ptrace children revamp
[deliverable/linux.git] / kernel / exit.c
1 /*
2 * linux/kernel/exit.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 #include <linux/mm.h>
8 #include <linux/slab.h>
9 #include <linux/interrupt.h>
10 #include <linux/module.h>
11 #include <linux/capability.h>
12 #include <linux/completion.h>
13 #include <linux/personality.h>
14 #include <linux/tty.h>
15 #include <linux/mnt_namespace.h>
16 #include <linux/iocontext.h>
17 #include <linux/key.h>
18 #include <linux/security.h>
19 #include <linux/cpu.h>
20 #include <linux/acct.h>
21 #include <linux/tsacct_kern.h>
22 #include <linux/file.h>
23 #include <linux/fdtable.h>
24 #include <linux/binfmts.h>
25 #include <linux/nsproxy.h>
26 #include <linux/pid_namespace.h>
27 #include <linux/ptrace.h>
28 #include <linux/profile.h>
29 #include <linux/mount.h>
30 #include <linux/proc_fs.h>
31 #include <linux/kthread.h>
32 #include <linux/mempolicy.h>
33 #include <linux/taskstats_kern.h>
34 #include <linux/delayacct.h>
35 #include <linux/freezer.h>
36 #include <linux/cgroup.h>
37 #include <linux/syscalls.h>
38 #include <linux/signal.h>
39 #include <linux/posix-timers.h>
40 #include <linux/cn_proc.h>
41 #include <linux/mutex.h>
42 #include <linux/futex.h>
43 #include <linux/compat.h>
44 #include <linux/pipe_fs_i.h>
45 #include <linux/audit.h> /* for audit_free() */
46 #include <linux/resource.h>
47 #include <linux/blkdev.h>
48 #include <linux/task_io_accounting_ops.h>
49
50 #include <asm/uaccess.h>
51 #include <asm/unistd.h>
52 #include <asm/pgtable.h>
53 #include <asm/mmu_context.h>
54
55 static void exit_mm(struct task_struct * tsk);
56
57 static inline int task_detached(struct task_struct *p)
58 {
59 return p->exit_signal == -1;
60 }
61
62 static void __unhash_process(struct task_struct *p)
63 {
64 nr_threads--;
65 detach_pid(p, PIDTYPE_PID);
66 if (thread_group_leader(p)) {
67 detach_pid(p, PIDTYPE_PGID);
68 detach_pid(p, PIDTYPE_SID);
69
70 list_del_rcu(&p->tasks);
71 __get_cpu_var(process_counts)--;
72 }
73 list_del_rcu(&p->thread_group);
74 list_del_init(&p->sibling);
75 }
76
77 /*
78 * This function expects the tasklist_lock write-locked.
79 */
80 static void __exit_signal(struct task_struct *tsk)
81 {
82 struct signal_struct *sig = tsk->signal;
83 struct sighand_struct *sighand;
84
85 BUG_ON(!sig);
86 BUG_ON(!atomic_read(&sig->count));
87
88 rcu_read_lock();
89 sighand = rcu_dereference(tsk->sighand);
90 spin_lock(&sighand->siglock);
91
92 posix_cpu_timers_exit(tsk);
93 if (atomic_dec_and_test(&sig->count))
94 posix_cpu_timers_exit_group(tsk);
95 else {
96 /*
97 * If there is any task waiting for the group exit
98 * then notify it:
99 */
100 if (sig->group_exit_task && atomic_read(&sig->count) == sig->notify_count)
101 wake_up_process(sig->group_exit_task);
102
103 if (tsk == sig->curr_target)
104 sig->curr_target = next_thread(tsk);
105 /*
106 * Accumulate here the counters for all threads but the
107 * group leader as they die, so they can be added into
108 * the process-wide totals when those are taken.
109 * The group leader stays around as a zombie as long
110 * as there are other threads. When it gets reaped,
111 * the exit.c code will add its counts into these totals.
112 * We won't ever get here for the group leader, since it
113 * will have been the last reference on the signal_struct.
114 */
115 sig->utime = cputime_add(sig->utime, tsk->utime);
116 sig->stime = cputime_add(sig->stime, tsk->stime);
117 sig->gtime = cputime_add(sig->gtime, tsk->gtime);
118 sig->min_flt += tsk->min_flt;
119 sig->maj_flt += tsk->maj_flt;
120 sig->nvcsw += tsk->nvcsw;
121 sig->nivcsw += tsk->nivcsw;
122 sig->inblock += task_io_get_inblock(tsk);
123 sig->oublock += task_io_get_oublock(tsk);
124 sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
125 sig = NULL; /* Marker for below. */
126 }
127
128 __unhash_process(tsk);
129
130 /*
131 * Do this under ->siglock, we can race with another thread
132 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
133 */
134 flush_sigqueue(&tsk->pending);
135
136 tsk->signal = NULL;
137 tsk->sighand = NULL;
138 spin_unlock(&sighand->siglock);
139 rcu_read_unlock();
140
141 __cleanup_sighand(sighand);
142 clear_tsk_thread_flag(tsk,TIF_SIGPENDING);
143 if (sig) {
144 flush_sigqueue(&sig->shared_pending);
145 taskstats_tgid_free(sig);
146 __cleanup_signal(sig);
147 }
148 }
149
150 static void delayed_put_task_struct(struct rcu_head *rhp)
151 {
152 put_task_struct(container_of(rhp, struct task_struct, rcu));
153 }
154
155 /*
156 * Do final ptrace-related cleanup of a zombie being reaped.
157 *
158 * Called with write_lock(&tasklist_lock) held.
159 */
160 static void ptrace_release_task(struct task_struct *p)
161 {
162 BUG_ON(!list_empty(&p->ptraced));
163 ptrace_unlink(p);
164 BUG_ON(!list_empty(&p->ptrace_entry));
165 }
166
167 void release_task(struct task_struct * p)
168 {
169 struct task_struct *leader;
170 int zap_leader;
171 repeat:
172 atomic_dec(&p->user->processes);
173 proc_flush_task(p);
174 write_lock_irq(&tasklist_lock);
175 ptrace_release_task(p);
176 __exit_signal(p);
177
178 /*
179 * If we are the last non-leader member of the thread
180 * group, and the leader is zombie, then notify the
181 * group leader's parent process. (if it wants notification.)
182 */
183 zap_leader = 0;
184 leader = p->group_leader;
185 if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) {
186 BUG_ON(task_detached(leader));
187 do_notify_parent(leader, leader->exit_signal);
188 /*
189 * If we were the last child thread and the leader has
190 * exited already, and the leader's parent ignores SIGCHLD,
191 * then we are the one who should release the leader.
192 *
193 * do_notify_parent() will have marked it self-reaping in
194 * that case.
195 */
196 zap_leader = task_detached(leader);
197 }
198
199 write_unlock_irq(&tasklist_lock);
200 release_thread(p);
201 call_rcu(&p->rcu, delayed_put_task_struct);
202
203 p = leader;
204 if (unlikely(zap_leader))
205 goto repeat;
206 }
207
208 /*
209 * This checks not only the pgrp, but falls back on the pid if no
210 * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
211 * without this...
212 *
213 * The caller must hold rcu lock or the tasklist lock.
