ARC: mm: Introduce explicit super page size support
[deliverable/linux.git] / kernel / fork.c
1 /*
2 * linux/kernel/fork.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * 'fork.c' contains the help-routines for the 'fork' system call
9 * (see also entry.S and others).
10 * Fork is rather simple, once you get the hang of it, but the memory
11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12 */
13
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/mempolicy.h>
22 #include <linux/sem.h>
23 #include <linux/file.h>
24 #include <linux/fdtable.h>
25 #include <linux/iocontext.h>
26 #include <linux/key.h>
27 #include <linux/binfmts.h>
28 #include <linux/mman.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/fs.h>
31 #include <linux/mm.h>
32 #include <linux/vmacache.h>
33 #include <linux/nsproxy.h>
34 #include <linux/capability.h>
35 #include <linux/cpu.h>
36 #include <linux/cgroup.h>
37 #include <linux/security.h>
38 #include <linux/hugetlb.h>
39 #include <linux/seccomp.h>
40 #include <linux/swap.h>
41 #include <linux/syscalls.h>
42 #include <linux/jiffies.h>
43 #include <linux/futex.h>
44 #include <linux/compat.h>
45 #include <linux/kthread.h>
46 #include <linux/task_io_accounting_ops.h>
47 #include <linux/rcupdate.h>
48 #include <linux/ptrace.h>
49 #include <linux/mount.h>
50 #include <linux/audit.h>
51 #include <linux/memcontrol.h>
52 #include <linux/ftrace.h>
53 #include <linux/proc_fs.h>
54 #include <linux/profile.h>
55 #include <linux/rmap.h>
56 #include <linux/ksm.h>
57 #include <linux/acct.h>
58 #include <linux/tsacct_kern.h>
59 #include <linux/cn_proc.h>
60 #include <linux/freezer.h>
61 #include <linux/delayacct.h>
62 #include <linux/taskstats_kern.h>
63 #include <linux/random.h>
64 #include <linux/tty.h>
65 #include <linux/blkdev.h>
66 #include <linux/fs_struct.h>
67 #include <linux/magic.h>
68 #include <linux/perf_event.h>
69 #include <linux/posix-timers.h>
70 #include <linux/user-return-notifier.h>
71 #include <linux/oom.h>
72 #include <linux/khugepaged.h>
73 #include <linux/signalfd.h>
74 #include <linux/uprobes.h>
75 #include <linux/aio.h>
76 #include <linux/compiler.h>
77 #include <linux/sysctl.h>
78
79 #include <asm/pgtable.h>
80 #include <asm/pgalloc.h>
81 #include <asm/uaccess.h>
82 #include <asm/mmu_context.h>
83 #include <asm/cacheflush.h>
84 #include <asm/tlbflush.h>
85
86 #include <trace/events/sched.h>
87
88 #define CREATE_TRACE_POINTS
89 #include <trace/events/task.h>
90
91 /*
92 * Minimum number of threads to boot the kernel
93 */
94 #define MIN_THREADS 20
95
96 /*
97 * Maximum number of threads
98 */
99 #define MAX_THREADS FUTEX_TID_MASK
100
101 /*
102 * Protected counters by write_lock_irq(&tasklist_lock)
103 */
104 unsigned long total_forks; /* Handle normal Linux uptimes. */
105 int nr_threads; /* The idle threads do not count.. */
106
107 int max_threads; /* tunable limit on nr_threads */
108
109 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
110
111 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
112
113 #ifdef CONFIG_PROVE_RCU
114 int lockdep_tasklist_lock_is_held(void)
115 {
116 return lockdep_is_held(&tasklist_lock);
117 }
118 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
119 #endif /* #ifdef CONFIG_PROVE_RCU */
120
121 int nr_processes(void)
122 {
123 int cpu;
124 int total = 0;
125
126 for_each_possible_cpu(cpu)
127 total += per_cpu(process_counts, cpu);
128
129 return total;
130 }
131
132 void __weak arch_release_task_struct(struct task_struct *tsk)
133 {
134 }
135
136 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
137 static struct kmem_cache *task_struct_cachep;
138
139 static inline struct task_struct *alloc_task_struct_node(int node)
140 {
141 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
142 }
143
144 static inline void free_task_struct(struct task_struct *tsk)
145 {
146 kmem_cache_free(task_struct_cachep, tsk);
147 }
148 #endif
149
150 void __weak arch_release_thread_info(struct thread_info *ti)
151 {
152 }
153
154 #ifndef CONFIG_ARCH_THREAD_INFO_ALLOCATOR
155
156 /*
157 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
158 * kmemcache based allocator.
159 */
160 # if THREAD_SIZE >= PAGE_SIZE
161 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
162 int node)
163 {
164 struct page *page = alloc_kmem_pages_node(node, THREADINFO_GFP,
165 THREAD_SIZE_ORDER);
166
167 return page ? page_address(page) : NULL;
168 }
169
170 static inline void free_thread_info(struct thread_info *ti)
171 {
172 free_kmem_pages((unsigned long)ti, THREAD_SIZE_ORDER);
173 }
174 # else
175 static struct kmem_cache *thread_info_cache;
176
177 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
178 int node)
179 {
180 return kmem_cache_alloc_node(thread_info_cache, THREADINFO_GFP, node);
181 }
182
183 static void free_thread_info(struct thread_info *ti)
184 {
185 kmem_cache_free(thread_info_cache, ti);
186 }
187
188 void thread_info_cache_init(void)
189 {
190 thread_info_cache = kmem_cache_create("thread_info", THREAD_SIZE,
191 THREAD_SIZE, 0, NULL);
192 BUG_ON(thread_info_cache == NULL);
193 }
194 # endif
195 #endif
196
197 /* SLAB cache for signal_struct structures (tsk->signal) */
198 static struct kmem_cache *signal_cachep;
199
200 /* SLAB cache for sighand_struct structures (tsk->sighand) */
201 struct kmem_cache *sighand_cachep;
202
203 /* SLAB cache for files_struct structures (tsk->files) */
204 struct kmem_cache *files_cachep;
205
206 /* SLAB cache for fs_struct structures (tsk->fs) */
207 struct kmem_cache *fs_cachep;
208
209 /* SLAB cache for vm_area_struct structures */
210 struct kmem_cache *vm_area_cachep;
211
212 /* SLAB cache for mm_struct structures (tsk->mm) */
213 static struct kmem_cache *mm_cachep;
214
215 static void account_kernel_stack(struct thread_info *ti, int account)
216 {
217 struct zone *zone = page_zone(virt_to_page(ti));
218
219 mod_zone_page_state(zone, NR_KERNEL_STACK, account);
220 }
221
222 void free_task(struct task_struct *tsk)
223 {
224 account_kernel_stack(tsk->stack, -1);
225 arch_release_thread_info(tsk->stack);
226 free_thread_info(tsk->stack);
227 rt_mutex_debug_task_free(tsk);
228 ftrace_graph_exit_task(tsk);
229 put_seccomp_filter(tsk);
230 arch_release_task_struct(tsk);
231 free_task_struct(tsk);
232 }
233 EXPORT_SYMBOL(free_task);
234
235 static inline void free_signal_struct(struct signal_struct *sig)
236 {
237 taskstats_tgid_free(sig);
238 sched_autogroup_exit(sig);
239 kmem_cache_free(signal_cachep, sig);
240 }
241
242 static inline void put_signal_struct(struct signal_struct *sig)
243 {
244 if (atomic_dec_and_test(&sig->sigcnt))
245 free_signal_struct(sig);
246 }
247
248 void __put_task_struct(struct task_struct *tsk)
249 {
250 WARN_ON(!tsk->exit_state);
251 WARN_ON(atomic_read(&tsk->usage));
252 WARN_ON(tsk == current);
253
254 cgroup_free(tsk);
255 task_numa_free(tsk);
256 security_task_free(tsk);
257 exit_creds(tsk);
258 delayacct_tsk_free(tsk);
259 put_signal_struct(tsk->signal);
260
261 if (!profile_handoff_task(tsk))
262 free_task(tsk);
263 }
264 EXPORT_SYMBOL_GPL(__put_task_struct);
265
266 void __init __weak arch_task_cache_init(void) { }
267
268 /*
269 * set_max_threads
270 */
271 static void set_max_threads(unsigned int max_threads_suggested)
272 {
273 u64 threads;
274
275 /*
276 * The number of threads shall be limited such that the thread
277 * structures may only consume a small part of the available memory.
