exit: move taskstats_tgid_free() from __exit_signal() to free_signal_struct()
[deliverable/linux.git] / kernel / exit.c
1 /*
2 * linux/kernel/exit.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 #include <linux/mm.h>
8 #include <linux/slab.h>
9 #include <linux/interrupt.h>
10 #include <linux/module.h>
11 #include <linux/capability.h>
12 #include <linux/completion.h>
13 #include <linux/personality.h>
14 #include <linux/tty.h>
15 #include <linux/iocontext.h>
16 #include <linux/key.h>
17 #include <linux/security.h>
18 #include <linux/cpu.h>
19 #include <linux/acct.h>
20 #include <linux/tsacct_kern.h>
21 #include <linux/file.h>
22 #include <linux/fdtable.h>
23 #include <linux/binfmts.h>
24 #include <linux/nsproxy.h>
25 #include <linux/pid_namespace.h>
26 #include <linux/ptrace.h>
27 #include <linux/profile.h>
28 #include <linux/mount.h>
29 #include <linux/proc_fs.h>
30 #include <linux/kthread.h>
31 #include <linux/mempolicy.h>
32 #include <linux/taskstats_kern.h>
33 #include <linux/delayacct.h>
34 #include <linux/freezer.h>
35 #include <linux/cgroup.h>
36 #include <linux/syscalls.h>
37 #include <linux/signal.h>
38 #include <linux/posix-timers.h>
39 #include <linux/cn_proc.h>
40 #include <linux/mutex.h>
41 #include <linux/futex.h>
42 #include <linux/pipe_fs_i.h>
43 #include <linux/audit.h> /* for audit_free() */
44 #include <linux/resource.h>
45 #include <linux/blkdev.h>
46 #include <linux/task_io_accounting_ops.h>
47 #include <linux/tracehook.h>
48 #include <linux/fs_struct.h>
49 #include <linux/init_task.h>
50 #include <linux/perf_event.h>
51 #include <trace/events/sched.h>
52 #include <linux/hw_breakpoint.h>
53
54 #include <asm/uaccess.h>
55 #include <asm/unistd.h>
56 #include <asm/pgtable.h>
57 #include <asm/mmu_context.h>
58
59 static void exit_mm(struct task_struct * tsk);
60
61 static void __unhash_process(struct task_struct *p, bool group_dead)
62 {
63 nr_threads--;
64 detach_pid(p, PIDTYPE_PID);
65 if (group_dead) {
66 detach_pid(p, PIDTYPE_PGID);
67 detach_pid(p, PIDTYPE_SID);
68
69 list_del_rcu(&p->tasks);
70 list_del_init(&p->sibling);
71 __get_cpu_var(process_counts)--;
72 }
73 list_del_rcu(&p->thread_group);
74 }
75
76 /*
77 * This function expects the tasklist_lock write-locked.
78 */
79 static void __exit_signal(struct task_struct *tsk)
80 {
81 struct signal_struct *sig = tsk->signal;
82 bool group_dead = thread_group_leader(tsk);
83 struct sighand_struct *sighand;
84 struct tty_struct *uninitialized_var(tty);
85
86 BUG_ON(!sig);
87 BUG_ON(!atomic_read(&sig->count));
88
89 sighand = rcu_dereference_check(tsk->sighand,
90 rcu_read_lock_held() ||
91 lockdep_tasklist_lock_is_held());
92 spin_lock(&sighand->siglock);
93 atomic_dec(&sig->count);
94
95 posix_cpu_timers_exit(tsk);
96 if (group_dead) {
97 posix_cpu_timers_exit_group(tsk);
98 tty = sig->tty;
99 sig->tty = NULL;
100 } else {
101 /*
102 * If there is any task waiting for the group exit
103 * then notify it:
104 */
105 if (sig->notify_count > 0 && !--sig->notify_count)
106 wake_up_process(sig->group_exit_task);
107
108 if (tsk == sig->curr_target)
109 sig->curr_target = next_thread(tsk);
110 /*
111 * Accumulate here the counters for all threads but the
112 * group leader as they die, so they can be added into
113 * the process-wide totals when those are taken.
114 * The group leader stays around as a zombie as long
115 * as there are other threads. When it gets reaped,
116 * the exit.c code will add its counts into these totals.
117 * We won't ever get here for the group leader, since it
118 * will have been the last reference on the signal_struct.
119 */
120 sig->utime = cputime_add(sig->utime, tsk->utime);
121 sig->stime = cputime_add(sig->stime, tsk->stime);
122 sig->gtime = cputime_add(sig->gtime, tsk->gtime);
123 sig->min_flt += tsk->min_flt;
124 sig->maj_flt += tsk->maj_flt;
125 sig->nvcsw += tsk->nvcsw;
126 sig->nivcsw += tsk->nivcsw;
127 sig->inblock += task_io_get_inblock(tsk);
128 sig->oublock += task_io_get_oublock(tsk);
129 task_io_accounting_add(&sig->ioac, &tsk->ioac);
130 sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
131 }
132
133 __unhash_process(tsk, group_dead);
134
135 /*
136 * Do this under ->siglock, we can race with another thread
137 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
138 */
139 flush_sigqueue(&tsk->pending);
140 tsk->sighand = NULL;
141 spin_unlock(&sighand->siglock);
142
143 __cleanup_sighand(sighand);
144 clear_tsk_thread_flag(tsk,TIF_SIGPENDING);
145 if (group_dead) {
146 flush_sigqueue(&sig->shared_pending);
147 tty_kref_put(tty);
148 }
149 }
150
151 static void delayed_put_task_struct(struct rcu_head *rhp)
152 {
153 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
154
155 #ifdef CONFIG_PERF_EVENTS
156 WARN_ON_ONCE(tsk->perf_event_ctxp);
157 #endif
158 trace_sched_process_free(tsk);
159 put_task_struct(tsk);
160 }
161
162
163 void release_task(struct task_struct * p)
164 {
165 struct task_struct *leader;
166 int zap_leader;
167 repeat:
168 tracehook_prepare_release_task(p);
169 /* don't need to get the RCU readlock here - the process is dead and
170 * can't be modifying its own credentials. But shut RCU-lockdep up */
171 rcu_read_lock();
172 atomic_dec(&__task_cred(p)->user->processes);
173 rcu_read_unlock();
174
175 proc_flush_task(p);
176
177 write_lock_irq(&tasklist_lock);
178 tracehook_finish_release_task(p);
179 __exit_signal(p);
180
181 /*
182 * If we are the last non-leader member of the thread
183 * group, and the leader is zombie, then notify the
184 * group leader's parent process. (if it wants notification.)
185 */
186 zap_leader = 0;
187 leader = p->group_leader;
188 if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) {
189 BUG_ON(task_detached(leader));
190 do_notify_parent(leader, leader->exit_signal);
191 /*
192 * If we were the last child thread and the leader has
193 * exited already, and the leader's parent ignores SIGCHLD,
194 * then we are the one who should release the leader.
195 *
196 * do_notify_parent() will have marked it self-reaping in
197 * that case.
198 */
199 zap_leader = task_detached(leader);
200
201 /*
202 * This maintains the invariant that release_task()
203 * only runs on a task in EXIT_DEAD, just for sanity.
