, don't release it now */
1119 state = EXIT_ZOMBIE;
1120 if (do_notify_parent(p, p->exit_signal))
1121 state = EXIT_DEAD;
1122 p->exit_state = state;
1123 write_unlock_irq(&tasklist_lock);
1124 }
1125 if (state == EXIT_DEAD)
1126 release_task(p);
1127
1128 return retval;
1129 }
1130
1131 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1132 {
1133 if (ptrace) {
1134 if (task_is_stopped_or_traced(p) &&
1135 !(p->jobctl & JOBCTL_LISTENING))
1136 return &p->exit_code;
1137 } else {
1138 if (p->signal->flags & SIGNAL_STOP_STOPPED)
1139 return &p->signal->group_exit_code;
1140 }
1141 return NULL;
1142 }
1143
1144 /**
1145 * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1146 * @wo: wait options
1147 * @ptrace: is the wait for ptrace
1148 * @p: task to wait for
1149 *
1150 * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1151 *
1152 * CONTEXT:
1153 * read_lock(&tasklist_lock), which is released if return value is
1154 * non-zero. Also, grabs and releases @p->sighand->siglock.
1155 *
1156 * RETURNS:
1157 * 0 if wait condition didn't exist and search for other wait conditions
1158 * should continue. Non-zero return, -errno on failure and @p's pid on
1159 * success, implies that tasklist_lock is released and wait condition
1160 * search should terminate.
1161 */
1162 static int wait_task_stopped(struct wait_opts *wo,
1163 int ptrace, struct task_struct *p)
1164 {
1165 struct siginfo __user *infop;
1166 int retval, exit_code, *p_code, why;
1167 uid_t uid = 0; /* unneeded, required by compiler */
1168 pid_t pid;
1169
1170 /*
1171 * Traditionally we see ptrace'd stopped tasks regardless of options.
1172 */
1173 if (!ptrace && !(wo->wo_flags & WUNTRACED))
1174 return 0;
1175
1176 if (!task_stopped_code(p, ptrace))
1177 return 0;
1178
1179 exit_code = 0;
1180 spin_lock_irq(&p->sighand->siglock);
1181
1182 p_code = task_stopped_code(p, ptrace);
1183 if (unlikely(!p_code))
1184 goto unlock_sig;
1185
1186 exit_code = *p_code;
1187 if (!exit_code)
1188 goto unlock_sig;
1189
1190 if (!unlikely(wo->wo_flags & WNOWAIT))
1191 *p_code = 0;
1192
1193 uid = from_kuid_munged(current_user_ns(), task_uid(p));
1194 unlock_sig:
1195 spin_unlock_irq(&p->sighand->siglock);
1196 if (!exit_code)
1197 return 0;
1198
1199 /*
1200 * Now we are pretty sure this task is interesting.
1201 * Make sure it doesn't get reaped out from under us while we
1202 * give up the lock and then examine it below. We don't want to
1203 * keep holding onto the tasklist_lock while we call getrusage and
1204 * possibly take page faults for user memory.
1205 */
1206 get_task_struct(p);
1207 pid = task_pid_vnr(p);
1208 why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1209 read_unlock(&tasklist_lock);
1210
1211 if (unlikely(wo->wo_flags & WNOWAIT))
1212 return wait_noreap_copyout(wo, p, pid, uid, why, exit_code);
1213
1214 retval = wo->wo_rusage
1215 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1216 if (!retval && wo->wo_stat)
1217 retval = put_user((exit_code << 8) | 0x7f, wo->wo_stat);
1218
1219 infop = wo->wo_info;
1220 if (!retval && infop)
1221 retval = put_user(SIGCHLD, &infop->si_signo);
1222 if (!retval && infop)
1223 retval = put_user(0, &infop->si_errno);
1224 if (!retval && infop)
1225 retval = put_user((short)why, &infop->si_code);
1226 if (!retval && infop)
1227 retval = put_user(exit_code, &infop->si_status);
1228 if (!retval && infop)
1229 retval = put_user(pid, &infop->si_pid);
1230 if (!retval && infop)
1231 retval = put_user(uid, &infop->si_uid);
1232 if (!retval)
1233 retval = pid;
1234 put_task_struct(p);
1235
1236 BUG_ON(!retval);
1237 return retval;
1238 }
1239
1240 /*
1241 * Handle do_wait work for one task in a live, non-stopped state.
