sched: Use lockdep-based checking on rcu_dereference()
[deliverable/linux.git] / kernel / fork.c
1 /*
2 * linux/kernel/fork.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * 'fork.c' contains the help-routines for the 'fork' system call
9 * (see also entry.S and others).
10 * Fork is rather simple, once you get the hang of it, but the memory
11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12 */
13
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/mempolicy.h>
22 #include <linux/sem.h>
23 #include <linux/file.h>
24 #include <linux/fdtable.h>
25 #include <linux/iocontext.h>
26 #include <linux/key.h>
27 #include <linux/binfmts.h>
28 #include <linux/mman.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/fs.h>
31 #include <linux/nsproxy.h>
32 #include <linux/capability.h>
33 #include <linux/cpu.h>
34 #include <linux/cgroup.h>
35 #include <linux/security.h>
36 #include <linux/hugetlb.h>
37 #include <linux/swap.h>
38 #include <linux/syscalls.h>
39 #include <linux/jiffies.h>
40 #include <linux/tracehook.h>
41 #include <linux/futex.h>
42 #include <linux/compat.h>
43 #include <linux/task_io_accounting_ops.h>
44 #include <linux/rcupdate.h>
45 #include <linux/ptrace.h>
46 #include <linux/mount.h>
47 #include <linux/audit.h>
48 #include <linux/memcontrol.h>
49 #include <linux/ftrace.h>
50 #include <linux/profile.h>
51 #include <linux/rmap.h>
52 #include <linux/ksm.h>
53 #include <linux/acct.h>
54 #include <linux/tsacct_kern.h>
55 #include <linux/cn_proc.h>
56 #include <linux/freezer.h>
57 #include <linux/delayacct.h>
58 #include <linux/taskstats_kern.h>
59 #include <linux/random.h>
60 #include <linux/tty.h>
61 #include <linux/proc_fs.h>
62 #include <linux/blkdev.h>
63 #include <linux/fs_struct.h>
64 #include <linux/magic.h>
65 #include <linux/perf_event.h>
66 #include <linux/posix-timers.h>
67 #include <linux/user-return-notifier.h>
68
69 #include <asm/pgtable.h>
70 #include <asm/pgalloc.h>
71 #include <asm/uaccess.h>
72 #include <asm/mmu_context.h>
73 #include <asm/cacheflush.h>
74 #include <asm/tlbflush.h>
75
76 #include <trace/events/sched.h>
77
78 /*
79 * Protected counters by write_lock_irq(&tasklist_lock)
80 */
81 unsigned long total_forks; /* Handle normal Linux uptimes. */
82 int nr_threads; /* The idle threads do not count.. */
83
84 int max_threads; /* tunable limit on nr_threads */
85
86 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
87
88 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
89 EXPORT_SYMBOL_GPL(tasklist_lock);
90
91 int nr_processes(void)
92 {
93 int cpu;
94 int total = 0;
95
96 for_each_possible_cpu(cpu)
97 total += per_cpu(process_counts, cpu);
98
99 return total;
100 }
101
102 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
103 # define alloc_task_struct() kmem_cache_alloc(task_struct_cachep, GFP_KERNEL)
104 # define free_task_struct(tsk) kmem_cache_free(task_struct_cachep, (tsk))
105 static struct kmem_cache *task_struct_cachep;
106 #endif
107
108 #ifndef __HAVE_ARCH_THREAD_INFO_ALLOCATOR
109 static inline struct thread_info *alloc_thread_info(struct task_struct *tsk)
110 {
111 #ifdef CONFIG_DEBUG_STACK_USAGE
112 gfp_t mask = GFP_KERNEL | __GFP_ZERO;
113 #else
114 gfp_t mask = GFP_KERNEL;
115 #endif
116 return (struct thread_info *)__get_free_pages(mask, THREAD_SIZE_ORDER);
117 }
118
119 static inline void free_thread_info(struct thread_info *ti)
120 {
121 free_pages((unsigned long)ti, THREAD_SIZE_ORDER);
122 }
123 #endif
124
125 /* SLAB cache for signal_struct structures (tsk->signal) */
126 static struct kmem_cache *signal_cachep;
127
128 /* SLAB cache for sighand_struct structures (tsk->sighand) */
129 struct kmem_cache *sighand_cachep;
130
131 /* SLAB cache for files_struct structures (tsk->files) */
132 struct kmem_cache *files_cachep;
133
134 /* SLAB cache for fs_struct structures (tsk->fs) */
135 struct kmem_cache *fs_cachep;
136
137 /* SLAB cache for vm_area_struct structures */
138 struct kmem_cache *vm_area_cachep;
139
140 /* SLAB cache for mm_struct structures (tsk->mm) */
141 static struct kmem_cache *mm_cachep;
142
143 static void account_kernel_stack(struct thread_info *ti, int account)
144 {
145 struct zone *zone = page_zone(virt_to_page(ti));
146
147 mod_zone_page_state(zone, NR_KERNEL_STACK, account);
148 }
149
150 void free_task(struct task_struct *tsk)
151 {
152 prop_local_destroy_single(&tsk->dirties);
153 account_kernel_stack(tsk->stack, -1);
154 free_thread_info(tsk->stack);
155 rt_mutex_debug_task_free(tsk);
156 ftrace_graph_exit_task(tsk);
157 free_task_struct(tsk);
158 }
159 EXPORT_SYMBOL(free_task);
160
161 void __put_task_struct(struct task_struct *tsk)
162 {
163 WARN_ON(!tsk->exit_state);
164 WARN_ON(atomic_read(&tsk->usage));
165 WARN_ON(tsk == current);
166
167 exit_creds(tsk);
168 delayacct_tsk_free(tsk);
169
170 if (!profile_handoff_task(tsk))
171 free_task(tsk);
172 }
173
174 /*
175 * macro override instead of weak attribute alias, to workaround
176 * gcc 4.1.0 and 4.1.1 bugs with weak attribute and empty functions.
177 */
178 #ifndef arch_task_cache_init
179 #define arch_task_cache_init()
180 #endif
181
182 void __init fork_init(unsigned long mempages)
183 {
184 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
185 #ifndef ARCH_MIN_TASKALIGN
186 #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
187 #endif
188 /* create a slab on which task_structs can be allocated */
189 task_struct_cachep =
190 kmem_cache_create("task_struct", sizeof(struct task_struct),
191 ARCH_MIN_TASKALIGN, SLAB_PANIC | SLAB_NOTRACK, NULL);
192 #endif
193
194 /* do the arch specific task caches init */
195 arch_task_cache_init();
196
197 /*
198 * The default maximum number of threads is set to a safe
199 * value: the thread structures can take up at most half
200 * of memory.
