do_wait reorganization
[deliverable/linux.git] / kernel / exit.c
1 /*
2 * linux/kernel/exit.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 #include <linux/mm.h>
8 #include <linux/slab.h>
9 #include <linux/interrupt.h>
10 #include <linux/module.h>
11 #include <linux/capability.h>
12 #include <linux/completion.h>
13 #include <linux/personality.h>
14 #include <linux/tty.h>
15 #include <linux/mnt_namespace.h>
16 #include <linux/iocontext.h>
17 #include <linux/key.h>
18 #include <linux/security.h>
19 #include <linux/cpu.h>
20 #include <linux/acct.h>
21 #include <linux/tsacct_kern.h>
22 #include <linux/file.h>
23 #include <linux/fdtable.h>
24 #include <linux/binfmts.h>
25 #include <linux/nsproxy.h>
26 #include <linux/pid_namespace.h>
27 #include <linux/ptrace.h>
28 #include <linux/profile.h>
29 #include <linux/mount.h>
30 #include <linux/proc_fs.h>
31 #include <linux/kthread.h>
32 #include <linux/mempolicy.h>
33 #include <linux/taskstats_kern.h>
34 #include <linux/delayacct.h>
35 #include <linux/freezer.h>
36 #include <linux/cgroup.h>
37 #include <linux/syscalls.h>
38 #include <linux/signal.h>
39 #include <linux/posix-timers.h>
40 #include <linux/cn_proc.h>
41 #include <linux/mutex.h>
42 #include <linux/futex.h>
43 #include <linux/compat.h>
44 #include <linux/pipe_fs_i.h>
45 #include <linux/audit.h> /* for audit_free() */
46 #include <linux/resource.h>
47 #include <linux/blkdev.h>
48 #include <linux/task_io_accounting_ops.h>
49
50 #include <asm/uaccess.h>
51 #include <asm/unistd.h>
52 #include <asm/pgtable.h>
53 #include <asm/mmu_context.h>
54
55 static void exit_mm(struct task_struct * tsk);
56
57 static inline int task_detached(struct task_struct *p)
58 {
59 return p->exit_signal == -1;
60 }
61
62 static void __unhash_process(struct task_struct *p)
63 {
64 nr_threads--;
65 detach_pid(p, PIDTYPE_PID);
66 if (thread_group_leader(p)) {
67 detach_pid(p, PIDTYPE_PGID);
68 detach_pid(p, PIDTYPE_SID);
69
70 list_del_rcu(&p->tasks);
71 __get_cpu_var(process_counts)--;
72 }
73 list_del_rcu(&p->thread_group);
74 remove_parent(p);
75 }
76
77 /*
78 * This function expects the tasklist_lock write-locked.
79 */
80 static void __exit_signal(struct task_struct *tsk)
81 {
82 struct signal_struct *sig = tsk->signal;
83 struct sighand_struct *sighand;
84
85 BUG_ON(!sig);
86 BUG_ON(!atomic_read(&sig->count));
87
88 rcu_read_lock();
89 sighand = rcu_dereference(tsk->sighand);
90 spin_lock(&sighand->siglock);
91
92 posix_cpu_timers_exit(tsk);
93 if (atomic_dec_and_test(&sig->count))
94 posix_cpu_timers_exit_group(tsk);
95 else {
96 /*
97 * If there is any task waiting for the group exit
98 * then notify it:
99 */
100 if (sig->group_exit_task && atomic_read(&sig->count) == sig->notify_count)
101 wake_up_process(sig->group_exit_task);
102
103 if (tsk == sig->curr_target)
104 sig->curr_target = next_thread(tsk);
105 /*
106 * Accumulate here the counters for all threads but the
107 * group leader as they die, so they can be added into
108 * the process-wide totals when those are taken.
109 * The group leader stays around as a zombie as long
110 * as there are other threads. When it gets reaped,
111 * the exit.c code will add its counts into these totals.
112 * We won't ever get here for the group leader, since it
113 * will have been the last reference on the signal_struct.
114 */
115 sig->utime = cputime_add(sig->utime, tsk->utime);
116 sig->stime = cputime_add(sig->stime, tsk->stime);
117 sig->gtime = cputime_add(sig->gtime, tsk->gtime);
118 sig->min_flt += tsk->min_flt;
119 sig->maj_flt += tsk->maj_flt;
120 sig->nvcsw += tsk->nvcsw;
121 sig->nivcsw += tsk->nivcsw;
122 sig->inblock += task_io_get_inblock(tsk);
123 sig->oublock += task_io_get_oublock(tsk);
124 sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
125 sig = NULL; /* Marker for below. */
126 }
127
128 __unhash_process(tsk);
129
130 /*
131 * Do this under ->siglock, we can race with another thread
132 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
133 */
134 flush_sigqueue(&tsk->pending);
135
136 tsk->signal = NULL;
137 tsk->sighand = NULL;
138 spin_unlock(&sighand->siglock);
139 rcu_read_unlock();
140
141 __cleanup_sighand(sighand);
142 clear_tsk_thread_flag(tsk,TIF_SIGPENDING);
143 if (sig) {
144 flush_sigqueue(&sig->shared_pending);
145 taskstats_tgid_free(sig);
146 __cleanup_signal(sig);
147 }
148 }
149
150 static void delayed_put_task_struct(struct rcu_head *rhp)
151 {
152 put_task_struct(container_of(rhp, struct task_struct, rcu));
153 }
154
155 void release_task(struct task_struct * p)
156 {
157 struct task_struct *leader;
158 int zap_leader;
159 repeat:
160 atomic_dec(&p->user->processes);
161 proc_flush_task(p);
162 write_lock_irq(&tasklist_lock);
163 ptrace_unlink(p);
164 BUG_ON(!list_empty(&p->ptrace_list) || !list_empty(&p->ptrace_children));
165 __exit_signal(p);
166
167 /*
168 * If we are the last non-leader member of the thread
169 * group, and the leader is zombie, then notify the
170 * group leader's parent process. (if it wants notification.)
171 */
172 zap_leader = 0;
173 leader = p->group_leader;
174 if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) {
175 BUG_ON(task_detached(leader));
176 do_notify_parent(leader, leader->exit_signal);
177 /*
178 * If we were the last child thread and the leader has
179 * exited already, and the leader's parent ignores SIGCHLD,
180 * then we are the one who should release the leader.
181 *
182 * do_notify_parent() will have marked it self-reaping in
183 * that case.
184 */
185 zap_leader = task_detached(leader);
186 }
187
188 write_unlock_irq(&tasklist_lock);
189 release_thread(p);
190 call_rcu(&p->rcu, delayed_put_task_struct);
191
192 p = leader;
193 if (unlikely(zap_leader))
194 goto repeat;
195 }
196
197 /*
198 * This checks not only the pgrp, but falls back on the pid if no
199 * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
200 * without this...
201 *
202 * The caller must hold rcu lock or the tasklist lock.
203 */
204 struct pid *session_of_pgrp(struct pid *pgrp)
205 {
206 struct task_struct *p;
207 struct pid *sid = NULL;
208
209 p = pid_task(pgrp, PIDTYPE_PGID);
210 if (p == NULL)
211 p = pid_task(pgrp, PIDTYPE_PID);
212 if (p != NULL)
213 sid = task_session(p);
214
215 return sid;
216 }
217
218 /*
219 * Determine if a process group is "orphaned", according to the POSIX
220 * definition in 2.2.2.52. Orphaned process groups are not to be affected
221 * by terminal-generated stop signals. Newly orphaned process groups are
222 * to receive a SIGHUP and a SIGCONT.
