[PATCH] BLOCK: Remove no-longer necessary linux/mpage.h inclusions [try #6]
[deliverable/linux.git] / kernel / fork.c
1 /*
2 * linux/kernel/fork.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * 'fork.c' contains the help-routines for the 'fork' system call
9 * (see also entry.S and others).
10 * Fork is rather simple, once you get the hang of it, but the memory
11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12 */
13
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/smp_lock.h>
18 #include <linux/module.h>
19 #include <linux/vmalloc.h>
20 #include <linux/completion.h>
21 #include <linux/namespace.h>
22 #include <linux/personality.h>
23 #include <linux/mempolicy.h>
24 #include <linux/sem.h>
25 #include <linux/file.h>
26 #include <linux/key.h>
27 #include <linux/binfmts.h>
28 #include <linux/mman.h>
29 #include <linux/fs.h>
30 #include <linux/capability.h>
31 #include <linux/cpu.h>
32 #include <linux/cpuset.h>
33 #include <linux/security.h>
34 #include <linux/swap.h>
35 #include <linux/syscalls.h>
36 #include <linux/jiffies.h>
37 #include <linux/futex.h>
38 #include <linux/rcupdate.h>
39 #include <linux/ptrace.h>
40 #include <linux/mount.h>
41 #include <linux/audit.h>
42 #include <linux/profile.h>
43 #include <linux/rmap.h>
44 #include <linux/acct.h>
45 #include <linux/cn_proc.h>
46 #include <linux/delayacct.h>
47 #include <linux/taskstats_kern.h>
48 #include <linux/random.h>
49
50 #include <asm/pgtable.h>
51 #include <asm/pgalloc.h>
52 #include <asm/uaccess.h>
53 #include <asm/mmu_context.h>
54 #include <asm/cacheflush.h>
55 #include <asm/tlbflush.h>
56
57 /*
58 * Protected counters by write_lock_irq(&tasklist_lock)
59 */
60 unsigned long total_forks; /* Handle normal Linux uptimes. */
61 int nr_threads; /* The idle threads do not count.. */
62
63 int max_threads; /* tunable limit on nr_threads */
64
65 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
66
67 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
68
69 int nr_processes(void)
70 {
71 int cpu;
72 int total = 0;
73
74 for_each_online_cpu(cpu)
75 total += per_cpu(process_counts, cpu);
76
77 return total;
78 }
79
80 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
81 # define alloc_task_struct() kmem_cache_alloc(task_struct_cachep, GFP_KERNEL)
82 # define free_task_struct(tsk) kmem_cache_free(task_struct_cachep, (tsk))
83 static kmem_cache_t *task_struct_cachep;
84 #endif
85
86 /* SLAB cache for signal_struct structures (tsk->signal) */
87 static kmem_cache_t *signal_cachep;
88
89 /* SLAB cache for sighand_struct structures (tsk->sighand) */
90 kmem_cache_t *sighand_cachep;
91
92 /* SLAB cache for files_struct structures (tsk->files) */
93 kmem_cache_t *files_cachep;
94
95 /* SLAB cache for fs_struct structures (tsk->fs) */
96 kmem_cache_t *fs_cachep;
97
98 /* SLAB cache for vm_area_struct structures */
99 kmem_cache_t *vm_area_cachep;
100
101 /* SLAB cache for mm_struct structures (tsk->mm) */
102 static kmem_cache_t *mm_cachep;
103
104 void free_task(struct task_struct *tsk)
105 {
106 free_thread_info(tsk->thread_info);
107 rt_mutex_debug_task_free(tsk);
108 free_task_struct(tsk);
109 }
110 EXPORT_SYMBOL(free_task);
111
112 void __put_task_struct(struct task_struct *tsk)
113 {
114 WARN_ON(!(tsk->exit_state & (EXIT_DEAD | EXIT_ZOMBIE)));
115 WARN_ON(atomic_read(&tsk->usage));
116 WARN_ON(tsk == current);
117
118 security_task_free(tsk);
119 free_uid(tsk->user);
120 put_group_info(tsk->group_info);
121 delayacct_tsk_free(tsk);
122
123 if (!profile_handoff_task(tsk))
124 free_task(tsk);
125 }
126
127 void __init fork_init(unsigned long mempages)
128 {
129 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
130 #ifndef ARCH_MIN_TASKALIGN
131 #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
132 #endif
133 /* create a slab on which task_structs can be allocated */
134 task_struct_cachep =
135 kmem_cache_create("task_struct", sizeof(struct task_struct),
136 ARCH_MIN_TASKALIGN, SLAB_PANIC, NULL, NULL);
137 #endif
138
139 /*
140 * The default maximum number of threads is set to a safe
141 * value: the thread structures can take up at most half
142 * of memory.
143 */
144 max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
145
146 /*
147 * we need to allow at least 20 threads to boot a system
148 */
149 if(max_threads < 20)
150 max_threads = 20;
151
152 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
153 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
154 init_task.signal->rlim[RLIMIT_SIGPENDING] =
155 init_task.signal->rlim[RLIMIT_NPROC];
156 }
157
158 static struct task_struct *dup_task_struct(struct task_struct *orig)
159 {
160 struct task_struct *tsk;
161 struct thread_info *ti;
162
163 prepare_to_copy(orig);
164
165 tsk = alloc_task_struct();
166 if (!tsk)
167 return NULL;
168
169 ti = alloc_thread_info(tsk);
170 if (!ti) {
171 free_task_struct(tsk);
172 return NULL;
173 }
174
175 *tsk = *orig;
176 tsk->thread_info = ti;
177 setup_thread_stack(tsk, orig);
178
179 #ifdef CONFIG_CC_STACKPROTECTOR
180 tsk->stack_canary = get_random_int();
181 #endif
182
183 /* One for us, one for whoever does the "release_task()" (usually parent) */
184 atomic_set(&tsk->usage,2);
185 atomic_set(&tsk->fs_excl, 0);
186 #ifdef CONFIG_BLK_DEV_IO_TRACE
187 tsk->btrace_seq = 0;
188 #endif
189 tsk->splice_pipe = NULL;
190 return tsk;
191 }
192
193 #ifdef CONFIG_MMU
194 static inline int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
195 {
196 struct vm_area_struct *mpnt, *tmp, **pprev;
197 struct rb_node **rb_link, *rb_parent;
198 int retval;
199 unsigned long charge;
200 struct mempolicy *pol;
201
202 down_write(&oldmm->mmap_sem);
203 flush_cache_mm(oldmm);
204 /*
205 * Not linked in yet - no deadlock potential:
206 */
207 down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
208
209 mm->locked_vm = 0;
210 mm->mmap = NULL;
211 mm->mmap_cache = NULL;
212 mm->free_area_cache = oldmm->mmap_base;
213 mm->cached_hole_size = ~0UL;
214 mm->map_count = 0;
215 cpus_clear(mm->cpu_vm_mask);
216 mm->mm_rb = RB_ROOT;
217 rb_link = &mm->mm_rb.rb_node;
218 rb_parent = NULL;
219 pprev = &mm->mmap;
220
221 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
222 struct file *file;
223
224 if (mpnt->vm_flags & VM_DONTCOPY) {
225 long pages = vma_pages(mpnt);
226 mm->total_vm -= pages;
227 vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
228 -pages);
229 continue;
230 }
231 charge = 0;
232 if (mpnt->vm_flags & VM_ACCOUNT) {
233 unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
234 if (security_vm_enough_memory(len))
235 goto fail_nomem;
236 charge = len;
237 }
238 tmp = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL);
239 if (!tmp)
240 goto fail_nomem;
241 *tmp = *mpnt;
242 pol = mpol_copy(vma_policy(mpnt));
243 retval = PTR_ERR(pol);
244 if (IS_ERR(pol))
245 goto fail_nomem_policy;
246 vma_set_policy(tmp, pol);
247 tmp->vm_flags &= ~VM_LOCKED;
248 tmp->vm_mm = mm;
249 tmp->vm_next = NULL;
250 anon_vma_link(tmp);
251 file = tmp->vm_file;
252 if (file) {
253 struct inode *inode = file->f_dentry->d_inode;
254 get_file(file);
255 if (tmp->vm_flags & VM_DENYWRITE)
256 atomic_dec(&inode->i_writecount);
257
258 /* insert tmp into the share list, just after mpnt */
259 spin_lock(&file->f_mapping->i_mmap_lock);
260 tmp->vm_truncate_count = mpnt->vm_truncate_count;
261 flush_dcache_mmap_lock(file->f_mapping);
262 vma_prio_tree_add(tmp, mpnt);
263 flush_dcache_mmap_unlock(file->f_mapping);
264 spin_unlock(&file->f_mapping->i_mmap_lock);
265 }
266
267 /*
268 * Link in the new vma and copy the page table entries.
