Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jikos/apm
[deliverable/linux.git] / kernel / exit.c
1 /*
2 * linux/kernel/exit.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 #include <linux/mm.h>
8 #include <linux/slab.h>
9 #include <linux/interrupt.h>
10 #include <linux/module.h>
11 #include <linux/capability.h>
12 #include <linux/completion.h>
13 #include <linux/personality.h>
14 #include <linux/tty.h>
15 #include <linux/iocontext.h>
16 #include <linux/key.h>
17 #include <linux/security.h>
18 #include <linux/cpu.h>
19 #include <linux/acct.h>
20 #include <linux/tsacct_kern.h>
21 #include <linux/file.h>
22 #include <linux/fdtable.h>
23 #include <linux/binfmts.h>
24 #include <linux/nsproxy.h>
25 #include <linux/pid_namespace.h>
26 #include <linux/ptrace.h>
27 #include <linux/profile.h>
28 #include <linux/mount.h>
29 #include <linux/proc_fs.h>
30 #include <linux/kthread.h>
31 #include <linux/mempolicy.h>
32 #include <linux/taskstats_kern.h>
33 #include <linux/delayacct.h>
34 #include <linux/freezer.h>
35 #include <linux/cgroup.h>
36 #include <linux/syscalls.h>
37 #include <linux/signal.h>
38 #include <linux/posix-timers.h>
39 #include <linux/cn_proc.h>
40 #include <linux/mutex.h>
41 #include <linux/futex.h>
42 #include <linux/pipe_fs_i.h>
43 #include <linux/audit.h> /* for audit_free() */
44 #include <linux/resource.h>
45 #include <linux/blkdev.h>
46 #include <linux/task_io_accounting_ops.h>
47 #include <linux/tracehook.h>
48 #include <linux/fs_struct.h>
49 #include <linux/init_task.h>
50 #include <linux/perf_event.h>
51 #include <trace/events/sched.h>
52 #include <linux/hw_breakpoint.h>
53 #include <linux/oom.h>
54
55 #include <asm/uaccess.h>
56 #include <asm/unistd.h>
57 #include <asm/pgtable.h>
58 #include <asm/mmu_context.h>
59
60 static void exit_mm(struct task_struct * tsk);
61
62 static void __unhash_process(struct task_struct *p, bool group_dead)
63 {
64 nr_threads--;
65 detach_pid(p, PIDTYPE_PID);
66 if (group_dead) {
67 detach_pid(p, PIDTYPE_PGID);
68 detach_pid(p, PIDTYPE_SID);
69
70 list_del_rcu(&p->tasks);
71 list_del_init(&p->sibling);
72 __this_cpu_dec(process_counts);
73 }
74 list_del_rcu(&p->thread_group);
75 }
76
77 /*
78 * This function expects the tasklist_lock write-locked.
79 */
80 static void __exit_signal(struct task_struct *tsk)
81 {
82 struct signal_struct *sig = tsk->signal;
83 bool group_dead = thread_group_leader(tsk);
84 struct sighand_struct *sighand;
85 struct tty_struct *uninitialized_var(tty);
86
87 sighand = rcu_dereference_check(tsk->sighand,
88 lockdep_tasklist_lock_is_held());
89 spin_lock(&sighand->siglock);
90
91 posix_cpu_timers_exit(tsk);
92 if (group_dead) {
93 posix_cpu_timers_exit_group(tsk);
94 tty = sig->tty;
95 sig->tty = NULL;
96 } else {
97 /*
98 * This can only happen if the caller is de_thread().
99 * FIXME: this is the temporary hack, we should teach
100 * posix-cpu-timers to handle this case correctly.
101 */
102 if (unlikely(has_group_leader_pid(tsk)))
103 posix_cpu_timers_exit_group(tsk);
104
105 /*
106 * If there is any task waiting for the group exit
107 * then notify it:
108 */
109 if (sig->notify_count > 0 && !--sig->notify_count)
110 wake_up_process(sig->group_exit_task);
111
112 if (tsk == sig->curr_target)
113 sig->curr_target = next_thread(tsk);
114 /*
115 * Accumulate here the counters for all threads but the
116 * group leader as they die, so they can be added into
117 * the process-wide totals when those are taken.
118 * The group leader stays around as a zombie as long
119 * as there are other threads. When it gets reaped,
120 * the exit.c code will add its counts into these totals.
121 * We won't ever get here for the group leader, since it
122 * will have been the last reference on the signal_struct.
123 */
124 sig->utime += tsk->utime;
125 sig->stime += tsk->stime;
126 sig->gtime += tsk->gtime;
127 sig->min_flt += tsk->min_flt;
128 sig->maj_flt += tsk->maj_flt;
129 sig->nvcsw += tsk->nvcsw;
130 sig->nivcsw += tsk->nivcsw;
131 sig->inblock += task_io_get_inblock(tsk);
132 sig->oublock += task_io_get_oublock(tsk);
133 task_io_accounting_add(&sig->ioac, &tsk->ioac);
134 sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
135 }
136
137 sig->nr_threads--;
138 __unhash_process(tsk, group_dead);
139
140 /*
141 * Do this under ->siglock, we can race with another thread
142 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
143 */
144 flush_sigqueue(&tsk->pending);
145 tsk->sighand = NULL;
146 spin_unlock(&sighand->siglock);
147
148 __cleanup_sighand(sighand);
149 clear_tsk_thread_flag(tsk,TIF_SIGPENDING);
150 if (group_dead) {
151 flush_sigqueue(&sig->shared_pending);
152 tty_kref_put(tty);
153 }
154 }
155
156 static void delayed_put_task_struct(struct rcu_head *rhp)
157 {
158 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
159
160 perf_event_delayed_put(tsk);
161 trace_sched_process_free(tsk);
162 put_task_struct(tsk);
163 }
164
165
166 void release_task(struct task_struct * p)
167 {
168 struct task_struct *leader;
169 int zap_leader;
170 repeat:
171 /* don't need to get the RCU readlock here - the process is dead and
172 * can't be modifying its own credentials. But shut RCU-lockdep up */
173 rcu_read_lock();
174 atomic_dec(&__task_cred(p)->user->processes);
175 rcu_read_unlock();
176
177 proc_flush_task(p);
178
179 write_lock_irq(&tasklist_lock);
180 ptrace_release_task(p);
181 __exit_signal(p);
182
183 /*
184 * If we are the last non-leader member of the thread
185 * group, and the leader is zombie, then notify the
186 * group leader's parent process. (if it wants notification.)
187 */
188 zap_leader = 0;
189 leader = p->group_leader;
190 if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) {
191 /*
192 * If we were the last child thread and the leader has
193 * exited already, and the leader's parent ignores SIGCHLD,
194 * then we are the one who should release the leader.
195 */
196 zap_leader = do_notify_parent(leader, leader->exit_signal);
197 if (zap_leader)
198 leader->exit_state = EXIT_DEAD;
199 }
200
201 write_unlock_irq(&tasklist_lock);
202 release_thread(p);
203 call_rcu(&p->rcu, delayed_put_task_struct);
204
205 p = leader;
206 if (unlikely(zap_leader))
207 goto repeat;
208 }
209
210 /*
211 * This checks not only the pgrp, but falls back on the pid if no
212 * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
213 * without this...
214 *
215 * The caller must hold rcu lock or the tasklist lock.