214 */
215 struct pid *session_of_pgrp(struct pid *pgrp)
216 {
217 struct task_struct *p;
218 struct pid *sid = NULL;
219
220 p = pid_task(pgrp, PIDTYPE_PGID);
221 if (p == NULL)
222 p = pid_task(pgrp, PIDTYPE_PID);
223 if (p != NULL)
224 sid = task_session(p);
225
226 return sid;
227 }
228
229 /*
230 * Determine if a process group is "orphaned", according to the POSIX
231 * definition in 2.2.2.52. Orphaned process groups are not to be affected
232 * by terminal-generated stop signals. Newly orphaned process groups are
233 * to receive a SIGHUP and a SIGCONT.
234 *
235 * "I ask you, have you ever known what it is to be an orphan?"
236 */
237 static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task)
238 {
239 struct task_struct *p;
240
241 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
242 if ((p == ignored_task) ||
243 (p->exit_state && thread_group_empty(p)) ||
244 is_global_init(p->real_parent))
245 continue;
246
247 if (task_pgrp(p->real_parent) != pgrp &&
248 task_session(p->real_parent) == task_session(p))
249 return 0;
250 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
251
252 return 1;
253 }
254
255 int is_current_pgrp_orphaned(void)
256 {
257 int retval;
258
259 read_lock(&tasklist_lock);
260 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
261 read_unlock(&tasklist_lock);
262
263 return retval;
264 }
265
266 static int has_stopped_jobs(struct pid *pgrp)
267 {
268 int retval = 0;
269 struct task_struct *p;
270
271 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
272 if (!task_is_stopped(p))
273 continue;
274 retval = 1;
275 break;
276 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
277 return retval;
278 }
279
280 /*
281 * Check to see if any process groups have become orphaned as
282 * a result of our exiting, and if they have any stopped jobs,
283 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
284 */
285 static void
286 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
287 {
288 struct pid *pgrp = task_pgrp(tsk);
289 struct task_struct *ignored_task = tsk;
290
291 if (!parent)
292 /* exit: our father is in a different pgrp than
293 * we are and we were the only connection outside.
294 */
295 parent = tsk->real_parent;
296 else
297 /* reparent: our child is in a different pgrp than
298 * we are, and it was the only connection outside.
299 */
300 ignored_task = NULL;
301
302 if (task_pgrp(parent) != pgrp &&
303 task_session(parent) == task_session(tsk) &&
304 will_become_orphaned_pgrp(pgrp, ignored_task) &&
305 has_stopped_jobs(pgrp)) {
306 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
307 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
308 }
309 }
310
311 /**
312 * reparent_to_kthreadd - Reparent the calling kernel thread to kthreadd
313 *
314 * If a kernel thread is launched as a result of a system call, or if
315 * it ever exits, it should generally reparent itself to kthreadd so it
316 * isn't in the way of other processes and is correctly cleaned up on exit.
317 *
318 * The various task state such as scheduling policy and priority may have
319 * been inherited from a user process, so we reset them to sane values here.
320 *
321 * NOTE that reparent_to_kthreadd() gives the caller full capabilities.
322 */
323 static void reparent_to_kthreadd(void)
324 {
325 write_lock_irq(&tasklist_lock);
326
327 ptrace_unlink(current);
328 /* Reparent to init */
329 current->real_parent = current->parent = kthreadd_task;
330 list_move_tail(&current->sibling, &current->real_parent->children);
331
332 /* Set the exit signal to SIGCHLD so we signal init on exit */
333 current->exit_signal = SIGCHLD;
334
335 if (task_nice(current) < 0)
336 set_user_nice(current, 0);
337 /* cpus_allowed? */
338 /* rt_priority? */
339 /* signals? */
340 security_task_reparent_to_init(current);
341 memcpy(current->signal->rlim, init_task.signal->rlim,
342 sizeof(current->signal->rlim));
343 atomic_inc(&(INIT_USER->__count));
344 write_unlock_irq(&tasklist_lock);
345 switch_uid(INIT_USER);
346 }
347
348 void __set_special_pids(struct pid *pid)
349 {
350 struct task_struct *curr = current->group_leader;
351 pid_t nr = pid_nr(pid);
352
353 if (task_session(curr) != pid) {
354 change_pid(curr, PIDTYPE_SID, pid);
355 set_task_session(curr, nr);
356 }
357 if (task_pgrp(curr) != pid) {
358 change_pid(curr, PIDTYPE_PGID, pid);
359 set_task_pgrp(curr, nr);
360 }
361 }
362
363 static void set_special_pids(struct pid *pid)
364 {
365 write_lock_irq(&tasklist_lock);
366 __set_special_pids(pid);
367 write_unlock_irq(&tasklist_lock);
368 }
369
370 /*
371 * Let kernel threads use this to say that they
372 * allow a certain signal (since daemonize() will
373 * have disabled all of them by default).
374 */
375 int allow_signal(int sig)
376 {
377 if (!valid_signal(sig) || sig < 1)
378 return -EINVAL;
379
380 spin_lock_irq(&current->sighand->siglock);
381 sigdelset(&current->blocked, sig);
382 if (!current->mm) {
383 /* Kernel threads handle their own signals.
384 Let the signal code know it'll be handled, so
385 that they don't get converted to SIGKILL or
386 just silently dropped */
387 current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2;
388 }
389 recalc_sigpending();
390 spin_unlock_irq(&current->sighand->siglock);
391 return 0;
392 }
393
394 EXPORT_SYMBOL(allow_signal);
395
396 int disallow_signal(int sig)
397 {
398 if (!valid_signal(sig) || sig < 1)
399 return -EINVAL;
400
401 spin_lock_irq(&current->sighand->siglock);
402 current->sighand->action[(sig)-1].sa.sa_handler = SIG_IGN;
403 recalc_sigpending();
404 spin_unlock_irq(&current->sighand->siglock);
405 return 0;
406 }
407
408 EXPORT_SYMBOL(disallow_signal);
409
410 /*
411 * Put all the gunge required to become a kernel thread without
412 * attached user resources in one place where it belongs.
413 */
414
415 void daemonize(const char *name, ...)
416 {
417 va_list args;
418 struct fs_struct *fs;
419 sigset_t blocked;
420
421 va_start(args, name);
422 vsnprintf(current->comm, sizeof(current->comm), name, args);
423 va_end(args);
424
425 /*
426 * If we were started as result of loading a module, close all of the
427 * user space pages. We don't need them, and if we didn't close them
428 * they would be locked into memory.
429 */
430 exit_mm(current);
431 /*
432 * We don't want to have TIF_FREEZE set if the system-wide hibernation
433 * or suspend transition begins right now.
434 */
435 current->flags |= PF_NOFREEZE;
436
437 if (current->nsproxy != &init_nsproxy) {
438 get_nsproxy(&init_nsproxy);
439 switch_task_namespaces(current, &init_nsproxy);
440 }
441 set_special_pids(&init_struct_pid);
442 proc_clear_tty(current);
443
444 /* Block and flush all signals */
445 sigfillset(&blocked);
446 sigprocmask(SIG_BLOCK, &blocked, NULL);
447 flush_signals(current);
448
449 /* Become as one with the init task */
450
451 exit_fs(current); /* current->fs->count--; */
452 fs = init_task.fs;
453 current->fs = fs;
454 atomic_inc(&fs->count);
455
456 exit_files(current);
457 current->files = init_task.files;
458 atomic_inc(&current->files->count);
459
460 reparent_to_kthreadd();
461 }
462
463 EXPORT_SYMBOL(daemonize);
464
465 static void close_files(struct files_struct * files)
466 {
467 int i, j;
468 struct fdtable *fdt;
469
470 j = 0;
471
472 /*
473 * It is safe to dereference the fd table without RCU or
474 * ->file_lock because this is the last reference to the
475 * files structure.