269 */
270 *pprev = tmp;
271 pprev = &tmp->vm_next;
272
273 __vma_link_rb(mm, tmp, rb_link, rb_parent);
274 rb_link = &tmp->vm_rb.rb_right;
275 rb_parent = &tmp->vm_rb;
276
277 mm->map_count++;
278 retval = copy_page_range(mm, oldmm, mpnt);
279
280 if (tmp->vm_ops && tmp->vm_ops->open)
281 tmp->vm_ops->open(tmp);
282
283 if (retval)
284 goto out;
285 }
286 retval = 0;
287 out:
288 up_write(&mm->mmap_sem);
289 flush_tlb_mm(oldmm);
290 up_write(&oldmm->mmap_sem);
291 return retval;
292 fail_nomem_policy:
293 kmem_cache_free(vm_area_cachep, tmp);
294 fail_nomem:
295 retval = -ENOMEM;
296 vm_unacct_memory(charge);
297 goto out;
298 }
299
300 static inline int mm_alloc_pgd(struct mm_struct * mm)
301 {
302 mm->pgd = pgd_alloc(mm);
303 if (unlikely(!mm->pgd))
304 return -ENOMEM;
305 return 0;
306 }
307
308 static inline void mm_free_pgd(struct mm_struct * mm)
309 {
310 pgd_free(mm->pgd);
311 }
312 #else
313 #define dup_mmap(mm, oldmm) (0)
314 #define mm_alloc_pgd(mm) (0)
315 #define mm_free_pgd(mm)
316 #endif /* CONFIG_MMU */
317
318 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
319
320 #define allocate_mm() (kmem_cache_alloc(mm_cachep, SLAB_KERNEL))
321 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
322
323 #include <linux/init_task.h>
324
325 static struct mm_struct * mm_init(struct mm_struct * mm)
326 {
327 atomic_set(&mm->mm_users, 1);
328 atomic_set(&mm->mm_count, 1);
329 init_rwsem(&mm->mmap_sem);
330 INIT_LIST_HEAD(&mm->mmlist);
331 mm->core_waiters = 0;
332 mm->nr_ptes = 0;
333 set_mm_counter(mm, file_rss, 0);
334 set_mm_counter(mm, anon_rss, 0);
335 spin_lock_init(&mm->page_table_lock);
336 rwlock_init(&mm->ioctx_list_lock);
337 mm->ioctx_list = NULL;
338 mm->free_area_cache = TASK_UNMAPPED_BASE;
339 mm->cached_hole_size = ~0UL;
340
341 if (likely(!mm_alloc_pgd(mm))) {
342 mm->def_flags = 0;
343 return mm;
344 }
345 free_mm(mm);
346 return NULL;
347 }
348
349 /*
350 * Allocate and initialize an mm_struct.
351 */
352 struct mm_struct * mm_alloc(void)
353 {
354 struct mm_struct * mm;
355
356 mm = allocate_mm();
357 if (mm) {
358 memset(mm, 0, sizeof(*mm));
359 mm = mm_init(mm);
360 }
361 return mm;
362 }
363
364 /*
365 * Called when the last reference to the mm
366 * is dropped: either by a lazy thread or by
367 * mmput. Free the page directory and the mm.
368 */
369 void fastcall __mmdrop(struct mm_struct *mm)
370 {
371 BUG_ON(mm == &init_mm);
372 mm_free_pgd(mm);
373 destroy_context(mm);
374 free_mm(mm);
375 }
376
377 /*
378 * Decrement the use count and release all resources for an mm.
379 */
380 void mmput(struct mm_struct *mm)
381 {
382 might_sleep();
383
384 if (atomic_dec_and_test(&mm->mm_users)) {
385 exit_aio(mm);
386 exit_mmap(mm);
387 if (!list_empty(&mm->mmlist)) {
388 spin_lock(&mmlist_lock);
389 list_del(&mm->mmlist);
390 spin_unlock(&mmlist_lock);
391 }
392 put_swap_token(mm);
393 mmdrop(mm);
394 }
395 }
396 EXPORT_SYMBOL_GPL(mmput);
397
398 /**
399 * get_task_mm - acquire a reference to the task's mm
400 *
401 * Returns %NULL if the task has no mm. Checks PF_BORROWED_MM (meaning
402 * this kernel workthread has transiently adopted a user mm with use_mm,
403 * to do its AIO) is not set and if so returns a reference to it, after
404 * bumping up the use count. User must release the mm via mmput()
405 * after use. Typically used by /proc and ptrace.
406 */
407 struct mm_struct *get_task_mm(struct task_struct *task)
408 {
409 struct mm_struct *mm;
410
411 task_lock(task);
412 mm = task->mm;
413 if (mm) {
414 if (task->flags & PF_BORROWED_MM)
415 mm = NULL;
416 else
417 atomic_inc(&mm->mm_users);
418 }
419 task_unlock(task);
420 return mm;
421 }
422 EXPORT_SYMBOL_GPL(get_task_mm);
423
424 /* Please note the differences between mmput and mm_release.
425 * mmput is called whenever we stop holding onto a mm_struct,
426 * error success whatever.
427 *
428 * mm_release is called after a mm_struct has been removed
429 * from the current process.
430 *
431 * This difference is important for error handling, when we
432 * only half set up a mm_struct for a new process and need to restore
433 * the old one. Because we mmput the new mm_struct before
434 * restoring the old one. . .
435 * Eric Biederman 10 January 1998
436 */
437 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
438 {
439 struct completion *vfork_done = tsk->vfork_done;
440
441 /* Get rid of any cached register state */
442 deactivate_mm(tsk, mm);
443
444 /* notify parent sleeping on vfork() */
445 if (vfork_done) {
446 tsk->vfork_done = NULL;
447 complete(vfork_done);
448 }
449 if (tsk->clear_child_tid && atomic_read(&mm->mm_users) > 1) {
450 u32 __user * tidptr = tsk->clear_child_tid;
451 tsk->clear_child_tid = NULL;
452
453 /*
454 * We don't check the error code - if userspace has
455 * not set up a proper pointer then tough luck.
