avr32: missed _TIF_NOTIFY_RESUME on one of do_notify_resume callers
[deliverable/linux.git] / kernel / fork.c
1 /*
2 * linux/kernel/fork.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * 'fork.c' contains the help-routines for the 'fork' system call
9 * (see also entry.S and others).
10 * Fork is rather simple, once you get the hang of it, but the memory
11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12 */
13
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/mempolicy.h>
22 #include <linux/sem.h>
23 #include <linux/file.h>
24 #include <linux/fdtable.h>
25 #include <linux/iocontext.h>
26 #include <linux/key.h>
27 #include <linux/binfmts.h>
28 #include <linux/mman.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/fs.h>
31 #include <linux/nsproxy.h>
32 #include <linux/capability.h>
33 #include <linux/cpu.h>
34 #include <linux/cgroup.h>
35 #include <linux/security.h>
36 #include <linux/hugetlb.h>
37 #include <linux/seccomp.h>
38 #include <linux/swap.h>
39 #include <linux/syscalls.h>
40 #include <linux/jiffies.h>
41 #include <linux/futex.h>
42 #include <linux/compat.h>
43 #include <linux/kthread.h>
44 #include <linux/task_io_accounting_ops.h>
45 #include <linux/rcupdate.h>
46 #include <linux/ptrace.h>
47 #include <linux/mount.h>
48 #include <linux/audit.h>
49 #include <linux/memcontrol.h>
50 #include <linux/ftrace.h>
51 #include <linux/proc_fs.h>
52 #include <linux/profile.h>
53 #include <linux/rmap.h>
54 #include <linux/ksm.h>
55 #include <linux/acct.h>
56 #include <linux/tsacct_kern.h>
57 #include <linux/cn_proc.h>
58 #include <linux/freezer.h>
59 #include <linux/delayacct.h>
60 #include <linux/taskstats_kern.h>
61 #include <linux/random.h>
62 #include <linux/tty.h>
63 #include <linux/blkdev.h>
64 #include <linux/fs_struct.h>
65 #include <linux/magic.h>
66 #include <linux/perf_event.h>
67 #include <linux/posix-timers.h>
68 #include <linux/user-return-notifier.h>
69 #include <linux/oom.h>
70 #include <linux/khugepaged.h>
71 #include <linux/signalfd.h>
72
73 #include <asm/pgtable.h>
74 #include <asm/pgalloc.h>
75 #include <asm/uaccess.h>
76 #include <asm/mmu_context.h>
77 #include <asm/cacheflush.h>
78 #include <asm/tlbflush.h>
79
80 #include <trace/events/sched.h>
81
82 #define CREATE_TRACE_POINTS
83 #include <trace/events/task.h>
84
85 /*
86 * Protected counters by write_lock_irq(&tasklist_lock)
87 */
88 unsigned long total_forks; /* Handle normal Linux uptimes. */
89 int nr_threads; /* The idle threads do not count.. */
90
91 int max_threads; /* tunable limit on nr_threads */
92
93 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
94
95 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
96
97 #ifdef CONFIG_PROVE_RCU
98 int lockdep_tasklist_lock_is_held(void)
99 {
100 return lockdep_is_held(&tasklist_lock);
101 }
102 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
103 #endif /* #ifdef CONFIG_PROVE_RCU */
104
105 int nr_processes(void)
106 {
107 int cpu;
108 int total = 0;
109
110 for_each_possible_cpu(cpu)
111 total += per_cpu(process_counts, cpu);
112
113 return total;
114 }
115
116 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
117 static struct kmem_cache *task_struct_cachep;
118
119 static inline struct task_struct *alloc_task_struct_node(int node)
120 {
121 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
122 }
123
124 void __weak arch_release_task_struct(struct task_struct *tsk) { }
125
126 static inline void free_task_struct(struct task_struct *tsk)
127 {
128 arch_release_task_struct(tsk);
129 kmem_cache_free(task_struct_cachep, tsk);
130 }
131 #endif
132
133 #ifndef CONFIG_ARCH_THREAD_INFO_ALLOCATOR
134 void __weak arch_release_thread_info(struct thread_info *ti) { }
135
136 /*
137 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
138 * kmemcache based allocator.
139 */
140 # if THREAD_SIZE >= PAGE_SIZE
141 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
142 int node)
143 {
144 struct page *page = alloc_pages_node(node, THREADINFO_GFP,
145 THREAD_SIZE_ORDER);
146
147 return page ? page_address(page) : NULL;
148 }
149
150 static inline void free_thread_info(struct thread_info *ti)
151 {
152 arch_release_thread_info(ti);
153 free_pages((unsigned long)ti, THREAD_SIZE_ORDER);
154 }
155 # else
156 static struct kmem_cache *thread_info_cache;
157
158 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
159 int node)
160 {
161 return kmem_cache_alloc_node(thread_info_cache, THREADINFO_GFP, node);
162 }
163
164 static void free_thread_info(struct thread_info *ti)
165 {
166 arch_release_thread_info(ti);
167 kmem_cache_free(thread_info_cache, ti);
168 }
169
170 void thread_info_cache_init(void)
171 {
172 thread_info_cache = kmem_cache_create("thread_info", THREAD_SIZE,
173 THREAD_SIZE, 0, NULL);
174 BUG_ON(thread_info_cache == NULL);
175 }
176 # endif
177 #endif
178
179 /* SLAB cache for signal_struct structures (tsk->signal) */
180 static struct kmem_cache *signal_cachep;
181
182 /* SLAB cache for sighand_struct structures (tsk->sighand) */
183 struct kmem_cache *sighand_cachep;
184
185 /* SLAB cache for files_struct structures (tsk->files) */
186 struct kmem_cache *files_cachep;
187
188 /* SLAB cache for fs_struct structures (tsk->fs) */
189 struct kmem_cache *fs_cachep;
190
191 /* SLAB cache for vm_area_struct structures */
192 struct kmem_cache *vm_area_cachep;
193
194 /* SLAB cache for mm_struct structures (tsk->mm) */
195 static struct kmem_cache *mm_cachep;
196
197 static void account_kernel_stack(struct thread_info *ti, int account)
198 {
199 struct zone *zone = page_zone(virt_to_page(ti));
200
201 mod_zone_page_state(zone, NR_KERNEL_STACK, account);
202 }
203
204 void free_task(struct task_struct *tsk)
205 {
206 account_kernel_stack(tsk->stack, -1);
207 free_thread_info(tsk->stack);
208 rt_mutex_debug_task_free(tsk);
209 ftrace_graph_exit_task(tsk);
210 put_seccomp_filter(tsk);
211 free_task_struct(tsk);
212 }
213 EXPORT_SYMBOL(free_task);
214
215 static inline void free_signal_struct(struct signal_struct *sig)
216 {
217 taskstats_tgid_free(sig);
218 sched_autogroup_exit(sig);
219 kmem_cache_free(signal_cachep, sig);
220 }
221
222 static inline void put_signal_struct(struct signal_struct *sig)
223 {
224 if (atomic_dec_and_test(&sig->sigcnt))
225 free_signal_struct(sig);
226 }
227
228 void __put_task_struct(struct task_struct *tsk)
229 {
230 WARN_ON(!tsk->exit_state);
231 WARN_ON(atomic_read(&tsk->usage));
232 WARN_ON(tsk == current);
233
234 security_task_free(tsk);
235 exit_creds(tsk);
236 delayacct_tsk_free(tsk);
237 put_signal_struct(tsk->signal);
238
239 if (!profile_handoff_task(tsk))
240 free_task(tsk);
241 }
242 EXPORT_SYMBOL_GPL(__put_task_struct);
243
244 void __init __weak arch_task_cache_init(void) { }
245
246 void __init fork_init(unsigned long mempages)
247 {
248 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
249 #ifndef ARCH_MIN_TASKALIGN
250 #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
251 #endif
252 /* create a slab on which task_structs can be allocated */
253 task_struct_cachep =
254 kmem_cache_create("task_struct", sizeof(struct task_struct),
255 ARCH_MIN_TASKALIGN, SLAB_PANIC | SLAB_NOTRACK, NULL);
256 #endif
257
258 /* do the arch specific task caches init */
259 arch_task_cache_init();
260
261 /*
262 * The default maximum number of threads is set to a safe
263 * value: the thread structures can take up at most half
264 * of memory.