201 */
202 max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
203
204 /*
205 * we need to allow at least 20 threads to boot a system
206 */
207 if(max_threads < 20)
208 max_threads = 20;
209
210 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
211 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
212 init_task.signal->rlim[RLIMIT_SIGPENDING] =
213 init_task.signal->rlim[RLIMIT_NPROC];
214 }
215
216 int __attribute__((weak)) arch_dup_task_struct(struct task_struct *dst,
217 struct task_struct *src)
218 {
219 *dst = *src;
220 return 0;
221 }
222
223 static struct task_struct *dup_task_struct(struct task_struct *orig)
224 {
225 struct task_struct *tsk;
226 struct thread_info *ti;
227 unsigned long *stackend;
228
229 int err;
230
231 prepare_to_copy(orig);
232
233 tsk = alloc_task_struct();
234 if (!tsk)
235 return NULL;
236
237 ti = alloc_thread_info(tsk);
238 if (!ti) {
239 free_task_struct(tsk);
240 return NULL;
241 }
242
243 err = arch_dup_task_struct(tsk, orig);
244 if (err)
245 goto out;
246
247 tsk->stack = ti;
248
249 err = prop_local_init_single(&tsk->dirties);
250 if (err)
251 goto out;
252
253 setup_thread_stack(tsk, orig);
254 clear_user_return_notifier(tsk);
255 stackend = end_of_stack(tsk);
256 *stackend = STACK_END_MAGIC; /* for overflow detection */
257
258 #ifdef CONFIG_CC_STACKPROTECTOR
259 tsk->stack_canary = get_random_int();
260 #endif
261
262 /* One for us, one for whoever does the "release_task()" (usually parent) */
263 atomic_set(&tsk->usage,2);
264 atomic_set(&tsk->fs_excl, 0);
265 #ifdef CONFIG_BLK_DEV_IO_TRACE
266 tsk->btrace_seq = 0;
267 #endif
268 tsk->splice_pipe = NULL;
269
270 account_kernel_stack(ti, 1);
271
272 return tsk;
273
274 out:
275 free_thread_info(ti);
276 free_task_struct(tsk);
277 return NULL;
278 }
279
280 #ifdef CONFIG_MMU
281 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
282 {
283 struct vm_area_struct *mpnt, *tmp, **pprev;
284 struct rb_node **rb_link, *rb_parent;
285 int retval;
286 unsigned long charge;
287 struct mempolicy *pol;
288
289 down_write(&oldmm->mmap_sem);
290 flush_cache_dup_mm(oldmm);
291 /*
292 * Not linked in yet - no deadlock potential:
293 */
294 down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
295
296 mm->locked_vm = 0;
297 mm->mmap = NULL;
298 mm->mmap_cache = NULL;
299 mm->free_area_cache = oldmm->mmap_base;
300 mm->cached_hole_size = ~0UL;
301 mm->map_count = 0;
302 cpumask_clear(mm_cpumask(mm));
303 mm->mm_rb = RB_ROOT;
304 rb_link = &mm->mm_rb.rb_node;
305 rb_parent = NULL;
306 pprev = &mm->mmap;
307 retval = ksm_fork(mm, oldmm);
308 if (retval)
309 goto out;
310
311 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
312 struct file *file;
313
314 if (mpnt->vm_flags & VM_DONTCOPY) {
315 long pages = vma_pages(mpnt);
316 mm->total_vm -= pages;
317 vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
318 -pages);
319 continue;
320 }
321 charge = 0;
322 if (mpnt->vm_flags & VM_ACCOUNT) {
323 unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
324 if (security_vm_enough_memory(len))
325 goto fail_nomem;
326 charge = len;
327 }
328 tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
329 if (!tmp)
330 goto fail_nomem;
331 *tmp = *mpnt;
332 pol = mpol_dup(vma_policy(mpnt));
333 retval = PTR_ERR(pol);
334 if (IS_ERR(pol))
335 goto fail_nomem_policy;
336 vma_set_policy(tmp, pol);
337 tmp->vm_flags &= ~VM_LOCKED;
338 tmp->vm_mm = mm;
339 tmp->vm_next = NULL;
340 anon_vma_link(tmp);
341 file = tmp->vm_file;
342 if (file) {
343 struct inode *inode = file->f_path.dentry->d_inode;
344 struct address_space *mapping = file->f_mapping;
345
346 get_file(file);
347 if (tmp->vm_flags & VM_DENYWRITE)
348 atomic_dec(&inode->i_writecount);
349 spin_lock(&mapping->i_mmap_lock);
350 if (tmp->vm_flags & VM_SHARED)
351 mapping->i_mmap_writable++;
352 tmp->vm_truncate_count = mpnt->vm_truncate_count;
353 flush_dcache_mmap_lock(mapping);
354 /* insert tmp into the share list, just after mpnt */
355 vma_prio_tree_add(tmp, mpnt);
356 flush_dcache_mmap_unlock(mapping);
357 spin_unlock(&mapping->i_mmap_lock);
358 }
359
360 /*
361 * Clear hugetlb-related page reserves for children. This only
362 * affects MAP_PRIVATE mappings. Faults generated by the child
363 * are not guaranteed to succeed, even if read-only
364 */
365 if (is_vm_hugetlb_page(tmp))
366 reset_vma_resv_huge_pages(tmp);
367
368 /*
369 * Link in the new vma and copy the page table entries.
370 */
371 *pprev = tmp;
372 pprev = &tmp->vm_next;
373
374 __vma_link_rb(mm, tmp, rb_link, rb_parent);
375 rb_link = &tmp->vm_rb.rb_right;
376 rb_parent = &tmp->vm_rb;
377
378 mm->map_count++;
379 retval = copy_page_range(mm, oldmm, mpnt);
380
381 if (tmp->vm_ops && tmp->vm_ops->open)
382 tmp->vm_ops->open(tmp);
383
384 if (retval)
385 goto out;
386 }
387 /* a new mm has just been created */
388 arch_dup_mmap(oldmm, mm);
389 retval = 0;
390 out:
391 up_write(&mm->mmap_sem);
392 flush_tlb_mm(oldmm);
393 up_write(&oldmm->mmap_sem);
394 return retval;
395 fail_nomem_policy:
396 kmem_cache_free(vm_area_cachep, tmp);
397 fail_nomem:
398 retval = -ENOMEM;
399 vm_unacct_memory(charge);
400 goto out;
401 }
402
403 static inline int mm_alloc_pgd(struct mm_struct * mm)
404 {
405 mm->pgd = pgd_alloc(mm);
406 if (unlikely(!mm->pgd))
407 return -ENOMEM;
408 return 0;
409 }
410
411 static inline void mm_free_pgd(struct mm_struct * mm)
412 {
413 pgd_free(mm, mm->pgd);
414 }
415 #else
416 #define dup_mmap(mm, oldmm) (0)
417 #define mm_alloc_pgd(mm) (0)
418 #define mm_free_pgd(mm)
419 #endif /* CONFIG_MMU */
420
421 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
422
423 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
424 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
425
426 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
427
428 static int __init coredump_filter_setup(char *s)
429 {
430 default_dump_filter =
431 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
432 MMF_DUMP_FILTER_MASK;
433 return 1;
434 }
435
436 __setup("coredump_filter=", coredump_filter_setup);
437
438 #include <linux/init_task.h>
439
440 static void mm_init_aio(struct mm_struct *mm)
441 {
442 #ifdef CONFIG_AIO
443 spin_lock_init(&mm->ioctx_lock);
444 INIT_HLIST_HEAD(&mm->ioctx_list);
445 #endif
446 }
447
448 static struct mm_struct * mm_init(struct mm_struct * mm, struct task_struct *p)
449 {
450 atomic_set(&mm->mm_users, 1);
451 atomic_set(&mm->mm_count, 1);
452 init_rwsem(&mm->mmap_sem);
453 INIT_LIST_HEAD(&mm->mmlist);
454 mm->flags = (current->mm) ?