476 */
477 fdt = files_fdtable(files);
478 for (;;) {
479 unsigned long set;
480 i = j * __NFDBITS;
481 if (i >= fdt->max_fds)
482 break;
483 set = fdt->open_fds->fds_bits[j++];
484 while (set) {
485 if (set & 1) {
486 struct file * file = xchg(&fdt->fd[i], NULL);
487 if (file) {
488 filp_close(file, files);
489 cond_resched();
490 }
491 }
492 i++;
493 set >>= 1;
494 }
495 }
496 }
497
498 struct files_struct *get_files_struct(struct task_struct *task)
499 {
500 struct files_struct *files;
501
502 task_lock(task);
503 files = task->files;
504 if (files)
505 atomic_inc(&files->count);
506 task_unlock(task);
507
508 return files;
509 }
510
511 void put_files_struct(struct files_struct *files)
512 {
513 struct fdtable *fdt;
514
515 if (atomic_dec_and_test(&files->count)) {
516 close_files(files);
517 /*
518 * Free the fd and fdset arrays if we expanded them.
519 * If the fdtable was embedded, pass files for freeing
520 * at the end of the RCU grace period. Otherwise,
521 * you can free files immediately.
522 */
523 fdt = files_fdtable(files);
524 if (fdt != &files->fdtab)
525 kmem_cache_free(files_cachep, files);
526 free_fdtable(fdt);
527 }
528 }
529
530 void reset_files_struct(struct files_struct *files)
531 {
532 struct task_struct *tsk = current;
533 struct files_struct *old;
534
535 old = tsk->files;
536 task_lock(tsk);
537 tsk->files = files;
538 task_unlock(tsk);
539 put_files_struct(old);
540 }
541
542 void exit_files(struct task_struct *tsk)
543 {
544 struct files_struct * files = tsk->files;
545
546 if (files) {
547 task_lock(tsk);
548 tsk->files = NULL;
549 task_unlock(tsk);
550 put_files_struct(files);
551 }
552 }
553
554 void put_fs_struct(struct fs_struct *fs)
555 {
556 /* No need to hold fs->lock if we are killing it */
557 if (atomic_dec_and_test(&fs->count)) {
558 path_put(&fs->root);
559 path_put(&fs->pwd);
560 if (fs->altroot.dentry)
561 path_put(&fs->altroot);
562 kmem_cache_free(fs_cachep, fs);
563 }
564 }
565
566 void exit_fs(struct task_struct *tsk)
567 {
568 struct fs_struct * fs = tsk->fs;
569
570 if (fs) {
571 task_lock(tsk);
572 tsk->fs = NULL;
573 task_unlock(tsk);
574 put_fs_struct(fs);
575 }
576 }
577
578 EXPORT_SYMBOL_GPL(exit_fs);
579
580 #ifdef CONFIG_MM_OWNER
581 /*
582 * Task p is exiting and it owned mm, lets find a new owner for it
583 */
584 static inline int
585 mm_need_new_owner(struct mm_struct *mm, struct task_struct *p)
586 {
587 /*
588 * If there are other users of the mm and the owner (us) is exiting
589 * we need to find a new owner to take on the responsibility.
590 */
591 if (!mm)
592 return 0;
593 if (atomic_read(&mm->mm_users) <= 1)
594 return 0;
595 if (mm->owner != p)
596 return 0;
597 return 1;
598 }
599
600 void mm_update_next_owner(struct mm_struct *mm)
601 {
602 struct task_struct *c, *g, *p = current;
603
604 retry:
605 if (!mm_need_new_owner(mm, p))
606 return;
607
608 read_lock(&tasklist_lock);
609 /*
610 * Search in the children
611 */
612 list_for_each_entry(c, &p->children, sibling) {
613 if (c->mm == mm)
614 goto assign_new_owner;
615 }
616
617 /*
618 * Search in the siblings
619 */
620 list_for_each_entry(c, &p->parent->children, sibling) {
621 if (c->mm == mm)
622 goto assign_new_owner;
623 }
624
625 /*
626 * Search through everything else. We should not get
627 * here often
628 */
629 do_each_thread(g, c) {
630 if (c->mm == mm)
631 goto assign_new_owner;
632 } while_each_thread(g, c);
633
634 read_unlock(&tasklist_lock);
635 return;
636
637 assign_new_owner:
638 BUG_ON(c == p);
639 get_task_struct(c);
640 /*
641 * The task_lock protects c->mm from changing.
642 * We always want mm->owner->mm == mm
643 */
644 task_lock(c);
645 /*
646 * Delay read_unlock() till we have the task_lock()
647 * to ensure that c does not slip away underneath us
648 */
649 read_unlock(&tasklist_lock);
650 if (c->mm != mm) {
651 task_unlock(c);
652 put_task_struct(c);
653 goto retry;
654 }
655 cgroup_mm_owner_callbacks(mm->owner, c);
656 mm->owner = c;
657 task_unlock(c);
658 put_task_struct(c);
659 }
660 #endif /* CONFIG_MM_OWNER */
661
662 /*
663 * Turn us into a lazy TLB process if we
664 * aren't already..
665 */
666 static void exit_mm(struct task_struct * tsk)
667 {
668 struct mm_struct *mm = tsk->mm;
669
670 mm_release(tsk, mm);
671 if (!mm)
672 return;
673 /*
674 * Serialize with any possible pending coredump.
675 * We must hold mmap_sem around checking core_waiters
676 * and clearing tsk->mm. The core-inducing thread
677 * will increment core_waiters for each thread in the
678 * group with ->mm != NULL.
679 */
680 down_read(&mm->mmap_sem);
681 if (mm->core_waiters) {
682 up_read(&mm->mmap_sem);
683 down_write(&mm->mmap_sem);
684 if (!--mm->core_waiters)
685 complete(mm->core_startup_done);
686 up_write(&mm->mmap_sem);
687
688 wait_for_completion(&mm->core_done);
689 down_read(&mm->mmap_sem);
690 }
691 atomic_inc(&mm->mm_count);
692 BUG_ON(mm != tsk->active_mm);
693 /* more a memory barrier than a real lock */
694 task_lock(tsk);
695 tsk->mm = NULL;
696 up_read(&mm->mmap_sem);
697 enter_lazy_tlb(mm, current);
698 /* We don't want this task to be frozen prematurely */
699 clear_freeze_flag(tsk);
700 task_unlock(tsk);
701 mm_update_next_owner(mm);
702 mmput(mm);
703 }
704
705 /*
706 * Detach all tasks we were using ptrace on.
707 * Any that need to be release_task'd are put on the @dead list.
708 *
709 * Called with write_lock(&tasklist_lock) held.
710 */
711 static void ptrace_exit(struct task_struct *parent, struct list_head *dead)
712 {
713 struct task_struct *p, *n;
714
715 list_for_each_entry_safe(p, n, &parent->ptraced, ptrace_entry) {
716 __ptrace_unlink(p);
717
718 if (p->exit_state != EXIT_ZOMBIE)
719 continue;
720
721 /*
722 * If it's a zombie, our attachedness prevented normal
723 * parent notification or self-reaping. Do notification
724 * now if it would have happened earlier. If it should
725 * reap itself, add it to the @dead list. We can't call
726 * release_task() here because we already hold tasklist_lock.
