wait: fix reparent_leader() vs EXIT_DEAD->EXIT_ZOMBIE race
[deliverable/linux.git] / kernel / exit.c
1 /*
2 * linux/kernel/exit.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 #include <linux/mm.h>
8 #include <linux/slab.h>
9 #include <linux/interrupt.h>
10 #include <linux/module.h>
11 #include <linux/capability.h>
12 #include <linux/completion.h>
13 #include <linux/personality.h>
14 #include <linux/tty.h>
15 #include <linux/iocontext.h>
16 #include <linux/key.h>
17 #include <linux/security.h>
18 #include <linux/cpu.h>
19 #include <linux/acct.h>
20 #include <linux/tsacct_kern.h>
21 #include <linux/file.h>
22 #include <linux/fdtable.h>
23 #include <linux/freezer.h>
24 #include <linux/binfmts.h>
25 #include <linux/nsproxy.h>
26 #include <linux/pid_namespace.h>
27 #include <linux/ptrace.h>
28 #include <linux/profile.h>
29 #include <linux/mount.h>
30 #include <linux/proc_fs.h>
31 #include <linux/kthread.h>
32 #include <linux/mempolicy.h>
33 #include <linux/taskstats_kern.h>
34 #include <linux/delayacct.h>
35 #include <linux/cgroup.h>
36 #include <linux/syscalls.h>
37 #include <linux/signal.h>
38 #include <linux/posix-timers.h>
39 #include <linux/cn_proc.h>
40 #include <linux/mutex.h>
41 #include <linux/futex.h>
42 #include <linux/pipe_fs_i.h>
43 #include <linux/audit.h> /* for audit_free() */
44 #include <linux/resource.h>
45 #include <linux/blkdev.h>
46 #include <linux/task_io_accounting_ops.h>
47 #include <linux/tracehook.h>
48 #include <linux/fs_struct.h>
49 #include <linux/init_task.h>
50 #include <linux/perf_event.h>
51 #include <trace/events/sched.h>
52 #include <linux/hw_breakpoint.h>
53 #include <linux/oom.h>
54 #include <linux/writeback.h>
55 #include <linux/shm.h>
56
57 #include <asm/uaccess.h>
58 #include <asm/unistd.h>
59 #include <asm/pgtable.h>
60 #include <asm/mmu_context.h>
61
62 static void exit_mm(struct task_struct * tsk);
63
64 static void __unhash_process(struct task_struct *p, bool group_dead)
65 {
66 nr_threads--;
67 detach_pid(p, PIDTYPE_PID);
68 if (group_dead) {
69 detach_pid(p, PIDTYPE_PGID);
70 detach_pid(p, PIDTYPE_SID);
71
72 list_del_rcu(&p->tasks);
73 list_del_init(&p->sibling);
74 __this_cpu_dec(process_counts);
75 }
76 list_del_rcu(&p->thread_group);
77 list_del_rcu(&p->thread_node);
78 }
79
80 /*
81 * This function expects the tasklist_lock write-locked.
82 */
83 static void __exit_signal(struct task_struct *tsk)
84 {
85 struct signal_struct *sig = tsk->signal;
86 bool group_dead = thread_group_leader(tsk);
87 struct sighand_struct *sighand;
88 struct tty_struct *uninitialized_var(tty);
89 cputime_t utime, stime;
90
91 sighand = rcu_dereference_check(tsk->sighand,
92 lockdep_tasklist_lock_is_held());
93 spin_lock(&sighand->siglock);
94
95 posix_cpu_timers_exit(tsk);
96 if (group_dead) {
97 posix_cpu_timers_exit_group(tsk);
98 tty = sig->tty;
99 sig->tty = NULL;
100 } else {
101 /*
102 * This can only happen if the caller is de_thread().
103 * FIXME: this is the temporary hack, we should teach
104 * posix-cpu-timers to handle this case correctly.
105 */
106 if (unlikely(has_group_leader_pid(tsk)))
107 posix_cpu_timers_exit_group(tsk);
108
109 /*
110 * If there is any task waiting for the group exit
111 * then notify it:
112 */
113 if (sig->notify_count > 0 && !--sig->notify_count)
114 wake_up_process(sig->group_exit_task);
115
116 if (tsk == sig->curr_target)
117 sig->curr_target = next_thread(tsk);
118 /*
119 * Accumulate here the counters for all threads but the
120 * group leader as they die, so they can be added into
121 * the process-wide totals when those are taken.
122 * The group leader stays around as a zombie as long
123 * as there are other threads. When it gets reaped,
124 * the exit.c code will add its counts into these totals.
125 * We won't ever get here for the group leader, since it
126 * will have been the last reference on the signal_struct.
127 */
128 task_cputime(tsk, &utime, &stime);
129 sig->utime += utime;
130 sig->stime += stime;
131 sig->gtime += task_gtime(tsk);
132 sig->min_flt += tsk->min_flt;
133 sig->maj_flt += tsk->maj_flt;
134 sig->nvcsw += tsk->nvcsw;
135 sig->nivcsw += tsk->nivcsw;
136 sig->inblock += task_io_get_inblock(tsk);
137 sig->oublock += task_io_get_oublock(tsk);
138 task_io_accounting_add(&sig->ioac, &tsk->ioac);
139 sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
140 }
141
142 sig->nr_threads--;
143 __unhash_process(tsk, group_dead);
144
145 /*
146 * Do this under ->siglock, we can race with another thread
147 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
148 */
149 flush_sigqueue(&tsk->pending);
150 tsk->sighand = NULL;
151 spin_unlock(&sighand->siglock);
152
153 __cleanup_sighand(sighand);
154 clear_tsk_thread_flag(tsk,TIF_SIGPENDING);
155 if (group_dead) {
156 flush_sigqueue(&sig->shared_pending);
157 tty_kref_put(tty);
158 }
159 }
160
161 static void delayed_put_task_struct(struct rcu_head *rhp)
162 {
163 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
164
165 perf_event_delayed_put(tsk);
166 trace_sched_process_free(tsk);
167 put_task_struct(tsk);
168 }
169
170
171 void release_task(struct task_struct * p)
172 {
173 struct task_struct *leader;
174 int zap_leader;
175 repeat:
176 /* don't need to get the RCU readlock here - the process is dead and
177 * can't be modifying its own credentials. But shut RCU-lockdep up */
178 rcu_read_lock();
179 atomic_dec(&__task_cred(p)->user->processes);
180 rcu_read_unlock();
181
182 proc_flush_task(p);
183
184 write_lock_irq(&tasklist_lock);
185 ptrace_release_task(p);
186 __exit_signal(p);
187
188 /*
189 * If we are the last non-leader member of the thread
190 * group, and the leader is zombie, then notify the
191 * group leader's parent process. (if it wants notification.)