455 (current->mm->flags & MMF_INIT_MASK) : default_dump_filter;
456 mm->core_state = NULL;
457 mm->nr_ptes = 0;
458 set_mm_counter(mm, file_rss, 0);
459 set_mm_counter(mm, anon_rss, 0);
460 spin_lock_init(&mm->page_table_lock);
461 mm->free_area_cache = TASK_UNMAPPED_BASE;
462 mm->cached_hole_size = ~0UL;
463 mm_init_aio(mm);
464 mm_init_owner(mm, p);
465
466 if (likely(!mm_alloc_pgd(mm))) {
467 mm->def_flags = 0;
468 mmu_notifier_mm_init(mm);
469 return mm;
470 }
471
472 free_mm(mm);
473 return NULL;
474 }
475
476 /*
477 * Allocate and initialize an mm_struct.
478 */
479 struct mm_struct * mm_alloc(void)
480 {
481 struct mm_struct * mm;
482
483 mm = allocate_mm();
484 if (mm) {
485 memset(mm, 0, sizeof(*mm));
486 mm = mm_init(mm, current);
487 }
488 return mm;
489 }
490
491 /*
492 * Called when the last reference to the mm
493 * is dropped: either by a lazy thread or by
494 * mmput. Free the page directory and the mm.
495 */
496 void __mmdrop(struct mm_struct *mm)
497 {
498 BUG_ON(mm == &init_mm);
499 mm_free_pgd(mm);
500 destroy_context(mm);
501 mmu_notifier_mm_destroy(mm);
502 free_mm(mm);
503 }
504 EXPORT_SYMBOL_GPL(__mmdrop);
505
506 /*
507 * Decrement the use count and release all resources for an mm.
508 */
509 void mmput(struct mm_struct *mm)
510 {
511 might_sleep();
512
513 if (atomic_dec_and_test(&mm->mm_users)) {
514 exit_aio(mm);
515 ksm_exit(mm);
516 exit_mmap(mm);
517 set_mm_exe_file(mm, NULL);
518 if (!list_empty(&mm->mmlist)) {
519 spin_lock(&mmlist_lock);
520 list_del(&mm->mmlist);
521 spin_unlock(&mmlist_lock);
522 }
523 put_swap_token(mm);
524 if (mm->binfmt)
525 module_put(mm->binfmt->module);
526 mmdrop(mm);
527 }
528 }
529 EXPORT_SYMBOL_GPL(mmput);
530
531 /**
532 * get_task_mm - acquire a reference to the task's mm
533 *
534 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
535 * this kernel workthread has transiently adopted a user mm with use_mm,
536 * to do its AIO) is not set and if so returns a reference to it, after
537 * bumping up the use count. User must release the mm via mmput()
538 * after use. Typically used by /proc and ptrace.
539 */
540 struct mm_struct *get_task_mm(struct task_struct *task)
541 {
542 struct mm_struct *mm;
543
544 task_lock(task);
545 mm = task->mm;
546 if (mm) {
547 if (task->flags & PF_KTHREAD)
548 mm = NULL;
549 else
550 atomic_inc(&mm->mm_users);
551 }
552 task_unlock(task);
553 return mm;
554 }
555 EXPORT_SYMBOL_GPL(get_task_mm);
556
557 /* Please note the differences between mmput and mm_release.
558 * mmput is called whenever we stop holding onto a mm_struct,
559 * error success whatever.
560 *
561 * mm_release is called after a mm_struct has been removed
562 * from the current process.
563 *
564 * This difference is important for error handling, when we
565 * only half set up a mm_struct for a new process and need to restore
566 * the old one. Because we mmput the new mm_struct before
567 * restoring the old one. . .
568 * Eric Biederman 10 January 1998
569 */
570 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
571 {
572 struct completion *vfork_done = tsk->vfork_done;
573
574 /* Get rid of any futexes when releasing the mm */
575 #ifdef CONFIG_FUTEX
576 if (unlikely(tsk->robust_list)) {
577 exit_robust_list(tsk);
578 tsk->robust_list = NULL;
579 }
580 #ifdef CONFIG_COMPAT
581 if (unlikely(tsk->compat_robust_list)) {
582 compat_exit_robust_list(tsk);
583 tsk->compat_robust_list = NULL;
584 }
585 #endif
586 if (unlikely(!list_empty(&tsk->pi_state_list)))
587 exit_pi_state_list(tsk);
588 #endif
589
590 /* Get rid of any cached register state */
591 deactivate_mm(tsk, mm);
592
593 /* notify parent sleeping on vfork() */
594 if (vfork_done) {
595 tsk->vfork_done = NULL;
596 complete(vfork_done);
597 }
598
599 /*
600 * If we're exiting normally, clear a user-space tid field if
601 * requested. We leave this alone when dying by signal, to leave
602 * the value intact in a core dump, and to save the unnecessary
603 * trouble otherwise. Userland only wants this done for a sys_exit.
604 */
605 if (tsk->clear_child_tid) {
606 if (!(tsk->flags & PF_SIGNALED) &&
607 atomic_read(&mm->mm_users) > 1) {
608 /*
609 * We don't check the error code - if userspace has
610 * not set up a proper pointer then tough luck.
611 */
612 put_user(0, tsk->clear_child_tid);
613 sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
614 1, NULL, NULL, 0);
615 }
616 tsk->clear_child_tid = NULL;
617 }
618 }
619
620 /*
621 * Allocate a new mm structure and copy contents from the
622 * mm structure of the passed in task structure.
623 */
624 struct mm_struct *dup_mm(struct task_struct *tsk)
625 {
626 struct mm_struct *mm, *oldmm = current->mm;
627 int err;
628
629 if (!oldmm)
630 return NULL;
631
632 mm = allocate_mm();
633 if (!mm)
634 goto fail_nomem;
635
636 memcpy(mm, oldmm, sizeof(*mm));
637
638 /* Initializing for Swap token stuff */
639 mm->token_priority = 0;
640 mm->last_interval = 0;
641
642 if (!mm_init(mm, tsk))
643 goto fail_nomem;
644
645 if (init_new_context(tsk, mm))
646 goto fail_nocontext;
647
648 dup_mm_exe_file(oldmm, mm);
649
650 err = dup_mmap(mm, oldmm);
651 if (err)
652 goto free_pt;
653
654 mm->hiwater_rss = get_mm_rss(mm);
655 mm->hiwater_vm = mm->total_vm;
656
657 if (mm->binfmt && !try_module_get(mm->binfmt->module))
658 goto free_pt;
659
660 return mm;
661
662 free_pt:
663 /* don't put binfmt in mmput, we haven't got module yet */
664 mm->binfmt = NULL;
665 mmput(mm);
666
667 fail_nomem:
668 return NULL;
669
670 fail_nocontext:
671 /*
672 * If init_new_context() failed, we cannot use mmput() to free the mm
673 * because it calls destroy_context()
674 */
675 mm_free_pgd(mm);
676 free_mm(mm);
677 return NULL;
678 }
679
680 static int copy_mm(unsigned long clone_flags, struct task_struct * tsk)
681 {
682 struct mm_struct * mm, *oldmm;
683 int retval;
684
685 tsk->min_flt = tsk->maj_flt = 0;
686 tsk->nvcsw = tsk->nivcsw = 0;
687 #ifdef CONFIG_DETECT_HUNG_TASK
688 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
689 #endif
690
691 tsk->mm = NULL;
692 tsk->active_mm = NULL;
693
694 /*
695 * Are we cloning a kernel thread?