265 */
266 max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
267
268 /*
269 * we need to allow at least 20 threads to boot a system
270 */
271 if (max_threads < 20)
272 max_threads = 20;
273
274 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
275 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
276 init_task.signal->rlim[RLIMIT_SIGPENDING] =
277 init_task.signal->rlim[RLIMIT_NPROC];
278 }
279
280 int __attribute__((weak)) arch_dup_task_struct(struct task_struct *dst,
281 struct task_struct *src)
282 {
283 *dst = *src;
284 return 0;
285 }
286
287 static struct task_struct *dup_task_struct(struct task_struct *orig)
288 {
289 struct task_struct *tsk;
290 struct thread_info *ti;
291 unsigned long *stackend;
292 int node = tsk_fork_get_node(orig);
293 int err;
294
295 tsk = alloc_task_struct_node(node);
296 if (!tsk)
297 return NULL;
298
299 ti = alloc_thread_info_node(tsk, node);
300 if (!ti) {
301 free_task_struct(tsk);
302 return NULL;
303 }
304
305 err = arch_dup_task_struct(tsk, orig);
306 if (err)
307 goto out;
308
309 tsk->stack = ti;
310
311 setup_thread_stack(tsk, orig);
312 clear_user_return_notifier(tsk);
313 clear_tsk_need_resched(tsk);
314 stackend = end_of_stack(tsk);
315 *stackend = STACK_END_MAGIC; /* for overflow detection */
316
317 #ifdef CONFIG_CC_STACKPROTECTOR
318 tsk->stack_canary = get_random_int();
319 #endif
320
321 /*
322 * One for us, one for whoever does the "release_task()" (usually
323 * parent)
324 */
325 atomic_set(&tsk->usage, 2);
326 #ifdef CONFIG_BLK_DEV_IO_TRACE
327 tsk->btrace_seq = 0;
328 #endif
329 tsk->splice_pipe = NULL;
330
331 account_kernel_stack(ti, 1);
332
333 return tsk;
334
335 out:
336 free_thread_info(ti);
337 free_task_struct(tsk);
338 return NULL;
339 }
340
341 #ifdef CONFIG_MMU
342 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
343 {
344 struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
345 struct rb_node **rb_link, *rb_parent;
346 int retval;
347 unsigned long charge;
348 struct mempolicy *pol;
349
350 down_write(&oldmm->mmap_sem);
351 flush_cache_dup_mm(oldmm);
352 /*
353 * Not linked in yet - no deadlock potential:
354 */
355 down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
356
357 mm->locked_vm = 0;
358 mm->mmap = NULL;
359 mm->mmap_cache = NULL;
360 mm->free_area_cache = oldmm->mmap_base;
361 mm->cached_hole_size = ~0UL;
362 mm->map_count = 0;
363 cpumask_clear(mm_cpumask(mm));
364 mm->mm_rb = RB_ROOT;
365 rb_link = &mm->mm_rb.rb_node;
366 rb_parent = NULL;
367 pprev = &mm->mmap;
368 retval = ksm_fork(mm, oldmm);
369 if (retval)
370 goto out;
371 retval = khugepaged_fork(mm, oldmm);
372 if (retval)
373 goto out;
374
375 prev = NULL;
376 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
377 struct file *file;
378
379 if (mpnt->vm_flags & VM_DONTCOPY) {
380 long pages = vma_pages(mpnt);
381 mm->total_vm -= pages;
382 vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
383 -pages);
384 continue;
385 }
386 charge = 0;
387 if (mpnt->vm_flags & VM_ACCOUNT) {
388 unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
389 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
390 goto fail_nomem;
391 charge = len;
392 }
393 tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
394 if (!tmp)
395 goto fail_nomem;
396 *tmp = *mpnt;
397 INIT_LIST_HEAD(&tmp->anon_vma_chain);
398 pol = mpol_dup(vma_policy(mpnt));
399 retval = PTR_ERR(pol);
400 if (IS_ERR(pol))
401 goto fail_nomem_policy;
402 vma_set_policy(tmp, pol);
403 tmp->vm_mm = mm;
404 if (anon_vma_fork(tmp, mpnt))
405 goto fail_nomem_anon_vma_fork;
406 tmp->vm_flags &= ~VM_LOCKED;
407 tmp->vm_next = tmp->vm_prev = NULL;
408 file = tmp->vm_file;
409 if (file) {
410 struct inode *inode = file->f_path.dentry->d_inode;
411 struct address_space *mapping = file->f_mapping;
412
413 get_file(file);
414 if (tmp->vm_flags & VM_DENYWRITE)
415 atomic_dec(&inode->i_writecount);
416 mutex_lock(&mapping->i_mmap_mutex);
417 if (tmp->vm_flags & VM_SHARED)
418 mapping->i_mmap_writable++;
419 flush_dcache_mmap_lock(mapping);
420 /* insert tmp into the share list, just after mpnt */
421 vma_prio_tree_add(tmp, mpnt);
422 flush_dcache_mmap_unlock(mapping);
423 mutex_unlock(&mapping->i_mmap_mutex);
424 }
425
426 /*
427 * Clear hugetlb-related page reserves for children. This only
428 * affects MAP_PRIVATE mappings. Faults generated by the child
429 * are not guaranteed to succeed, even if read-only
430 */
431 if (is_vm_hugetlb_page(tmp))
432 reset_vma_resv_huge_pages(tmp);
433
434 /*
435 * Link in the new vma and copy the page table entries.
