Merge branch 'upstream-linus' of master.kernel.org:/pub/scm/linux/kernel/git/jgarzik...
[deliverable/linux.git] / kernel / exit.c
1 /*
2 * linux/kernel/exit.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 #include <linux/mm.h>
8 #include <linux/slab.h>
9 #include <linux/interrupt.h>
10 #include <linux/smp_lock.h>
11 #include <linux/module.h>
12 #include <linux/capability.h>
13 #include <linux/completion.h>
14 #include <linux/personality.h>
15 #include <linux/tty.h>
16 #include <linux/mnt_namespace.h>
17 #include <linux/key.h>
18 #include <linux/security.h>
19 #include <linux/cpu.h>
20 #include <linux/acct.h>
21 #include <linux/tsacct_kern.h>
22 #include <linux/file.h>
23 #include <linux/binfmts.h>
24 #include <linux/nsproxy.h>
25 #include <linux/pid_namespace.h>
26 #include <linux/ptrace.h>
27 #include <linux/profile.h>
28 #include <linux/mount.h>
29 #include <linux/proc_fs.h>
30 #include <linux/mempolicy.h>
31 #include <linux/taskstats_kern.h>
32 #include <linux/delayacct.h>
33 #include <linux/cpuset.h>
34 #include <linux/syscalls.h>
35 #include <linux/signal.h>
36 #include <linux/posix-timers.h>
37 #include <linux/cn_proc.h>
38 #include <linux/mutex.h>
39 #include <linux/futex.h>
40 #include <linux/compat.h>
41 #include <linux/pipe_fs_i.h>
42 #include <linux/audit.h> /* for audit_free() */
43 #include <linux/resource.h>
44 #include <linux/blkdev.h>
45
46 #include <asm/uaccess.h>
47 #include <asm/unistd.h>
48 #include <asm/pgtable.h>
49 #include <asm/mmu_context.h>
50
51 extern void sem_exit (void);
52
53 static void exit_mm(struct task_struct * tsk);
54
55 static void __unhash_process(struct task_struct *p)
56 {
57 nr_threads--;
58 detach_pid(p, PIDTYPE_PID);
59 if (thread_group_leader(p)) {
60 detach_pid(p, PIDTYPE_PGID);
61 detach_pid(p, PIDTYPE_SID);
62
63 list_del_rcu(&p->tasks);
64 __get_cpu_var(process_counts)--;
65 }
66 list_del_rcu(&p->thread_group);
67 remove_parent(p);
68 }
69
70 /*
71 * This function expects the tasklist_lock write-locked.
72 */
73 static void __exit_signal(struct task_struct *tsk)
74 {
75 struct signal_struct *sig = tsk->signal;
76 struct sighand_struct *sighand;
77
78 BUG_ON(!sig);
79 BUG_ON(!atomic_read(&sig->count));
80
81 rcu_read_lock();
82 sighand = rcu_dereference(tsk->sighand);
83 spin_lock(&sighand->siglock);
84
85 posix_cpu_timers_exit(tsk);
86 if (atomic_dec_and_test(&sig->count))
87 posix_cpu_timers_exit_group(tsk);
88 else {
89 /*
90 * If there is any task waiting for the group exit
91 * then notify it:
92 */
93 if (sig->group_exit_task && atomic_read(&sig->count) == sig->notify_count) {
94 wake_up_process(sig->group_exit_task);
95 sig->group_exit_task = NULL;
96 }
97 if (tsk == sig->curr_target)
98 sig->curr_target = next_thread(tsk);
99 /*
100 * Accumulate here the counters for all threads but the
101 * group leader as they die, so they can be added into
102 * the process-wide totals when those are taken.
103 * The group leader stays around as a zombie as long
104 * as there are other threads. When it gets reaped,
105 * the exit.c code will add its counts into these totals.
106 * We won't ever get here for the group leader, since it
107 * will have been the last reference on the signal_struct.
108 */
109 sig->utime = cputime_add(sig->utime, tsk->utime);
110 sig->stime = cputime_add(sig->stime, tsk->stime);
111 sig->min_flt += tsk->min_flt;
112 sig->maj_flt += tsk->maj_flt;
113 sig->nvcsw += tsk->nvcsw;
114 sig->nivcsw += tsk->nivcsw;
115 sig->sched_time += tsk->sched_time;
116 sig = NULL; /* Marker for below. */
117 }
118
119 __unhash_process(tsk);
120
121 tsk->signal = NULL;
122 tsk->sighand = NULL;
123 spin_unlock(&sighand->siglock);
124 rcu_read_unlock();
125
126 __cleanup_sighand(sighand);
127 clear_tsk_thread_flag(tsk,TIF_SIGPENDING);
128 flush_sigqueue(&tsk->pending);
129 if (sig) {
130 flush_sigqueue(&sig->shared_pending);
131 taskstats_tgid_free(sig);
132 __cleanup_signal(sig);
133 }
134 }
135
136 static void delayed_put_task_struct(struct rcu_head *rhp)
137 {
138 put_task_struct(container_of(rhp, struct task_struct, rcu));
139 }
140
141 void release_task(struct task_struct * p)
142 {
143 struct task_struct *leader;
144 int zap_leader;
145 repeat:
146 atomic_dec(&p->user->processes);
147 write_lock_irq(&tasklist_lock);
148 ptrace_unlink(p);
149 BUG_ON(!list_empty(&p->ptrace_list) || !list_empty(&p->ptrace_children));
150 __exit_signal(p);
151
152 /*
153 * If we are the last non-leader member of the thread
154 * group, and the leader is zombie, then notify the
155 * group leader's parent process. (if it wants notification.)
156 */
157 zap_leader = 0;
158 leader = p->group_leader;
159 if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) {
160 BUG_ON(leader->exit_signal == -1);
161 do_notify_parent(leader, leader->exit_signal);
162 /*
163 * If we were the last child thread and the leader has
164 * exited already, and the leader's parent ignores SIGCHLD,
165 * then we are the one who should release the leader.
166 *
167 * do_notify_parent() will have marked it self-reaping in
168 * that case.
169 */
170 zap_leader = (leader->exit_signal == -1);
171 }
172
173 sched_exit(p);
174 write_unlock_irq(&tasklist_lock);
175 proc_flush_task(p);
176 release_thread(p);
177 call_rcu(&p->rcu, delayed_put_task_struct);
178
179 p = leader;
180 if (unlikely(zap_leader))
181 goto repeat;
182 }
183
184 /*
185 * This checks not only the pgrp, but falls back on the pid if no
186 * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
187 * without this...
188 */
189 int session_of_pgrp(int pgrp)
190 {
191 struct task_struct *p;
192 int sid = 0;
193
194 read_lock(&tasklist_lock);
195
196 p = find_task_by_pid_type(PIDTYPE_PGID, pgrp);
197 if (p == NULL)
198 p = find_task_by_pid(pgrp);
199 if (p != NULL)
200 sid = process_session(p);
201
202 read_unlock(&tasklist_lock);
203
204 return sid;
205 }
206
207 /*
208 * Determine if a process group is "orphaned", according to the POSIX
209 * definition in 2.2.2.52. Orphaned process groups are not to be affected
210 * by terminal-generated stop signals. Newly orphaned process groups are
211 * to receive a SIGHUP and a SIGCONT.