696 *
697 * We need to steal a active VM for that..
698 */
699 oldmm = current->mm;
700 if (!oldmm)
701 return 0;
702
703 if (clone_flags & CLONE_VM) {
704 atomic_inc(&oldmm->mm_users);
705 mm = oldmm;
706 goto good_mm;
707 }
708
709 retval = -ENOMEM;
710 mm = dup_mm(tsk);
711 if (!mm)
712 goto fail_nomem;
713
714 good_mm:
715 /* Initializing for Swap token stuff */
716 mm->token_priority = 0;
717 mm->last_interval = 0;
718
719 tsk->mm = mm;
720 tsk->active_mm = mm;
721 return 0;
722
723 fail_nomem:
724 return retval;
725 }
726
727 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
728 {
729 struct fs_struct *fs = current->fs;
730 if (clone_flags & CLONE_FS) {
731 /* tsk->fs is already what we want */
732 write_lock(&fs->lock);
733 if (fs->in_exec) {
734 write_unlock(&fs->lock);
735 return -EAGAIN;
736 }
737 fs->users++;
738 write_unlock(&fs->lock);
739 return 0;
740 }
741 tsk->fs = copy_fs_struct(fs);
742 if (!tsk->fs)
743 return -ENOMEM;
744 return 0;
745 }
746
747 static int copy_files(unsigned long clone_flags, struct task_struct * tsk)
748 {
749 struct files_struct *oldf, *newf;
750 int error = 0;
751
752 /*
753 * A background process may not have any files ...
754 */
755 oldf = current->files;
756 if (!oldf)
757 goto out;
758
759 if (clone_flags & CLONE_FILES) {
760 atomic_inc(&oldf->count);
761 goto out;
762 }
763
764 newf = dup_fd(oldf, &error);
765 if (!newf)
766 goto out;
767
768 tsk->files = newf;
769 error = 0;
770 out:
771 return error;
772 }
773
774 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
775 {
776 #ifdef CONFIG_BLOCK
777 struct io_context *ioc = current->io_context;
778
779 if (!ioc)
780 return 0;
781 /*
782 * Share io context with parent, if CLONE_IO is set
783 */
784 if (clone_flags & CLONE_IO) {
785 tsk->io_context = ioc_task_link(ioc);
786 if (unlikely(!tsk->io_context))
787 return -ENOMEM;
788 } else if (ioprio_valid(ioc->ioprio)) {
789 tsk->io_context = alloc_io_context(GFP_KERNEL, -1);
790 if (unlikely(!tsk->io_context))
791 return -ENOMEM;
792
793 tsk->io_context->ioprio = ioc->ioprio;
794 }
795 #endif
796 return 0;
797 }
798
799 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
800 {
801 struct sighand_struct *sig;
802
803 if (clone_flags & CLONE_SIGHAND) {
804 atomic_inc(&current->sighand->count);
805 return 0;
806 }
807 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
808 rcu_assign_pointer(tsk->sighand, sig);
809 if (!sig)
810 return -ENOMEM;
811 atomic_set(&sig->count, 1);
812 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
813 return 0;
814 }
815
816 void __cleanup_sighand(struct sighand_struct *sighand)
817 {
818 if (atomic_dec_and_test(&sighand->count))
819 kmem_cache_free(sighand_cachep, sighand);
820 }
821
822
823 /*
824 * Initialize POSIX timer handling for a thread group.
825 */
826 static void posix_cpu_timers_init_group(struct signal_struct *sig)
827 {
828 /* Thread group counters. */
829 thread_group_cputime_init(sig);
830
831 /* Expiration times and increments. */
832 sig->it[CPUCLOCK_PROF].expires = cputime_zero;
833 sig->it[CPUCLOCK_PROF].incr = cputime_zero;
834 sig->it[CPUCLOCK_VIRT].expires = cputime_zero;
835 sig->it[CPUCLOCK_VIRT].incr = cputime_zero;
836
837 /* Cached expiration times. */
838 sig->cputime_expires.prof_exp = cputime_zero;
839 sig->cputime_expires.virt_exp = cputime_zero;
840 sig->cputime_expires.sched_exp = 0;
841
842 if (sig->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) {
843 sig->cputime_expires.prof_exp =
844 secs_to_cputime(sig->rlim[RLIMIT_CPU].rlim_cur);
845 sig->cputimer.running = 1;
846 }
847
848 /* The timer lists. */
849 INIT_LIST_HEAD(&sig->cpu_timers[0]);
850 INIT_LIST_HEAD(&sig->cpu_timers[1]);
851 INIT_LIST_HEAD(&sig->cpu_timers[2]);
852 }
853
854 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
855 {
856 struct signal_struct *sig;
857
858 if (clone_flags & CLONE_THREAD)
859 return 0;
860
861 sig = kmem_cache_alloc(signal_cachep, GFP_KERNEL);
862 tsk->signal = sig;
863 if (!sig)
864 return -ENOMEM;
865
866 atomic_set(&sig->count, 1);
867 atomic_set(&sig->live, 1);
868 init_waitqueue_head(&sig->wait_chldexit);
869 sig->flags = 0;
870 if (clone_flags & CLONE_NEWPID)
871 sig->flags |= SIGNAL_UNKILLABLE;
872 sig->group_exit_code = 0;
873 sig->group_exit_task = NULL;
874 sig->group_stop_count = 0;
875 sig->curr_target = tsk;
876 init_sigpending(&sig->shared_pending);
877 INIT_LIST_HEAD(&sig->posix_timers);
878
879 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
880 sig->it_real_incr.tv64 = 0;
881 sig->real_timer.function = it_real_fn;
882
883 sig->leader = 0; /* session leadership doesn't inherit */
884 sig->tty_old_pgrp = NULL;
885 sig->tty = NULL;
886
887 sig->utime = sig->stime = sig->cutime = sig->cstime = cputime_zero;
888 sig->gtime = cputime_zero;
889 sig->cgtime = cputime_zero;
890 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
891 sig->prev_utime = sig->prev_stime = cputime_zero;
892 #endif
893 sig->nvcsw = sig->nivcsw = sig->cnvcsw = sig->cnivcsw = 0;
894 sig->min_flt = sig->maj_flt = sig->cmin_flt = sig->cmaj_flt = 0;
895 sig->inblock = sig->oublock = sig->cinblock = sig->coublock = 0;
896 sig->maxrss = sig->cmaxrss = 0;
897 task_io_accounting_init(&sig->ioac);
898 sig->sum_sched_runtime = 0;
899 taskstats_tgid_init(sig);
900
901 task_lock(current->group_leader);
902 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
903 task_unlock(current->group_leader);
904
905 posix_cpu_timers_init_group(sig);
906
907 acct_init_pacct(&sig->pacct);
908
909 tty_audit_fork(sig);
910
911 sig->oom_adj = current->signal->oom_adj;
912
913 return 0;
914 }
915
916 void __cleanup_signal(struct signal_struct *sig)
917 {
918 thread_group_cputime_free(sig);
919 tty_kref_put(sig->tty);
920 kmem_cache_free(signal_cachep, sig);
921 }
922
923 static void copy_flags(unsigned long clone_flags, struct task_struct *p)
924 {
925 unsigned long new_flags = p->flags;
926
927 new_flags &= ~PF_SUPERPRIV;
928 new_flags |= PF_FORKNOEXEC;
929 new_flags |= PF_STARTING;
930 p->flags = new_flags;
931 clear_freeze_flag(p);
932 }
933
934 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
935 {
936 current->clear_child_tid = tidptr;
937
938 return task_pid_vnr(current);
939 }
940
941 static void rt_mutex_init_task(struct task_struct *p)
942 {
943 raw_spin_lock_init(&p->pi_lock);
944 #ifdef CONFIG_RT_MUTEXES
945 plist_head_init_raw(&p->pi_waiters, &p->pi_lock);
946 p->pi_blocked_on = NULL;
947 #endif
948 }
949
950 #ifdef CONFIG_MM_OWNER
951 void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
952 {
953 mm->owner = p;
954 }
955 #endif /* CONFIG_MM_OWNER */
956
957 /*
958 * Initialize POSIX timer handling for a single task.