223 *
224 * "I ask you, have you ever known what it is to be an orphan?"
225 */
226 static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task)
227 {
228 struct task_struct *p;
229
230 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
231 if ((p == ignored_task) ||
232 (p->exit_state && thread_group_empty(p)) ||
233 is_global_init(p->real_parent))
234 continue;
235
236 if (task_pgrp(p->real_parent) != pgrp &&
237 task_session(p->real_parent) == task_session(p))
238 return 0;
239 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
240
241 return 1;
242 }
243
244 int is_current_pgrp_orphaned(void)
245 {
246 int retval;
247
248 read_lock(&tasklist_lock);
249 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
250 read_unlock(&tasklist_lock);
251
252 return retval;
253 }
254
255 static int has_stopped_jobs(struct pid *pgrp)
256 {
257 int retval = 0;
258 struct task_struct *p;
259
260 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
261 if (!task_is_stopped(p))
262 continue;
263 retval = 1;
264 break;
265 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
266 return retval;
267 }
268
269 /*
270 * Check to see if any process groups have become orphaned as
271 * a result of our exiting, and if they have any stopped jobs,
272 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
273 */
274 static void
275 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
276 {
277 struct pid *pgrp = task_pgrp(tsk);
278 struct task_struct *ignored_task = tsk;
279
280 if (!parent)
281 /* exit: our father is in a different pgrp than
282 * we are and we were the only connection outside.
283 */
284 parent = tsk->real_parent;
285 else
286 /* reparent: our child is in a different pgrp than
287 * we are, and it was the only connection outside.
288 */
289 ignored_task = NULL;
290
291 if (task_pgrp(parent) != pgrp &&
292 task_session(parent) == task_session(tsk) &&
293 will_become_orphaned_pgrp(pgrp, ignored_task) &&
294 has_stopped_jobs(pgrp)) {
295 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
296 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
297 }
298 }
299
300 /**
301 * reparent_to_kthreadd - Reparent the calling kernel thread to kthreadd
302 *
303 * If a kernel thread is launched as a result of a system call, or if
304 * it ever exits, it should generally reparent itself to kthreadd so it
305 * isn't in the way of other processes and is correctly cleaned up on exit.
306 *
307 * The various task state such as scheduling policy and priority may have
308 * been inherited from a user process, so we reset them to sane values here.
309 *
310 * NOTE that reparent_to_kthreadd() gives the caller full capabilities.
311 */
312 static void reparent_to_kthreadd(void)
313 {
314 write_lock_irq(&tasklist_lock);
315
316 ptrace_unlink(current);
317 /* Reparent to init */
318 remove_parent(current);
319 current->real_parent = current->parent = kthreadd_task;
320 add_parent(current);
321
322 /* Set the exit signal to SIGCHLD so we signal init on exit */
323 current->exit_signal = SIGCHLD;
324
325 if (task_nice(current) < 0)
326 set_user_nice(current, 0);
327 /* cpus_allowed? */
328 /* rt_priority? */
329 /* signals? */
330 security_task_reparent_to_init(current);
331 memcpy(current->signal->rlim, init_task.signal->rlim,
332 sizeof(current->signal->rlim));
333 atomic_inc(&(INIT_USER->__count));
334 write_unlock_irq(&tasklist_lock);
335 switch_uid(INIT_USER);
336 }
337
338 void __set_special_pids(struct pid *pid)
339 {
340 struct task_struct *curr = current->group_leader;
341 pid_t nr = pid_nr(pid);
342
343 if (task_session(curr) != pid) {
344 change_pid(curr, PIDTYPE_SID, pid);
345 set_task_session(curr, nr);
346 }
347 if (task_pgrp(curr) != pid) {
348 change_pid(curr, PIDTYPE_PGID, pid);
349 set_task_pgrp(curr, nr);
350 }
351 }
352
353 static void set_special_pids(struct pid *pid)
354 {
355 write_lock_irq(&tasklist_lock);
356 __set_special_pids(pid);
357 write_unlock_irq(&tasklist_lock);
358 }
359
360 /*
361 * Let kernel threads use this to say that they
362 * allow a certain signal (since daemonize() will
363 * have disabled all of them by default).
364 */
365 int allow_signal(int sig)
366 {
367 if (!valid_signal(sig) || sig < 1)
368 return -EINVAL;
369
370 spin_lock_irq(&current->sighand->siglock);
371 sigdelset(&current->blocked, sig);
372 if (!current->mm) {
373 /* Kernel threads handle their own signals.
374 Let the signal code know it'll be handled, so
375 that they don't get converted to SIGKILL or
376 just silently dropped */
377 current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2;
378 }
379 recalc_sigpending();
380 spin_unlock_irq(&current->sighand->siglock);
381 return 0;
382 }
383
384 EXPORT_SYMBOL(allow_signal);
385
386 int disallow_signal(int sig)
387 {
388 if (!valid_signal(sig) || sig < 1)
389 return -EINVAL;
390
391 spin_lock_irq(&current->sighand->siglock);
392 current->sighand->action[(sig)-1].sa.sa_handler = SIG_IGN;
393 recalc_sigpending();
394 spin_unlock_irq(&current->sighand->siglock);
395 return 0;
396 }
397
398 EXPORT_SYMBOL(disallow_signal);
399
400 /*
401 * Put all the gunge required to become a kernel thread without
402 * attached user resources in one place where it belongs.
403 */
404
405 void daemonize(const char *name, ...)
406 {
407 va_list args;
408 struct fs_struct *fs;
409 sigset_t blocked;
410
411 va_start(args, name);
412 vsnprintf(current->comm, sizeof(current->comm), name, args);
413 va_end(args);
414
415 /*
416 * If we were started as result of loading a module, close all of the
417 * user space pages. We don't need them, and if we didn't close them
418 * they would be locked into memory.
419 */
420 exit_mm(current);
421 /*
422 * We don't want to have TIF_FREEZE set if the system-wide hibernation
423 * or suspend transition begins right now.
424 */
425 current->flags |= PF_NOFREEZE;
426
427 if (current->nsproxy != &init_nsproxy) {
428 get_nsproxy(&init_nsproxy);
429 switch_task_namespaces(current, &init_nsproxy);
430 }
431 set_special_pids(&init_struct_pid);
432 proc_clear_tty(current);
433
434 /* Block and flush all signals */
435 sigfillset(&blocked);
436 sigprocmask(SIG_BLOCK, &blocked, NULL);
437 flush_signals(current);
438
439 /* Become as one with the init task */
440
441 exit_fs(current); /* current->fs->count--; */
442 fs = init_task.fs;
443 current->fs = fs;
444 atomic_inc(&fs->count);
445
446 exit_files(current);
447 current->files = init_task.files;
448 atomic_inc(&current->files->count);
449
450 reparent_to_kthreadd();
451 }
452
453 EXPORT_SYMBOL(daemonize);
454
455 static void close_files(struct files_struct * files)
456 {
457 int i, j;
458 struct fdtable *fdt;
459
460 j = 0;
461
462 /*
463 * It is safe to dereference the fd table without RCU or
464 * ->file_lock because this is the last reference to the
465 * files structure.