212 *
213 * "I ask you, have you ever known what it is to be an orphan?"
214 */
215 static int will_become_orphaned_pgrp(int pgrp, struct task_struct *ignored_task)
216 {
217 struct task_struct *p;
218 int ret = 1;
219
220 do_each_task_pid(pgrp, PIDTYPE_PGID, p) {
221 if (p == ignored_task
222 || p->exit_state
223 || is_init(p->real_parent))
224 continue;
225 if (process_group(p->real_parent) != pgrp &&
226 process_session(p->real_parent) == process_session(p)) {
227 ret = 0;
228 break;
229 }
230 } while_each_task_pid(pgrp, PIDTYPE_PGID, p);
231 return ret; /* (sighing) "Often!" */
232 }
233
234 int is_orphaned_pgrp(int pgrp)
235 {
236 int retval;
237
238 read_lock(&tasklist_lock);
239 retval = will_become_orphaned_pgrp(pgrp, NULL);
240 read_unlock(&tasklist_lock);
241
242 return retval;
243 }
244
245 static int has_stopped_jobs(int pgrp)
246 {
247 int retval = 0;
248 struct task_struct *p;
249
250 do_each_task_pid(pgrp, PIDTYPE_PGID, p) {
251 if (p->state != TASK_STOPPED)
252 continue;
253 retval = 1;
254 break;
255 } while_each_task_pid(pgrp, PIDTYPE_PGID, p);
256 return retval;
257 }
258
259 /**
260 * reparent_to_init - Reparent the calling kernel thread to the init task
261 * of the pid space that the thread belongs to.
262 *
263 * If a kernel thread is launched as a result of a system call, or if
264 * it ever exits, it should generally reparent itself to init so that
265 * it is correctly cleaned up on exit.
266 *
267 * The various task state such as scheduling policy and priority may have
268 * been inherited from a user process, so we reset them to sane values here.
269 *
270 * NOTE that reparent_to_init() gives the caller full capabilities.
271 */
272 static void reparent_to_init(void)
273 {
274 write_lock_irq(&tasklist_lock);
275
276 ptrace_unlink(current);
277 /* Reparent to init */
278 remove_parent(current);
279 current->parent = child_reaper(current);
280 current->real_parent = child_reaper(current);
281 add_parent(current);
282
283 /* Set the exit signal to SIGCHLD so we signal init on exit */
284 current->exit_signal = SIGCHLD;
285
286 if (!has_rt_policy(current) && (task_nice(current) < 0))
287 set_user_nice(current, 0);
288 /* cpus_allowed? */
289 /* rt_priority? */
290 /* signals? */
291 security_task_reparent_to_init(current);
292 memcpy(current->signal->rlim, init_task.signal->rlim,
293 sizeof(current->signal->rlim));
294 atomic_inc(&(INIT_USER->__count));
295 write_unlock_irq(&tasklist_lock);
296 switch_uid(INIT_USER);
297 }
298
299 void __set_special_pids(pid_t session, pid_t pgrp)
300 {
301 struct task_struct *curr = current->group_leader;
302
303 if (process_session(curr) != session) {
304 detach_pid(curr, PIDTYPE_SID);
305 set_signal_session(curr->signal, session);
306 attach_pid(curr, PIDTYPE_SID, session);
307 }
308 if (process_group(curr) != pgrp) {
309 detach_pid(curr, PIDTYPE_PGID);
310 curr->signal->pgrp = pgrp;
311 attach_pid(curr, PIDTYPE_PGID, pgrp);
312 }
313 }
314
315 static void set_special_pids(pid_t session, pid_t pgrp)
316 {
317 write_lock_irq(&tasklist_lock);
318 __set_special_pids(session, pgrp);
319 write_unlock_irq(&tasklist_lock);
320 }
321
322 /*
323 * Let kernel threads use this to say that they
324 * allow a certain signal (since daemonize() will
325 * have disabled all of them by default).
326 */
327 int allow_signal(int sig)
328 {
329 if (!valid_signal(sig) || sig < 1)
330 return -EINVAL;
331
332 spin_lock_irq(&current->sighand->siglock);
333 sigdelset(&current->blocked, sig);
334 if (!current->mm) {
335 /* Kernel threads handle their own signals.
336 Let the signal code know it'll be handled, so
337 that they don't get converted to SIGKILL or
338 just silently dropped */
339 current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2;
340 }
341 recalc_sigpending();
342 spin_unlock_irq(&current->sighand->siglock);
343 return 0;
344 }
345
346 EXPORT_SYMBOL(allow_signal);
347
348 int disallow_signal(int sig)
349 {
350 if (!valid_signal(sig) || sig < 1)
351 return -EINVAL;
352
353 spin_lock_irq(&current->sighand->siglock);
354 sigaddset(&current->blocked, sig);
355 recalc_sigpending();
356 spin_unlock_irq(&current->sighand->siglock);
357 return 0;
358 }
359
360 EXPORT_SYMBOL(disallow_signal);
361
362 /*
363 * Put all the gunge required to become a kernel thread without
364 * attached user resources in one place where it belongs.
365 */
366
367 void daemonize(const char *name, ...)
368 {
369 va_list args;
370 struct fs_struct *fs;
371 sigset_t blocked;
372
373 va_start(args, name);
374 vsnprintf(current->comm, sizeof(current->comm), name, args);
375 va_end(args);
376
377 /*
378 * If we were started as result of loading a module, close all of the
379 * user space pages. We don't need them, and if we didn't close them
380 * they would be locked into memory.
381 */
382 exit_mm(current);
383
384 set_special_pids(1, 1);
385 proc_clear_tty(current);
386
387 /* Block and flush all signals */
388 sigfillset(&blocked);
389 sigprocmask(SIG_BLOCK, &blocked, NULL);
390 flush_signals(current);
391
392 /* Become as one with the init task */
393
394 exit_fs(current); /* current->fs->count--; */
395 fs = init_task.fs;
396 current->fs = fs;
397 atomic_inc(&fs->count);
398
399 put_and_finalize_nsproxy(current->nsproxy);
400 current->nsproxy = init_task.nsproxy;
401 get_task_namespaces(current);
402
403 exit_files(current);
404 current->files = init_task.files;
405 atomic_inc(&current->files->count);
406
407 reparent_to_init();
408 }
409
410 EXPORT_SYMBOL(daemonize);
411
412 static void close_files(struct files_struct * files)
413 {
414 int i, j;
415 struct fdtable *fdt;
416
417 j = 0;
418
419 /*
420 * It is safe to dereference the fd table without RCU or
421 * ->file_lock because this is the last reference to the
422 * files structure.