959 */
960 static void posix_cpu_timers_init(struct task_struct *tsk)
961 {
962 tsk->cputime_expires.prof_exp = cputime_zero;
963 tsk->cputime_expires.virt_exp = cputime_zero;
964 tsk->cputime_expires.sched_exp = 0;
965 INIT_LIST_HEAD(&tsk->cpu_timers[0]);
966 INIT_LIST_HEAD(&tsk->cpu_timers[1]);
967 INIT_LIST_HEAD(&tsk->cpu_timers[2]);
968 }
969
970 /*
971 * This creates a new process as a copy of the old one,
972 * but does not actually start it yet.
973 *
974 * It copies the registers, and all the appropriate
975 * parts of the process environment (as per the clone
976 * flags). The actual kick-off is left to the caller.
977 */
978 static struct task_struct *copy_process(unsigned long clone_flags,
979 unsigned long stack_start,
980 struct pt_regs *regs,
981 unsigned long stack_size,
982 int __user *child_tidptr,
983 struct pid *pid,
984 int trace)
985 {
986 int retval;
987 struct task_struct *p;
988 int cgroup_callbacks_done = 0;
989
990 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
991 return ERR_PTR(-EINVAL);
992
993 /*
994 * Thread groups must share signals as well, and detached threads
995 * can only be started up within the thread group.
996 */
997 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
998 return ERR_PTR(-EINVAL);
999
1000 /*
1001 * Shared signal handlers imply shared VM. By way of the above,
1002 * thread groups also imply shared VM. Blocking this case allows
1003 * for various simplifications in other code.
1004 */
1005 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1006 return ERR_PTR(-EINVAL);
1007
1008 /*
1009 * Siblings of global init remain as zombies on exit since they are
1010 * not reaped by their parent (swapper). To solve this and to avoid
1011 * multi-rooted process trees, prevent global and container-inits
1012 * from creating siblings.
1013 */
1014 if ((clone_flags & CLONE_PARENT) &&
1015 current->signal->flags & SIGNAL_UNKILLABLE)
1016 return ERR_PTR(-EINVAL);
1017
1018 retval = security_task_create(clone_flags);
1019 if (retval)
1020 goto fork_out;
1021
1022 retval = -ENOMEM;
1023 p = dup_task_struct(current);
1024 if (!p)
1025 goto fork_out;
1026
1027 ftrace_graph_init_task(p);
1028
1029 rt_mutex_init_task(p);
1030
1031 #ifdef CONFIG_PROVE_LOCKING
1032 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1033 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1034 #endif
1035 retval = -EAGAIN;
1036 if (atomic_read(&p->real_cred->user->processes) >=
1037 p->signal->rlim[RLIMIT_NPROC].rlim_cur) {
1038 if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
1039 p->real_cred->user != INIT_USER)
1040 goto bad_fork_free;
1041 }
1042
1043 retval = copy_creds(p, clone_flags);
1044 if (retval < 0)
1045 goto bad_fork_free;
1046
1047 /*
1048 * If multiple threads are within copy_process(), then this check
1049 * triggers too late. This doesn't hurt, the check is only there
1050 * to stop root fork bombs.
1051 */
1052 retval = -EAGAIN;
1053 if (nr_threads >= max_threads)
1054 goto bad_fork_cleanup_count;
1055
1056 if (!try_module_get(task_thread_info(p)->exec_domain->module))
1057 goto bad_fork_cleanup_count;
1058
1059 p->did_exec = 0;
1060 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
1061 copy_flags(clone_flags, p);
1062 INIT_LIST_HEAD(&p->children);
1063 INIT_LIST_HEAD(&p->sibling);
1064 rcu_copy_process(p);
1065 p->vfork_done = NULL;
1066 spin_lock_init(&p->alloc_lock);
1067
1068 init_sigpending(&p->pending);
1069
1070 p->utime = cputime_zero;
1071 p->stime = cputime_zero;
1072 p->gtime = cputime_zero;
1073 p->utimescaled = cputime_zero;
1074 p->stimescaled = cputime_zero;
1075 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
1076 p->prev_utime = cputime_zero;
1077 p->prev_stime = cputime_zero;
1078 #endif
1079
1080 p->default_timer_slack_ns = current->timer_slack_ns;
1081
1082 task_io_accounting_init(&p->ioac);
1083 acct_clear_integrals(p);
1084
1085 posix_cpu_timers_init(p);
1086
1087 p->lock_depth = -1; /* -1 = no lock */
1088 do_posix_clock_monotonic_gettime(&p->start_time);
1089 p->real_start_time = p->start_time;
1090 monotonic_to_bootbased(&p->real_start_time);
1091 p->io_context = NULL;
1092 p->audit_context = NULL;
1093 cgroup_fork(p);
1094 #ifdef CONFIG_NUMA
1095 p->mempolicy = mpol_dup(p->mempolicy);
1096 if (IS_ERR(p->mempolicy)) {
1097 retval = PTR_ERR(p->mempolicy);
1098 p->mempolicy = NULL;
1099 goto bad_fork_cleanup_cgroup;
1100 }
1101 mpol_fix_fork_child_flag(p);
1102 #endif
1103 #ifdef CONFIG_TRACE_IRQFLAGS
1104 p->irq_events = 0;
1105 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1106 p->hardirqs_enabled = 1;
1107 #else
1108 p->hardirqs_enabled = 0;
1109 #endif
1110 p->hardirq_enable_ip = 0;
1111 p->hardirq_enable_event = 0;
1112 p->hardirq_disable_ip = _THIS_IP_;
1113 p->hardirq_disable_event = 0;
1114 p->softirqs_enabled = 1;
1115 p->softirq_enable_ip = _THIS_IP_;
1116 p->softirq_enable_event = 0;
1117 p->softirq_disable_ip = 0;
1118 p->softirq_disable_event = 0;
1119 p->hardirq_context = 0;
1120 p->softirq_context = 0;
1121 #endif
1122 #ifdef CONFIG_LOCKDEP
1123 p->lockdep_depth = 0; /* no locks held yet */
1124 p->curr_chain_key = 0;
1125 p->lockdep_recursion = 0;
1126 #endif
1127
1128 #ifdef CONFIG_DEBUG_MUTEXES
1129 p->blocked_on = NULL; /* not blocked yet */
1130 #endif
1131 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
1132 p->memcg_batch.do_batch = 0;
1133 p->memcg_batch.memcg = NULL;
1134 #endif
1135
1136 p->bts = NULL;
1137
1138 p->stack_start = stack_start;
1139
1140 /* Perform scheduler related setup. Assign this task to a CPU. */
1141 sched_fork(p, clone_flags);
1142
1143 retval = perf_event_init_task(p);
1144 if (retval)
1145 goto bad_fork_cleanup_policy;
1146
1147 if ((retval = audit_alloc(p)))
1148 goto bad_fork_cleanup_policy;
1149 /* copy all the process information */
1150 if ((retval = copy_semundo(clone_flags, p)))
1151 goto bad_fork_cleanup_audit;
1152 if ((retval = copy_files(clone_flags, p)))
1153 goto bad_fork_cleanup_semundo;
1154 if ((retval = copy_fs(clone_flags, p)))
1155 goto bad_fork_cleanup_files;
1156 if ((retval = copy_sighand(clone_flags, p)))
1157 goto bad_fork_cleanup_fs;
1158 if ((retval = copy_signal(clone_flags, p)))
1159 goto bad_fork_cleanup_sighand;
1160 if ((retval = copy_mm(clone_flags, p)))