192 */
193 zap_leader = 0;
194 leader = p->group_leader;
195 if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) {
196 /*
197 * If we were the last child thread and the leader has
198 * exited already, and the leader's parent ignores SIGCHLD,
199 * then we are the one who should release the leader.
200 */
201 zap_leader = do_notify_parent(leader, leader->exit_signal);
202 if (zap_leader)
203 leader->exit_state = EXIT_DEAD;
204 }
205
206 write_unlock_irq(&tasklist_lock);
207 release_thread(p);
208 call_rcu(&p->rcu, delayed_put_task_struct);
209
210 p = leader;
211 if (unlikely(zap_leader))
212 goto repeat;
213 }
214
215 /*
216 * This checks not only the pgrp, but falls back on the pid if no
217 * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
218 * without this...
219 *
220 * The caller must hold rcu lock or the tasklist lock.
221 */
222 struct pid *session_of_pgrp(struct pid *pgrp)
223 {
224 struct task_struct *p;
225 struct pid *sid = NULL;
226
227 p = pid_task(pgrp, PIDTYPE_PGID);
228 if (p == NULL)
229 p = pid_task(pgrp, PIDTYPE_PID);
230 if (p != NULL)
231 sid = task_session(p);
232
233 return sid;
234 }
235
236 /*
237 * Determine if a process group is "orphaned", according to the POSIX
238 * definition in 2.2.2.52. Orphaned process groups are not to be affected
239 * by terminal-generated stop signals. Newly orphaned process groups are
240 * to receive a SIGHUP and a SIGCONT.
241 *
242 * "I ask you, have you ever known what it is to be an orphan?"
243 */
244 static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task)
245 {
246 struct task_struct *p;
247
248 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
249 if ((p == ignored_task) ||
250 (p->exit_state && thread_group_empty(p)) ||
251 is_global_init(p->real_parent))
252 continue;
253
254 if (task_pgrp(p->real_parent) != pgrp &&
255 task_session(p->real_parent) == task_session(p))
256 return 0;
257 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
258
259 return 1;
260 }
261
262 int is_current_pgrp_orphaned(void)
263 {
264 int retval;
265
266 read_lock(&tasklist_lock);
267 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
268 read_unlock(&tasklist_lock);
269
270 return retval;
271 }
272
273 static bool has_stopped_jobs(struct pid *pgrp)
274 {
275 struct task_struct *p;
276
277 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
278 if (p->signal->flags & SIGNAL_STOP_STOPPED)
279 return true;
280 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
281
282 return false;
283 }
284
285 /*
286 * Check to see if any process groups have become orphaned as
287 * a result of our exiting, and if they have any stopped jobs,
288 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
289 */
290 static void
291 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
292 {
293 struct pid *pgrp = task_pgrp(tsk);
294 struct task_struct *ignored_task = tsk;
295
296 if (!parent)
297 /* exit: our father is in a different pgrp than
298 * we are and we were the only connection outside.
299 */
300 parent = tsk->real_parent;
301 else
302 /* reparent: our child is in a different pgrp than
303 * we are, and it was the only connection outside.
304 */
305 ignored_task = NULL;
306
307 if (task_pgrp(parent) != pgrp &&
308 task_session(parent) == task_session(tsk) &&
309 will_become_orphaned_pgrp(pgrp, ignored_task) &&
310 has_stopped_jobs(pgrp)) {
311 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
312 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
313 }
314 }
315
316 /*
317 * Let kernel threads use this to say that they allow a certain signal.
318 * Must not be used if kthread was cloned with CLONE_SIGHAND.
319 */
320 int allow_signal(int sig)
321 {
322 if (!valid_signal(sig) || sig < 1)
323 return -EINVAL;
324
325 spin_lock_irq(&current->sighand->siglock);
326 /* This is only needed for daemonize()'ed kthreads */
327 sigdelset(&current->blocked, sig);
328 /*
329 * Kernel threads handle their own signals. Let the signal code
330 * know it'll be handled, so that they don't get converted to
331 * SIGKILL or just silently dropped.
332 */
333 current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2;
334 recalc_sigpending();
335 spin_unlock_irq(&current->sighand->siglock);
336 return 0;
337 }
338
339 EXPORT_SYMBOL(allow_signal);
340
341 int disallow_signal(int sig)
342 {
343 if (!valid_signal(sig) || sig < 1)
344 return -EINVAL;
345
346 spin_lock_irq(&current->sighand->siglock);
347 current->sighand->action[(sig)-1].sa.sa_handler = SIG_IGN;
348 recalc_sigpending();
349 spin_unlock_irq(&current->sighand->siglock);
350 return 0;
351 }
352
353 EXPORT_SYMBOL(disallow_signal);
354
355 #ifdef CONFIG_MM_OWNER
356 /*
357 * A task is exiting. If it owned this mm, find a new owner for the mm.
358 */
359 void mm_update_next_owner(struct mm_struct *mm)
360 {
361 struct task_struct *c, *g, *p = current;
362
363 retry:
364 /*
365 * If the exiting or execing task is not the owner, it's
366 * someone else's problem.
367 */
368 if (mm->owner != p)
369 return;
370 /*
371 * The current owner is exiting/execing and there are no other
372 * candidates. Do not leave the mm pointing to a possibly
373 * freed task structure.
374 */
375 if (atomic_read(&mm->mm_users) <= 1) {
376 mm->owner = NULL;
377 return;
378 }
379
380 read_lock(&tasklist_lock);
381 /*
382 * Search in the children
383 */
384 list_for_each_entry(c, &p->children, sibling) {
385 if (c->mm == mm)
386 goto assign_new_owner;
387 }
388
389 /*
390 * Search in the siblings
391 */
392 list_for_each_entry(c, &p->real_parent->children, sibling) {
393 if (c->mm == mm)
394 goto assign_new_owner;
395 }
396
397 /*
398 * Search through everything else. We should not get
399 * here often
400 */
401 do_each_thread(g, c) {
402 if (c->mm == mm)
403 goto assign_new_owner;
404 } while_each_thread(g, c);
405
406 read_unlock(&tasklist_lock);
407 /*
408 * We found no owner yet mm_users > 1: this implies that we are
409 * most likely racing with swapoff (try_to_unuse()) or /proc or
410 * ptrace or page migration (get_task_mm()). Mark owner as NULL.
411 */
412 mm->owner = NULL;
413 return;
414
415 assign_new_owner:
416 BUG_ON(c == p);
417 get_task_struct(c);
418 /*
419 * The task_lock protects c->mm from changing.
420 * We always want mm->owner->mm == mm
421 */
422 task_lock(c);
423 /*
424 * Delay read_unlock() till we have the task_lock()
425 * to ensure that c does not slip away underneath us
426 */
427 read_unlock(&tasklist_lock);
428 if (c->mm != mm) {
429 task_unlock(c);
430 put_task_struct(c);
431 goto retry;
432 }
433 mm->owner = c;
434 task_unlock(c);
435 put_task_struct(c);
436 }
437 #endif /* CONFIG_MM_OWNER */
438
439 /*
440 * Turn us into a lazy TLB process if we
441 * aren't already..