456 */
457 put_user(0, tidptr);
458 sys_futex(tidptr, FUTEX_WAKE, 1, NULL, NULL, 0);
459 }
460 }
461
462 /*
463 * Allocate a new mm structure and copy contents from the
464 * mm structure of the passed in task structure.
465 */
466 static struct mm_struct *dup_mm(struct task_struct *tsk)
467 {
468 struct mm_struct *mm, *oldmm = current->mm;
469 int err;
470
471 if (!oldmm)
472 return NULL;
473
474 mm = allocate_mm();
475 if (!mm)
476 goto fail_nomem;
477
478 memcpy(mm, oldmm, sizeof(*mm));
479
480 if (!mm_init(mm))
481 goto fail_nomem;
482
483 if (init_new_context(tsk, mm))
484 goto fail_nocontext;
485
486 err = dup_mmap(mm, oldmm);
487 if (err)
488 goto free_pt;
489
490 mm->hiwater_rss = get_mm_rss(mm);
491 mm->hiwater_vm = mm->total_vm;
492
493 return mm;
494
495 free_pt:
496 mmput(mm);
497
498 fail_nomem:
499 return NULL;
500
501 fail_nocontext:
502 /*
503 * If init_new_context() failed, we cannot use mmput() to free the mm
504 * because it calls destroy_context()
505 */
506 mm_free_pgd(mm);
507 free_mm(mm);
508 return NULL;
509 }
510
511 static int copy_mm(unsigned long clone_flags, struct task_struct * tsk)
512 {
513 struct mm_struct * mm, *oldmm;
514 int retval;
515
516 tsk->min_flt = tsk->maj_flt = 0;
517 tsk->nvcsw = tsk->nivcsw = 0;
518
519 tsk->mm = NULL;
520 tsk->active_mm = NULL;
521
522 /*
523 * Are we cloning a kernel thread?
524 *
525 * We need to steal a active VM for that..
526 */
527 oldmm = current->mm;
528 if (!oldmm)
529 return 0;
530
531 if (clone_flags & CLONE_VM) {
532 atomic_inc(&oldmm->mm_users);
533 mm = oldmm;
534 goto good_mm;
535 }
536
537 retval = -ENOMEM;
538 mm = dup_mm(tsk);
539 if (!mm)
540 goto fail_nomem;
541
542 good_mm:
543 tsk->mm = mm;
544 tsk->active_mm = mm;
545 return 0;
546
547 fail_nomem:
548 return retval;
549 }
550
551 static inline struct fs_struct *__copy_fs_struct(struct fs_struct *old)
552 {
553 struct fs_struct *fs = kmem_cache_alloc(fs_cachep, GFP_KERNEL);
554 /* We don't need to lock fs - think why ;-) */
555 if (fs) {
556 atomic_set(&fs->count, 1);
557 rwlock_init(&fs->lock);
558 fs->umask = old->umask;
559 read_lock(&old->lock);
560 fs->rootmnt = mntget(old->rootmnt);
561 fs->root = dget(old->root);
562 fs->pwdmnt = mntget(old->pwdmnt);
563 fs->pwd = dget(old->pwd);
564 if (old->altroot) {
565 fs->altrootmnt = mntget(old->altrootmnt);
566 fs->altroot = dget(old->altroot);
567 } else {
568 fs->altrootmnt = NULL;
569 fs->altroot = NULL;
570 }
571 read_unlock(&old->lock);
572 }
573 return fs;
574 }
575
576 struct fs_struct *copy_fs_struct(struct fs_struct *old)
577 {
578 return __copy_fs_struct(old);
579 }
580
581 EXPORT_SYMBOL_GPL(copy_fs_struct);
582
583 static inline int copy_fs(unsigned long clone_flags, struct task_struct * tsk)
584 {
585 if (clone_flags & CLONE_FS) {
586 atomic_inc(&current->fs->count);
587 return 0;
588 }
589 tsk->fs = __copy_fs_struct(current->fs);
590 if (!tsk->fs)
591 return -ENOMEM;
592 return 0;
593 }
594
595 static int count_open_files(struct fdtable *fdt)
596 {
597 int size = fdt->max_fdset;
598 int i;
599
600 /* Find the last open fd */
601 for (i = size/(8*sizeof(long)); i > 0; ) {
602 if (fdt->open_fds->fds_bits[--i])
603 break;
604 }
605 i = (i+1) * 8 * sizeof(long);
606 return i;
607 }
608
609 static struct files_struct *alloc_files(void)
610 {
611 struct files_struct *newf;
612 struct fdtable *fdt;
613
614 newf = kmem_cache_alloc(files_cachep, SLAB_KERNEL);
615 if (!newf)
616 goto out;
617
618 atomic_set(&newf->count, 1);
619
620 spin_lock_init(&newf->file_lock);
621 newf->next_fd = 0;
622 fdt = &newf->fdtab;
623 fdt->max_fds = NR_OPEN_DEFAULT;
624 fdt->max_fdset = EMBEDDED_FD_SET_SIZE;
625 fdt->close_on_exec = (fd_set *)&newf->close_on_exec_init;
626 fdt->open_fds = (fd_set *)&newf->open_fds_init;
627 fdt->fd = &newf->fd_array[0];
628 INIT_RCU_HEAD(&fdt->rcu);
629 fdt->free_files = NULL;
630 fdt->next = NULL;
631 rcu_assign_pointer(newf->fdt, fdt);
632 out:
633 return newf;
634 }
635
636 /*
637 * Allocate a new files structure and copy contents from the
638 * passed in files structure.
639 * errorp will be valid only when the returned files_struct is NULL.
640 */
641 static struct files_struct *dup_fd(struct files_struct *oldf, int *errorp)
642 {
643 struct files_struct *newf;
644 struct file **old_fds, **new_fds;
645 int open_files, size, i, expand;
646 struct fdtable *old_fdt, *new_fdt;
647
648 *errorp = -ENOMEM;
649 newf = alloc_files();
650 if (!newf)
651 goto out;
652
653 spin_lock(&oldf->file_lock);
654 old_fdt = files_fdtable(oldf);
655 new_fdt = files_fdtable(newf);
656 size = old_fdt->max_fdset;
657 open_files = count_open_files(old_fdt);
658 expand = 0;
659
660 /*
661 * Check whether we need to allocate a larger fd array or fd set.
662 * Note: we're not a clone task, so the open count won't change.
663 */
664 if (open_files > new_fdt->max_fdset) {
665 new_fdt->max_fdset = 0;
666 expand = 1;
667 }
668 if (open_files > new_fdt->max_fds) {
669 new_fdt->max_fds = 0;
670 expand = 1;
671 }
672
673 /* if the old fdset gets grown now, we'll only copy up to "size" fds */
674 if (expand) {
675 spin_unlock(&oldf->file_lock);
676 spin_lock(&newf->file_lock);
677 *errorp = expand_files(newf, open_files-1);
678 spin_unlock(&newf->file_lock);
679 if (*errorp < 0)
680 goto out_release;
681 new_fdt = files_fdtable(newf);
682 /*
683 * Reacquire the oldf lock and a pointer to its fd table
684 * who knows it may have a new bigger fd table. We need
685 * the latest pointer.