1161 goto bad_fork_cleanup_signal;
1162 if ((retval = copy_namespaces(clone_flags, p)))
1163 goto bad_fork_cleanup_mm;
1164 if ((retval = copy_io(clone_flags, p)))
1165 goto bad_fork_cleanup_namespaces;
1166 retval = copy_thread(clone_flags, stack_start, stack_size, p, regs);
1167 if (retval)
1168 goto bad_fork_cleanup_io;
1169
1170 if (pid != &init_struct_pid) {
1171 retval = -ENOMEM;
1172 pid = alloc_pid(p->nsproxy->pid_ns);
1173 if (!pid)
1174 goto bad_fork_cleanup_io;
1175
1176 if (clone_flags & CLONE_NEWPID) {
1177 retval = pid_ns_prepare_proc(p->nsproxy->pid_ns);
1178 if (retval < 0)
1179 goto bad_fork_free_pid;
1180 }
1181 }
1182
1183 p->pid = pid_nr(pid);
1184 p->tgid = p->pid;
1185 if (clone_flags & CLONE_THREAD)
1186 p->tgid = current->tgid;
1187
1188 if (current->nsproxy != p->nsproxy) {
1189 retval = ns_cgroup_clone(p, pid);
1190 if (retval)
1191 goto bad_fork_free_pid;
1192 }
1193
1194 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1195 /*
1196 * Clear TID on mm_release()?
1197 */
1198 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr: NULL;
1199 #ifdef CONFIG_FUTEX
1200 p->robust_list = NULL;
1201 #ifdef CONFIG_COMPAT
1202 p->compat_robust_list = NULL;
1203 #endif
1204 INIT_LIST_HEAD(&p->pi_state_list);
1205 p->pi_state_cache = NULL;
1206 #endif
1207 /*
1208 * sigaltstack should be cleared when sharing the same VM
1209 */
1210 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1211 p->sas_ss_sp = p->sas_ss_size = 0;
1212
1213 /*
1214 * Syscall tracing and stepping should be turned off in the
1215 * child regardless of CLONE_PTRACE.
1216 */
1217 user_disable_single_step(p);
1218 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1219 #ifdef TIF_SYSCALL_EMU
1220 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1221 #endif
1222 clear_all_latency_tracing(p);
1223
1224 /* ok, now we should be set up.. */
1225 p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL);
1226 p->pdeath_signal = 0;
1227 p->exit_state = 0;
1228
1229 /*
1230 * Ok, make it visible to the rest of the system.
1231 * We dont wake it up yet.
1232 */
1233 p->group_leader = p;
1234 INIT_LIST_HEAD(&p->thread_group);
1235
1236 /* Now that the task is set up, run cgroup callbacks if
1237 * necessary. We need to run them before the task is visible
1238 * on the tasklist. */
1239 cgroup_fork_callbacks(p);
1240 cgroup_callbacks_done = 1;
1241
1242 /* Need tasklist lock for parent etc handling! */
1243 write_lock_irq(&tasklist_lock);
1244
1245 /* CLONE_PARENT re-uses the old parent */
1246 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1247 p->real_parent = current->real_parent;
1248 p->parent_exec_id = current->parent_exec_id;
1249 } else {
1250 p->real_parent = current;
1251 p->parent_exec_id = current->self_exec_id;
1252 }
1253
1254 spin_lock(&current->sighand->siglock);
1255
1256 /*
1257 * Process group and session signals need to be delivered to just the
1258 * parent before the fork or both the parent and the child after the
1259 * fork. Restart if a signal comes in before we add the new process to
1260 * it's process group.
1261 * A fatal signal pending means that current will exit, so the new
1262 * thread can't slip out of an OOM kill (or normal SIGKILL).
1263 */
1264 recalc_sigpending();
1265 if (signal_pending(current)) {
1266 spin_unlock(&current->sighand->siglock);
1267 write_unlock_irq(&tasklist_lock);
1268 retval = -ERESTARTNOINTR;
1269 goto bad_fork_free_pid;
1270 }
1271
1272 if (clone_flags & CLONE_THREAD) {
1273 atomic_inc(&current->signal->count);
1274 atomic_inc(&current->signal->live);
1275 p->group_leader = current->group_leader;
1276 list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
1277 }
1278
1279 if (likely(p->pid)) {
1280 tracehook_finish_clone(p, clone_flags, trace);
1281
1282 if (thread_group_leader(p)) {
1283 if (clone_flags & CLONE_NEWPID)
1284 p->nsproxy->pid_ns->child_reaper = p;
1285
1286 p->signal->leader_pid = pid;
1287 tty_kref_put(p->signal->tty);
1288 p->signal->tty = tty_kref_get(current->signal->tty);
1289 attach_pid(p, PIDTYPE_PGID, task_pgrp(current));
1290 attach_pid(p, PIDTYPE_SID, task_session(current));
1291 list_add_tail(&p->sibling, &p->real_parent->children);
1292 list_add_tail_rcu(&p->tasks, &init_task.tasks);
1293 __get_cpu_var(process_counts)++;
1294 }
1295 attach_pid(p, PIDTYPE_PID, pid);
1296 nr_threads++;
1297 }
1298
1299 total_forks++;
1300 spin_unlock(&current->sighand->siglock);
1301 write_unlock_irq(&tasklist_lock);
1302 proc_fork_connector(p);
1303 cgroup_post_fork(p);
1304 perf_event_fork(p);
1305 return p;
1306
1307 bad_fork_free_pid:
1308 if (pid != &init_struct_pid)
1309 free_pid(pid);
1310 bad_fork_cleanup_io:
1311 if (p->io_context)
1312 exit_io_context(p);
1313 bad_fork_cleanup_namespaces:
1314 exit_task_namespaces(p);
1315 bad_fork_cleanup_mm:
1316 if (p->mm)
1317 mmput(p->mm);
1318 bad_fork_cleanup_signal:
1319 if (!(clone_flags & CLONE_THREAD))
1320 __cleanup_signal(p->signal);
1321 bad_fork_cleanup_sighand:
1322 __cleanup_sighand(p->sighand);
1323 bad_fork_cleanup_fs:
1324 exit_fs(p); /* blocking */
1325 bad_fork_cleanup_files:
1326 exit_files(p); /* blocking */
1327 bad_fork_cleanup_semundo:
1328 exit_sem(p);
1329 bad_fork_cleanup_audit:
1330 audit_free(p);
1331 bad_fork_cleanup_policy:
1332 perf_event_free_task(p);
1333 #ifdef CONFIG_NUMA
1334 mpol_put(p->mempolicy);
1335 bad_fork_cleanup_cgroup:
1336 #endif
1337 cgroup_exit(p, cgroup_callbacks_done);
1338 delayacct_tsk_free(p);
1339 module_put(task_thread_info(p)->exec_domain->module);
1340 bad_fork_cleanup_count:
1341 atomic_dec(&p->cred->user->processes);
1342 exit_creds(p);
1343 bad_fork_free:
1344 free_task(p);
1345 fork_out:
1346 return ERR_PTR(retval);
1347 }
1348
1349 noinline struct pt_regs * __cpuinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
1350 {
1351 memset(regs, 0, sizeof(struct pt_regs));
1352 return regs;
1353 }
1354
1355 struct task_struct * __cpuinit fork_idle(int cpu)
1356 {
1357 struct task_struct *task;
1358 struct pt_regs regs;
1359
1360 task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL,
1361 &init_struct_pid, 0);
1362 if (!IS_ERR(task))
1363 init_idle(task, cpu);
1364
1365 return task;
1366 }
1367
1368 /*
1369 * Ok, this is the main fork-routine.