442 */
443 static void exit_mm(struct task_struct * tsk)
444 {
445 struct mm_struct *mm = tsk->mm;
446 struct core_state *core_state;
447
448 mm_release(tsk, mm);
449 if (!mm)
450 return;
451 sync_mm_rss(mm);
452 /*
453 * Serialize with any possible pending coredump.
454 * We must hold mmap_sem around checking core_state
455 * and clearing tsk->mm. The core-inducing thread
456 * will increment ->nr_threads for each thread in the
457 * group with ->mm != NULL.
458 */
459 down_read(&mm->mmap_sem);
460 core_state = mm->core_state;
461 if (core_state) {
462 struct core_thread self;
463 up_read(&mm->mmap_sem);
464
465 self.task = tsk;
466 self.next = xchg(&core_state->dumper.next, &self);
467 /*
468 * Implies mb(), the result of xchg() must be visible
469 * to core_state->dumper.
470 */
471 if (atomic_dec_and_test(&core_state->nr_threads))
472 complete(&core_state->startup);
473
474 for (;;) {
475 set_task_state(tsk, TASK_UNINTERRUPTIBLE);
476 if (!self.task) /* see coredump_finish() */
477 break;
478 freezable_schedule();
479 }
480 __set_task_state(tsk, TASK_RUNNING);
481 down_read(&mm->mmap_sem);
482 }
483 atomic_inc(&mm->mm_count);
484 BUG_ON(mm != tsk->active_mm);
485 /* more a memory barrier than a real lock */
486 task_lock(tsk);
487 tsk->mm = NULL;
488 up_read(&mm->mmap_sem);
489 enter_lazy_tlb(mm, current);
490 task_unlock(tsk);
491 mm_update_next_owner(mm);
492 mmput(mm);
493 }
494
495 /*
496 * When we die, we re-parent all our children, and try to:
497 * 1. give them to another thread in our thread group, if such a member exists
498 * 2. give it to the first ancestor process which prctl'd itself as a
499 * child_subreaper for its children (like a service manager)
500 * 3. give it to the init process (PID 1) in our pid namespace
501 */
502 static struct task_struct *find_new_reaper(struct task_struct *father)
503 __releases(&tasklist_lock)
504 __acquires(&tasklist_lock)
505 {
506 struct pid_namespace *pid_ns = task_active_pid_ns(father);
507 struct task_struct *thread;
508
509 thread = father;
510 while_each_thread(father, thread) {
511 if (thread->flags & PF_EXITING)
512 continue;
513 if (unlikely(pid_ns->child_reaper == father))
514 pid_ns->child_reaper = thread;
515 return thread;
516 }
517
518 if (unlikely(pid_ns->child_reaper == father)) {
519 write_unlock_irq(&tasklist_lock);
520 if (unlikely(pid_ns == &init_pid_ns)) {
521 panic("Attempted to kill init! exitcode=0x%08x\n",
522 father->signal->group_exit_code ?:
523 father->exit_code);
524 }
525
526 zap_pid_ns_processes(pid_ns);
527 write_lock_irq(&tasklist_lock);
528 } else if (father->signal->has_child_subreaper) {
529 struct task_struct *reaper;
530
531 /*
532 * Find the first ancestor marked as child_subreaper.
533 * Note that the code below checks same_thread_group(reaper,
534 * pid_ns->child_reaper). This is what we need to DTRT in a
535 * PID namespace. However we still need the check above, see
536 * http://marc.info/?l=linux-kernel&m=131385460420380
537 */
538 for (reaper = father->real_parent;
539 reaper != &init_task;
540 reaper = reaper->real_parent) {
541 if (same_thread_group(reaper, pid_ns->child_reaper))
542 break;
543 if (!reaper->signal->is_child_subreaper)
544 continue;
545 thread = reaper;
546 do {
547 if (!(thread->flags & PF_EXITING))
548 return reaper;
549 } while_each_thread(reaper, thread);
550 }
551 }
552
553 return pid_ns->child_reaper;
554 }
555
556 /*
557 * Any that need to be release_task'd are put on the @dead list.
558 */
559 static void reparent_leader(struct task_struct *father, struct task_struct *p,
560 struct list_head *dead)
561 {
562 list_move_tail(&p->sibling, &p->real_parent->children);
563 /*
564 * If this is a threaded reparent there is no need to
565 * notify anyone anything has happened.
566 */
567 if (same_thread_group(p->real_parent, father))
568 return;
569
570 /*
571 * We don't want people slaying init.
572 *
573 * Note: we do this even if it is EXIT_DEAD, wait_task_zombie()
574 * can change ->exit_state to EXIT_ZOMBIE. If this is the final
575 * state, do_notify_parent() was already called and ->exit_signal
576 * doesn't matter.
577 */
578 p->exit_signal = SIGCHLD;
579
580 if (p->exit_state == EXIT_DEAD)
581 return;
582
583 /* If it has exited notify the new parent about this child's death. */
584 if (!p->ptrace &&
585 p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
586 if (do_notify_parent(p, p->exit_signal)) {
587 p->exit_state = EXIT_DEAD;
588 list_move_tail(&p->sibling, dead);
589 }
590 }
591
592 kill_orphaned_pgrp(p, father);
593 }
594
595 static void forget_original_parent(struct task_struct *father)
596 {
597 struct task_struct *p, *n, *reaper;
598 LIST_HEAD(dead_children);
599
600 write_lock_irq(&tasklist_lock);
601 /*
602 * Note that exit_ptrace() and find_new_reaper() might
603 * drop tasklist_lock and reacquire it.
604 */
605 exit_ptrace(father);
606 reaper = find_new_reaper(father);
607
608 list_for_each_entry_safe(p, n, &father->children, sibling) {
609 struct task_struct *t = p;
610 do {
611 t->real_parent = reaper;
612 if (t->parent == father) {
613 BUG_ON(t->ptrace);
614 t->parent = t->real_parent;
615 }
616 if (t->pdeath_signal)
617 group_send_sig_info(t->pdeath_signal,
618 SEND_SIG_NOINFO, t);
619 } while_each_thread(p, t);
620 reparent_leader(father, p, &dead_children);
621 }
622 write_unlock_irq(&tasklist_lock);
623
624 BUG_ON(!list_empty(&father->children));
625
626 list_for_each_entry_safe(p, n, &dead_children, sibling) {
627 list_del_init(&p->sibling);
628 release_task(p);
629 }
630 }
631
632 /*
633 * Send signals to all our closest relatives so that they know
634 * to properly mourn us..