278 */
279 if (fls64(totalram_pages) + fls64(PAGE_SIZE) > 64)
280 threads = MAX_THREADS;
281 else
282 threads = div64_u64((u64) totalram_pages * (u64) PAGE_SIZE,
283 (u64) THREAD_SIZE * 8UL);
284
285 if (threads > max_threads_suggested)
286 threads = max_threads_suggested;
287
288 max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
289 }
290
291 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
292 /* Initialized by the architecture: */
293 int arch_task_struct_size __read_mostly;
294 #endif
295
296 void __init fork_init(void)
297 {
298 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
299 #ifndef ARCH_MIN_TASKALIGN
300 #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
301 #endif
302 /* create a slab on which task_structs can be allocated */
303 task_struct_cachep =
304 kmem_cache_create("task_struct", arch_task_struct_size,
305 ARCH_MIN_TASKALIGN, SLAB_PANIC | SLAB_NOTRACK, NULL);
306 #endif
307
308 /* do the arch specific task caches init */
309 arch_task_cache_init();
310
311 set_max_threads(MAX_THREADS);
312
313 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
314 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
315 init_task.signal->rlim[RLIMIT_SIGPENDING] =
316 init_task.signal->rlim[RLIMIT_NPROC];
317 }
318
319 int __weak arch_dup_task_struct(struct task_struct *dst,
320 struct task_struct *src)
321 {
322 *dst = *src;
323 return 0;
324 }
325
326 void set_task_stack_end_magic(struct task_struct *tsk)
327 {
328 unsigned long *stackend;
329
330 stackend = end_of_stack(tsk);
331 *stackend = STACK_END_MAGIC; /* for overflow detection */
332 }
333
334 static struct task_struct *dup_task_struct(struct task_struct *orig)
335 {
336 struct task_struct *tsk;
337 struct thread_info *ti;
338 int node = tsk_fork_get_node(orig);
339 int err;
340
341 tsk = alloc_task_struct_node(node);
342 if (!tsk)
343 return NULL;
344
345 ti = alloc_thread_info_node(tsk, node);
346 if (!ti)
347 goto free_tsk;
348
349 err = arch_dup_task_struct(tsk, orig);
350 if (err)
351 goto free_ti;
352
353 tsk->stack = ti;
354 #ifdef CONFIG_SECCOMP
355 /*
356 * We must handle setting up seccomp filters once we're under
357 * the sighand lock in case orig has changed between now and
358 * then. Until then, filter must be NULL to avoid messing up
359 * the usage counts on the error path calling free_task.
360 */
361 tsk->seccomp.filter = NULL;
362 #endif
363
364 setup_thread_stack(tsk, orig);
365 clear_user_return_notifier(tsk);
366 clear_tsk_need_resched(tsk);
367 set_task_stack_end_magic(tsk);
368
369 #ifdef CONFIG_CC_STACKPROTECTOR
370 tsk->stack_canary = get_random_int();
371 #endif
372
373 /*
374 * One for us, one for whoever does the "release_task()" (usually
375 * parent)
376 */
377 atomic_set(&tsk->usage, 2);
378 #ifdef CONFIG_BLK_DEV_IO_TRACE
379 tsk->btrace_seq = 0;
380 #endif
381 tsk->splice_pipe = NULL;
382 tsk->task_frag.page = NULL;
383 tsk->wake_q.next = NULL;
384
385 account_kernel_stack(ti, 1);
386
387 return tsk;
388
389 free_ti:
390 free_thread_info(ti);
391 free_tsk:
392 free_task_struct(tsk);
393 return NULL;
394 }
395
396 #ifdef CONFIG_MMU
397 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
398 {
399 struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
400 struct rb_node **rb_link, *rb_parent;
401 int retval;
402 unsigned long charge;
403
404 uprobe_start_dup_mmap();
405 down_write(&oldmm->mmap_sem);
406 flush_cache_dup_mm(oldmm);
407 uprobe_dup_mmap(oldmm, mm);
408 /*
409 * Not linked in yet - no deadlock potential:
410 */
411 down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
412
413 /* No ordering required: file already has been exposed. */
414 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
415
416 mm->total_vm = oldmm->total_vm;
417 mm->shared_vm = oldmm->shared_vm;
418 mm->exec_vm = oldmm->exec_vm;
419 mm->stack_vm = oldmm->stack_vm;
420
421 rb_link = &mm->mm_rb.rb_node;
422 rb_parent = NULL;
423 pprev = &mm->mmap;
424 retval = ksm_fork(mm, oldmm);
425 if (retval)
426 goto out;
427 retval = khugepaged_fork(mm, oldmm);
428 if (retval)
429 goto out;
430
431 prev = NULL;
432 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
433 struct file *file;
434
435 if (mpnt->vm_flags & VM_DONTCOPY) {
436 vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
437 -vma_pages(mpnt));
438 continue;
439 }
440 charge = 0;
441 if (mpnt->vm_flags & VM_ACCOUNT) {
442 unsigned long len = vma_pages(mpnt);
443
444 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
445 goto fail_nomem;
446 charge = len;
447 }
448 tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
449 if (!tmp)
450 goto fail_nomem;
451 *tmp = *mpnt;
452 INIT_LIST_HEAD(&tmp->anon_vma_chain);
453 retval = vma_dup_policy(mpnt, tmp);
454 if (retval)
455 goto fail_nomem_policy;
456 tmp->vm_mm = mm;
457 if (anon_vma_fork(tmp, mpnt))
458 goto fail_nomem_anon_vma_fork;
459 tmp->vm_flags &=
460 ~(VM_LOCKED|VM_LOCKONFAULT|VM_UFFD_MISSING|VM_UFFD_WP);
461 tmp->vm_next = tmp->vm_prev = NULL;
462 tmp->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
463 file = tmp->vm_file;
464 if (file) {
465 struct inode *inode = file_inode(file);
466 struct address_space *mapping = file->f_mapping;
467
468 get_file(file);
469 if (tmp->vm_flags & VM_DENYWRITE)
470 atomic_dec(&inode->i_writecount);
471 i_mmap_lock_write(mapping);
472 if (tmp->vm_flags & VM_SHARED)
473 atomic_inc(&mapping->i_mmap_writable);
474 flush_dcache_mmap_lock(mapping);
475 /* insert tmp into the share list, just after mpnt */
476 vma_interval_tree_insert_after(tmp, mpnt,
477 &mapping->i_mmap);
478 flush_dcache_mmap_unlock(mapping);
479 i_mmap_unlock_write(mapping);
480 }
481
482 /*
483 * Clear hugetlb-related page reserves for children. This only
484 * affects MAP_PRIVATE mappings. Faults generated by the child
485 * are not guaranteed to succeed, even if read-only
486 */
487 if (is_vm_hugetlb_page(tmp))
488 reset_vma_resv_huge_pages(tmp);
489
490 /*
491 * Link in the new vma and copy the page table entries.
