[PATCH] sanitize handling of shared descriptor tables in failing execve()
[deliverable/linux.git] / kernel / exit.c
1 /*
2 * linux/kernel/exit.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 #include <linux/mm.h>
8 #include <linux/slab.h>
9 #include <linux/interrupt.h>
10 #include <linux/module.h>
11 #include <linux/capability.h>
12 #include <linux/completion.h>
13 #include <linux/personality.h>
14 #include <linux/tty.h>
15 #include <linux/mnt_namespace.h>
16 #include <linux/key.h>
17 #include <linux/security.h>
18 #include <linux/cpu.h>
19 #include <linux/acct.h>
20 #include <linux/tsacct_kern.h>
21 #include <linux/file.h>
22 #include <linux/binfmts.h>
23 #include <linux/nsproxy.h>
24 #include <linux/pid_namespace.h>
25 #include <linux/ptrace.h>
26 #include <linux/profile.h>
27 #include <linux/mount.h>
28 #include <linux/proc_fs.h>
29 #include <linux/kthread.h>
30 #include <linux/mempolicy.h>
31 #include <linux/taskstats_kern.h>
32 #include <linux/delayacct.h>
33 #include <linux/freezer.h>
34 #include <linux/cgroup.h>
35 #include <linux/syscalls.h>
36 #include <linux/signal.h>
37 #include <linux/posix-timers.h>
38 #include <linux/cn_proc.h>
39 #include <linux/mutex.h>
40 #include <linux/futex.h>
41 #include <linux/compat.h>
42 #include <linux/pipe_fs_i.h>
43 #include <linux/audit.h> /* for audit_free() */
44 #include <linux/resource.h>
45 #include <linux/blkdev.h>
46 #include <linux/task_io_accounting_ops.h>
47
48 #include <asm/uaccess.h>
49 #include <asm/unistd.h>
50 #include <asm/pgtable.h>
51 #include <asm/mmu_context.h>
52
53 static void exit_mm(struct task_struct * tsk);
54
55 static void __unhash_process(struct task_struct *p)
56 {
57 nr_threads--;
58 detach_pid(p, PIDTYPE_PID);
59 if (thread_group_leader(p)) {
60 detach_pid(p, PIDTYPE_PGID);
61 detach_pid(p, PIDTYPE_SID);
62
63 list_del_rcu(&p->tasks);
64 __get_cpu_var(process_counts)--;
65 }
66 list_del_rcu(&p->thread_group);
67 remove_parent(p);
68 }
69
70 /*
71 * This function expects the tasklist_lock write-locked.
72 */
73 static void __exit_signal(struct task_struct *tsk)
74 {
75 struct signal_struct *sig = tsk->signal;
76 struct sighand_struct *sighand;
77
78 BUG_ON(!sig);
79 BUG_ON(!atomic_read(&sig->count));
80
81 rcu_read_lock();
82 sighand = rcu_dereference(tsk->sighand);
83 spin_lock(&sighand->siglock);
84
85 posix_cpu_timers_exit(tsk);
86 if (atomic_dec_and_test(&sig->count))
87 posix_cpu_timers_exit_group(tsk);
88 else {
89 /*
90 * If there is any task waiting for the group exit
91 * then notify it:
92 */
93 if (sig->group_exit_task && atomic_read(&sig->count) == sig->notify_count)
94 wake_up_process(sig->group_exit_task);
95
96 if (tsk == sig->curr_target)
97 sig->curr_target = next_thread(tsk);
98 /*
99 * Accumulate here the counters for all threads but the
100 * group leader as they die, so they can be added into
101 * the process-wide totals when those are taken.
102 * The group leader stays around as a zombie as long
103 * as there are other threads. When it gets reaped,
104 * the exit.c code will add its counts into these totals.
105 * We won't ever get here for the group leader, since it
106 * will have been the last reference on the signal_struct.
107 */
108 sig->utime = cputime_add(sig->utime, tsk->utime);
109 sig->stime = cputime_add(sig->stime, tsk->stime);
110 sig->gtime = cputime_add(sig->gtime, tsk->gtime);
111 sig->min_flt += tsk->min_flt;
112 sig->maj_flt += tsk->maj_flt;
113 sig->nvcsw += tsk->nvcsw;
114 sig->nivcsw += tsk->nivcsw;
115 sig->inblock += task_io_get_inblock(tsk);
116 sig->oublock += task_io_get_oublock(tsk);
117 sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
118 sig = NULL; /* Marker for below. */
119 }
120
121 __unhash_process(tsk);
122
123 tsk->signal = NULL;
124 tsk->sighand = NULL;
125 spin_unlock(&sighand->siglock);
126 rcu_read_unlock();
127
128 __cleanup_sighand(sighand);
129 clear_tsk_thread_flag(tsk,TIF_SIGPENDING);
130 flush_sigqueue(&tsk->pending);
131 if (sig) {
132 flush_sigqueue(&sig->shared_pending);
133 taskstats_tgid_free(sig);
134 __cleanup_signal(sig);
135 }
136 }
137
138 static void delayed_put_task_struct(struct rcu_head *rhp)
139 {
140 put_task_struct(container_of(rhp, struct task_struct, rcu));
141 }
142
143 void release_task(struct task_struct * p)
144 {
145 struct task_struct *leader;
146 int zap_leader;
147 repeat:
148 atomic_dec(&p->user->processes);
149 proc_flush_task(p);
150 write_lock_irq(&tasklist_lock);
151 ptrace_unlink(p);
152 BUG_ON(!list_empty(&p->ptrace_list) || !list_empty(&p->ptrace_children));
153 __exit_signal(p);
154
155 /*
156 * If we are the last non-leader member of the thread
157 * group, and the leader is zombie, then notify the
158 * group leader's parent process. (if it wants notification.)
159 */
160 zap_leader = 0;
161 leader = p->group_leader;
162 if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) {
163 BUG_ON(leader->exit_signal == -1);
164 do_notify_parent(leader, leader->exit_signal);
165 /*
166 * If we were the last child thread and the leader has
167 * exited already, and the leader's parent ignores SIGCHLD,
168 * then we are the one who should release the leader.
169 *
170 * do_notify_parent() will have marked it self-reaping in
171 * that case.
172 */
173 zap_leader = (leader->exit_signal == -1);
174 }
175
176 write_unlock_irq(&tasklist_lock);
177 release_thread(p);
178 call_rcu(&p->rcu, delayed_put_task_struct);
179
180 p = leader;
181 if (unlikely(zap_leader))
182 goto repeat;
183 }
184
185 /*
186 * This checks not only the pgrp, but falls back on the pid if no
187 * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
188 * without this...
189 *
190 * The caller must hold rcu lock or the tasklist lock.