216 */
217 struct pid *session_of_pgrp(struct pid *pgrp)
218 {
219 struct task_struct *p;
220 struct pid *sid = NULL;
221
222 p = pid_task(pgrp, PIDTYPE_PGID);
223 if (p == NULL)
224 p = pid_task(pgrp, PIDTYPE_PID);
225 if (p != NULL)
226 sid = task_session(p);
227
228 return sid;
229 }
230
231 /*
232 * Determine if a process group is "orphaned", according to the POSIX
233 * definition in 2.2.2.52. Orphaned process groups are not to be affected
234 * by terminal-generated stop signals. Newly orphaned process groups are
235 * to receive a SIGHUP and a SIGCONT.
236 *
237 * "I ask you, have you ever known what it is to be an orphan?"
238 */
239 static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task)
240 {
241 struct task_struct *p;
242
243 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
244 if ((p == ignored_task) ||
245 (p->exit_state && thread_group_empty(p)) ||
246 is_global_init(p->real_parent))
247 continue;
248
249 if (task_pgrp(p->real_parent) != pgrp &&
250 task_session(p->real_parent) == task_session(p))
251 return 0;
252 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
253
254 return 1;
255 }
256
257 int is_current_pgrp_orphaned(void)
258 {
259 int retval;
260
261 read_lock(&tasklist_lock);
262 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
263 read_unlock(&tasklist_lock);
264
265 return retval;
266 }
267
268 static bool has_stopped_jobs(struct pid *pgrp)
269 {
270 struct task_struct *p;
271
272 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
273 if (p->signal->flags & SIGNAL_STOP_STOPPED)
274 return true;
275 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
276
277 return false;
278 }
279
280 /*
281 * Check to see if any process groups have become orphaned as
282 * a result of our exiting, and if they have any stopped jobs,
283 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
284 */
285 static void
286 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
287 {
288 struct pid *pgrp = task_pgrp(tsk);
289 struct task_struct *ignored_task = tsk;
290
291 if (!parent)
292 /* exit: our father is in a different pgrp than
293 * we are and we were the only connection outside.
294 */
295 parent = tsk->real_parent;
296 else
297 /* reparent: our child is in a different pgrp than
298 * we are, and it was the only connection outside.
299 */
300 ignored_task = NULL;
301
302 if (task_pgrp(parent) != pgrp &&
303 task_session(parent) == task_session(tsk) &&
304 will_become_orphaned_pgrp(pgrp, ignored_task) &&
305 has_stopped_jobs(pgrp)) {
306 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
307 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
308 }
309 }
310
311 /**
312 * reparent_to_kthreadd - Reparent the calling kernel thread to kthreadd
313 *
314 * If a kernel thread is launched as a result of a system call, or if
315 * it ever exits, it should generally reparent itself to kthreadd so it
316 * isn't in the way of other processes and is correctly cleaned up on exit.
317 *
318 * The various task state such as scheduling policy and priority may have
319 * been inherited from a user process, so we reset them to sane values here.
320 *
321 * NOTE that reparent_to_kthreadd() gives the caller full capabilities.
322 */
323 static void reparent_to_kthreadd(void)
324 {
325 write_lock_irq(&tasklist_lock);
326
327 ptrace_unlink(current);
328 /* Reparent to init */
329 current->real_parent = current->parent = kthreadd_task;
330 list_move_tail(&current->sibling, &current->real_parent->children);
331
332 /* Set the exit signal to SIGCHLD so we signal init on exit */
333 current->exit_signal = SIGCHLD;
334
335 if (task_nice(current) < 0)
336 set_user_nice(current, 0);
337 /* cpus_allowed? */
338 /* rt_priority? */
339 /* signals? */
340 memcpy(current->signal->rlim, init_task.signal->rlim,
341 sizeof(current->signal->rlim));
342
343 atomic_inc(&init_cred.usage);
344 commit_creds(&init_cred);
345 write_unlock_irq(&tasklist_lock);
346 }
347
348 void __set_special_pids(struct pid *pid)
349 {
350 struct task_struct *curr = current->group_leader;
351
352 if (task_session(curr) != pid)
353 change_pid(curr, PIDTYPE_SID, pid);
354
355 if (task_pgrp(curr) != pid)
356 change_pid(curr, PIDTYPE_PGID, pid);
357 }
358
359 static void set_special_pids(struct pid *pid)
360 {
361 write_lock_irq(&tasklist_lock);
362 __set_special_pids(pid);
363 write_unlock_irq(&tasklist_lock);
364 }
365
366 /*
367 * Let kernel threads use this to say that they allow a certain signal.
368 * Must not be used if kthread was cloned with CLONE_SIGHAND.
369 */
370 int allow_signal(int sig)
371 {
372 if (!valid_signal(sig) || sig < 1)
373 return -EINVAL;
374
375 spin_lock_irq(&current->sighand->siglock);
376 /* This is only needed for daemonize()'ed kthreads */
377 sigdelset(&current->blocked, sig);
378 /*
379 * Kernel threads handle their own signals. Let the signal code
380 * know it'll be handled, so that they don't get converted to
381 * SIGKILL or just silently dropped.
382 */
383 current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2;
384 recalc_sigpending();
385 spin_unlock_irq(&current->sighand->siglock);
386 return 0;
387 }
388
389 EXPORT_SYMBOL(allow_signal);
390
391 int disallow_signal(int sig)
392 {
393 if (!valid_signal(sig) || sig < 1)
394 return -EINVAL;
395
396 spin_lock_irq(&current->sighand->siglock);
397 current->sighand->action[(sig)-1].sa.sa_handler = SIG_IGN;
398 recalc_sigpending();
399 spin_unlock_irq(&current->sighand->siglock);
400 return 0;
401 }
402
403 EXPORT_SYMBOL(disallow_signal);
404
405 /*
406 * Put all the gunge required to become a kernel thread without
407 * attached user resources in one place where it belongs.
408 */
409
410 void daemonize(const char *name, ...)
411 {
412 va_list args;
413 sigset_t blocked;
414
415 va_start(args, name);
416 vsnprintf(current->comm, sizeof(current->comm), name, args);
417 va_end(args);
418
419 /*
420 * If we were started as result of loading a module, close all of the
421 * user space pages. We don't need them, and if we didn't close them
422 * they would be locked into memory.
423 */
424 exit_mm(current);
425 /*
426 * We don't want to have TIF_FREEZE set if the system-wide hibernation
427 * or suspend transition begins right now.
428 */
429 current->flags |= (PF_NOFREEZE | PF_KTHREAD);
430
431 if (current->nsproxy != &init_nsproxy) {
432 get_nsproxy(&init_nsproxy);
433 switch_task_namespaces(current, &init_nsproxy);
434 }
435 set_special_pids(&init_struct_pid);
436 proc_clear_tty(current);
437
438 /* Block and flush all signals */
439 sigfillset(&blocked);
440 sigprocmask(SIG_BLOCK, &blocked, NULL);
441 flush_signals(current);
442
443 /* Become as one with the init task */
444
445 daemonize_fs_struct();
446 exit_files(current);
447 current->files = init_task.files;
448 atomic_inc(&current->files->count);
449
450 reparent_to_kthreadd();
451 }
452
453 EXPORT_SYMBOL(daemonize);
454
455 static void close_files(struct files_struct * files)
456 {
457 int i, j;
458 struct fdtable *fdt;
459
460 j = 0;
461
462 /*
463 * It is safe to dereference the fd table without RCU or
464 * ->file_lock because this is the last reference to the
465 * files structure. But use RCU to shut RCU-lockdep up.