466 */
467 fdt = files_fdtable(files);
468 for (;;) {
469 unsigned long set;
470 i = j * __NFDBITS;
471 if (i >= fdt->max_fds)
472 break;
473 set = fdt->open_fds->fds_bits[j++];
474 while (set) {
475 if (set & 1) {
476 struct file * file = xchg(&fdt->fd[i], NULL);
477 if (file) {
478 filp_close(file, files);
479 cond_resched();
480 }
481 }
482 i++;
483 set >>= 1;
484 }
485 }
486 }
487
488 struct files_struct *get_files_struct(struct task_struct *task)
489 {
490 struct files_struct *files;
491
492 task_lock(task);
493 files = task->files;
494 if (files)
495 atomic_inc(&files->count);
496 task_unlock(task);
497
498 return files;
499 }
500
501 void put_files_struct(struct files_struct *files)
502 {
503 struct fdtable *fdt;
504
505 if (atomic_dec_and_test(&files->count)) {
506 close_files(files);
507 /*
508 * Free the fd and fdset arrays if we expanded them.
509 * If the fdtable was embedded, pass files for freeing
510 * at the end of the RCU grace period. Otherwise,
511 * you can free files immediately.
512 */
513 fdt = files_fdtable(files);
514 if (fdt != &files->fdtab)
515 kmem_cache_free(files_cachep, files);
516 free_fdtable(fdt);
517 }
518 }
519
520 void reset_files_struct(struct files_struct *files)
521 {
522 struct task_struct *tsk = current;
523 struct files_struct *old;
524
525 old = tsk->files;
526 task_lock(tsk);
527 tsk->files = files;
528 task_unlock(tsk);
529 put_files_struct(old);
530 }
531
532 void exit_files(struct task_struct *tsk)
533 {
534 struct files_struct * files = tsk->files;
535
536 if (files) {
537 task_lock(tsk);
538 tsk->files = NULL;
539 task_unlock(tsk);
540 put_files_struct(files);
541 }
542 }
543
544 void put_fs_struct(struct fs_struct *fs)
545 {
546 /* No need to hold fs->lock if we are killing it */
547 if (atomic_dec_and_test(&fs->count)) {
548 path_put(&fs->root);
549 path_put(&fs->pwd);
550 if (fs->altroot.dentry)
551 path_put(&fs->altroot);
552 kmem_cache_free(fs_cachep, fs);
553 }
554 }
555
556 void exit_fs(struct task_struct *tsk)
557 {
558 struct fs_struct * fs = tsk->fs;
559
560 if (fs) {
561 task_lock(tsk);
562 tsk->fs = NULL;
563 task_unlock(tsk);
564 put_fs_struct(fs);
565 }
566 }
567
568 EXPORT_SYMBOL_GPL(exit_fs);
569
570 #ifdef CONFIG_MM_OWNER
571 /*
572 * Task p is exiting and it owned mm, lets find a new owner for it
573 */
574 static inline int
575 mm_need_new_owner(struct mm_struct *mm, struct task_struct *p)
576 {
577 /*
578 * If there are other users of the mm and the owner (us) is exiting
579 * we need to find a new owner to take on the responsibility.
580 */
581 if (!mm)
582 return 0;
583 if (atomic_read(&mm->mm_users) <= 1)
584 return 0;
585 if (mm->owner != p)
586 return 0;
587 return 1;
588 }
589
590 void mm_update_next_owner(struct mm_struct *mm)
591 {
592 struct task_struct *c, *g, *p = current;
593
594 retry:
595 if (!mm_need_new_owner(mm, p))
596 return;
597
598 read_lock(&tasklist_lock);
599 /*
600 * Search in the children
601 */
602 list_for_each_entry(c, &p->children, sibling) {
603 if (c->mm == mm)
604 goto assign_new_owner;
605 }
606
607 /*
608 * Search in the siblings
609 */
610 list_for_each_entry(c, &p->parent->children, sibling) {
611 if (c->mm == mm)
612 goto assign_new_owner;
613 }
614
615 /*
616 * Search through everything else. We should not get
617 * here often
618 */
619 do_each_thread(g, c) {
620 if (c->mm == mm)
621 goto assign_new_owner;
622 } while_each_thread(g, c);
623
624 read_unlock(&tasklist_lock);
625 return;
626
627 assign_new_owner:
628 BUG_ON(c == p);
629 get_task_struct(c);
630 /*
631 * The task_lock protects c->mm from changing.
632 * We always want mm->owner->mm == mm
633 */
634 task_lock(c);
635 /*
636 * Delay read_unlock() till we have the task_lock()
637 * to ensure that c does not slip away underneath us
638 */
639 read_unlock(&tasklist_lock);
640 if (c->mm != mm) {
641 task_unlock(c);
642 put_task_struct(c);
643 goto retry;
644 }
645 cgroup_mm_owner_callbacks(mm->owner, c);
646 mm->owner = c;
647 task_unlock(c);
648 put_task_struct(c);
649 }
650 #endif /* CONFIG_MM_OWNER */
651
652 /*
653 * Turn us into a lazy TLB process if we
654 * aren't already..
655 */
656 static void exit_mm(struct task_struct * tsk)
657 {
658 struct mm_struct *mm = tsk->mm;
659
660 mm_release(tsk, mm);
661 if (!mm)
662 return;
663 /*
664 * Serialize with any possible pending coredump.
665 * We must hold mmap_sem around checking core_waiters
666 * and clearing tsk->mm. The core-inducing thread
667 * will increment core_waiters for each thread in the
668 * group with ->mm != NULL.
669 */
670 down_read(&mm->mmap_sem);
671 if (mm->core_waiters) {
672 up_read(&mm->mmap_sem);
673 down_write(&mm->mmap_sem);
674 if (!--mm->core_waiters)
675 complete(mm->core_startup_done);
676 up_write(&mm->mmap_sem);
677
678 wait_for_completion(&mm->core_done);
679 down_read(&mm->mmap_sem);
680 }
681 atomic_inc(&mm->mm_count);
682 BUG_ON(mm != tsk->active_mm);
683 /* more a memory barrier than a real lock */
684 task_lock(tsk);
685 tsk->mm = NULL;
686 up_read(&mm->mmap_sem);
687 enter_lazy_tlb(mm, current);
688 /* We don't want this task to be frozen prematurely */
689 clear_freeze_flag(tsk);
690 task_unlock(tsk);
691 mm_update_next_owner(mm);
692 mmput(mm);
693 }
694
695 static void
696 reparent_thread(struct task_struct *p, struct task_struct *father, int traced)
697 {
698 if (p->pdeath_signal)
699 /* We already hold the tasklist_lock here. */
700 group_send_sig_info(p->pdeath_signal, SEND_SIG_NOINFO, p);
701
702 /* Move the child from its dying parent to the new one. */
703 if (unlikely(traced)) {
704 /* Preserve ptrace links if someone else is tracing this child. */
705 list_del_init(&p->ptrace_list);
706 if (ptrace_reparented(p))
707 list_add(&p->ptrace_list, &p->real_parent->ptrace_children);
708 } else {
709 /* If this child is being traced, then we're the one tracing it
710 * anyway, so let go of it.
711 */
712 p->ptrace = 0;
713 remove_parent(p);
714 p->parent = p->real_parent;
715 add_parent(p);
716
717 if (task_is_traced(p)) {
718 /*
719 * If it was at a trace stop, turn it into
720 * a normal stop since it's no longer being
721 * traced.