423 */
424 fdt = files_fdtable(files);
425 for (;;) {
426 unsigned long set;
427 i = j * __NFDBITS;
428 if (i >= fdt->max_fds)
429 break;
430 set = fdt->open_fds->fds_bits[j++];
431 while (set) {
432 if (set & 1) {
433 struct file * file = xchg(&fdt->fd[i], NULL);
434 if (file)
435 filp_close(file, files);
436 }
437 i++;
438 set >>= 1;
439 }
440 }
441 }
442
443 struct files_struct *get_files_struct(struct task_struct *task)
444 {
445 struct files_struct *files;
446
447 task_lock(task);
448 files = task->files;
449 if (files)
450 atomic_inc(&files->count);
451 task_unlock(task);
452
453 return files;
454 }
455
456 void fastcall put_files_struct(struct files_struct *files)
457 {
458 struct fdtable *fdt;
459
460 if (atomic_dec_and_test(&files->count)) {
461 close_files(files);
462 /*
463 * Free the fd and fdset arrays if we expanded them.
464 * If the fdtable was embedded, pass files for freeing
465 * at the end of the RCU grace period. Otherwise,
466 * you can free files immediately.
467 */
468 fdt = files_fdtable(files);
469 if (fdt != &files->fdtab)
470 kmem_cache_free(files_cachep, files);
471 free_fdtable(fdt);
472 }
473 }
474
475 EXPORT_SYMBOL(put_files_struct);
476
477 void reset_files_struct(struct task_struct *tsk, struct files_struct *files)
478 {
479 struct files_struct *old;
480
481 old = tsk->files;
482 task_lock(tsk);
483 tsk->files = files;
484 task_unlock(tsk);
485 put_files_struct(old);
486 }
487 EXPORT_SYMBOL(reset_files_struct);
488
489 static inline void __exit_files(struct task_struct *tsk)
490 {
491 struct files_struct * files = tsk->files;
492
493 if (files) {
494 task_lock(tsk);
495 tsk->files = NULL;
496 task_unlock(tsk);
497 put_files_struct(files);
498 }
499 }
500
501 void exit_files(struct task_struct *tsk)
502 {
503 __exit_files(tsk);
504 }
505
506 static inline void __put_fs_struct(struct fs_struct *fs)
507 {
508 /* No need to hold fs->lock if we are killing it */
509 if (atomic_dec_and_test(&fs->count)) {
510 dput(fs->root);
511 mntput(fs->rootmnt);
512 dput(fs->pwd);
513 mntput(fs->pwdmnt);
514 if (fs->altroot) {
515 dput(fs->altroot);
516 mntput(fs->altrootmnt);
517 }
518 kmem_cache_free(fs_cachep, fs);
519 }
520 }
521
522 void put_fs_struct(struct fs_struct *fs)
523 {
524 __put_fs_struct(fs);
525 }
526
527 static inline void __exit_fs(struct task_struct *tsk)
528 {
529 struct fs_struct * fs = tsk->fs;
530
531 if (fs) {
532 task_lock(tsk);
533 tsk->fs = NULL;
534 task_unlock(tsk);
535 __put_fs_struct(fs);
536 }
537 }
538
539 void exit_fs(struct task_struct *tsk)
540 {
541 __exit_fs(tsk);
542 }
543
544 EXPORT_SYMBOL_GPL(exit_fs);
545
546 /*
547 * Turn us into a lazy TLB process if we
548 * aren't already..
549 */
550 static void exit_mm(struct task_struct * tsk)
551 {
552 struct mm_struct *mm = tsk->mm;
553
554 mm_release(tsk, mm);
555 if (!mm)
556 return;
557 /*
558 * Serialize with any possible pending coredump.
559 * We must hold mmap_sem around checking core_waiters
560 * and clearing tsk->mm. The core-inducing thread
561 * will increment core_waiters for each thread in the
562 * group with ->mm != NULL.
563 */
564 down_read(&mm->mmap_sem);
565 if (mm->core_waiters) {
566 up_read(&mm->mmap_sem);
567 down_write(&mm->mmap_sem);
568 if (!--mm->core_waiters)
569 complete(mm->core_startup_done);
570 up_write(&mm->mmap_sem);
571
572 wait_for_completion(&mm->core_done);
573 down_read(&mm->mmap_sem);
574 }
575 atomic_inc(&mm->mm_count);
576 BUG_ON(mm != tsk->active_mm);
577 /* more a memory barrier than a real lock */
578 task_lock(tsk);
579 tsk->mm = NULL;
580 up_read(&mm->mmap_sem);
581 enter_lazy_tlb(mm, current);
582 task_unlock(tsk);
583 mmput(mm);
584 }
585
586 static inline void
587 choose_new_parent(struct task_struct *p, struct task_struct *reaper)
588 {
589 /*
590 * Make sure we're not reparenting to ourselves and that
591 * the parent is not a zombie.
592 */
593 BUG_ON(p == reaper || reaper->exit_state);
594 p->real_parent = reaper;
595 }
596
597 static void
598 reparent_thread(struct task_struct *p, struct task_struct *father, int traced)
599 {
600 if (p->pdeath_signal)
601 /* We already hold the tasklist_lock here. */
602 group_send_sig_info(p->pdeath_signal, SEND_SIG_NOINFO, p);
603
604 /* Move the child from its dying parent to the new one. */
605 if (unlikely(traced)) {
606 /* Preserve ptrace links if someone else is tracing this child. */
607 list_del_init(&p->ptrace_list);
608 if (p->parent != p->real_parent)
609 list_add(&p->ptrace_list, &p->real_parent->ptrace_children);
610 } else {
611 /* If this child is being traced, then we're the one tracing it
612 * anyway, so let go of it.
613 */
614 p->ptrace = 0;
615 remove_parent(p);
616 p->parent = p->real_parent;
617 add_parent(p);
618
619 if (p->state == TASK_TRACED) {
620 /*
621 * If it was at a trace stop, turn it into
622 * a normal stop since it's no longer being
623 * traced.
624 */
625 ptrace_untrace(p);
626 }
627 }
628
629 /* If this is a threaded reparent there is no need to
630 * notify anyone anything has happened.
631 */
632 if (p->real_parent->group_leader == father->group_leader)
633 return;
634
635 /* We don't want people slaying init. */
636 if (p->exit_signal != -1)
637 p->exit_signal = SIGCHLD;
638
639 /* If we'd notified the old parent about this child's death,
640 * also notify the new parent.
641 */
642 if (!traced && p->exit_state == EXIT_ZOMBIE &&
643 p->exit_signal != -1 && thread_group_empty(p))
644 do_notify_parent(p, p->exit_signal);
645
646 /*
647 * process group orphan check
648 * Case ii: Our child is in a different pgrp
649 * than we are, and it was the only connection
650 * outside, so the child pgrp is now orphaned.