727 *
728 * If it's our own child, there is no notification to do.
729 */
730 if (!task_detached(p) && thread_group_empty(p)) {
731 if (!same_thread_group(p->real_parent, parent))
732 do_notify_parent(p, p->exit_signal);
733 }
734
735 if (task_detached(p)) {
736 /*
737 * Mark it as in the process of being reaped.
738 */
739 p->exit_state = EXIT_DEAD;
740 list_add(&p->ptrace_entry, dead);
741 }
742 }
743 }
744
745 /*
746 * Finish up exit-time ptrace cleanup.
747 *
748 * Called without locks.
749 */
750 static void ptrace_exit_finish(struct task_struct *parent,
751 struct list_head *dead)
752 {
753 struct task_struct *p, *n;
754
755 BUG_ON(!list_empty(&parent->ptraced));
756
757 list_for_each_entry_safe(p, n, dead, ptrace_entry) {
758 list_del_init(&p->ptrace_entry);
759 release_task(p);
760 }
761 }
762
763 static void reparent_thread(struct task_struct *p, struct task_struct *father)
764 {
765 if (p->pdeath_signal)
766 /* We already hold the tasklist_lock here. */
767 group_send_sig_info(p->pdeath_signal, SEND_SIG_NOINFO, p);
768
769 list_move_tail(&p->sibling, &p->real_parent->children);
770
771 /* If this is a threaded reparent there is no need to
772 * notify anyone anything has happened.
773 */
774 if (same_thread_group(p->real_parent, father))
775 return;
776
777 /* We don't want people slaying init. */
778 if (!task_detached(p))
779 p->exit_signal = SIGCHLD;
780
781 /* If we'd notified the old parent about this child's death,
782 * also notify the new parent.
783 */
784 if (!ptrace_reparented(p) &&
785 p->exit_state == EXIT_ZOMBIE &&
786 !task_detached(p) && thread_group_empty(p))
787 do_notify_parent(p, p->exit_signal);
788
789 kill_orphaned_pgrp(p, father);
790 }
791
792 /*
793 * When we die, we re-parent all our children.
794 * Try to give them to another thread in our thread
795 * group, and if no such member exists, give it to
796 * the child reaper process (ie "init") in our pid
797 * space.
798 */
799 static void forget_original_parent(struct task_struct *father)
800 {
801 struct task_struct *p, *n, *reaper = father;
802 LIST_HEAD(ptrace_dead);
803
804 write_lock_irq(&tasklist_lock);
805
806 /*
807 * First clean up ptrace if we were using it.
808 */
809 ptrace_exit(father, &ptrace_dead);
810
811 do {
812 reaper = next_thread(reaper);
813 if (reaper == father) {
814 reaper = task_child_reaper(father);
815 break;
816 }
817 } while (reaper->flags & PF_EXITING);
818
819 list_for_each_entry_safe(p, n, &father->children, sibling) {
820 p->real_parent = reaper;
821 if (p->parent == father) {
822 BUG_ON(p->ptrace);
823 p->parent = p->real_parent;
824 }
825 reparent_thread(p, father);
826 }
827
828 write_unlock_irq(&tasklist_lock);
829 BUG_ON(!list_empty(&father->children));
830
831 ptrace_exit_finish(father, &ptrace_dead);
832 }
833
834 /*
835 * Send signals to all our closest relatives so that they know
836 * to properly mourn us..
837 */
838 static void exit_notify(struct task_struct *tsk, int group_dead)
839 {
840 int state;
841
842 /*
843 * This does two things:
844 *
845 * A. Make init inherit all the child processes
846 * B. Check to see if any process groups have become orphaned
847 * as a result of our exiting, and if they have any stopped
848 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
849 */
850 forget_original_parent(tsk);
851 exit_task_namespaces(tsk);
852
853 write_lock_irq(&tasklist_lock);
854 if (group_dead)
855 kill_orphaned_pgrp(tsk->group_leader, NULL);
856
857 /* Let father know we died
858 *
859 * Thread signals are configurable, but you aren't going to use
860 * that to send signals to arbitary processes.
861 * That stops right now.
862 *
863 * If the parent exec id doesn't match the exec id we saved
864 * when we started then we know the parent has changed security
865 * domain.
866 *
867 * If our self_exec id doesn't match our parent_exec_id then
868 * we have changed execution domain as these two values started
869 * the same after a fork.
870 */
871 if (tsk->exit_signal != SIGCHLD && !task_detached(tsk) &&
872 (tsk->parent_exec_id != tsk->real_parent->self_exec_id ||
873 tsk->self_exec_id != tsk->parent_exec_id) &&
874 !capable(CAP_KILL))
875 tsk->exit_signal = SIGCHLD;
876
877 /* If something other than our normal parent is ptracing us, then
878 * send it a SIGCHLD instead of honoring exit_signal. exit_signal
879 * only has special meaning to our real parent.
880 */
881 if (!task_detached(tsk) && thread_group_empty(tsk)) {
882 int signal = ptrace_reparented(tsk) ?
883 SIGCHLD : tsk->exit_signal;
884 do_notify_parent(tsk, signal);
885 } else if (tsk->ptrace) {
886 do_notify_parent(tsk, SIGCHLD);
887 }
888
889 state = EXIT_ZOMBIE;
890 if (task_detached(tsk) && likely(!tsk->ptrace))
891 state = EXIT_DEAD;
892 tsk->exit_state = state;
893
894 /* mt-exec, de_thread() is waiting for us */
895 if (thread_group_leader(tsk) &&
896 tsk->signal->notify_count < 0 &&
897 tsk->signal->group_exit_task)
898 wake_up_process(tsk->signal->group_exit_task);
899
900 write_unlock_irq(&tasklist_lock);
901
902 /* If the process is dead, release it - nobody will wait for it */
903 if (state == EXIT_DEAD)
904 release_task(tsk);
905 }
906
907 #ifdef CONFIG_DEBUG_STACK_USAGE
908 static void check_stack_usage(void)
909 {
910 static DEFINE_SPINLOCK(low_water_lock);
911 static int lowest_to_date = THREAD_SIZE;
912 unsigned long *n = end_of_stack(current);
913 unsigned long free;
914
915 while (*n == 0)
916 n++;
917 free = (unsigned long)n - (unsigned long)end_of_stack(current);
918
919 if (free >= lowest_to_date)
920 return;
921
922 spin_lock(&low_water_lock);
923 if (free < lowest_to_date) {
924 printk(KERN_WARNING "%s used greatest stack depth: %lu bytes "
925 "left\n",
926 current->comm, free);
927 lowest_to_date = free;
928 }
929 spin_unlock(&low_water_lock);
930 }
931 #else
932 static inline void check_stack_usage(void) {}
933 #endif
934
935 static inline void exit_child_reaper(struct task_struct *tsk)
936 {
937 if (likely(tsk->group_leader != task_child_reaper(tsk)))
938 return;
939
940 if (tsk->nsproxy->pid_ns == &init_pid_ns)
941 panic("Attempted to kill init!");
942
943 /*
944 * @tsk is the last thread in the 'cgroup-init' and is exiting.
945 * Terminate all remaining processes in the namespace and reap them
946 * before exiting @tsk.