191 */
192 struct pid *session_of_pgrp(struct pid *pgrp)
193 {
194 struct task_struct *p;
195 struct pid *sid = NULL;
196
197 p = pid_task(pgrp, PIDTYPE_PGID);
198 if (p == NULL)
199 p = pid_task(pgrp, PIDTYPE_PID);
200 if (p != NULL)
201 sid = task_session(p);
202
203 return sid;
204 }
205
206 /*
207 * Determine if a process group is "orphaned", according to the POSIX
208 * definition in 2.2.2.52. Orphaned process groups are not to be affected
209 * by terminal-generated stop signals. Newly orphaned process groups are
210 * to receive a SIGHUP and a SIGCONT.
211 *
212 * "I ask you, have you ever known what it is to be an orphan?"
213 */
214 static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task)
215 {
216 struct task_struct *p;
217
218 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
219 if ((p == ignored_task) ||
220 (p->exit_state && thread_group_empty(p)) ||
221 is_global_init(p->real_parent))
222 continue;
223
224 if (task_pgrp(p->real_parent) != pgrp &&
225 task_session(p->real_parent) == task_session(p))
226 return 0;
227 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
228
229 return 1;
230 }
231
232 int is_current_pgrp_orphaned(void)
233 {
234 int retval;
235
236 read_lock(&tasklist_lock);
237 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
238 read_unlock(&tasklist_lock);
239
240 return retval;
241 }
242
243 static int has_stopped_jobs(struct pid *pgrp)
244 {
245 int retval = 0;
246 struct task_struct *p;
247
248 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
249 if (!task_is_stopped(p))
250 continue;
251 retval = 1;
252 break;
253 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
254 return retval;
255 }
256
257 /*
258 * Check to see if any process groups have become orphaned as
259 * a result of our exiting, and if they have any stopped jobs,
260 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
261 */
262 static void
263 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
264 {
265 struct pid *pgrp = task_pgrp(tsk);
266 struct task_struct *ignored_task = tsk;
267
268 if (!parent)
269 /* exit: our father is in a different pgrp than
270 * we are and we were the only connection outside.
271 */
272 parent = tsk->real_parent;
273 else
274 /* reparent: our child is in a different pgrp than
275 * we are, and it was the only connection outside.
276 */
277 ignored_task = NULL;
278
279 if (task_pgrp(parent) != pgrp &&
280 task_session(parent) == task_session(tsk) &&
281 will_become_orphaned_pgrp(pgrp, ignored_task) &&
282 has_stopped_jobs(pgrp)) {
283 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
284 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
285 }
286 }
287
288 /**
289 * reparent_to_kthreadd - Reparent the calling kernel thread to kthreadd
290 *
291 * If a kernel thread is launched as a result of a system call, or if
292 * it ever exits, it should generally reparent itself to kthreadd so it
293 * isn't in the way of other processes and is correctly cleaned up on exit.
294 *
295 * The various task state such as scheduling policy and priority may have
296 * been inherited from a user process, so we reset them to sane values here.
297 *
298 * NOTE that reparent_to_kthreadd() gives the caller full capabilities.
299 */
300 static void reparent_to_kthreadd(void)
301 {
302 write_lock_irq(&tasklist_lock);
303
304 ptrace_unlink(current);
305 /* Reparent to init */
306 remove_parent(current);
307 current->real_parent = current->parent = kthreadd_task;
308 add_parent(current);
309
310 /* Set the exit signal to SIGCHLD so we signal init on exit */
311 current->exit_signal = SIGCHLD;
312
313 if (task_nice(current) < 0)
314 set_user_nice(current, 0);
315 /* cpus_allowed? */
316 /* rt_priority? */
317 /* signals? */
318 security_task_reparent_to_init(current);
319 memcpy(current->signal->rlim, init_task.signal->rlim,
320 sizeof(current->signal->rlim));
321 atomic_inc(&(INIT_USER->__count));
322 write_unlock_irq(&tasklist_lock);
323 switch_uid(INIT_USER);
324 }
325
326 void __set_special_pids(struct pid *pid)
327 {
328 struct task_struct *curr = current->group_leader;
329 pid_t nr = pid_nr(pid);
330
331 if (task_session(curr) != pid) {
332 detach_pid(curr, PIDTYPE_SID);
333 attach_pid(curr, PIDTYPE_SID, pid);
334 set_task_session(curr, nr);
335 }
336 if (task_pgrp(curr) != pid) {
337 detach_pid(curr, PIDTYPE_PGID);
338 attach_pid(curr, PIDTYPE_PGID, pid);
339 set_task_pgrp(curr, nr);
340 }
341 }
342
343 static void set_special_pids(struct pid *pid)
344 {
345 write_lock_irq(&tasklist_lock);
346 __set_special_pids(pid);
347 write_unlock_irq(&tasklist_lock);
348 }
349
350 /*
351 * Let kernel threads use this to say that they
352 * allow a certain signal (since daemonize() will
353 * have disabled all of them by default).
354 */
355 int allow_signal(int sig)
356 {
357 if (!valid_signal(sig) || sig < 1)
358 return -EINVAL;
359
360 spin_lock_irq(&current->sighand->siglock);
361 sigdelset(&current->blocked, sig);
362 if (!current->mm) {
363 /* Kernel threads handle their own signals.
364 Let the signal code know it'll be handled, so
365 that they don't get converted to SIGKILL or
366 just silently dropped */
367 current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2;
368 }
369 recalc_sigpending();
370 spin_unlock_irq(&current->sighand->siglock);
371 return 0;
372 }
373
374 EXPORT_SYMBOL(allow_signal);
375
376 int disallow_signal(int sig)
377 {
378 if (!valid_signal(sig) || sig < 1)
379 return -EINVAL;
380
381 spin_lock_irq(&current->sighand->siglock);
382 current->sighand->action[(sig)-1].sa.sa_handler = SIG_IGN;
383 recalc_sigpending();
384 spin_unlock_irq(&current->sighand->siglock);
385 return 0;
386 }
387
388 EXPORT_SYMBOL(disallow_signal);
389
390 /*
391 * Put all the gunge required to become a kernel thread without
392 * attached user resources in one place where it belongs.
393 */
394
395 void daemonize(const char *name, ...)
396 {
397 va_list args;
398 struct fs_struct *fs;
399 sigset_t blocked;
400
401 va_start(args, name);
402 vsnprintf(current->comm, sizeof(current->comm), name, args);
403 va_end(args);
404
405 /*
406 * If we were started as result of loading a module, close all of the
407 * user space pages. We don't need them, and if we didn't close them
408 * they would be locked into memory.
409 */
410 exit_mm(current);
411 /*
412 * We don't want to have TIF_FREEZE set if the system-wide hibernation
413 * or suspend transition begins right now.