651 */
652 if ((process_group(p) != process_group(father)) &&
653 (process_session(p) == process_session(father))) {
654 int pgrp = process_group(p);
655
656 if (will_become_orphaned_pgrp(pgrp, NULL) &&
657 has_stopped_jobs(pgrp)) {
658 __kill_pg_info(SIGHUP, SEND_SIG_PRIV, pgrp);
659 __kill_pg_info(SIGCONT, SEND_SIG_PRIV, pgrp);
660 }
661 }
662 }
663
664 /*
665 * When we die, we re-parent all our children.
666 * Try to give them to another thread in our thread
667 * group, and if no such member exists, give it to
668 * the child reaper process (ie "init") in our pid
669 * space.
670 */
671 static void
672 forget_original_parent(struct task_struct *father, struct list_head *to_release)
673 {
674 struct task_struct *p, *reaper = father;
675 struct list_head *_p, *_n;
676
677 do {
678 reaper = next_thread(reaper);
679 if (reaper == father) {
680 reaper = child_reaper(father);
681 break;
682 }
683 } while (reaper->exit_state);
684
685 /*
686 * There are only two places where our children can be:
687 *
688 * - in our child list
689 * - in our ptraced child list
690 *
691 * Search them and reparent children.
692 */
693 list_for_each_safe(_p, _n, &father->children) {
694 int ptrace;
695 p = list_entry(_p, struct task_struct, sibling);
696
697 ptrace = p->ptrace;
698
699 /* if father isn't the real parent, then ptrace must be enabled */
700 BUG_ON(father != p->real_parent && !ptrace);
701
702 if (father == p->real_parent) {
703 /* reparent with a reaper, real father it's us */
704 choose_new_parent(p, reaper);
705 reparent_thread(p, father, 0);
706 } else {
707 /* reparent ptraced task to its real parent */
708 __ptrace_unlink (p);
709 if (p->exit_state == EXIT_ZOMBIE && p->exit_signal != -1 &&
710 thread_group_empty(p))
711 do_notify_parent(p, p->exit_signal);
712 }
713
714 /*
715 * if the ptraced child is a zombie with exit_signal == -1
716 * we must collect it before we exit, or it will remain
717 * zombie forever since we prevented it from self-reap itself
718 * while it was being traced by us, to be able to see it in wait4.
719 */
720 if (unlikely(ptrace && p->exit_state == EXIT_ZOMBIE && p->exit_signal == -1))
721 list_add(&p->ptrace_list, to_release);
722 }
723 list_for_each_safe(_p, _n, &father->ptrace_children) {
724 p = list_entry(_p, struct task_struct, ptrace_list);
725 choose_new_parent(p, reaper);
726 reparent_thread(p, father, 1);
727 }
728 }
729
730 /*
731 * Send signals to all our closest relatives so that they know
732 * to properly mourn us..
733 */
734 static void exit_notify(struct task_struct *tsk)
735 {
736 int state;
737 struct task_struct *t;
738 struct list_head ptrace_dead, *_p, *_n;
739
740 if (signal_pending(tsk) && !(tsk->signal->flags & SIGNAL_GROUP_EXIT)
741 && !thread_group_empty(tsk)) {
742 /*
743 * This occurs when there was a race between our exit
744 * syscall and a group signal choosing us as the one to
745 * wake up. It could be that we are the only thread
746 * alerted to check for pending signals, but another thread
747 * should be woken now to take the signal since we will not.
748 * Now we'll wake all the threads in the group just to make
749 * sure someone gets all the pending signals.
750 */
751 read_lock(&tasklist_lock);
752 spin_lock_irq(&tsk->sighand->siglock);
753 for (t = next_thread(tsk); t != tsk; t = next_thread(t))
754 if (!signal_pending(t) && !(t->flags & PF_EXITING)) {
755 recalc_sigpending_tsk(t);
756 if (signal_pending(t))
757 signal_wake_up(t, 0);
758 }
759 spin_unlock_irq(&tsk->sighand->siglock);
760 read_unlock(&tasklist_lock);
761 }
762
763 write_lock_irq(&tasklist_lock);
764
765 /*
766 * This does two things:
767 *
768 * A. Make init inherit all the child processes
769 * B. Check to see if any process groups have become orphaned
770 * as a result of our exiting, and if they have any stopped
771 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
772 */
773
774 INIT_LIST_HEAD(&ptrace_dead);
775 forget_original_parent(tsk, &ptrace_dead);
776 BUG_ON(!list_empty(&tsk->children));
777 BUG_ON(!list_empty(&tsk->ptrace_children));
778
779 /*
780 * Check to see if any process groups have become orphaned
781 * as a result of our exiting, and if they have any stopped
782 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
783 *
784 * Case i: Our father is in a different pgrp than we are
785 * and we were the only connection outside, so our pgrp
786 * is about to become orphaned.
787 */
788
789 t = tsk->real_parent;
790
791 if ((process_group(t) != process_group(tsk)) &&
792 (process_session(t) == process_session(tsk)) &&
793 will_become_orphaned_pgrp(process_group(tsk), tsk) &&
794 has_stopped_jobs(process_group(tsk))) {
795 __kill_pg_info(SIGHUP, SEND_SIG_PRIV, process_group(tsk));
796 __kill_pg_info(SIGCONT, SEND_SIG_PRIV, process_group(tsk));
797 }
798
799 /* Let father know we died
800 *
801 * Thread signals are configurable, but you aren't going to use
802 * that to send signals to arbitary processes.
803 * That stops right now.
804 *
805 * If the parent exec id doesn't match the exec id we saved
806 * when we started then we know the parent has changed security
807 * domain.
808 *
809 * If our self_exec id doesn't match our parent_exec_id then
810 * we have changed execution domain as these two values started
811 * the same after a fork.
812 *
813 */
814
815 if (tsk->exit_signal != SIGCHLD && tsk->exit_signal != -1 &&
816 ( tsk->parent_exec_id != t->self_exec_id ||
817 tsk->self_exec_id != tsk->parent_exec_id)
818 && !capable(CAP_KILL))
819 tsk->exit_signal = SIGCHLD;
820
821
822 /* If something other than our normal parent is ptracing us, then
823 * send it a SIGCHLD instead of honoring exit_signal. exit_signal
824 * only has special meaning to our real parent.