492 */
493 *pprev = tmp;
494 pprev = &tmp->vm_next;
495 tmp->vm_prev = prev;
496 prev = tmp;
497
498 __vma_link_rb(mm, tmp, rb_link, rb_parent);
499 rb_link = &tmp->vm_rb.rb_right;
500 rb_parent = &tmp->vm_rb;
501
502 mm->map_count++;
503 retval = copy_page_range(mm, oldmm, mpnt);
504
505 if (tmp->vm_ops && tmp->vm_ops->open)
506 tmp->vm_ops->open(tmp);
507
508 if (retval)
509 goto out;
510 }
511 /* a new mm has just been created */
512 arch_dup_mmap(oldmm, mm);
513 retval = 0;
514 out:
515 up_write(&mm->mmap_sem);
516 flush_tlb_mm(oldmm);
517 up_write(&oldmm->mmap_sem);
518 uprobe_end_dup_mmap();
519 return retval;
520 fail_nomem_anon_vma_fork:
521 mpol_put(vma_policy(tmp));
522 fail_nomem_policy:
523 kmem_cache_free(vm_area_cachep, tmp);
524 fail_nomem:
525 retval = -ENOMEM;
526 vm_unacct_memory(charge);
527 goto out;
528 }
529
530 static inline int mm_alloc_pgd(struct mm_struct *mm)
531 {
532 mm->pgd = pgd_alloc(mm);
533 if (unlikely(!mm->pgd))
534 return -ENOMEM;
535 return 0;
536 }
537
538 static inline void mm_free_pgd(struct mm_struct *mm)
539 {
540 pgd_free(mm, mm->pgd);
541 }
542 #else
543 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
544 {
545 down_write(&oldmm->mmap_sem);
546 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
547 up_write(&oldmm->mmap_sem);
548 return 0;
549 }
550 #define mm_alloc_pgd(mm) (0)
551 #define mm_free_pgd(mm)
552 #endif /* CONFIG_MMU */
553
554 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
555
556 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
557 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
558
559 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
560
561 static int __init coredump_filter_setup(char *s)
562 {
563 default_dump_filter =
564 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
565 MMF_DUMP_FILTER_MASK;
566 return 1;
567 }
568
569 __setup("coredump_filter=", coredump_filter_setup);
570
571 #include <linux/init_task.h>
572
573 static void mm_init_aio(struct mm_struct *mm)
574 {
575 #ifdef CONFIG_AIO
576 spin_lock_init(&mm->ioctx_lock);
577 mm->ioctx_table = NULL;
578 #endif
579 }
580
581 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
582 {
583 #ifdef CONFIG_MEMCG
584 mm->owner = p;
585 #endif
586 }
587
588 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p)
589 {
590 mm->mmap = NULL;
591 mm->mm_rb = RB_ROOT;
592 mm->vmacache_seqnum = 0;
593 atomic_set(&mm->mm_users, 1);
594 atomic_set(&mm->mm_count, 1);
595 init_rwsem(&mm->mmap_sem);
596 INIT_LIST_HEAD(&mm->mmlist);
597 mm->core_state = NULL;
598 atomic_long_set(&mm->nr_ptes, 0);
599 mm_nr_pmds_init(mm);
600 mm->map_count = 0;
601 mm->locked_vm = 0;
602 mm->pinned_vm = 0;
603 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
604 spin_lock_init(&mm->page_table_lock);
605 mm_init_cpumask(mm);
606 mm_init_aio(mm);
607 mm_init_owner(mm, p);
608 mmu_notifier_mm_init(mm);
609 clear_tlb_flush_pending(mm);
610 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
611 mm->pmd_huge_pte = NULL;
612 #endif
613
614 if (current->mm) {
615 mm->flags = current->mm->flags & MMF_INIT_MASK;
616 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
617 } else {
618 mm->flags = default_dump_filter;
619 mm->def_flags = 0;
620 }
621
622 if (mm_alloc_pgd(mm))
623 goto fail_nopgd;
624
625 if (init_new_context(p, mm))
626 goto fail_nocontext;
627
628 return mm;
629
630 fail_nocontext:
631 mm_free_pgd(mm);
632 fail_nopgd:
633 free_mm(mm);
634 return NULL;
635 }
636
637 static void check_mm(struct mm_struct *mm)
638 {
639 int i;
640
641 for (i = 0; i < NR_MM_COUNTERS; i++) {
642 long x = atomic_long_read(&mm->rss_stat.count[i]);
643
644 if (unlikely(x))
645 printk(KERN_ALERT "BUG: Bad rss-counter state "
646 "mm:%p idx:%d val:%ld\n", mm, i, x);
647 }
648
649 if (atomic_long_read(&mm->nr_ptes))
650 pr_alert("BUG: non-zero nr_ptes on freeing mm: %ld\n",
651 atomic_long_read(&mm->nr_ptes));
652 if (mm_nr_pmds(mm))
653 pr_alert("BUG: non-zero nr_pmds on freeing mm: %ld\n",
654 mm_nr_pmds(mm));
655
656 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
657 VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
658 #endif
659 }
660
661 /*
662 * Allocate and initialize an mm_struct.
663 */
664 struct mm_struct *mm_alloc(void)
665 {
666 struct mm_struct *mm;
667
668 mm = allocate_mm();
669 if (!mm)
670 return NULL;
671
672 memset(mm, 0, sizeof(*mm));
673 return mm_init(mm, current);
674 }
675
676 /*
677 * Called when the last reference to the mm
678 * is dropped: either by a lazy thread or by
679 * mmput. Free the page directory and the mm.
680 */
681 void __mmdrop(struct mm_struct *mm)
682 {
683 BUG_ON(mm == &init_mm);
684 mm_free_pgd(mm);
685 destroy_context(mm);
686 mmu_notifier_mm_destroy(mm);
687 check_mm(mm);
688 free_mm(mm);
689 }
690 EXPORT_SYMBOL_GPL(__mmdrop);
691
692 /*
693 * Decrement the use count and release all resources for an mm.
694 */
695 void mmput(struct mm_struct *mm)
696 {
697 might_sleep();
698
699 if (atomic_dec_and_test(&mm->mm_users)) {
700 uprobe_clear_state(mm);
701 exit_aio(mm);
702 ksm_exit(mm);
703 khugepaged_exit(mm); /* must run before exit_mmap */
704 exit_mmap(mm);
705 set_mm_exe_file(mm, NULL);
706 if (!list_empty(&mm->mmlist)) {
707 spin_lock(&mmlist_lock);
708 list_del(&mm->mmlist);
709 spin_unlock(&mmlist_lock);
710 }
711 if (mm->binfmt)
712 module_put(mm->binfmt->module);
713 mmdrop(mm);
714 }
715 }
716 EXPORT_SYMBOL_GPL(mmput);
717
718 /**
719 * set_mm_exe_file - change a reference to the mm's executable file
720 *
721 * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
722 *
723 * Main users are mmput() and sys_execve(). Callers prevent concurrent
724 * invocations: in mmput() nobody alive left, in execve task is single
725 * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the
726 * mm->exe_file, but does so without using set_mm_exe_file() in order
727 * to do avoid the need for any locks.
728 */
729 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
730 {
731 struct file *old_exe_file;
732
733 /*
734 * It is safe to dereference the exe_file without RCU as
735 * this function is only called if nobody else can access
736 * this mm -- see comment above for justification.
737 */
738 old_exe_file = rcu_dereference_raw(mm->exe_file);
739
740 if (new_exe_file)
741 get_file(new_exe_file);
742 rcu_assign_pointer(mm->exe_file, new_exe_file);
743 if (old_exe_file)
744 fput(old_exe_file);
745 }
746
747 /**
748 * get_mm_exe_file - acquire a reference to the mm's executable file
749 *
750 * Returns %NULL if mm has no associated executable file.
751 * User must release file via fput().
752 */
753 struct file *get_mm_exe_file(struct mm_struct *mm)
754 {
755 struct file *exe_file;
756
757 rcu_read_lock();
758 exe_file = rcu_dereference(mm->exe_file);
759 if (exe_file && !get_file_rcu(exe_file))
760 exe_file = NULL;
761 rcu_read_unlock();
762 return exe_file;
763 }
764 EXPORT_SYMBOL(get_mm_exe_file);
765
766 /**
767 * get_task_mm - acquire a reference to the task's mm
768 *
769 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
770 * this kernel workthread has transiently adopted a user mm with use_mm,
771 * to do its AIO) is not set and if so returns a reference to it, after
772 * bumping up the use count. User must release the mm via mmput()
773 * after use. Typically used by /proc and ptrace.
774 */
775 struct mm_struct *get_task_mm(struct task_struct *task)
776 {
777 struct mm_struct *mm;
778
779 task_lock(task);
780 mm = task->mm;
781 if (mm) {
782 if (task->flags & PF_KTHREAD)
783 mm = NULL;
784 else
785 atomic_inc(&mm->mm_users);
786 }
787 task_unlock(task);
788 return mm;
789 }
790 EXPORT_SYMBOL_GPL(get_task_mm);
791
792 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
793 {
794 struct mm_struct *mm;
795 int err;
796
797 err = mutex_lock_killable(&task->signal->cred_guard_mutex);
798 if (err)
799 return ERR_PTR(err);
800
801 mm = get_task_mm(task);
802 if (mm && mm != current->mm &&
803 !ptrace_may_access(task, mode)) {
804 mmput(mm);
805 mm = ERR_PTR(-EACCES);
806 }
807 mutex_unlock(&task->signal->cred_guard_mutex);
808
809 return mm;
810 }
811
812 static void complete_vfork_done(struct task_struct *tsk)
813 {
814 struct completion *vfork;
815
816 task_lock(tsk);
817 vfork = tsk->vfork_done;
818 if (likely(vfork)) {
819 tsk->vfork_done = NULL;
820 complete(vfork);
821 }
822 task_unlock(tsk);
823 }
824
825 static int wait_for_vfork_done(struct task_struct *child,
826 struct completion *vfork)
827 {
828 int killed;
829
830 freezer_do_not_count();
831 killed = wait_for_completion_killable(vfork);
832 freezer_count();
833
834 if (killed) {
835 task_lock(child);
836 child->vfork_done = NULL;
837 task_unlock(child);
838 }
839
840 put_task_struct(child);
841 return killed;
842 }
843
844 /* Please note the differences between mmput and mm_release.