414 */
415 current->flags |= PF_NOFREEZE;
416
417 if (current->nsproxy != &init_nsproxy) {
418 get_nsproxy(&init_nsproxy);
419 switch_task_namespaces(current, &init_nsproxy);
420 }
421 set_special_pids(&init_struct_pid);
422 proc_clear_tty(current);
423
424 /* Block and flush all signals */
425 sigfillset(&blocked);
426 sigprocmask(SIG_BLOCK, &blocked, NULL);
427 flush_signals(current);
428
429 /* Become as one with the init task */
430
431 exit_fs(current); /* current->fs->count--; */
432 fs = init_task.fs;
433 current->fs = fs;
434 atomic_inc(&fs->count);
435
436 exit_files(current);
437 current->files = init_task.files;
438 atomic_inc(&current->files->count);
439
440 reparent_to_kthreadd();
441 }
442
443 EXPORT_SYMBOL(daemonize);
444
445 static void close_files(struct files_struct * files)
446 {
447 int i, j;
448 struct fdtable *fdt;
449
450 j = 0;
451
452 /*
453 * It is safe to dereference the fd table without RCU or
454 * ->file_lock because this is the last reference to the
455 * files structure.
456 */
457 fdt = files_fdtable(files);
458 for (;;) {
459 unsigned long set;
460 i = j * __NFDBITS;
461 if (i >= fdt->max_fds)
462 break;
463 set = fdt->open_fds->fds_bits[j++];
464 while (set) {
465 if (set & 1) {
466 struct file * file = xchg(&fdt->fd[i], NULL);
467 if (file) {
468 filp_close(file, files);
469 cond_resched();
470 }
471 }
472 i++;
473 set >>= 1;
474 }
475 }
476 }
477
478 struct files_struct *get_files_struct(struct task_struct *task)
479 {
480 struct files_struct *files;
481
482 task_lock(task);
483 files = task->files;
484 if (files)
485 atomic_inc(&files->count);
486 task_unlock(task);
487
488 return files;
489 }
490
491 void put_files_struct(struct files_struct *files)
492 {
493 struct fdtable *fdt;
494
495 if (atomic_dec_and_test(&files->count)) {
496 close_files(files);
497 /*
498 * Free the fd and fdset arrays if we expanded them.
499 * If the fdtable was embedded, pass files for freeing
500 * at the end of the RCU grace period. Otherwise,
501 * you can free files immediately.
502 */
503 fdt = files_fdtable(files);
504 if (fdt != &files->fdtab)
505 kmem_cache_free(files_cachep, files);
506 free_fdtable(fdt);
507 }
508 }
509
510 void reset_files_struct(struct task_struct *tsk, struct files_struct *files)
511 {
512 struct files_struct *old;
513
514 old = tsk->files;
515 task_lock(tsk);
516 tsk->files = files;
517 task_unlock(tsk);
518 put_files_struct(old);
519 }
520
521 void exit_files(struct task_struct *tsk)
522 {
523 struct files_struct * files = tsk->files;
524
525 if (files) {
526 task_lock(tsk);
527 tsk->files = NULL;
528 task_unlock(tsk);
529 put_files_struct(files);
530 }
531 }
532
533 void put_fs_struct(struct fs_struct *fs)
534 {
535 /* No need to hold fs->lock if we are killing it */
536 if (atomic_dec_and_test(&fs->count)) {
537 path_put(&fs->root);
538 path_put(&fs->pwd);
539 if (fs->altroot.dentry)
540 path_put(&fs->altroot);
541 kmem_cache_free(fs_cachep, fs);
542 }
543 }
544
545 void exit_fs(struct task_struct *tsk)
546 {
547 struct fs_struct * fs = tsk->fs;
548
549 if (fs) {
550 task_lock(tsk);
551 tsk->fs = NULL;
552 task_unlock(tsk);
553 put_fs_struct(fs);
554 }
555 }
556
557 EXPORT_SYMBOL_GPL(exit_fs);
558
559 /*
560 * Turn us into a lazy TLB process if we
561 * aren't already..
562 */
563 static void exit_mm(struct task_struct * tsk)
564 {
565 struct mm_struct *mm = tsk->mm;
566
567 mm_release(tsk, mm);
568 if (!mm)
569 return;
570 /*
571 * Serialize with any possible pending coredump.
572 * We must hold mmap_sem around checking core_waiters
573 * and clearing tsk->mm. The core-inducing thread
574 * will increment core_waiters for each thread in the
575 * group with ->mm != NULL.
576 */
577 down_read(&mm->mmap_sem);
578 if (mm->core_waiters) {
579 up_read(&mm->mmap_sem);
580 down_write(&mm->mmap_sem);
581 if (!--mm->core_waiters)
582 complete(mm->core_startup_done);
583 up_write(&mm->mmap_sem);
584
585 wait_for_completion(&mm->core_done);
586 down_read(&mm->mmap_sem);
587 }
588 atomic_inc(&mm->mm_count);
589 BUG_ON(mm != tsk->active_mm);
590 /* more a memory barrier than a real lock */
591 task_lock(tsk);
592 tsk->mm = NULL;
593 up_read(&mm->mmap_sem);
594 enter_lazy_tlb(mm, current);
595 /* We don't want this task to be frozen prematurely */
596 clear_freeze_flag(tsk);
597 task_unlock(tsk);
598 mmput(mm);
599 }
600
601 static void
602 reparent_thread(struct task_struct *p, struct task_struct *father, int traced)
603 {
604 if (p->pdeath_signal)
605 /* We already hold the tasklist_lock here. */
606 group_send_sig_info(p->pdeath_signal, SEND_SIG_NOINFO, p);
607
608 /* Move the child from its dying parent to the new one. */
609 if (unlikely(traced)) {
610 /* Preserve ptrace links if someone else is tracing this child. */
611 list_del_init(&p->ptrace_list);
612 if (p->parent != p->real_parent)
613 list_add(&p->ptrace_list, &p->real_parent->ptrace_children);
614 } else {
615 /* If this child is being traced, then we're the one tracing it
616 * anyway, so let go of it.
617 */
618 p->ptrace = 0;
619 remove_parent(p);
620 p->parent = p->real_parent;
621 add_parent(p);
622
623 if (task_is_traced(p)) {
624 /*
625 * If it was at a trace stop, turn it into
626 * a normal stop since it's no longer being
627 * traced.
628 */
629 ptrace_untrace(p);
630 }
631 }
632
633 /* If this is a threaded reparent there is no need to
634 * notify anyone anything has happened.
635 */
636 if (p->real_parent->group_leader == father->group_leader)
637 return;
638
639 /* We don't want people slaying init. */
640 if (p->exit_signal != -1)
641 p->exit_signal = SIGCHLD;
642
643 /* If we'd notified the old parent about this child's death,
644 * also notify the new parent.
645 */
646 if (!traced && p->exit_state == EXIT_ZOMBIE &&
647 p->exit_signal != -1 && thread_group_empty(p))
648 do_notify_parent(p, p->exit_signal);
649
650 kill_orphaned_pgrp(p, father);
651 }
652
653 /*
654 * When we die, we re-parent all our children.