686 */
687 spin_lock(&oldf->file_lock);
688 old_fdt = files_fdtable(oldf);
689 }
690
691 old_fds = old_fdt->fd;
692 new_fds = new_fdt->fd;
693
694 memcpy(new_fdt->open_fds->fds_bits, old_fdt->open_fds->fds_bits, open_files/8);
695 memcpy(new_fdt->close_on_exec->fds_bits, old_fdt->close_on_exec->fds_bits, open_files/8);
696
697 for (i = open_files; i != 0; i--) {
698 struct file *f = *old_fds++;
699 if (f) {
700 get_file(f);
701 } else {
702 /*
703 * The fd may be claimed in the fd bitmap but not yet
704 * instantiated in the files array if a sibling thread
705 * is partway through open(). So make sure that this
706 * fd is available to the new process.
707 */
708 FD_CLR(open_files - i, new_fdt->open_fds);
709 }
710 rcu_assign_pointer(*new_fds++, f);
711 }
712 spin_unlock(&oldf->file_lock);
713
714 /* compute the remainder to be cleared */
715 size = (new_fdt->max_fds - open_files) * sizeof(struct file *);
716
717 /* This is long word aligned thus could use a optimized version */
718 memset(new_fds, 0, size);
719
720 if (new_fdt->max_fdset > open_files) {
721 int left = (new_fdt->max_fdset-open_files)/8;
722 int start = open_files / (8 * sizeof(unsigned long));
723
724 memset(&new_fdt->open_fds->fds_bits[start], 0, left);
725 memset(&new_fdt->close_on_exec->fds_bits[start], 0, left);
726 }
727
728 out:
729 return newf;
730
731 out_release:
732 free_fdset (new_fdt->close_on_exec, new_fdt->max_fdset);
733 free_fdset (new_fdt->open_fds, new_fdt->max_fdset);
734 free_fd_array(new_fdt->fd, new_fdt->max_fds);
735 kmem_cache_free(files_cachep, newf);
736 return NULL;
737 }
738
739 static int copy_files(unsigned long clone_flags, struct task_struct * tsk)
740 {
741 struct files_struct *oldf, *newf;
742 int error = 0;
743
744 /*
745 * A background process may not have any files ...
746 */
747 oldf = current->files;
748 if (!oldf)
749 goto out;
750
751 if (clone_flags & CLONE_FILES) {
752 atomic_inc(&oldf->count);
753 goto out;
754 }
755
756 /*
757 * Note: we may be using current for both targets (See exec.c)
758 * This works because we cache current->files (old) as oldf. Don't
759 * break this.
760 */
761 tsk->files = NULL;
762 newf = dup_fd(oldf, &error);
763 if (!newf)
764 goto out;
765
766 tsk->files = newf;
767 error = 0;
768 out:
769 return error;
770 }
771
772 /*
773 * Helper to unshare the files of the current task.
774 * We don't want to expose copy_files internals to
775 * the exec layer of the kernel.
776 */
777
778 int unshare_files(void)
779 {
780 struct files_struct *files = current->files;
781 int rc;
782
783 BUG_ON(!files);
784
785 /* This can race but the race causes us to copy when we don't
786 need to and drop the copy */
787 if(atomic_read(&files->count) == 1)
788 {
789 atomic_inc(&files->count);
790 return 0;
791 }
792 rc = copy_files(0, current);
793 if(rc)
794 current->files = files;
795 return rc;
796 }
797
798 EXPORT_SYMBOL(unshare_files);
799
800 static inline int copy_sighand(unsigned long clone_flags, struct task_struct * tsk)
801 {
802 struct sighand_struct *sig;
803
804 if (clone_flags & (CLONE_SIGHAND | CLONE_THREAD)) {
805 atomic_inc(&current->sighand->count);
806 return 0;
807 }
808 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
809 rcu_assign_pointer(tsk->sighand, sig);
810 if (!sig)
811 return -ENOMEM;
812 atomic_set(&sig->count, 1);
813 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
814 return 0;
815 }
816
817 void __cleanup_sighand(struct sighand_struct *sighand)
818 {
819 if (atomic_dec_and_test(&sighand->count))
820 kmem_cache_free(sighand_cachep, sighand);
821 }
822
823 static inline int copy_signal(unsigned long clone_flags, struct task_struct * tsk)
824 {
825 struct signal_struct *sig;
826 int ret;
827
828 if (clone_flags & CLONE_THREAD) {
829 atomic_inc(&current->signal->count);
830 atomic_inc(&current->signal->live);
831 taskstats_tgid_alloc(current->signal);
832 return 0;
833 }
834 sig = kmem_cache_alloc(signal_cachep, GFP_KERNEL);
835 tsk->signal = sig;
836 if (!sig)
837 return -ENOMEM;
838
839 ret = copy_thread_group_keys(tsk);
840 if (ret < 0) {
841 kmem_cache_free(signal_cachep, sig);
842 return ret;
843 }
844
845 atomic_set(&sig->count, 1);
846 atomic_set(&sig->live, 1);
847 init_waitqueue_head(&sig->wait_chldexit);
848 sig->flags = 0;
849 sig->group_exit_code = 0;
850 sig->group_exit_task = NULL;
851 sig->group_stop_count = 0;
852 sig->curr_target = NULL;
853 init_sigpending(&sig->shared_pending);
854 INIT_LIST_HEAD(&sig->posix_timers);
855
856 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_REL);
857 sig->it_real_incr.tv64 = 0;
858 sig->real_timer.function = it_real_fn;
859 sig->tsk = tsk;
860
861 sig->it_virt_expires = cputime_zero;
862 sig->it_virt_incr = cputime_zero;
863 sig->it_prof_expires = cputime_zero;
864 sig->it_prof_incr = cputime_zero;
865
866 sig->leader = 0; /* session leadership doesn't inherit */
867 sig->tty_old_pgrp = 0;
868
869 sig->utime = sig->stime = sig->cutime = sig->cstime = cputime_zero;
870 sig->nvcsw = sig->nivcsw = sig->cnvcsw = sig->cnivcsw = 0;
871 sig->min_flt = sig->maj_flt = sig->cmin_flt = sig->cmaj_flt = 0;
872 sig->sched_time = 0;
873 INIT_LIST_HEAD(&sig->cpu_timers[0]);
874 INIT_LIST_HEAD(&sig->cpu_timers[1]);
875 INIT_LIST_HEAD(&sig->cpu_timers[2]);
876 taskstats_tgid_init(sig);
877
878 task_lock(current->group_leader);
879 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
880 task_unlock(current->group_leader);
881
882 if (sig->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) {
883 /*
884 * New sole thread in the process gets an expiry time
885 * of the whole CPU time limit.