204 */
205 if (zap_leader)
206 leader->exit_state = EXIT_DEAD;
207 }
208
209 write_unlock_irq(&tasklist_lock);
210 release_thread(p);
211 call_rcu(&p->rcu, delayed_put_task_struct);
212
213 p = leader;
214 if (unlikely(zap_leader))
215 goto repeat;
216 }
217
218 /*
219 * This checks not only the pgrp, but falls back on the pid if no
220 * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
221 * without this...
222 *
223 * The caller must hold rcu lock or the tasklist lock.
224 */
225 struct pid *session_of_pgrp(struct pid *pgrp)
226 {
227 struct task_struct *p;
228 struct pid *sid = NULL;
229
230 p = pid_task(pgrp, PIDTYPE_PGID);
231 if (p == NULL)
232 p = pid_task(pgrp, PIDTYPE_PID);
233 if (p != NULL)
234 sid = task_session(p);
235
236 return sid;
237 }
238
239 /*
240 * Determine if a process group is "orphaned", according to the POSIX
241 * definition in 2.2.2.52. Orphaned process groups are not to be affected
242 * by terminal-generated stop signals. Newly orphaned process groups are
243 * to receive a SIGHUP and a SIGCONT.
244 *
245 * "I ask you, have you ever known what it is to be an orphan?"
246 */
247 static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task)
248 {
249 struct task_struct *p;
250
251 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
252 if ((p == ignored_task) ||
253 (p->exit_state && thread_group_empty(p)) ||
254 is_global_init(p->real_parent))
255 continue;
256
257 if (task_pgrp(p->real_parent) != pgrp &&
258 task_session(p->real_parent) == task_session(p))
259 return 0;
260 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
261
262 return 1;
263 }
264
265 int is_current_pgrp_orphaned(void)
266 {
267 int retval;
268
269 read_lock(&tasklist_lock);
270 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
271 read_unlock(&tasklist_lock);
272
273 return retval;
274 }
275
276 static int has_stopped_jobs(struct pid *pgrp)
277 {
278 int retval = 0;
279 struct task_struct *p;
280
281 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
282 if (!task_is_stopped(p))
283 continue;
284 retval = 1;
285 break;
286 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
287 return retval;
288 }
289
290 /*
291 * Check to see if any process groups have become orphaned as
292 * a result of our exiting, and if they have any stopped jobs,
293 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
294 */
295 static void
296 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
297 {
298 struct pid *pgrp = task_pgrp(tsk);
299 struct task_struct *ignored_task = tsk;
300
301 if (!parent)
302 /* exit: our father is in a different pgrp than
303 * we are and we were the only connection outside.
304 */
305 parent = tsk->real_parent;
306 else
307 /* reparent: our child is in a different pgrp than
308 * we are, and it was the only connection outside.
309 */
310 ignored_task = NULL;
311
312 if (task_pgrp(parent) != pgrp &&
313 task_session(parent) == task_session(tsk) &&
314 will_become_orphaned_pgrp(pgrp, ignored_task) &&
315 has_stopped_jobs(pgrp)) {
316 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
317 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
318 }
319 }
320
321 /**
322 * reparent_to_kthreadd - Reparent the calling kernel thread to kthreadd
323 *
324 * If a kernel thread is launched as a result of a system call, or if
325 * it ever exits, it should generally reparent itself to kthreadd so it
326 * isn't in the way of other processes and is correctly cleaned up on exit.
327 *
328 * The various task state such as scheduling policy and priority may have
329 * been inherited from a user process, so we reset them to sane values here.
330 *
331 * NOTE that reparent_to_kthreadd() gives the caller full capabilities.
332 */
333 static void reparent_to_kthreadd(void)
334 {
335 write_lock_irq(&tasklist_lock);
336
337 ptrace_unlink(current);
338 /* Reparent to init */
339 current->real_parent = current->parent = kthreadd_task;
340 list_move_tail(&current->sibling, &current->real_parent->children);
341
342 /* Set the exit signal to SIGCHLD so we signal init on exit */
343 current->exit_signal = SIGCHLD;
344
345 if (task_nice(current) < 0)
346 set_user_nice(current, 0);
347 /* cpus_allowed? */
348 /* rt_priority? */
349 /* signals? */
350 memcpy(current->signal->rlim, init_task.signal->rlim,
351 sizeof(current->signal->rlim));
352
353 atomic_inc(&init_cred.usage);
354 commit_creds(&init_cred);
355 write_unlock_irq(&tasklist_lock);
356 }
357
358 void __set_special_pids(struct pid *pid)
359 {
360 struct task_struct *curr = current->group_leader;
361
362 if (task_session(curr) != pid)
363 change_pid(curr, PIDTYPE_SID, pid);
364
365 if (task_pgrp(curr) != pid)
366 change_pid(curr, PIDTYPE_PGID, pid);
367 }
368
369 static void set_special_pids(struct pid *pid)
370 {
371 write_lock_irq(&tasklist_lock);
372 __set_special_pids(pid);
373 write_unlock_irq(&tasklist_lock);
374 }
375
376 /*
377 * Let kernel threads use this to say that they allow a certain signal.
378 * Must not be used if kthread was cloned with CLONE_SIGHAND.
379 */
380 int allow_signal(int sig)
381 {
382 if (!valid_signal(sig) || sig < 1)
383 return -EINVAL;
384
385 spin_lock_irq(&current->sighand->siglock);
386 /* This is only needed for daemonize()'ed kthreads */
387 sigdelset(&current->blocked, sig);
388 /*
389 * Kernel threads handle their own signals. Let the signal code
390 * know it'll be handled, so that they don't get converted to
391 * SIGKILL or just silently dropped.
392 */
393 current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2;
394 recalc_sigpending();
395 spin_unlock_irq(&current->sighand->siglock);
396 return 0;
397 }
398
399 EXPORT_SYMBOL(allow_signal);
400
401 int disallow_signal(int sig)
402 {
403 if (!valid_signal(sig) || sig < 1)
404 return -EINVAL;
405
406 spin_lock_irq(&current->sighand->siglock);
407 current->sighand->action[(sig)-1].sa.sa_handler = SIG_IGN;
408 recalc_sigpending();
409 spin_unlock_irq(&current->sighand->siglock);
410 return 0;
411 }
412
413 EXPORT_SYMBOL(disallow_signal);
414
415 /*
416 * Put all the gunge required to become a kernel thread without
417 * attached user resources in one place where it belongs.
418 */
419
420 void daemonize(const char *name, ...)
421 {
422 va_list args;
423 sigset_t blocked;
424
425 va_start(args, name);
426 vsnprintf(current->comm, sizeof(current->comm), name, args);
427 va_end(args);
428
429 /*
430 * If we were started as result of loading a module, close all of the
431 * user space pages. We don't need them, and if we didn't close them
432 * they would be locked into memory.
433 */
434 exit_mm(current);
435 /*
436 * We don't want to have TIF_FREEZE set if the system-wide hibernation
437 * or suspend transition begins right now.