845 * mmput is called whenever we stop holding onto a mm_struct,
846 * error success whatever.
847 *
848 * mm_release is called after a mm_struct has been removed
849 * from the current process.
850 *
851 * This difference is important for error handling, when we
852 * only half set up a mm_struct for a new process and need to restore
853 * the old one. Because we mmput the new mm_struct before
854 * restoring the old one. . .
855 * Eric Biederman 10 January 1998
856 */
857 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
858 {
859 /* Get rid of any futexes when releasing the mm */
860 #ifdef CONFIG_FUTEX
861 if (unlikely(tsk->robust_list)) {
862 exit_robust_list(tsk);
863 tsk->robust_list = NULL;
864 }
865 #ifdef CONFIG_COMPAT
866 if (unlikely(tsk->compat_robust_list)) {
867 compat_exit_robust_list(tsk);
868 tsk->compat_robust_list = NULL;
869 }
870 #endif
871 if (unlikely(!list_empty(&tsk->pi_state_list)))
872 exit_pi_state_list(tsk);
873 #endif
874
875 uprobe_free_utask(tsk);
876
877 /* Get rid of any cached register state */
878 deactivate_mm(tsk, mm);
879
880 /*
881 * If we're exiting normally, clear a user-space tid field if
882 * requested. We leave this alone when dying by signal, to leave
883 * the value intact in a core dump, and to save the unnecessary
884 * trouble, say, a killed vfork parent shouldn't touch this mm.
885 * Userland only wants this done for a sys_exit.
886 */
887 if (tsk->clear_child_tid) {
888 if (!(tsk->flags & PF_SIGNALED) &&
889 atomic_read(&mm->mm_users) > 1) {
890 /*
891 * We don't check the error code - if userspace has
892 * not set up a proper pointer then tough luck.
893 */
894 put_user(0, tsk->clear_child_tid);
895 sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
896 1, NULL, NULL, 0);
897 }
898 tsk->clear_child_tid = NULL;
899 }
900
901 /*
902 * All done, finally we can wake up parent and return this mm to him.
903 * Also kthread_stop() uses this completion for synchronization.
904 */
905 if (tsk->vfork_done)
906 complete_vfork_done(tsk);
907 }
908
909 /*
910 * Allocate a new mm structure and copy contents from the
911 * mm structure of the passed in task structure.
912 */
913 static struct mm_struct *dup_mm(struct task_struct *tsk)
914 {
915 struct mm_struct *mm, *oldmm = current->mm;
916 int err;
917
918 mm = allocate_mm();
919 if (!mm)
920 goto fail_nomem;
921
922 memcpy(mm, oldmm, sizeof(*mm));
923
924 if (!mm_init(mm, tsk))
925 goto fail_nomem;
926
927 err = dup_mmap(mm, oldmm);
928 if (err)
929 goto free_pt;
930
931 mm->hiwater_rss = get_mm_rss(mm);
932 mm->hiwater_vm = mm->total_vm;
933
934 if (mm->binfmt && !try_module_get(mm->binfmt->module))
935 goto free_pt;
936
937 return mm;
938
939 free_pt:
940 /* don't put binfmt in mmput, we haven't got module yet */
941 mm->binfmt = NULL;
942 mmput(mm);
943
944 fail_nomem:
945 return NULL;
946 }
947
948 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
949 {
950 struct mm_struct *mm, *oldmm;
951 int retval;
952
953 tsk->min_flt = tsk->maj_flt = 0;
954 tsk->nvcsw = tsk->nivcsw = 0;
955 #ifdef CONFIG_DETECT_HUNG_TASK
956 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
957 #endif
958
959 tsk->mm = NULL;
960 tsk->active_mm = NULL;
961
962 /*
963 * Are we cloning a kernel thread?
964 *
965 * We need to steal a active VM for that..
966 */
967 oldmm = current->mm;
968 if (!oldmm)
969 return 0;
970
971 /* initialize the new vmacache entries */
972 vmacache_flush(tsk);
973
974 if (clone_flags & CLONE_VM) {
975 atomic_inc(&oldmm->mm_users);
976 mm = oldmm;
977 goto good_mm;
978 }
979
980 retval = -ENOMEM;
981 mm = dup_mm(tsk);
982 if (!mm)
983 goto fail_nomem;
984
985 good_mm:
986 tsk->mm = mm;
987 tsk->active_mm = mm;
988 return 0;
989
990 fail_nomem:
991 return retval;
992 }
993
994 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
995 {
996 struct fs_struct *fs = current->fs;
997 if (clone_flags & CLONE_FS) {
998 /* tsk->fs is already what we want */
999 spin_lock(&fs->lock);
1000 if (fs->in_exec) {
1001 spin_unlock(&fs->lock);
1002 return -EAGAIN;
1003 }
1004 fs->users++;
1005 spin_unlock(&fs->lock);
1006 return 0;
1007 }
1008 tsk->fs = copy_fs_struct(fs);
1009 if (!tsk->fs)
1010 return -ENOMEM;
1011 return 0;
1012 }
1013
1014 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
1015 {
1016 struct files_struct *oldf, *newf;
1017 int error = 0;
1018
1019 /*
1020 * A background process may not have any files ...
1021 */
1022 oldf = current->files;
1023 if (!oldf)
1024 goto out;
1025
1026 if (clone_flags & CLONE_FILES) {
1027 atomic_inc(&oldf->count);
1028 goto out;
1029 }
1030
1031 newf = dup_fd(oldf, &error);
1032 if (!newf)
1033 goto out;
1034
1035 tsk->files = newf;
1036 error = 0;
1037 out:
1038 return error;
1039 }
1040
1041 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
1042 {
1043 #ifdef CONFIG_BLOCK
1044 struct io_context *ioc = current->io_context;
1045 struct io_context *new_ioc;
1046
1047 if (!ioc)
1048 return 0;
1049 /*
1050 * Share io context with parent, if CLONE_IO is set
1051 */
1052 if (clone_flags & CLONE_IO) {
1053 ioc_task_link(ioc);
1054 tsk->io_context = ioc;
1055 } else if (ioprio_valid(ioc->ioprio)) {
1056 new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
1057 if (unlikely(!new_ioc))
1058 return -ENOMEM;
1059
1060 new_ioc->ioprio = ioc->ioprio;
1061 put_io_context(new_ioc);
1062 }
1063 #endif
1064 return 0;
1065 }
1066
1067 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1068 {
1069 struct sighand_struct *sig;
1070
1071 if (clone_flags & CLONE_SIGHAND) {
1072 atomic_inc(&current->sighand->count);
1073 return 0;
1074 }
1075 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1076 rcu_assign_pointer(tsk->sighand, sig);
1077 if (!sig)
1078 return -ENOMEM;
1079
1080 atomic_set(&sig->count, 1);
1081 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1082 return 0;
1083 }
1084
1085 void __cleanup_sighand(struct sighand_struct *sighand)
1086 {
1087 if (atomic_dec_and_test(&sighand->count)) {
1088 signalfd_cleanup(sighand);
1089 /*
1090 * sighand_cachep is SLAB_DESTROY_BY_RCU so we can free it
1091 * without an RCU grace period, see __lock_task_sighand().
1092 */
1093 kmem_cache_free(sighand_cachep, sighand);
1094 }
1095 }
1096
1097 /*
1098 * Initialize POSIX timer handling for a thread group.