886 */
887 tsk->it_prof_expires =
888 secs_to_cputime(sig->rlim[RLIMIT_CPU].rlim_cur);
889 }
890 acct_init_pacct(&sig->pacct);
891
892 return 0;
893 }
894
895 void __cleanup_signal(struct signal_struct *sig)
896 {
897 exit_thread_group_keys(sig);
898 taskstats_tgid_free(sig);
899 kmem_cache_free(signal_cachep, sig);
900 }
901
902 static inline void cleanup_signal(struct task_struct *tsk)
903 {
904 struct signal_struct *sig = tsk->signal;
905
906 atomic_dec(&sig->live);
907
908 if (atomic_dec_and_test(&sig->count))
909 __cleanup_signal(sig);
910 }
911
912 static inline void copy_flags(unsigned long clone_flags, struct task_struct *p)
913 {
914 unsigned long new_flags = p->flags;
915
916 new_flags &= ~(PF_SUPERPRIV | PF_NOFREEZE);
917 new_flags |= PF_FORKNOEXEC;
918 if (!(clone_flags & CLONE_PTRACE))
919 p->ptrace = 0;
920 p->flags = new_flags;
921 }
922
923 asmlinkage long sys_set_tid_address(int __user *tidptr)
924 {
925 current->clear_child_tid = tidptr;
926
927 return current->pid;
928 }
929
930 static inline void rt_mutex_init_task(struct task_struct *p)
931 {
932 #ifdef CONFIG_RT_MUTEXES
933 spin_lock_init(&p->pi_lock);
934 plist_head_init(&p->pi_waiters, &p->pi_lock);
935 p->pi_blocked_on = NULL;
936 #endif
937 }
938
939 /*
940 * This creates a new process as a copy of the old one,
941 * but does not actually start it yet.
942 *
943 * It copies the registers, and all the appropriate
944 * parts of the process environment (as per the clone
945 * flags). The actual kick-off is left to the caller.
946 */
947 static struct task_struct *copy_process(unsigned long clone_flags,
948 unsigned long stack_start,
949 struct pt_regs *regs,
950 unsigned long stack_size,
951 int __user *parent_tidptr,
952 int __user *child_tidptr,
953 int pid)
954 {
955 int retval;
956 struct task_struct *p = NULL;
957
958 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
959 return ERR_PTR(-EINVAL);
960
961 /*
962 * Thread groups must share signals as well, and detached threads
963 * can only be started up within the thread group.
964 */
965 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
966 return ERR_PTR(-EINVAL);
967
968 /*
969 * Shared signal handlers imply shared VM. By way of the above,
970 * thread groups also imply shared VM. Blocking this case allows
971 * for various simplifications in other code.
972 */
973 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
974 return ERR_PTR(-EINVAL);
975
976 retval = security_task_create(clone_flags);
977 if (retval)
978 goto fork_out;
979
980 retval = -ENOMEM;
981 p = dup_task_struct(current);
982 if (!p)
983 goto fork_out;
984
985 #ifdef CONFIG_TRACE_IRQFLAGS
986 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
987 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
988 #endif
989 retval = -EAGAIN;
990 if (atomic_read(&p->user->processes) >=
991 p->signal->rlim[RLIMIT_NPROC].rlim_cur) {
992 if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
993 p->user != &root_user)
994 goto bad_fork_free;
995 }
996
997 atomic_inc(&p->user->__count);
998 atomic_inc(&p->user->processes);
999 get_group_info(p->group_info);
1000
1001 /*
1002 * If multiple threads are within copy_process(), then this check
1003 * triggers too late. This doesn't hurt, the check is only there
1004 * to stop root fork bombs.
1005 */
1006 if (nr_threads >= max_threads)
1007 goto bad_fork_cleanup_count;
1008
1009 if (!try_module_get(task_thread_info(p)->exec_domain->module))
1010 goto bad_fork_cleanup_count;
1011
1012 if (p->binfmt && !try_module_get(p->binfmt->module))
1013 goto bad_fork_cleanup_put_domain;
1014
1015 p->did_exec = 0;
1016 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
1017 copy_flags(clone_flags, p);
1018 p->pid = pid;
1019 retval = -EFAULT;
1020 if (clone_flags & CLONE_PARENT_SETTID)
1021 if (put_user(p->pid, parent_tidptr))
1022 goto bad_fork_cleanup_delays_binfmt;
1023
1024 INIT_LIST_HEAD(&p->children);
1025 INIT_LIST_HEAD(&p->sibling);
1026 p->vfork_done = NULL;
1027 spin_lock_init(&p->alloc_lock);
1028
1029 clear_tsk_thread_flag(p, TIF_SIGPENDING);
1030 init_sigpending(&p->pending);
1031
1032 p->utime = cputime_zero;
1033 p->stime = cputime_zero;
1034 p->sched_time = 0;
1035 p->rchar = 0; /* I/O counter: bytes read */
1036 p->wchar = 0; /* I/O counter: bytes written */
1037 p->syscr = 0; /* I/O counter: read syscalls */
1038 p->syscw = 0; /* I/O counter: write syscalls */
1039 acct_clear_integrals(p);
1040
1041 p->it_virt_expires = cputime_zero;
1042 p->it_prof_expires = cputime_zero;
1043 p->it_sched_expires = 0;
1044 INIT_LIST_HEAD(&p->cpu_timers[0]);
1045 INIT_LIST_HEAD(&p->cpu_timers[1]);
1046 INIT_LIST_HEAD(&p->cpu_timers[2]);
1047
1048 p->lock_depth = -1; /* -1 = no lock */
1049 do_posix_clock_monotonic_gettime(&p->start_time);
1050 p->security = NULL;
1051 p->io_context = NULL;
1052 p->io_wait = NULL;
1053 p->audit_context = NULL;
1054 cpuset_fork(p);
1055 #ifdef CONFIG_NUMA
1056 p->mempolicy = mpol_copy(p->mempolicy);
1057 if (IS_ERR(p->mempolicy)) {
1058 retval = PTR_ERR(p->mempolicy);
1059 p->mempolicy = NULL;
1060 goto bad_fork_cleanup_cpuset;
1061 }
1062 mpol_fix_fork_child_flag(p);
1063 #endif
1064 #ifdef CONFIG_TRACE_IRQFLAGS
1065 p->irq_events = 0;
1066 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1067 p->hardirqs_enabled = 1;
1068 #else
1069 p->hardirqs_enabled = 0;
1070 #endif
1071 p->hardirq_enable_ip = 0;
1072 p->hardirq_enable_event = 0;
1073 p->hardirq_disable_ip = _THIS_IP_;
1074 p->hardirq_disable_event = 0;
1075 p->softirqs_enabled = 1;
1076 p->softirq_enable_ip = _THIS_IP_;
1077 p->softirq_enable_event = 0;
1078 p->softirq_disable_ip = 0;
1079 p->softirq_disable_event = 0;
1080 p->hardirq_context = 0;
1081 p->softirq_context = 0;
1082 #endif
1083 #ifdef CONFIG_LOCKDEP
1084 p->lockdep_depth = 0; /* no locks held yet */
1085 p->curr_chain_key = 0;
1086 p->lockdep_recursion = 0;
1087 #endif
1088
1089 rt_mutex_init_task(p);
1090
1091 #ifdef CONFIG_DEBUG_MUTEXES
1092 p->blocked_on = NULL; /* not blocked yet */
1093 #endif
1094
1095 p->tgid = p->pid;
1096 if (clone_flags & CLONE_THREAD)
1097 p->tgid = current->tgid;
1098
1099 if ((retval = security_task_alloc(p)))
1100 goto bad_fork_cleanup_policy;
1101 if ((retval = audit_alloc(p)))
1102 goto bad_fork_cleanup_security;
1103 /* copy all the process information */
1104 if ((retval = copy_semundo(clone_flags, p)))
1105 goto bad_fork_cleanup_audit;
1106 if ((retval = copy_files(clone_flags, p)))
1107 goto bad_fork_cleanup_semundo;
1108 if ((retval = copy_fs(clone_flags, p)))
1109 goto bad_fork_cleanup_files;
1110 if ((retval = copy_sighand(clone_flags, p)))
1111 goto bad_fork_cleanup_fs;
1112 if ((retval = copy_signal(clone_flags, p)))
1113 goto bad_fork_cleanup_sighand;
1114 if ((retval = copy_mm(clone_flags, p)))
1115 goto bad_fork_cleanup_signal;
1116 if ((retval = copy_keys(clone_flags, p)))
1117 goto bad_fork_cleanup_mm;
1118 if ((retval = copy_namespace(clone_flags, p)))
1119 goto bad_fork_cleanup_keys;
1120 retval = copy_thread(0, clone_flags, stack_start, stack_size, p, regs);
1121 if (retval)
1122 goto bad_fork_cleanup_namespace;
1123
1124 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1125 /*
1126 * Clear TID on mm_release()?