722 */
723 ptrace_untrace(p);
724 }
725 }
726
727 /* If this is a threaded reparent there is no need to
728 * notify anyone anything has happened.
729 */
730 if (same_thread_group(p->real_parent, father))
731 return;
732
733 /* We don't want people slaying init. */
734 if (!task_detached(p))
735 p->exit_signal = SIGCHLD;
736
737 /* If we'd notified the old parent about this child's death,
738 * also notify the new parent.
739 */
740 if (!traced && p->exit_state == EXIT_ZOMBIE &&
741 !task_detached(p) && thread_group_empty(p))
742 do_notify_parent(p, p->exit_signal);
743
744 kill_orphaned_pgrp(p, father);
745 }
746
747 /*
748 * When we die, we re-parent all our children.
749 * Try to give them to another thread in our thread
750 * group, and if no such member exists, give it to
751 * the child reaper process (ie "init") in our pid
752 * space.
753 */
754 static void forget_original_parent(struct task_struct *father)
755 {
756 struct task_struct *p, *n, *reaper = father;
757 struct list_head ptrace_dead;
758
759 INIT_LIST_HEAD(&ptrace_dead);
760
761 write_lock_irq(&tasklist_lock);
762
763 do {
764 reaper = next_thread(reaper);
765 if (reaper == father) {
766 reaper = task_child_reaper(father);
767 break;
768 }
769 } while (reaper->flags & PF_EXITING);
770
771 /*
772 * There are only two places where our children can be:
773 *
774 * - in our child list
775 * - in our ptraced child list
776 *
777 * Search them and reparent children.
778 */
779 list_for_each_entry_safe(p, n, &father->children, sibling) {
780 int ptrace;
781
782 ptrace = p->ptrace;
783
784 /* if father isn't the real parent, then ptrace must be enabled */
785 BUG_ON(father != p->real_parent && !ptrace);
786
787 if (father == p->real_parent) {
788 /* reparent with a reaper, real father it's us */
789 p->real_parent = reaper;
790 reparent_thread(p, father, 0);
791 } else {
792 /* reparent ptraced task to its real parent */
793 __ptrace_unlink (p);
794 if (p->exit_state == EXIT_ZOMBIE && !task_detached(p) &&
795 thread_group_empty(p))
796 do_notify_parent(p, p->exit_signal);
797 }
798
799 /*
800 * if the ptraced child is a detached zombie we must collect
801 * it before we exit, or it will remain zombie forever since
802 * we prevented it from self-reap itself while it was being
803 * traced by us, to be able to see it in wait4.
804 */
805 if (unlikely(ptrace && p->exit_state == EXIT_ZOMBIE && task_detached(p)))
806 list_add(&p->ptrace_list, &ptrace_dead);
807 }
808
809 list_for_each_entry_safe(p, n, &father->ptrace_children, ptrace_list) {
810 p->real_parent = reaper;
811 reparent_thread(p, father, 1);
812 }
813
814 write_unlock_irq(&tasklist_lock);
815 BUG_ON(!list_empty(&father->children));
816 BUG_ON(!list_empty(&father->ptrace_children));
817
818 list_for_each_entry_safe(p, n, &ptrace_dead, ptrace_list) {
819 list_del_init(&p->ptrace_list);
820 release_task(p);
821 }
822
823 }
824
825 /*
826 * Send signals to all our closest relatives so that they know
827 * to properly mourn us..
828 */
829 static void exit_notify(struct task_struct *tsk, int group_dead)
830 {
831 int state;
832
833 /*
834 * This does two things:
835 *
836 * A. Make init inherit all the child processes
837 * B. Check to see if any process groups have become orphaned
838 * as a result of our exiting, and if they have any stopped
839 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
840 */
841 forget_original_parent(tsk);
842 exit_task_namespaces(tsk);
843
844 write_lock_irq(&tasklist_lock);
845 if (group_dead)
846 kill_orphaned_pgrp(tsk->group_leader, NULL);
847
848 /* Let father know we died
849 *
850 * Thread signals are configurable, but you aren't going to use
851 * that to send signals to arbitary processes.
852 * That stops right now.
853 *
854 * If the parent exec id doesn't match the exec id we saved
855 * when we started then we know the parent has changed security
856 * domain.
857 *
858 * If our self_exec id doesn't match our parent_exec_id then
859 * we have changed execution domain as these two values started
860 * the same after a fork.
861 */
862 if (tsk->exit_signal != SIGCHLD && !task_detached(tsk) &&
863 (tsk->parent_exec_id != tsk->real_parent->self_exec_id ||
864 tsk->self_exec_id != tsk->parent_exec_id) &&
865 !capable(CAP_KILL))
866 tsk->exit_signal = SIGCHLD;
867
868 /* If something other than our normal parent is ptracing us, then
869 * send it a SIGCHLD instead of honoring exit_signal. exit_signal
870 * only has special meaning to our real parent.
871 */
872 if (!task_detached(tsk) && thread_group_empty(tsk)) {
873 int signal = ptrace_reparented(tsk) ?
874 SIGCHLD : tsk->exit_signal;
875 do_notify_parent(tsk, signal);
876 } else if (tsk->ptrace) {
877 do_notify_parent(tsk, SIGCHLD);
878 }
879
880 state = EXIT_ZOMBIE;
881 if (task_detached(tsk) && likely(!tsk->ptrace))
882 state = EXIT_DEAD;
883 tsk->exit_state = state;
884
885 /* mt-exec, de_thread() is waiting for us */
886 if (thread_group_leader(tsk) &&
887 tsk->signal->notify_count < 0 &&
888 tsk->signal->group_exit_task)
889 wake_up_process(tsk->signal->group_exit_task);
890
891 write_unlock_irq(&tasklist_lock);
892
893 /* If the process is dead, release it - nobody will wait for it */
894 if (state == EXIT_DEAD)
895 release_task(tsk);
896 }
897
898 #ifdef CONFIG_DEBUG_STACK_USAGE
899 static void check_stack_usage(void)
900 {
901 static DEFINE_SPINLOCK(low_water_lock);
902 static int lowest_to_date = THREAD_SIZE;
903 unsigned long *n = end_of_stack(current);
904 unsigned long free;
905
906 while (*n == 0)
907 n++;
908 free = (unsigned long)n - (unsigned long)end_of_stack(current);
909
910 if (free >= lowest_to_date)
911 return;
912
913 spin_lock(&low_water_lock);
914 if (free < lowest_to_date) {
915 printk(KERN_WARNING "%s used greatest stack depth: %lu bytes "
916 "left\n",
917 current->comm, free);
918 lowest_to_date = free;
919 }
920 spin_unlock(&low_water_lock);
921 }
922 #else
923 static inline void check_stack_usage(void) {}
924 #endif
925
926 static inline void exit_child_reaper(struct task_struct *tsk)
927 {
928 if (likely(tsk->group_leader != task_child_reaper(tsk)))
929 return;
930
931 if (tsk->nsproxy->pid_ns == &init_pid_ns)
932 panic("Attempted to kill init!");
933
934 /*
935 * @tsk is the last thread in the 'cgroup-init' and is exiting.
936 * Terminate all remaining processes in the namespace and reap them
937 * before exiting @tsk.
938 *
939 * Note that @tsk (last thread of cgroup-init) may not necessarily
940 * be the child-reaper (i.e main thread of cgroup-init) of the
941 * namespace i.e the child_reaper may have already exited.