466 */
467 rcu_read_lock();
468 fdt = files_fdtable(files);
469 rcu_read_unlock();
470 for (;;) {
471 unsigned long set;
472 i = j * __NFDBITS;
473 if (i >= fdt->max_fds)
474 break;
475 set = fdt->open_fds->fds_bits[j++];
476 while (set) {
477 if (set & 1) {
478 struct file * file = xchg(&fdt->fd[i], NULL);
479 if (file) {
480 filp_close(file, files);
481 cond_resched();
482 }
483 }
484 i++;
485 set >>= 1;
486 }
487 }
488 }
489
490 struct files_struct *get_files_struct(struct task_struct *task)
491 {
492 struct files_struct *files;
493
494 task_lock(task);
495 files = task->files;
496 if (files)
497 atomic_inc(&files->count);
498 task_unlock(task);
499
500 return files;
501 }
502
503 void put_files_struct(struct files_struct *files)
504 {
505 struct fdtable *fdt;
506
507 if (atomic_dec_and_test(&files->count)) {
508 close_files(files);
509 /*
510 * Free the fd and fdset arrays if we expanded them.
511 * If the fdtable was embedded, pass files for freeing
512 * at the end of the RCU grace period. Otherwise,
513 * you can free files immediately.
514 */
515 rcu_read_lock();
516 fdt = files_fdtable(files);
517 if (fdt != &files->fdtab)
518 kmem_cache_free(files_cachep, files);
519 free_fdtable(fdt);
520 rcu_read_unlock();
521 }
522 }
523
524 void reset_files_struct(struct files_struct *files)
525 {
526 struct task_struct *tsk = current;
527 struct files_struct *old;
528
529 old = tsk->files;
530 task_lock(tsk);
531 tsk->files = files;
532 task_unlock(tsk);
533 put_files_struct(old);
534 }
535
536 void exit_files(struct task_struct *tsk)
537 {
538 struct files_struct * files = tsk->files;
539
540 if (files) {
541 task_lock(tsk);
542 tsk->files = NULL;
543 task_unlock(tsk);
544 put_files_struct(files);
545 }
546 }
547
548 #ifdef CONFIG_MM_OWNER
549 /*
550 * A task is exiting. If it owned this mm, find a new owner for the mm.
551 */
552 void mm_update_next_owner(struct mm_struct *mm)
553 {
554 struct task_struct *c, *g, *p = current;
555
556 retry:
557 /*
558 * If the exiting or execing task is not the owner, it's
559 * someone else's problem.
560 */
561 if (mm->owner != p)
562 return;
563 /*
564 * The current owner is exiting/execing and there are no other
565 * candidates. Do not leave the mm pointing to a possibly
566 * freed task structure.
567 */
568 if (atomic_read(&mm->mm_users) <= 1) {
569 mm->owner = NULL;
570 return;
571 }
572
573 read_lock(&tasklist_lock);
574 /*
575 * Search in the children
576 */
577 list_for_each_entry(c, &p->children, sibling) {
578 if (c->mm == mm)
579 goto assign_new_owner;
580 }
581
582 /*
583 * Search in the siblings
584 */
585 list_for_each_entry(c, &p->real_parent->children, sibling) {
586 if (c->mm == mm)
587 goto assign_new_owner;
588 }
589
590 /*
591 * Search through everything else. We should not get
592 * here often
593 */
594 do_each_thread(g, c) {
595 if (c->mm == mm)
596 goto assign_new_owner;
597 } while_each_thread(g, c);
598
599 read_unlock(&tasklist_lock);
600 /*
601 * We found no owner yet mm_users > 1: this implies that we are
602 * most likely racing with swapoff (try_to_unuse()) or /proc or
603 * ptrace or page migration (get_task_mm()). Mark owner as NULL.
604 */
605 mm->owner = NULL;
606 return;
607
608 assign_new_owner:
609 BUG_ON(c == p);
610 get_task_struct(c);
611 /*
612 * The task_lock protects c->mm from changing.
613 * We always want mm->owner->mm == mm
614 */
615 task_lock(c);
616 /*
617 * Delay read_unlock() till we have the task_lock()
618 * to ensure that c does not slip away underneath us
619 */
620 read_unlock(&tasklist_lock);
621 if (c->mm != mm) {
622 task_unlock(c);
623 put_task_struct(c);
624 goto retry;
625 }
626 mm->owner = c;
627 task_unlock(c);
628 put_task_struct(c);
629 }
630 #endif /* CONFIG_MM_OWNER */
631
632 /*
633 * Turn us into a lazy TLB process if we
634 * aren't already..
635 */
636 static void exit_mm(struct task_struct * tsk)
637 {
638 struct mm_struct *mm = tsk->mm;
639 struct core_state *core_state;
640
641 mm_release(tsk, mm);
642 if (!mm)
643 return;
644 /*
645 * Serialize with any possible pending coredump.
646 * We must hold mmap_sem around checking core_state
647 * and clearing tsk->mm. The core-inducing thread
648 * will increment ->nr_threads for each thread in the
649 * group with ->mm != NULL.
650 */
651 down_read(&mm->mmap_sem);
652 core_state = mm->core_state;
653 if (core_state) {
654 struct core_thread self;
655 up_read(&mm->mmap_sem);
656
657 self.task = tsk;
658 self.next = xchg(&core_state->dumper.next, &self);
659 /*
660 * Implies mb(), the result of xchg() must be visible
661 * to core_state->dumper.
662 */
663 if (atomic_dec_and_test(&core_state->nr_threads))
664 complete(&core_state->startup);
665
666 for (;;) {
667 set_task_state(tsk, TASK_UNINTERRUPTIBLE);
668 if (!self.task) /* see coredump_finish() */
669 break;
670 schedule();
671 }
672 __set_task_state(tsk, TASK_RUNNING);
673 down_read(&mm->mmap_sem);
674 }
675 atomic_inc(&mm->mm_count);
676 BUG_ON(mm != tsk->active_mm);
677 /* more a memory barrier than a real lock */
678 task_lock(tsk);
679 tsk->mm = NULL;
680 up_read(&mm->mmap_sem);
681 enter_lazy_tlb(mm, current);
682 task_unlock(tsk);
683 mm_update_next_owner(mm);
684 mmput(mm);
685 }
686
687 /*
688 * When we die, we re-parent all our children.
689 * Try to give them to another thread in our thread
690 * group, and if no such member exists, give it to
691 * the child reaper process (ie "init") in our pid
692 * space.
693 */
694 static struct task_struct *find_new_reaper(struct task_struct *father)
695 __releases(&tasklist_lock)
696 __acquires(&tasklist_lock)
697 {
698 struct pid_namespace *pid_ns = task_active_pid_ns(father);
699 struct task_struct *thread;
700
701 thread = father;
702 while_each_thread(father, thread) {
703 if (thread->flags & PF_EXITING)
704 continue;
705 if (unlikely(pid_ns->child_reaper == father))
706 pid_ns->child_reaper = thread;
707 return thread;
708 }
709
710 if (unlikely(pid_ns->child_reaper == father)) {
711 write_unlock_irq(&tasklist_lock);
712 if (unlikely(pid_ns == &init_pid_ns))
713 panic("Attempted to kill init!");
714
715 zap_pid_ns_processes(pid_ns);
716 write_lock_irq(&tasklist_lock);
717 /*
718 * We can not clear ->child_reaper or leave it alone.
719 * There may by stealth EXIT_DEAD tasks on ->children,
720 * forget_original_parent() must move them somewhere.