438 */
439 current->flags |= (PF_NOFREEZE | PF_KTHREAD);
440
441 if (current->nsproxy != &init_nsproxy) {
442 get_nsproxy(&init_nsproxy);
443 switch_task_namespaces(current, &init_nsproxy);
444 }
445 set_special_pids(&init_struct_pid);
446 proc_clear_tty(current);
447
448 /* Block and flush all signals */
449 sigfillset(&blocked);
450 sigprocmask(SIG_BLOCK, &blocked, NULL);
451 flush_signals(current);
452
453 /* Become as one with the init task */
454
455 daemonize_fs_struct();
456 exit_files(current);
457 current->files = init_task.files;
458 atomic_inc(&current->files->count);
459
460 reparent_to_kthreadd();
461 }
462
463 EXPORT_SYMBOL(daemonize);
464
465 static void close_files(struct files_struct * files)
466 {
467 int i, j;
468 struct fdtable *fdt;
469
470 j = 0;
471
472 /*
473 * It is safe to dereference the fd table without RCU or
474 * ->file_lock because this is the last reference to the
475 * files structure. But use RCU to shut RCU-lockdep up.
476 */
477 rcu_read_lock();
478 fdt = files_fdtable(files);
479 rcu_read_unlock();
480 for (;;) {
481 unsigned long set;
482 i = j * __NFDBITS;
483 if (i >= fdt->max_fds)
484 break;
485 set = fdt->open_fds->fds_bits[j++];
486 while (set) {
487 if (set & 1) {
488 struct file * file = xchg(&fdt->fd[i], NULL);
489 if (file) {
490 filp_close(file, files);
491 cond_resched();
492 }
493 }
494 i++;
495 set >>= 1;
496 }
497 }
498 }
499
500 struct files_struct *get_files_struct(struct task_struct *task)
501 {
502 struct files_struct *files;
503
504 task_lock(task);
505 files = task->files;
506 if (files)
507 atomic_inc(&files->count);
508 task_unlock(task);
509
510 return files;
511 }
512
513 void put_files_struct(struct files_struct *files)
514 {
515 struct fdtable *fdt;
516
517 if (atomic_dec_and_test(&files->count)) {
518 close_files(files);
519 /*
520 * Free the fd and fdset arrays if we expanded them.
521 * If the fdtable was embedded, pass files for freeing
522 * at the end of the RCU grace period. Otherwise,
523 * you can free files immediately.
524 */
525 rcu_read_lock();
526 fdt = files_fdtable(files);
527 if (fdt != &files->fdtab)
528 kmem_cache_free(files_cachep, files);
529 free_fdtable(fdt);
530 rcu_read_unlock();
531 }
532 }
533
534 void reset_files_struct(struct files_struct *files)
535 {
536 struct task_struct *tsk = current;
537 struct files_struct *old;
538
539 old = tsk->files;
540 task_lock(tsk);
541 tsk->files = files;
542 task_unlock(tsk);
543 put_files_struct(old);
544 }
545
546 void exit_files(struct task_struct *tsk)
547 {
548 struct files_struct * files = tsk->files;
549
550 if (files) {
551 task_lock(tsk);
552 tsk->files = NULL;
553 task_unlock(tsk);
554 put_files_struct(files);
555 }
556 }
557
558 #ifdef CONFIG_MM_OWNER
559 /*
560 * Task p is exiting and it owned mm, lets find a new owner for it
561 */
562 static inline int
563 mm_need_new_owner(struct mm_struct *mm, struct task_struct *p)
564 {
565 /*
566 * If there are other users of the mm and the owner (us) is exiting
567 * we need to find a new owner to take on the responsibility.
568 */
569 if (atomic_read(&mm->mm_users) <= 1)
570 return 0;
571 if (mm->owner != p)
572 return 0;
573 return 1;
574 }
575
576 void mm_update_next_owner(struct mm_struct *mm)
577 {
578 struct task_struct *c, *g, *p = current;
579
580 retry:
581 if (!mm_need_new_owner(mm, p))
582 return;
583
584 read_lock(&tasklist_lock);
585 /*
586 * Search in the children
587 */
588 list_for_each_entry(c, &p->children, sibling) {
589 if (c->mm == mm)
590 goto assign_new_owner;
591 }
592
593 /*
594 * Search in the siblings
595 */
596 list_for_each_entry(c, &p->real_parent->children, sibling) {
597 if (c->mm == mm)
598 goto assign_new_owner;
599 }
600
601 /*
602 * Search through everything else. We should not get
603 * here often
604 */
605 do_each_thread(g, c) {
606 if (c->mm == mm)
607 goto assign_new_owner;
608 } while_each_thread(g, c);
609
610 read_unlock(&tasklist_lock);
611 /*
612 * We found no owner yet mm_users > 1: this implies that we are
613 * most likely racing with swapoff (try_to_unuse()) or /proc or
614 * ptrace or page migration (get_task_mm()). Mark owner as NULL.
615 */
616 mm->owner = NULL;
617 return;
618
619 assign_new_owner:
620 BUG_ON(c == p);
621 get_task_struct(c);
622 /*
623 * The task_lock protects c->mm from changing.
624 * We always want mm->owner->mm == mm
625 */
626 task_lock(c);
627 /*
628 * Delay read_unlock() till we have the task_lock()
629 * to ensure that c does not slip away underneath us
630 */
631 read_unlock(&tasklist_lock);
632 if (c->mm != mm) {
633 task_unlock(c);
634 put_task_struct(c);
635 goto retry;
636 }
637 mm->owner = c;
638 task_unlock(c);
639 put_task_struct(c);
640 }
641 #endif /* CONFIG_MM_OWNER */
642
643 /*
644 * Turn us into a lazy TLB process if we
645 * aren't already..
646 */
647 static void exit_mm(struct task_struct * tsk)
648 {
649 struct mm_struct *mm = tsk->mm;
650 struct core_state *core_state;
651
652 mm_release(tsk, mm);
653 if (!mm)
654 return;
655 /*
656 * Serialize with any possible pending coredump.
657 * We must hold mmap_sem around checking core_state
658 * and clearing tsk->mm. The core-inducing thread
659 * will increment ->nr_threads for each thread in the
660 * group with ->mm != NULL.
661 */
662 down_read(&mm->mmap_sem);
663 core_state = mm->core_state;
664 if (core_state) {
665 struct core_thread self;
666 up_read(&mm->mmap_sem);
667
668 self.task = tsk;
669 self.next = xchg(&core_state->dumper.next, &self);
670 /*
671 * Implies mb(), the result of xchg() must be visible
672 * to core_state->dumper.
673 */
674 if (atomic_dec_and_test(&core_state->nr_threads))
675 complete(&core_state->startup);
676
677 for (;;) {
678 set_task_state(tsk, TASK_UNINTERRUPTIBLE);
679 if (!self.task) /* see coredump_finish() */
680 break;
681 schedule();
682 }
683 __set_task_state(tsk, TASK_RUNNING);
684 down_read(&mm->mmap_sem);
685 }
686 atomic_inc(&mm->mm_count);
687 BUG_ON(mm != tsk->active_mm);
688 /* more a memory barrier than a real lock */
689 task_lock(tsk);
690 tsk->mm = NULL;
691 up_read(&mm->mmap_sem);
692 enter_lazy_tlb(mm, current);
693 /* We don't want this task to be frozen prematurely */
694 clear_freeze_flag(tsk);
695 task_unlock(tsk);
696 mm_update_next_owner(mm);
697 mmput(mm);
698 }
699
700 /*
701 * When we die, we re-parent all our children.
