Merge branch 'next' of git://git.kernel.org/pub/scm/linux/kernel/git/jmorris/linux...
[deliverable/linux.git] / kernel / fork.c
1 /*
2 * linux/kernel/fork.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * 'fork.c' contains the help-routines for the 'fork' system call
9 * (see also entry.S and others).
10 * Fork is rather simple, once you get the hang of it, but the memory
11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12 */
13
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/mempolicy.h>
22 #include <linux/sem.h>
23 #include <linux/file.h>
24 #include <linux/fdtable.h>
25 #include <linux/iocontext.h>
26 #include <linux/key.h>
27 #include <linux/binfmts.h>
28 #include <linux/mman.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/fs.h>
31 #include <linux/nsproxy.h>
32 #include <linux/capability.h>
33 #include <linux/cpu.h>
34 #include <linux/cgroup.h>
35 #include <linux/security.h>
36 #include <linux/hugetlb.h>
37 #include <linux/swap.h>
38 #include <linux/syscalls.h>
39 #include <linux/jiffies.h>
40 #include <linux/futex.h>
41 #include <linux/compat.h>
42 #include <linux/kthread.h>
43 #include <linux/task_io_accounting_ops.h>
44 #include <linux/rcupdate.h>
45 #include <linux/ptrace.h>
46 #include <linux/mount.h>
47 #include <linux/audit.h>
48 #include <linux/memcontrol.h>
49 #include <linux/ftrace.h>
50 #include <linux/profile.h>
51 #include <linux/rmap.h>
52 #include <linux/ksm.h>
53 #include <linux/acct.h>
54 #include <linux/tsacct_kern.h>
55 #include <linux/cn_proc.h>
56 #include <linux/freezer.h>
57 #include <linux/delayacct.h>
58 #include <linux/taskstats_kern.h>
59 #include <linux/random.h>
60 #include <linux/tty.h>
61 #include <linux/blkdev.h>
62 #include <linux/fs_struct.h>
63 #include <linux/magic.h>
64 #include <linux/perf_event.h>
65 #include <linux/posix-timers.h>
66 #include <linux/user-return-notifier.h>
67 #include <linux/oom.h>
68 #include <linux/khugepaged.h>
69 #include <linux/signalfd.h>
70
71 #include <asm/pgtable.h>
72 #include <asm/pgalloc.h>
73 #include <asm/uaccess.h>
74 #include <asm/mmu_context.h>
75 #include <asm/cacheflush.h>
76 #include <asm/tlbflush.h>
77
78 #include <trace/events/sched.h>
79
80 #define CREATE_TRACE_POINTS
81 #include <trace/events/task.h>
82
83 /*
84 * Protected counters by write_lock_irq(&tasklist_lock)
85 */
86 unsigned long total_forks; /* Handle normal Linux uptimes. */
87 int nr_threads; /* The idle threads do not count.. */
88
89 int max_threads; /* tunable limit on nr_threads */
90
91 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
92
93 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
94
95 #ifdef CONFIG_PROVE_RCU
96 int lockdep_tasklist_lock_is_held(void)
97 {
98 return lockdep_is_held(&tasklist_lock);
99 }
100 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
101 #endif /* #ifdef CONFIG_PROVE_RCU */
102
103 int nr_processes(void)
104 {
105 int cpu;
106 int total = 0;
107
108 for_each_possible_cpu(cpu)
109 total += per_cpu(process_counts, cpu);
110
111 return total;
112 }
113
114 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
115 # define alloc_task_struct_node(node) \
116 kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node)
117 # define free_task_struct(tsk) \
118 kmem_cache_free(task_struct_cachep, (tsk))
119 static struct kmem_cache *task_struct_cachep;
120 #endif
121
122 #ifndef __HAVE_ARCH_THREAD_INFO_ALLOCATOR
123 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
124 int node)
125 {
126 #ifdef CONFIG_DEBUG_STACK_USAGE
127 gfp_t mask = GFP_KERNEL | __GFP_ZERO;
128 #else
129 gfp_t mask = GFP_KERNEL;
130 #endif
131 struct page *page = alloc_pages_node(node, mask, THREAD_SIZE_ORDER);
132
133 return page ? page_address(page) : NULL;
134 }
135
136 static inline void free_thread_info(struct thread_info *ti)
137 {
138 free_pages((unsigned long)ti, THREAD_SIZE_ORDER);
139 }
140 #endif
141
142 /* SLAB cache for signal_struct structures (tsk->signal) */
143 static struct kmem_cache *signal_cachep;
144
145 /* SLAB cache for sighand_struct structures (tsk->sighand) */
146 struct kmem_cache *sighand_cachep;
147
148 /* SLAB cache for files_struct structures (tsk->files) */
149 struct kmem_cache *files_cachep;
150
151 /* SLAB cache for fs_struct structures (tsk->fs) */
152 struct kmem_cache *fs_cachep;
153
154 /* SLAB cache for vm_area_struct structures */
155 struct kmem_cache *vm_area_cachep;
156
157 /* SLAB cache for mm_struct structures (tsk->mm) */
158 static struct kmem_cache *mm_cachep;
159
160 static void account_kernel_stack(struct thread_info *ti, int account)
161 {
162 struct zone *zone = page_zone(virt_to_page(ti));
163
164 mod_zone_page_state(zone, NR_KERNEL_STACK, account);
165 }
166
167 void free_task(struct task_struct *tsk)
168 {
169 account_kernel_stack(tsk->stack, -1);
170 free_thread_info(tsk->stack);
171 rt_mutex_debug_task_free(tsk);
172 ftrace_graph_exit_task(tsk);
173 free_task_struct(tsk);
174 }
175 EXPORT_SYMBOL(free_task);
176
177 static inline void free_signal_struct(struct signal_struct *sig)
178 {
179 taskstats_tgid_free(sig);
180 sched_autogroup_exit(sig);
181 kmem_cache_free(signal_cachep, sig);
182 }
183
184 static inline void put_signal_struct(struct signal_struct *sig)
185 {
186 if (atomic_dec_and_test(&sig->sigcnt))
187 free_signal_struct(sig);
188 }
189
190 void __put_task_struct(struct task_struct *tsk)
191 {
192 WARN_ON(!tsk->exit_state);
193 WARN_ON(atomic_read(&tsk->usage));
194 WARN_ON(tsk == current);
195
196 security_task_free(tsk);
197 exit_creds(tsk);
198 delayacct_tsk_free(tsk);
199 put_signal_struct(tsk->signal);
200
201 if (!profile_handoff_task(tsk))
202 free_task(tsk);
203 }
204 EXPORT_SYMBOL_GPL(__put_task_struct);
205
206 /*
207 * macro override instead of weak attribute alias, to workaround
208 * gcc 4.1.0 and 4.1.1 bugs with weak attribute and empty functions.