655 * Try to give them to another thread in our thread
656 * group, and if no such member exists, give it to
657 * the child reaper process (ie "init") in our pid
658 * space.
659 */
660 static void forget_original_parent(struct task_struct *father)
661 {
662 struct task_struct *p, *n, *reaper = father;
663 struct list_head ptrace_dead;
664
665 INIT_LIST_HEAD(&ptrace_dead);
666
667 write_lock_irq(&tasklist_lock);
668
669 do {
670 reaper = next_thread(reaper);
671 if (reaper == father) {
672 reaper = task_child_reaper(father);
673 break;
674 }
675 } while (reaper->flags & PF_EXITING);
676
677 /*
678 * There are only two places where our children can be:
679 *
680 * - in our child list
681 * - in our ptraced child list
682 *
683 * Search them and reparent children.
684 */
685 list_for_each_entry_safe(p, n, &father->children, sibling) {
686 int ptrace;
687
688 ptrace = p->ptrace;
689
690 /* if father isn't the real parent, then ptrace must be enabled */
691 BUG_ON(father != p->real_parent && !ptrace);
692
693 if (father == p->real_parent) {
694 /* reparent with a reaper, real father it's us */
695 p->real_parent = reaper;
696 reparent_thread(p, father, 0);
697 } else {
698 /* reparent ptraced task to its real parent */
699 __ptrace_unlink (p);
700 if (p->exit_state == EXIT_ZOMBIE && p->exit_signal != -1 &&
701 thread_group_empty(p))
702 do_notify_parent(p, p->exit_signal);
703 }
704
705 /*
706 * if the ptraced child is a zombie with exit_signal == -1
707 * we must collect it before we exit, or it will remain
708 * zombie forever since we prevented it from self-reap itself
709 * while it was being traced by us, to be able to see it in wait4.
710 */
711 if (unlikely(ptrace && p->exit_state == EXIT_ZOMBIE && p->exit_signal == -1))
712 list_add(&p->ptrace_list, &ptrace_dead);
713 }
714
715 list_for_each_entry_safe(p, n, &father->ptrace_children, ptrace_list) {
716 p->real_parent = reaper;
717 reparent_thread(p, father, 1);
718 }
719
720 write_unlock_irq(&tasklist_lock);
721 BUG_ON(!list_empty(&father->children));
722 BUG_ON(!list_empty(&father->ptrace_children));
723
724 list_for_each_entry_safe(p, n, &ptrace_dead, ptrace_list) {
725 list_del_init(&p->ptrace_list);
726 release_task(p);
727 }
728
729 }
730
731 /*
732 * Send signals to all our closest relatives so that they know
733 * to properly mourn us..
734 */
735 static void exit_notify(struct task_struct *tsk, int group_dead)
736 {
737 int state;
738
739 /*
740 * This does two things:
741 *
742 * A. Make init inherit all the child processes
743 * B. Check to see if any process groups have become orphaned
744 * as a result of our exiting, and if they have any stopped
745 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
746 */
747 forget_original_parent(tsk);
748 exit_task_namespaces(tsk);
749
750 write_lock_irq(&tasklist_lock);
751 if (group_dead)
752 kill_orphaned_pgrp(tsk->group_leader, NULL);
753
754 /* Let father know we died
755 *
756 * Thread signals are configurable, but you aren't going to use
757 * that to send signals to arbitary processes.
758 * That stops right now.
759 *
760 * If the parent exec id doesn't match the exec id we saved
761 * when we started then we know the parent has changed security
762 * domain.
763 *
764 * If our self_exec id doesn't match our parent_exec_id then
765 * we have changed execution domain as these two values started
766 * the same after a fork.
767 */
768 if (tsk->exit_signal != SIGCHLD && tsk->exit_signal != -1 &&
769 (tsk->parent_exec_id != tsk->real_parent->self_exec_id ||
770 tsk->self_exec_id != tsk->parent_exec_id)
771 && !capable(CAP_KILL))
772 tsk->exit_signal = SIGCHLD;
773
774
775 /* If something other than our normal parent is ptracing us, then
776 * send it a SIGCHLD instead of honoring exit_signal. exit_signal
777 * only has special meaning to our real parent.
778 */
779 if (tsk->exit_signal != -1 && thread_group_empty(tsk)) {
780 int signal = tsk->parent == tsk->real_parent ? tsk->exit_signal : SIGCHLD;
781 do_notify_parent(tsk, signal);
782 } else if (tsk->ptrace) {
783 do_notify_parent(tsk, SIGCHLD);
784 }
785
786 state = EXIT_ZOMBIE;
787 if (tsk->exit_signal == -1 && likely(!tsk->ptrace))
788 state = EXIT_DEAD;
789 tsk->exit_state = state;
790
791 if (thread_group_leader(tsk) &&
792 tsk->signal->notify_count < 0 &&
793 tsk->signal->group_exit_task)
794 wake_up_process(tsk->signal->group_exit_task);
795
796 write_unlock_irq(&tasklist_lock);
797
798 /* If the process is dead, release it - nobody will wait for it */
799 if (state == EXIT_DEAD)
800 release_task(tsk);
801 }
802
803 #ifdef CONFIG_DEBUG_STACK_USAGE
804 static void check_stack_usage(void)
805 {
806 static DEFINE_SPINLOCK(low_water_lock);
807 static int lowest_to_date = THREAD_SIZE;
808 unsigned long *n = end_of_stack(current);
809 unsigned long free;
810
811 while (*n == 0)
812 n++;
813 free = (unsigned long)n - (unsigned long)end_of_stack(current);
814
815 if (free >= lowest_to_date)
816 return;
817
818 spin_lock(&low_water_lock);
819 if (free < lowest_to_date) {
820 printk(KERN_WARNING "%s used greatest stack depth: %lu bytes "
821 "left\n",
822 current->comm, free);
823 lowest_to_date = free;
824 }
825 spin_unlock(&low_water_lock);
826 }
827 #else
828 static inline void check_stack_usage(void) {}
829 #endif
830
831 static inline void exit_child_reaper(struct task_struct *tsk)
832 {
833 if (likely(tsk->group_leader != task_child_reaper(tsk)))
834 return;
835
836 if (tsk->nsproxy->pid_ns == &init_pid_ns)
837 panic("Attempted to kill init!");
838
839 /*
840 * @tsk is the last thread in the 'cgroup-init' and is exiting.
841 * Terminate all remaining processes in the namespace and reap them
842 * before exiting @tsk.
843 *
844 * Note that @tsk (last thread of cgroup-init) may not necessarily
845 * be the child-reaper (i.e main thread of cgroup-init) of the
846 * namespace i.e the child_reaper may have already exited.