702 * Try to give them to another thread in our thread
703 * group, and if no such member exists, give it to
704 * the child reaper process (ie "init") in our pid
705 * space.
706 */
707 static struct task_struct *find_new_reaper(struct task_struct *father)
708 {
709 struct pid_namespace *pid_ns = task_active_pid_ns(father);
710 struct task_struct *thread;
711
712 thread = father;
713 while_each_thread(father, thread) {
714 if (thread->flags & PF_EXITING)
715 continue;
716 if (unlikely(pid_ns->child_reaper == father))
717 pid_ns->child_reaper = thread;
718 return thread;
719 }
720
721 if (unlikely(pid_ns->child_reaper == father)) {
722 write_unlock_irq(&tasklist_lock);
723 if (unlikely(pid_ns == &init_pid_ns))
724 panic("Attempted to kill init!");
725
726 zap_pid_ns_processes(pid_ns);
727 write_lock_irq(&tasklist_lock);
728 /*
729 * We can not clear ->child_reaper or leave it alone.
730 * There may by stealth EXIT_DEAD tasks on ->children,
731 * forget_original_parent() must move them somewhere.
732 */
733 pid_ns->child_reaper = init_pid_ns.child_reaper;
734 }
735
736 return pid_ns->child_reaper;
737 }
738
739 /*
740 * Any that need to be release_task'd are put on the @dead list.
741 */
742 static void reparent_leader(struct task_struct *father, struct task_struct *p,
743 struct list_head *dead)
744 {
745 list_move_tail(&p->sibling, &p->real_parent->children);
746
747 if (task_detached(p))
748 return;
749 /*
750 * If this is a threaded reparent there is no need to
751 * notify anyone anything has happened.
752 */
753 if (same_thread_group(p->real_parent, father))
754 return;
755
756 /* We don't want people slaying init. */
757 p->exit_signal = SIGCHLD;
758
759 /* If it has exited notify the new parent about this child's death. */
760 if (!task_ptrace(p) &&
761 p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
762 do_notify_parent(p, p->exit_signal);
763 if (task_detached(p)) {
764 p->exit_state = EXIT_DEAD;
765 list_move_tail(&p->sibling, dead);
766 }
767 }
768
769 kill_orphaned_pgrp(p, father);
770 }
771
772 static void forget_original_parent(struct task_struct *father)
773 {
774 struct task_struct *p, *n, *reaper;
775 LIST_HEAD(dead_children);
776
777 exit_ptrace(father);
778
779 write_lock_irq(&tasklist_lock);
780 reaper = find_new_reaper(father);
781
782 list_for_each_entry_safe(p, n, &father->children, sibling) {
783 struct task_struct *t = p;
784 do {
785 t->real_parent = reaper;
786 if (t->parent == father) {
787 BUG_ON(task_ptrace(t));
788 t->parent = t->real_parent;
789 }
790 if (t->pdeath_signal)
791 group_send_sig_info(t->pdeath_signal,
792 SEND_SIG_NOINFO, t);
793 } while_each_thread(p, t);
794 reparent_leader(father, p, &dead_children);
795 }
796 write_unlock_irq(&tasklist_lock);
797
798 BUG_ON(!list_empty(&father->children));
799
800 list_for_each_entry_safe(p, n, &dead_children, sibling) {
801 list_del_init(&p->sibling);
802 release_task(p);
803 }
804 }
805
806 /*
807 * Send signals to all our closest relatives so that they know
808 * to properly mourn us..
809 */
810 static void exit_notify(struct task_struct *tsk, int group_dead)
811 {
812 int signal;
813 void *cookie;
814
815 /*
816 * This does two things:
817 *
818 * A. Make init inherit all the child processes
819 * B. Check to see if any process groups have become orphaned
820 * as a result of our exiting, and if they have any stopped
821 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
822 */
823 forget_original_parent(tsk);
824 exit_task_namespaces(tsk);
825
826 write_lock_irq(&tasklist_lock);
827 if (group_dead)
828 kill_orphaned_pgrp(tsk->group_leader, NULL);
829
830 /* Let father know we died
831 *
832 * Thread signals are configurable, but you aren't going to use
833 * that to send signals to arbitary processes.
834 * That stops right now.
835 *
836 * If the parent exec id doesn't match the exec id we saved
837 * when we started then we know the parent has changed security
838 * domain.
839 *
840 * If our self_exec id doesn't match our parent_exec_id then
841 * we have changed execution domain as these two values started
842 * the same after a fork.
843 */
844 if (tsk->exit_signal != SIGCHLD && !task_detached(tsk) &&
845 (tsk->parent_exec_id != tsk->real_parent->self_exec_id ||
846 tsk->self_exec_id != tsk->parent_exec_id))
847 tsk->exit_signal = SIGCHLD;
848
849 signal = tracehook_notify_death(tsk, &cookie, group_dead);
850 if (signal >= 0)
851 signal = do_notify_parent(tsk, signal);
852
853 tsk->exit_state = signal == DEATH_REAP ? EXIT_DEAD : EXIT_ZOMBIE;
854
855 /* mt-exec, de_thread() is waiting for group leader */
856 if (unlikely(tsk->signal->notify_count < 0))
857 wake_up_process(tsk->signal->group_exit_task);
858 write_unlock_irq(&tasklist_lock);
859
860 tracehook_report_death(tsk, signal, cookie, group_dead);
861
862 /* If the process is dead, release it - nobody will wait for it */
863 if (signal == DEATH_REAP)
864 release_task(tsk);
865 }
866
867 #ifdef CONFIG_DEBUG_STACK_USAGE
868 static void check_stack_usage(void)
869 {
870 static DEFINE_SPINLOCK(low_water_lock);
871 static int lowest_to_date = THREAD_SIZE;
872 unsigned long free;
873
874 free = stack_not_used(current);
875
876 if (free >= lowest_to_date)
877 return;
878
879 spin_lock(&low_water_lock);
880 if (free < lowest_to_date) {
881 printk(KERN_WARNING "%s used greatest stack depth: %lu bytes "
882 "left\n",
883 current->comm, free);
884 lowest_to_date = free;
885 }
886 spin_unlock(&low_water_lock);
887 }
888 #else
889 static inline void check_stack_usage(void) {}
890 #endif
891
892 NORET_TYPE void do_exit(long code)
893 {
894 struct task_struct *tsk = current;
895 int group_dead;
896
897 profile_task_exit(tsk);
898
899 WARN_ON(atomic_read(&tsk->fs_excl));
900
901 if (unlikely(in_interrupt()))
902 panic("Aiee, killing interrupt handler!");
903 if (unlikely(!tsk->pid))
904 panic("Attempted to kill the idle task!");
905
906 tracehook_report_exit(&code);
907
908 validate_creds_for_do_exit(tsk);
909
910 /*
911 * We're taking recursive faults here in do_exit. Safest is to just
912 * leave this task alone and wait for reboot.