1127 */
1128 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr: NULL;
1129 p->robust_list = NULL;
1130 #ifdef CONFIG_COMPAT
1131 p->compat_robust_list = NULL;
1132 #endif
1133 INIT_LIST_HEAD(&p->pi_state_list);
1134 p->pi_state_cache = NULL;
1135
1136 /*
1137 * sigaltstack should be cleared when sharing the same VM
1138 */
1139 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1140 p->sas_ss_sp = p->sas_ss_size = 0;
1141
1142 /*
1143 * Syscall tracing should be turned off in the child regardless
1144 * of CLONE_PTRACE.
1145 */
1146 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1147 #ifdef TIF_SYSCALL_EMU
1148 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1149 #endif
1150
1151 /* Our parent execution domain becomes current domain
1152 These must match for thread signalling to apply */
1153 p->parent_exec_id = p->self_exec_id;
1154
1155 /* ok, now we should be set up.. */
1156 p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL);
1157 p->pdeath_signal = 0;
1158 p->exit_state = 0;
1159
1160 /*
1161 * Ok, make it visible to the rest of the system.
1162 * We dont wake it up yet.
1163 */
1164 p->group_leader = p;
1165 INIT_LIST_HEAD(&p->thread_group);
1166 INIT_LIST_HEAD(&p->ptrace_children);
1167 INIT_LIST_HEAD(&p->ptrace_list);
1168
1169 /* Perform scheduler related setup. Assign this task to a CPU. */
1170 sched_fork(p, clone_flags);
1171
1172 /* Need tasklist lock for parent etc handling! */
1173 write_lock_irq(&tasklist_lock);
1174
1175 /* for sys_ioprio_set(IOPRIO_WHO_PGRP) */
1176 p->ioprio = current->ioprio;
1177
1178 /*
1179 * The task hasn't been attached yet, so its cpus_allowed mask will
1180 * not be changed, nor will its assigned CPU.
1181 *
1182 * The cpus_allowed mask of the parent may have changed after it was
1183 * copied first time - so re-copy it here, then check the child's CPU
1184 * to ensure it is on a valid CPU (and if not, just force it back to
1185 * parent's CPU). This avoids alot of nasty races.
1186 */
1187 p->cpus_allowed = current->cpus_allowed;
1188 if (unlikely(!cpu_isset(task_cpu(p), p->cpus_allowed) ||
1189 !cpu_online(task_cpu(p))))
1190 set_task_cpu(p, smp_processor_id());
1191
1192 /* CLONE_PARENT re-uses the old parent */
1193 if (clone_flags & (CLONE_PARENT|CLONE_THREAD))
1194 p->real_parent = current->real_parent;
1195 else
1196 p->real_parent = current;
1197 p->parent = p->real_parent;
1198
1199 spin_lock(&current->sighand->siglock);
1200
1201 /*
1202 * Process group and session signals need to be delivered to just the
1203 * parent before the fork or both the parent and the child after the
1204 * fork. Restart if a signal comes in before we add the new process to
1205 * it's process group.
1206 * A fatal signal pending means that current will exit, so the new
1207 * thread can't slip out of an OOM kill (or normal SIGKILL).
1208 */
1209 recalc_sigpending();
1210 if (signal_pending(current)) {
1211 spin_unlock(&current->sighand->siglock);
1212 write_unlock_irq(&tasklist_lock);
1213 retval = -ERESTARTNOINTR;
1214 goto bad_fork_cleanup_namespace;
1215 }
1216
1217 if (clone_flags & CLONE_THREAD) {
1218 p->group_leader = current->group_leader;
1219 list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
1220
1221 if (!cputime_eq(current->signal->it_virt_expires,
1222 cputime_zero) ||
1223 !cputime_eq(current->signal->it_prof_expires,
1224 cputime_zero) ||
1225 current->signal->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY ||
1226 !list_empty(&current->signal->cpu_timers[0]) ||
1227 !list_empty(&current->signal->cpu_timers[1]) ||
1228 !list_empty(&current->signal->cpu_timers[2])) {
1229 /*
1230 * Have child wake up on its first tick to check
1231 * for process CPU timers.