942 *
943 * Even after a child_reaper exits, we let it inherit orphaned children,
944 * because, pid_ns->child_reaper remains valid as long as there is
945 * at least one living sub-thread in the cgroup init.
946
947 * This living sub-thread of the cgroup-init will be notified when
948 * a child inherited by the 'child-reaper' exits (do_notify_parent()
949 * uses __group_send_sig_info()). Further, when reaping child processes,
950 * do_wait() iterates over children of all living sub threads.
951
952 * i.e even though 'child_reaper' thread is listed as the parent of the
953 * orphaned children, any living sub-thread in the cgroup-init can
954 * perform the role of the child_reaper.
955 */
956 zap_pid_ns_processes(tsk->nsproxy->pid_ns);
957 }
958
959 NORET_TYPE void do_exit(long code)
960 {
961 struct task_struct *tsk = current;
962 int group_dead;
963
964 profile_task_exit(tsk);
965
966 WARN_ON(atomic_read(&tsk->fs_excl));
967
968 if (unlikely(in_interrupt()))
969 panic("Aiee, killing interrupt handler!");
970 if (unlikely(!tsk->pid))
971 panic("Attempted to kill the idle task!");
972
973 if (unlikely(current->ptrace & PT_TRACE_EXIT)) {
974 current->ptrace_message = code;
975 ptrace_notify((PTRACE_EVENT_EXIT << 8) | SIGTRAP);
976 }
977
978 /*
979 * We're taking recursive faults here in do_exit. Safest is to just
980 * leave this task alone and wait for reboot.
981 */
982 if (unlikely(tsk->flags & PF_EXITING)) {
983 printk(KERN_ALERT
984 "Fixing recursive fault but reboot is needed!\n");
985 /*
986 * We can do this unlocked here. The futex code uses
987 * this flag just to verify whether the pi state
988 * cleanup has been done or not. In the worst case it
989 * loops once more. We pretend that the cleanup was
990 * done as there is no way to return. Either the
991 * OWNER_DIED bit is set by now or we push the blocked
992 * task into the wait for ever nirwana as well.
993 */
994 tsk->flags |= PF_EXITPIDONE;
995 if (tsk->io_context)
996 exit_io_context();
997 set_current_state(TASK_UNINTERRUPTIBLE);
998 schedule();
999 }
1000
1001 exit_signals(tsk); /* sets PF_EXITING */
1002 /*
1003 * tsk->flags are checked in the futex code to protect against
1004 * an exiting task cleaning up the robust pi futexes.
1005 */
1006 smp_mb();
1007 spin_unlock_wait(&tsk->pi_lock);
1008
1009 if (unlikely(in_atomic()))
1010 printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n",
1011 current->comm, task_pid_nr(current),
1012 preempt_count());
1013
1014 acct_update_integrals(tsk);
1015 if (tsk->mm) {
1016 update_hiwater_rss(tsk->mm);
1017 update_hiwater_vm(tsk->mm);
1018 }
1019 group_dead = atomic_dec_and_test(&tsk->signal->live);
1020 if (group_dead) {
1021 exit_child_reaper(tsk);
1022 hrtimer_cancel(&tsk->signal->real_timer);
1023 exit_itimers(tsk->signal);
1024 }
1025 acct_collect(code, group_dead);
1026 #ifdef CONFIG_FUTEX
1027 if (unlikely(tsk->robust_list))
1028 exit_robust_list(tsk);
1029 #ifdef CONFIG_COMPAT
1030 if (unlikely(tsk->compat_robust_list))
1031 compat_exit_robust_list(tsk);
1032 #endif
1033 #endif
1034 if (group_dead)
1035 tty_audit_exit();
1036 if (unlikely(tsk->audit_context))
1037 audit_free(tsk);
1038
1039 tsk->exit_code = code;
1040 taskstats_exit(tsk, group_dead);
1041
1042 exit_mm(tsk);
1043
1044 if (group_dead)
1045 acct_process();
1046 exit_sem(tsk);
1047 exit_files(tsk);
1048 exit_fs(tsk);
1049 check_stack_usage();
1050 exit_thread();
1051 cgroup_exit(tsk, 1);
1052 exit_keys(tsk);
1053
1054 if (group_dead && tsk->signal->leader)
1055 disassociate_ctty(1);
1056
1057 module_put(task_thread_info(tsk)->exec_domain->module);
1058 if (tsk->binfmt)
1059 module_put(tsk->binfmt->module);
1060
1061 proc_exit_connector(tsk);
1062 exit_notify(tsk, group_dead);
1063 #ifdef CONFIG_NUMA
1064 mpol_put(tsk->mempolicy);
1065 tsk->mempolicy = NULL;
1066 #endif
1067 #ifdef CONFIG_FUTEX
1068 /*
1069 * This must happen late, after the PID is not
1070 * hashed anymore:
1071 */
1072 if (unlikely(!list_empty(&tsk->pi_state_list)))
1073 exit_pi_state_list(tsk);
1074 if (unlikely(current->pi_state_cache))
1075 kfree(current->pi_state_cache);
1076 #endif
1077 /*
1078 * Make sure we are holding no locks:
1079 */
1080 debug_check_no_locks_held(tsk);
1081 /*
1082 * We can do this unlocked here. The futex code uses this flag
1083 * just to verify whether the pi state cleanup has been done
1084 * or not. In the worst case it loops once more.
1085 */
1086 tsk->flags |= PF_EXITPIDONE;
1087
1088 if (tsk->io_context)
1089 exit_io_context();
1090
1091 if (tsk->splice_pipe)
1092 __free_pipe_info(tsk->splice_pipe);
1093
1094 preempt_disable();
1095 /* causes final put_task_struct in finish_task_switch(). */
1096 tsk->state = TASK_DEAD;
1097
1098 schedule();
1099 BUG();
1100 /* Avoid "noreturn function does return". */
1101 for (;;)
1102 cpu_relax(); /* For when BUG is null */
1103 }
1104
1105 EXPORT_SYMBOL_GPL(do_exit);
1106
1107 NORET_TYPE void complete_and_exit(struct completion *comp, long code)
1108 {
1109 if (comp)
1110 complete(comp);
1111
1112 do_exit(code);
1113 }
1114
1115 EXPORT_SYMBOL(complete_and_exit);
1116
1117 asmlinkage long sys_exit(int error_code)
1118 {
1119 do_exit((error_code&0xff)<<8);
1120 }
1121
1122 /*
1123 * Take down every thread in the group. This is called by fatal signals
1124 * as well as by sys_exit_group (below).
1125 */
1126 NORET_TYPE void
1127 do_group_exit(int exit_code)
1128 {
1129 struct signal_struct *sig = current->signal;
1130
1131 BUG_ON(exit_code & 0x80); /* core dumps don't get here */
1132
1133 if (signal_group_exit(sig))
1134 exit_code = sig->group_exit_code;
1135 else if (!thread_group_empty(current)) {
1136 struct sighand_struct *const sighand = current->sighand;
1137 spin_lock_irq(&sighand->siglock);
1138 if (signal_group_exit(sig))
1139 /* Another thread got here before we took the lock. */
1140 exit_code = sig->group_exit_code;
1141 else {
1142 sig->group_exit_code = exit_code;
1143 sig->flags = SIGNAL_GROUP_EXIT;
1144 zap_other_threads(current);
1145 }
1146 spin_unlock_irq(&sighand->siglock);
1147 }
1148
1149 do_exit(exit_code);
1150 /* NOTREACHED */
1151 }
1152
1153 /*
1154 * this kills every thread in the thread group. Note that any externally
1155 * wait4()-ing process will get the correct exit code - even if this
1156 * thread is not the thread group leader.