913 */
914 if (unlikely(tsk->flags & PF_EXITING)) {
915 printk(KERN_ALERT
916 "Fixing recursive fault but reboot is needed!\n");
917 /*
918 * We can do this unlocked here. The futex code uses
919 * this flag just to verify whether the pi state
920 * cleanup has been done or not. In the worst case it
921 * loops once more. We pretend that the cleanup was
922 * done as there is no way to return. Either the
923 * OWNER_DIED bit is set by now or we push the blocked
924 * task into the wait for ever nirwana as well.
925 */
926 tsk->flags |= PF_EXITPIDONE;
927 set_current_state(TASK_UNINTERRUPTIBLE);
928 schedule();
929 }
930
931 exit_irq_thread();
932
933 exit_signals(tsk); /* sets PF_EXITING */
934 /*
935 * tsk->flags are checked in the futex code to protect against
936 * an exiting task cleaning up the robust pi futexes.
937 */
938 smp_mb();
939 raw_spin_unlock_wait(&tsk->pi_lock);
940
941 if (unlikely(in_atomic()))
942 printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n",
943 current->comm, task_pid_nr(current),
944 preempt_count());
945
946 acct_update_integrals(tsk);
947 /* sync mm's RSS info before statistics gathering */
948 if (tsk->mm)
949 sync_mm_rss(tsk, tsk->mm);
950 group_dead = atomic_dec_and_test(&tsk->signal->live);
951 if (group_dead) {
952 hrtimer_cancel(&tsk->signal->real_timer);
953 exit_itimers(tsk->signal);
954 if (tsk->mm)
955 setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
956 }
957 acct_collect(code, group_dead);
958 if (group_dead)
959 tty_audit_exit();
960 if (unlikely(tsk->audit_context))
961 audit_free(tsk);
962
963 tsk->exit_code = code;
964 taskstats_exit(tsk, group_dead);
965
966 exit_mm(tsk);
967
968 if (group_dead)
969 acct_process();
970 trace_sched_process_exit(tsk);
971
972 exit_sem(tsk);
973 exit_files(tsk);
974 exit_fs(tsk);
975 check_stack_usage();
976 exit_thread();
977 cgroup_exit(tsk, 1);
978
979 if (group_dead)
980 disassociate_ctty(1);
981
982 module_put(task_thread_info(tsk)->exec_domain->module);
983
984 proc_exit_connector(tsk);
985
986 /*
987 * FIXME: do that only when needed, using sched_exit tracepoint
988 */
989 flush_ptrace_hw_breakpoint(tsk);
990 /*
991 * Flush inherited counters to the parent - before the parent
992 * gets woken up by child-exit notifications.
993 */
994 perf_event_exit_task(tsk);
995
996 exit_notify(tsk, group_dead);
997 #ifdef CONFIG_NUMA
998 task_lock(tsk);
999 mpol_put(tsk->mempolicy);
1000 tsk->mempolicy = NULL;
1001 task_unlock(tsk);
1002 #endif
1003 #ifdef CONFIG_FUTEX
1004 if (unlikely(current->pi_state_cache))
1005 kfree(current->pi_state_cache);
1006 #endif
1007 /*
1008 * Make sure we are holding no locks:
1009 */
1010 debug_check_no_locks_held(tsk);
1011 /*
1012 * We can do this unlocked here. The futex code uses this flag
1013 * just to verify whether the pi state cleanup has been done
1014 * or not. In the worst case it loops once more.
1015 */
1016 tsk->flags |= PF_EXITPIDONE;
1017
1018 if (tsk->io_context)
1019 exit_io_context(tsk);
1020
1021 if (tsk->splice_pipe)
1022 __free_pipe_info(tsk->splice_pipe);
1023
1024 validate_creds_for_do_exit(tsk);
1025
1026 preempt_disable();
1027 exit_rcu();
1028 /* causes final put_task_struct in finish_task_switch(). */
1029 tsk->state = TASK_DEAD;
1030 schedule();
1031 BUG();
1032 /* Avoid "noreturn function does return". */
1033 for (;;)
1034 cpu_relax(); /* For when BUG is null */
1035 }
1036
1037 EXPORT_SYMBOL_GPL(do_exit);
1038
1039 NORET_TYPE void complete_and_exit(struct completion *comp, long code)
1040 {
1041 if (comp)
1042 complete(comp);
1043
1044 do_exit(code);
1045 }
1046
1047 EXPORT_SYMBOL(complete_and_exit);
1048
1049 SYSCALL_DEFINE1(exit, int, error_code)
1050 {
1051 do_exit((error_code&0xff)<<8);
1052 }
1053
1054 /*
1055 * Take down every thread in the group. This is called by fatal signals
1056 * as well as by sys_exit_group (below).
1057 */
1058 NORET_TYPE void
1059 do_group_exit(int exit_code)
1060 {
1061 struct signal_struct *sig = current->signal;
1062
1063 BUG_ON(exit_code & 0x80); /* core dumps don't get here */
1064
1065 if (signal_group_exit(sig))
1066 exit_code = sig->group_exit_code;
1067 else if (!thread_group_empty(current)) {
1068 struct sighand_struct *const sighand = current->sighand;
1069 spin_lock_irq(&sighand->siglock);
1070 if (signal_group_exit(sig))
1071 /* Another thread got here before we took the lock. */
1072 exit_code = sig->group_exit_code;
1073 else {
1074 sig->group_exit_code = exit_code;
1075 sig->flags = SIGNAL_GROUP_EXIT;
1076 zap_other_threads(current);
1077 }
1078 spin_unlock_irq(&sighand->siglock);
1079 }
1080
1081 do_exit(exit_code);
1082 /* NOTREACHED */
1083 }
1084
1085 /*
1086 * this kills every thread in the thread group. Note that any externally
1087 * wait4()-ing process will get the correct exit code - even if this
1088 * thread is not the thread group leader.