436 */
437 *pprev = tmp;
438 pprev = &tmp->vm_next;
439 tmp->vm_prev = prev;
440 prev = tmp;
441
442 __vma_link_rb(mm, tmp, rb_link, rb_parent);
443 rb_link = &tmp->vm_rb.rb_right;
444 rb_parent = &tmp->vm_rb;
445
446 mm->map_count++;
447 retval = copy_page_range(mm, oldmm, mpnt);
448
449 if (tmp->vm_ops && tmp->vm_ops->open)
450 tmp->vm_ops->open(tmp);
451
452 if (retval)
453 goto out;
454 }
455 /* a new mm has just been created */
456 arch_dup_mmap(oldmm, mm);
457 retval = 0;
458 out:
459 up_write(&mm->mmap_sem);
460 flush_tlb_mm(oldmm);
461 up_write(&oldmm->mmap_sem);
462 return retval;
463 fail_nomem_anon_vma_fork:
464 mpol_put(pol);
465 fail_nomem_policy:
466 kmem_cache_free(vm_area_cachep, tmp);
467 fail_nomem:
468 retval = -ENOMEM;
469 vm_unacct_memory(charge);
470 goto out;
471 }
472
473 static inline int mm_alloc_pgd(struct mm_struct *mm)
474 {
475 mm->pgd = pgd_alloc(mm);
476 if (unlikely(!mm->pgd))
477 return -ENOMEM;
478 return 0;
479 }
480
481 static inline void mm_free_pgd(struct mm_struct *mm)
482 {
483 pgd_free(mm, mm->pgd);
484 }
485 #else
486 #define dup_mmap(mm, oldmm) (0)
487 #define mm_alloc_pgd(mm) (0)
488 #define mm_free_pgd(mm)
489 #endif /* CONFIG_MMU */
490
491 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
492
493 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
494 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
495
496 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
497
498 static int __init coredump_filter_setup(char *s)
499 {
500 default_dump_filter =
501 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
502 MMF_DUMP_FILTER_MASK;
503 return 1;
504 }
505
506 __setup("coredump_filter=", coredump_filter_setup);
507
508 #include <linux/init_task.h>
509
510 static void mm_init_aio(struct mm_struct *mm)
511 {
512 #ifdef CONFIG_AIO
513 spin_lock_init(&mm->ioctx_lock);
514 INIT_HLIST_HEAD(&mm->ioctx_list);
515 #endif
516 }
517
518 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p)
519 {
520 atomic_set(&mm->mm_users, 1);
521 atomic_set(&mm->mm_count, 1);
522 init_rwsem(&mm->mmap_sem);
523 INIT_LIST_HEAD(&mm->mmlist);
524 mm->flags = (current->mm) ?
525 (current->mm->flags & MMF_INIT_MASK) : default_dump_filter;
526 mm->core_state = NULL;
527 mm->nr_ptes = 0;
528 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
529 spin_lock_init(&mm->page_table_lock);
530 mm->free_area_cache = TASK_UNMAPPED_BASE;
531 mm->cached_hole_size = ~0UL;
532 mm_init_aio(mm);
533 mm_init_owner(mm, p);
534
535 if (likely(!mm_alloc_pgd(mm))) {
536 mm->def_flags = 0;
537 mmu_notifier_mm_init(mm);
538 return mm;
539 }
540
541 free_mm(mm);
542 return NULL;
543 }
544
545 static void check_mm(struct mm_struct *mm)
546 {
547 int i;
548
549 for (i = 0; i < NR_MM_COUNTERS; i++) {
550 long x = atomic_long_read(&mm->rss_stat.count[i]);
551
552 if (unlikely(x))
553 printk(KERN_ALERT "BUG: Bad rss-counter state "
554 "mm:%p idx:%d val:%ld\n", mm, i, x);
555 }
556
557 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
558 VM_BUG_ON(mm->pmd_huge_pte);
559 #endif
560 }
561
562 /*
563 * Allocate and initialize an mm_struct.
564 */
565 struct mm_struct *mm_alloc(void)
566 {
567 struct mm_struct *mm;
568
569 mm = allocate_mm();
570 if (!mm)
571 return NULL;
572
573 memset(mm, 0, sizeof(*mm));
574 mm_init_cpumask(mm);
575 return mm_init(mm, current);
576 }
577
578 /*
579 * Called when the last reference to the mm
580 * is dropped: either by a lazy thread or by
581 * mmput. Free the page directory and the mm.
582 */
583 void __mmdrop(struct mm_struct *mm)
584 {
585 BUG_ON(mm == &init_mm);
586 mm_free_pgd(mm);
587 destroy_context(mm);
588 mmu_notifier_mm_destroy(mm);
589 check_mm(mm);
590 free_mm(mm);
591 }
592 EXPORT_SYMBOL_GPL(__mmdrop);
593
594 /*
595 * Decrement the use count and release all resources for an mm.
596 */
597 void mmput(struct mm_struct *mm)
598 {
599 might_sleep();
600
601 if (atomic_dec_and_test(&mm->mm_users)) {
602 exit_aio(mm);
603 ksm_exit(mm);
604 khugepaged_exit(mm); /* must run before exit_mmap */
605 exit_mmap(mm);
606 set_mm_exe_file(mm, NULL);
607 if (!list_empty(&mm->mmlist)) {
608 spin_lock(&mmlist_lock);
609 list_del(&mm->mmlist);
610 spin_unlock(&mmlist_lock);
611 }
612 put_swap_token(mm);
613 if (mm->binfmt)
614 module_put(mm->binfmt->module);
615 mmdrop(mm);
616 }
617 }
618 EXPORT_SYMBOL_GPL(mmput);
619
620 /*
621 * We added or removed a vma mapping the executable. The vmas are only mapped
622 * during exec and are not mapped with the mmap system call.
623 * Callers must hold down_write() on the mm's mmap_sem for these
624 */
625 void added_exe_file_vma(struct mm_struct *mm)
626 {
627 mm->num_exe_file_vmas++;
628 }
629
630 void removed_exe_file_vma(struct mm_struct *mm)
631 {
632 mm->num_exe_file_vmas--;
633 if ((mm->num_exe_file_vmas == 0) && mm->exe_file) {
634 fput(mm->exe_file);
635 mm->exe_file = NULL;
636 }
637
638 }
639
640 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
641 {
642 if (new_exe_file)
643 get_file(new_exe_file);
644 if (mm->exe_file)
645 fput(mm->exe_file);
646 mm->exe_file = new_exe_file;
647 mm->num_exe_file_vmas = 0;
648 }
649
650 struct file *get_mm_exe_file(struct mm_struct *mm)
651 {
652 struct file *exe_file;
653
654 /* We need mmap_sem to protect against races with removal of
655 * VM_EXECUTABLE vmas */
656 down_read(&mm->mmap_sem);
657 exe_file = mm->exe_file;
658 if (exe_file)
659 get_file(exe_file);
660 up_read(&mm->mmap_sem);
661 return exe_file;
662 }
663
664 static void dup_mm_exe_file(struct mm_struct *oldmm, struct mm_struct *newmm)
665 {
666 /* It's safe to write the exe_file pointer without exe_file_lock because
667 * this is called during fork when the task is not yet in /proc */
668 newmm->exe_file = get_mm_exe_file(oldmm);
669 }
670
671 /**
672 * get_task_mm - acquire a reference to the task's mm
673 *
674 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
675 * this kernel workthread has transiently adopted a user mm with use_mm,
676 * to do its AIO) is not set and if so returns a reference to it, after
677 * bumping up the use count. User must release the mm via mmput()
678 * after use. Typically used by /proc and ptrace.
679 */
680 struct mm_struct *get_task_mm(struct task_struct *task)
681 {
682 struct mm_struct *mm;
683
684 task_lock(task);
685 mm = task->mm;
686 if (mm) {
687 if (task->flags & PF_KTHREAD)
688 mm = NULL;
689 else
690 atomic_inc(&mm->mm_users);
691 }
692 task_unlock(task);
693 return mm;
694 }
695 EXPORT_SYMBOL_GPL(get_task_mm);
696
697 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
698 {
699 struct mm_struct *mm;
700 int err;
701
702 err = mutex_lock_killable(&task->signal->cred_guard_mutex);
703 if (err)
704 return ERR_PTR(err);
705
706 mm = get_task_mm(task);
707 if (mm && mm != current->mm &&
708 !ptrace_may_access(task, mode)) {
709 mmput(mm);
710 mm = ERR_PTR(-EACCES);
711 }
712 mutex_unlock(&task->signal->cred_guard_mutex);
713
714 return mm;
715 }
716
717 static void complete_vfork_done(struct task_struct *tsk)
718 {
719 struct completion *vfork;
720
721 task_lock(tsk);
722 vfork = tsk->vfork_done;
723 if (likely(vfork)) {
724 tsk->vfork_done = NULL;
725 complete(vfork);
726 }
727 task_unlock(tsk);
728 }
729
730 static int wait_for_vfork_done(struct task_struct *child,
731 struct completion *vfork)
732 {
733 int killed;
734
735 freezer_do_not_count();
736 killed = wait_for_completion_killable(vfork);
737 freezer_count();
738
739 if (killed) {
740 task_lock(child);
741 child->vfork_done = NULL;
742 task_unlock(child);
743 }
744
745 put_task_struct(child);
746 return killed;
747 }
748
749 /* Please note the differences between mmput and mm_release.