825 */
826 if (tsk->exit_signal != -1 && thread_group_empty(tsk)) {
827 int signal = tsk->parent == tsk->real_parent ? tsk->exit_signal : SIGCHLD;
828 do_notify_parent(tsk, signal);
829 } else if (tsk->ptrace) {
830 do_notify_parent(tsk, SIGCHLD);
831 }
832
833 state = EXIT_ZOMBIE;
834 if (tsk->exit_signal == -1 &&
835 (likely(tsk->ptrace == 0) ||
836 unlikely(tsk->parent->signal->flags & SIGNAL_GROUP_EXIT)))
837 state = EXIT_DEAD;
838 tsk->exit_state = state;
839
840 write_unlock_irq(&tasklist_lock);
841
842 list_for_each_safe(_p, _n, &ptrace_dead) {
843 list_del_init(_p);
844 t = list_entry(_p, struct task_struct, ptrace_list);
845 release_task(t);
846 }
847
848 /* If the process is dead, release it - nobody will wait for it */
849 if (state == EXIT_DEAD)
850 release_task(tsk);
851 }
852
853 fastcall NORET_TYPE void do_exit(long code)
854 {
855 struct task_struct *tsk = current;
856 struct nsproxy *ns;
857 int group_dead;
858
859 profile_task_exit(tsk);
860
861 WARN_ON(atomic_read(&tsk->fs_excl));
862
863 if (unlikely(in_interrupt()))
864 panic("Aiee, killing interrupt handler!");
865 if (unlikely(!tsk->pid))
866 panic("Attempted to kill the idle task!");
867 if (unlikely(tsk == child_reaper(tsk))) {
868 if (tsk->nsproxy->pid_ns != &init_pid_ns)
869 tsk->nsproxy->pid_ns->child_reaper = init_pid_ns.child_reaper;
870 else
871 panic("Attempted to kill init!");
872 }
873
874
875 if (unlikely(current->ptrace & PT_TRACE_EXIT)) {
876 current->ptrace_message = code;
877 ptrace_notify((PTRACE_EVENT_EXIT << 8) | SIGTRAP);
878 }
879
880 /*
881 * We're taking recursive faults here in do_exit. Safest is to just
882 * leave this task alone and wait for reboot.
883 */
884 if (unlikely(tsk->flags & PF_EXITING)) {
885 printk(KERN_ALERT
886 "Fixing recursive fault but reboot is needed!\n");
887 if (tsk->io_context)
888 exit_io_context();
889 set_current_state(TASK_UNINTERRUPTIBLE);
890 schedule();
891 }
892
893 tsk->flags |= PF_EXITING;
894
895 if (unlikely(in_atomic()))
896 printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n",
897 current->comm, current->pid,
898 preempt_count());
899
900 acct_update_integrals(tsk);
901 if (tsk->mm) {
902 update_hiwater_rss(tsk->mm);
903 update_hiwater_vm(tsk->mm);
904 }
905 group_dead = atomic_dec_and_test(&tsk->signal->live);
906 if (group_dead) {
907 hrtimer_cancel(&tsk->signal->real_timer);
908 exit_itimers(tsk->signal);
909 }
910 acct_collect(code, group_dead);
911 if (unlikely(tsk->robust_list))
912 exit_robust_list(tsk);
913 #if defined(CONFIG_FUTEX) && defined(CONFIG_COMPAT)
914 if (unlikely(tsk->compat_robust_list))
915 compat_exit_robust_list(tsk);
916 #endif
917 if (unlikely(tsk->audit_context))
918 audit_free(tsk);
919
920 taskstats_exit(tsk, group_dead);
921
922 exit_mm(tsk);
923
924 if (group_dead)
925 acct_process();
926 exit_sem(tsk);
927 __exit_files(tsk);
928 __exit_fs(tsk);
929 exit_thread();
930 cpuset_exit(tsk);
931 exit_keys(tsk);
932
933 if (group_dead && tsk->signal->leader)
934 disassociate_ctty(1);
935
936 module_put(task_thread_info(tsk)->exec_domain->module);
937 if (tsk->binfmt)
938 module_put(tsk->binfmt->module);
939
940 tsk->exit_code = code;
941 proc_exit_connector(tsk);
942 ns = preexit_task_namespaces(tsk);
943 exit_notify(tsk);
944 exit_task_namespaces(tsk, ns);
945 #ifdef CONFIG_NUMA
946 mpol_free(tsk->mempolicy);
947 tsk->mempolicy = NULL;
948 #endif
949 /*
950 * This must happen late, after the PID is not
951 * hashed anymore:
952 */
953 if (unlikely(!list_empty(&tsk->pi_state_list)))
954 exit_pi_state_list(tsk);
955 if (unlikely(current->pi_state_cache))
956 kfree(current->pi_state_cache);
957 /*
958 * Make sure we are holding no locks:
959 */
960 debug_check_no_locks_held(tsk);
961
962 if (tsk->io_context)
963 exit_io_context();
964
965 if (tsk->splice_pipe)
966 __free_pipe_info(tsk->splice_pipe);
967
968 preempt_disable();
969 /* causes final put_task_struct in finish_task_switch(). */
970 tsk->state = TASK_DEAD;
971
972 schedule();
973 BUG();
974 /* Avoid "noreturn function does return". */
975 for (;;)
976 cpu_relax(); /* For when BUG is null */
977 }
978
979 EXPORT_SYMBOL_GPL(do_exit);
980
981 NORET_TYPE void complete_and_exit(struct completion *comp, long code)
982 {
983 if (comp)
984 complete(comp);
985
986 do_exit(code);
987 }
988
989 EXPORT_SYMBOL(complete_and_exit);
990
991 asmlinkage long sys_exit(int error_code)
992 {
993 do_exit((error_code&0xff)<<8);
994 }
995
996 /*
997 * Take down every thread in the group. This is called by fatal signals
998 * as well as by sys_exit_group (below).
999 */
1000 NORET_TYPE void
1001 do_group_exit(int exit_code)
1002 {
1003 BUG_ON(exit_code & 0x80); /* core dumps don't get here */
1004
1005 if (current->signal->flags & SIGNAL_GROUP_EXIT)
1006 exit_code = current->signal->group_exit_code;
1007 else if (!thread_group_empty(current)) {
1008 struct signal_struct *const sig = current->signal;
1009 struct sighand_struct *const sighand = current->sighand;
1010 spin_lock_irq(&sighand->siglock);
1011 if (sig->flags & SIGNAL_GROUP_EXIT)
1012 /* Another thread got here before we took the lock. */
1013 exit_code = sig->group_exit_code;
1014 else {
1015 sig->group_exit_code = exit_code;
1016 zap_other_threads(current);
1017 }
1018 spin_unlock_irq(&sighand->siglock);
1019 }
1020
1021 do_exit(exit_code);
1022 /* NOTREACHED */
1023 }
1024
1025 /*
1026 * this kills every thread in the thread group. Note that any externally
1027 * wait4()-ing process will get the correct exit code - even if this
1028 * thread is not the thread group leader.