947 *
948 * Note that @tsk (last thread of cgroup-init) may not necessarily
949 * be the child-reaper (i.e main thread of cgroup-init) of the
950 * namespace i.e the child_reaper may have already exited.
951 *
952 * Even after a child_reaper exits, we let it inherit orphaned children,
953 * because, pid_ns->child_reaper remains valid as long as there is
954 * at least one living sub-thread in the cgroup init.
955
956 * This living sub-thread of the cgroup-init will be notified when
957 * a child inherited by the 'child-reaper' exits (do_notify_parent()
958 * uses __group_send_sig_info()). Further, when reaping child processes,
959 * do_wait() iterates over children of all living sub threads.
960
961 * i.e even though 'child_reaper' thread is listed as the parent of the
962 * orphaned children, any living sub-thread in the cgroup-init can
963 * perform the role of the child_reaper.
964 */
965 zap_pid_ns_processes(tsk->nsproxy->pid_ns);
966 }
967
968 NORET_TYPE void do_exit(long code)
969 {
970 struct task_struct *tsk = current;
971 int group_dead;
972
973 profile_task_exit(tsk);
974
975 WARN_ON(atomic_read(&tsk->fs_excl));
976
977 if (unlikely(in_interrupt()))
978 panic("Aiee, killing interrupt handler!");
979 if (unlikely(!tsk->pid))
980 panic("Attempted to kill the idle task!");
981
982 if (unlikely(current->ptrace & PT_TRACE_EXIT)) {
983 current->ptrace_message = code;
984 ptrace_notify((PTRACE_EVENT_EXIT << 8) | SIGTRAP);
985 }
986
987 /*
988 * We're taking recursive faults here in do_exit. Safest is to just
989 * leave this task alone and wait for reboot.
990 */
991 if (unlikely(tsk->flags & PF_EXITING)) {
992 printk(KERN_ALERT
993 "Fixing recursive fault but reboot is needed!\n");
994 /*
995 * We can do this unlocked here. The futex code uses
996 * this flag just to verify whether the pi state
997 * cleanup has been done or not. In the worst case it
998 * loops once more. We pretend that the cleanup was
999 * done as there is no way to return. Either the
1000 * OWNER_DIED bit is set by now or we push the blocked
1001 * task into the wait for ever nirwana as well.
1002 */
1003 tsk->flags |= PF_EXITPIDONE;
1004 if (tsk->io_context)
1005 exit_io_context();
1006 set_current_state(TASK_UNINTERRUPTIBLE);
1007 schedule();
1008 }
1009
1010 exit_signals(tsk); /* sets PF_EXITING */
1011 /*
1012 * tsk->flags are checked in the futex code to protect against
1013 * an exiting task cleaning up the robust pi futexes.
1014 */
1015 smp_mb();
1016 spin_unlock_wait(&tsk->pi_lock);
1017
1018 if (unlikely(in_atomic()))
1019 printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n",
1020 current->comm, task_pid_nr(current),
1021 preempt_count());
1022
1023 acct_update_integrals(tsk);
1024 if (tsk->mm) {
1025 update_hiwater_rss(tsk->mm);
1026 update_hiwater_vm(tsk->mm);
1027 }
1028 group_dead = atomic_dec_and_test(&tsk->signal->live);
1029 if (group_dead) {
1030 exit_child_reaper(tsk);
1031 hrtimer_cancel(&tsk->signal->real_timer);
1032 exit_itimers(tsk->signal);
1033 }
1034 acct_collect(code, group_dead);
1035 #ifdef CONFIG_FUTEX
1036 if (unlikely(tsk->robust_list))
1037 exit_robust_list(tsk);
1038 #ifdef CONFIG_COMPAT
1039 if (unlikely(tsk->compat_robust_list))
1040 compat_exit_robust_list(tsk);
1041 #endif
1042 #endif
1043 if (group_dead)
1044 tty_audit_exit();
1045 if (unlikely(tsk->audit_context))
1046 audit_free(tsk);
1047
1048 tsk->exit_code = code;
1049 taskstats_exit(tsk, group_dead);
1050
1051 exit_mm(tsk);
1052
1053 if (group_dead)
1054 acct_process();
1055 exit_sem(tsk);
1056 exit_files(tsk);
1057 exit_fs(tsk);
1058 check_stack_usage();
1059 exit_thread();
1060 cgroup_exit(tsk, 1);
1061 exit_keys(tsk);
1062
1063 if (group_dead && tsk->signal->leader)
1064 disassociate_ctty(1);
1065
1066 module_put(task_thread_info(tsk)->exec_domain->module);
1067 if (tsk->binfmt)
1068 module_put(tsk->binfmt->module);
1069
1070 proc_exit_connector(tsk);
1071 exit_notify(tsk, group_dead);
1072 #ifdef CONFIG_NUMA
1073 mpol_put(tsk->mempolicy);
1074 tsk->mempolicy = NULL;
1075 #endif
1076 #ifdef CONFIG_FUTEX
1077 /*
1078 * This must happen late, after the PID is not
1079 * hashed anymore:
1080 */
1081 if (unlikely(!list_empty(&tsk->pi_state_list)))
1082 exit_pi_state_list(tsk);
1083 if (unlikely(current->pi_state_cache))
1084 kfree(current->pi_state_cache);
1085 #endif
1086 /*
1087 * Make sure we are holding no locks:
1088 */
1089 debug_check_no_locks_held(tsk);
1090 /*
1091 * We can do this unlocked here. The futex code uses this flag
1092 * just to verify whether the pi state cleanup has been done
1093 * or not. In the worst case it loops once more.
1094 */
1095 tsk->flags |= PF_EXITPIDONE;
1096
1097 if (tsk->io_context)
1098 exit_io_context();
1099
1100 if (tsk->splice_pipe)
1101 __free_pipe_info(tsk->splice_pipe);
1102
1103 preempt_disable();
1104 /* causes final put_task_struct in finish_task_switch(). */
1105 tsk->state = TASK_DEAD;
1106
1107 schedule();
1108 BUG();
1109 /* Avoid "noreturn function does return". */
1110 for (;;)
1111 cpu_relax(); /* For when BUG is null */
1112 }
1113
1114 EXPORT_SYMBOL_GPL(do_exit);
1115
1116 NORET_TYPE void complete_and_exit(struct completion *comp, long code)
1117 {
1118 if (comp)
1119 complete(comp);
1120
1121 do_exit(code);
1122 }
1123
1124 EXPORT_SYMBOL(complete_and_exit);
1125
1126 asmlinkage long sys_exit(int error_code)
1127 {
1128 do_exit((error_code&0xff)<<8);
1129 }
1130
1131 /*
1132 * Take down every thread in the group. This is called by fatal signals
1133 * as well as by sys_exit_group (below).
1134 */
1135 NORET_TYPE void
1136 do_group_exit(int exit_code)
1137 {
1138 struct signal_struct *sig = current->signal;
1139
1140 BUG_ON(exit_code & 0x80); /* core dumps don't get here */
1141
1142 if (signal_group_exit(sig))
1143 exit_code = sig->group_exit_code;
1144 else if (!thread_group_empty(current)) {
1145 struct sighand_struct *const sighand = current->sighand;
1146 spin_lock_irq(&sighand->siglock);
1147 if (signal_group_exit(sig))
1148 /* Another thread got here before we took the lock. */
1149 exit_code = sig->group_exit_code;
1150 else {
1151 sig->group_exit_code = exit_code;
1152 sig->flags = SIGNAL_GROUP_EXIT;
1153 zap_other_threads(current);
1154 }
1155 spin_unlock_irq(&sighand->siglock);
1156 }
1157
1158 do_exit(exit_code);
1159 /* NOTREACHED */
1160 }
1161
1162 /*
1163 * this kills every thread in the thread group. Note that any externally
1164 * wait4()-ing process will get the correct exit code - even if this
1165 * thread is not the thread group leader.