209 */
210 #ifndef arch_task_cache_init
211 #define arch_task_cache_init()
212 #endif
213
214 void __init fork_init(unsigned long mempages)
215 {
216 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
217 #ifndef ARCH_MIN_TASKALIGN
218 #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
219 #endif
220 /* create a slab on which task_structs can be allocated */
221 task_struct_cachep =
222 kmem_cache_create("task_struct", sizeof(struct task_struct),
223 ARCH_MIN_TASKALIGN, SLAB_PANIC | SLAB_NOTRACK, NULL);
224 #endif
225
226 /* do the arch specific task caches init */
227 arch_task_cache_init();
228
229 /*
230 * The default maximum number of threads is set to a safe
231 * value: the thread structures can take up at most half
232 * of memory.
233 */
234 max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
235
236 /*
237 * we need to allow at least 20 threads to boot a system
238 */
239 if (max_threads < 20)
240 max_threads = 20;
241
242 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
243 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
244 init_task.signal->rlim[RLIMIT_SIGPENDING] =
245 init_task.signal->rlim[RLIMIT_NPROC];
246 }
247
248 int __attribute__((weak)) arch_dup_task_struct(struct task_struct *dst,
249 struct task_struct *src)
250 {
251 *dst = *src;
252 return 0;
253 }
254
255 static struct task_struct *dup_task_struct(struct task_struct *orig)
256 {
257 struct task_struct *tsk;
258 struct thread_info *ti;
259 unsigned long *stackend;
260 int node = tsk_fork_get_node(orig);
261 int err;
262
263 prepare_to_copy(orig);
264
265 tsk = alloc_task_struct_node(node);
266 if (!tsk)
267 return NULL;
268
269 ti = alloc_thread_info_node(tsk, node);
270 if (!ti) {
271 free_task_struct(tsk);
272 return NULL;
273 }
274
275 err = arch_dup_task_struct(tsk, orig);
276 if (err)
277 goto out;
278
279 tsk->stack = ti;
280
281 setup_thread_stack(tsk, orig);
282 clear_user_return_notifier(tsk);
283 clear_tsk_need_resched(tsk);
284 stackend = end_of_stack(tsk);
285 *stackend = STACK_END_MAGIC; /* for overflow detection */
286
287 #ifdef CONFIG_CC_STACKPROTECTOR
288 tsk->stack_canary = get_random_int();
289 #endif
290
291 /*
292 * One for us, one for whoever does the "release_task()" (usually
293 * parent)
294 */
295 atomic_set(&tsk->usage, 2);
296 #ifdef CONFIG_BLK_DEV_IO_TRACE
297 tsk->btrace_seq = 0;
298 #endif
299 tsk->splice_pipe = NULL;
300
301 account_kernel_stack(ti, 1);
302
303 return tsk;
304
305 out:
306 free_thread_info(ti);
307 free_task_struct(tsk);
308 return NULL;
309 }
310
311 #ifdef CONFIG_MMU
312 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
313 {
314 struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
315 struct rb_node **rb_link, *rb_parent;
316 int retval;
317 unsigned long charge;
318 struct mempolicy *pol;
319
320 down_write(&oldmm->mmap_sem);
321 flush_cache_dup_mm(oldmm);
322 /*
323 * Not linked in yet - no deadlock potential:
324 */
325 down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
326
327 mm->locked_vm = 0;
328 mm->mmap = NULL;
329 mm->mmap_cache = NULL;
330 mm->free_area_cache = oldmm->mmap_base;
331 mm->cached_hole_size = ~0UL;
332 mm->map_count = 0;
333 cpumask_clear(mm_cpumask(mm));
334 mm->mm_rb = RB_ROOT;
335 rb_link = &mm->mm_rb.rb_node;
336 rb_parent = NULL;
337 pprev = &mm->mmap;
338 retval = ksm_fork(mm, oldmm);
339 if (retval)
340 goto out;
341 retval = khugepaged_fork(mm, oldmm);
342 if (retval)
343 goto out;
344
345 prev = NULL;
346 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
347 struct file *file;
348
349 if (mpnt->vm_flags & VM_DONTCOPY) {
350 long pages = vma_pages(mpnt);
351 mm->total_vm -= pages;
352 vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
353 -pages);
354 continue;
355 }
356 charge = 0;
357 if (mpnt->vm_flags & VM_ACCOUNT) {
358 unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
359 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
360 goto fail_nomem;
361 charge = len;
362 }
363 tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
364 if (!tmp)
365 goto fail_nomem;
366 *tmp = *mpnt;
367 INIT_LIST_HEAD(&tmp->anon_vma_chain);
368 pol = mpol_dup(vma_policy(mpnt));
369 retval = PTR_ERR(pol);
370 if (IS_ERR(pol))
371 goto fail_nomem_policy;
372 vma_set_policy(tmp, pol);
373 tmp->vm_mm = mm;
374 if (anon_vma_fork(tmp, mpnt))
375 goto fail_nomem_anon_vma_fork;
376 tmp->vm_flags &= ~VM_LOCKED;
377 tmp->vm_next = tmp->vm_prev = NULL;
378 file = tmp->vm_file;
379 if (file) {
380 struct inode *inode = file->f_path.dentry->d_inode;
381 struct address_space *mapping = file->f_mapping;
382
383 get_file(file);
384 if (tmp->vm_flags & VM_DENYWRITE)
385 atomic_dec(&inode->i_writecount);
386 mutex_lock(&mapping->i_mmap_mutex);
387 if (tmp->vm_flags & VM_SHARED)
388 mapping->i_mmap_writable++;
389 flush_dcache_mmap_lock(mapping);
390 /* insert tmp into the share list, just after mpnt */
391 vma_prio_tree_add(tmp, mpnt);
392 flush_dcache_mmap_unlock(mapping);
393 mutex_unlock(&mapping->i_mmap_mutex);
394 }
395
396 /*
397 * Clear hugetlb-related page reserves for children. This only
398 * affects MAP_PRIVATE mappings. Faults generated by the child
399 * are not guaranteed to succeed, even if read-only
400 */
401 if (is_vm_hugetlb_page(tmp))
402 reset_vma_resv_huge_pages(tmp);
403
404 /*
405 * Link in the new vma and copy the page table entries.