750 * mmput is called whenever we stop holding onto a mm_struct,
751 * error success whatever.
752 *
753 * mm_release is called after a mm_struct has been removed
754 * from the current process.
755 *
756 * This difference is important for error handling, when we
757 * only half set up a mm_struct for a new process and need to restore
758 * the old one. Because we mmput the new mm_struct before
759 * restoring the old one. . .
760 * Eric Biederman 10 January 1998
761 */
762 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
763 {
764 /* Get rid of any futexes when releasing the mm */
765 #ifdef CONFIG_FUTEX
766 if (unlikely(tsk->robust_list)) {
767 exit_robust_list(tsk);
768 tsk->robust_list = NULL;
769 }
770 #ifdef CONFIG_COMPAT
771 if (unlikely(tsk->compat_robust_list)) {
772 compat_exit_robust_list(tsk);
773 tsk->compat_robust_list = NULL;
774 }
775 #endif
776 if (unlikely(!list_empty(&tsk->pi_state_list)))
777 exit_pi_state_list(tsk);
778 #endif
779
780 /* Get rid of any cached register state */
781 deactivate_mm(tsk, mm);
782
783 if (tsk->vfork_done)
784 complete_vfork_done(tsk);
785
786 /*
787 * If we're exiting normally, clear a user-space tid field if
788 * requested. We leave this alone when dying by signal, to leave
789 * the value intact in a core dump, and to save the unnecessary
790 * trouble, say, a killed vfork parent shouldn't touch this mm.
791 * Userland only wants this done for a sys_exit.
792 */
793 if (tsk->clear_child_tid) {
794 if (!(tsk->flags & PF_SIGNALED) &&
795 atomic_read(&mm->mm_users) > 1) {
796 /*
797 * We don't check the error code - if userspace has
798 * not set up a proper pointer then tough luck.
799 */
800 put_user(0, tsk->clear_child_tid);
801 sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
802 1, NULL, NULL, 0);
803 }
804 tsk->clear_child_tid = NULL;
805 }
806 }
807
808 /*
809 * Allocate a new mm structure and copy contents from the
810 * mm structure of the passed in task structure.
811 */
812 struct mm_struct *dup_mm(struct task_struct *tsk)
813 {
814 struct mm_struct *mm, *oldmm = current->mm;
815 int err;
816
817 if (!oldmm)
818 return NULL;
819
820 mm = allocate_mm();
821 if (!mm)
822 goto fail_nomem;
823
824 memcpy(mm, oldmm, sizeof(*mm));
825 mm_init_cpumask(mm);
826
827 /* Initializing for Swap token stuff */
828 mm->token_priority = 0;
829 mm->last_interval = 0;
830
831 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
832 mm->pmd_huge_pte = NULL;
833 #endif
834
835 if (!mm_init(mm, tsk))
836 goto fail_nomem;
837
838 if (init_new_context(tsk, mm))
839 goto fail_nocontext;
840
841 dup_mm_exe_file(oldmm, mm);
842
843 err = dup_mmap(mm, oldmm);
844 if (err)
845 goto free_pt;
846
847 mm->hiwater_rss = get_mm_rss(mm);
848 mm->hiwater_vm = mm->total_vm;
849
850 if (mm->binfmt && !try_module_get(mm->binfmt->module))
851 goto free_pt;
852
853 return mm;
854
855 free_pt:
856 /* don't put binfmt in mmput, we haven't got module yet */
857 mm->binfmt = NULL;
858 mmput(mm);
859
860 fail_nomem:
861 return NULL;
862
863 fail_nocontext:
864 /*
865 * If init_new_context() failed, we cannot use mmput() to free the mm
866 * because it calls destroy_context()
867 */
868 mm_free_pgd(mm);
869 free_mm(mm);
870 return NULL;
871 }
872
873 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
874 {
875 struct mm_struct *mm, *oldmm;
876 int retval;
877
878 tsk->min_flt = tsk->maj_flt = 0;
879 tsk->nvcsw = tsk->nivcsw = 0;
880 #ifdef CONFIG_DETECT_HUNG_TASK
881 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
882 #endif
883
884 tsk->mm = NULL;
885 tsk->active_mm = NULL;
886
887 /*
888 * Are we cloning a kernel thread?
889 *
890 * We need to steal a active VM for that..
891 */
892 oldmm = current->mm;
893 if (!oldmm)
894 return 0;
895
896 if (clone_flags & CLONE_VM) {
897 atomic_inc(&oldmm->mm_users);
898 mm = oldmm;
899 goto good_mm;
900 }
901
902 retval = -ENOMEM;
903 mm = dup_mm(tsk);
904 if (!mm)
905 goto fail_nomem;
906
907 good_mm:
908 /* Initializing for Swap token stuff */
909 mm->token_priority = 0;
910 mm->last_interval = 0;
911
912 tsk->mm = mm;
913 tsk->active_mm = mm;
914 return 0;
915
916 fail_nomem:
917 return retval;
918 }
919
920 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
921 {
922 struct fs_struct *fs = current->fs;
923 if (clone_flags & CLONE_FS) {
924 /* tsk->fs is already what we want */
925 spin_lock(&fs->lock);
926 if (fs->in_exec) {
927 spin_unlock(&fs->lock);
928 return -EAGAIN;
929 }
930 fs->users++;
931 spin_unlock(&fs->lock);
932 return 0;
933 }
934 tsk->fs = copy_fs_struct(fs);
935 if (!tsk->fs)
936 return -ENOMEM;
937 return 0;
938 }
939
940 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
941 {
942 struct files_struct *oldf, *newf;
943 int error = 0;
944
945 /*
946 * A background process may not have any files ...
947 */
948 oldf = current->files;
949 if (!oldf)
950 goto out;
951
952 if (clone_flags & CLONE_FILES) {
953 atomic_inc(&oldf->count);
954 goto out;
955 }
956
957 newf = dup_fd(oldf, &error);
958 if (!newf)
959 goto out;
960
961 tsk->files = newf;
962 error = 0;
963 out:
964 return error;
965 }
966
967 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
968 {
969 #ifdef CONFIG_BLOCK
970 struct io_context *ioc = current->io_context;
971 struct io_context *new_ioc;
972
973 if (!ioc)
974 return 0;
975 /*
976 * Share io context with parent, if CLONE_IO is set
977 */
978 if (clone_flags & CLONE_IO) {
979 tsk->io_context = ioc_task_link(ioc);
980 if (unlikely(!tsk->io_context))
981 return -ENOMEM;
982 } else if (ioprio_valid(ioc->ioprio)) {
983 new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
984 if (unlikely(!new_ioc))
985 return -ENOMEM;
986
987 new_ioc->ioprio = ioc->ioprio;
988 put_io_context(new_ioc);
989 }
990 #endif
991 return 0;
992 }
993
994 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
995 {
996 struct sighand_struct *sig;
997
998 if (clone_flags & CLONE_SIGHAND) {
999 atomic_inc(&current->sighand->count);
1000 return 0;
1001 }
1002 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1003 rcu_assign_pointer(tsk->sighand, sig);
1004 if (!sig)
1005 return -ENOMEM;
1006 atomic_set(&sig->count, 1);
1007 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1008 return 0;
1009 }
1010
1011 void __cleanup_sighand(struct sighand_struct *sighand)
1012 {
1013 if (atomic_dec_and_test(&sighand->count)) {
1014 signalfd_cleanup(sighand);
1015 kmem_cache_free(sighand_cachep, sighand);
1016 }
1017 }
1018
1019
1020 /*
1021 * Initialize POSIX timer handling for a thread group.