1029 */
1030 asmlinkage void sys_exit_group(int error_code)
1031 {
1032 do_group_exit((error_code & 0xff) << 8);
1033 }
1034
1035 static int eligible_child(pid_t pid, int options, struct task_struct *p)
1036 {
1037 if (pid > 0) {
1038 if (p->pid != pid)
1039 return 0;
1040 } else if (!pid) {
1041 if (process_group(p) != process_group(current))
1042 return 0;
1043 } else if (pid != -1) {
1044 if (process_group(p) != -pid)
1045 return 0;
1046 }
1047
1048 /*
1049 * Do not consider detached threads that are
1050 * not ptraced:
1051 */
1052 if (p->exit_signal == -1 && !p->ptrace)
1053 return 0;
1054
1055 /* Wait for all children (clone and not) if __WALL is set;
1056 * otherwise, wait for clone children *only* if __WCLONE is
1057 * set; otherwise, wait for non-clone children *only*. (Note:
1058 * A "clone" child here is one that reports to its parent
1059 * using a signal other than SIGCHLD.) */
1060 if (((p->exit_signal != SIGCHLD) ^ ((options & __WCLONE) != 0))
1061 && !(options & __WALL))
1062 return 0;
1063 /*
1064 * Do not consider thread group leaders that are
1065 * in a non-empty thread group:
1066 */
1067 if (delay_group_leader(p))
1068 return 2;
1069
1070 if (security_task_wait(p))
1071 return 0;
1072
1073 return 1;
1074 }
1075
1076 static int wait_noreap_copyout(struct task_struct *p, pid_t pid, uid_t uid,
1077 int why, int status,
1078 struct siginfo __user *infop,
1079 struct rusage __user *rusagep)
1080 {
1081 int retval = rusagep ? getrusage(p, RUSAGE_BOTH, rusagep) : 0;
1082
1083 put_task_struct(p);
1084 if (!retval)
1085 retval = put_user(SIGCHLD, &infop->si_signo);
1086 if (!retval)
1087 retval = put_user(0, &infop->si_errno);
1088 if (!retval)
1089 retval = put_user((short)why, &infop->si_code);
1090 if (!retval)
1091 retval = put_user(pid, &infop->si_pid);
1092 if (!retval)
1093 retval = put_user(uid, &infop->si_uid);
1094 if (!retval)
1095 retval = put_user(status, &infop->si_status);
1096 if (!retval)
1097 retval = pid;
1098 return retval;
1099 }
1100
1101 /*
1102 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold
1103 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1104 * the lock and this task is uninteresting. If we return nonzero, we have
1105 * released the lock and the system call should return.
1106 */
1107 static int wait_task_zombie(struct task_struct *p, int noreap,
1108 struct siginfo __user *infop,
1109 int __user *stat_addr, struct rusage __user *ru)
1110 {
1111 unsigned long state;
1112 int retval;
1113 int status;
1114
1115 if (unlikely(noreap)) {
1116 pid_t pid = p->pid;
1117 uid_t uid = p->uid;
1118 int exit_code = p->exit_code;
1119 int why, status;
1120
1121 if (unlikely(p->exit_state != EXIT_ZOMBIE))
1122 return 0;
1123 if (unlikely(p->exit_signal == -1 && p->ptrace == 0))
1124 return 0;
1125 get_task_struct(p);
1126 read_unlock(&tasklist_lock);
1127 if ((exit_code & 0x7f) == 0) {
1128 why = CLD_EXITED;
1129 status = exit_code >> 8;
1130 } else {
1131 why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
1132 status = exit_code & 0x7f;
1133 }
1134 return wait_noreap_copyout(p, pid, uid, why,
1135 status, infop, ru);
1136 }
1137
1138 /*
1139 * Try to move the task's state to DEAD
1140 * only one thread is allowed to do this:
1141 */
1142 state = xchg(&p->exit_state, EXIT_DEAD);
1143 if (state != EXIT_ZOMBIE) {
1144 BUG_ON(state != EXIT_DEAD);
1145 return 0;
1146 }
1147 if (unlikely(p->exit_signal == -1 && p->ptrace == 0)) {
1148 /*
1149 * This can only happen in a race with a ptraced thread
1150 * dying on another processor.
1151 */
1152 return 0;
1153 }
1154
1155 if (likely(p->real_parent == p->parent) && likely(p->signal)) {
1156 struct signal_struct *psig;
1157 struct signal_struct *sig;
1158
1159 /*
1160 * The resource counters for the group leader are in its
1161 * own task_struct. Those for dead threads in the group
1162 * are in its signal_struct, as are those for the child
1163 * processes it has previously reaped. All these
1164 * accumulate in the parent's signal_struct c* fields.
1165 *
1166 * We don't bother to take a lock here to protect these
1167 * p->signal fields, because they are only touched by
1168 * __exit_signal, which runs with tasklist_lock
1169 * write-locked anyway, and so is excluded here. We do
1170 * need to protect the access to p->parent->signal fields,
1171 * as other threads in the parent group can be right
1172 * here reaping other children at the same time.
1173 */
1174 spin_lock_irq(&p->parent->sighand->siglock);
1175 psig = p->parent->signal;
1176 sig = p->signal;
1177 psig->cutime =
1178 cputime_add(psig->cutime,
1179 cputime_add(p->utime,
1180 cputime_add(sig->utime,
1181 sig->cutime)));
1182 psig->cstime =
1183 cputime_add(psig->cstime,
1184 cputime_add(p->stime,
1185 cputime_add(sig->stime,
1186 sig->cstime)));
1187 psig->cmin_flt +=
1188 p->min_flt + sig->min_flt + sig->cmin_flt;
1189 psig->cmaj_flt +=
1190 p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1191 psig->cnvcsw +=
1192 p->nvcsw + sig->nvcsw + sig->cnvcsw;
1193 psig->cnivcsw +=
1194 p->nivcsw + sig->nivcsw + sig->cnivcsw;
1195 spin_unlock_irq(&p->parent->sighand->siglock);
1196 }
1197
1198 /*
1199 * Now we are sure this task is interesting, and no other
1200 * thread can reap it because we set its state to EXIT_DEAD.
1201 */
1202 read_unlock(&tasklist_lock);
1203
1204 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1205 status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1206 ? p->signal->group_exit_code : p->exit_code;
1207 if (!retval && stat_addr)
1208 retval = put_user(status, stat_addr);
1209 if (!retval && infop)
1210 retval = put_user(SIGCHLD, &infop->si_signo);
1211 if (!retval && infop)
1212 retval = put_user(0, &infop->si_errno);
1213 if (!retval && infop) {
1214 int why;
1215
1216 if ((status & 0x7f) == 0) {
1217 why = CLD_EXITED;
1218 status >>= 8;
1219 } else {
1220 why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1221 status &= 0x7f;
1222 }
1223 retval = put_user((short)why, &infop->si_code);
1224 if (!retval)
1225 retval = put_user(status, &infop->si_status);
1226 }
1227 if (!retval && infop)
1228 retval = put_user(p->pid, &infop->si_pid);
1229 if (!retval && infop)
1230 retval = put_user(p->uid, &infop->si_uid);
1231 if (retval) {
1232 // TODO: is this safe?
1233 p->exit_state = EXIT_ZOMBIE;
1234 return retval;
1235 }
1236 retval = p->pid;
1237 if (p->real_parent != p->parent) {
1238 write_lock_irq(&tasklist_lock);
1239 /* Double-check with lock held. */
1240 if (p->real_parent != p->parent) {
1241 __ptrace_unlink(p);
1242 // TODO: is this safe?
1243 p->exit_state = EXIT_ZOMBIE;
1244 /*
1245 * If this is not a detached task, notify the parent.