721 */
722 pid_ns->child_reaper = init_pid_ns.child_reaper;
723 }
724
725 return pid_ns->child_reaper;
726 }
727
728 /*
729 * Any that need to be release_task'd are put on the @dead list.
730 */
731 static void reparent_leader(struct task_struct *father, struct task_struct *p,
732 struct list_head *dead)
733 {
734 list_move_tail(&p->sibling, &p->real_parent->children);
735
736 if (p->exit_state == EXIT_DEAD)
737 return;
738 /*
739 * If this is a threaded reparent there is no need to
740 * notify anyone anything has happened.
741 */
742 if (same_thread_group(p->real_parent, father))
743 return;
744
745 /* We don't want people slaying init. */
746 p->exit_signal = SIGCHLD;
747
748 /* If it has exited notify the new parent about this child's death. */
749 if (!p->ptrace &&
750 p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
751 if (do_notify_parent(p, p->exit_signal)) {
752 p->exit_state = EXIT_DEAD;
753 list_move_tail(&p->sibling, dead);
754 }
755 }
756
757 kill_orphaned_pgrp(p, father);
758 }
759
760 static void forget_original_parent(struct task_struct *father)
761 {
762 struct task_struct *p, *n, *reaper;
763 LIST_HEAD(dead_children);
764
765 write_lock_irq(&tasklist_lock);
766 /*
767 * Note that exit_ptrace() and find_new_reaper() might
768 * drop tasklist_lock and reacquire it.
769 */
770 exit_ptrace(father);
771 reaper = find_new_reaper(father);
772
773 list_for_each_entry_safe(p, n, &father->children, sibling) {
774 struct task_struct *t = p;
775 do {
776 t->real_parent = reaper;
777 if (t->parent == father) {
778 BUG_ON(t->ptrace);
779 t->parent = t->real_parent;
780 }
781 if (t->pdeath_signal)
782 group_send_sig_info(t->pdeath_signal,
783 SEND_SIG_NOINFO, t);
784 } while_each_thread(p, t);
785 reparent_leader(father, p, &dead_children);
786 }
787 write_unlock_irq(&tasklist_lock);
788
789 BUG_ON(!list_empty(&father->children));
790
791 list_for_each_entry_safe(p, n, &dead_children, sibling) {
792 list_del_init(&p->sibling);
793 release_task(p);
794 }
795 }
796
797 /*
798 * Send signals to all our closest relatives so that they know
799 * to properly mourn us..
800 */
801 static void exit_notify(struct task_struct *tsk, int group_dead)
802 {
803 bool autoreap;
804
805 /*
806 * This does two things:
807 *
808 * A. Make init inherit all the child processes
809 * B. Check to see if any process groups have become orphaned
810 * as a result of our exiting, and if they have any stopped
811 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
812 */
813 forget_original_parent(tsk);
814 exit_task_namespaces(tsk);
815
816 write_lock_irq(&tasklist_lock);
817 if (group_dead)
818 kill_orphaned_pgrp(tsk->group_leader, NULL);
819
820 /* Let father know we died
821 *
822 * Thread signals are configurable, but you aren't going to use
823 * that to send signals to arbitrary processes.
824 * That stops right now.
825 *
826 * If the parent exec id doesn't match the exec id we saved
827 * when we started then we know the parent has changed security
828 * domain.
829 *
830 * If our self_exec id doesn't match our parent_exec_id then
831 * we have changed execution domain as these two values started
832 * the same after a fork.
833 */
834 if (thread_group_leader(tsk) && tsk->exit_signal != SIGCHLD &&
835 (tsk->parent_exec_id != tsk->real_parent->self_exec_id ||
836 tsk->self_exec_id != tsk->parent_exec_id))
837 tsk->exit_signal = SIGCHLD;
838
839 if (unlikely(tsk->ptrace)) {
840 int sig = thread_group_leader(tsk) &&
841 thread_group_empty(tsk) &&
842 !ptrace_reparented(tsk) ?
843 tsk->exit_signal : SIGCHLD;
844 autoreap = do_notify_parent(tsk, sig);
845 } else if (thread_group_leader(tsk)) {
846 autoreap = thread_group_empty(tsk) &&
847 do_notify_parent(tsk, tsk->exit_signal);
848 } else {
849 autoreap = true;
850 }
851
852 tsk->exit_state = autoreap ? EXIT_DEAD : EXIT_ZOMBIE;
853
854 /* mt-exec, de_thread() is waiting for group leader */
855 if (unlikely(tsk->signal->notify_count < 0))
856 wake_up_process(tsk->signal->group_exit_task);
857 write_unlock_irq(&tasklist_lock);
858
859 /* If the process is dead, release it - nobody will wait for it */
860 if (autoreap)
861 release_task(tsk);
862 }
863
864 #ifdef CONFIG_DEBUG_STACK_USAGE
865 static void check_stack_usage(void)
866 {
867 static DEFINE_SPINLOCK(low_water_lock);
868 static int lowest_to_date = THREAD_SIZE;
869 unsigned long free;
870
871 free = stack_not_used(current);
872
873 if (free >= lowest_to_date)
874 return;
875
876 spin_lock(&low_water_lock);
877 if (free < lowest_to_date) {
878 printk(KERN_WARNING "%s used greatest stack depth: %lu bytes "
879 "left\n",
880 current->comm, free);
881 lowest_to_date = free;
882 }
883 spin_unlock(&low_water_lock);
884 }
885 #else
886 static inline void check_stack_usage(void) {}
887 #endif
888
889 NORET_TYPE void do_exit(long code)
890 {
891 struct task_struct *tsk = current;
892 int group_dead;
893
894 profile_task_exit(tsk);
895
896 WARN_ON(blk_needs_flush_plug(tsk));
897
898 if (unlikely(in_interrupt()))
899 panic("Aiee, killing interrupt handler!");
900 if (unlikely(!tsk->pid))
901 panic("Attempted to kill the idle task!");
902
903 /*
904 * If do_exit is called because this processes oopsed, it's possible
905 * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before
906 * continuing. Amongst other possible reasons, this is to prevent
907 * mm_release()->clear_child_tid() from writing to a user-controlled
908 * kernel address.
909 */
910 set_fs(USER_DS);
911
912 ptrace_event(PTRACE_EVENT_EXIT, code);
913
914 validate_creds_for_do_exit(tsk);
915
916 /*
917 * We're taking recursive faults here in do_exit. Safest is to just
918 * leave this task alone and wait for reboot.
919 */
920 if (unlikely(tsk->flags & PF_EXITING)) {
921 printk(KERN_ALERT
922 "Fixing recursive fault but reboot is needed!\n");
923 /*
924 * We can do this unlocked here. The futex code uses
925 * this flag just to verify whether the pi state
926 * cleanup has been done or not. In the worst case it
927 * loops once more. We pretend that the cleanup was
928 * done as there is no way to return. Either the
929 * OWNER_DIED bit is set by now or we push the blocked
930 * task into the wait for ever nirwana as well.
931 */
932 tsk->flags |= PF_EXITPIDONE;
933 set_current_state(TASK_UNINTERRUPTIBLE);
934 schedule();
935 }
936
937 exit_irq_thread();
938
939 exit_signals(tsk); /* sets PF_EXITING */
940 /*
941 * tsk->flags are checked in the futex code to protect against
942 * an exiting task cleaning up the robust pi futexes.