1089 */
1090 SYSCALL_DEFINE1(exit_group, int, error_code)
1091 {
1092 do_group_exit((error_code & 0xff) << 8);
1093 /* NOTREACHED */
1094 return 0;
1095 }
1096
1097 struct wait_opts {
1098 enum pid_type wo_type;
1099 int wo_flags;
1100 struct pid *wo_pid;
1101
1102 struct siginfo __user *wo_info;
1103 int __user *wo_stat;
1104 struct rusage __user *wo_rusage;
1105
1106 wait_queue_t child_wait;
1107 int notask_error;
1108 };
1109
1110 static inline
1111 struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
1112 {
1113 if (type != PIDTYPE_PID)
1114 task = task->group_leader;
1115 return task->pids[type].pid;
1116 }
1117
1118 static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
1119 {
1120 return wo->wo_type == PIDTYPE_MAX ||
1121 task_pid_type(p, wo->wo_type) == wo->wo_pid;
1122 }
1123
1124 static int eligible_child(struct wait_opts *wo, struct task_struct *p)
1125 {
1126 if (!eligible_pid(wo, p))
1127 return 0;
1128 /* Wait for all children (clone and not) if __WALL is set;
1129 * otherwise, wait for clone children *only* if __WCLONE is
1130 * set; otherwise, wait for non-clone children *only*. (Note:
1131 * A "clone" child here is one that reports to its parent
1132 * using a signal other than SIGCHLD.) */
1133 if (((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
1134 && !(wo->wo_flags & __WALL))
1135 return 0;
1136
1137 return 1;
1138 }
1139
1140 static int wait_noreap_copyout(struct wait_opts *wo, struct task_struct *p,
1141 pid_t pid, uid_t uid, int why, int status)
1142 {
1143 struct siginfo __user *infop;
1144 int retval = wo->wo_rusage
1145 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1146
1147 put_task_struct(p);
1148 infop = wo->wo_info;
1149 if (infop) {
1150 if (!retval)
1151 retval = put_user(SIGCHLD, &infop->si_signo);
1152 if (!retval)
1153 retval = put_user(0, &infop->si_errno);
1154 if (!retval)
1155 retval = put_user((short)why, &infop->si_code);
1156 if (!retval)
1157 retval = put_user(pid, &infop->si_pid);
1158 if (!retval)
1159 retval = put_user(uid, &infop->si_uid);
1160 if (!retval)
1161 retval = put_user(status, &infop->si_status);
1162 }
1163 if (!retval)
1164 retval = pid;
1165 return retval;
1166 }
1167
1168 /*
1169 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold
1170 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1171 * the lock and this task is uninteresting. If we return nonzero, we have
1172 * released the lock and the system call should return.
1173 */
1174 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
1175 {
1176 unsigned long state;
1177 int retval, status, traced;
1178 pid_t pid = task_pid_vnr(p);
1179 uid_t uid = __task_cred(p)->uid;
1180 struct siginfo __user *infop;
1181
1182 if (!likely(wo->wo_flags & WEXITED))
1183 return 0;
1184
1185 if (unlikely(wo->wo_flags & WNOWAIT)) {
1186 int exit_code = p->exit_code;
1187 int why;
1188
1189 get_task_struct(p);
1190 read_unlock(&tasklist_lock);
1191 if ((exit_code & 0x7f) == 0) {
1192 why = CLD_EXITED;
1193 status = exit_code >> 8;
1194 } else {
1195 why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
1196 status = exit_code & 0x7f;
1197 }
1198 return wait_noreap_copyout(wo, p, pid, uid, why, status);
1199 }
1200
1201 /*
1202 * Try to move the task's state to DEAD
1203 * only one thread is allowed to do this:
1204 */
1205 state = xchg(&p->exit_state, EXIT_DEAD);
1206 if (state != EXIT_ZOMBIE) {
1207 BUG_ON(state != EXIT_DEAD);
1208 return 0;
1209 }
1210
1211 traced = ptrace_reparented(p);
1212 /*
1213 * It can be ptraced but not reparented, check
1214 * !task_detached() to filter out sub-threads.
1215 */
1216 if (likely(!traced) && likely(!task_detached(p))) {
1217 struct signal_struct *psig;
1218 struct signal_struct *sig;
1219 unsigned long maxrss;
1220 cputime_t tgutime, tgstime;
1221
1222 /*
1223 * The resource counters for the group leader are in its
1224 * own task_struct. Those for dead threads in the group
1225 * are in its signal_struct, as are those for the child
1226 * processes it has previously reaped. All these
1227 * accumulate in the parent's signal_struct c* fields.
1228 *
1229 * We don't bother to take a lock here to protect these
1230 * p->signal fields, because they are only touched by
1231 * __exit_signal, which runs with tasklist_lock
1232 * write-locked anyway, and so is excluded here. We do
1233 * need to protect the access to parent->signal fields,
1234 * as other threads in the parent group can be right
1235 * here reaping other children at the same time.
1236 *
1237 * We use thread_group_times() to get times for the thread
1238 * group, which consolidates times for all threads in the
1239 * group including the group leader.
1240 */
1241 thread_group_times(p, &tgutime, &tgstime);
1242 spin_lock_irq(&p->real_parent->sighand->siglock);
1243 psig = p->real_parent->signal;
1244 sig = p->signal;
1245 psig->cutime =
1246 cputime_add(psig->cutime,
1247 cputime_add(tgutime,
1248 sig->cutime));
1249 psig->cstime =
1250 cputime_add(psig->cstime,
1251 cputime_add(tgstime,
1252 sig->cstime));
1253 psig->cgtime =
1254 cputime_add(psig->cgtime,
1255 cputime_add(p->gtime,
1256 cputime_add(sig->gtime,
1257 sig->cgtime)));
1258 psig->cmin_flt +=
1259 p->min_flt + sig->min_flt + sig->cmin_flt;
1260 psig->cmaj_flt +=
1261 p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1262 psig->cnvcsw +=
1263 p->nvcsw + sig->nvcsw + sig->cnvcsw;
1264 psig->cnivcsw +=
1265 p->nivcsw + sig->nivcsw + sig->cnivcsw;
1266 psig->cinblock +=
1267 task_io_get_inblock(p) +
1268 sig->inblock + sig->cinblock;
1269 psig->coublock +=
1270 task_io_get_oublock(p) +
1271 sig->oublock + sig->coublock;
1272 maxrss = max(sig->maxrss, sig->cmaxrss);
1273 if (psig->cmaxrss < maxrss)
1274 psig->cmaxrss = maxrss;
1275 task_io_accounting_add(&psig->ioac, &p->ioac);
1276 task_io_accounting_add(&psig->ioac, &sig->ioac);
1277 spin_unlock_irq(&p->real_parent->sighand->siglock);
1278 }
1279
1280 /*
1281 * Now we are sure this task is interesting, and no other
1282 * thread can reap it because we set its state to EXIT_DEAD.
1283 */
1284 read_unlock(&tasklist_lock);
1285
1286 retval = wo->wo_rusage
1287 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1288 status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1289 ? p->signal->group_exit_code : p->exit_code;
1290 if (!retval && wo->wo_stat)
1291 retval = put_user(status, wo->wo_stat);
1292
1293 infop = wo->wo_info;
1294 if (!retval && infop)
1295 retval = put_user(SIGCHLD, &infop->si_signo);
1296 if (!retval && infop)
1297 retval = put_user(0, &infop->si_errno);
1298 if (!retval && infop) {
1299 int why;
1300
1301 if ((status & 0x7f) == 0) {
1302 why = CLD_EXITED;
1303 status >>= 8;
1304 } else {
1305 why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1306 status &= 0x7f;
1307 }
1308 retval = put_user((short)why, &infop->si_code);
1309 if (!retval)
1310 retval = put_user(status, &infop->si_status);
1311 }
1312 if (!retval && infop)
1313 retval = put_user(pid, &infop->si_pid);
1314 if (!retval && infop)
1315 retval = put_user(uid, &infop->si_uid);
1316 if (!retval)
1317 retval = pid;
1318
1319 if (traced) {
1320 write_lock_irq(&tasklist_lock);
1321 /* We dropped tasklist, ptracer could die and untrace */
1322 ptrace_unlink(p);
1323 /*
1324 * If this is not a detached task, notify the parent.
1325 * If it's still not detached after that, don't release
1326 * it now.