406 */
407 *pprev = tmp;
408 pprev = &tmp->vm_next;
409 tmp->vm_prev = prev;
410 prev = tmp;
411
412 __vma_link_rb(mm, tmp, rb_link, rb_parent);
413 rb_link = &tmp->vm_rb.rb_right;
414 rb_parent = &tmp->vm_rb;
415
416 mm->map_count++;
417 retval = copy_page_range(mm, oldmm, mpnt);
418
419 if (tmp->vm_ops && tmp->vm_ops->open)
420 tmp->vm_ops->open(tmp);
421
422 if (retval)
423 goto out;
424 }
425 /* a new mm has just been created */
426 arch_dup_mmap(oldmm, mm);
427 retval = 0;
428 out:
429 up_write(&mm->mmap_sem);
430 flush_tlb_mm(oldmm);
431 up_write(&oldmm->mmap_sem);
432 return retval;
433 fail_nomem_anon_vma_fork:
434 mpol_put(pol);
435 fail_nomem_policy:
436 kmem_cache_free(vm_area_cachep, tmp);
437 fail_nomem:
438 retval = -ENOMEM;
439 vm_unacct_memory(charge);
440 goto out;
441 }
442
443 static inline int mm_alloc_pgd(struct mm_struct *mm)
444 {
445 mm->pgd = pgd_alloc(mm);
446 if (unlikely(!mm->pgd))
447 return -ENOMEM;
448 return 0;
449 }
450
451 static inline void mm_free_pgd(struct mm_struct *mm)
452 {
453 pgd_free(mm, mm->pgd);
454 }
455 #else
456 #define dup_mmap(mm, oldmm) (0)
457 #define mm_alloc_pgd(mm) (0)
458 #define mm_free_pgd(mm)
459 #endif /* CONFIG_MMU */
460
461 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
462
463 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
464 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
465
466 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
467
468 static int __init coredump_filter_setup(char *s)
469 {
470 default_dump_filter =
471 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
472 MMF_DUMP_FILTER_MASK;
473 return 1;
474 }
475
476 __setup("coredump_filter=", coredump_filter_setup);
477
478 #include <linux/init_task.h>
479
480 static void mm_init_aio(struct mm_struct *mm)
481 {
482 #ifdef CONFIG_AIO
483 spin_lock_init(&mm->ioctx_lock);
484 INIT_HLIST_HEAD(&mm->ioctx_list);
485 #endif
486 }
487
488 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p)
489 {
490 atomic_set(&mm->mm_users, 1);
491 atomic_set(&mm->mm_count, 1);
492 init_rwsem(&mm->mmap_sem);
493 INIT_LIST_HEAD(&mm->mmlist);
494 mm->flags = (current->mm) ?
495 (current->mm->flags & MMF_INIT_MASK) : default_dump_filter;
496 mm->core_state = NULL;
497 mm->nr_ptes = 0;
498 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
499 spin_lock_init(&mm->page_table_lock);
500 mm->free_area_cache = TASK_UNMAPPED_BASE;
501 mm->cached_hole_size = ~0UL;
502 mm_init_aio(mm);
503 mm_init_owner(mm, p);
504
505 if (likely(!mm_alloc_pgd(mm))) {
506 mm->def_flags = 0;
507 mmu_notifier_mm_init(mm);
508 return mm;
509 }
510
511 free_mm(mm);
512 return NULL;
513 }
514
515 /*
516 * Allocate and initialize an mm_struct.
517 */
518 struct mm_struct *mm_alloc(void)
519 {
520 struct mm_struct *mm;
521
522 mm = allocate_mm();
523 if (!mm)
524 return NULL;
525
526 memset(mm, 0, sizeof(*mm));
527 mm_init_cpumask(mm);
528 return mm_init(mm, current);
529 }
530
531 /*
532 * Called when the last reference to the mm
533 * is dropped: either by a lazy thread or by
534 * mmput. Free the page directory and the mm.
535 */
536 void __mmdrop(struct mm_struct *mm)
537 {
538 BUG_ON(mm == &init_mm);
539 mm_free_pgd(mm);
540 destroy_context(mm);
541 mmu_notifier_mm_destroy(mm);
542 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
543 VM_BUG_ON(mm->pmd_huge_pte);
544 #endif
545 free_mm(mm);
546 }
547 EXPORT_SYMBOL_GPL(__mmdrop);
548
549 /*
550 * Decrement the use count and release all resources for an mm.
551 */
552 void mmput(struct mm_struct *mm)
553 {
554 might_sleep();
555
556 if (atomic_dec_and_test(&mm->mm_users)) {
557 exit_aio(mm);
558 ksm_exit(mm);
559 khugepaged_exit(mm); /* must run before exit_mmap */
560 exit_mmap(mm);
561 set_mm_exe_file(mm, NULL);
562 if (!list_empty(&mm->mmlist)) {
563 spin_lock(&mmlist_lock);
564 list_del(&mm->mmlist);
565 spin_unlock(&mmlist_lock);
566 }
567 put_swap_token(mm);
568 if (mm->binfmt)
569 module_put(mm->binfmt->module);
570 mmdrop(mm);
571 }
572 }
573 EXPORT_SYMBOL_GPL(mmput);
574
575 /*
576 * We added or removed a vma mapping the executable. The vmas are only mapped
577 * during exec and are not mapped with the mmap system call.