1232 */
1233 p->it_prof_expires = jiffies_to_cputime(1);
1234 }
1235 }
1236
1237 if (likely(p->pid)) {
1238 add_parent(p);
1239 if (unlikely(p->ptrace & PT_PTRACED))
1240 __ptrace_link(p, current->parent);
1241
1242 if (thread_group_leader(p)) {
1243 p->signal->tty = current->signal->tty;
1244 p->signal->pgrp = process_group(current);
1245 p->signal->session = current->signal->session;
1246 attach_pid(p, PIDTYPE_PGID, process_group(p));
1247 attach_pid(p, PIDTYPE_SID, p->signal->session);
1248
1249 list_add_tail_rcu(&p->tasks, &init_task.tasks);
1250 __get_cpu_var(process_counts)++;
1251 }
1252 attach_pid(p, PIDTYPE_PID, p->pid);
1253 nr_threads++;
1254 }
1255
1256 total_forks++;
1257 spin_unlock(&current->sighand->siglock);
1258 write_unlock_irq(&tasklist_lock);
1259 proc_fork_connector(p);
1260 return p;
1261
1262 bad_fork_cleanup_namespace:
1263 exit_namespace(p);
1264 bad_fork_cleanup_keys:
1265 exit_keys(p);
1266 bad_fork_cleanup_mm:
1267 if (p->mm)
1268 mmput(p->mm);
1269 bad_fork_cleanup_signal:
1270 cleanup_signal(p);
1271 bad_fork_cleanup_sighand:
1272 __cleanup_sighand(p->sighand);
1273 bad_fork_cleanup_fs:
1274 exit_fs(p); /* blocking */
1275 bad_fork_cleanup_files:
1276 exit_files(p); /* blocking */
1277 bad_fork_cleanup_semundo:
1278 exit_sem(p);
1279 bad_fork_cleanup_audit:
1280 audit_free(p);
1281 bad_fork_cleanup_security:
1282 security_task_free(p);
1283 bad_fork_cleanup_policy:
1284 #ifdef CONFIG_NUMA
1285 mpol_free(p->mempolicy);
1286 bad_fork_cleanup_cpuset:
1287 #endif
1288 cpuset_exit(p);
1289 bad_fork_cleanup_delays_binfmt:
1290 delayacct_tsk_free(p);
1291 if (p->binfmt)
1292 module_put(p->binfmt->module);
1293 bad_fork_cleanup_put_domain:
1294 module_put(task_thread_info(p)->exec_domain->module);
1295 bad_fork_cleanup_count:
1296 put_group_info(p->group_info);
1297 atomic_dec(&p->user->processes);
1298 free_uid(p->user);
1299 bad_fork_free:
1300 free_task(p);
1301 fork_out:
1302 return ERR_PTR(retval);
1303 }
1304
1305 struct pt_regs * __devinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
1306 {
1307 memset(regs, 0, sizeof(struct pt_regs));
1308 return regs;
1309 }
1310
1311 struct task_struct * __devinit fork_idle(int cpu)
1312 {
1313 struct task_struct *task;
1314 struct pt_regs regs;
1315
1316 task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL, NULL, 0);
1317 if (!task)
1318 return ERR_PTR(-ENOMEM);
1319 init_idle(task, cpu);
1320
1321 return task;
1322 }
1323
1324 static inline int fork_traceflag (unsigned clone_flags)
1325 {
1326 if (clone_flags & CLONE_UNTRACED)
1327 return 0;
1328 else if (clone_flags & CLONE_VFORK) {
1329 if (current->ptrace & PT_TRACE_VFORK)
1330 return PTRACE_EVENT_VFORK;
1331 } else if ((clone_flags & CSIGNAL) != SIGCHLD) {
1332 if (current->ptrace & PT_TRACE_CLONE)
1333 return PTRACE_EVENT_CLONE;
1334 } else if (current->ptrace & PT_TRACE_FORK)
1335 return PTRACE_EVENT_FORK;
1336
1337 return 0;
1338 }
1339
1340 /*
1341 * Ok, this is the main fork-routine.
1342 *
1343 * It copies the process, and if successful kick-starts
1344 * it and waits for it to finish using the VM if required.
1345 */
1346 long do_fork(unsigned long clone_flags,
1347 unsigned long stack_start,
1348 struct pt_regs *regs,
1349 unsigned long stack_size,
1350 int __user *parent_tidptr,
1351 int __user *child_tidptr)
1352 {
1353 struct task_struct *p;
1354 int trace = 0;
1355 struct pid *pid = alloc_pid();
1356 long nr;
1357
1358 if (!pid)
1359 return -EAGAIN;
1360 nr = pid->nr;
1361 if (unlikely(current->ptrace)) {
1362 trace = fork_traceflag (clone_flags);
1363 if (trace)
1364 clone_flags |= CLONE_PTRACE;
1365 }
1366
1367 p = copy_process(clone_flags, stack_start, regs, stack_size, parent_tidptr, child_tidptr, nr);
1368 /*
1369 * Do this prior waking up the new thread - the thread pointer
1370 * might get invalid after that point, if the thread exits quickly.
1371 */
1372 if (!IS_ERR(p)) {
1373 struct completion vfork;
1374
1375 if (clone_flags & CLONE_VFORK) {
1376 p->vfork_done = &vfork;
1377 init_completion(&vfork);
1378 }
1379
1380 if ((p->ptrace & PT_PTRACED) || (clone_flags & CLONE_STOPPED)) {
1381 /*
1382 * We'll start up with an immediate SIGSTOP.
1383 */
1384 sigaddset(&p->pending.signal, SIGSTOP);
1385 set_tsk_thread_flag(p, TIF_SIGPENDING);
1386 }
1387
1388 if (!(clone_flags & CLONE_STOPPED))
1389 wake_up_new_task(p, clone_flags);
1390 else
1391 p->state = TASK_STOPPED;
1392
1393 if (unlikely (trace)) {
1394 current->ptrace_message = nr;
1395 ptrace_notify ((trace << 8) | SIGTRAP);
1396 }
1397
1398 if (clone_flags & CLONE_VFORK) {
1399 wait_for_completion(&vfork);
1400 if (unlikely (current->ptrace & PT_TRACE_VFORK_DONE)) {
1401 current->ptrace_message = nr;
1402 ptrace_notify ((PTRACE_EVENT_VFORK_DONE << 8) | SIGTRAP);
1403 }
1404 }
1405 } else {
1406 free_pid(pid);
1407 nr = PTR_ERR(p);
1408 }
1409 return nr;
1410 }
1411
1412 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1413 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1414 #endif
1415
1416 static void sighand_ctor(void *data, kmem_cache_t *cachep, unsigned long flags)
1417 {
1418 struct sighand_struct *sighand = data;
1419
1420 if ((flags & (SLAB_CTOR_VERIFY | SLAB_CTOR_CONSTRUCTOR)) ==
1421 SLAB_CTOR_CONSTRUCTOR)
1422 spin_lock_init(&sighand->siglock);
1423 }
1424
1425 void __init proc_caches_init(void)
1426 {
1427 sighand_cachep = kmem_cache_create("sighand_cache",
1428 sizeof(struct sighand_struct), 0,
1429 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU,
1430 sighand_ctor, NULL);
1431 signal_cachep = kmem_cache_create("signal_cache",
1432 sizeof(struct signal_struct), 0,
1433 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1434 files_cachep = kmem_cache_create("files_cache",
1435 sizeof(struct files_struct), 0,
1436 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1437 fs_cachep = kmem_cache_create("fs_cache",
1438 sizeof(struct fs_struct), 0,
1439 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1440 vm_area_cachep = kmem_cache_create("vm_area_struct",
1441 sizeof(struct vm_area_struct), 0,
1442 SLAB_PANIC, NULL, NULL);
1443 mm_cachep = kmem_cache_create("mm_struct",
1444 sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1445 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1446 }
1447
1448
1449 /*
1450 * Check constraints on flags passed to the unshare system call and
1451 * force unsharing of additional process context as appropriate.
1452 */
1453 static inline void check_unshare_flags(unsigned long *flags_ptr)
1454 {
1455 /*
1456 * If unsharing a thread from a thread group, must also
1457 * unshare vm.
1458 */
1459 if (*flags_ptr & CLONE_THREAD)
1460 *flags_ptr |= CLONE_VM;
1461
1462 /*
1463 * If unsharing vm, must also unshare signal handlers.
1464 */
1465 if (*flags_ptr & CLONE_VM)
1466 *flags_ptr |= CLONE_SIGHAND;
1467
1468 /*
1469 * If unsharing signal handlers and the task was created
1470 * using CLONE_THREAD, then must unshare the thread
1471 */
1472 if ((*flags_ptr & CLONE_SIGHAND) &&
1473 (atomic_read(&current->signal->count) > 1))
1474 *flags_ptr |= CLONE_THREAD;
1475
1476 /*
1477 * If unsharing namespace, must also unshare filesystem information.