1242 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1243 * the lock and this task is uninteresting. If we return nonzero, we have
1244 * released the lock and the system call should return.
1245 */
1246 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1247 {
1248 int retval;
1249 pid_t pid;
1250 uid_t uid;
1251
1252 if (!unlikely(wo->wo_flags & WCONTINUED))
1253 return 0;
1254
1255 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1256 return 0;
1257
1258 spin_lock_irq(&p->sighand->siglock);
1259 /* Re-check with the lock held. */
1260 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1261 spin_unlock_irq(&p->sighand->siglock);
1262 return 0;
1263 }
1264 if (!unlikely(wo->wo_flags & WNOWAIT))
1265 p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1266 uid = from_kuid_munged(current_user_ns(), task_uid(p));
1267 spin_unlock_irq(&p->sighand->siglock);
1268
1269 pid = task_pid_vnr(p);
1270 get_task_struct(p);
1271 read_unlock(&tasklist_lock);
1272
1273 if (!wo->wo_info) {
1274 retval = wo->wo_rusage
1275 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1276 put_task_struct(p);
1277 if (!retval && wo->wo_stat)
1278 retval = put_user(0xffff, wo->wo_stat);
1279 if (!retval)
1280 retval = pid;
1281 } else {
1282 retval = wait_noreap_copyout(wo, p, pid, uid,
1283 CLD_CONTINUED, SIGCONT);
1284 BUG_ON(retval == 0);
1285 }
1286
1287 return retval;
1288 }
1289
1290 /*
1291 * Consider @p for a wait by @parent.
1292 *
1293 * -ECHILD should be in ->notask_error before the first call.
1294 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1295 * Returns zero if the search for a child should continue;
1296 * then ->notask_error is 0 if @p is an eligible child,
1297 * or another error from security_task_wait(), or still -ECHILD.
1298 */
1299 static int wait_consider_task(struct wait_opts *wo, int ptrace,
1300 struct task_struct *p)
1301 {
1302 int ret;
1303
1304 if (unlikely(p->exit_state == EXIT_DEAD))
1305 return 0;
1306
1307 ret = eligible_child(wo, p);
1308 if (!ret)
1309 return ret;
1310
1311 ret = security_task_wait(p);
1312 if (unlikely(ret < 0)) {
1313 /*
1314 * If we have not yet seen any eligible child,
1315 * then let this error code replace -ECHILD.
1316 * A permission error will give the user a clue
1317 * to look for security policy problems, rather
1318 * than for mysterious wait bugs.
1319 */
1320 if (wo->notask_error)
1321 wo->notask_error = ret;
1322 return 0;
1323 }
1324
1325 if (unlikely(p->exit_state == EXIT_TRACE)) {
1326 /*
1327 * ptrace == 0 means we are the natural parent. In this case
1328 * we should clear notask_error, debugger will notify us.
1329 */
1330 if (likely(!ptrace))
1331 wo->notask_error = 0;
1332 return 0;
1333 }
1334
1335 if (likely(!ptrace) && unlikely(p->ptrace)) {
1336 /*
1337 * If it is traced by its real parent's group, just pretend
1338 * the caller is ptrace_do_wait() and reap this child if it
1339 * is zombie.
1340 *
1341 * This also hides group stop state from real parent; otherwise
1342 * a single stop can be reported twice as group and ptrace stop.
1343 * If a ptracer wants to distinguish these two events for its
1344 * own children it should create a separate process which takes
1345 * the role of real parent.
1346 */
1347 if (!ptrace_reparented(p))
1348 ptrace = 1;
1349 }
1350
1351 /* slay zombie? */
1352 if (p->exit_state == EXIT_ZOMBIE) {
1353 /* we don't reap group leaders with subthreads */
1354 if (!delay_group_leader(p)) {
1355 /*
1356 * A zombie ptracee is only visible to its ptracer.
1357 * Notification and reaping will be cascaded to the
1358 * real parent when the ptracer detaches.
1359 */
1360 if (unlikely(ptrace) || likely(!p->ptrace))
1361 return wait_task_zombie(wo, p);
1362 }
1363
1364 /*
1365 * Allow access to stopped/continued state via zombie by
1366 * falling through. Clearing of notask_error is complex.