578 * Callers must hold down_write() on the mm's mmap_sem for these
579 */
580 void added_exe_file_vma(struct mm_struct *mm)
581 {
582 mm->num_exe_file_vmas++;
583 }
584
585 void removed_exe_file_vma(struct mm_struct *mm)
586 {
587 mm->num_exe_file_vmas--;
588 if ((mm->num_exe_file_vmas == 0) && mm->exe_file) {
589 fput(mm->exe_file);
590 mm->exe_file = NULL;
591 }
592
593 }
594
595 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
596 {
597 if (new_exe_file)
598 get_file(new_exe_file);
599 if (mm->exe_file)
600 fput(mm->exe_file);
601 mm->exe_file = new_exe_file;
602 mm->num_exe_file_vmas = 0;
603 }
604
605 struct file *get_mm_exe_file(struct mm_struct *mm)
606 {
607 struct file *exe_file;
608
609 /* We need mmap_sem to protect against races with removal of
610 * VM_EXECUTABLE vmas */
611 down_read(&mm->mmap_sem);
612 exe_file = mm->exe_file;
613 if (exe_file)
614 get_file(exe_file);
615 up_read(&mm->mmap_sem);
616 return exe_file;
617 }
618
619 static void dup_mm_exe_file(struct mm_struct *oldmm, struct mm_struct *newmm)
620 {
621 /* It's safe to write the exe_file pointer without exe_file_lock because
622 * this is called during fork when the task is not yet in /proc */
623 newmm->exe_file = get_mm_exe_file(oldmm);
624 }
625
626 /**
627 * get_task_mm - acquire a reference to the task's mm
628 *
629 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
630 * this kernel workthread has transiently adopted a user mm with use_mm,
631 * to do its AIO) is not set and if so returns a reference to it, after
632 * bumping up the use count. User must release the mm via mmput()
633 * after use. Typically used by /proc and ptrace.
634 */
635 struct mm_struct *get_task_mm(struct task_struct *task)
636 {
637 struct mm_struct *mm;
638
639 task_lock(task);
640 mm = task->mm;
641 if (mm) {
642 if (task->flags & PF_KTHREAD)
643 mm = NULL;
644 else
645 atomic_inc(&mm->mm_users);
646 }
647 task_unlock(task);
648 return mm;
649 }
650 EXPORT_SYMBOL_GPL(get_task_mm);
651
652 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
653 {
654 struct mm_struct *mm;
655 int err;
656
657 err = mutex_lock_killable(&task->signal->cred_guard_mutex);
658 if (err)
659 return ERR_PTR(err);
660
661 mm = get_task_mm(task);
662 if (mm && mm != current->mm &&
663 !ptrace_may_access(task, mode)) {
664 mmput(mm);
665 mm = ERR_PTR(-EACCES);
666 }
667 mutex_unlock(&task->signal->cred_guard_mutex);
668
669 return mm;
670 }
671
672 static void complete_vfork_done(struct task_struct *tsk)
673 {
674 struct completion *vfork;
675
676 task_lock(tsk);
677 vfork = tsk->vfork_done;
678 if (likely(vfork)) {
679 tsk->vfork_done = NULL;
680 complete(vfork);
681 }
682 task_unlock(tsk);
683 }
684
685 static int wait_for_vfork_done(struct task_struct *child,
686 struct completion *vfork)
687 {
688 int killed;
689
690 freezer_do_not_count();
691 killed = wait_for_completion_killable(vfork);
692 freezer_count();
693
694 if (killed) {
695 task_lock(child);
696 child->vfork_done = NULL;
697 task_unlock(child);
698 }
699
700 put_task_struct(child);
701 return killed;
702 }
703
704 /* Please note the differences between mmput and mm_release.
705 * mmput is called whenever we stop holding onto a mm_struct,
706 * error success whatever.
707 *
708 * mm_release is called after a mm_struct has been removed
709 * from the current process.
710 *
711 * This difference is important for error handling, when we
712 * only half set up a mm_struct for a new process and need to restore
713 * the old one. Because we mmput the new mm_struct before
714 * restoring the old one. . .
715 * Eric Biederman 10 January 1998
716 */
717 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
718 {
719 /* Get rid of any futexes when releasing the mm */
720 #ifdef CONFIG_FUTEX
721 if (unlikely(tsk->robust_list)) {
722 exit_robust_list(tsk);
723 tsk->robust_list = NULL;
724 }
725 #ifdef CONFIG_COMPAT
726 if (unlikely(tsk->compat_robust_list)) {
727 compat_exit_robust_list(tsk);
728 tsk->compat_robust_list = NULL;
729 }
730 #endif
731 if (unlikely(!list_empty(&tsk->pi_state_list)))
732 exit_pi_state_list(tsk);
733 #endif
734
735 /* Get rid of any cached register state */
736 deactivate_mm(tsk, mm);
737
738 if (tsk->vfork_done)
739 complete_vfork_done(tsk);
740
741 /*
742 * If we're exiting normally, clear a user-space tid field if
743 * requested. We leave this alone when dying by signal, to leave
744 * the value intact in a core dump, and to save the unnecessary
745 * trouble, say, a killed vfork parent shouldn't touch this mm.
746 * Userland only wants this done for a sys_exit.
747 */
748 if (tsk->clear_child_tid) {
749 if (!(tsk->flags & PF_SIGNALED) &&
750 atomic_read(&mm->mm_users) > 1) {
751 /*
752 * We don't check the error code - if userspace has
753 * not set up a proper pointer then tough luck.
754 */
755 put_user(0, tsk->clear_child_tid);
756 sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
757 1, NULL, NULL, 0);
758 }
759 tsk->clear_child_tid = NULL;
760 }
761 }
762
763 /*
764 * Allocate a new mm structure and copy contents from the
765 * mm structure of the passed in task structure.