943 */
944 smp_mb();
945 raw_spin_unlock_wait(&tsk->pi_lock);
946
947 if (unlikely(in_atomic()))
948 printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n",
949 current->comm, task_pid_nr(current),
950 preempt_count());
951
952 acct_update_integrals(tsk);
953 /* sync mm's RSS info before statistics gathering */
954 if (tsk->mm)
955 sync_mm_rss(tsk, tsk->mm);
956 group_dead = atomic_dec_and_test(&tsk->signal->live);
957 if (group_dead) {
958 hrtimer_cancel(&tsk->signal->real_timer);
959 exit_itimers(tsk->signal);
960 if (tsk->mm)
961 setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
962 }
963 acct_collect(code, group_dead);
964 if (group_dead)
965 tty_audit_exit();
966 if (unlikely(tsk->audit_context))
967 audit_free(tsk);
968
969 tsk->exit_code = code;
970 taskstats_exit(tsk, group_dead);
971
972 exit_mm(tsk);
973
974 if (group_dead)
975 acct_process();
976 trace_sched_process_exit(tsk);
977
978 exit_sem(tsk);
979 exit_shm(tsk);
980 exit_files(tsk);
981 exit_fs(tsk);
982 check_stack_usage();
983 exit_thread();
984
985 /*
986 * Flush inherited counters to the parent - before the parent
987 * gets woken up by child-exit notifications.
988 *
989 * because of cgroup mode, must be called before cgroup_exit()
990 */
991 perf_event_exit_task(tsk);
992
993 cgroup_exit(tsk, 1);
994
995 if (group_dead)
996 disassociate_ctty(1);
997
998 module_put(task_thread_info(tsk)->exec_domain->module);
999
1000 proc_exit_connector(tsk);
1001
1002 /*
1003 * FIXME: do that only when needed, using sched_exit tracepoint
1004 */
1005 ptrace_put_breakpoints(tsk);
1006
1007 exit_notify(tsk, group_dead);
1008 #ifdef CONFIG_NUMA
1009 task_lock(tsk);
1010 mpol_put(tsk->mempolicy);
1011 tsk->mempolicy = NULL;
1012 task_unlock(tsk);
1013 #endif
1014 #ifdef CONFIG_FUTEX
1015 if (unlikely(current->pi_state_cache))
1016 kfree(current->pi_state_cache);
1017 #endif
1018 /*
1019 * Make sure we are holding no locks:
1020 */
1021 debug_check_no_locks_held(tsk);
1022 /*
1023 * We can do this unlocked here. The futex code uses this flag
1024 * just to verify whether the pi state cleanup has been done
1025 * or not. In the worst case it loops once more.
1026 */
1027 tsk->flags |= PF_EXITPIDONE;
1028
1029 if (tsk->io_context)
1030 exit_io_context(tsk);
1031
1032 if (tsk->splice_pipe)
1033 __free_pipe_info(tsk->splice_pipe);
1034
1035 validate_creds_for_do_exit(tsk);
1036
1037 preempt_disable();
1038 exit_rcu();
1039 /* causes final put_task_struct in finish_task_switch(). */
1040 tsk->state = TASK_DEAD;
1041 tsk->flags |= PF_NOFREEZE; /* tell freezer to ignore us */
1042 schedule();
1043 BUG();
1044 /* Avoid "noreturn function does return". */
1045 for (;;)
1046 cpu_relax(); /* For when BUG is null */
1047 }
1048
1049 EXPORT_SYMBOL_GPL(do_exit);
1050
1051 NORET_TYPE void complete_and_exit(struct completion *comp, long code)
1052 {
1053 if (comp)
1054 complete(comp);
1055
1056 do_exit(code);
1057 }
1058
1059 EXPORT_SYMBOL(complete_and_exit);
1060
1061 SYSCALL_DEFINE1(exit, int, error_code)
1062 {
1063 do_exit((error_code&0xff)<<8);
1064 }
1065
1066 /*
1067 * Take down every thread in the group. This is called by fatal signals
1068 * as well as by sys_exit_group (below).
1069 */
1070 NORET_TYPE void
1071 do_group_exit(int exit_code)
1072 {
1073 struct signal_struct *sig = current->signal;
1074
1075 BUG_ON(exit_code & 0x80); /* core dumps don't get here */
1076
1077 if (signal_group_exit(sig))
1078 exit_code = sig->group_exit_code;
1079 else if (!thread_group_empty(current)) {
1080 struct sighand_struct *const sighand = current->sighand;
1081 spin_lock_irq(&sighand->siglock);
1082 if (signal_group_exit(sig))
1083 /* Another thread got here before we took the lock. */
1084 exit_code = sig->group_exit_code;
1085 else {
1086 sig->group_exit_code = exit_code;
1087 sig->flags = SIGNAL_GROUP_EXIT;
1088 zap_other_threads(current);
1089 }
1090 spin_unlock_irq(&sighand->siglock);
1091 }
1092
1093 do_exit(exit_code);
1094 /* NOTREACHED */
1095 }
1096
1097 /*
1098 * this kills every thread in the thread group. Note that any externally
1099 * wait4()-ing process will get the correct exit code - even if this
1100 * thread is not the thread group leader.
1101 */
1102 SYSCALL_DEFINE1(exit_group, int, error_code)
1103 {
1104 do_group_exit((error_code & 0xff) << 8);
1105 /* NOTREACHED */
1106 return 0;
1107 }
1108
1109 struct wait_opts {
1110 enum pid_type wo_type;
1111 int wo_flags;
1112 struct pid *wo_pid;
1113
1114 struct siginfo __user *wo_info;
1115 int __user *wo_stat;
1116 struct rusage __user *wo_rusage;
1117
1118 wait_queue_t child_wait;
1119 int notask_error;
1120 };
1121
1122 static inline
1123 struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
1124 {
1125 if (type != PIDTYPE_PID)
1126 task = task->group_leader;
1127 return task->pids[type].pid;
1128 }
1129
1130 static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
1131 {
1132 return wo->wo_type == PIDTYPE_MAX ||
1133 task_pid_type(p, wo->wo_type) == wo->wo_pid;
1134 }
1135
1136 static int eligible_child(struct wait_opts *wo, struct task_struct *p)
1137 {
1138 if (!eligible_pid(wo, p))
1139 return 0;
1140 /* Wait for all children (clone and not) if __WALL is set;
1141 * otherwise, wait for clone children *only* if __WCLONE is
1142 * set; otherwise, wait for non-clone children *only*. (Note:
1143 * A "clone" child here is one that reports to its parent
1144 * using a signal other than SIGCHLD.) */
1145 if (((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
1146 && !(wo->wo_flags & __WALL))
1147 return 0;
1148
1149 return 1;
1150 }
1151
1152 static int wait_noreap_copyout(struct wait_opts *wo, struct task_struct *p,
1153 pid_t pid, uid_t uid, int why, int status)
1154 {
1155 struct siginfo __user *infop;
1156 int retval = wo->wo_rusage
1157 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1158
1159 put_task_struct(p);
1160 infop = wo->wo_info;
1161 if (infop) {
1162 if (!retval)
1163 retval = put_user(SIGCHLD, &infop->si_signo);
1164 if (!retval)
1165 retval = put_user(0, &infop->si_errno);
1166 if (!retval)
1167 retval = put_user((short)why, &infop->si_code);
1168 if (!retval)
1169 retval = put_user(pid, &infop->si_pid);
1170 if (!retval)
1171 retval = put_user(uid, &infop->si_uid);
1172 if (!retval)
1173 retval = put_user(status, &infop->si_status);
1174 }
1175 if (!retval)
1176 retval = pid;
1177 return retval;
1178 }
1179
1180 /*
1181 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold
1182 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1183 * the lock and this task is uninteresting. If we return nonzero, we have
1184 * released the lock and the system call should return.