1022 */
1023 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1024 {
1025 unsigned long cpu_limit;
1026
1027 /* Thread group counters. */
1028 thread_group_cputime_init(sig);
1029
1030 cpu_limit = ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1031 if (cpu_limit != RLIM_INFINITY) {
1032 sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit);
1033 sig->cputimer.running = 1;
1034 }
1035
1036 /* The timer lists. */
1037 INIT_LIST_HEAD(&sig->cpu_timers[0]);
1038 INIT_LIST_HEAD(&sig->cpu_timers[1]);
1039 INIT_LIST_HEAD(&sig->cpu_timers[2]);
1040 }
1041
1042 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1043 {
1044 struct signal_struct *sig;
1045
1046 if (clone_flags & CLONE_THREAD)
1047 return 0;
1048
1049 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1050 tsk->signal = sig;
1051 if (!sig)
1052 return -ENOMEM;
1053
1054 sig->nr_threads = 1;
1055 atomic_set(&sig->live, 1);
1056 atomic_set(&sig->sigcnt, 1);
1057 init_waitqueue_head(&sig->wait_chldexit);
1058 if (clone_flags & CLONE_NEWPID)
1059 sig->flags |= SIGNAL_UNKILLABLE;
1060 sig->curr_target = tsk;
1061 init_sigpending(&sig->shared_pending);
1062 INIT_LIST_HEAD(&sig->posix_timers);
1063
1064 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1065 sig->real_timer.function = it_real_fn;
1066
1067 task_lock(current->group_leader);
1068 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1069 task_unlock(current->group_leader);
1070
1071 posix_cpu_timers_init_group(sig);
1072
1073 tty_audit_fork(sig);
1074 sched_autogroup_fork(sig);
1075
1076 #ifdef CONFIG_CGROUPS
1077 init_rwsem(&sig->group_rwsem);
1078 #endif
1079
1080 sig->oom_adj = current->signal->oom_adj;
1081 sig->oom_score_adj = current->signal->oom_score_adj;
1082 sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1083
1084 sig->has_child_subreaper = current->signal->has_child_subreaper ||
1085 current->signal->is_child_subreaper;
1086
1087 mutex_init(&sig->cred_guard_mutex);
1088
1089 return 0;
1090 }
1091
1092 static void copy_flags(unsigned long clone_flags, struct task_struct *p)
1093 {
1094 unsigned long new_flags = p->flags;
1095
1096 new_flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER);
1097 new_flags |= PF_FORKNOEXEC;
1098 p->flags = new_flags;
1099 }
1100
1101 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1102 {
1103 current->clear_child_tid = tidptr;
1104
1105 return task_pid_vnr(current);
1106 }
1107
1108 static void rt_mutex_init_task(struct task_struct *p)
1109 {
1110 raw_spin_lock_init(&p->pi_lock);
1111 #ifdef CONFIG_RT_MUTEXES
1112 plist_head_init(&p->pi_waiters);
1113 p->pi_blocked_on = NULL;
1114 #endif
1115 }
1116
1117 #ifdef CONFIG_MM_OWNER
1118 void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
1119 {
1120 mm->owner = p;
1121 }
1122 #endif /* CONFIG_MM_OWNER */
1123
1124 /*
1125 * Initialize POSIX timer handling for a single task.
1126 */
1127 static void posix_cpu_timers_init(struct task_struct *tsk)
1128 {
1129 tsk->cputime_expires.prof_exp = 0;
1130 tsk->cputime_expires.virt_exp = 0;
1131 tsk->cputime_expires.sched_exp = 0;
1132 INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1133 INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1134 INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1135 }
1136
1137 /*
1138 * This creates a new process as a copy of the old one,
1139 * but does not actually start it yet.
1140 *
1141 * It copies the registers, and all the appropriate
1142 * parts of the process environment (as per the clone
1143 * flags). The actual kick-off is left to the caller.
1144 */
1145 static struct task_struct *copy_process(unsigned long clone_flags,
1146 unsigned long stack_start,
1147 struct pt_regs *regs,
1148 unsigned long stack_size,
1149 int __user *child_tidptr,
1150 struct pid *pid,
1151 int trace)
1152 {
1153 int retval;
1154 struct task_struct *p;
1155 int cgroup_callbacks_done = 0;
1156
1157 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1158 return ERR_PTR(-EINVAL);
1159
1160 /*
1161 * Thread groups must share signals as well, and detached threads
1162 * can only be started up within the thread group.
1163 */
1164 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1165 return ERR_PTR(-EINVAL);
1166
1167 /*
1168 * Shared signal handlers imply shared VM. By way of the above,
1169 * thread groups also imply shared VM. Blocking this case allows
1170 * for various simplifications in other code.
1171 */
1172 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1173 return ERR_PTR(-EINVAL);
1174
1175 /*
1176 * Siblings of global init remain as zombies on exit since they are
1177 * not reaped by their parent (swapper). To solve this and to avoid
1178 * multi-rooted process trees, prevent global and container-inits
1179 * from creating siblings.
1180 */
1181 if ((clone_flags & CLONE_PARENT) &&
1182 current->signal->flags & SIGNAL_UNKILLABLE)
1183 return ERR_PTR(-EINVAL);
1184
1185 retval = security_task_create(clone_flags);
1186 if (retval)
1187 goto fork_out;
1188
1189 retval = -ENOMEM;
1190 p = dup_task_struct(current);
1191 if (!p)
1192 goto fork_out;
1193
1194 ftrace_graph_init_task(p);
1195 get_seccomp_filter(p);
1196
1197 rt_mutex_init_task(p);
1198
1199 #ifdef CONFIG_PROVE_LOCKING
1200 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1201 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1202 #endif
1203 retval = -EAGAIN;
1204 if (atomic_read(&p->real_cred->user->processes) >=
1205 task_rlimit(p, RLIMIT_NPROC)) {
1206 if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
1207 p->real_cred->user != INIT_USER)
1208 goto bad_fork_free;
1209 }
1210 current->flags &= ~PF_NPROC_EXCEEDED;
1211
1212 retval = copy_creds(p, clone_flags);
1213 if (retval < 0)
1214 goto bad_fork_free;
1215
1216 /*
1217 * If multiple threads are within copy_process(), then this check
1218 * triggers too late. This doesn't hurt, the check is only there
1219 * to stop root fork bombs.