766 */
767 struct mm_struct *dup_mm(struct task_struct *tsk)
768 {
769 struct mm_struct *mm, *oldmm = current->mm;
770 int err;
771
772 if (!oldmm)
773 return NULL;
774
775 mm = allocate_mm();
776 if (!mm)
777 goto fail_nomem;
778
779 memcpy(mm, oldmm, sizeof(*mm));
780 mm_init_cpumask(mm);
781
782 /* Initializing for Swap token stuff */
783 mm->token_priority = 0;
784 mm->last_interval = 0;
785
786 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
787 mm->pmd_huge_pte = NULL;
788 #endif
789
790 if (!mm_init(mm, tsk))
791 goto fail_nomem;
792
793 if (init_new_context(tsk, mm))
794 goto fail_nocontext;
795
796 dup_mm_exe_file(oldmm, mm);
797
798 err = dup_mmap(mm, oldmm);
799 if (err)
800 goto free_pt;
801
802 mm->hiwater_rss = get_mm_rss(mm);
803 mm->hiwater_vm = mm->total_vm;
804
805 if (mm->binfmt && !try_module_get(mm->binfmt->module))
806 goto free_pt;
807
808 return mm;
809
810 free_pt:
811 /* don't put binfmt in mmput, we haven't got module yet */
812 mm->binfmt = NULL;
813 mmput(mm);
814
815 fail_nomem:
816 return NULL;
817
818 fail_nocontext:
819 /*
820 * If init_new_context() failed, we cannot use mmput() to free the mm
821 * because it calls destroy_context()
822 */
823 mm_free_pgd(mm);
824 free_mm(mm);
825 return NULL;
826 }
827
828 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
829 {
830 struct mm_struct *mm, *oldmm;
831 int retval;
832
833 tsk->min_flt = tsk->maj_flt = 0;
834 tsk->nvcsw = tsk->nivcsw = 0;
835 #ifdef CONFIG_DETECT_HUNG_TASK
836 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
837 #endif
838
839 tsk->mm = NULL;
840 tsk->active_mm = NULL;
841
842 /*
843 * Are we cloning a kernel thread?
844 *
845 * We need to steal a active VM for that..
846 */
847 oldmm = current->mm;
848 if (!oldmm)
849 return 0;
850
851 if (clone_flags & CLONE_VM) {
852 atomic_inc(&oldmm->mm_users);
853 mm = oldmm;
854 goto good_mm;
855 }
856
857 retval = -ENOMEM;
858 mm = dup_mm(tsk);
859 if (!mm)
860 goto fail_nomem;
861
862 good_mm:
863 /* Initializing for Swap token stuff */
864 mm->token_priority = 0;
865 mm->last_interval = 0;
866
867 tsk->mm = mm;
868 tsk->active_mm = mm;
869 return 0;
870
871 fail_nomem:
872 return retval;
873 }
874
875 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
876 {
877 struct fs_struct *fs = current->fs;
878 if (clone_flags & CLONE_FS) {
879 /* tsk->fs is already what we want */
880 spin_lock(&fs->lock);
881 if (fs->in_exec) {
882 spin_unlock(&fs->lock);
883 return -EAGAIN;
884 }
885 fs->users++;
886 spin_unlock(&fs->lock);
887 return 0;
888 }
889 tsk->fs = copy_fs_struct(fs);
890 if (!tsk->fs)
891 return -ENOMEM;
892 return 0;
893 }
894
895 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
896 {
897 struct files_struct *oldf, *newf;
898 int error = 0;
899
900 /*
901 * A background process may not have any files ...
902 */
903 oldf = current->files;
904 if (!oldf)
905 goto out;
906
907 if (clone_flags & CLONE_FILES) {
908 atomic_inc(&oldf->count);
909 goto out;
910 }
911
912 newf = dup_fd(oldf, &error);
913 if (!newf)
914 goto out;
915
916 tsk->files = newf;
917 error = 0;
918 out:
919 return error;
920 }
921
922 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
923 {
924 #ifdef CONFIG_BLOCK
925 struct io_context *ioc = current->io_context;
926 struct io_context *new_ioc;
927
928 if (!ioc)
929 return 0;
930 /*
931 * Share io context with parent, if CLONE_IO is set
932 */
933 if (clone_flags & CLONE_IO) {
934 tsk->io_context = ioc_task_link(ioc);
935 if (unlikely(!tsk->io_context))
936 return -ENOMEM;
937 } else if (ioprio_valid(ioc->ioprio)) {
938 new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
939 if (unlikely(!new_ioc))
940 return -ENOMEM;
941
942 new_ioc->ioprio = ioc->ioprio;
943 put_io_context(new_ioc);
944 }
945 #endif
946 return 0;
947 }
948
949 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
950 {
951 struct sighand_struct *sig;
952
953 if (clone_flags & CLONE_SIGHAND) {
954 atomic_inc(&current->sighand->count);
955 return 0;
956 }
957 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
958 rcu_assign_pointer(tsk->sighand, sig);
959 if (!sig)
960 return -ENOMEM;
961 atomic_set(&sig->count, 1);
962 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
963 return 0;
964 }
965
966 void __cleanup_sighand(struct sighand_struct *sighand)
967 {
968 if (atomic_dec_and_test(&sighand->count)) {
969 signalfd_cleanup(sighand);
970 kmem_cache_free(sighand_cachep, sighand);
971 }
972 }
973
974
975 /*
976 * Initialize POSIX timer handling for a thread group.