1185 */
1186 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
1187 {
1188 unsigned long state;
1189 int retval, status, traced;
1190 pid_t pid = task_pid_vnr(p);
1191 uid_t uid = __task_cred(p)->uid;
1192 struct siginfo __user *infop;
1193
1194 if (!likely(wo->wo_flags & WEXITED))
1195 return 0;
1196
1197 if (unlikely(wo->wo_flags & WNOWAIT)) {
1198 int exit_code = p->exit_code;
1199 int why;
1200
1201 get_task_struct(p);
1202 read_unlock(&tasklist_lock);
1203 if ((exit_code & 0x7f) == 0) {
1204 why = CLD_EXITED;
1205 status = exit_code >> 8;
1206 } else {
1207 why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
1208 status = exit_code & 0x7f;
1209 }
1210 return wait_noreap_copyout(wo, p, pid, uid, why, status);
1211 }
1212
1213 /*
1214 * Try to move the task's state to DEAD
1215 * only one thread is allowed to do this:
1216 */
1217 state = xchg(&p->exit_state, EXIT_DEAD);
1218 if (state != EXIT_ZOMBIE) {
1219 BUG_ON(state != EXIT_DEAD);
1220 return 0;
1221 }
1222
1223 traced = ptrace_reparented(p);
1224 /*
1225 * It can be ptraced but not reparented, check
1226 * thread_group_leader() to filter out sub-threads.
1227 */
1228 if (likely(!traced) && thread_group_leader(p)) {
1229 struct signal_struct *psig;
1230 struct signal_struct *sig;
1231 unsigned long maxrss;
1232 cputime_t tgutime, tgstime;
1233
1234 /*
1235 * The resource counters for the group leader are in its
1236 * own task_struct. Those for dead threads in the group
1237 * are in its signal_struct, as are those for the child
1238 * processes it has previously reaped. All these
1239 * accumulate in the parent's signal_struct c* fields.
1240 *
1241 * We don't bother to take a lock here to protect these
1242 * p->signal fields, because they are only touched by
1243 * __exit_signal, which runs with tasklist_lock
1244 * write-locked anyway, and so is excluded here. We do
1245 * need to protect the access to parent->signal fields,
1246 * as other threads in the parent group can be right
1247 * here reaping other children at the same time.
1248 *
1249 * We use thread_group_times() to get times for the thread
1250 * group, which consolidates times for all threads in the
1251 * group including the group leader.
1252 */
1253 thread_group_times(p, &tgutime, &tgstime);
1254 spin_lock_irq(&p->real_parent->sighand->siglock);
1255 psig = p->real_parent->signal;
1256 sig = p->signal;
1257 psig->cutime += tgutime + sig->cutime;
1258 psig->cstime += tgstime + sig->cstime;
1259 psig->cgtime += p->gtime + sig->gtime + sig->cgtime;
1260 psig->cmin_flt +=
1261 p->min_flt + sig->min_flt + sig->cmin_flt;
1262 psig->cmaj_flt +=
1263 p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1264 psig->cnvcsw +=
1265 p->nvcsw + sig->nvcsw + sig->cnvcsw;
1266 psig->cnivcsw +=
1267 p->nivcsw + sig->nivcsw + sig->cnivcsw;
1268 psig->cinblock +=
1269 task_io_get_inblock(p) +
1270 sig->inblock + sig->cinblock;
1271 psig->coublock +=
1272 task_io_get_oublock(p) +
1273 sig->oublock + sig->coublock;
1274 maxrss = max(sig->maxrss, sig->cmaxrss);
1275 if (psig->cmaxrss < maxrss)
1276 psig->cmaxrss = maxrss;
1277 task_io_accounting_add(&psig->ioac, &p->ioac);
1278 task_io_accounting_add(&psig->ioac, &sig->ioac);
1279 spin_unlock_irq(&p->real_parent->sighand->siglock);
1280 }
1281
1282 /*
1283 * Now we are sure this task is interesting, and no other
1284 * thread can reap it because we set its state to EXIT_DEAD.
1285 */
1286 read_unlock(&tasklist_lock);
1287
1288 retval = wo->wo_rusage
1289 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1290 status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1291 ? p->signal->group_exit_code : p->exit_code;
1292 if (!retval && wo->wo_stat)
1293 retval = put_user(status, wo->wo_stat);
1294
1295 infop = wo->wo_info;
1296 if (!retval && infop)
1297 retval = put_user(SIGCHLD, &infop->si_signo);
1298 if (!retval && infop)
1299 retval = put_user(0, &infop->si_errno);
1300 if (!retval && infop) {
1301 int why;
1302
1303 if ((status & 0x7f) == 0) {
1304 why = CLD_EXITED;
1305 status >>= 8;
1306 } else {
1307 why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1308 status &= 0x7f;
1309 }
1310 retval = put_user((short)why, &infop->si_code);
1311 if (!retval)
1312 retval = put_user(status, &infop->si_status);
1313 }
1314 if (!retval && infop)
1315 retval = put_user(pid, &infop->si_pid);
1316 if (!retval && infop)
1317 retval = put_user(uid, &infop->si_uid);
1318 if (!retval)
1319 retval = pid;
1320
1321 if (traced) {
1322 write_lock_irq(&tasklist_lock);
1323 /* We dropped tasklist, ptracer could die and untrace */
1324 ptrace_unlink(p);
1325 /*
1326 * If this is not a sub-thread, notify the parent.
1327 * If parent wants a zombie, don't release it now.
1328 */
1329 if (thread_group_leader(p) &&
1330 !do_notify_parent(p, p->exit_signal)) {
1331 p->exit_state = EXIT_ZOMBIE;
1332 p = NULL;
1333 }
1334 write_unlock_irq(&tasklist_lock);
1335 }
1336 if (p != NULL)
1337 release_task(p);
1338
1339 return retval;
1340 }
1341
1342 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1343 {
1344 if (ptrace) {
1345 if (task_is_stopped_or_traced(p) &&
1346 !(p->jobctl & JOBCTL_LISTENING))
1347 return &p->exit_code;
1348 } else {
1349 if (p->signal->flags & SIGNAL_STOP_STOPPED)
1350 return &p->signal->group_exit_code;
1351 }
1352 return NULL;
1353 }
1354
1355 /**
1356 * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1357 * @wo: wait options
1358 * @ptrace: is the wait for ptrace
1359 * @p: task to wait for
1360 *
1361 * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1362 *
1363 * CONTEXT:
1364 * read_lock(&tasklist_lock), which is released if return value is
1365 * non-zero. Also, grabs and releases @p->sighand->siglock.
1366 *
1367 * RETURNS:
1368 * 0 if wait condition didn't exist and search for other wait conditions
1369 * should continue. Non-zero return, -errno on failure and @p's pid on
1370 * success, implies that tasklist_lock is released and wait condition
1371 * search should terminate.
1372 */
1373 static int wait_task_stopped(struct wait_opts *wo,
1374 int ptrace, struct task_struct *p)
1375 {
1376 struct siginfo __user *infop;
1377 int retval, exit_code, *p_code, why;
1378 uid_t uid = 0; /* unneeded, required by compiler */
1379 pid_t pid;
1380
1381 /*
1382 * Traditionally we see ptrace'd stopped tasks regardless of options.