635 */
636 static void exit_notify(struct task_struct *tsk, int group_dead)
637 {
638 bool autoreap;
639
640 /*
641 * This does two things:
642 *
643 * A. Make init inherit all the child processes
644 * B. Check to see if any process groups have become orphaned
645 * as a result of our exiting, and if they have any stopped
646 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
647 */
648 forget_original_parent(tsk);
649
650 write_lock_irq(&tasklist_lock);
651 if (group_dead)
652 kill_orphaned_pgrp(tsk->group_leader, NULL);
653
654 if (unlikely(tsk->ptrace)) {
655 int sig = thread_group_leader(tsk) &&
656 thread_group_empty(tsk) &&
657 !ptrace_reparented(tsk) ?
658 tsk->exit_signal : SIGCHLD;
659 autoreap = do_notify_parent(tsk, sig);
660 } else if (thread_group_leader(tsk)) {
661 autoreap = thread_group_empty(tsk) &&
662 do_notify_parent(tsk, tsk->exit_signal);
663 } else {
664 autoreap = true;
665 }
666
667 tsk->exit_state = autoreap ? EXIT_DEAD : EXIT_ZOMBIE;
668
669 /* mt-exec, de_thread() is waiting for group leader */
670 if (unlikely(tsk->signal->notify_count < 0))
671 wake_up_process(tsk->signal->group_exit_task);
672 write_unlock_irq(&tasklist_lock);
673
674 /* If the process is dead, release it - nobody will wait for it */
675 if (autoreap)
676 release_task(tsk);
677 }
678
679 #ifdef CONFIG_DEBUG_STACK_USAGE
680 static void check_stack_usage(void)
681 {
682 static DEFINE_SPINLOCK(low_water_lock);
683 static int lowest_to_date = THREAD_SIZE;
684 unsigned long free;
685
686 free = stack_not_used(current);
687
688 if (free >= lowest_to_date)
689 return;
690
691 spin_lock(&low_water_lock);
692 if (free < lowest_to_date) {
693 printk(KERN_WARNING "%s (%d) used greatest stack depth: "
694 "%lu bytes left\n",
695 current->comm, task_pid_nr(current), free);
696 lowest_to_date = free;
697 }
698 spin_unlock(&low_water_lock);
699 }
700 #else
701 static inline void check_stack_usage(void) {}
702 #endif
703
704 void do_exit(long code)
705 {
706 struct task_struct *tsk = current;
707 int group_dead;
708
709 profile_task_exit(tsk);
710
711 WARN_ON(blk_needs_flush_plug(tsk));
712
713 if (unlikely(in_interrupt()))
714 panic("Aiee, killing interrupt handler!");
715 if (unlikely(!tsk->pid))
716 panic("Attempted to kill the idle task!");
717
718 /*
719 * If do_exit is called because this processes oopsed, it's possible
720 * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before
721 * continuing. Amongst other possible reasons, this is to prevent
722 * mm_release()->clear_child_tid() from writing to a user-controlled
723 * kernel address.
724 */
725 set_fs(USER_DS);
726
727 ptrace_event(PTRACE_EVENT_EXIT, code);
728
729 validate_creds_for_do_exit(tsk);
730
731 /*
732 * We're taking recursive faults here in do_exit. Safest is to just
733 * leave this task alone and wait for reboot.
734 */
735 if (unlikely(tsk->flags & PF_EXITING)) {
736 printk(KERN_ALERT
737 "Fixing recursive fault but reboot is needed!\n");
738 /*
739 * We can do this unlocked here. The futex code uses
740 * this flag just to verify whether the pi state
741 * cleanup has been done or not. In the worst case it
742 * loops once more. We pretend that the cleanup was
743 * done as there is no way to return. Either the
744 * OWNER_DIED bit is set by now or we push the blocked
745 * task into the wait for ever nirwana as well.
746 */
747 tsk->flags |= PF_EXITPIDONE;
748 set_current_state(TASK_UNINTERRUPTIBLE);
749 schedule();
750 }
751
752 exit_signals(tsk); /* sets PF_EXITING */
753 /*
754 * tsk->flags are checked in the futex code to protect against
755 * an exiting task cleaning up the robust pi futexes.
756 */
757 smp_mb();
758 raw_spin_unlock_wait(&tsk->pi_lock);
759
760 if (unlikely(in_atomic()))
761 printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n",
762 current->comm, task_pid_nr(current),
763 preempt_count());
764
765 acct_update_integrals(tsk);
766 /* sync mm's RSS info before statistics gathering */
767 if (tsk->mm)
768 sync_mm_rss(tsk->mm);
769 group_dead = atomic_dec_and_test(&tsk->signal->live);
770 if (group_dead) {
771 hrtimer_cancel(&tsk->signal->real_timer);
772 exit_itimers(tsk->signal);
773 if (tsk->mm)
774 setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
775 }
776 acct_collect(code, group_dead);
777 if (group_dead)
778 tty_audit_exit();
779 audit_free(tsk);
780
781 tsk->exit_code = code;
782 taskstats_exit(tsk, group_dead);
783
784 exit_mm(tsk);
785
786 if (group_dead)
787 acct_process();
788 trace_sched_process_exit(tsk);
789
790 exit_sem(tsk);
791 exit_shm(tsk);
792 exit_files(tsk);
793 exit_fs(tsk);
794 if (group_dead)
795 disassociate_ctty(1);
796 exit_task_namespaces(tsk);
797 exit_task_work(tsk);
798 exit_thread();
799
800 /*
801 * Flush inherited counters to the parent - before the parent
802 * gets woken up by child-exit notifications.
803 *
804 * because of cgroup mode, must be called before cgroup_exit()
805 */
806 perf_event_exit_task(tsk);
807
808 cgroup_exit(tsk);
809
810 module_put(task_thread_info(tsk)->exec_domain->module);
811
812 /*
813 * FIXME: do that only when needed, using sched_exit tracepoint
814 */
815 flush_ptrace_hw_breakpoint(tsk);
816
817 exit_notify(tsk, group_dead);
818 proc_exit_connector(tsk);
819 #ifdef CONFIG_NUMA
820 task_lock(tsk);
821 mpol_put(tsk->mempolicy);
822 tsk->mempolicy = NULL;
823 task_unlock(tsk);
824 #endif
825 #ifdef CONFIG_FUTEX
826 if (unlikely(current->pi_state_cache))
827 kfree(current->pi_state_cache);
828 #endif
829 /*
830 * Make sure we are holding no locks:
831 */
832 debug_check_no_locks_held();
833 /*
834 * We can do this unlocked here. The futex code uses this flag
835 * just to verify whether the pi state cleanup has been done
836 * or not. In the worst case it loops once more.