977 */
978 static void posix_cpu_timers_init_group(struct signal_struct *sig)
979 {
980 unsigned long cpu_limit;
981
982 /* Thread group counters. */
983 thread_group_cputime_init(sig);
984
985 cpu_limit = ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
986 if (cpu_limit != RLIM_INFINITY) {
987 sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit);
988 sig->cputimer.running = 1;
989 }
990
991 /* The timer lists. */
992 INIT_LIST_HEAD(&sig->cpu_timers[0]);
993 INIT_LIST_HEAD(&sig->cpu_timers[1]);
994 INIT_LIST_HEAD(&sig->cpu_timers[2]);
995 }
996
997 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
998 {
999 struct signal_struct *sig;
1000
1001 if (clone_flags & CLONE_THREAD)
1002 return 0;
1003
1004 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1005 tsk->signal = sig;
1006 if (!sig)
1007 return -ENOMEM;
1008
1009 sig->nr_threads = 1;
1010 atomic_set(&sig->live, 1);
1011 atomic_set(&sig->sigcnt, 1);
1012 init_waitqueue_head(&sig->wait_chldexit);
1013 if (clone_flags & CLONE_NEWPID)
1014 sig->flags |= SIGNAL_UNKILLABLE;
1015 sig->curr_target = tsk;
1016 init_sigpending(&sig->shared_pending);
1017 INIT_LIST_HEAD(&sig->posix_timers);
1018
1019 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1020 sig->real_timer.function = it_real_fn;
1021
1022 task_lock(current->group_leader);
1023 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1024 task_unlock(current->group_leader);
1025
1026 posix_cpu_timers_init_group(sig);
1027
1028 tty_audit_fork(sig);
1029 sched_autogroup_fork(sig);
1030
1031 #ifdef CONFIG_CGROUPS
1032 init_rwsem(&sig->group_rwsem);
1033 #endif
1034
1035 sig->oom_adj = current->signal->oom_adj;
1036 sig->oom_score_adj = current->signal->oom_score_adj;
1037 sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1038
1039 mutex_init(&sig->cred_guard_mutex);
1040
1041 return 0;
1042 }
1043
1044 static void copy_flags(unsigned long clone_flags, struct task_struct *p)
1045 {
1046 unsigned long new_flags = p->flags;
1047
1048 new_flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER);
1049 new_flags |= PF_FORKNOEXEC;
1050 p->flags = new_flags;
1051 }
1052
1053 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1054 {
1055 current->clear_child_tid = tidptr;
1056
1057 return task_pid_vnr(current);
1058 }
1059
1060 static void rt_mutex_init_task(struct task_struct *p)
1061 {
1062 raw_spin_lock_init(&p->pi_lock);
1063 #ifdef CONFIG_RT_MUTEXES
1064 plist_head_init(&p->pi_waiters);
1065 p->pi_blocked_on = NULL;
1066 #endif
1067 }
1068
1069 #ifdef CONFIG_MM_OWNER
1070 void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
1071 {
1072 mm->owner = p;
1073 }
1074 #endif /* CONFIG_MM_OWNER */
1075
1076 /*
1077 * Initialize POSIX timer handling for a single task.
1078 */
1079 static void posix_cpu_timers_init(struct task_struct *tsk)
1080 {
1081 tsk->cputime_expires.prof_exp = 0;
1082 tsk->cputime_expires.virt_exp = 0;
1083 tsk->cputime_expires.sched_exp = 0;
1084 INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1085 INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1086 INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1087 }
1088
1089 /*
1090 * This creates a new process as a copy of the old one,
1091 * but does not actually start it yet.
1092 *
1093 * It copies the registers, and all the appropriate
1094 * parts of the process environment (as per the clone
1095 * flags). The actual kick-off is left to the caller.
1096 */
1097 static struct task_struct *copy_process(unsigned long clone_flags,
1098 unsigned long stack_start,
1099 struct pt_regs *regs,
1100 unsigned long stack_size,
1101 int __user *child_tidptr,
1102 struct pid *pid,
1103 int trace)
1104 {
1105 int retval;
1106 struct task_struct *p;
1107 int cgroup_callbacks_done = 0;
1108
1109 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1110 return ERR_PTR(-EINVAL);
1111
1112 /*
1113 * Thread groups must share signals as well, and detached threads
1114 * can only be started up within the thread group.
1115 */
1116 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1117 return ERR_PTR(-EINVAL);
1118
1119 /*
1120 * Shared signal handlers imply shared VM. By way of the above,
1121 * thread groups also imply shared VM. Blocking this case allows
1122 * for various simplifications in other code.
1123 */
1124 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1125 return ERR_PTR(-EINVAL);
1126
1127 /*
1128 * Siblings of global init remain as zombies on exit since they are
1129 * not reaped by their parent (swapper). To solve this and to avoid
1130 * multi-rooted process trees, prevent global and container-inits
1131 * from creating siblings.
1132 */
1133 if ((clone_flags & CLONE_PARENT) &&
1134 current->signal->flags & SIGNAL_UNKILLABLE)
1135 return ERR_PTR(-EINVAL);
1136
1137 retval = security_task_create(clone_flags);
1138 if (retval)
1139 goto fork_out;
1140
1141 retval = -ENOMEM;
1142 p = dup_task_struct(current);
1143 if (!p)
1144 goto fork_out;
1145
1146 ftrace_graph_init_task(p);
1147
1148 rt_mutex_init_task(p);
1149
1150 #ifdef CONFIG_PROVE_LOCKING
1151 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1152 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1153 #endif
1154 retval = -EAGAIN;
1155 if (atomic_read(&p->real_cred->user->processes) >=
1156 task_rlimit(p, RLIMIT_NPROC)) {
1157 if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
1158 p->real_cred->user != INIT_USER)
1159 goto bad_fork_free;
1160 }
1161 current->flags &= ~PF_NPROC_EXCEEDED;
1162
1163 retval = copy_creds(p, clone_flags);
1164 if (retval < 0)
1165 goto bad_fork_free;
1166
1167 /*
1168 * If multiple threads are within copy_process(), then this check
1169 * triggers too late. This doesn't hurt, the check is only there
1170 * to stop root fork bombs.