1367 *
1368 * When !@ptrace:
1369 *
1370 * If WEXITED is set, notask_error should naturally be
1371 * cleared. If not, subset of WSTOPPED|WCONTINUED is set,
1372 * so, if there are live subthreads, there are events to
1373 * wait for. If all subthreads are dead, it's still safe
1374 * to clear - this function will be called again in finite
1375 * amount time once all the subthreads are released and
1376 * will then return without clearing.
1377 *
1378 * When @ptrace:
1379 *
1380 * Stopped state is per-task and thus can't change once the
1381 * target task dies. Only continued and exited can happen.
1382 * Clear notask_error if WCONTINUED | WEXITED.
1383 */
1384 if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1385 wo->notask_error = 0;
1386 } else {
1387 /*
1388 * @p is alive and it's gonna stop, continue or exit, so
1389 * there always is something to wait for.
1390 */
1391 wo->notask_error = 0;
1392 }
1393
1394 /*
1395 * Wait for stopped. Depending on @ptrace, different stopped state
1396 * is used and the two don't interact with each other.
1397 */
1398 ret = wait_task_stopped(wo, ptrace, p);
1399 if (ret)
1400 return ret;
1401
1402 /*
1403 * Wait for continued. There's only one continued state and the
1404 * ptracer can consume it which can confuse the real parent. Don't
1405 * use WCONTINUED from ptracer. You don't need or want it.
1406 */
1407 return wait_task_continued(wo, p);
1408 }
1409
1410 /*
1411 * Do the work of do_wait() for one thread in the group, @tsk.
1412 *
1413 * -ECHILD should be in ->notask_error before the first call.
1414 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1415 * Returns zero if the search for a child should continue; then
1416 * ->notask_error is 0 if there were any eligible children,
1417 * or another error from security_task_wait(), or still -ECHILD.
1418 */
1419 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1420 {
1421 struct task_struct *p;
1422
1423 list_for_each_entry(p, &tsk->children, sibling) {
1424 int ret = wait_consider_task(wo, 0, p);
1425
1426 if (ret)
1427 return ret;
1428 }
1429
1430 return 0;
1431 }
1432
1433 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1434 {
1435 struct task_struct *p;
1436
1437 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1438 int ret = wait_consider_task(wo, 1, p);
1439
1440 if (ret)
1441 return ret;
1442 }
1443
1444 return 0;
1445 }
1446
1447 static int child_wait_callback(wait_queue_t *wait, unsigned mode,
1448 int sync, void *key)
1449 {
1450 struct wait_opts *wo = container_of(wait, struct wait_opts,
1451 child_wait);
1452 struct task_struct *p = key;
1453
1454 if (!eligible_pid(wo, p))
1455 return 0;
1456
1457 if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1458 return 0;
1459
1460 return default_wake_function(wait, mode, sync, key);
1461 }
1462
1463 void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1464 {
1465 __wake_up_sync_key(&parent->signal->wait_chldexit,
1466 TASK_INTERRUPTIBLE, 1, p);
1467 }
1468
1469 static long do_wait(struct wait_opts *wo)
1470 {
1471 struct task_struct *tsk;
1472 int retval;
1473
1474 trace_sched_process_wait(wo->wo_pid);
1475
1476 init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1477 wo->child_wait.private = current;
1478 add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1479 repeat:
1480 /*
1481 * If there is nothing that can match our critiera just get out.
1482 * We will clear ->notask_error to zero if we see any child that
1483 * might later match our criteria, even if we are not able to reap
1484 * it yet.