1220 */
1221 retval = -EAGAIN;
1222 if (nr_threads >= max_threads)
1223 goto bad_fork_cleanup_count;
1224
1225 if (!try_module_get(task_thread_info(p)->exec_domain->module))
1226 goto bad_fork_cleanup_count;
1227
1228 p->did_exec = 0;
1229 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
1230 copy_flags(clone_flags, p);
1231 INIT_LIST_HEAD(&p->children);
1232 INIT_LIST_HEAD(&p->sibling);
1233 rcu_copy_process(p);
1234 p->vfork_done = NULL;
1235 spin_lock_init(&p->alloc_lock);
1236
1237 init_sigpending(&p->pending);
1238
1239 p->utime = p->stime = p->gtime = 0;
1240 p->utimescaled = p->stimescaled = 0;
1241 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
1242 p->prev_utime = p->prev_stime = 0;
1243 #endif
1244 #if defined(SPLIT_RSS_COUNTING)
1245 memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1246 #endif
1247
1248 p->default_timer_slack_ns = current->timer_slack_ns;
1249
1250 task_io_accounting_init(&p->ioac);
1251 acct_clear_integrals(p);
1252
1253 posix_cpu_timers_init(p);
1254
1255 do_posix_clock_monotonic_gettime(&p->start_time);
1256 p->real_start_time = p->start_time;
1257 monotonic_to_bootbased(&p->real_start_time);
1258 p->io_context = NULL;
1259 p->audit_context = NULL;
1260 if (clone_flags & CLONE_THREAD)
1261 threadgroup_change_begin(current);
1262 cgroup_fork(p);
1263 #ifdef CONFIG_NUMA
1264 p->mempolicy = mpol_dup(p->mempolicy);
1265 if (IS_ERR(p->mempolicy)) {
1266 retval = PTR_ERR(p->mempolicy);
1267 p->mempolicy = NULL;
1268 goto bad_fork_cleanup_cgroup;
1269 }
1270 mpol_fix_fork_child_flag(p);
1271 #endif
1272 #ifdef CONFIG_CPUSETS
1273 p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1274 p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1275 seqcount_init(&p->mems_allowed_seq);
1276 #endif
1277 #ifdef CONFIG_TRACE_IRQFLAGS
1278 p->irq_events = 0;
1279 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1280 p->hardirqs_enabled = 1;
1281 #else
1282 p->hardirqs_enabled = 0;
1283 #endif
1284 p->hardirq_enable_ip = 0;
1285 p->hardirq_enable_event = 0;
1286 p->hardirq_disable_ip = _THIS_IP_;
1287 p->hardirq_disable_event = 0;
1288 p->softirqs_enabled = 1;
1289 p->softirq_enable_ip = _THIS_IP_;
1290 p->softirq_enable_event = 0;
1291 p->softirq_disable_ip = 0;
1292 p->softirq_disable_event = 0;
1293 p->hardirq_context = 0;
1294 p->softirq_context = 0;
1295 #endif
1296 #ifdef CONFIG_LOCKDEP
1297 p->lockdep_depth = 0; /* no locks held yet */
1298 p->curr_chain_key = 0;
1299 p->lockdep_recursion = 0;
1300 #endif
1301
1302 #ifdef CONFIG_DEBUG_MUTEXES
1303 p->blocked_on = NULL; /* not blocked yet */
1304 #endif
1305 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
1306 p->memcg_batch.do_batch = 0;
1307 p->memcg_batch.memcg = NULL;
1308 #endif
1309
1310 /* Perform scheduler related setup. Assign this task to a CPU. */
1311 sched_fork(p);
1312
1313 retval = perf_event_init_task(p);
1314 if (retval)
1315 goto bad_fork_cleanup_policy;
1316 retval = audit_alloc(p);
1317 if (retval)
1318 goto bad_fork_cleanup_policy;
1319 /* copy all the process information */
1320 retval = copy_semundo(clone_flags, p);
1321 if (retval)
1322 goto bad_fork_cleanup_audit;
1323 retval = copy_files(clone_flags, p);
1324 if (retval)
1325 goto bad_fork_cleanup_semundo;
1326 retval = copy_fs(clone_flags, p);
1327 if (retval)
1328 goto bad_fork_cleanup_files;
1329 retval = copy_sighand(clone_flags, p);
1330 if (retval)
1331 goto bad_fork_cleanup_fs;
1332 retval = copy_signal(clone_flags, p);
1333 if (retval)
1334 goto bad_fork_cleanup_sighand;
1335 retval = copy_mm(clone_flags, p);
1336 if (retval)
1337 goto bad_fork_cleanup_signal;
1338 retval = copy_namespaces(clone_flags, p);
1339 if (retval)
1340 goto bad_fork_cleanup_mm;
1341 retval = copy_io(clone_flags, p);
1342 if (retval)
1343 goto bad_fork_cleanup_namespaces;
1344 retval = copy_thread(clone_flags, stack_start, stack_size, p, regs);
1345 if (retval)
1346 goto bad_fork_cleanup_io;
1347
1348 if (pid != &init_struct_pid) {
1349 retval = -ENOMEM;
1350 pid = alloc_pid(p->nsproxy->pid_ns);
1351 if (!pid)
1352 goto bad_fork_cleanup_io;
1353 }
1354
1355 p->pid = pid_nr(pid);
1356 p->tgid = p->pid;
1357 if (clone_flags & CLONE_THREAD)
1358 p->tgid = current->tgid;
1359
1360 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1361 /*
1362 * Clear TID on mm_release()?
1363 */
1364 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
1365 #ifdef CONFIG_BLOCK
1366 p->plug = NULL;
1367 #endif
1368 #ifdef CONFIG_FUTEX
1369 p->robust_list = NULL;
1370 #ifdef CONFIG_COMPAT
1371 p->compat_robust_list = NULL;
1372 #endif
1373 INIT_LIST_HEAD(&p->pi_state_list);
1374 p->pi_state_cache = NULL;
1375 #endif
1376 /*
1377 * sigaltstack should be cleared when sharing the same VM
1378 */
1379 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1380 p->sas_ss_sp = p->sas_ss_size = 0;
1381
1382 /*
1383 * Syscall tracing and stepping should be turned off in the
1384 * child regardless of CLONE_PTRACE.
1385 */
1386 user_disable_single_step(p);
1387 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1388 #ifdef TIF_SYSCALL_EMU
1389 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1390 #endif
1391 clear_all_latency_tracing(p);
1392
1393 /* ok, now we should be set up.. */
1394 if (clone_flags & CLONE_THREAD)
1395 p->exit_signal = -1;
1396 else if (clone_flags & CLONE_PARENT)
1397 p->exit_signal = current->group_leader->exit_signal;
1398 else
1399 p->exit_signal = (clone_flags & CSIGNAL);
1400
1401 p->pdeath_signal = 0;
1402 p->exit_state = 0;
1403
1404 p->nr_dirtied = 0;
1405 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
1406 p->dirty_paused_when = 0;
1407
1408 /*
1409 * Ok, make it visible to the rest of the system.
1410 * We dont wake it up yet.
1411 */
1412 p->group_leader = p;
1413 INIT_LIST_HEAD(&p->thread_group);
1414
1415 /* Now that the task is set up, run cgroup callbacks if
1416 * necessary. We need to run them before the task is visible
1417 * on the tasklist. */
1418 cgroup_fork_callbacks(p);
1419 cgroup_callbacks_done = 1;
1420
1421 /* Need tasklist lock for parent etc handling! */
1422 write_lock_irq(&tasklist_lock);
1423
1424 /* CLONE_PARENT re-uses the old parent */
1425 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1426 p->real_parent = current->real_parent;
1427 p->parent_exec_id = current->parent_exec_id;
1428 } else {
1429 p->real_parent = current;
1430 p->parent_exec_id = current->self_exec_id;
1431 }
1432
1433 spin_lock(&current->sighand->siglock);
1434
1435 /*
1436 * Process group and session signals need to be delivered to just the
1437 * parent before the fork or both the parent and the child after the
1438 * fork. Restart if a signal comes in before we add the new process to
1439 * it's process group.