1166 */
1167 asmlinkage void sys_exit_group(int error_code)
1168 {
1169 do_group_exit((error_code & 0xff) << 8);
1170 }
1171
1172 static struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
1173 {
1174 struct pid *pid = NULL;
1175 if (type == PIDTYPE_PID)
1176 pid = task->pids[type].pid;
1177 else if (type < PIDTYPE_MAX)
1178 pid = task->group_leader->pids[type].pid;
1179 return pid;
1180 }
1181
1182 static int eligible_child(enum pid_type type, struct pid *pid, int options,
1183 struct task_struct *p)
1184 {
1185 int err;
1186
1187 if (type < PIDTYPE_MAX) {
1188 if (task_pid_type(p, type) != pid)
1189 return 0;
1190 }
1191
1192 /* Wait for all children (clone and not) if __WALL is set;
1193 * otherwise, wait for clone children *only* if __WCLONE is
1194 * set; otherwise, wait for non-clone children *only*. (Note:
1195 * A "clone" child here is one that reports to its parent
1196 * using a signal other than SIGCHLD.) */
1197 if (((p->exit_signal != SIGCHLD) ^ ((options & __WCLONE) != 0))
1198 && !(options & __WALL))
1199 return 0;
1200
1201 err = security_task_wait(p);
1202 if (likely(!err))
1203 return 1;
1204
1205 if (type != PIDTYPE_PID)
1206 return 0;
1207 /* This child was explicitly requested, abort */
1208 read_unlock(&tasklist_lock);
1209 return err;
1210 }
1211
1212 static int wait_noreap_copyout(struct task_struct *p, pid_t pid, uid_t uid,
1213 int why, int status,
1214 struct siginfo __user *infop,
1215 struct rusage __user *rusagep)
1216 {
1217 int retval = rusagep ? getrusage(p, RUSAGE_BOTH, rusagep) : 0;
1218
1219 put_task_struct(p);
1220 if (!retval)
1221 retval = put_user(SIGCHLD, &infop->si_signo);
1222 if (!retval)
1223 retval = put_user(0, &infop->si_errno);
1224 if (!retval)
1225 retval = put_user((short)why, &infop->si_code);
1226 if (!retval)
1227 retval = put_user(pid, &infop->si_pid);
1228 if (!retval)
1229 retval = put_user(uid, &infop->si_uid);
1230 if (!retval)
1231 retval = put_user(status, &infop->si_status);
1232 if (!retval)
1233 retval = pid;
1234 return retval;
1235 }
1236
1237 /*
1238 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold
1239 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1240 * the lock and this task is uninteresting. If we return nonzero, we have
1241 * released the lock and the system call should return.
1242 */
1243 static int wait_task_zombie(struct task_struct *p, int options,
1244 struct siginfo __user *infop,
1245 int __user *stat_addr, struct rusage __user *ru)
1246 {
1247 unsigned long state;
1248 int retval, status, traced;
1249 pid_t pid = task_pid_vnr(p);
1250
1251 if (!likely(options & WEXITED))
1252 return 0;
1253
1254 if (unlikely(options & WNOWAIT)) {
1255 uid_t uid = p->uid;
1256 int exit_code = p->exit_code;
1257 int why, status;
1258
1259 get_task_struct(p);
1260 read_unlock(&tasklist_lock);
1261 if ((exit_code & 0x7f) == 0) {
1262 why = CLD_EXITED;
1263 status = exit_code >> 8;
1264 } else {
1265 why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
1266 status = exit_code & 0x7f;
1267 }
1268 return wait_noreap_copyout(p, pid, uid, why,
1269 status, infop, ru);
1270 }
1271
1272 /*
1273 * Try to move the task's state to DEAD
1274 * only one thread is allowed to do this:
1275 */
1276 state = xchg(&p->exit_state, EXIT_DEAD);
1277 if (state != EXIT_ZOMBIE) {
1278 BUG_ON(state != EXIT_DEAD);
1279 return 0;
1280 }
1281
1282 traced = ptrace_reparented(p);
1283
1284 if (likely(!traced)) {
1285 struct signal_struct *psig;
1286 struct signal_struct *sig;
1287
1288 /*
1289 * The resource counters for the group leader are in its
1290 * own task_struct. Those for dead threads in the group
1291 * are in its signal_struct, as are those for the child
1292 * processes it has previously reaped. All these
1293 * accumulate in the parent's signal_struct c* fields.
1294 *
1295 * We don't bother to take a lock here to protect these
1296 * p->signal fields, because they are only touched by
1297 * __exit_signal, which runs with tasklist_lock
1298 * write-locked anyway, and so is excluded here. We do
1299 * need to protect the access to p->parent->signal fields,
1300 * as other threads in the parent group can be right
1301 * here reaping other children at the same time.
1302 */
1303 spin_lock_irq(&p->parent->sighand->siglock);
1304 psig = p->parent->signal;
1305 sig = p->signal;
1306 psig->cutime =
1307 cputime_add(psig->cutime,
1308 cputime_add(p->utime,
1309 cputime_add(sig->utime,
1310 sig->cutime)));
1311 psig->cstime =
1312 cputime_add(psig->cstime,
1313 cputime_add(p->stime,
1314 cputime_add(sig->stime,
1315 sig->cstime)));
1316 psig->cgtime =
1317 cputime_add(psig->cgtime,
1318 cputime_add(p->gtime,
1319 cputime_add(sig->gtime,
1320 sig->cgtime)));
1321 psig->cmin_flt +=
1322 p->min_flt + sig->min_flt + sig->cmin_flt;
1323 psig->cmaj_flt +=
1324 p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1325 psig->cnvcsw +=
1326 p->nvcsw + sig->nvcsw + sig->cnvcsw;
1327 psig->cnivcsw +=
1328 p->nivcsw + sig->nivcsw + sig->cnivcsw;
1329 psig->cinblock +=
1330 task_io_get_inblock(p) +
1331 sig->inblock + sig->cinblock;
1332 psig->coublock +=
1333 task_io_get_oublock(p) +
1334 sig->oublock + sig->coublock;
1335 spin_unlock_irq(&p->parent->sighand->siglock);
1336 }
1337
1338 /*
1339 * Now we are sure this task is interesting, and no other
1340 * thread can reap it because we set its state to EXIT_DEAD.