847 *
848 * Even after a child_reaper exits, we let it inherit orphaned children,
849 * because, pid_ns->child_reaper remains valid as long as there is
850 * at least one living sub-thread in the cgroup init.
851
852 * This living sub-thread of the cgroup-init will be notified when
853 * a child inherited by the 'child-reaper' exits (do_notify_parent()
854 * uses __group_send_sig_info()). Further, when reaping child processes,
855 * do_wait() iterates over children of all living sub threads.
856
857 * i.e even though 'child_reaper' thread is listed as the parent of the
858 * orphaned children, any living sub-thread in the cgroup-init can
859 * perform the role of the child_reaper.
860 */
861 zap_pid_ns_processes(tsk->nsproxy->pid_ns);
862 }
863
864 NORET_TYPE void do_exit(long code)
865 {
866 struct task_struct *tsk = current;
867 int group_dead;
868
869 profile_task_exit(tsk);
870
871 WARN_ON(atomic_read(&tsk->fs_excl));
872
873 if (unlikely(in_interrupt()))
874 panic("Aiee, killing interrupt handler!");
875 if (unlikely(!tsk->pid))
876 panic("Attempted to kill the idle task!");
877
878 if (unlikely(current->ptrace & PT_TRACE_EXIT)) {
879 current->ptrace_message = code;
880 ptrace_notify((PTRACE_EVENT_EXIT << 8) | SIGTRAP);
881 }
882
883 /*
884 * We're taking recursive faults here in do_exit. Safest is to just
885 * leave this task alone and wait for reboot.
886 */
887 if (unlikely(tsk->flags & PF_EXITING)) {
888 printk(KERN_ALERT
889 "Fixing recursive fault but reboot is needed!\n");
890 /*
891 * We can do this unlocked here. The futex code uses
892 * this flag just to verify whether the pi state
893 * cleanup has been done or not. In the worst case it
894 * loops once more. We pretend that the cleanup was
895 * done as there is no way to return. Either the
896 * OWNER_DIED bit is set by now or we push the blocked
897 * task into the wait for ever nirwana as well.
898 */
899 tsk->flags |= PF_EXITPIDONE;
900 if (tsk->io_context)
901 exit_io_context();
902 set_current_state(TASK_UNINTERRUPTIBLE);
903 schedule();
904 }
905
906 exit_signals(tsk); /* sets PF_EXITING */
907 /*
908 * tsk->flags are checked in the futex code to protect against
909 * an exiting task cleaning up the robust pi futexes.
910 */
911 smp_mb();
912 spin_unlock_wait(&tsk->pi_lock);
913
914 if (unlikely(in_atomic()))
915 printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n",
916 current->comm, task_pid_nr(current),
917 preempt_count());
918
919 acct_update_integrals(tsk);
920 if (tsk->mm) {
921 update_hiwater_rss(tsk->mm);
922 update_hiwater_vm(tsk->mm);
923 }
924 group_dead = atomic_dec_and_test(&tsk->signal->live);
925 if (group_dead) {
926 exit_child_reaper(tsk);
927 hrtimer_cancel(&tsk->signal->real_timer);
928 exit_itimers(tsk->signal);
929 }
930 acct_collect(code, group_dead);
931 #ifdef CONFIG_FUTEX
932 if (unlikely(tsk->robust_list))
933 exit_robust_list(tsk);
934 #ifdef CONFIG_COMPAT
935 if (unlikely(tsk->compat_robust_list))
936 compat_exit_robust_list(tsk);
937 #endif
938 #endif
939 if (group_dead)
940 tty_audit_exit();
941 if (unlikely(tsk->audit_context))
942 audit_free(tsk);
943
944 tsk->exit_code = code;
945 taskstats_exit(tsk, group_dead);
946
947 exit_mm(tsk);
948
949 if (group_dead)
950 acct_process();
951 exit_sem(tsk);
952 exit_files(tsk);
953 exit_fs(tsk);
954 check_stack_usage();
955 exit_thread();
956 cgroup_exit(tsk, 1);
957 exit_keys(tsk);
958
959 if (group_dead && tsk->signal->leader)
960 disassociate_ctty(1);
961
962 module_put(task_thread_info(tsk)->exec_domain->module);
963 if (tsk->binfmt)
964 module_put(tsk->binfmt->module);
965
966 proc_exit_connector(tsk);
967 exit_notify(tsk, group_dead);
968 #ifdef CONFIG_NUMA
969 mpol_free(tsk->mempolicy);
970 tsk->mempolicy = NULL;
971 #endif
972 #ifdef CONFIG_FUTEX
973 /*
974 * This must happen late, after the PID is not
975 * hashed anymore:
976 */
977 if (unlikely(!list_empty(&tsk->pi_state_list)))
978 exit_pi_state_list(tsk);
979 if (unlikely(current->pi_state_cache))
980 kfree(current->pi_state_cache);
981 #endif
982 /*
983 * Make sure we are holding no locks:
984 */
985 debug_check_no_locks_held(tsk);
986 /*
987 * We can do this unlocked here. The futex code uses this flag
988 * just to verify whether the pi state cleanup has been done
989 * or not. In the worst case it loops once more.
990 */
991 tsk->flags |= PF_EXITPIDONE;
992
993 if (tsk->io_context)
994 exit_io_context();
995
996 if (tsk->splice_pipe)
997 __free_pipe_info(tsk->splice_pipe);
998
999 preempt_disable();
1000 /* causes final put_task_struct in finish_task_switch(). */
1001 tsk->state = TASK_DEAD;
1002
1003 schedule();
1004 BUG();
1005 /* Avoid "noreturn function does return". */
1006 for (;;)
1007 cpu_relax(); /* For when BUG is null */
1008 }
1009
1010 EXPORT_SYMBOL_GPL(do_exit);
1011
1012 NORET_TYPE void complete_and_exit(struct completion *comp, long code)
1013 {
1014 if (comp)
1015 complete(comp);
1016
1017 do_exit(code);
1018 }
1019
1020 EXPORT_SYMBOL(complete_and_exit);
1021
1022 asmlinkage long sys_exit(int error_code)
1023 {
1024 do_exit((error_code&0xff)<<8);
1025 }
1026
1027 /*
1028 * Take down every thread in the group. This is called by fatal signals
1029 * as well as by sys_exit_group (below).