1383 */
1384 if (!ptrace && !(wo->wo_flags & WUNTRACED))
1385 return 0;
1386
1387 if (!task_stopped_code(p, ptrace))
1388 return 0;
1389
1390 exit_code = 0;
1391 spin_lock_irq(&p->sighand->siglock);
1392
1393 p_code = task_stopped_code(p, ptrace);
1394 if (unlikely(!p_code))
1395 goto unlock_sig;
1396
1397 exit_code = *p_code;
1398 if (!exit_code)
1399 goto unlock_sig;
1400
1401 if (!unlikely(wo->wo_flags & WNOWAIT))
1402 *p_code = 0;
1403
1404 uid = task_uid(p);
1405 unlock_sig:
1406 spin_unlock_irq(&p->sighand->siglock);
1407 if (!exit_code)
1408 return 0;
1409
1410 /*
1411 * Now we are pretty sure this task is interesting.
1412 * Make sure it doesn't get reaped out from under us while we
1413 * give up the lock and then examine it below. We don't want to
1414 * keep holding onto the tasklist_lock while we call getrusage and
1415 * possibly take page faults for user memory.
1416 */
1417 get_task_struct(p);
1418 pid = task_pid_vnr(p);
1419 why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1420 read_unlock(&tasklist_lock);
1421
1422 if (unlikely(wo->wo_flags & WNOWAIT))
1423 return wait_noreap_copyout(wo, p, pid, uid, why, exit_code);
1424
1425 retval = wo->wo_rusage
1426 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1427 if (!retval && wo->wo_stat)
1428 retval = put_user((exit_code << 8) | 0x7f, wo->wo_stat);
1429
1430 infop = wo->wo_info;
1431 if (!retval && infop)
1432 retval = put_user(SIGCHLD, &infop->si_signo);
1433 if (!retval && infop)
1434 retval = put_user(0, &infop->si_errno);
1435 if (!retval && infop)
1436 retval = put_user((short)why, &infop->si_code);
1437 if (!retval && infop)
1438 retval = put_user(exit_code, &infop->si_status);
1439 if (!retval && infop)
1440 retval = put_user(pid, &infop->si_pid);
1441 if (!retval && infop)
1442 retval = put_user(uid, &infop->si_uid);
1443 if (!retval)
1444 retval = pid;
1445 put_task_struct(p);
1446
1447 BUG_ON(!retval);
1448 return retval;
1449 }
1450
1451 /*
1452 * Handle do_wait work for one task in a live, non-stopped state.
1453 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1454 * the lock and this task is uninteresting. If we return nonzero, we have
1455 * released the lock and the system call should return.
1456 */
1457 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1458 {
1459 int retval;
1460 pid_t pid;
1461 uid_t uid;
1462
1463 if (!unlikely(wo->wo_flags & WCONTINUED))
1464 return 0;
1465
1466 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1467 return 0;
1468
1469 spin_lock_irq(&p->sighand->siglock);
1470 /* Re-check with the lock held. */
1471 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1472 spin_unlock_irq(&p->sighand->siglock);
1473 return 0;
1474 }
1475 if (!unlikely(wo->wo_flags & WNOWAIT))
1476 p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1477 uid = task_uid(p);
1478 spin_unlock_irq(&p->sighand->siglock);
1479
1480 pid = task_pid_vnr(p);
1481 get_task_struct(p);
1482 read_unlock(&tasklist_lock);
1483
1484 if (!wo->wo_info) {
1485 retval = wo->wo_rusage
1486 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1487 put_task_struct(p);
1488 if (!retval && wo->wo_stat)
1489 retval = put_user(0xffff, wo->wo_stat);
1490 if (!retval)
1491 retval = pid;
1492 } else {
1493 retval = wait_noreap_copyout(wo, p, pid, uid,
1494 CLD_CONTINUED, SIGCONT);
1495 BUG_ON(retval == 0);
1496 }
1497
1498 return retval;
1499 }
1500
1501 /*
1502 * Consider @p for a wait by @parent.
1503 *
1504 * -ECHILD should be in ->notask_error before the first call.
1505 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1506 * Returns zero if the search for a child should continue;
1507 * then ->notask_error is 0 if @p is an eligible child,
1508 * or another error from security_task_wait(), or still -ECHILD.
1509 */
1510 static int wait_consider_task(struct wait_opts *wo, int ptrace,
1511 struct task_struct *p)
1512 {
1513 int ret = eligible_child(wo, p);
1514 if (!ret)
1515 return ret;
1516
1517 ret = security_task_wait(p);
1518 if (unlikely(ret < 0)) {
1519 /*
1520 * If we have not yet seen any eligible child,
1521 * then let this error code replace -ECHILD.
1522 * A permission error will give the user a clue
1523 * to look for security policy problems, rather
1524 * than for mysterious wait bugs.
1525 */
1526 if (wo->notask_error)
1527 wo->notask_error = ret;
1528 return 0;
1529 }
1530
1531 /* dead body doesn't have much to contribute */
1532 if (unlikely(p->exit_state == EXIT_DEAD)) {
1533 /*
1534 * But do not ignore this task until the tracer does
1535 * wait_task_zombie()->do_notify_parent().
1536 */
1537 if (likely(!ptrace) && unlikely(ptrace_reparented(p)))
1538 wo->notask_error = 0;
1539 return 0;
1540 }
1541
1542 /* slay zombie? */
1543 if (p->exit_state == EXIT_ZOMBIE) {
1544 /*
1545 * A zombie ptracee is only visible to its ptracer.
1546 * Notification and reaping will be cascaded to the real
1547 * parent when the ptracer detaches.
1548 */
1549 if (likely(!ptrace) && unlikely(p->ptrace)) {
1550 /* it will become visible, clear notask_error */
1551 wo->notask_error = 0;
1552 return 0;
1553 }
1554
1555 /* we don't reap group leaders with subthreads */
1556 if (!delay_group_leader(p))
1557 return wait_task_zombie(wo, p);
1558
1559 /*
1560 * Allow access to stopped/continued state via zombie by
1561 * falling through. Clearing of notask_error is complex.
1562 *
1563 * When !@ptrace:
1564 *
1565 * If WEXITED is set, notask_error should naturally be
1566 * cleared. If not, subset of WSTOPPED|WCONTINUED is set,
1567 * so, if there are live subthreads, there are events to
1568 * wait for. If all subthreads are dead, it's still safe
1569 * to clear - this function will be called again in finite
1570 * amount time once all the subthreads are released and
1571 * will then return without clearing.
1572 *
1573 * When @ptrace:
1574 *
1575 * Stopped state is per-task and thus can't change once the
1576 * target task dies. Only continued and exited can happen.
1577 * Clear notask_error if WCONTINUED | WEXITED.
1578 */
1579 if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1580 wo->notask_error = 0;
1581 } else {
1582 /*
1583 * If @p is ptraced by a task in its real parent's group,
1584 * hide group stop/continued state when looking at @p as
1585 * the real parent; otherwise, a single stop can be
1586 * reported twice as group and ptrace stops.
1587 *
1588 * If a ptracer wants to distinguish the two events for its
1589 * own children, it should create a separate process which
1590 * takes the role of real parent.
1591 */
1592 if (likely(!ptrace) && p->ptrace && !ptrace_reparented(p))
1593 return 0;
1594
1595 /*
1596 * @p is alive and it's gonna stop, continue or exit, so
1597 * there always is something to wait for.
1598 */
1599 wo->notask_error = 0;
1600 }
1601
1602 /*
1603 * Wait for stopped. Depending on @ptrace, different stopped state
1604 * is used and the two don't interact with each other.