837 */
838 tsk->flags |= PF_EXITPIDONE;
839
840 if (tsk->io_context)
841 exit_io_context(tsk);
842
843 if (tsk->splice_pipe)
844 free_pipe_info(tsk->splice_pipe);
845
846 if (tsk->task_frag.page)
847 put_page(tsk->task_frag.page);
848
849 validate_creds_for_do_exit(tsk);
850
851 check_stack_usage();
852 preempt_disable();
853 if (tsk->nr_dirtied)
854 __this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
855 exit_rcu();
856
857 /*
858 * The setting of TASK_RUNNING by try_to_wake_up() may be delayed
859 * when the following two conditions become true.
860 * - There is race condition of mmap_sem (It is acquired by
861 * exit_mm()), and
862 * - SMI occurs before setting TASK_RUNINNG.
863 * (or hypervisor of virtual machine switches to other guest)
864 * As a result, we may become TASK_RUNNING after becoming TASK_DEAD
865 *
866 * To avoid it, we have to wait for releasing tsk->pi_lock which
867 * is held by try_to_wake_up()
868 */
869 smp_mb();
870 raw_spin_unlock_wait(&tsk->pi_lock);
871
872 /* causes final put_task_struct in finish_task_switch(). */
873 tsk->state = TASK_DEAD;
874 tsk->flags |= PF_NOFREEZE; /* tell freezer to ignore us */
875 schedule();
876 BUG();
877 /* Avoid "noreturn function does return". */
878 for (;;)
879 cpu_relax(); /* For when BUG is null */
880 }
881
882 EXPORT_SYMBOL_GPL(do_exit);
883
884 void complete_and_exit(struct completion *comp, long code)
885 {
886 if (comp)
887 complete(comp);
888
889 do_exit(code);
890 }
891
892 EXPORT_SYMBOL(complete_and_exit);
893
894 SYSCALL_DEFINE1(exit, int, error_code)
895 {
896 do_exit((error_code&0xff)<<8);
897 }
898
899 /*
900 * Take down every thread in the group. This is called by fatal signals
901 * as well as by sys_exit_group (below).
902 */
903 void
904 do_group_exit(int exit_code)
905 {
906 struct signal_struct *sig = current->signal;
907
908 BUG_ON(exit_code & 0x80); /* core dumps don't get here */
909
910 if (signal_group_exit(sig))
911 exit_code = sig->group_exit_code;
912 else if (!thread_group_empty(current)) {
913 struct sighand_struct *const sighand = current->sighand;
914 spin_lock_irq(&sighand->siglock);
915 if (signal_group_exit(sig))
916 /* Another thread got here before we took the lock. */
917 exit_code = sig->group_exit_code;
918 else {
919 sig->group_exit_code = exit_code;
920 sig->flags = SIGNAL_GROUP_EXIT;
921 zap_other_threads(current);
922 }
923 spin_unlock_irq(&sighand->siglock);
924 }
925
926 do_exit(exit_code);
927 /* NOTREACHED */
928 }
929
930 /*
931 * this kills every thread in the thread group. Note that any externally
932 * wait4()-ing process will get the correct exit code - even if this
933 * thread is not the thread group leader.
934 */
935 SYSCALL_DEFINE1(exit_group, int, error_code)
936 {
937 do_group_exit((error_code & 0xff) << 8);
938 /* NOTREACHED */
939 return 0;
940 }
941
942 struct wait_opts {
943 enum pid_type wo_type;
944 int wo_flags;
945 struct pid *wo_pid;
946
947 struct siginfo __user *wo_info;
948 int __user *wo_stat;
949 struct rusage __user *wo_rusage;
950
951 wait_queue_t child_wait;
952 int notask_error;
953 };
954
955 static inline
956 struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
957 {
958 if (type != PIDTYPE_PID)
959 task = task->group_leader;
960 return task->pids[type].pid;
961 }
962
963 static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
964 {
965 return wo->wo_type == PIDTYPE_MAX ||
966 task_pid_type(p, wo->wo_type) == wo->wo_pid;
967 }
968
969 static int eligible_child(struct wait_opts *wo, struct task_struct *p)
970 {
971 if (!eligible_pid(wo, p))
972 return 0;
973 /* Wait for all children (clone and not) if __WALL is set;
974 * otherwise, wait for clone children *only* if __WCLONE is
975 * set; otherwise, wait for non-clone children *only*. (Note:
976 * A "clone" child here is one that reports to its parent
977 * using a signal other than SIGCHLD.) */
978 if (((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
979 && !(wo->wo_flags & __WALL))
980 return 0;
981
982 return 1;
983 }
984
985 static int wait_noreap_copyout(struct wait_opts *wo, struct task_struct *p,
986 pid_t pid, uid_t uid, int why, int status)
987 {
988 struct siginfo __user *infop;
989 int retval = wo->wo_rusage
990 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
991
992 put_task_struct(p);
993 infop = wo->wo_info;
994 if (infop) {
995 if (!retval)
996 retval = put_user(SIGCHLD, &infop->si_signo);
997 if (!retval)
998 retval = put_user(0, &infop->si_errno);
999 if (!retval)
1000 retval = put_user((short)why, &infop->si_code);
1001 if (!retval)
1002 retval = put_user(pid, &infop->si_pid);
1003 if (!retval)
1004 retval = put_user(uid, &infop->si_uid);
1005 if (!retval)
1006 retval = put_user(status, &infop->si_status);
1007 }
1008 if (!retval)
1009 retval = pid;
1010 return retval;
1011 }
1012
1013 /*
1014 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold
1015 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1016 * the lock and this task is uninteresting. If we return nonzero, we have
1017 * released the lock and the system call should return.
1018 */
1019 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
1020 {
1021 unsigned long state;
1022 int retval, status, traced;
1023 pid_t pid = task_pid_vnr(p);
1024 uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
1025 struct siginfo __user *infop;
1026
1027 if (!likely(wo->wo_flags & WEXITED))
1028 return 0;
1029
1030 if (unlikely(wo->wo_flags & WNOWAIT)) {
1031 int exit_code = p->exit_code;
1032 int why;
1033
1034 get_task_struct(p);
1035 read_unlock(&tasklist_lock);
1036 if ((exit_code & 0x7f) == 0) {
1037 why = CLD_EXITED;
1038 status = exit_code >> 8;
1039 } else {
1040 why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
1041 status = exit_code & 0x7f;
1042 }
1043 return wait_noreap_copyout(wo, p, pid, uid, why, status);
1044 }
1045
1046 /*
1047 * Try to move the task's state to DEAD
1048 * only one thread is allowed to do this:
1049 */
1050 state = xchg(&p->exit_state, EXIT_DEAD);
1051 if (state != EXIT_ZOMBIE) {
1052 BUG_ON(state != EXIT_DEAD);
1053 return 0;
1054 }
1055
1056 traced = ptrace_reparented(p);
1057 /*
1058 * It can be ptraced but not reparented, check
1059 * thread_group_leader() to filter out sub-threads.