1327 */
1328 if (!task_detached(p)) {
1329 do_notify_parent(p, p->exit_signal);
1330 if (!task_detached(p)) {
1331 p->exit_state = EXIT_ZOMBIE;
1332 p = NULL;
1333 }
1334 }
1335 write_unlock_irq(&tasklist_lock);
1336 }
1337 if (p != NULL)
1338 release_task(p);
1339
1340 return retval;
1341 }
1342
1343 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1344 {
1345 if (ptrace) {
1346 if (task_is_stopped_or_traced(p))
1347 return &p->exit_code;
1348 } else {
1349 if (p->signal->flags & SIGNAL_STOP_STOPPED)
1350 return &p->signal->group_exit_code;
1351 }
1352 return NULL;
1353 }
1354
1355 /*
1356 * Handle sys_wait4 work for one task in state TASK_STOPPED. We hold
1357 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1358 * the lock and this task is uninteresting. If we return nonzero, we have
1359 * released the lock and the system call should return.
1360 */
1361 static int wait_task_stopped(struct wait_opts *wo,
1362 int ptrace, struct task_struct *p)
1363 {
1364 struct siginfo __user *infop;
1365 int retval, exit_code, *p_code, why;
1366 uid_t uid = 0; /* unneeded, required by compiler */
1367 pid_t pid;
1368
1369 /*
1370 * Traditionally we see ptrace'd stopped tasks regardless of options.
1371 */
1372 if (!ptrace && !(wo->wo_flags & WUNTRACED))
1373 return 0;
1374
1375 exit_code = 0;
1376 spin_lock_irq(&p->sighand->siglock);
1377
1378 p_code = task_stopped_code(p, ptrace);
1379 if (unlikely(!p_code))
1380 goto unlock_sig;
1381
1382 exit_code = *p_code;
1383 if (!exit_code)
1384 goto unlock_sig;
1385
1386 if (!unlikely(wo->wo_flags & WNOWAIT))
1387 *p_code = 0;
1388
1389 /* don't need the RCU readlock here as we're holding a spinlock */
1390 uid = __task_cred(p)->uid;
1391 unlock_sig:
1392 spin_unlock_irq(&p->sighand->siglock);
1393 if (!exit_code)
1394 return 0;
1395
1396 /*
1397 * Now we are pretty sure this task is interesting.
1398 * Make sure it doesn't get reaped out from under us while we
1399 * give up the lock and then examine it below. We don't want to
1400 * keep holding onto the tasklist_lock while we call getrusage and
1401 * possibly take page faults for user memory.
1402 */
1403 get_task_struct(p);
1404 pid = task_pid_vnr(p);
1405 why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1406 read_unlock(&tasklist_lock);
1407
1408 if (unlikely(wo->wo_flags & WNOWAIT))
1409 return wait_noreap_copyout(wo, p, pid, uid, why, exit_code);
1410
1411 retval = wo->wo_rusage
1412 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1413 if (!retval && wo->wo_stat)
1414 retval = put_user((exit_code << 8) | 0x7f, wo->wo_stat);
1415
1416 infop = wo->wo_info;
1417 if (!retval && infop)
1418 retval = put_user(SIGCHLD, &infop->si_signo);
1419 if (!retval && infop)
1420 retval = put_user(0, &infop->si_errno);
1421 if (!retval && infop)
1422 retval = put_user((short)why, &infop->si_code);
1423 if (!retval && infop)
1424 retval = put_user(exit_code, &infop->si_status);
1425 if (!retval && infop)
1426 retval = put_user(pid, &infop->si_pid);
1427 if (!retval && infop)
1428 retval = put_user(uid, &infop->si_uid);
1429 if (!retval)
1430 retval = pid;
1431 put_task_struct(p);
1432
1433 BUG_ON(!retval);
1434 return retval;
1435 }
1436
1437 /*
1438 * Handle do_wait work for one task in a live, non-stopped state.
1439 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1440 * the lock and this task is uninteresting. If we return nonzero, we have
1441 * released the lock and the system call should return.
1442 */
1443 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1444 {
1445 int retval;
1446 pid_t pid;
1447 uid_t uid;
1448
1449 if (!unlikely(wo->wo_flags & WCONTINUED))
1450 return 0;
1451
1452 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1453 return 0;
1454
1455 spin_lock_irq(&p->sighand->siglock);
1456 /* Re-check with the lock held. */
1457 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1458 spin_unlock_irq(&p->sighand->siglock);
1459 return 0;
1460 }
1461 if (!unlikely(wo->wo_flags & WNOWAIT))
1462 p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1463 uid = __task_cred(p)->uid;
1464 spin_unlock_irq(&p->sighand->siglock);
1465
1466 pid = task_pid_vnr(p);
1467 get_task_struct(p);
1468 read_unlock(&tasklist_lock);
1469
1470 if (!wo->wo_info) {
1471 retval = wo->wo_rusage
1472 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1473 put_task_struct(p);
1474 if (!retval && wo->wo_stat)
1475 retval = put_user(0xffff, wo->wo_stat);
1476 if (!retval)
1477 retval = pid;
1478 } else {
1479 retval = wait_noreap_copyout(wo, p, pid, uid,
1480 CLD_CONTINUED, SIGCONT);
1481 BUG_ON(retval == 0);
1482 }
1483
1484 return retval;
1485 }
1486
1487 /*
1488 * Consider @p for a wait by @parent.
1489 *
1490 * -ECHILD should be in ->notask_error before the first call.
1491 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1492 * Returns zero if the search for a child should continue;
1493 * then ->notask_error is 0 if @p is an eligible child,
1494 * or another error from security_task_wait(), or still -ECHILD.
1495 */
1496 static int wait_consider_task(struct wait_opts *wo, int ptrace,
1497 struct task_struct *p)
1498 {
1499 int ret = eligible_child(wo, p);
1500 if (!ret)
1501 return ret;
1502
1503 ret = security_task_wait(p);
1504 if (unlikely(ret < 0)) {
1505 /*
1506 * If we have not yet seen any eligible child,
1507 * then let this error code replace -ECHILD.
1508 * A permission error will give the user a clue
1509 * to look for security policy problems, rather
1510 * than for mysterious wait bugs.
1511 */
1512 if (wo->notask_error)
1513 wo->notask_error = ret;
1514 return 0;
1515 }
1516
1517 if (likely(!ptrace) && unlikely(task_ptrace(p))) {
1518 /*
1519 * This child is hidden by ptrace.
1520 * We aren't allowed to see it now, but eventually we will.
1521 */
1522 wo->notask_error = 0;
1523 return 0;
1524 }
1525
1526 if (p->exit_state == EXIT_DEAD)
1527 return 0;
1528
1529 /*
1530 * We don't reap group leaders with subthreads.
1531 */
1532 if (p->exit_state == EXIT_ZOMBIE && !delay_group_leader(p))
1533 return wait_task_zombie(wo, p);
1534
1535 /*
1536 * It's stopped or running now, so it might
1537 * later continue, exit, or stop again.