1171 */
1172 retval = -EAGAIN;
1173 if (nr_threads >= max_threads)
1174 goto bad_fork_cleanup_count;
1175
1176 if (!try_module_get(task_thread_info(p)->exec_domain->module))
1177 goto bad_fork_cleanup_count;
1178
1179 p->did_exec = 0;
1180 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
1181 copy_flags(clone_flags, p);
1182 INIT_LIST_HEAD(&p->children);
1183 INIT_LIST_HEAD(&p->sibling);
1184 rcu_copy_process(p);
1185 p->vfork_done = NULL;
1186 spin_lock_init(&p->alloc_lock);
1187
1188 init_sigpending(&p->pending);
1189
1190 p->utime = p->stime = p->gtime = 0;
1191 p->utimescaled = p->stimescaled = 0;
1192 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
1193 p->prev_utime = p->prev_stime = 0;
1194 #endif
1195 #if defined(SPLIT_RSS_COUNTING)
1196 memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1197 #endif
1198
1199 p->default_timer_slack_ns = current->timer_slack_ns;
1200
1201 task_io_accounting_init(&p->ioac);
1202 acct_clear_integrals(p);
1203
1204 posix_cpu_timers_init(p);
1205
1206 do_posix_clock_monotonic_gettime(&p->start_time);
1207 p->real_start_time = p->start_time;
1208 monotonic_to_bootbased(&p->real_start_time);
1209 p->io_context = NULL;
1210 p->audit_context = NULL;
1211 if (clone_flags & CLONE_THREAD)
1212 threadgroup_change_begin(current);
1213 cgroup_fork(p);
1214 #ifdef CONFIG_NUMA
1215 p->mempolicy = mpol_dup(p->mempolicy);
1216 if (IS_ERR(p->mempolicy)) {
1217 retval = PTR_ERR(p->mempolicy);
1218 p->mempolicy = NULL;
1219 goto bad_fork_cleanup_cgroup;
1220 }
1221 mpol_fix_fork_child_flag(p);
1222 #endif
1223 #ifdef CONFIG_CPUSETS
1224 p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1225 p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1226 #endif
1227 #ifdef CONFIG_TRACE_IRQFLAGS
1228 p->irq_events = 0;
1229 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1230 p->hardirqs_enabled = 1;
1231 #else
1232 p->hardirqs_enabled = 0;
1233 #endif
1234 p->hardirq_enable_ip = 0;
1235 p->hardirq_enable_event = 0;
1236 p->hardirq_disable_ip = _THIS_IP_;
1237 p->hardirq_disable_event = 0;
1238 p->softirqs_enabled = 1;
1239 p->softirq_enable_ip = _THIS_IP_;
1240 p->softirq_enable_event = 0;
1241 p->softirq_disable_ip = 0;
1242 p->softirq_disable_event = 0;
1243 p->hardirq_context = 0;
1244 p->softirq_context = 0;
1245 #endif
1246 #ifdef CONFIG_LOCKDEP
1247 p->lockdep_depth = 0; /* no locks held yet */
1248 p->curr_chain_key = 0;
1249 p->lockdep_recursion = 0;
1250 #endif
1251
1252 #ifdef CONFIG_DEBUG_MUTEXES
1253 p->blocked_on = NULL; /* not blocked yet */
1254 #endif
1255 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
1256 p->memcg_batch.do_batch = 0;
1257 p->memcg_batch.memcg = NULL;
1258 #endif
1259
1260 /* Perform scheduler related setup. Assign this task to a CPU. */
1261 sched_fork(p);
1262
1263 retval = perf_event_init_task(p);
1264 if (retval)
1265 goto bad_fork_cleanup_policy;
1266 retval = audit_alloc(p);
1267 if (retval)
1268 goto bad_fork_cleanup_policy;
1269 /* copy all the process information */
1270 retval = copy_semundo(clone_flags, p);
1271 if (retval)
1272 goto bad_fork_cleanup_audit;
1273 retval = copy_files(clone_flags, p);
1274 if (retval)
1275 goto bad_fork_cleanup_semundo;
1276 retval = copy_fs(clone_flags, p);
1277 if (retval)
1278 goto bad_fork_cleanup_files;
1279 retval = copy_sighand(clone_flags, p);
1280 if (retval)
1281 goto bad_fork_cleanup_fs;
1282 retval = copy_signal(clone_flags, p);
1283 if (retval)
1284 goto bad_fork_cleanup_sighand;
1285 retval = copy_mm(clone_flags, p);
1286 if (retval)
1287 goto bad_fork_cleanup_signal;
1288 retval = copy_namespaces(clone_flags, p);
1289 if (retval)
1290 goto bad_fork_cleanup_mm;
1291 retval = copy_io(clone_flags, p);
1292 if (retval)
1293 goto bad_fork_cleanup_namespaces;
1294 retval = copy_thread(clone_flags, stack_start, stack_size, p, regs);
1295 if (retval)
1296 goto bad_fork_cleanup_io;
1297
1298 if (pid != &init_struct_pid) {
1299 retval = -ENOMEM;
1300 pid = alloc_pid(p->nsproxy->pid_ns);
1301 if (!pid)
1302 goto bad_fork_cleanup_io;
1303 }
1304
1305 p->pid = pid_nr(pid);
1306 p->tgid = p->pid;
1307 if (clone_flags & CLONE_THREAD)
1308 p->tgid = current->tgid;
1309
1310 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1311 /*
1312 * Clear TID on mm_release()?
1313 */
1314 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
1315 #ifdef CONFIG_BLOCK
1316 p->plug = NULL;
1317 #endif
1318 #ifdef CONFIG_FUTEX
1319 p->robust_list = NULL;
1320 #ifdef CONFIG_COMPAT
1321 p->compat_robust_list = NULL;
1322 #endif
1323 INIT_LIST_HEAD(&p->pi_state_list);
1324 p->pi_state_cache = NULL;
1325 #endif
1326 /*
1327 * sigaltstack should be cleared when sharing the same VM
1328 */
1329 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1330 p->sas_ss_sp = p->sas_ss_size = 0;
1331
1332 /*
1333 * Syscall tracing and stepping should be turned off in the
1334 * child regardless of CLONE_PTRACE.
1335 */
1336 user_disable_single_step(p);
1337 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1338 #ifdef TIF_SYSCALL_EMU
1339 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1340 #endif
1341 clear_all_latency_tracing(p);
1342
1343 /* ok, now we should be set up.. */
1344 if (clone_flags & CLONE_THREAD)
1345 p->exit_signal = -1;
1346 else if (clone_flags & CLONE_PARENT)
1347 p->exit_signal = current->group_leader->exit_signal;
1348 else
1349 p->exit_signal = (clone_flags & CSIGNAL);
1350
1351 p->pdeath_signal = 0;
1352 p->exit_state = 0;
1353
1354 p->nr_dirtied = 0;
1355 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
1356 p->dirty_paused_when = 0;
1357
1358 /*
1359 * Ok, make it visible to the rest of the system.