1060 */
1061 if (likely(!traced) && thread_group_leader(p)) {
1062 struct signal_struct *psig;
1063 struct signal_struct *sig;
1064 unsigned long maxrss;
1065 cputime_t tgutime, tgstime;
1066
1067 /*
1068 * The resource counters for the group leader are in its
1069 * own task_struct. Those for dead threads in the group
1070 * are in its signal_struct, as are those for the child
1071 * processes it has previously reaped. All these
1072 * accumulate in the parent's signal_struct c* fields.
1073 *
1074 * We don't bother to take a lock here to protect these
1075 * p->signal fields, because they are only touched by
1076 * __exit_signal, which runs with tasklist_lock
1077 * write-locked anyway, and so is excluded here. We do
1078 * need to protect the access to parent->signal fields,
1079 * as other threads in the parent group can be right
1080 * here reaping other children at the same time.
1081 *
1082 * We use thread_group_cputime_adjusted() to get times for the thread
1083 * group, which consolidates times for all threads in the
1084 * group including the group leader.
1085 */
1086 thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1087 spin_lock_irq(&p->real_parent->sighand->siglock);
1088 psig = p->real_parent->signal;
1089 sig = p->signal;
1090 psig->cutime += tgutime + sig->cutime;
1091 psig->cstime += tgstime + sig->cstime;
1092 psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime;
1093 psig->cmin_flt +=
1094 p->min_flt + sig->min_flt + sig->cmin_flt;
1095 psig->cmaj_flt +=
1096 p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1097 psig->cnvcsw +=
1098 p->nvcsw + sig->nvcsw + sig->cnvcsw;
1099 psig->cnivcsw +=
1100 p->nivcsw + sig->nivcsw + sig->cnivcsw;
1101 psig->cinblock +=
1102 task_io_get_inblock(p) +
1103 sig->inblock + sig->cinblock;
1104 psig->coublock +=
1105 task_io_get_oublock(p) +
1106 sig->oublock + sig->coublock;
1107 maxrss = max(sig->maxrss, sig->cmaxrss);
1108 if (psig->cmaxrss < maxrss)
1109 psig->cmaxrss = maxrss;
1110 task_io_accounting_add(&psig->ioac, &p->ioac);
1111 task_io_accounting_add(&psig->ioac, &sig->ioac);
1112 spin_unlock_irq(&p->real_parent->sighand->siglock);
1113 }
1114
1115 /*
1116 * Now we are sure this task is interesting, and no other
1117 * thread can reap it because we set its state to EXIT_DEAD.
1118 */
1119 read_unlock(&tasklist_lock);
1120
1121 retval = wo->wo_rusage
1122 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1123 status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1124 ? p->signal->group_exit_code : p->exit_code;
1125 if (!retval && wo->wo_stat)
1126 retval = put_user(status, wo->wo_stat);
1127
1128 infop = wo->wo_info;
1129 if (!retval && infop)
1130 retval = put_user(SIGCHLD, &infop->si_signo);
1131 if (!retval && infop)
1132 retval = put_user(0, &infop->si_errno);
1133 if (!retval && infop) {
1134 int why;
1135
1136 if ((status & 0x7f) == 0) {
1137 why = CLD_EXITED;
1138 status >>= 8;
1139 } else {
1140 why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1141 status &= 0x7f;
1142 }
1143 retval = put_user((short)why, &infop->si_code);
1144 if (!retval)
1145 retval = put_user(status, &infop->si_status);
1146 }
1147 if (!retval && infop)
1148 retval = put_user(pid, &infop->si_pid);
1149 if (!retval && infop)
1150 retval = put_user(uid, &infop->si_uid);
1151 if (!retval)
1152 retval = pid;
1153
1154 if (traced) {
1155 write_lock_irq(&tasklist_lock);
1156 /* We dropped tasklist, ptracer could die and untrace */
1157 ptrace_unlink(p);
1158 /*
1159 * If this is not a sub-thread, notify the parent.
1160 * If parent wants a zombie, don't release it now.
1161 */
1162 if (thread_group_leader(p) &&
1163 !do_notify_parent(p, p->exit_signal)) {
1164 p->exit_state = EXIT_ZOMBIE;
1165 p = NULL;
1166 }
1167 write_unlock_irq(&tasklist_lock);
1168 }
1169 if (p != NULL)
1170 release_task(p);
1171
1172 return retval;
1173 }
1174
1175 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1176 {
1177 if (ptrace) {
1178 if (task_is_stopped_or_traced(p) &&
1179 !(p->jobctl & JOBCTL_LISTENING))
1180 return &p->exit_code;
1181 } else {
1182 if (p->signal->flags & SIGNAL_STOP_STOPPED)
1183 return &p->signal->group_exit_code;
1184 }
1185 return NULL;
1186 }
1187
1188 /**
1189 * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1190 * @wo: wait options
1191 * @ptrace: is the wait for ptrace
1192 * @p: task to wait for
1193 *
1194 * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1195 *
1196 * CONTEXT:
1197 * read_lock(&tasklist_lock), which is released if return value is
1198 * non-zero. Also, grabs and releases @p->sighand->siglock.
1199 *
1200 * RETURNS:
1201 * 0 if wait condition didn't exist and search for other wait conditions
1202 * should continue. Non-zero return, -errno on failure and @p's pid on
1203 * success, implies that tasklist_lock is released and wait condition
1204 * search should terminate.
1205 */
1206 static int wait_task_stopped(struct wait_opts *wo,
1207 int ptrace, struct task_struct *p)
1208 {
1209 struct siginfo __user *infop;
1210 int retval, exit_code, *p_code, why;
1211 uid_t uid = 0; /* unneeded, required by compiler */
1212 pid_t pid;
1213
1214 /*
1215 * Traditionally we see ptrace'd stopped tasks regardless of options.
1216 */
1217 if (!ptrace && !(wo->wo_flags & WUNTRACED))
1218 return 0;
1219
1220 if (!task_stopped_code(p, ptrace))
1221 return 0;
1222
1223 exit_code = 0;
1224 spin_lock_irq(&p->sighand->siglock);
1225
1226 p_code = task_stopped_code(p, ptrace);
1227 if (unlikely(!p_code))
1228 goto unlock_sig;
1229
1230 exit_code = *p_code;
1231 if (!exit_code)
1232 goto unlock_sig;
1233
1234 if (!unlikely(wo->wo_flags & WNOWAIT))
1235 *p_code = 0;
1236
1237 uid = from_kuid_munged(current_user_ns(), task_uid(p));
1238 unlock_sig:
1239 spin_unlock_irq(&p->sighand->siglock);
1240 if (!exit_code)
1241 return 0;
1242
1243 /*
1244 * Now we are pretty sure this task is interesting.
1245 * Make sure it doesn't get reaped out from under us while we
1246 * give up the lock and then examine it below. We don't want to
1247 * keep holding onto the tasklist_lock while we call getrusage and
1248 * possibly take page faults for user memory.