1030 */
1031 NORET_TYPE void
1032 do_group_exit(int exit_code)
1033 {
1034 BUG_ON(exit_code & 0x80); /* core dumps don't get here */
1035
1036 if (current->signal->flags & SIGNAL_GROUP_EXIT)
1037 exit_code = current->signal->group_exit_code;
1038 else if (!thread_group_empty(current)) {
1039 struct signal_struct *const sig = current->signal;
1040 struct sighand_struct *const sighand = current->sighand;
1041 spin_lock_irq(&sighand->siglock);
1042 if (signal_group_exit(sig))
1043 /* Another thread got here before we took the lock. */
1044 exit_code = sig->group_exit_code;
1045 else {
1046 sig->group_exit_code = exit_code;
1047 sig->flags = SIGNAL_GROUP_EXIT;
1048 zap_other_threads(current);
1049 }
1050 spin_unlock_irq(&sighand->siglock);
1051 }
1052
1053 do_exit(exit_code);
1054 /* NOTREACHED */
1055 }
1056
1057 /*
1058 * this kills every thread in the thread group. Note that any externally
1059 * wait4()-ing process will get the correct exit code - even if this
1060 * thread is not the thread group leader.
1061 */
1062 asmlinkage void sys_exit_group(int error_code)
1063 {
1064 do_group_exit((error_code & 0xff) << 8);
1065 }
1066
1067 static struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
1068 {
1069 struct pid *pid = NULL;
1070 if (type == PIDTYPE_PID)
1071 pid = task->pids[type].pid;
1072 else if (type < PIDTYPE_MAX)
1073 pid = task->group_leader->pids[type].pid;
1074 return pid;
1075 }
1076
1077 static int eligible_child(enum pid_type type, struct pid *pid, int options,
1078 struct task_struct *p)
1079 {
1080 int err;
1081
1082 if (type < PIDTYPE_MAX) {
1083 if (task_pid_type(p, type) != pid)
1084 return 0;
1085 }
1086
1087 /*
1088 * Do not consider detached threads that are
1089 * not ptraced:
1090 */
1091 if (p->exit_signal == -1 && !p->ptrace)
1092 return 0;
1093
1094 /* Wait for all children (clone and not) if __WALL is set;
1095 * otherwise, wait for clone children *only* if __WCLONE is
1096 * set; otherwise, wait for non-clone children *only*. (Note:
1097 * A "clone" child here is one that reports to its parent
1098 * using a signal other than SIGCHLD.) */
1099 if (((p->exit_signal != SIGCHLD) ^ ((options & __WCLONE) != 0))
1100 && !(options & __WALL))
1101 return 0;
1102
1103 err = security_task_wait(p);
1104 if (likely(!err))
1105 return 1;
1106
1107 if (type != PIDTYPE_PID)
1108 return 0;
1109 /* This child was explicitly requested, abort */
1110 read_unlock(&tasklist_lock);
1111 return err;
1112 }
1113
1114 static int wait_noreap_copyout(struct task_struct *p, pid_t pid, uid_t uid,
1115 int why, int status,
1116 struct siginfo __user *infop,
1117 struct rusage __user *rusagep)
1118 {
1119 int retval = rusagep ? getrusage(p, RUSAGE_BOTH, rusagep) : 0;
1120
1121 put_task_struct(p);
1122 if (!retval)
1123 retval = put_user(SIGCHLD, &infop->si_signo);
1124 if (!retval)
1125 retval = put_user(0, &infop->si_errno);
1126 if (!retval)
1127 retval = put_user((short)why, &infop->si_code);
1128 if (!retval)
1129 retval = put_user(pid, &infop->si_pid);
1130 if (!retval)
1131 retval = put_user(uid, &infop->si_uid);
1132 if (!retval)
1133 retval = put_user(status, &infop->si_status);
1134 if (!retval)
1135 retval = pid;
1136 return retval;
1137 }
1138
1139 /*
1140 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold
1141 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1142 * the lock and this task is uninteresting. If we return nonzero, we have
1143 * released the lock and the system call should return.
1144 */
1145 static int wait_task_zombie(struct task_struct *p, int noreap,
1146 struct siginfo __user *infop,
1147 int __user *stat_addr, struct rusage __user *ru)
1148 {
1149 unsigned long state;
1150 int retval, status, traced;
1151 pid_t pid = task_pid_vnr(p);
1152
1153 if (unlikely(noreap)) {
1154 uid_t uid = p->uid;
1155 int exit_code = p->exit_code;
1156 int why, status;
1157
1158 get_task_struct(p);
1159 read_unlock(&tasklist_lock);
1160 if ((exit_code & 0x7f) == 0) {
1161 why = CLD_EXITED;
1162 status = exit_code >> 8;
1163 } else {
1164 why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
1165 status = exit_code & 0x7f;
1166 }
1167 return wait_noreap_copyout(p, pid, uid, why,
1168 status, infop, ru);
1169 }
1170
1171 /*
1172 * Try to move the task's state to DEAD
1173 * only one thread is allowed to do this:
1174 */
1175 state = xchg(&p->exit_state, EXIT_DEAD);
1176 if (state != EXIT_ZOMBIE) {
1177 BUG_ON(state != EXIT_DEAD);
1178 return 0;
1179 }
1180
1181 /* traced means p->ptrace, but not vice versa */
1182 traced = (p->real_parent != p->parent);
1183
1184 if (likely(!traced)) {
1185 struct signal_struct *psig;
1186 struct signal_struct *sig;
1187
1188 /*
1189 * The resource counters for the group leader are in its
1190 * own task_struct. Those for dead threads in the group
1191 * are in its signal_struct, as are those for the child
1192 * processes it has previously reaped. All these
1193 * accumulate in the parent's signal_struct c* fields.
1194 *
1195 * We don't bother to take a lock here to protect these
1196 * p->signal fields, because they are only touched by
1197 * __exit_signal, which runs with tasklist_lock
1198 * write-locked anyway, and so is excluded here. We do
1199 * need to protect the access to p->parent->signal fields,
1200 * as other threads in the parent group can be right
1201 * here reaping other children at the same time.
1202 */
1203 spin_lock_irq(&p->parent->sighand->siglock);
1204 psig = p->parent->signal;
1205 sig = p->signal;
1206 psig->cutime =
1207 cputime_add(psig->cutime,
1208 cputime_add(p->utime,
1209 cputime_add(sig->utime,
1210 sig->cutime)));
1211 psig->cstime =
1212 cputime_add(psig->cstime,
1213 cputime_add(p->stime,
1214 cputime_add(sig->stime,
1215 sig->cstime)));
1216 psig->cgtime =
1217 cputime_add(psig->cgtime,
1218 cputime_add(p->gtime,
1219 cputime_add(sig->gtime,
1220 sig->cgtime)));
1221 psig->cmin_flt +=
1222 p->min_flt + sig->min_flt + sig->cmin_flt;
1223 psig->cmaj_flt +=
1224 p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1225 psig->cnvcsw +=
1226 p->nvcsw + sig->nvcsw + sig->cnvcsw;
1227 psig->cnivcsw +=
1228 p->nivcsw + sig->nivcsw + sig->cnivcsw;
1229 psig->cinblock +=
1230 task_io_get_inblock(p) +
1231 sig->inblock + sig->cinblock;
1232 psig->coublock +=
1233 task_io_get_oublock(p) +
1234 sig->oublock + sig->coublock;
1235 spin_unlock_irq(&p->parent->sighand->siglock);
1236 }
1237
1238 /*
1239 * Now we are sure this task is interesting, and no other
1240 * thread can reap it because we set its state to EXIT_DEAD.