1341 */
1342 read_unlock(&tasklist_lock);
1343
1344 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1345 status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1346 ? p->signal->group_exit_code : p->exit_code;
1347 if (!retval && stat_addr)
1348 retval = put_user(status, stat_addr);
1349 if (!retval && infop)
1350 retval = put_user(SIGCHLD, &infop->si_signo);
1351 if (!retval && infop)
1352 retval = put_user(0, &infop->si_errno);
1353 if (!retval && infop) {
1354 int why;
1355
1356 if ((status & 0x7f) == 0) {
1357 why = CLD_EXITED;
1358 status >>= 8;
1359 } else {
1360 why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1361 status &= 0x7f;
1362 }
1363 retval = put_user((short)why, &infop->si_code);
1364 if (!retval)
1365 retval = put_user(status, &infop->si_status);
1366 }
1367 if (!retval && infop)
1368 retval = put_user(pid, &infop->si_pid);
1369 if (!retval && infop)
1370 retval = put_user(p->uid, &infop->si_uid);
1371 if (!retval)
1372 retval = pid;
1373
1374 if (traced) {
1375 write_lock_irq(&tasklist_lock);
1376 /* We dropped tasklist, ptracer could die and untrace */
1377 ptrace_unlink(p);
1378 /*
1379 * If this is not a detached task, notify the parent.
1380 * If it's still not detached after that, don't release
1381 * it now.
1382 */
1383 if (!task_detached(p)) {
1384 do_notify_parent(p, p->exit_signal);
1385 if (!task_detached(p)) {
1386 p->exit_state = EXIT_ZOMBIE;
1387 p = NULL;
1388 }
1389 }
1390 write_unlock_irq(&tasklist_lock);
1391 }
1392 if (p != NULL)
1393 release_task(p);
1394
1395 return retval;
1396 }
1397
1398 /*
1399 * Handle sys_wait4 work for one task in state TASK_STOPPED. We hold
1400 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1401 * the lock and this task is uninteresting. If we return nonzero, we have
1402 * released the lock and the system call should return.
1403 */
1404 static int wait_task_stopped(int ptrace, struct task_struct *p,
1405 int options, struct siginfo __user *infop,
1406 int __user *stat_addr, struct rusage __user *ru)
1407 {
1408 int retval, exit_code, why;
1409 uid_t uid = 0; /* unneeded, required by compiler */
1410 pid_t pid;
1411
1412 if (!(options & WUNTRACED))
1413 return 0;
1414
1415 exit_code = 0;
1416 spin_lock_irq(&p->sighand->siglock);
1417
1418 if (unlikely(!task_is_stopped_or_traced(p)))
1419 goto unlock_sig;
1420
1421 if (!ptrace && p->signal->group_stop_count > 0)
1422 /*
1423 * A group stop is in progress and this is the group leader.
1424 * We won't report until all threads have stopped.
1425 */
1426 goto unlock_sig;
1427
1428 exit_code = p->exit_code;
1429 if (!exit_code)
1430 goto unlock_sig;
1431
1432 if (!unlikely(options & WNOWAIT))
1433 p->exit_code = 0;
1434
1435 uid = p->uid;
1436 unlock_sig:
1437 spin_unlock_irq(&p->sighand->siglock);
1438 if (!exit_code)
1439 return 0;
1440
1441 /*
1442 * Now we are pretty sure this task is interesting.
1443 * Make sure it doesn't get reaped out from under us while we
1444 * give up the lock and then examine it below. We don't want to
1445 * keep holding onto the tasklist_lock while we call getrusage and
1446 * possibly take page faults for user memory.
1447 */
1448 get_task_struct(p);
1449 pid = task_pid_vnr(p);
1450 why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1451 read_unlock(&tasklist_lock);
1452
1453 if (unlikely(options & WNOWAIT))
1454 return wait_noreap_copyout(p, pid, uid,
1455 why, exit_code,
1456 infop, ru);
1457
1458 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1459 if (!retval && stat_addr)
1460 retval = put_user((exit_code << 8) | 0x7f, stat_addr);
1461 if (!retval && infop)
1462 retval = put_user(SIGCHLD, &infop->si_signo);
1463 if (!retval && infop)
1464 retval = put_user(0, &infop->si_errno);
1465 if (!retval && infop)
1466 retval = put_user((short)why, &infop->si_code);
1467 if (!retval && infop)
1468 retval = put_user(exit_code, &infop->si_status);
1469 if (!retval && infop)
1470 retval = put_user(pid, &infop->si_pid);
1471 if (!retval && infop)
1472 retval = put_user(uid, &infop->si_uid);
1473 if (!retval)
1474 retval = pid;
1475 put_task_struct(p);
1476
1477 BUG_ON(!retval);
1478 return retval;
1479 }
1480
1481 /*
1482 * Handle do_wait work for one task in a live, non-stopped state.
1483 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1484 * the lock and this task is uninteresting. If we return nonzero, we have
1485 * released the lock and the system call should return.
1486 */
1487 static int wait_task_continued(struct task_struct *p, int options,
1488 struct siginfo __user *infop,
1489 int __user *stat_addr, struct rusage __user *ru)
1490 {
1491 int retval;
1492 pid_t pid;
1493 uid_t uid;
1494
1495 if (!unlikely(options & WCONTINUED))
1496 return 0;
1497
1498 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1499 return 0;
1500
1501 spin_lock_irq(&p->sighand->siglock);
1502 /* Re-check with the lock held. */
1503 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1504 spin_unlock_irq(&p->sighand->siglock);
1505 return 0;
1506 }
1507 if (!unlikely(options & WNOWAIT))
1508 p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1509 spin_unlock_irq(&p->sighand->siglock);
1510
1511 pid = task_pid_vnr(p);
1512 uid = p->uid;
1513 get_task_struct(p);
1514 read_unlock(&tasklist_lock);
1515
1516 if (!infop) {
1517 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1518 put_task_struct(p);
1519 if (!retval && stat_addr)
1520 retval = put_user(0xffff, stat_addr);
1521 if (!retval)
1522 retval = pid;
1523 } else {
1524 retval = wait_noreap_copyout(p, pid, uid,
1525 CLD_CONTINUED, SIGCONT,
1526 infop, ru);
1527 BUG_ON(retval == 0);
1528 }
1529
1530 return retval;
1531 }
1532
1533 /*
1534 * Consider @p for a wait by @parent.
1535 *
1536 * -ECHILD should be in *@notask_error before the first call.
1537 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1538 * Returns zero if the search for a child should continue;
1539 * then *@notask_error is 0 if @p is an eligible child, or still -ECHILD.
1540 */
1541 static int wait_consider_task(struct task_struct *parent, int ptrace,
1542 struct task_struct *p, int *notask_error,
1543 enum pid_type type, struct pid *pid, int options,
1544 struct siginfo __user *infop,
1545 int __user *stat_addr, struct rusage __user *ru)
1546 {
1547 int ret = eligible_child(type, pid, options, p);
1548 if (ret <= 0)
1549 return ret;
1550
1551 if (likely(!ptrace) && unlikely(p->ptrace)) {
1552 /*
1553 * This child is hidden by ptrace.
1554 * We aren't allowed to see it now, but eventually we will.
1555 */
1556 *notask_error = 0;
1557 return 0;
1558 }
1559
1560 if (p->exit_state == EXIT_DEAD)
1561 return 0;
1562
1563 /*
1564 * We don't reap group leaders with subthreads.
1565 */
1566 if (p->exit_state == EXIT_ZOMBIE && !delay_group_leader(p))
1567 return wait_task_zombie(p, options, infop, stat_addr, ru);
1568
1569 /*
1570 * It's stopped or running now, so it might
1571 * later continue, exit, or stop again.
1572 */
1573 *notask_error = 0;
1574
1575 if (task_is_stopped_or_traced(p))
1576 return wait_task_stopped(ptrace, p, options,
1577 infop, stat_addr, ru);
1578
1579 return wait_task_continued(p, options, infop, stat_addr, ru);
1580 }
1581
1582 /*
1583 * Do the work of do_wait() for one thread in the group, @tsk.