1157 */
1158 asmlinkage void sys_exit_group(int error_code)
1159 {
1160 do_group_exit((error_code & 0xff) << 8);
1161 }
1162
1163 static struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
1164 {
1165 struct pid *pid = NULL;
1166 if (type == PIDTYPE_PID)
1167 pid = task->pids[type].pid;
1168 else if (type < PIDTYPE_MAX)
1169 pid = task->group_leader->pids[type].pid;
1170 return pid;
1171 }
1172
1173 static int eligible_child(enum pid_type type, struct pid *pid, int options,
1174 struct task_struct *p)
1175 {
1176 int err;
1177
1178 if (type < PIDTYPE_MAX) {
1179 if (task_pid_type(p, type) != pid)
1180 return 0;
1181 }
1182
1183 /*
1184 * Do not consider detached threads that are
1185 * not ptraced:
1186 */
1187 if (task_detached(p) && !p->ptrace)
1188 return 0;
1189
1190 /* Wait for all children (clone and not) if __WALL is set;
1191 * otherwise, wait for clone children *only* if __WCLONE is
1192 * set; otherwise, wait for non-clone children *only*. (Note:
1193 * A "clone" child here is one that reports to its parent
1194 * using a signal other than SIGCHLD.) */
1195 if (((p->exit_signal != SIGCHLD) ^ ((options & __WCLONE) != 0))
1196 && !(options & __WALL))
1197 return 0;
1198
1199 err = security_task_wait(p);
1200 if (likely(!err))
1201 return 1;
1202
1203 if (type != PIDTYPE_PID)
1204 return 0;
1205 /* This child was explicitly requested, abort */
1206 read_unlock(&tasklist_lock);
1207 return err;
1208 }
1209
1210 static int wait_noreap_copyout(struct task_struct *p, pid_t pid, uid_t uid,
1211 int why, int status,
1212 struct siginfo __user *infop,
1213 struct rusage __user *rusagep)
1214 {
1215 int retval = rusagep ? getrusage(p, RUSAGE_BOTH, rusagep) : 0;
1216
1217 put_task_struct(p);
1218 if (!retval)
1219 retval = put_user(SIGCHLD, &infop->si_signo);
1220 if (!retval)
1221 retval = put_user(0, &infop->si_errno);
1222 if (!retval)
1223 retval = put_user((short)why, &infop->si_code);
1224 if (!retval)
1225 retval = put_user(pid, &infop->si_pid);
1226 if (!retval)
1227 retval = put_user(uid, &infop->si_uid);
1228 if (!retval)
1229 retval = put_user(status, &infop->si_status);
1230 if (!retval)
1231 retval = pid;
1232 return retval;
1233 }
1234
1235 /*
1236 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold
1237 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1238 * the lock and this task is uninteresting. If we return nonzero, we have
1239 * released the lock and the system call should return.
1240 */
1241 static int wait_task_zombie(struct task_struct *p, int options,
1242 struct siginfo __user *infop,
1243 int __user *stat_addr, struct rusage __user *ru)
1244 {
1245 unsigned long state;
1246 int retval, status, traced;
1247 pid_t pid = task_pid_vnr(p);
1248
1249 if (!likely(options & WEXITED))
1250 return 0;
1251
1252 if (unlikely(options & WNOWAIT)) {
1253 uid_t uid = p->uid;
1254 int exit_code = p->exit_code;
1255 int why, status;
1256
1257 get_task_struct(p);
1258 read_unlock(&tasklist_lock);
1259 if ((exit_code & 0x7f) == 0) {
1260 why = CLD_EXITED;
1261 status = exit_code >> 8;
1262 } else {
1263 why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
1264 status = exit_code & 0x7f;
1265 }
1266 return wait_noreap_copyout(p, pid, uid, why,
1267 status, infop, ru);
1268 }
1269
1270 /*
1271 * Try to move the task's state to DEAD
1272 * only one thread is allowed to do this:
1273 */
1274 state = xchg(&p->exit_state, EXIT_DEAD);
1275 if (state != EXIT_ZOMBIE) {
1276 BUG_ON(state != EXIT_DEAD);
1277 return 0;
1278 }
1279
1280 traced = ptrace_reparented(p);
1281
1282 if (likely(!traced)) {
1283 struct signal_struct *psig;
1284 struct signal_struct *sig;
1285
1286 /*
1287 * The resource counters for the group leader are in its
1288 * own task_struct. Those for dead threads in the group
1289 * are in its signal_struct, as are those for the child
1290 * processes it has previously reaped. All these
1291 * accumulate in the parent's signal_struct c* fields.
1292 *
1293 * We don't bother to take a lock here to protect these
1294 * p->signal fields, because they are only touched by
1295 * __exit_signal, which runs with tasklist_lock
1296 * write-locked anyway, and so is excluded here. We do
1297 * need to protect the access to p->parent->signal fields,
1298 * as other threads in the parent group can be right
1299 * here reaping other children at the same time.
1300 */
1301 spin_lock_irq(&p->parent->sighand->siglock);
1302 psig = p->parent->signal;
1303 sig = p->signal;
1304 psig->cutime =
1305 cputime_add(psig->cutime,
1306 cputime_add(p->utime,
1307 cputime_add(sig->utime,
1308 sig->cutime)));
1309 psig->cstime =
1310 cputime_add(psig->cstime,
1311 cputime_add(p->stime,
1312 cputime_add(sig->stime,
1313 sig->cstime)));
1314 psig->cgtime =
1315 cputime_add(psig->cgtime,
1316 cputime_add(p->gtime,
1317 cputime_add(sig->gtime,
1318 sig->cgtime)));
1319 psig->cmin_flt +=
1320 p->min_flt + sig->min_flt + sig->cmin_flt;
1321 psig->cmaj_flt +=
1322 p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1323 psig->cnvcsw +=
1324 p->nvcsw + sig->nvcsw + sig->cnvcsw;
1325 psig->cnivcsw +=
1326 p->nivcsw + sig->nivcsw + sig->cnivcsw;
1327 psig->cinblock +=
1328 task_io_get_inblock(p) +
1329 sig->inblock + sig->cinblock;
1330 psig->coublock +=
1331 task_io_get_oublock(p) +
1332 sig->oublock + sig->coublock;
1333 spin_unlock_irq(&p->parent->sighand->siglock);
1334 }
1335
1336 /*
1337 * Now we are sure this task is interesting, and no other
1338 * thread can reap it because we set its state to EXIT_DEAD.