1478 */
1479 if (*flags_ptr & CLONE_NEWNS)
1480 *flags_ptr |= CLONE_FS;
1481 }
1482
1483 /*
1484 * Unsharing of tasks created with CLONE_THREAD is not supported yet
1485 */
1486 static int unshare_thread(unsigned long unshare_flags)
1487 {
1488 if (unshare_flags & CLONE_THREAD)
1489 return -EINVAL;
1490
1491 return 0;
1492 }
1493
1494 /*
1495 * Unshare the filesystem structure if it is being shared
1496 */
1497 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1498 {
1499 struct fs_struct *fs = current->fs;
1500
1501 if ((unshare_flags & CLONE_FS) &&
1502 (fs && atomic_read(&fs->count) > 1)) {
1503 *new_fsp = __copy_fs_struct(current->fs);
1504 if (!*new_fsp)
1505 return -ENOMEM;
1506 }
1507
1508 return 0;
1509 }
1510
1511 /*
1512 * Unshare the namespace structure if it is being shared
1513 */
1514 static int unshare_namespace(unsigned long unshare_flags, struct namespace **new_nsp, struct fs_struct *new_fs)
1515 {
1516 struct namespace *ns = current->namespace;
1517
1518 if ((unshare_flags & CLONE_NEWNS) &&
1519 (ns && atomic_read(&ns->count) > 1)) {
1520 if (!capable(CAP_SYS_ADMIN))
1521 return -EPERM;
1522
1523 *new_nsp = dup_namespace(current, new_fs ? new_fs : current->fs);
1524 if (!*new_nsp)
1525 return -ENOMEM;
1526 }
1527
1528 return 0;
1529 }
1530
1531 /*
1532 * Unsharing of sighand for tasks created with CLONE_SIGHAND is not
1533 * supported yet
1534 */
1535 static int unshare_sighand(unsigned long unshare_flags, struct sighand_struct **new_sighp)
1536 {
1537 struct sighand_struct *sigh = current->sighand;
1538
1539 if ((unshare_flags & CLONE_SIGHAND) &&
1540 (sigh && atomic_read(&sigh->count) > 1))
1541 return -EINVAL;
1542 else
1543 return 0;
1544 }
1545
1546 /*
1547 * Unshare vm if it is being shared
1548 */
1549 static int unshare_vm(unsigned long unshare_flags, struct mm_struct **new_mmp)
1550 {
1551 struct mm_struct *mm = current->mm;
1552
1553 if ((unshare_flags & CLONE_VM) &&
1554 (mm && atomic_read(&mm->mm_users) > 1)) {
1555 return -EINVAL;
1556 }
1557
1558 return 0;
1559 }
1560
1561 /*
1562 * Unshare file descriptor table if it is being shared
1563 */
1564 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1565 {
1566 struct files_struct *fd = current->files;
1567 int error = 0;
1568
1569 if ((unshare_flags & CLONE_FILES) &&
1570 (fd && atomic_read(&fd->count) > 1)) {
1571 *new_fdp = dup_fd(fd, &error);
1572 if (!*new_fdp)
1573 return error;
1574 }
1575
1576 return 0;
1577 }
1578
1579 /*
1580 * Unsharing of semundo for tasks created with CLONE_SYSVSEM is not
1581 * supported yet
1582 */
1583 static int unshare_semundo(unsigned long unshare_flags, struct sem_undo_list **new_ulistp)
1584 {
1585 if (unshare_flags & CLONE_SYSVSEM)
1586 return -EINVAL;
1587
1588 return 0;
1589 }
1590
1591 /*
1592 * unshare allows a process to 'unshare' part of the process
1593 * context which was originally shared using clone. copy_*
1594 * functions used by do_fork() cannot be used here directly
1595 * because they modify an inactive task_struct that is being
1596 * constructed. Here we are modifying the current, active,
1597 * task_struct.
1598 */
1599 asmlinkage long sys_unshare(unsigned long unshare_flags)
1600 {
1601 int err = 0;
1602 struct fs_struct *fs, *new_fs = NULL;
1603 struct namespace *ns, *new_ns = NULL;
1604 struct sighand_struct *sigh, *new_sigh = NULL;
1605 struct mm_struct *mm, *new_mm = NULL, *active_mm = NULL;
1606 struct files_struct *fd, *new_fd = NULL;
1607 struct sem_undo_list *new_ulist = NULL;
1608
1609 check_unshare_flags(&unshare_flags);
1610
1611 /* Return -EINVAL for all unsupported flags */
1612 err = -EINVAL;
1613 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1614 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM))
1615 goto bad_unshare_out;
1616
1617 if ((err = unshare_thread(unshare_flags)))
1618 goto bad_unshare_out;
1619 if ((err = unshare_fs(unshare_flags, &new_fs)))
1620 goto bad_unshare_cleanup_thread;
1621 if ((err = unshare_namespace(unshare_flags, &new_ns, new_fs)))
1622 goto bad_unshare_cleanup_fs;
1623 if ((err = unshare_sighand(unshare_flags, &new_sigh)))
1624 goto bad_unshare_cleanup_ns;
1625 if ((err = unshare_vm(unshare_flags, &new_mm)))
1626 goto bad_unshare_cleanup_sigh;
1627 if ((err = unshare_fd(unshare_flags, &new_fd)))
1628 goto bad_unshare_cleanup_vm;
1629 if ((err = unshare_semundo(unshare_flags, &new_ulist)))
1630 goto bad_unshare_cleanup_fd;
1631
1632 if (new_fs || new_ns || new_sigh || new_mm || new_fd || new_ulist) {
1633
1634 task_lock(current);
1635
1636 if (new_fs) {
1637 fs = current->fs;
1638 current->fs = new_fs;
1639 new_fs = fs;
1640 }
1641
1642 if (new_ns) {
1643 ns = current->namespace;
1644 current->namespace = new_ns;
1645 new_ns = ns;
1646 }
1647
1648 if (new_sigh) {
1649 sigh = current->sighand;
1650 rcu_assign_pointer(current->sighand, new_sigh);
1651 new_sigh = sigh;
1652 }
1653
1654 if (new_mm) {
1655 mm = current->mm;
1656 active_mm = current->active_mm;
1657 current->mm = new_mm;
1658 current->active_mm = new_mm;
1659 activate_mm(active_mm, new_mm);
1660 new_mm = mm;
1661 }
1662
1663 if (new_fd) {
1664 fd = current->files;
1665 current->files = new_fd;
1666 new_fd = fd;
1667 }
1668
1669 task_unlock(current);
1670 }
1671
1672 bad_unshare_cleanup_fd:
1673 if (new_fd)
1674 put_files_struct(new_fd);
1675
1676 bad_unshare_cleanup_vm:
1677 if (new_mm)
1678 mmput(new_mm);
1679
1680 bad_unshare_cleanup_sigh:
1681 if (new_sigh)
1682 if (atomic_dec_and_test(&new_sigh->count))
1683 kmem_cache_free(sighand_cachep, new_sigh);
1684
1685 bad_unshare_cleanup_ns:
1686 if (new_ns)
1687 put_namespace(new_ns);
1688
1689 bad_unshare_cleanup_fs:
1690 if (new_fs)
1691 put_fs_struct(new_fs);
1692
1693 bad_unshare_cleanup_thread:
1694 bad_unshare_out:
1695 return err;
1696 }
This page took 0.100688 seconds and 5 git commands to generate.