1440 * A fatal signal pending means that current will exit, so the new
1441 * thread can't slip out of an OOM kill (or normal SIGKILL).
1442 */
1443 recalc_sigpending();
1444 if (signal_pending(current)) {
1445 spin_unlock(&current->sighand->siglock);
1446 write_unlock_irq(&tasklist_lock);
1447 retval = -ERESTARTNOINTR;
1448 goto bad_fork_free_pid;
1449 }
1450
1451 if (clone_flags & CLONE_THREAD) {
1452 current->signal->nr_threads++;
1453 atomic_inc(&current->signal->live);
1454 atomic_inc(&current->signal->sigcnt);
1455 p->group_leader = current->group_leader;
1456 list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
1457 }
1458
1459 if (likely(p->pid)) {
1460 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
1461
1462 if (thread_group_leader(p)) {
1463 if (is_child_reaper(pid))
1464 p->nsproxy->pid_ns->child_reaper = p;
1465
1466 p->signal->leader_pid = pid;
1467 p->signal->tty = tty_kref_get(current->signal->tty);
1468 attach_pid(p, PIDTYPE_PGID, task_pgrp(current));
1469 attach_pid(p, PIDTYPE_SID, task_session(current));
1470 list_add_tail(&p->sibling, &p->real_parent->children);
1471 list_add_tail_rcu(&p->tasks, &init_task.tasks);
1472 __this_cpu_inc(process_counts);
1473 }
1474 attach_pid(p, PIDTYPE_PID, pid);
1475 nr_threads++;
1476 }
1477
1478 total_forks++;
1479 spin_unlock(&current->sighand->siglock);
1480 write_unlock_irq(&tasklist_lock);
1481 proc_fork_connector(p);
1482 cgroup_post_fork(p);
1483 if (clone_flags & CLONE_THREAD)
1484 threadgroup_change_end(current);
1485 perf_event_fork(p);
1486
1487 trace_task_newtask(p, clone_flags);
1488
1489 return p;
1490
1491 bad_fork_free_pid:
1492 if (pid != &init_struct_pid)
1493 free_pid(pid);
1494 bad_fork_cleanup_io:
1495 if (p->io_context)
1496 exit_io_context(p);
1497 bad_fork_cleanup_namespaces:
1498 if (unlikely(clone_flags & CLONE_NEWPID))
1499 pid_ns_release_proc(p->nsproxy->pid_ns);
1500 exit_task_namespaces(p);
1501 bad_fork_cleanup_mm:
1502 if (p->mm)
1503 mmput(p->mm);
1504 bad_fork_cleanup_signal:
1505 if (!(clone_flags & CLONE_THREAD))
1506 free_signal_struct(p->signal);
1507 bad_fork_cleanup_sighand:
1508 __cleanup_sighand(p->sighand);
1509 bad_fork_cleanup_fs:
1510 exit_fs(p); /* blocking */
1511 bad_fork_cleanup_files:
1512 exit_files(p); /* blocking */
1513 bad_fork_cleanup_semundo:
1514 exit_sem(p);
1515 bad_fork_cleanup_audit:
1516 audit_free(p);
1517 bad_fork_cleanup_policy:
1518 perf_event_free_task(p);
1519 #ifdef CONFIG_NUMA
1520 mpol_put(p->mempolicy);
1521 bad_fork_cleanup_cgroup:
1522 #endif
1523 if (clone_flags & CLONE_THREAD)
1524 threadgroup_change_end(current);
1525 cgroup_exit(p, cgroup_callbacks_done);
1526 delayacct_tsk_free(p);
1527 module_put(task_thread_info(p)->exec_domain->module);
1528 bad_fork_cleanup_count:
1529 atomic_dec(&p->cred->user->processes);
1530 exit_creds(p);
1531 bad_fork_free:
1532 free_task(p);
1533 fork_out:
1534 return ERR_PTR(retval);
1535 }
1536
1537 noinline struct pt_regs * __cpuinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
1538 {
1539 memset(regs, 0, sizeof(struct pt_regs));
1540 return regs;
1541 }
1542
1543 static inline void init_idle_pids(struct pid_link *links)
1544 {
1545 enum pid_type type;
1546
1547 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1548 INIT_HLIST_NODE(&links[type].node); /* not really needed */
1549 links[type].pid = &init_struct_pid;
1550 }
1551 }
1552
1553 struct task_struct * __cpuinit fork_idle(int cpu)
1554 {
1555 struct task_struct *task;
1556 struct pt_regs regs;
1557
1558 task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL,
1559 &init_struct_pid, 0);
1560 if (!IS_ERR(task)) {
1561 init_idle_pids(task->pids);
1562 init_idle(task, cpu);
1563 }
1564
1565 return task;
1566 }
1567
1568 /*
1569 * Ok, this is the main fork-routine.
1570 *
1571 * It copies the process, and if successful kick-starts
1572 * it and waits for it to finish using the VM if required.
1573 */
1574 long do_fork(unsigned long clone_flags,
1575 unsigned long stack_start,
1576 struct pt_regs *regs,
1577 unsigned long stack_size,
1578 int __user *parent_tidptr,
1579 int __user *child_tidptr)
1580 {
1581 struct task_struct *p;
1582 int trace = 0;
1583 long nr;
1584
1585 /*
1586 * Do some preliminary argument and permissions checking before we
1587 * actually start allocating stuff
1588 */
1589 if (clone_flags & CLONE_NEWUSER) {
1590 if (clone_flags & CLONE_THREAD)
1591 return -EINVAL;
1592 /* hopefully this check will go away when userns support is
1593 * complete
1594 */
1595 if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SETUID) ||
1596 !capable(CAP_SETGID))
1597 return -EPERM;
1598 }
1599
1600 /*
1601 * Determine whether and which event to report to ptracer. When
1602 * called from kernel_thread or CLONE_UNTRACED is explicitly
1603 * requested, no event is reported; otherwise, report if the event
1604 * for the type of forking is enabled.
1605 */
1606 if (likely(user_mode(regs)) && !(clone_flags & CLONE_UNTRACED)) {
1607 if (clone_flags & CLONE_VFORK)
1608 trace = PTRACE_EVENT_VFORK;
1609 else if ((clone_flags & CSIGNAL) != SIGCHLD)
1610 trace = PTRACE_EVENT_CLONE;
1611 else
1612 trace = PTRACE_EVENT_FORK;
1613
1614 if (likely(!ptrace_event_enabled(current, trace)))
1615 trace = 0;
1616 }
1617
1618 p = copy_process(clone_flags, stack_start, regs, stack_size,
1619 child_tidptr, NULL, trace);
1620 /*
1621 * Do this prior waking up the new thread - the thread pointer
1622 * might get invalid after that point, if the thread exits quickly.