1249 */
1250 get_task_struct(p);
1251 pid = task_pid_vnr(p);
1252 why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1253 read_unlock(&tasklist_lock);
1254
1255 if (unlikely(wo->wo_flags & WNOWAIT))
1256 return wait_noreap_copyout(wo, p, pid, uid, why, exit_code);
1257
1258 retval = wo->wo_rusage
1259 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1260 if (!retval && wo->wo_stat)
1261 retval = put_user((exit_code << 8) | 0x7f, wo->wo_stat);
1262
1263 infop = wo->wo_info;
1264 if (!retval && infop)
1265 retval = put_user(SIGCHLD, &infop->si_signo);
1266 if (!retval && infop)
1267 retval = put_user(0, &infop->si_errno);
1268 if (!retval && infop)
1269 retval = put_user((short)why, &infop->si_code);
1270 if (!retval && infop)
1271 retval = put_user(exit_code, &infop->si_status);
1272 if (!retval && infop)
1273 retval = put_user(pid, &infop->si_pid);
1274 if (!retval && infop)
1275 retval = put_user(uid, &infop->si_uid);
1276 if (!retval)
1277 retval = pid;
1278 put_task_struct(p);
1279
1280 BUG_ON(!retval);
1281 return retval;
1282 }
1283
1284 /*
1285 * Handle do_wait work for one task in a live, non-stopped state.
1286 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1287 * the lock and this task is uninteresting. If we return nonzero, we have
1288 * released the lock and the system call should return.
1289 */
1290 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1291 {
1292 int retval;
1293 pid_t pid;
1294 uid_t uid;
1295
1296 if (!unlikely(wo->wo_flags & WCONTINUED))
1297 return 0;
1298
1299 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1300 return 0;
1301
1302 spin_lock_irq(&p->sighand->siglock);
1303 /* Re-check with the lock held. */
1304 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1305 spin_unlock_irq(&p->sighand->siglock);
1306 return 0;
1307 }
1308 if (!unlikely(wo->wo_flags & WNOWAIT))
1309 p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1310 uid = from_kuid_munged(current_user_ns(), task_uid(p));
1311 spin_unlock_irq(&p->sighand->siglock);
1312
1313 pid = task_pid_vnr(p);
1314 get_task_struct(p);
1315 read_unlock(&tasklist_lock);
1316
1317 if (!wo->wo_info) {
1318 retval = wo->wo_rusage
1319 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1320 put_task_struct(p);
1321 if (!retval && wo->wo_stat)
1322 retval = put_user(0xffff, wo->wo_stat);
1323 if (!retval)
1324 retval = pid;
1325 } else {
1326 retval = wait_noreap_copyout(wo, p, pid, uid,
1327 CLD_CONTINUED, SIGCONT);
1328 BUG_ON(retval == 0);
1329 }
1330
1331 return retval;
1332 }
1333
1334 /*
1335 * Consider @p for a wait by @parent.
1336 *
1337 * -ECHILD should be in ->notask_error before the first call.
1338 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1339 * Returns zero if the search for a child should continue;
1340 * then ->notask_error is 0 if @p is an eligible child,
1341 * or another error from security_task_wait(), or still -ECHILD.
1342 */
1343 static int wait_consider_task(struct wait_opts *wo, int ptrace,
1344 struct task_struct *p)
1345 {
1346 int ret = eligible_child(wo, p);
1347 if (!ret)
1348 return ret;
1349
1350 ret = security_task_wait(p);
1351 if (unlikely(ret < 0)) {
1352 /*
1353 * If we have not yet seen any eligible child,
1354 * then let this error code replace -ECHILD.
1355 * A permission error will give the user a clue
1356 * to look for security policy problems, rather
1357 * than for mysterious wait bugs.
1358 */
1359 if (wo->notask_error)
1360 wo->notask_error = ret;
1361 return 0;
1362 }
1363
1364 /* dead body doesn't have much to contribute */
1365 if (unlikely(p->exit_state == EXIT_DEAD)) {
1366 /*
1367 * But do not ignore this task until the tracer does
1368 * wait_task_zombie()->do_notify_parent().
1369 */
1370 if (likely(!ptrace) && unlikely(ptrace_reparented(p)))
1371 wo->notask_error = 0;
1372 return 0;
1373 }
1374
1375 /* slay zombie? */
1376 if (p->exit_state == EXIT_ZOMBIE) {
1377 /*
1378 * A zombie ptracee is only visible to its ptracer.
1379 * Notification and reaping will be cascaded to the real
1380 * parent when the ptracer detaches.
1381 */
1382 if (likely(!ptrace) && unlikely(p->ptrace)) {
1383 /* it will become visible, clear notask_error */
1384 wo->notask_error = 0;
1385 return 0;
1386 }
1387
1388 /* we don't reap group leaders with subthreads */
1389 if (!delay_group_leader(p))
1390 return wait_task_zombie(wo, p);
1391
1392 /*
1393 * Allow access to stopped/continued state via zombie by
1394 * falling through. Clearing of notask_error is complex.
1395 *
1396 * When !@ptrace:
1397 *
1398 * If WEXITED is set, notask_error should naturally be
1399 * cleared. If not, subset of WSTOPPED|WCONTINUED is set,
1400 * so, if there are live subthreads, there are events to
1401 * wait for. If all subthreads are dead, it's still safe
1402 * to clear - this function will be called again in finite
1403 * amount time once all the subthreads are released and
1404 * will then return without clearing.
1405 *
1406 * When @ptrace:
1407 *
1408 * Stopped state is per-task and thus can't change once the
1409 * target task dies. Only continued and exited can happen.
1410 * Clear notask_error if WCONTINUED | WEXITED.
1411 */
1412 if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1413 wo->notask_error = 0;
1414 } else {
1415 /*
1416 * If @p is ptraced by a task in its real parent's group,
1417 * hide group stop/continued state when looking at @p as
1418 * the real parent; otherwise, a single stop can be
1419 * reported twice as group and ptrace stops.
1420 *
1421 * If a ptracer wants to distinguish the two events for its
1422 * own children, it should create a separate process which
1423 * takes the role of real parent.
1424 */
1425 if (likely(!ptrace) && p->ptrace && !ptrace_reparented(p))
1426 return 0;
1427
1428 /*
1429 * @p is alive and it's gonna stop, continue or exit, so
1430 * there always is something to wait for.
1431 */
1432 wo->notask_error = 0;
1433 }
1434
1435 /*
1436 * Wait for stopped. Depending on @ptrace, different stopped state
1437 * is used and the two don't interact with each other.
1438 */
1439 ret = wait_task_stopped(wo, ptrace, p);
1440 if (ret)
1441 return ret;
1442
1443 /*
1444 * Wait for continued. There's only one continued state and the
1445 * ptracer can consume it which can confuse the real parent. Don't
1446 * use WCONTINUED from ptracer. You don't need or want it.