1099 */
1100 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1101 {
1102 unsigned long cpu_limit;
1103
1104 cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1105 if (cpu_limit != RLIM_INFINITY) {
1106 sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit);
1107 sig->cputimer.running = true;
1108 }
1109
1110 /* The timer lists. */
1111 INIT_LIST_HEAD(&sig->cpu_timers[0]);
1112 INIT_LIST_HEAD(&sig->cpu_timers[1]);
1113 INIT_LIST_HEAD(&sig->cpu_timers[2]);
1114 }
1115
1116 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1117 {
1118 struct signal_struct *sig;
1119
1120 if (clone_flags & CLONE_THREAD)
1121 return 0;
1122
1123 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1124 tsk->signal = sig;
1125 if (!sig)
1126 return -ENOMEM;
1127
1128 sig->nr_threads = 1;
1129 atomic_set(&sig->live, 1);
1130 atomic_set(&sig->sigcnt, 1);
1131
1132 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1133 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1134 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1135
1136 init_waitqueue_head(&sig->wait_chldexit);
1137 sig->curr_target = tsk;
1138 init_sigpending(&sig->shared_pending);
1139 INIT_LIST_HEAD(&sig->posix_timers);
1140 seqlock_init(&sig->stats_lock);
1141 prev_cputime_init(&sig->prev_cputime);
1142
1143 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1144 sig->real_timer.function = it_real_fn;
1145
1146 task_lock(current->group_leader);
1147 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1148 task_unlock(current->group_leader);
1149
1150 posix_cpu_timers_init_group(sig);
1151
1152 tty_audit_fork(sig);
1153 sched_autogroup_fork(sig);
1154
1155 sig->oom_score_adj = current->signal->oom_score_adj;
1156 sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1157
1158 sig->has_child_subreaper = current->signal->has_child_subreaper ||
1159 current->signal->is_child_subreaper;
1160
1161 mutex_init(&sig->cred_guard_mutex);
1162
1163 return 0;
1164 }
1165
1166 static void copy_seccomp(struct task_struct *p)
1167 {
1168 #ifdef CONFIG_SECCOMP
1169 /*
1170 * Must be called with sighand->lock held, which is common to
1171 * all threads in the group. Holding cred_guard_mutex is not
1172 * needed because this new task is not yet running and cannot
1173 * be racing exec.
1174 */
1175 assert_spin_locked(&current->sighand->siglock);
1176
1177 /* Ref-count the new filter user, and assign it. */
1178 get_seccomp_filter(current);
1179 p->seccomp = current->seccomp;
1180
1181 /*
1182 * Explicitly enable no_new_privs here in case it got set
1183 * between the task_struct being duplicated and holding the
1184 * sighand lock. The seccomp state and nnp must be in sync.
1185 */
1186 if (task_no_new_privs(current))
1187 task_set_no_new_privs(p);
1188
1189 /*
1190 * If the parent gained a seccomp mode after copying thread
1191 * flags and between before we held the sighand lock, we have
1192 * to manually enable the seccomp thread flag here.
1193 */
1194 if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1195 set_tsk_thread_flag(p, TIF_SECCOMP);
1196 #endif
1197 }
1198
1199 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1200 {
1201 current->clear_child_tid = tidptr;
1202
1203 return task_pid_vnr(current);
1204 }
1205
1206 static void rt_mutex_init_task(struct task_struct *p)
1207 {
1208 raw_spin_lock_init(&p->pi_lock);
1209 #ifdef CONFIG_RT_MUTEXES
1210 p->pi_waiters = RB_ROOT;
1211 p->pi_waiters_leftmost = NULL;
1212 p->pi_blocked_on = NULL;
1213 #endif
1214 }
1215
1216 /*
1217 * Initialize POSIX timer handling for a single task.
1218 */
1219 static void posix_cpu_timers_init(struct task_struct *tsk)
1220 {
1221 tsk->cputime_expires.prof_exp = 0;
1222 tsk->cputime_expires.virt_exp = 0;
1223 tsk->cputime_expires.sched_exp = 0;
1224 INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1225 INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1226 INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1227 }
1228
1229 static inline void
1230 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1231 {
1232 task->pids[type].pid = pid;
1233 }
1234
1235 /*
1236 * This creates a new process as a copy of the old one,
1237 * but does not actually start it yet.
1238 *
1239 * It copies the registers, and all the appropriate
1240 * parts of the process environment (as per the clone
1241 * flags). The actual kick-off is left to the caller.
1242 */
1243 static struct task_struct *copy_process(unsigned long clone_flags,
1244 unsigned long stack_start,
1245 unsigned long stack_size,
1246 int __user *child_tidptr,
1247 struct pid *pid,
1248 int trace,
1249 unsigned long tls)
1250 {
1251 int retval;
1252 struct task_struct *p;
1253 void *cgrp_ss_priv[CGROUP_CANFORK_COUNT] = {};
1254
1255 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1256 return ERR_PTR(-EINVAL);
1257
1258 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1259 return ERR_PTR(-EINVAL);
1260
1261 /*
1262 * Thread groups must share signals as well, and detached threads
1263 * can only be started up within the thread group.
1264 */
1265 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1266 return ERR_PTR(-EINVAL);
1267
1268 /*
1269 * Shared signal handlers imply shared VM. By way of the above,
1270 * thread groups also imply shared VM. Blocking this case allows
1271 * for various simplifications in other code.
1272 */
1273 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1274 return ERR_PTR(-EINVAL);
1275
1276 /*
1277 * Siblings of global init remain as zombies on exit since they are
1278 * not reaped by their parent (swapper). To solve this and to avoid
1279 * multi-rooted process trees, prevent global and container-inits
1280 * from creating siblings.
1281 */
1282 if ((clone_flags & CLONE_PARENT) &&
1283 current->signal->flags & SIGNAL_UNKILLABLE)
1284 return ERR_PTR(-EINVAL);
1285
1286 /*
1287 * If the new process will be in a different pid or user namespace
1288 * do not allow it to share a thread group with the forking task.
1289 */
1290 if (clone_flags & CLONE_THREAD) {
1291 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1292 (task_active_pid_ns(current) !=
1293 current->nsproxy->pid_ns_for_children))
1294 return ERR_PTR(-EINVAL);
1295 }
1296
1297 retval = security_task_create(clone_flags);
1298 if (retval)
1299 goto fork_out;
1300
1301 retval = -ENOMEM;
1302 p = dup_task_struct(current);
1303 if (!p)
1304 goto fork_out;
1305
1306 ftrace_graph_init_task(p);
1307
1308 rt_mutex_init_task(p);
1309
1310 #ifdef CONFIG_PROVE_LOCKING
1311 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1312 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1313 #endif
1314 retval = -EAGAIN;
1315 if (atomic_read(&p->real_cred->user->processes) >=
1316 task_rlimit(p, RLIMIT_NPROC)) {
1317 if (p->real_cred->user != INIT_USER &&
1318 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
1319 goto bad_fork_free;
1320 }
1321 current->flags &= ~PF_NPROC_EXCEEDED;
1322
1323 retval = copy_creds(p, clone_flags);
1324 if (retval < 0)
1325 goto bad_fork_free;
1326
1327 /*
1328 * If multiple threads are within copy_process(), then this check
1329 * triggers too late. This doesn't hurt, the check is only there
1330 * to stop root fork bombs.