1538 */
1539 wo->notask_error = 0;
1540
1541 if (task_stopped_code(p, ptrace))
1542 return wait_task_stopped(wo, ptrace, p);
1543
1544 return wait_task_continued(wo, p);
1545 }
1546
1547 /*
1548 * Do the work of do_wait() for one thread in the group, @tsk.
1549 *
1550 * -ECHILD should be in ->notask_error before the first call.
1551 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1552 * Returns zero if the search for a child should continue; then
1553 * ->notask_error is 0 if there were any eligible children,
1554 * or another error from security_task_wait(), or still -ECHILD.
1555 */
1556 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1557 {
1558 struct task_struct *p;
1559
1560 list_for_each_entry(p, &tsk->children, sibling) {
1561 int ret = wait_consider_task(wo, 0, p);
1562 if (ret)
1563 return ret;
1564 }
1565
1566 return 0;
1567 }
1568
1569 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1570 {
1571 struct task_struct *p;
1572
1573 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1574 int ret = wait_consider_task(wo, 1, p);
1575 if (ret)
1576 return ret;
1577 }
1578
1579 return 0;
1580 }
1581
1582 static int child_wait_callback(wait_queue_t *wait, unsigned mode,
1583 int sync, void *key)
1584 {
1585 struct wait_opts *wo = container_of(wait, struct wait_opts,
1586 child_wait);
1587 struct task_struct *p = key;
1588
1589 if (!eligible_pid(wo, p))
1590 return 0;
1591
1592 if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1593 return 0;
1594
1595 return default_wake_function(wait, mode, sync, key);
1596 }
1597
1598 void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1599 {
1600 __wake_up_sync_key(&parent->signal->wait_chldexit,
1601 TASK_INTERRUPTIBLE, 1, p);
1602 }
1603
1604 static long do_wait(struct wait_opts *wo)
1605 {
1606 struct task_struct *tsk;
1607 int retval;
1608
1609 trace_sched_process_wait(wo->wo_pid);
1610
1611 init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1612 wo->child_wait.private = current;
1613 add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1614 repeat:
1615 /*
1616 * If there is nothing that can match our critiera just get out.
1617 * We will clear ->notask_error to zero if we see any child that
1618 * might later match our criteria, even if we are not able to reap
1619 * it yet.
1620 */
1621 wo->notask_error = -ECHILD;
1622 if ((wo->wo_type < PIDTYPE_MAX) &&
1623 (!wo->wo_pid || hlist_empty(&wo->wo_pid->tasks[wo->wo_type])))
1624 goto notask;
1625
1626 set_current_state(TASK_INTERRUPTIBLE);
1627 read_lock(&tasklist_lock);
1628 tsk = current;
1629 do {
1630 retval = do_wait_thread(wo, tsk);
1631 if (retval)
1632 goto end;
1633
1634 retval = ptrace_do_wait(wo, tsk);
1635 if (retval)
1636 goto end;
1637
1638 if (wo->wo_flags & __WNOTHREAD)
1639 break;
1640 } while_each_thread(current, tsk);
1641 read_unlock(&tasklist_lock);
1642
1643 notask:
1644 retval = wo->notask_error;
1645 if (!retval && !(wo->wo_flags & WNOHANG)) {
1646 retval = -ERESTARTSYS;
1647 if (!signal_pending(current)) {
1648 schedule();
1649 goto repeat;
1650 }
1651 }
1652 end:
1653 __set_current_state(TASK_RUNNING);
1654 remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1655 return retval;
1656 }
1657
1658 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1659 infop, int, options, struct rusage __user *, ru)
1660 {
1661 struct wait_opts wo;
1662 struct pid *pid = NULL;
1663 enum pid_type type;
1664 long ret;
1665
1666 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED))
1667 return -EINVAL;
1668 if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1669 return -EINVAL;
1670
1671 switch (which) {
1672 case P_ALL:
1673 type = PIDTYPE_MAX;
1674 break;
1675 case P_PID:
1676 type = PIDTYPE_PID;
1677 if (upid <= 0)
1678 return -EINVAL;
1679 break;
1680 case P_PGID:
1681 type = PIDTYPE_PGID;
1682 if (upid <= 0)
1683 return -EINVAL;
1684 break;
1685 default:
1686 return -EINVAL;
1687 }
1688
1689 if (type < PIDTYPE_MAX)
1690 pid = find_get_pid(upid);
1691
1692 wo.wo_type = type;
1693 wo.wo_pid = pid;
1694 wo.wo_flags = options;
1695 wo.wo_info = infop;
1696 wo.wo_stat = NULL;
1697 wo.wo_rusage = ru;
1698 ret = do_wait(&wo);
1699
1700 if (ret > 0) {
1701 ret = 0;
1702 } else if (infop) {
1703 /*
1704 * For a WNOHANG return, clear out all the fields
1705 * we would set so the user can easily tell the
1706 * difference.
1707 */
1708 if (!ret)
1709 ret = put_user(0, &infop->si_signo);
1710 if (!ret)
1711 ret = put_user(0, &infop->si_errno);
1712 if (!ret)
1713 ret = put_user(0, &infop->si_code);
1714 if (!ret)
1715 ret = put_user(0, &infop->si_pid);
1716 if (!ret)
1717 ret = put_user(0, &infop->si_uid);
1718 if (!ret)
1719 ret = put_user(0, &infop->si_status);
1720 }
1721
1722 put_pid(pid);
1723
1724 /* avoid REGPARM breakage on x86: */
1725 asmlinkage_protect(5, ret, which, upid, infop, options, ru);
1726 return ret;
1727 }
1728
1729 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1730 int, options, struct rusage __user *, ru)
1731 {
1732 struct wait_opts wo;
1733 struct pid *pid = NULL;
1734 enum pid_type type;
1735 long ret;
1736
1737 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1738 __WNOTHREAD|__WCLONE|__WALL))
1739 return -EINVAL;
1740
1741 if (upid == -1)
1742 type = PIDTYPE_MAX;
1743 else if (upid < 0) {
1744 type = PIDTYPE_PGID;
1745 pid = find_get_pid(-upid);
1746 } else if (upid == 0) {
1747 type = PIDTYPE_PGID;
1748 pid = get_task_pid(current, PIDTYPE_PGID);
1749 } else /* upid > 0 */ {
1750 type = PIDTYPE_PID;
1751 pid = find_get_pid(upid);
1752 }
1753
1754 wo.wo_type = type;
1755 wo.wo_pid = pid;
1756 wo.wo_flags = options | WEXITED;
1757 wo.wo_info = NULL;
1758 wo.wo_stat = stat_addr;
1759 wo.wo_rusage = ru;
1760 ret = do_wait(&wo);
1761 put_pid(pid);
1762
1763 /* avoid REGPARM breakage on x86: */
1764 asmlinkage_protect(4, ret, upid, stat_addr, options, ru);
1765 return ret;
1766 }
1767
1768 #ifdef __ARCH_WANT_SYS_WAITPID
1769
1770 /*
1771 * sys_waitpid() remains for compatibility. waitpid() should be
1772 * implemented by calling sys_wait4() from libc.a.
1773 */
1774 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1775 {
1776 return sys_wait4(pid, stat_addr, options, NULL);
1777 }
1778
1779 #endif
This page took 0.092836 seconds and 6 git commands to generate.