1447 */
1448 return wait_task_continued(wo, p);
1449 }
1450
1451 /*
1452 * Do the work of do_wait() for one thread in the group, @tsk.
1453 *
1454 * -ECHILD should be in ->notask_error before the first call.
1455 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1456 * Returns zero if the search for a child should continue; then
1457 * ->notask_error is 0 if there were any eligible children,
1458 * or another error from security_task_wait(), or still -ECHILD.
1459 */
1460 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1461 {
1462 struct task_struct *p;
1463
1464 list_for_each_entry(p, &tsk->children, sibling) {
1465 int ret = wait_consider_task(wo, 0, p);
1466 if (ret)
1467 return ret;
1468 }
1469
1470 return 0;
1471 }
1472
1473 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1474 {
1475 struct task_struct *p;
1476
1477 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1478 int ret = wait_consider_task(wo, 1, p);
1479 if (ret)
1480 return ret;
1481 }
1482
1483 return 0;
1484 }
1485
1486 static int child_wait_callback(wait_queue_t *wait, unsigned mode,
1487 int sync, void *key)
1488 {
1489 struct wait_opts *wo = container_of(wait, struct wait_opts,
1490 child_wait);
1491 struct task_struct *p = key;
1492
1493 if (!eligible_pid(wo, p))
1494 return 0;
1495
1496 if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1497 return 0;
1498
1499 return default_wake_function(wait, mode, sync, key);
1500 }
1501
1502 void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1503 {
1504 __wake_up_sync_key(&parent->signal->wait_chldexit,
1505 TASK_INTERRUPTIBLE, 1, p);
1506 }
1507
1508 static long do_wait(struct wait_opts *wo)
1509 {
1510 struct task_struct *tsk;
1511 int retval;
1512
1513 trace_sched_process_wait(wo->wo_pid);
1514
1515 init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1516 wo->child_wait.private = current;
1517 add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1518 repeat:
1519 /*
1520 * If there is nothing that can match our critiera just get out.
1521 * We will clear ->notask_error to zero if we see any child that
1522 * might later match our criteria, even if we are not able to reap
1523 * it yet.
1524 */
1525 wo->notask_error = -ECHILD;
1526 if ((wo->wo_type < PIDTYPE_MAX) &&
1527 (!wo->wo_pid || hlist_empty(&wo->wo_pid->tasks[wo->wo_type])))
1528 goto notask;
1529
1530 set_current_state(TASK_INTERRUPTIBLE);
1531 read_lock(&tasklist_lock);
1532 tsk = current;
1533 do {
1534 retval = do_wait_thread(wo, tsk);
1535 if (retval)
1536 goto end;
1537
1538 retval = ptrace_do_wait(wo, tsk);
1539 if (retval)
1540 goto end;
1541
1542 if (wo->wo_flags & __WNOTHREAD)
1543 break;
1544 } while_each_thread(current, tsk);
1545 read_unlock(&tasklist_lock);
1546
1547 notask:
1548 retval = wo->notask_error;
1549 if (!retval && !(wo->wo_flags & WNOHANG)) {
1550 retval = -ERESTARTSYS;
1551 if (!signal_pending(current)) {
1552 schedule();
1553 goto repeat;
1554 }
1555 }
1556 end:
1557 __set_current_state(TASK_RUNNING);
1558 remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1559 return retval;
1560 }
1561
1562 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1563 infop, int, options, struct rusage __user *, ru)
1564 {
1565 struct wait_opts wo;
1566 struct pid *pid = NULL;
1567 enum pid_type type;
1568 long ret;
1569
1570 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED))
1571 return -EINVAL;
1572 if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1573 return -EINVAL;
1574
1575 switch (which) {
1576 case P_ALL:
1577 type = PIDTYPE_MAX;
1578 break;
1579 case P_PID:
1580 type = PIDTYPE_PID;
1581 if (upid <= 0)
1582 return -EINVAL;
1583 break;
1584 case P_PGID:
1585 type = PIDTYPE_PGID;
1586 if (upid <= 0)
1587 return -EINVAL;
1588 break;
1589 default:
1590 return -EINVAL;
1591 }
1592
1593 if (type < PIDTYPE_MAX)
1594 pid = find_get_pid(upid);
1595
1596 wo.wo_type = type;
1597 wo.wo_pid = pid;
1598 wo.wo_flags = options;
1599 wo.wo_info = infop;
1600 wo.wo_stat = NULL;
1601 wo.wo_rusage = ru;
1602 ret = do_wait(&wo);
1603
1604 if (ret > 0) {
1605 ret = 0;
1606 } else if (infop) {
1607 /*
1608 * For a WNOHANG return, clear out all the fields
1609 * we would set so the user can easily tell the
1610 * difference.
1611 */
1612 if (!ret)
1613 ret = put_user(0, &infop->si_signo);
1614 if (!ret)
1615 ret = put_user(0, &infop->si_errno);
1616 if (!ret)
1617 ret = put_user(0, &infop->si_code);
1618 if (!ret)
1619 ret = put_user(0, &infop->si_pid);
1620 if (!ret)
1621 ret = put_user(0, &infop->si_uid);
1622 if (!ret)
1623 ret = put_user(0, &infop->si_status);
1624 }
1625
1626 put_pid(pid);
1627 return ret;
1628 }
1629
1630 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1631 int, options, struct rusage __user *, ru)
1632 {
1633 struct wait_opts wo;
1634 struct pid *pid = NULL;
1635 enum pid_type type;
1636 long ret;
1637
1638 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1639 __WNOTHREAD|__WCLONE|__WALL))
1640 return -EINVAL;
1641
1642 if (upid == -1)
1643 type = PIDTYPE_MAX;
1644 else if (upid < 0) {
1645 type = PIDTYPE_PGID;
1646 pid = find_get_pid(-upid);
1647 } else if (upid == 0) {
1648 type = PIDTYPE_PGID;
1649 pid = get_task_pid(current, PIDTYPE_PGID);
1650 } else /* upid > 0 */ {
1651 type = PIDTYPE_PID;
1652 pid = find_get_pid(upid);
1653 }
1654
1655 wo.wo_type = type;
1656 wo.wo_pid = pid;
1657 wo.wo_flags = options | WEXITED;
1658 wo.wo_info = NULL;
1659 wo.wo_stat = stat_addr;
1660 wo.wo_rusage = ru;
1661 ret = do_wait(&wo);
1662 put_pid(pid);
1663
1664 return ret;
1665 }
1666
1667 #ifdef __ARCH_WANT_SYS_WAITPID
1668
1669 /*
1670 * sys_waitpid() remains for compatibility. waitpid() should be
1671 * implemented by calling sys_wait4() from libc.a.
1672 */
1673 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1674 {
1675 return sys_wait4(pid, stat_addr, options, NULL);
1676 }
1677
1678 #endif
This page took 0.061758 seconds and 6 git commands to generate.