1584 *
1585 * -ECHILD should be in *@notask_error before the first call.
1586 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1587 * Returns zero if the search for a child should continue; then
1588 * *@notask_error is 0 if there were any eligible children, or still -ECHILD.
1589 */
1590 static int do_wait_thread(struct task_struct *tsk, int *notask_error,
1591 enum pid_type type, struct pid *pid, int options,
1592 struct siginfo __user *infop, int __user *stat_addr,
1593 struct rusage __user *ru)
1594 {
1595 struct task_struct *p;
1596
1597 list_for_each_entry(p, &tsk->children, sibling) {
1598 /*
1599 * Do not consider detached threads.
1600 */
1601 if (!task_detached(p)) {
1602 int ret = wait_consider_task(tsk, 0, p, notask_error,
1603 type, pid, options,
1604 infop, stat_addr, ru);
1605 if (ret)
1606 return ret;
1607 }
1608 }
1609
1610 return 0;
1611 }
1612
1613 static int ptrace_do_wait(struct task_struct *tsk, int *notask_error,
1614 enum pid_type type, struct pid *pid, int options,
1615 struct siginfo __user *infop, int __user *stat_addr,
1616 struct rusage __user *ru)
1617 {
1618 struct task_struct *p;
1619
1620 /*
1621 * Traditionally we see ptrace'd stopped tasks regardless of options.
1622 */
1623 options |= WUNTRACED;
1624
1625 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1626 int ret = wait_consider_task(tsk, 1, p, notask_error,
1627 type, pid, options,
1628 infop, stat_addr, ru);
1629 if (ret)
1630 return ret;
1631 }
1632
1633 return 0;
1634 }
1635
1636 static long do_wait(enum pid_type type, struct pid *pid, int options,
1637 struct siginfo __user *infop, int __user *stat_addr,
1638 struct rusage __user *ru)
1639 {
1640 DECLARE_WAITQUEUE(wait, current);
1641 struct task_struct *tsk;
1642 int retval;
1643
1644 add_wait_queue(&current->signal->wait_chldexit,&wait);
1645 repeat:
1646 /*
1647 * If there is nothing that can match our critiera just get out.
1648 * We will clear @retval to zero if we see any child that might later
1649 * match our criteria, even if we are not able to reap it yet.
1650 */
1651 retval = -ECHILD;
1652 if ((type < PIDTYPE_MAX) && (!pid || hlist_empty(&pid->tasks[type])))
1653 goto end;
1654
1655 current->state = TASK_INTERRUPTIBLE;
1656 read_lock(&tasklist_lock);
1657 tsk = current;
1658 do {
1659 int tsk_result = do_wait_thread(tsk, &retval,
1660 type, pid, options,
1661 infop, stat_addr, ru);
1662 if (!tsk_result)
1663 tsk_result = ptrace_do_wait(tsk, &retval,
1664 type, pid, options,
1665 infop, stat_addr, ru);
1666 if (tsk_result) {
1667 /*
1668 * tasklist_lock is unlocked and we have a final result.
1669 */
1670 retval = tsk_result;
1671 goto end;
1672 }
1673
1674 if (options & __WNOTHREAD)
1675 break;
1676 tsk = next_thread(tsk);
1677 BUG_ON(tsk->signal != current->signal);
1678 } while (tsk != current);
1679 read_unlock(&tasklist_lock);
1680
1681 if (!retval && !(options & WNOHANG)) {
1682 retval = -ERESTARTSYS;
1683 if (!signal_pending(current)) {
1684 schedule();
1685 goto repeat;
1686 }
1687 }
1688
1689 end:
1690 current->state = TASK_RUNNING;
1691 remove_wait_queue(&current->signal->wait_chldexit,&wait);
1692 if (infop) {
1693 if (retval > 0)
1694 retval = 0;
1695 else {
1696 /*
1697 * For a WNOHANG return, clear out all the fields
1698 * we would set so the user can easily tell the
1699 * difference.
1700 */
1701 if (!retval)
1702 retval = put_user(0, &infop->si_signo);
1703 if (!retval)
1704 retval = put_user(0, &infop->si_errno);
1705 if (!retval)
1706 retval = put_user(0, &infop->si_code);
1707 if (!retval)
1708 retval = put_user(0, &infop->si_pid);
1709 if (!retval)
1710 retval = put_user(0, &infop->si_uid);
1711 if (!retval)
1712 retval = put_user(0, &infop->si_status);
1713 }
1714 }
1715 return retval;
1716 }
1717
1718 asmlinkage long sys_waitid(int which, pid_t upid,
1719 struct siginfo __user *infop, int options,
1720 struct rusage __user *ru)
1721 {
1722 struct pid *pid = NULL;
1723 enum pid_type type;
1724 long ret;
1725
1726 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED))
1727 return -EINVAL;
1728 if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1729 return -EINVAL;
1730
1731 switch (which) {
1732 case P_ALL:
1733 type = PIDTYPE_MAX;
1734 break;
1735 case P_PID:
1736 type = PIDTYPE_PID;
1737 if (upid <= 0)
1738 return -EINVAL;
1739 break;
1740 case P_PGID:
1741 type = PIDTYPE_PGID;
1742 if (upid <= 0)
1743 return -EINVAL;
1744 break;
1745 default:
1746 return -EINVAL;
1747 }
1748
1749 if (type < PIDTYPE_MAX)
1750 pid = find_get_pid(upid);
1751 ret = do_wait(type, pid, options, infop, NULL, ru);
1752 put_pid(pid);
1753
1754 /* avoid REGPARM breakage on x86: */
1755 asmlinkage_protect(5, ret, which, upid, infop, options, ru);
1756 return ret;
1757 }
1758
1759 asmlinkage long sys_wait4(pid_t upid, int __user *stat_addr,
1760 int options, struct rusage __user *ru)
1761 {
1762 struct pid *pid = NULL;
1763 enum pid_type type;
1764 long ret;
1765
1766 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1767 __WNOTHREAD|__WCLONE|__WALL))
1768 return -EINVAL;
1769
1770 if (upid == -1)
1771 type = PIDTYPE_MAX;
1772 else if (upid < 0) {
1773 type = PIDTYPE_PGID;
1774 pid = find_get_pid(-upid);
1775 } else if (upid == 0) {
1776 type = PIDTYPE_PGID;
1777 pid = get_pid(task_pgrp(current));
1778 } else /* upid > 0 */ {
1779 type = PIDTYPE_PID;
1780 pid = find_get_pid(upid);
1781 }
1782
1783 ret = do_wait(type, pid, options | WEXITED, NULL, stat_addr, ru);
1784 put_pid(pid);
1785
1786 /* avoid REGPARM breakage on x86: */
1787 asmlinkage_protect(4, ret, upid, stat_addr, options, ru);
1788 return ret;
1789 }
1790
1791 #ifdef __ARCH_WANT_SYS_WAITPID
1792
1793 /*
1794 * sys_waitpid() remains for compatibility. waitpid() should be
1795 * implemented by calling sys_wait4() from libc.a.
1796 */
1797 asmlinkage long sys_waitpid(pid_t pid, int __user *stat_addr, int options)
1798 {
1799 return sys_wait4(pid, stat_addr, options, NULL);
1800 }
1801
1802 #endif
This page took 0.070605 seconds and 6 git commands to generate.