1485 */
1486 wo->notask_error = -ECHILD;
1487 if ((wo->wo_type < PIDTYPE_MAX) &&
1488 (!wo->wo_pid || hlist_empty(&wo->wo_pid->tasks[wo->wo_type])))
1489 goto notask;
1490
1491 set_current_state(TASK_INTERRUPTIBLE);
1492 read_lock(&tasklist_lock);
1493 tsk = current;
1494 do {
1495 retval = do_wait_thread(wo, tsk);
1496 if (retval)
1497 goto end;
1498
1499 retval = ptrace_do_wait(wo, tsk);
1500 if (retval)
1501 goto end;
1502
1503 if (wo->wo_flags & __WNOTHREAD)
1504 break;
1505 } while_each_thread(current, tsk);
1506 read_unlock(&tasklist_lock);
1507
1508 notask:
1509 retval = wo->notask_error;
1510 if (!retval && !(wo->wo_flags & WNOHANG)) {
1511 retval = -ERESTARTSYS;
1512 if (!signal_pending(current)) {
1513 schedule();
1514 goto repeat;
1515 }
1516 }
1517 end:
1518 __set_current_state(TASK_RUNNING);
1519 remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1520 return retval;
1521 }
1522
1523 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1524 infop, int, options, struct rusage __user *, ru)
1525 {
1526 struct wait_opts wo;
1527 struct pid *pid = NULL;
1528 enum pid_type type;
1529 long ret;
1530
1531 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED))
1532 return -EINVAL;
1533 if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1534 return -EINVAL;
1535
1536 switch (which) {
1537 case P_ALL:
1538 type = PIDTYPE_MAX;
1539 break;
1540 case P_PID:
1541 type = PIDTYPE_PID;
1542 if (upid <= 0)
1543 return -EINVAL;
1544 break;
1545 case P_PGID:
1546 type = PIDTYPE_PGID;
1547 if (upid <= 0)
1548 return -EINVAL;
1549 break;
1550 default:
1551 return -EINVAL;
1552 }
1553
1554 if (type < PIDTYPE_MAX)
1555 pid = find_get_pid(upid);
1556
1557 wo.wo_type = type;
1558 wo.wo_pid = pid;
1559 wo.wo_flags = options;
1560 wo.wo_info = infop;
1561 wo.wo_stat = NULL;
1562 wo.wo_rusage = ru;
1563 ret = do_wait(&wo);
1564
1565 if (ret > 0) {
1566 ret = 0;
1567 } else if (infop) {
1568 /*
1569 * For a WNOHANG return, clear out all the fields
1570 * we would set so the user can easily tell the
1571 * difference.
1572 */
1573 if (!ret)
1574 ret = put_user(0, &infop->si_signo);
1575 if (!ret)
1576 ret = put_user(0, &infop->si_errno);
1577 if (!ret)
1578 ret = put_user(0, &infop->si_code);
1579 if (!ret)
1580 ret = put_user(0, &infop->si_pid);
1581 if (!ret)
1582 ret = put_user(0, &infop->si_uid);
1583 if (!ret)
1584 ret = put_user(0, &infop->si_status);
1585 }
1586
1587 put_pid(pid);
1588 return ret;
1589 }
1590
1591 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1592 int, options, struct rusage __user *, ru)
1593 {
1594 struct wait_opts wo;
1595 struct pid *pid = NULL;
1596 enum pid_type type;
1597 long ret;
1598
1599 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1600 __WNOTHREAD|__WCLONE|__WALL))
1601 return -EINVAL;
1602
1603 if (upid == -1)
1604 type = PIDTYPE_MAX;
1605 else if (upid < 0) {
1606 type = PIDTYPE_PGID;
1607 pid = find_get_pid(-upid);
1608 } else if (upid == 0) {
1609 type = PIDTYPE_PGID;
1610 pid = get_task_pid(current, PIDTYPE_PGID);
1611 } else /* upid > 0 */ {
1612 type = PIDTYPE_PID;
1613 pid = find_get_pid(upid);
1614 }
1615
1616 wo.wo_type = type;
1617 wo.wo_pid = pid;
1618 wo.wo_flags = options | WEXITED;
1619 wo.wo_info = NULL;
1620 wo.wo_stat = stat_addr;
1621 wo.wo_rusage = ru;
1622 ret = do_wait(&wo);
1623 put_pid(pid);
1624
1625 return ret;
1626 }
1627
1628 #ifdef __ARCH_WANT_SYS_WAITPID
1629
1630 /*
1631 * sys_waitpid() remains for compatibility. waitpid() should be
1632 * implemented by calling sys_wait4() from libc.a.
1633 */
1634 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1635 {
1636 return sys_wait4(pid, stat_addr, options, NULL);
1637 }
1638
1639 #endif
This page took 0.065711 seconds and 6 git commands to generate.