1246 * If it's still not detached after that, don't release
1247 * it now.
1248 */
1249 if (p->exit_signal != -1) {
1250 do_notify_parent(p, p->exit_signal);
1251 if (p->exit_signal != -1)
1252 p = NULL;
1253 }
1254 }
1255 write_unlock_irq(&tasklist_lock);
1256 }
1257 if (p != NULL)
1258 release_task(p);
1259 BUG_ON(!retval);
1260 return retval;
1261 }
1262
1263 /*
1264 * Handle sys_wait4 work for one task in state TASK_STOPPED. We hold
1265 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1266 * the lock and this task is uninteresting. If we return nonzero, we have
1267 * released the lock and the system call should return.
1268 */
1269 static int wait_task_stopped(struct task_struct *p, int delayed_group_leader,
1270 int noreap, struct siginfo __user *infop,
1271 int __user *stat_addr, struct rusage __user *ru)
1272 {
1273 int retval, exit_code;
1274
1275 if (!p->exit_code)
1276 return 0;
1277 if (delayed_group_leader && !(p->ptrace & PT_PTRACED) &&
1278 p->signal && p->signal->group_stop_count > 0)
1279 /*
1280 * A group stop is in progress and this is the group leader.
1281 * We won't report until all threads have stopped.
1282 */
1283 return 0;
1284
1285 /*
1286 * Now we are pretty sure this task is interesting.
1287 * Make sure it doesn't get reaped out from under us while we
1288 * give up the lock and then examine it below. We don't want to
1289 * keep holding onto the tasklist_lock while we call getrusage and
1290 * possibly take page faults for user memory.
1291 */
1292 get_task_struct(p);
1293 read_unlock(&tasklist_lock);
1294
1295 if (unlikely(noreap)) {
1296 pid_t pid = p->pid;
1297 uid_t uid = p->uid;
1298 int why = (p->ptrace & PT_PTRACED) ? CLD_TRAPPED : CLD_STOPPED;
1299
1300 exit_code = p->exit_code;
1301 if (unlikely(!exit_code) ||
1302 unlikely(p->state & TASK_TRACED))
1303 goto bail_ref;
1304 return wait_noreap_copyout(p, pid, uid,
1305 why, (exit_code << 8) | 0x7f,
1306 infop, ru);
1307 }
1308
1309 write_lock_irq(&tasklist_lock);
1310
1311 /*
1312 * This uses xchg to be atomic with the thread resuming and setting
1313 * it. It must also be done with the write lock held to prevent a
1314 * race with the EXIT_ZOMBIE case.
1315 */
1316 exit_code = xchg(&p->exit_code, 0);
1317 if (unlikely(p->exit_state)) {
1318 /*
1319 * The task resumed and then died. Let the next iteration
1320 * catch it in EXIT_ZOMBIE. Note that exit_code might
1321 * already be zero here if it resumed and did _exit(0).
1322 * The task itself is dead and won't touch exit_code again;
1323 * other processors in this function are locked out.
1324 */
1325 p->exit_code = exit_code;
1326 exit_code = 0;
1327 }
1328 if (unlikely(exit_code == 0)) {
1329 /*
1330 * Another thread in this function got to it first, or it
1331 * resumed, or it resumed and then died.
1332 */
1333 write_unlock_irq(&tasklist_lock);
1334 bail_ref:
1335 put_task_struct(p);
1336 /*
1337 * We are returning to the wait loop without having successfully
1338 * removed the process and having released the lock. We cannot
1339 * continue, since the "p" task pointer is potentially stale.
1340 *
1341 * Return -EAGAIN, and do_wait() will restart the loop from the
1342 * beginning. Do _not_ re-acquire the lock.
1343 */
1344 return -EAGAIN;
1345 }
1346
1347 /* move to end of parent's list to avoid starvation */
1348 remove_parent(p);
1349 add_parent(p);
1350
1351 write_unlock_irq(&tasklist_lock);
1352
1353 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1354 if (!retval && stat_addr)
1355 retval = put_user((exit_code << 8) | 0x7f, stat_addr);
1356 if (!retval && infop)
1357 retval = put_user(SIGCHLD, &infop->si_signo);
1358 if (!retval && infop)
1359 retval = put_user(0, &infop->si_errno);
1360 if (!retval && infop)
1361 retval = put_user((short)((p->ptrace & PT_PTRACED)
1362 ? CLD_TRAPPED : CLD_STOPPED),
1363 &infop->si_code);
1364 if (!retval && infop)
1365 retval = put_user(exit_code, &infop->si_status);
1366 if (!retval && infop)
1367 retval = put_user(p->pid, &infop->si_pid);
1368 if (!retval && infop)
1369 retval = put_user(p->uid, &infop->si_uid);
1370 if (!retval)
1371 retval = p->pid;
1372 put_task_struct(p);
1373
1374 BUG_ON(!retval);
1375 return retval;
1376 }
1377
1378 /*
1379 * Handle do_wait work for one task in a live, non-stopped state.
1380 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1381 * the lock and this task is uninteresting. If we return nonzero, we have
1382 * released the lock and the system call should return.
1383 */
1384 static int wait_task_continued(struct task_struct *p, int noreap,
1385 struct siginfo __user *infop,
1386 int __user *stat_addr, struct rusage __user *ru)
1387 {
1388 int retval;
1389 pid_t pid;
1390 uid_t uid;
1391
1392 if (unlikely(!p->signal))
1393 return 0;
1394
1395 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1396 return 0;
1397
1398 spin_lock_irq(&p->sighand->siglock);
1399 /* Re-check with the lock held. */
1400 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1401 spin_unlock_irq(&p->sighand->siglock);
1402 return 0;
1403 }
1404 if (!noreap)
1405 p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1406 spin_unlock_irq(&p->sighand->siglock);
1407
1408 pid = p->pid;
1409 uid = p->uid;
1410 get_task_struct(p);
1411 read_unlock(&tasklist_lock);
1412
1413 if (!infop) {
1414 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1415 put_task_struct(p);
1416 if (!retval && stat_addr)
1417 retval = put_user(0xffff, stat_addr);
1418 if (!retval)
1419 retval = p->pid;
1420 } else {
1421 retval = wait_noreap_copyout(p, pid, uid,
1422 CLD_CONTINUED, SIGCONT,
1423 infop, ru);
1424 BUG_ON(retval == 0);
1425 }
1426
1427 return retval;
1428 }
1429
1430
1431 static inline int my_ptrace_child(struct task_struct *p)
1432 {
1433 if (!(p->ptrace & PT_PTRACED))
1434 return 0;
1435 if (!(p->ptrace & PT_ATTACHED))
1436 return 1;
1437 /*
1438 * This child was PTRACE_ATTACH'd. We should be seeing it only if
1439 * we are the attacher. If we are the real parent, this is a race
1440 * inside ptrace_attach. It is waiting for the tasklist_lock,
1441 * which we have to switch the parent links, but has already set
1442 * the flags in p->ptrace.