1241 */
1242 read_unlock(&tasklist_lock);
1243
1244 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1245 status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1246 ? p->signal->group_exit_code : p->exit_code;
1247 if (!retval && stat_addr)
1248 retval = put_user(status, stat_addr);
1249 if (!retval && infop)
1250 retval = put_user(SIGCHLD, &infop->si_signo);
1251 if (!retval && infop)
1252 retval = put_user(0, &infop->si_errno);
1253 if (!retval && infop) {
1254 int why;
1255
1256 if ((status & 0x7f) == 0) {
1257 why = CLD_EXITED;
1258 status >>= 8;
1259 } else {
1260 why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1261 status &= 0x7f;
1262 }
1263 retval = put_user((short)why, &infop->si_code);
1264 if (!retval)
1265 retval = put_user(status, &infop->si_status);
1266 }
1267 if (!retval && infop)
1268 retval = put_user(pid, &infop->si_pid);
1269 if (!retval && infop)
1270 retval = put_user(p->uid, &infop->si_uid);
1271 if (!retval)
1272 retval = pid;
1273
1274 if (traced) {
1275 write_lock_irq(&tasklist_lock);
1276 /* We dropped tasklist, ptracer could die and untrace */
1277 ptrace_unlink(p);
1278 /*
1279 * If this is not a detached task, notify the parent.
1280 * If it's still not detached after that, don't release
1281 * it now.
1282 */
1283 if (p->exit_signal != -1) {
1284 do_notify_parent(p, p->exit_signal);
1285 if (p->exit_signal != -1) {
1286 p->exit_state = EXIT_ZOMBIE;
1287 p = NULL;
1288 }
1289 }
1290 write_unlock_irq(&tasklist_lock);
1291 }
1292 if (p != NULL)
1293 release_task(p);
1294
1295 return retval;
1296 }
1297
1298 /*
1299 * Handle sys_wait4 work for one task in state TASK_STOPPED. We hold
1300 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1301 * the lock and this task is uninteresting. If we return nonzero, we have
1302 * released the lock and the system call should return.
1303 */
1304 static int wait_task_stopped(struct task_struct *p,
1305 int noreap, struct siginfo __user *infop,
1306 int __user *stat_addr, struct rusage __user *ru)
1307 {
1308 int retval, exit_code, why;
1309 uid_t uid = 0; /* unneeded, required by compiler */
1310 pid_t pid;
1311
1312 exit_code = 0;
1313 spin_lock_irq(&p->sighand->siglock);
1314
1315 if (unlikely(!task_is_stopped_or_traced(p)))
1316 goto unlock_sig;
1317
1318 if (!(p->ptrace & PT_PTRACED) && p->signal->group_stop_count > 0)
1319 /*
1320 * A group stop is in progress and this is the group leader.
1321 * We won't report until all threads have stopped.
1322 */
1323 goto unlock_sig;
1324
1325 exit_code = p->exit_code;
1326 if (!exit_code)
1327 goto unlock_sig;
1328
1329 if (!noreap)
1330 p->exit_code = 0;
1331
1332 uid = p->uid;
1333 unlock_sig:
1334 spin_unlock_irq(&p->sighand->siglock);
1335 if (!exit_code)
1336 return 0;
1337
1338 /*
1339 * Now we are pretty sure this task is interesting.
1340 * Make sure it doesn't get reaped out from under us while we
1341 * give up the lock and then examine it below. We don't want to
1342 * keep holding onto the tasklist_lock while we call getrusage and
1343 * possibly take page faults for user memory.
1344 */
1345 get_task_struct(p);
1346 pid = task_pid_vnr(p);
1347 why = (p->ptrace & PT_PTRACED) ? CLD_TRAPPED : CLD_STOPPED;
1348 read_unlock(&tasklist_lock);
1349
1350 if (unlikely(noreap))
1351 return wait_noreap_copyout(p, pid, uid,
1352 why, exit_code,
1353 infop, ru);
1354
1355 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1356 if (!retval && stat_addr)
1357 retval = put_user((exit_code << 8) | 0x7f, stat_addr);
1358 if (!retval && infop)
1359 retval = put_user(SIGCHLD, &infop->si_signo);
1360 if (!retval && infop)
1361 retval = put_user(0, &infop->si_errno);
1362 if (!retval && infop)
1363 retval = put_user((short)why, &infop->si_code);
1364 if (!retval && infop)
1365 retval = put_user(exit_code, &infop->si_status);
1366 if (!retval && infop)
1367 retval = put_user(pid, &infop->si_pid);
1368 if (!retval && infop)
1369 retval = put_user(uid, &infop->si_uid);
1370 if (!retval)
1371 retval = pid;
1372 put_task_struct(p);
1373
1374 BUG_ON(!retval);
1375 return retval;
1376 }
1377
1378 /*
1379 * Handle do_wait work for one task in a live, non-stopped state.
1380 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1381 * the lock and this task is uninteresting. If we return nonzero, we have
1382 * released the lock and the system call should return.
1383 */
1384 static int wait_task_continued(struct task_struct *p, int noreap,
1385 struct siginfo __user *infop,
1386 int __user *stat_addr, struct rusage __user *ru)
1387 {
1388 int retval;
1389 pid_t pid;
1390 uid_t uid;
1391
1392 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1393 return 0;
1394
1395 spin_lock_irq(&p->sighand->siglock);
1396 /* Re-check with the lock held. */
1397 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1398 spin_unlock_irq(&p->sighand->siglock);
1399 return 0;
1400 }
1401 if (!noreap)
1402 p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1403 spin_unlock_irq(&p->sighand->siglock);
1404
1405 pid = task_pid_vnr(p);
1406 uid = p->uid;
1407 get_task_struct(p);
1408 read_unlock(&tasklist_lock);
1409
1410 if (!infop) {
1411 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1412 put_task_struct(p);
1413 if (!retval && stat_addr)
1414 retval = put_user(0xffff, stat_addr);
1415 if (!retval)
1416 retval = pid;
1417 } else {
1418 retval = wait_noreap_copyout(p, pid, uid,
1419 CLD_CONTINUED, SIGCONT,
1420 infop, ru);
1421 BUG_ON(retval == 0);
1422 }
1423
1424 return retval;
1425 }
1426
1427 static long do_wait(enum pid_type type, struct pid *pid, int options,
1428 struct siginfo __user *infop, int __user *stat_addr,
1429 struct rusage __user *ru)
1430 {
1431 DECLARE_WAITQUEUE(wait, current);
1432 struct task_struct *tsk;
1433 int flag, retval;
1434
1435 add_wait_queue(&current->signal->wait_chldexit,&wait);
1436 repeat:
1437 /* If there is nothing that can match our critier just get out */
1438 retval = -ECHILD;
1439 if ((type < PIDTYPE_MAX) && (!pid || hlist_empty(&pid->tasks[type])))
1440 goto end;
1441
1442 /*
1443 * We will set this flag if we see any child that might later
1444 * match our criteria, even if we are not able to reap it yet.