1331 */
1332 retval = -EAGAIN;
1333 if (nr_threads >= max_threads)
1334 goto bad_fork_cleanup_count;
1335
1336 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
1337 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER);
1338 p->flags |= PF_FORKNOEXEC;
1339 INIT_LIST_HEAD(&p->children);
1340 INIT_LIST_HEAD(&p->sibling);
1341 rcu_copy_process(p);
1342 p->vfork_done = NULL;
1343 spin_lock_init(&p->alloc_lock);
1344
1345 init_sigpending(&p->pending);
1346
1347 p->utime = p->stime = p->gtime = 0;
1348 p->utimescaled = p->stimescaled = 0;
1349 prev_cputime_init(&p->prev_cputime);
1350
1351 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1352 seqlock_init(&p->vtime_seqlock);
1353 p->vtime_snap = 0;
1354 p->vtime_snap_whence = VTIME_SLEEPING;
1355 #endif
1356
1357 #if defined(SPLIT_RSS_COUNTING)
1358 memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1359 #endif
1360
1361 p->default_timer_slack_ns = current->timer_slack_ns;
1362
1363 task_io_accounting_init(&p->ioac);
1364 acct_clear_integrals(p);
1365
1366 posix_cpu_timers_init(p);
1367
1368 p->start_time = ktime_get_ns();
1369 p->real_start_time = ktime_get_boot_ns();
1370 p->io_context = NULL;
1371 p->audit_context = NULL;
1372 threadgroup_change_begin(current);
1373 cgroup_fork(p);
1374 #ifdef CONFIG_NUMA
1375 p->mempolicy = mpol_dup(p->mempolicy);
1376 if (IS_ERR(p->mempolicy)) {
1377 retval = PTR_ERR(p->mempolicy);
1378 p->mempolicy = NULL;
1379 goto bad_fork_cleanup_threadgroup_lock;
1380 }
1381 #endif
1382 #ifdef CONFIG_CPUSETS
1383 p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1384 p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1385 seqcount_init(&p->mems_allowed_seq);
1386 #endif
1387 #ifdef CONFIG_TRACE_IRQFLAGS
1388 p->irq_events = 0;
1389 p->hardirqs_enabled = 0;
1390 p->hardirq_enable_ip = 0;
1391 p->hardirq_enable_event = 0;
1392 p->hardirq_disable_ip = _THIS_IP_;
1393 p->hardirq_disable_event = 0;
1394 p->softirqs_enabled = 1;
1395 p->softirq_enable_ip = _THIS_IP_;
1396 p->softirq_enable_event = 0;
1397 p->softirq_disable_ip = 0;
1398 p->softirq_disable_event = 0;
1399 p->hardirq_context = 0;
1400 p->softirq_context = 0;
1401 #endif
1402
1403 p->pagefault_disabled = 0;
1404
1405 #ifdef CONFIG_LOCKDEP
1406 p->lockdep_depth = 0; /* no locks held yet */
1407 p->curr_chain_key = 0;
1408 p->lockdep_recursion = 0;
1409 #endif
1410
1411 #ifdef CONFIG_DEBUG_MUTEXES
1412 p->blocked_on = NULL; /* not blocked yet */
1413 #endif
1414 #ifdef CONFIG_BCACHE
1415 p->sequential_io = 0;
1416 p->sequential_io_avg = 0;
1417 #endif
1418
1419 /* Perform scheduler related setup. Assign this task to a CPU. */
1420 retval = sched_fork(clone_flags, p);
1421 if (retval)
1422 goto bad_fork_cleanup_policy;
1423
1424 retval = perf_event_init_task(p);
1425 if (retval)
1426 goto bad_fork_cleanup_policy;
1427 retval = audit_alloc(p);
1428 if (retval)
1429 goto bad_fork_cleanup_perf;
1430 /* copy all the process information */
1431 shm_init_task(p);
1432 retval = copy_semundo(clone_flags, p);
1433 if (retval)
1434 goto bad_fork_cleanup_audit;
1435 retval = copy_files(clone_flags, p);
1436 if (retval)
1437 goto bad_fork_cleanup_semundo;
1438 retval = copy_fs(clone_flags, p);
1439 if (retval)
1440 goto bad_fork_cleanup_files;
1441 retval = copy_sighand(clone_flags, p);
1442 if (retval)
1443 goto bad_fork_cleanup_fs;
1444 retval = copy_signal(clone_flags, p);
1445 if (retval)
1446 goto bad_fork_cleanup_sighand;
1447 retval = copy_mm(clone_flags, p);
1448 if (retval)
1449 goto bad_fork_cleanup_signal;
1450 retval = copy_namespaces(clone_flags, p);
1451 if (retval)
1452 goto bad_fork_cleanup_mm;
1453 retval = copy_io(clone_flags, p);
1454 if (retval)
1455 goto bad_fork_cleanup_namespaces;
1456 retval = copy_thread_tls(clone_flags, stack_start, stack_size, p, tls);
1457 if (retval)
1458 goto bad_fork_cleanup_io;
1459
1460 if (pid != &init_struct_pid) {
1461 pid = alloc_pid(p->nsproxy->pid_ns_for_children);
1462 if (IS_ERR(pid)) {
1463 retval = PTR_ERR(pid);
1464 goto bad_fork_cleanup_io;
1465 }
1466 }
1467
1468 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1469 /*
1470 * Clear TID on mm_release()?
1471 */
1472 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
1473 #ifdef CONFIG_BLOCK
1474 p->plug = NULL;
1475 #endif
1476 #ifdef CONFIG_FUTEX
1477 p->robust_list = NULL;
1478 #ifdef CONFIG_COMPAT
1479 p->compat_robust_list = NULL;
1480 #endif
1481 INIT_LIST_HEAD(&p->pi_state_list);
1482 p->pi_state_cache = NULL;
1483 #endif
1484 /*
1485 * sigaltstack should be cleared when sharing the same VM
1486 */
1487 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1488 p->sas_ss_sp = p->sas_ss_size = 0;
1489
1490 /*
1491 * Syscall tracing and stepping should be turned off in the
1492 * child regardless of CLONE_PTRACE.
1493 */
1494 user_disable_single_step(p);
1495 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1496 #ifdef TIF_SYSCALL_EMU
1497 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1498 #endif
1499 clear_all_latency_tracing(p);
1500
1501 /* ok, now we should be set up.. */
1502 p->pid = pid_nr(pid);
1503 if (clone_flags & CLONE_THREAD) {
1504 p->exit_signal = -1;
1505 p->group_leader = current->group_leader;
1506 p->tgid = current->tgid;
1507 } else {
1508 if (clone_flags & CLONE_PARENT)
1509 p->exit_signal = current->group_leader->exit_signal;
1510 else
1511 p->exit_signal = (clone_flags & CSIGNAL);
1512 p->group_leader = p;
1513 p->tgid = p->pid;
1514 }
1515
1516 p->nr_dirtied = 0;
1517 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
1518 p->dirty_paused_when = 0;
1519
1520 p->pdeath_signal = 0;
1521 INIT_LIST_HEAD(&p->thread_group);
1522 p->task_works = NULL;
1523
1524 /*
1525 * Ensure that the cgroup subsystem policies allow the new process to be
1526 * forked. It should be noted the the new process's css_set can be changed
1527 * between here and cgroup_post_fork() if an organisation operation is in
1528 * progress.
1529 */
1530 retval = cgroup_can_fork(p, cgrp_ss_priv);
1531 if (retval)
1532 goto bad_fork_free_pid;
1533
1534 /*
1535 * Make it visible to the rest of the system, but dont wake it up yet.
1536 * Need tasklist lock for parent etc handling!
1537 */
1538 write_lock_irq(&tasklist_lock);
1539
1540 /* CLONE_PARENT re-uses the old parent */
1541 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1542 p->real_parent = current->real_parent;
1543 p->parent_exec_id = current->parent_exec_id;
1544 } else {
1545 p->real_parent = current;
1546 p->parent_exec_id = current->self_exec_id;
1547 }
1548
1549 spin_lock(&current->sighand->siglock);
1550
1551 /*
1552 * Copy seccomp details explicitly here, in case they were changed
1553 * before holding sighand lock.
1554 */
1555 copy_seccomp(p);
1556
1557 /*
1558 * Process group and session signals need to be delivered to just the
1559 * parent before the fork or both the parent and the child after the
1560 * fork. Restart if a signal comes in before we add the new process to
1561 * it's process group.
1562 * A fatal signal pending means that current will exit, so the new
1563 * thread can't slip out of an OOM kill (or normal SIGKILL).