1370 *
1371 * It copies the process, and if successful kick-starts
1372 * it and waits for it to finish using the VM if required.
1373 */
1374 long do_fork(unsigned long clone_flags,
1375 unsigned long stack_start,
1376 struct pt_regs *regs,
1377 unsigned long stack_size,
1378 int __user *parent_tidptr,
1379 int __user *child_tidptr)
1380 {
1381 struct task_struct *p;
1382 int trace = 0;
1383 long nr;
1384
1385 /*
1386 * Do some preliminary argument and permissions checking before we
1387 * actually start allocating stuff
1388 */
1389 if (clone_flags & CLONE_NEWUSER) {
1390 if (clone_flags & CLONE_THREAD)
1391 return -EINVAL;
1392 /* hopefully this check will go away when userns support is
1393 * complete
1394 */
1395 if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SETUID) ||
1396 !capable(CAP_SETGID))
1397 return -EPERM;
1398 }
1399
1400 /*
1401 * We hope to recycle these flags after 2.6.26
1402 */
1403 if (unlikely(clone_flags & CLONE_STOPPED)) {
1404 static int __read_mostly count = 100;
1405
1406 if (count > 0 && printk_ratelimit()) {
1407 char comm[TASK_COMM_LEN];
1408
1409 count--;
1410 printk(KERN_INFO "fork(): process `%s' used deprecated "
1411 "clone flags 0x%lx\n",
1412 get_task_comm(comm, current),
1413 clone_flags & CLONE_STOPPED);
1414 }
1415 }
1416
1417 /*
1418 * When called from kernel_thread, don't do user tracing stuff.
1419 */
1420 if (likely(user_mode(regs)))
1421 trace = tracehook_prepare_clone(clone_flags);
1422
1423 p = copy_process(clone_flags, stack_start, regs, stack_size,
1424 child_tidptr, NULL, trace);
1425 /*
1426 * Do this prior waking up the new thread - the thread pointer
1427 * might get invalid after that point, if the thread exits quickly.
1428 */
1429 if (!IS_ERR(p)) {
1430 struct completion vfork;
1431
1432 trace_sched_process_fork(current, p);
1433
1434 nr = task_pid_vnr(p);
1435
1436 if (clone_flags & CLONE_PARENT_SETTID)
1437 put_user(nr, parent_tidptr);
1438
1439 if (clone_flags & CLONE_VFORK) {
1440 p->vfork_done = &vfork;
1441 init_completion(&vfork);
1442 }
1443
1444 audit_finish_fork(p);
1445 tracehook_report_clone(regs, clone_flags, nr, p);
1446
1447 /*
1448 * We set PF_STARTING at creation in case tracing wants to
1449 * use this to distinguish a fully live task from one that
1450 * hasn't gotten to tracehook_report_clone() yet. Now we
1451 * clear it and set the child going.
1452 */
1453 p->flags &= ~PF_STARTING;
1454
1455 if (unlikely(clone_flags & CLONE_STOPPED)) {
1456 /*
1457 * We'll start up with an immediate SIGSTOP.
1458 */
1459 sigaddset(&p->pending.signal, SIGSTOP);
1460 set_tsk_thread_flag(p, TIF_SIGPENDING);
1461 __set_task_state(p, TASK_STOPPED);
1462 } else {
1463 wake_up_new_task(p, clone_flags);
1464 }
1465
1466 tracehook_report_clone_complete(trace, regs,
1467 clone_flags, nr, p);
1468
1469 if (clone_flags & CLONE_VFORK) {
1470 freezer_do_not_count();
1471 wait_for_completion(&vfork);
1472 freezer_count();
1473 tracehook_report_vfork_done(p, nr);
1474 }
1475 } else {
1476 nr = PTR_ERR(p);
1477 }
1478 return nr;
1479 }
1480
1481 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1482 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1483 #endif
1484
1485 static void sighand_ctor(void *data)
1486 {
1487 struct sighand_struct *sighand = data;
1488
1489 spin_lock_init(&sighand->siglock);
1490 init_waitqueue_head(&sighand->signalfd_wqh);
1491 }
1492
1493 void __init proc_caches_init(void)
1494 {
1495 sighand_cachep = kmem_cache_create("sighand_cache",
1496 sizeof(struct sighand_struct), 0,
1497 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
1498 SLAB_NOTRACK, sighand_ctor);
1499 signal_cachep = kmem_cache_create("signal_cache",
1500 sizeof(struct signal_struct), 0,
1501 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1502 files_cachep = kmem_cache_create("files_cache",
1503 sizeof(struct files_struct), 0,
1504 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1505 fs_cachep = kmem_cache_create("fs_cache",
1506 sizeof(struct fs_struct), 0,
1507 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1508 mm_cachep = kmem_cache_create("mm_struct",
1509 sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1510 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1511 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC);
1512 mmap_init();
1513 }
1514
1515 /*
1516 * Check constraints on flags passed to the unshare system call and
1517 * force unsharing of additional process context as appropriate.
1518 */
1519 static void check_unshare_flags(unsigned long *flags_ptr)
1520 {
1521 /*
1522 * If unsharing a thread from a thread group, must also
1523 * unshare vm.
1524 */
1525 if (*flags_ptr & CLONE_THREAD)
1526 *flags_ptr |= CLONE_VM;
1527
1528 /*
1529 * If unsharing vm, must also unshare signal handlers.
1530 */
1531 if (*flags_ptr & CLONE_VM)
1532 *flags_ptr |= CLONE_SIGHAND;
1533
1534 /*
1535 * If unsharing signal handlers and the task was created
1536 * using CLONE_THREAD, then must unshare the thread
1537 */
1538 if ((*flags_ptr & CLONE_SIGHAND) &&
1539 (atomic_read(&current->signal->count) > 1))
1540 *flags_ptr |= CLONE_THREAD;
1541
1542 /*
1543 * If unsharing namespace, must also unshare filesystem information.