1445 */
1446 flag = retval = 0;
1447 current->state = TASK_INTERRUPTIBLE;
1448 read_lock(&tasklist_lock);
1449 tsk = current;
1450 do {
1451 struct task_struct *p;
1452
1453 list_for_each_entry(p, &tsk->children, sibling) {
1454 int ret = eligible_child(type, pid, options, p);
1455 if (!ret)
1456 continue;
1457
1458 if (unlikely(ret < 0)) {
1459 retval = ret;
1460 } else if (task_is_stopped_or_traced(p)) {
1461 /*
1462 * It's stopped now, so it might later
1463 * continue, exit, or stop again.
1464 */
1465 flag = 1;
1466 if (!(p->ptrace & PT_PTRACED) &&
1467 !(options & WUNTRACED))
1468 continue;
1469
1470 retval = wait_task_stopped(p,
1471 (options & WNOWAIT), infop,
1472 stat_addr, ru);
1473 } else if (p->exit_state == EXIT_ZOMBIE &&
1474 !delay_group_leader(p)) {
1475 /*
1476 * We don't reap group leaders with subthreads.
1477 */
1478 if (!likely(options & WEXITED))
1479 continue;
1480 retval = wait_task_zombie(p,
1481 (options & WNOWAIT), infop,
1482 stat_addr, ru);
1483 } else if (p->exit_state != EXIT_DEAD) {
1484 /*
1485 * It's running now, so it might later
1486 * exit, stop, or stop and then continue.
1487 */
1488 flag = 1;
1489 if (!unlikely(options & WCONTINUED))
1490 continue;
1491 retval = wait_task_continued(p,
1492 (options & WNOWAIT), infop,
1493 stat_addr, ru);
1494 }
1495 if (retval != 0) /* tasklist_lock released */
1496 goto end;
1497 }
1498 if (!flag) {
1499 list_for_each_entry(p, &tsk->ptrace_children,
1500 ptrace_list) {
1501 flag = eligible_child(type, pid, options, p);
1502 if (!flag)
1503 continue;
1504 if (likely(flag > 0))
1505 break;
1506 retval = flag;
1507 goto end;
1508 }
1509 }
1510 if (options & __WNOTHREAD)
1511 break;
1512 tsk = next_thread(tsk);
1513 BUG_ON(tsk->signal != current->signal);
1514 } while (tsk != current);
1515 read_unlock(&tasklist_lock);
1516
1517 if (flag) {
1518 if (options & WNOHANG)
1519 goto end;
1520 retval = -ERESTARTSYS;
1521 if (signal_pending(current))
1522 goto end;
1523 schedule();
1524 goto repeat;
1525 }
1526 retval = -ECHILD;
1527 end:
1528 current->state = TASK_RUNNING;
1529 remove_wait_queue(&current->signal->wait_chldexit,&wait);
1530 if (infop) {
1531 if (retval > 0)
1532 retval = 0;
1533 else {
1534 /*
1535 * For a WNOHANG return, clear out all the fields
1536 * we would set so the user can easily tell the
1537 * difference.
1538 */
1539 if (!retval)
1540 retval = put_user(0, &infop->si_signo);
1541 if (!retval)
1542 retval = put_user(0, &infop->si_errno);
1543 if (!retval)
1544 retval = put_user(0, &infop->si_code);
1545 if (!retval)
1546 retval = put_user(0, &infop->si_pid);
1547 if (!retval)
1548 retval = put_user(0, &infop->si_uid);
1549 if (!retval)
1550 retval = put_user(0, &infop->si_status);
1551 }
1552 }
1553 return retval;
1554 }
1555
1556 asmlinkage long sys_waitid(int which, pid_t upid,
1557 struct siginfo __user *infop, int options,
1558 struct rusage __user *ru)
1559 {
1560 struct pid *pid = NULL;
1561 enum pid_type type;
1562 long ret;
1563
1564 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED))
1565 return -EINVAL;
1566 if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1567 return -EINVAL;
1568
1569 switch (which) {
1570 case P_ALL:
1571 type = PIDTYPE_MAX;
1572 break;
1573 case P_PID:
1574 type = PIDTYPE_PID;
1575 if (upid <= 0)
1576 return -EINVAL;
1577 break;
1578 case P_PGID:
1579 type = PIDTYPE_PGID;
1580 if (upid <= 0)
1581 return -EINVAL;
1582 break;
1583 default:
1584 return -EINVAL;
1585 }
1586
1587 if (type < PIDTYPE_MAX)
1588 pid = find_get_pid(upid);
1589 ret = do_wait(type, pid, options, infop, NULL, ru);
1590 put_pid(pid);
1591
1592 /* avoid REGPARM breakage on x86: */
1593 asmlinkage_protect(5, ret, which, upid, infop, options, ru);
1594 return ret;
1595 }
1596
1597 asmlinkage long sys_wait4(pid_t upid, int __user *stat_addr,
1598 int options, struct rusage __user *ru)
1599 {
1600 struct pid *pid = NULL;
1601 enum pid_type type;
1602 long ret;
1603
1604 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1605 __WNOTHREAD|__WCLONE|__WALL))
1606 return -EINVAL;
1607
1608 if (upid == -1)
1609 type = PIDTYPE_MAX;
1610 else if (upid < 0) {
1611 type = PIDTYPE_PGID;
1612 pid = find_get_pid(-upid);
1613 } else if (upid == 0) {
1614 type = PIDTYPE_PGID;
1615 pid = get_pid(task_pgrp(current));
1616 } else /* upid > 0 */ {
1617 type = PIDTYPE_PID;
1618 pid = find_get_pid(upid);
1619 }
1620
1621 ret = do_wait(type, pid, options | WEXITED, NULL, stat_addr, ru);
1622 put_pid(pid);
1623
1624 /* avoid REGPARM breakage on x86: */
1625 asmlinkage_protect(4, ret, upid, stat_addr, options, ru);
1626 return ret;
1627 }
1628
1629 #ifdef __ARCH_WANT_SYS_WAITPID
1630
1631 /*
1632 * sys_waitpid() remains for compatibility. waitpid() should be
1633 * implemented by calling sys_wait4() from libc.a.
1634 */
1635 asmlinkage long sys_waitpid(pid_t pid, int __user *stat_addr, int options)
1636 {
1637 return sys_wait4(pid, stat_addr, options, NULL);
1638 }
1639
1640 #endif
This page took 0.063193 seconds and 6 git commands to generate.