1443 */
1444 return (p->parent != p->real_parent);
1445 }
1446
1447 static long do_wait(pid_t pid, int options, struct siginfo __user *infop,
1448 int __user *stat_addr, struct rusage __user *ru)
1449 {
1450 DECLARE_WAITQUEUE(wait, current);
1451 struct task_struct *tsk;
1452 int flag, retval;
1453
1454 add_wait_queue(&current->signal->wait_chldexit,&wait);
1455 repeat:
1456 /*
1457 * We will set this flag if we see any child that might later
1458 * match our criteria, even if we are not able to reap it yet.
1459 */
1460 flag = 0;
1461 current->state = TASK_INTERRUPTIBLE;
1462 read_lock(&tasklist_lock);
1463 tsk = current;
1464 do {
1465 struct task_struct *p;
1466 struct list_head *_p;
1467 int ret;
1468
1469 list_for_each(_p,&tsk->children) {
1470 p = list_entry(_p, struct task_struct, sibling);
1471
1472 ret = eligible_child(pid, options, p);
1473 if (!ret)
1474 continue;
1475
1476 switch (p->state) {
1477 case TASK_TRACED:
1478 /*
1479 * When we hit the race with PTRACE_ATTACH,
1480 * we will not report this child. But the
1481 * race means it has not yet been moved to
1482 * our ptrace_children list, so we need to
1483 * set the flag here to avoid a spurious ECHILD
1484 * when the race happens with the only child.
1485 */
1486 flag = 1;
1487 if (!my_ptrace_child(p))
1488 continue;
1489 /*FALLTHROUGH*/
1490 case TASK_STOPPED:
1491 /*
1492 * It's stopped now, so it might later
1493 * continue, exit, or stop again.
1494 */
1495 flag = 1;
1496 if (!(options & WUNTRACED) &&
1497 !my_ptrace_child(p))
1498 continue;
1499 retval = wait_task_stopped(p, ret == 2,
1500 (options & WNOWAIT),
1501 infop,
1502 stat_addr, ru);
1503 if (retval == -EAGAIN)
1504 goto repeat;
1505 if (retval != 0) /* He released the lock. */
1506 goto end;
1507 break;
1508 default:
1509 // case EXIT_DEAD:
1510 if (p->exit_state == EXIT_DEAD)
1511 continue;
1512 // case EXIT_ZOMBIE:
1513 if (p->exit_state == EXIT_ZOMBIE) {
1514 /*
1515 * Eligible but we cannot release
1516 * it yet:
1517 */
1518 if (ret == 2)
1519 goto check_continued;
1520 if (!likely(options & WEXITED))
1521 continue;
1522 retval = wait_task_zombie(
1523 p, (options & WNOWAIT),
1524 infop, stat_addr, ru);
1525 /* He released the lock. */
1526 if (retval != 0)
1527 goto end;
1528 break;
1529 }
1530 check_continued:
1531 /*
1532 * It's running now, so it might later
1533 * exit, stop, or stop and then continue.
1534 */
1535 flag = 1;
1536 if (!unlikely(options & WCONTINUED))
1537 continue;
1538 retval = wait_task_continued(
1539 p, (options & WNOWAIT),
1540 infop, stat_addr, ru);
1541 if (retval != 0) /* He released the lock. */
1542 goto end;
1543 break;
1544 }
1545 }
1546 if (!flag) {
1547 list_for_each(_p, &tsk->ptrace_children) {
1548 p = list_entry(_p, struct task_struct,
1549 ptrace_list);
1550 if (!eligible_child(pid, options, p))
1551 continue;
1552 flag = 1;
1553 break;
1554 }
1555 }
1556 if (options & __WNOTHREAD)
1557 break;
1558 tsk = next_thread(tsk);
1559 BUG_ON(tsk->signal != current->signal);
1560 } while (tsk != current);
1561
1562 read_unlock(&tasklist_lock);
1563 if (flag) {
1564 retval = 0;
1565 if (options & WNOHANG)
1566 goto end;
1567 retval = -ERESTARTSYS;
1568 if (signal_pending(current))
1569 goto end;
1570 schedule();
1571 goto repeat;
1572 }
1573 retval = -ECHILD;
1574 end:
1575 current->state = TASK_RUNNING;
1576 remove_wait_queue(&current->signal->wait_chldexit,&wait);
1577 if (infop) {
1578 if (retval > 0)
1579 retval = 0;
1580 else {
1581 /*
1582 * For a WNOHANG return, clear out all the fields
1583 * we would set so the user can easily tell the
1584 * difference.
1585 */
1586 if (!retval)
1587 retval = put_user(0, &infop->si_signo);
1588 if (!retval)
1589 retval = put_user(0, &infop->si_errno);
1590 if (!retval)
1591 retval = put_user(0, &infop->si_code);
1592 if (!retval)
1593 retval = put_user(0, &infop->si_pid);
1594 if (!retval)
1595 retval = put_user(0, &infop->si_uid);
1596 if (!retval)
1597 retval = put_user(0, &infop->si_status);
1598 }
1599 }
1600 return retval;
1601 }
1602
1603 asmlinkage long sys_waitid(int which, pid_t pid,
1604 struct siginfo __user *infop, int options,
1605 struct rusage __user *ru)
1606 {
1607 long ret;
1608
1609 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED))
1610 return -EINVAL;
1611 if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1612 return -EINVAL;
1613
1614 switch (which) {
1615 case P_ALL:
1616 pid = -1;
1617 break;
1618 case P_PID:
1619 if (pid <= 0)
1620 return -EINVAL;
1621 break;
1622 case P_PGID:
1623 if (pid <= 0)
1624 return -EINVAL;
1625 pid = -pid;
1626 break;
1627 default:
1628 return -EINVAL;
1629 }
1630
1631 ret = do_wait(pid, options, infop, NULL, ru);
1632
1633 /* avoid REGPARM breakage on x86: */
1634 prevent_tail_call(ret);
1635 return ret;
1636 }
1637
1638 asmlinkage long sys_wait4(pid_t pid, int __user *stat_addr,
1639 int options, struct rusage __user *ru)
1640 {
1641 long ret;
1642
1643 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1644 __WNOTHREAD|__WCLONE|__WALL))
1645 return -EINVAL;
1646 ret = do_wait(pid, options | WEXITED, NULL, stat_addr, ru);
1647
1648 /* avoid REGPARM breakage on x86: */
1649 prevent_tail_call(ret);
1650 return ret;
1651 }
1652
1653 #ifdef __ARCH_WANT_SYS_WAITPID
1654
1655 /*
1656 * sys_waitpid() remains for compatibility. waitpid() should be
1657 * implemented by calling sys_wait4() from libc.a.
1658 */
1659 asmlinkage long sys_waitpid(pid_t pid, int __user *stat_addr, int options)
1660 {
1661 return sys_wait4(pid, stat_addr, options, NULL);
1662 }
1663
1664 #endif
This page took 0.063617 seconds and 6 git commands to generate.