1623 */
1624 if (!IS_ERR(p)) {
1625 struct completion vfork;
1626
1627 trace_sched_process_fork(current, p);
1628
1629 nr = task_pid_vnr(p);
1630
1631 if (clone_flags & CLONE_PARENT_SETTID)
1632 put_user(nr, parent_tidptr);
1633
1634 if (clone_flags & CLONE_VFORK) {
1635 p->vfork_done = &vfork;
1636 init_completion(&vfork);
1637 get_task_struct(p);
1638 }
1639
1640 wake_up_new_task(p);
1641
1642 /* forking complete and child started to run, tell ptracer */
1643 if (unlikely(trace))
1644 ptrace_event(trace, nr);
1645
1646 if (clone_flags & CLONE_VFORK) {
1647 if (!wait_for_vfork_done(p, &vfork))
1648 ptrace_event(PTRACE_EVENT_VFORK_DONE, nr);
1649 }
1650 } else {
1651 nr = PTR_ERR(p);
1652 }
1653 return nr;
1654 }
1655
1656 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1657 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1658 #endif
1659
1660 static void sighand_ctor(void *data)
1661 {
1662 struct sighand_struct *sighand = data;
1663
1664 spin_lock_init(&sighand->siglock);
1665 init_waitqueue_head(&sighand->signalfd_wqh);
1666 }
1667
1668 void __init proc_caches_init(void)
1669 {
1670 sighand_cachep = kmem_cache_create("sighand_cache",
1671 sizeof(struct sighand_struct), 0,
1672 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
1673 SLAB_NOTRACK, sighand_ctor);
1674 signal_cachep = kmem_cache_create("signal_cache",
1675 sizeof(struct signal_struct), 0,
1676 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1677 files_cachep = kmem_cache_create("files_cache",
1678 sizeof(struct files_struct), 0,
1679 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1680 fs_cachep = kmem_cache_create("fs_cache",
1681 sizeof(struct fs_struct), 0,
1682 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1683 /*
1684 * FIXME! The "sizeof(struct mm_struct)" currently includes the
1685 * whole struct cpumask for the OFFSTACK case. We could change
1686 * this to *only* allocate as much of it as required by the
1687 * maximum number of CPU's we can ever have. The cpumask_allocation
1688 * is at the end of the structure, exactly for that reason.
1689 */
1690 mm_cachep = kmem_cache_create("mm_struct",
1691 sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1692 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1693 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC);
1694 mmap_init();
1695 nsproxy_cache_init();
1696 }
1697
1698 /*
1699 * Check constraints on flags passed to the unshare system call.
1700 */
1701 static int check_unshare_flags(unsigned long unshare_flags)
1702 {
1703 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1704 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1705 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET))
1706 return -EINVAL;
1707 /*
1708 * Not implemented, but pretend it works if there is nothing to
1709 * unshare. Note that unsharing CLONE_THREAD or CLONE_SIGHAND
1710 * needs to unshare vm.
1711 */
1712 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
1713 /* FIXME: get_task_mm() increments ->mm_users */
1714 if (atomic_read(&current->mm->mm_users) > 1)
1715 return -EINVAL;
1716 }
1717
1718 return 0;
1719 }
1720
1721 /*
1722 * Unshare the filesystem structure if it is being shared
1723 */
1724 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1725 {
1726 struct fs_struct *fs = current->fs;
1727
1728 if (!(unshare_flags & CLONE_FS) || !fs)
1729 return 0;
1730
1731 /* don't need lock here; in the worst case we'll do useless copy */
1732 if (fs->users == 1)
1733 return 0;
1734
1735 *new_fsp = copy_fs_struct(fs);
1736 if (!*new_fsp)
1737 return -ENOMEM;
1738
1739 return 0;
1740 }
1741
1742 /*
1743 * Unshare file descriptor table if it is being shared
1744 */
1745 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1746 {
1747 struct files_struct *fd = current->files;
1748 int error = 0;
1749
1750 if ((unshare_flags & CLONE_FILES) &&
1751 (fd && atomic_read(&fd->count) > 1)) {
1752 *new_fdp = dup_fd(fd, &error);
1753 if (!*new_fdp)
1754 return error;
1755 }
1756
1757 return 0;
1758 }
1759
1760 /*
1761 * unshare allows a process to 'unshare' part of the process
1762 * context which was originally shared using clone. copy_*
1763 * functions used by do_fork() cannot be used here directly
1764 * because they modify an inactive task_struct that is being
1765 * constructed. Here we are modifying the current, active,
1766 * task_struct.
1767 */
1768 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
1769 {
1770 struct fs_struct *fs, *new_fs = NULL;
1771 struct files_struct *fd, *new_fd = NULL;
1772 struct nsproxy *new_nsproxy = NULL;
1773 int do_sysvsem = 0;
1774 int err;
1775
1776 err = check_unshare_flags(unshare_flags);
1777 if (err)
1778 goto bad_unshare_out;
1779
1780 /*
1781 * If unsharing namespace, must also unshare filesystem information.
1782 */
1783 if (unshare_flags & CLONE_NEWNS)
1784 unshare_flags |= CLONE_FS;
1785 /*
1786 * CLONE_NEWIPC must also detach from the undolist: after switching
1787 * to a new ipc namespace, the semaphore arrays from the old
1788 * namespace are unreachable.
1789 */
1790 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
1791 do_sysvsem = 1;
1792 err = unshare_fs(unshare_flags, &new_fs);
1793 if (err)
1794 goto bad_unshare_out;
1795 err = unshare_fd(unshare_flags, &new_fd);
1796 if (err)
1797 goto bad_unshare_cleanup_fs;
1798 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy, new_fs);
1799 if (err)
1800 goto bad_unshare_cleanup_fd;
1801
1802 if (new_fs || new_fd || do_sysvsem || new_nsproxy) {
1803 if (do_sysvsem) {
1804 /*
1805 * CLONE_SYSVSEM is equivalent to sys_exit().
1806 */
1807 exit_sem(current);
1808 }
1809
1810 if (new_nsproxy) {
1811 switch_task_namespaces(current, new_nsproxy);
1812 new_nsproxy = NULL;
1813 }
1814
1815 task_lock(current);
1816
1817 if (new_fs) {
1818 fs = current->fs;
1819 spin_lock(&fs->lock);
1820 current->fs = new_fs;
1821 if (--fs->users)
1822 new_fs = NULL;
1823 else
1824 new_fs = fs;
1825 spin_unlock(&fs->lock);
1826 }
1827
1828 if (new_fd) {
1829 fd = current->files;
1830 current->files = new_fd;
1831 new_fd = fd;
1832 }
1833
1834 task_unlock(current);
1835 }
1836
1837 if (new_nsproxy)
1838 put_nsproxy(new_nsproxy);
1839
1840 bad_unshare_cleanup_fd:
1841 if (new_fd)
1842 put_files_struct(new_fd);
1843
1844 bad_unshare_cleanup_fs:
1845 if (new_fs)
1846 free_fs_struct(new_fs);
1847
1848 bad_unshare_out:
1849 return err;
1850 }
1851
1852 /*
1853 * Helper to unshare the files of the current task.
1854 * We don't want to expose copy_files internals to
1855 * the exec layer of the kernel.
1856 */
1857
1858 int unshare_files(struct files_struct **displaced)
1859 {
1860 struct task_struct *task = current;
1861 struct files_struct *copy = NULL;
1862 int error;
1863
1864 error = unshare_fd(CLONE_FILES, &copy);
1865 if (error || !copy) {
1866 *displaced = NULL;
1867 return error;
1868 }
1869 *displaced = task->files;
1870 task_lock(task);
1871 task->files = copy;
1872 task_unlock(task);
1873 return 0;
1874 }
This page took 0.084806 seconds and 5 git commands to generate.