1564 */
1565 recalc_sigpending();
1566 if (signal_pending(current)) {
1567 spin_unlock(&current->sighand->siglock);
1568 write_unlock_irq(&tasklist_lock);
1569 retval = -ERESTARTNOINTR;
1570 goto bad_fork_cancel_cgroup;
1571 }
1572
1573 if (likely(p->pid)) {
1574 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
1575
1576 init_task_pid(p, PIDTYPE_PID, pid);
1577 if (thread_group_leader(p)) {
1578 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
1579 init_task_pid(p, PIDTYPE_SID, task_session(current));
1580
1581 if (is_child_reaper(pid)) {
1582 ns_of_pid(pid)->child_reaper = p;
1583 p->signal->flags |= SIGNAL_UNKILLABLE;
1584 }
1585
1586 p->signal->leader_pid = pid;
1587 p->signal->tty = tty_kref_get(current->signal->tty);
1588 list_add_tail(&p->sibling, &p->real_parent->children);
1589 list_add_tail_rcu(&p->tasks, &init_task.tasks);
1590 attach_pid(p, PIDTYPE_PGID);
1591 attach_pid(p, PIDTYPE_SID);
1592 __this_cpu_inc(process_counts);
1593 } else {
1594 current->signal->nr_threads++;
1595 atomic_inc(&current->signal->live);
1596 atomic_inc(&current->signal->sigcnt);
1597 list_add_tail_rcu(&p->thread_group,
1598 &p->group_leader->thread_group);
1599 list_add_tail_rcu(&p->thread_node,
1600 &p->signal->thread_head);
1601 }
1602 attach_pid(p, PIDTYPE_PID);
1603 nr_threads++;
1604 }
1605
1606 total_forks++;
1607 spin_unlock(&current->sighand->siglock);
1608 syscall_tracepoint_update(p);
1609 write_unlock_irq(&tasklist_lock);
1610
1611 proc_fork_connector(p);
1612 cgroup_post_fork(p, cgrp_ss_priv);
1613 threadgroup_change_end(current);
1614 perf_event_fork(p);
1615
1616 trace_task_newtask(p, clone_flags);
1617 uprobe_copy_process(p, clone_flags);
1618
1619 return p;
1620
1621 bad_fork_cancel_cgroup:
1622 cgroup_cancel_fork(p, cgrp_ss_priv);
1623 bad_fork_free_pid:
1624 if (pid != &init_struct_pid)
1625 free_pid(pid);
1626 bad_fork_cleanup_io:
1627 if (p->io_context)
1628 exit_io_context(p);
1629 bad_fork_cleanup_namespaces:
1630 exit_task_namespaces(p);
1631 bad_fork_cleanup_mm:
1632 if (p->mm)
1633 mmput(p->mm);
1634 bad_fork_cleanup_signal:
1635 if (!(clone_flags & CLONE_THREAD))
1636 free_signal_struct(p->signal);
1637 bad_fork_cleanup_sighand:
1638 __cleanup_sighand(p->sighand);
1639 bad_fork_cleanup_fs:
1640 exit_fs(p); /* blocking */
1641 bad_fork_cleanup_files:
1642 exit_files(p); /* blocking */
1643 bad_fork_cleanup_semundo:
1644 exit_sem(p);
1645 bad_fork_cleanup_audit:
1646 audit_free(p);
1647 bad_fork_cleanup_perf:
1648 perf_event_free_task(p);
1649 bad_fork_cleanup_policy:
1650 #ifdef CONFIG_NUMA
1651 mpol_put(p->mempolicy);
1652 bad_fork_cleanup_threadgroup_lock:
1653 #endif
1654 threadgroup_change_end(current);
1655 delayacct_tsk_free(p);
1656 bad_fork_cleanup_count:
1657 atomic_dec(&p->cred->user->processes);
1658 exit_creds(p);
1659 bad_fork_free:
1660 free_task(p);
1661 fork_out:
1662 return ERR_PTR(retval);
1663 }
1664
1665 static inline void init_idle_pids(struct pid_link *links)
1666 {
1667 enum pid_type type;
1668
1669 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1670 INIT_HLIST_NODE(&links[type].node); /* not really needed */
1671 links[type].pid = &init_struct_pid;
1672 }
1673 }
1674
1675 struct task_struct *fork_idle(int cpu)
1676 {
1677 struct task_struct *task;
1678 task = copy_process(CLONE_VM, 0, 0, NULL, &init_struct_pid, 0, 0);
1679 if (!IS_ERR(task)) {
1680 init_idle_pids(task->pids);
1681 init_idle(task, cpu);
1682 }
1683
1684 return task;
1685 }
1686
1687 /*
1688 * Ok, this is the main fork-routine.
1689 *
1690 * It copies the process, and if successful kick-starts
1691 * it and waits for it to finish using the VM if required.
1692 */
1693 long _do_fork(unsigned long clone_flags,
1694 unsigned long stack_start,
1695 unsigned long stack_size,
1696 int __user *parent_tidptr,
1697 int __user *child_tidptr,
1698 unsigned long tls)
1699 {
1700 struct task_struct *p;
1701 int trace = 0;
1702 long nr;
1703
1704 /*
1705 * Determine whether and which event to report to ptracer. When
1706 * called from kernel_thread or CLONE_UNTRACED is explicitly
1707 * requested, no event is reported; otherwise, report if the event
1708 * for the type of forking is enabled.
1709 */
1710 if (!(clone_flags & CLONE_UNTRACED)) {
1711 if (clone_flags & CLONE_VFORK)
1712 trace = PTRACE_EVENT_VFORK;
1713 else if ((clone_flags & CSIGNAL) != SIGCHLD)
1714 trace = PTRACE_EVENT_CLONE;
1715 else
1716 trace = PTRACE_EVENT_FORK;
1717
1718 if (likely(!ptrace_event_enabled(current, trace)))
1719 trace = 0;
1720 }
1721
1722 p = copy_process(clone_flags, stack_start, stack_size,
1723 child_tidptr, NULL, trace, tls);
1724 /*
1725 * Do this prior waking up the new thread - the thread pointer
1726 * might get invalid after that point, if the thread exits quickly.
1727 */
1728 if (!IS_ERR(p)) {
1729 struct completion vfork;
1730 struct pid *pid;
1731
1732 trace_sched_process_fork(current, p);
1733
1734 pid = get_task_pid(p, PIDTYPE_PID);
1735 nr = pid_vnr(pid);
1736
1737 if (clone_flags & CLONE_PARENT_SETTID)
1738 put_user(nr, parent_tidptr);
1739
1740 if (clone_flags & CLONE_VFORK) {
1741 p->vfork_done = &vfork;
1742 init_completion(&vfork);
1743 get_task_struct(p);
1744 }
1745
1746 wake_up_new_task(p);
1747
1748 /* forking complete and child started to run, tell ptracer */
1749 if (unlikely(trace))
1750 ptrace_event_pid(trace, pid);
1751
1752 if (clone_flags & CLONE_VFORK) {
1753 if (!wait_for_vfork_done(p, &vfork))
1754 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
1755 }
1756
1757 put_pid(pid);
1758 } else {
1759 nr = PTR_ERR(p);
1760 }
1761 return nr;
1762 }
1763
1764 #ifndef CONFIG_HAVE_COPY_THREAD_TLS
1765 /* For compatibility with architectures that call do_fork directly rather than
1766 * using the syscall entry points below. */
1767 long do_fork(unsigned long clone_flags,
1768 unsigned long stack_start,
1769 unsigned long stack_size,
1770 int __user *parent_tidptr,
1771 int __user *child_tidptr)
1772 {
1773 return _do_fork(clone_flags, stack_start, stack_size,
1774 parent_tidptr, child_tidptr, 0);
1775 }
1776 #endif
1777
1778 /*
1779 * Create a kernel thread.
1780 */
1781 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
1782 {
1783 return _do_fork(flags|CLONE_VM|CLONE_UNTRACED, (unsigned long)fn,
1784 (unsigned long)arg, NULL, NULL, 0);
1785 }
1786
1787 #ifdef __ARCH_WANT_SYS_FORK
1788 SYSCALL_DEFINE0(fork)
1789 {
1790 #ifdef CONFIG_MMU
1791 return _do_fork(SIGCHLD, 0, 0, NULL, NULL, 0);
1792 #else
1793 /* can not support in nommu mode */
1794 return -EINVAL;
1795 #endif
1796 }
1797 #endif
1798
1799 #ifdef __ARCH_WANT_SYS_VFORK
1800 SYSCALL_DEFINE0(vfork)
1801 {
1802 return _do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, 0,
1803 0, NULL, NULL, 0);
1804 }
1805 #endif
1806
1807 #ifdef __ARCH_WANT_SYS_CLONE
1808 #ifdef CONFIG_CLONE_BACKWARDS
1809 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
1810 int __user *, parent_tidptr,
1811 unsigned long, tls,
1812 int __user *, child_tidptr)
1813 #elif defined(CONFIG_CLONE_BACKWARDS2)
1814 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
1815 int __user *, parent_tidptr,
1816 int __user *, child_tidptr,
1817 unsigned long, tls)
1818 #elif defined(CONFIG_CLONE_BACKWARDS3)
1819 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
1820 int, stack_size,
1821 int __user *, parent_tidptr,
1822 int __user *, child_tidptr,
1823 unsigned long, tls)
1824 #else
1825 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
1826 int __user *, parent_tidptr,
1827 int __user *, child_tidptr,
1828 unsigned long, tls)
1829 #endif
1830 {
1831 return _do_fork(clone_flags, newsp, 0, parent_tidptr, child_tidptr, tls);
1832 }
1833 #endif
1834
1835 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1836 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1837 #endif
1838
1839 static void sighand_ctor(void *data)
1840 {
1841 struct sighand_struct *sighand = data;
1842
1843 spin_lock_init(&sighand->siglock);
1844 init_waitqueue_head(&sighand->signalfd_wqh);
1845 }
1846
1847 void __init proc_caches_init(void)
1848 {
1849 sighand_cachep = kmem_cache_create("sighand_cache",
1850 sizeof(struct sighand_struct), 0,
1851 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
1852 SLAB_NOTRACK, sighand_ctor);
1853 signal_cachep = kmem_cache_create("signal_cache",
1854 sizeof(struct signal_struct), 0,
1855 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1856 files_cachep = kmem_cache_create("files_cache",
1857 sizeof(struct files_struct), 0,
1858 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1859 fs_cachep = kmem_cache_create("fs_cache",
1860 sizeof(struct fs_struct), 0,
1861 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1862 /*
1863 * FIXME! The "sizeof(struct mm_struct)" currently includes the
1864 * whole struct cpumask for the OFFSTACK case. We could change
1865 * this to *only* allocate as much of it as required by the
1866 * maximum number of CPU's we can ever have. The cpumask_allocation
1867 * is at the end of the structure, exactly for that reason.