1339 */
1340 read_unlock(&tasklist_lock);
1341
1342 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1343 status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1344 ? p->signal->group_exit_code : p->exit_code;
1345 if (!retval && stat_addr)
1346 retval = put_user(status, stat_addr);
1347 if (!retval && infop)
1348 retval = put_user(SIGCHLD, &infop->si_signo);
1349 if (!retval && infop)
1350 retval = put_user(0, &infop->si_errno);
1351 if (!retval && infop) {
1352 int why;
1353
1354 if ((status & 0x7f) == 0) {
1355 why = CLD_EXITED;
1356 status >>= 8;
1357 } else {
1358 why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1359 status &= 0x7f;
1360 }
1361 retval = put_user((short)why, &infop->si_code);
1362 if (!retval)
1363 retval = put_user(status, &infop->si_status);
1364 }
1365 if (!retval && infop)
1366 retval = put_user(pid, &infop->si_pid);
1367 if (!retval && infop)
1368 retval = put_user(p->uid, &infop->si_uid);
1369 if (!retval)
1370 retval = pid;
1371
1372 if (traced) {
1373 write_lock_irq(&tasklist_lock);
1374 /* We dropped tasklist, ptracer could die and untrace */
1375 ptrace_unlink(p);
1376 /*
1377 * If this is not a detached task, notify the parent.
1378 * If it's still not detached after that, don't release
1379 * it now.
1380 */
1381 if (!task_detached(p)) {
1382 do_notify_parent(p, p->exit_signal);
1383 if (!task_detached(p)) {
1384 p->exit_state = EXIT_ZOMBIE;
1385 p = NULL;
1386 }
1387 }
1388 write_unlock_irq(&tasklist_lock);
1389 }
1390 if (p != NULL)
1391 release_task(p);
1392
1393 return retval;
1394 }
1395
1396 /*
1397 * Handle sys_wait4 work for one task in state TASK_STOPPED. We hold
1398 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1399 * the lock and this task is uninteresting. If we return nonzero, we have
1400 * released the lock and the system call should return.
1401 */
1402 static int wait_task_stopped(struct task_struct *p,
1403 int options, struct siginfo __user *infop,
1404 int __user *stat_addr, struct rusage __user *ru)
1405 {
1406 int retval, exit_code, why;
1407 uid_t uid = 0; /* unneeded, required by compiler */
1408 pid_t pid;
1409
1410 if (!(p->ptrace & PT_PTRACED) && !(options & WUNTRACED))
1411 return 0;
1412
1413 exit_code = 0;
1414 spin_lock_irq(&p->sighand->siglock);
1415
1416 if (unlikely(!task_is_stopped_or_traced(p)))
1417 goto unlock_sig;
1418
1419 if (!(p->ptrace & PT_PTRACED) && p->signal->group_stop_count > 0)
1420 /*
1421 * A group stop is in progress and this is the group leader.
1422 * We won't report until all threads have stopped.
1423 */
1424 goto unlock_sig;
1425
1426 exit_code = p->exit_code;
1427 if (!exit_code)
1428 goto unlock_sig;
1429
1430 if (!unlikely(options & WNOWAIT))
1431 p->exit_code = 0;
1432
1433 uid = p->uid;
1434 unlock_sig:
1435 spin_unlock_irq(&p->sighand->siglock);
1436 if (!exit_code)
1437 return 0;
1438
1439 /*
1440 * Now we are pretty sure this task is interesting.
1441 * Make sure it doesn't get reaped out from under us while we
1442 * give up the lock and then examine it below. We don't want to
1443 * keep holding onto the tasklist_lock while we call getrusage and
1444 * possibly take page faults for user memory.
1445 */
1446 get_task_struct(p);
1447 pid = task_pid_vnr(p);
1448 why = (p->ptrace & PT_PTRACED) ? CLD_TRAPPED : CLD_STOPPED;
1449 read_unlock(&tasklist_lock);
1450
1451 if (unlikely(options & WNOWAIT))
1452 return wait_noreap_copyout(p, pid, uid,
1453 why, exit_code,
1454 infop, ru);
1455
1456 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1457 if (!retval && stat_addr)
1458 retval = put_user((exit_code << 8) | 0x7f, stat_addr);
1459 if (!retval && infop)
1460 retval = put_user(SIGCHLD, &infop->si_signo);
1461 if (!retval && infop)
1462 retval = put_user(0, &infop->si_errno);
1463 if (!retval && infop)
1464 retval = put_user((short)why, &infop->si_code);
1465 if (!retval && infop)
1466 retval = put_user(exit_code, &infop->si_status);
1467 if (!retval && infop)
1468 retval = put_user(pid, &infop->si_pid);
1469 if (!retval && infop)
1470 retval = put_user(uid, &infop->si_uid);
1471 if (!retval)
1472 retval = pid;
1473 put_task_struct(p);
1474
1475 BUG_ON(!retval);
1476 return retval;
1477 }
1478
1479 /*
1480 * Handle do_wait work for one task in a live, non-stopped state.
1481 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1482 * the lock and this task is uninteresting. If we return nonzero, we have
1483 * released the lock and the system call should return.
1484 */
1485 static int wait_task_continued(struct task_struct *p, int options,
1486 struct siginfo __user *infop,
1487 int __user *stat_addr, struct rusage __user *ru)
1488 {
1489 int retval;
1490 pid_t pid;
1491 uid_t uid;
1492
1493 if (!unlikely(options & WCONTINUED))
1494 return 0;
1495
1496 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1497 return 0;
1498
1499 spin_lock_irq(&p->sighand->siglock);
1500 /* Re-check with the lock held. */
1501 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1502 spin_unlock_irq(&p->sighand->siglock);
1503 return 0;
1504 }
1505 if (!unlikely(options & WNOWAIT))
1506 p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1507 spin_unlock_irq(&p->sighand->siglock);
1508
1509 pid = task_pid_vnr(p);
1510 uid = p->uid;
1511 get_task_struct(p);
1512 read_unlock(&tasklist_lock);
1513
1514 if (!infop) {
1515 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1516 put_task_struct(p);
1517 if (!retval && stat_addr)
1518 retval = put_user(0xffff, stat_addr);
1519 if (!retval)
1520 retval = pid;
1521 } else {
1522 retval = wait_noreap_copyout(p, pid, uid,
1523 CLD_CONTINUED, SIGCONT,
1524 infop, ru);
1525 BUG_ON(retval == 0);
1526 }
1527
1528 return retval;
1529 }
1530
1531 /*
1532 * Consider @p for a wait by @parent.
1533 *
1534 * -ECHILD should be in *@notask_error before the first call.
1535 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1536 * Returns zero if the search for a child should continue;
1537 * then *@notask_error is 0 if @p is an eligible child, or still -ECHILD.
1538 */
1539 static int wait_consider_task(struct task_struct *parent,
1540 struct task_struct *p, int *notask_error,
1541 enum pid_type type, struct pid *pid, int options,
1542 struct siginfo __user *infop,
1543 int __user *stat_addr, struct rusage __user *ru)
1544 {
1545 int ret = eligible_child(type, pid, options, p);
1546 if (ret <= 0)
1547 return ret;
1548
1549 if (p->exit_state == EXIT_DEAD)
1550 return 0;
1551
1552 /*
1553 * We don't reap group leaders with subthreads.
1554 */
1555 if (p->exit_state == EXIT_ZOMBIE && !delay_group_leader(p))
1556 return wait_task_zombie(p, options, infop, stat_addr, ru);
1557
1558 /*
1559 * It's stopped or running now, so it might
1560 * later continue, exit, or stop again.
1561 */
1562 *notask_error = 0;
1563
1564 if (task_is_stopped_or_traced(p))
1565 return wait_task_stopped(p, options, infop, stat_addr, ru);
1566
1567 return wait_task_continued(p, options, infop, stat_addr, ru);
1568 }
1569
1570 /*
1571 * Do the work of do_wait() for one thread in the group, @tsk.