1605 */
1606 ret = wait_task_stopped(wo, ptrace, p);
1607 if (ret)
1608 return ret;
1609
1610 /*
1611 * Wait for continued. There's only one continued state and the
1612 * ptracer can consume it which can confuse the real parent. Don't
1613 * use WCONTINUED from ptracer. You don't need or want it.
1614 */
1615 return wait_task_continued(wo, p);
1616 }
1617
1618 /*
1619 * Do the work of do_wait() for one thread in the group, @tsk.
1620 *
1621 * -ECHILD should be in ->notask_error before the first call.
1622 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1623 * Returns zero if the search for a child should continue; then
1624 * ->notask_error is 0 if there were any eligible children,
1625 * or another error from security_task_wait(), or still -ECHILD.
1626 */
1627 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1628 {
1629 struct task_struct *p;
1630
1631 list_for_each_entry(p, &tsk->children, sibling) {
1632 int ret = wait_consider_task(wo, 0, p);
1633 if (ret)
1634 return ret;
1635 }
1636
1637 return 0;
1638 }
1639
1640 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1641 {
1642 struct task_struct *p;
1643
1644 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1645 int ret = wait_consider_task(wo, 1, p);
1646 if (ret)
1647 return ret;
1648 }
1649
1650 return 0;
1651 }
1652
1653 static int child_wait_callback(wait_queue_t *wait, unsigned mode,
1654 int sync, void *key)
1655 {
1656 struct wait_opts *wo = container_of(wait, struct wait_opts,
1657 child_wait);
1658 struct task_struct *p = key;
1659
1660 if (!eligible_pid(wo, p))
1661 return 0;
1662
1663 if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1664 return 0;
1665
1666 return default_wake_function(wait, mode, sync, key);
1667 }
1668
1669 void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1670 {
1671 __wake_up_sync_key(&parent->signal->wait_chldexit,
1672 TASK_INTERRUPTIBLE, 1, p);
1673 }
1674
1675 static long do_wait(struct wait_opts *wo)
1676 {
1677 struct task_struct *tsk;
1678 int retval;
1679
1680 trace_sched_process_wait(wo->wo_pid);
1681
1682 init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1683 wo->child_wait.private = current;
1684 add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1685 repeat:
1686 /*
1687 * If there is nothing that can match our critiera just get out.
1688 * We will clear ->notask_error to zero if we see any child that
1689 * might later match our criteria, even if we are not able to reap
1690 * it yet.
1691 */
1692 wo->notask_error = -ECHILD;
1693 if ((wo->wo_type < PIDTYPE_MAX) &&
1694 (!wo->wo_pid || hlist_empty(&wo->wo_pid->tasks[wo->wo_type])))
1695 goto notask;
1696
1697 set_current_state(TASK_INTERRUPTIBLE);
1698 read_lock(&tasklist_lock);
1699 tsk = current;
1700 do {
1701 retval = do_wait_thread(wo, tsk);
1702 if (retval)
1703 goto end;
1704
1705 retval = ptrace_do_wait(wo, tsk);
1706 if (retval)
1707 goto end;
1708
1709 if (wo->wo_flags & __WNOTHREAD)
1710 break;
1711 } while_each_thread(current, tsk);
1712 read_unlock(&tasklist_lock);
1713
1714 notask:
1715 retval = wo->notask_error;
1716 if (!retval && !(wo->wo_flags & WNOHANG)) {
1717 retval = -ERESTARTSYS;
1718 if (!signal_pending(current)) {
1719 schedule();
1720 goto repeat;
1721 }
1722 }
1723 end:
1724 __set_current_state(TASK_RUNNING);
1725 remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1726 return retval;
1727 }
1728
1729 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1730 infop, int, options, struct rusage __user *, ru)
1731 {
1732 struct wait_opts wo;
1733 struct pid *pid = NULL;
1734 enum pid_type type;
1735 long ret;
1736
1737 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED))
1738 return -EINVAL;
1739 if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1740 return -EINVAL;
1741
1742 switch (which) {
1743 case P_ALL:
1744 type = PIDTYPE_MAX;
1745 break;
1746 case P_PID:
1747 type = PIDTYPE_PID;
1748 if (upid <= 0)
1749 return -EINVAL;
1750 break;
1751 case P_PGID:
1752 type = PIDTYPE_PGID;
1753 if (upid <= 0)
1754 return -EINVAL;
1755 break;
1756 default:
1757 return -EINVAL;
1758 }
1759
1760 if (type < PIDTYPE_MAX)
1761 pid = find_get_pid(upid);
1762
1763 wo.wo_type = type;
1764 wo.wo_pid = pid;
1765 wo.wo_flags = options;
1766 wo.wo_info = infop;
1767 wo.wo_stat = NULL;
1768 wo.wo_rusage = ru;
1769 ret = do_wait(&wo);
1770
1771 if (ret > 0) {
1772 ret = 0;
1773 } else if (infop) {
1774 /*
1775 * For a WNOHANG return, clear out all the fields
1776 * we would set so the user can easily tell the
1777 * difference.
1778 */
1779 if (!ret)
1780 ret = put_user(0, &infop->si_signo);
1781 if (!ret)
1782 ret = put_user(0, &infop->si_errno);
1783 if (!ret)
1784 ret = put_user(0, &infop->si_code);
1785 if (!ret)
1786 ret = put_user(0, &infop->si_pid);
1787 if (!ret)
1788 ret = put_user(0, &infop->si_uid);
1789 if (!ret)
1790 ret = put_user(0, &infop->si_status);
1791 }
1792
1793 put_pid(pid);
1794
1795 /* avoid REGPARM breakage on x86: */
1796 asmlinkage_protect(5, ret, which, upid, infop, options, ru);
1797 return ret;
1798 }
1799
1800 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1801 int, options, struct rusage __user *, ru)
1802 {
1803 struct wait_opts wo;
1804 struct pid *pid = NULL;
1805 enum pid_type type;
1806 long ret;
1807
1808 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1809 __WNOTHREAD|__WCLONE|__WALL))
1810 return -EINVAL;
1811
1812 if (upid == -1)
1813 type = PIDTYPE_MAX;
1814 else if (upid < 0) {
1815 type = PIDTYPE_PGID;
1816 pid = find_get_pid(-upid);
1817 } else if (upid == 0) {
1818 type = PIDTYPE_PGID;
1819 pid = get_task_pid(current, PIDTYPE_PGID);
1820 } else /* upid > 0 */ {
1821 type = PIDTYPE_PID;
1822 pid = find_get_pid(upid);
1823 }
1824
1825 wo.wo_type = type;
1826 wo.wo_pid = pid;
1827 wo.wo_flags = options | WEXITED;
1828 wo.wo_info = NULL;
1829 wo.wo_stat = stat_addr;
1830 wo.wo_rusage = ru;
1831 ret = do_wait(&wo);
1832 put_pid(pid);
1833
1834 /* avoid REGPARM breakage on x86: */
1835 asmlinkage_protect(4, ret, upid, stat_addr, options, ru);
1836 return ret;
1837 }
1838
1839 #ifdef __ARCH_WANT_SYS_WAITPID
1840
1841 /*
1842 * sys_waitpid() remains for compatibility. waitpid() should be
1843 * implemented by calling sys_wait4() from libc.a.
1844 */
1845 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1846 {
1847 return sys_wait4(pid, stat_addr, options, NULL);
1848 }
1849
1850 #endif
This page took 0.086026 seconds and 6 git commands to generate.