1868 */
1869 mm_cachep = kmem_cache_create("mm_struct",
1870 sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1871 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1872 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC);
1873 mmap_init();
1874 nsproxy_cache_init();
1875 }
1876
1877 /*
1878 * Check constraints on flags passed to the unshare system call.
1879 */
1880 static int check_unshare_flags(unsigned long unshare_flags)
1881 {
1882 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1883 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1884 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
1885 CLONE_NEWUSER|CLONE_NEWPID))
1886 return -EINVAL;
1887 /*
1888 * Not implemented, but pretend it works if there is nothing
1889 * to unshare. Note that unsharing the address space or the
1890 * signal handlers also need to unshare the signal queues (aka
1891 * CLONE_THREAD).
1892 */
1893 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
1894 if (!thread_group_empty(current))
1895 return -EINVAL;
1896 }
1897 if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
1898 if (atomic_read(&current->sighand->count) > 1)
1899 return -EINVAL;
1900 }
1901 if (unshare_flags & CLONE_VM) {
1902 if (!current_is_single_threaded())
1903 return -EINVAL;
1904 }
1905
1906 return 0;
1907 }
1908
1909 /*
1910 * Unshare the filesystem structure if it is being shared
1911 */
1912 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1913 {
1914 struct fs_struct *fs = current->fs;
1915
1916 if (!(unshare_flags & CLONE_FS) || !fs)
1917 return 0;
1918
1919 /* don't need lock here; in the worst case we'll do useless copy */
1920 if (fs->users == 1)
1921 return 0;
1922
1923 *new_fsp = copy_fs_struct(fs);
1924 if (!*new_fsp)
1925 return -ENOMEM;
1926
1927 return 0;
1928 }
1929
1930 /*
1931 * Unshare file descriptor table if it is being shared
1932 */
1933 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1934 {
1935 struct files_struct *fd = current->files;
1936 int error = 0;
1937
1938 if ((unshare_flags & CLONE_FILES) &&
1939 (fd && atomic_read(&fd->count) > 1)) {
1940 *new_fdp = dup_fd(fd, &error);
1941 if (!*new_fdp)
1942 return error;
1943 }
1944
1945 return 0;
1946 }
1947
1948 /*
1949 * unshare allows a process to 'unshare' part of the process
1950 * context which was originally shared using clone. copy_*
1951 * functions used by do_fork() cannot be used here directly
1952 * because they modify an inactive task_struct that is being
1953 * constructed. Here we are modifying the current, active,
1954 * task_struct.
1955 */
1956 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
1957 {
1958 struct fs_struct *fs, *new_fs = NULL;
1959 struct files_struct *fd, *new_fd = NULL;
1960 struct cred *new_cred = NULL;
1961 struct nsproxy *new_nsproxy = NULL;
1962 int do_sysvsem = 0;
1963 int err;
1964
1965 /*
1966 * If unsharing a user namespace must also unshare the thread group
1967 * and unshare the filesystem root and working directories.
1968 */
1969 if (unshare_flags & CLONE_NEWUSER)
1970 unshare_flags |= CLONE_THREAD | CLONE_FS;
1971 /*
1972 * If unsharing vm, must also unshare signal handlers.
1973 */
1974 if (unshare_flags & CLONE_VM)
1975 unshare_flags |= CLONE_SIGHAND;
1976 /*
1977 * If unsharing a signal handlers, must also unshare the signal queues.
1978 */
1979 if (unshare_flags & CLONE_SIGHAND)
1980 unshare_flags |= CLONE_THREAD;
1981 /*
1982 * If unsharing namespace, must also unshare filesystem information.
1983 */
1984 if (unshare_flags & CLONE_NEWNS)
1985 unshare_flags |= CLONE_FS;
1986
1987 err = check_unshare_flags(unshare_flags);
1988 if (err)
1989 goto bad_unshare_out;
1990 /*
1991 * CLONE_NEWIPC must also detach from the undolist: after switching
1992 * to a new ipc namespace, the semaphore arrays from the old
1993 * namespace are unreachable.
1994 */
1995 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
1996 do_sysvsem = 1;
1997 err = unshare_fs(unshare_flags, &new_fs);
1998 if (err)
1999 goto bad_unshare_out;
2000 err = unshare_fd(unshare_flags, &new_fd);
2001 if (err)
2002 goto bad_unshare_cleanup_fs;
2003 err = unshare_userns(unshare_flags, &new_cred);
2004 if (err)
2005 goto bad_unshare_cleanup_fd;
2006 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
2007 new_cred, new_fs);
2008 if (err)
2009 goto bad_unshare_cleanup_cred;
2010
2011 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
2012 if (do_sysvsem) {
2013 /*
2014 * CLONE_SYSVSEM is equivalent to sys_exit().
2015 */
2016 exit_sem(current);
2017 }
2018 if (unshare_flags & CLONE_NEWIPC) {
2019 /* Orphan segments in old ns (see sem above). */
2020 exit_shm(current);
2021 shm_init_task(current);
2022 }
2023
2024 if (new_nsproxy)
2025 switch_task_namespaces(current, new_nsproxy);
2026
2027 task_lock(current);
2028
2029 if (new_fs) {
2030 fs = current->fs;
2031 spin_lock(&fs->lock);
2032 current->fs = new_fs;
2033 if (--fs->users)
2034 new_fs = NULL;
2035 else
2036 new_fs = fs;
2037 spin_unlock(&fs->lock);
2038 }
2039
2040 if (new_fd) {
2041 fd = current->files;
2042 current->files = new_fd;
2043 new_fd = fd;
2044 }
2045
2046 task_unlock(current);
2047
2048 if (new_cred) {
2049 /* Install the new user namespace */
2050 commit_creds(new_cred);
2051 new_cred = NULL;
2052 }
2053 }
2054
2055 bad_unshare_cleanup_cred:
2056 if (new_cred)
2057 put_cred(new_cred);
2058 bad_unshare_cleanup_fd:
2059 if (new_fd)
2060 put_files_struct(new_fd);
2061
2062 bad_unshare_cleanup_fs:
2063 if (new_fs)
2064 free_fs_struct(new_fs);
2065
2066 bad_unshare_out:
2067 return err;
2068 }
2069
2070 /*
2071 * Helper to unshare the files of the current task.
2072 * We don't want to expose copy_files internals to
2073 * the exec layer of the kernel.
2074 */
2075
2076 int unshare_files(struct files_struct **displaced)
2077 {
2078 struct task_struct *task = current;
2079 struct files_struct *copy = NULL;
2080 int error;
2081
2082 error = unshare_fd(CLONE_FILES, &copy);
2083 if (error || !copy) {
2084 *displaced = NULL;
2085 return error;
2086 }
2087 *displaced = task->files;
2088 task_lock(task);
2089 task->files = copy;
2090 task_unlock(task);
2091 return 0;
2092 }
2093
2094 int sysctl_max_threads(struct ctl_table *table, int write,
2095 void __user *buffer, size_t *lenp, loff_t *ppos)
2096 {
2097 struct ctl_table t;
2098 int ret;
2099 int threads = max_threads;
2100 int min = MIN_THREADS;
2101 int max = MAX_THREADS;
2102
2103 t = *table;
2104 t.data = &threads;
2105 t.extra1 = &min;
2106 t.extra2 = &max;
2107
2108 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2109 if (ret || !write)
2110 return ret;
2111
2112 set_max_threads(threads);
2113
2114 return 0;
2115 }
This page took 0.134875 seconds and 5 git commands to generate.