1572 *
1573 * -ECHILD should be in *@notask_error before the first call.
1574 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1575 * Returns zero if the search for a child should continue; then
1576 * *@notask_error is 0 if there were any eligible children, or still -ECHILD.
1577 */
1578 static int do_wait_thread(struct task_struct *tsk, int *notask_error,
1579 enum pid_type type, struct pid *pid, int options,
1580 struct siginfo __user *infop, int __user *stat_addr,
1581 struct rusage __user *ru)
1582 {
1583 struct task_struct *p;
1584
1585 list_for_each_entry(p, &tsk->children, sibling) {
1586 int ret = wait_consider_task(tsk, p, notask_error,
1587 type, pid, options,
1588 infop, stat_addr, ru);
1589 if (ret)
1590 return ret;
1591 }
1592
1593 return 0;
1594 }
1595
1596 static int ptrace_do_wait(struct task_struct *tsk, int *notask_error,
1597 enum pid_type type, struct pid *pid, int options,
1598 struct siginfo __user *infop, int __user *stat_addr,
1599 struct rusage __user *ru)
1600 {
1601 struct task_struct *p;
1602
1603 /*
1604 * If we never saw an eligile child, check for children stolen by
1605 * ptrace. We don't leave -ECHILD in *@notask_error if there are any,
1606 * because we will eventually be allowed to wait for them again.
1607 */
1608 if (!*notask_error)
1609 return 0;
1610
1611 list_for_each_entry(p, &tsk->ptrace_children, ptrace_list) {
1612 int ret = eligible_child(type, pid, options, p);
1613 if (unlikely(ret < 0))
1614 return ret;
1615 if (ret) {
1616 *notask_error = 0;
1617 return 0;
1618 }
1619 }
1620
1621 return 0;
1622 }
1623
1624 static long do_wait(enum pid_type type, struct pid *pid, int options,
1625 struct siginfo __user *infop, int __user *stat_addr,
1626 struct rusage __user *ru)
1627 {
1628 DECLARE_WAITQUEUE(wait, current);
1629 struct task_struct *tsk;
1630 int retval;
1631
1632 add_wait_queue(&current->signal->wait_chldexit,&wait);
1633 repeat:
1634 /*
1635 * If there is nothing that can match our critiera just get out.
1636 * We will clear @retval to zero if we see any child that might later
1637 * match our criteria, even if we are not able to reap it yet.
1638 */
1639 retval = -ECHILD;
1640 if ((type < PIDTYPE_MAX) && (!pid || hlist_empty(&pid->tasks[type])))
1641 goto end;
1642
1643 current->state = TASK_INTERRUPTIBLE;
1644 read_lock(&tasklist_lock);
1645 tsk = current;
1646 do {
1647 int tsk_result = do_wait_thread(tsk, &retval,
1648 type, pid, options,
1649 infop, stat_addr, ru);
1650 if (!tsk_result)
1651 tsk_result = ptrace_do_wait(tsk, &retval,
1652 type, pid, options,
1653 infop, stat_addr, ru);
1654 if (tsk_result) {
1655 /*
1656 * tasklist_lock is unlocked and we have a final result.
1657 */
1658 retval = tsk_result;
1659 goto end;
1660 }
1661
1662 if (options & __WNOTHREAD)
1663 break;
1664 tsk = next_thread(tsk);
1665 BUG_ON(tsk->signal != current->signal);
1666 } while (tsk != current);
1667 read_unlock(&tasklist_lock);
1668
1669 if (!retval && !(options & WNOHANG)) {
1670 retval = -ERESTARTSYS;
1671 if (!signal_pending(current)) {
1672 schedule();
1673 goto repeat;
1674 }
1675 }
1676
1677 end:
1678 current->state = TASK_RUNNING;
1679 remove_wait_queue(&current->signal->wait_chldexit,&wait);
1680 if (infop) {
1681 if (retval > 0)
1682 retval = 0;
1683 else {
1684 /*
1685 * For a WNOHANG return, clear out all the fields
1686 * we would set so the user can easily tell the
1687 * difference.
1688 */
1689 if (!retval)
1690 retval = put_user(0, &infop->si_signo);
1691 if (!retval)
1692 retval = put_user(0, &infop->si_errno);
1693 if (!retval)
1694 retval = put_user(0, &infop->si_code);
1695 if (!retval)
1696 retval = put_user(0, &infop->si_pid);
1697 if (!retval)
1698 retval = put_user(0, &infop->si_uid);
1699 if (!retval)
1700 retval = put_user(0, &infop->si_status);
1701 }
1702 }
1703 return retval;
1704 }
1705
1706 asmlinkage long sys_waitid(int which, pid_t upid,
1707 struct siginfo __user *infop, int options,
1708 struct rusage __user *ru)
1709 {
1710 struct pid *pid = NULL;
1711 enum pid_type type;
1712 long ret;
1713
1714 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED))
1715 return -EINVAL;
1716 if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1717 return -EINVAL;
1718
1719 switch (which) {
1720 case P_ALL:
1721 type = PIDTYPE_MAX;
1722 break;
1723 case P_PID:
1724 type = PIDTYPE_PID;
1725 if (upid <= 0)
1726 return -EINVAL;
1727 break;
1728 case P_PGID:
1729 type = PIDTYPE_PGID;
1730 if (upid <= 0)
1731 return -EINVAL;
1732 break;
1733 default:
1734 return -EINVAL;
1735 }
1736
1737 if (type < PIDTYPE_MAX)
1738 pid = find_get_pid(upid);
1739 ret = do_wait(type, pid, options, infop, NULL, ru);
1740 put_pid(pid);
1741
1742 /* avoid REGPARM breakage on x86: */
1743 asmlinkage_protect(5, ret, which, upid, infop, options, ru);
1744 return ret;
1745 }
1746
1747 asmlinkage long sys_wait4(pid_t upid, int __user *stat_addr,
1748 int options, struct rusage __user *ru)
1749 {
1750 struct pid *pid = NULL;
1751 enum pid_type type;
1752 long ret;
1753
1754 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1755 __WNOTHREAD|__WCLONE|__WALL))
1756 return -EINVAL;
1757
1758 if (upid == -1)
1759 type = PIDTYPE_MAX;
1760 else if (upid < 0) {
1761 type = PIDTYPE_PGID;
1762 pid = find_get_pid(-upid);
1763 } else if (upid == 0) {
1764 type = PIDTYPE_PGID;
1765 pid = get_pid(task_pgrp(current));
1766 } else /* upid > 0 */ {
1767 type = PIDTYPE_PID;
1768 pid = find_get_pid(upid);
1769 }
1770
1771 ret = do_wait(type, pid, options | WEXITED, NULL, stat_addr, ru);
1772 put_pid(pid);
1773
1774 /* avoid REGPARM breakage on x86: */
1775 asmlinkage_protect(4, ret, upid, stat_addr, options, ru);
1776 return ret;
1777 }
1778
1779 #ifdef __ARCH_WANT_SYS_WAITPID
1780
1781 /*
1782 * sys_waitpid() remains for compatibility. waitpid() should be
1783 * implemented by calling sys_wait4() from libc.a.
1784 */
1785 asmlinkage long sys_waitpid(pid_t pid, int __user *stat_addr, int options)
1786 {
1787 return sys_wait4(pid, stat_addr, options, NULL);
1788 }
1789
1790 #endif
This page took 0.078977 seconds and 6 git commands to generate.