1544 */
1545 if (*flags_ptr & CLONE_NEWNS)
1546 *flags_ptr |= CLONE_FS;
1547 }
1548
1549 /*
1550 * Unsharing of tasks created with CLONE_THREAD is not supported yet
1551 */
1552 static int unshare_thread(unsigned long unshare_flags)
1553 {
1554 if (unshare_flags & CLONE_THREAD)
1555 return -EINVAL;
1556
1557 return 0;
1558 }
1559
1560 /*
1561 * Unshare the filesystem structure if it is being shared
1562 */
1563 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1564 {
1565 struct fs_struct *fs = current->fs;
1566
1567 if (!(unshare_flags & CLONE_FS) || !fs)
1568 return 0;
1569
1570 /* don't need lock here; in the worst case we'll do useless copy */
1571 if (fs->users == 1)
1572 return 0;
1573
1574 *new_fsp = copy_fs_struct(fs);
1575 if (!*new_fsp)
1576 return -ENOMEM;
1577
1578 return 0;
1579 }
1580
1581 /*
1582 * Unsharing of sighand is not supported yet
1583 */
1584 static int unshare_sighand(unsigned long unshare_flags, struct sighand_struct **new_sighp)
1585 {
1586 struct sighand_struct *sigh = current->sighand;
1587
1588 if ((unshare_flags & CLONE_SIGHAND) && atomic_read(&sigh->count) > 1)
1589 return -EINVAL;
1590 else
1591 return 0;
1592 }
1593
1594 /*
1595 * Unshare vm if it is being shared
1596 */
1597 static int unshare_vm(unsigned long unshare_flags, struct mm_struct **new_mmp)
1598 {
1599 struct mm_struct *mm = current->mm;
1600
1601 if ((unshare_flags & CLONE_VM) &&
1602 (mm && atomic_read(&mm->mm_users) > 1)) {
1603 return -EINVAL;
1604 }
1605
1606 return 0;
1607 }
1608
1609 /*
1610 * Unshare file descriptor table if it is being shared
1611 */
1612 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1613 {
1614 struct files_struct *fd = current->files;
1615 int error = 0;
1616
1617 if ((unshare_flags & CLONE_FILES) &&
1618 (fd && atomic_read(&fd->count) > 1)) {
1619 *new_fdp = dup_fd(fd, &error);
1620 if (!*new_fdp)
1621 return error;
1622 }
1623
1624 return 0;
1625 }
1626
1627 /*
1628 * unshare allows a process to 'unshare' part of the process
1629 * context which was originally shared using clone. copy_*
1630 * functions used by do_fork() cannot be used here directly
1631 * because they modify an inactive task_struct that is being
1632 * constructed. Here we are modifying the current, active,
1633 * task_struct.
1634 */
1635 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
1636 {
1637 int err = 0;
1638 struct fs_struct *fs, *new_fs = NULL;
1639 struct sighand_struct *new_sigh = NULL;
1640 struct mm_struct *mm, *new_mm = NULL, *active_mm = NULL;
1641 struct files_struct *fd, *new_fd = NULL;
1642 struct nsproxy *new_nsproxy = NULL;
1643 int do_sysvsem = 0;
1644
1645 check_unshare_flags(&unshare_flags);
1646
1647 /* Return -EINVAL for all unsupported flags */
1648 err = -EINVAL;
1649 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1650 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1651 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET))
1652 goto bad_unshare_out;
1653
1654 /*
1655 * CLONE_NEWIPC must also detach from the undolist: after switching
1656 * to a new ipc namespace, the semaphore arrays from the old
1657 * namespace are unreachable.
1658 */
1659 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
1660 do_sysvsem = 1;
1661 if ((err = unshare_thread(unshare_flags)))
1662 goto bad_unshare_out;
1663 if ((err = unshare_fs(unshare_flags, &new_fs)))
1664 goto bad_unshare_cleanup_thread;
1665 if ((err = unshare_sighand(unshare_flags, &new_sigh)))
1666 goto bad_unshare_cleanup_fs;
1667 if ((err = unshare_vm(unshare_flags, &new_mm)))
1668 goto bad_unshare_cleanup_sigh;
1669 if ((err = unshare_fd(unshare_flags, &new_fd)))
1670 goto bad_unshare_cleanup_vm;
1671 if ((err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
1672 new_fs)))
1673 goto bad_unshare_cleanup_fd;
1674
1675 if (new_fs || new_mm || new_fd || do_sysvsem || new_nsproxy) {
1676 if (do_sysvsem) {
1677 /*
1678 * CLONE_SYSVSEM is equivalent to sys_exit().
1679 */
1680 exit_sem(current);
1681 }
1682
1683 if (new_nsproxy) {
1684 switch_task_namespaces(current, new_nsproxy);
1685 new_nsproxy = NULL;
1686 }
1687
1688 task_lock(current);
1689
1690 if (new_fs) {
1691 fs = current->fs;
1692 write_lock(&fs->lock);
1693 current->fs = new_fs;
1694 if (--fs->users)
1695 new_fs = NULL;
1696 else
1697 new_fs = fs;
1698 write_unlock(&fs->lock);
1699 }
1700
1701 if (new_mm) {
1702 mm = current->mm;
1703 active_mm = current->active_mm;
1704 current->mm = new_mm;
1705 current->active_mm = new_mm;
1706 activate_mm(active_mm, new_mm);
1707 new_mm = mm;
1708 }
1709
1710 if (new_fd) {
1711 fd = current->files;
1712 current->files = new_fd;
1713 new_fd = fd;
1714 }
1715
1716 task_unlock(current);
1717 }
1718
1719 if (new_nsproxy)
1720 put_nsproxy(new_nsproxy);
1721
1722 bad_unshare_cleanup_fd:
1723 if (new_fd)
1724 put_files_struct(new_fd);
1725
1726 bad_unshare_cleanup_vm:
1727 if (new_mm)
1728 mmput(new_mm);
1729
1730 bad_unshare_cleanup_sigh:
1731 if (new_sigh)
1732 if (atomic_dec_and_test(&new_sigh->count))
1733 kmem_cache_free(sighand_cachep, new_sigh);
1734
1735 bad_unshare_cleanup_fs:
1736 if (new_fs)
1737 free_fs_struct(new_fs);
1738
1739 bad_unshare_cleanup_thread:
1740 bad_unshare_out:
1741 return err;
1742 }
1743
1744 /*
1745 * Helper to unshare the files of the current task.
1746 * We don't want to expose copy_files internals to
1747 * the exec layer of the kernel.
1748 */
1749
1750 int unshare_files(struct files_struct **displaced)
1751 {
1752 struct task_struct *task = current;
1753 struct files_struct *copy = NULL;
1754 int error;
1755
1756 error = unshare_fd(CLONE_FILES, &copy);
1757 if (error || !copy) {
1758 *displaced = NULL;
1759 return error;
1760 }
1761 *displaced = task->files;
1762 task_lock(task);
1763 task->files = copy;
1764 task_unlock(task);
1765 return 0;
1766 }
This page took 0.067438 seconds and 5 git commands to generate.