1360 * We dont wake it up yet.
1361 */
1362 p->group_leader = p;
1363 INIT_LIST_HEAD(&p->thread_group);
1364
1365 /* Now that the task is set up, run cgroup callbacks if
1366 * necessary. We need to run them before the task is visible
1367 * on the tasklist. */
1368 cgroup_fork_callbacks(p);
1369 cgroup_callbacks_done = 1;
1370
1371 /* Need tasklist lock for parent etc handling! */
1372 write_lock_irq(&tasklist_lock);
1373
1374 /* CLONE_PARENT re-uses the old parent */
1375 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1376 p->real_parent = current->real_parent;
1377 p->parent_exec_id = current->parent_exec_id;
1378 } else {
1379 p->real_parent = current;
1380 p->parent_exec_id = current->self_exec_id;
1381 }
1382
1383 spin_lock(&current->sighand->siglock);
1384
1385 /*
1386 * Process group and session signals need to be delivered to just the
1387 * parent before the fork or both the parent and the child after the
1388 * fork. Restart if a signal comes in before we add the new process to
1389 * it's process group.
1390 * A fatal signal pending means that current will exit, so the new
1391 * thread can't slip out of an OOM kill (or normal SIGKILL).
1392 */
1393 recalc_sigpending();
1394 if (signal_pending(current)) {
1395 spin_unlock(&current->sighand->siglock);
1396 write_unlock_irq(&tasklist_lock);
1397 retval = -ERESTARTNOINTR;
1398 goto bad_fork_free_pid;
1399 }
1400
1401 if (clone_flags & CLONE_THREAD) {
1402 current->signal->nr_threads++;
1403 atomic_inc(&current->signal->live);
1404 atomic_inc(&current->signal->sigcnt);
1405 p->group_leader = current->group_leader;
1406 list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
1407 }
1408
1409 if (likely(p->pid)) {
1410 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
1411
1412 if (thread_group_leader(p)) {
1413 if (is_child_reaper(pid))
1414 p->nsproxy->pid_ns->child_reaper = p;
1415
1416 p->signal->leader_pid = pid;
1417 p->signal->tty = tty_kref_get(current->signal->tty);
1418 attach_pid(p, PIDTYPE_PGID, task_pgrp(current));
1419 attach_pid(p, PIDTYPE_SID, task_session(current));
1420 list_add_tail(&p->sibling, &p->real_parent->children);
1421 list_add_tail_rcu(&p->tasks, &init_task.tasks);
1422 __this_cpu_inc(process_counts);
1423 }
1424 attach_pid(p, PIDTYPE_PID, pid);
1425 nr_threads++;
1426 }
1427
1428 total_forks++;
1429 spin_unlock(&current->sighand->siglock);
1430 write_unlock_irq(&tasklist_lock);
1431 proc_fork_connector(p);
1432 cgroup_post_fork(p);
1433 if (clone_flags & CLONE_THREAD)
1434 threadgroup_change_end(current);
1435 perf_event_fork(p);
1436
1437 trace_task_newtask(p, clone_flags);
1438
1439 return p;
1440
1441 bad_fork_free_pid:
1442 if (pid != &init_struct_pid)
1443 free_pid(pid);
1444 bad_fork_cleanup_io:
1445 if (p->io_context)
1446 exit_io_context(p);
1447 bad_fork_cleanup_namespaces:
1448 exit_task_namespaces(p);
1449 bad_fork_cleanup_mm:
1450 if (p->mm)
1451 mmput(p->mm);
1452 bad_fork_cleanup_signal:
1453 if (!(clone_flags & CLONE_THREAD))
1454 free_signal_struct(p->signal);
1455 bad_fork_cleanup_sighand:
1456 __cleanup_sighand(p->sighand);
1457 bad_fork_cleanup_fs:
1458 exit_fs(p); /* blocking */
1459 bad_fork_cleanup_files:
1460 exit_files(p); /* blocking */
1461 bad_fork_cleanup_semundo:
1462 exit_sem(p);
1463 bad_fork_cleanup_audit:
1464 audit_free(p);
1465 bad_fork_cleanup_policy:
1466 perf_event_free_task(p);
1467 #ifdef CONFIG_NUMA
1468 mpol_put(p->mempolicy);
1469 bad_fork_cleanup_cgroup:
1470 #endif
1471 if (clone_flags & CLONE_THREAD)
1472 threadgroup_change_end(current);
1473 cgroup_exit(p, cgroup_callbacks_done);
1474 delayacct_tsk_free(p);
1475 module_put(task_thread_info(p)->exec_domain->module);
1476 bad_fork_cleanup_count:
1477 atomic_dec(&p->cred->user->processes);
1478 exit_creds(p);
1479 bad_fork_free:
1480 free_task(p);
1481 fork_out:
1482 return ERR_PTR(retval);
1483 }
1484
1485 noinline struct pt_regs * __cpuinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
1486 {
1487 memset(regs, 0, sizeof(struct pt_regs));
1488 return regs;
1489 }
1490
1491 static inline void init_idle_pids(struct pid_link *links)
1492 {
1493 enum pid_type type;
1494
1495 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1496 INIT_HLIST_NODE(&links[type].node); /* not really needed */
1497 links[type].pid = &init_struct_pid;
1498 }
1499 }
1500
1501 struct task_struct * __cpuinit fork_idle(int cpu)
1502 {
1503 struct task_struct *task;
1504 struct pt_regs regs;
1505
1506 task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL,
1507 &init_struct_pid, 0);
1508 if (!IS_ERR(task)) {
1509 init_idle_pids(task->pids);
1510 init_idle(task, cpu);
1511 }
1512
1513 return task;
1514 }
1515
1516 /*
1517 * Ok, this is the main fork-routine.
1518 *
1519 * It copies the process, and if successful kick-starts
1520 * it and waits for it to finish using the VM if required.
1521 */
1522 long do_fork(unsigned long clone_flags,
1523 unsigned long stack_start,
1524 struct pt_regs *regs,
1525 unsigned long stack_size,
1526 int __user *parent_tidptr,
1527 int __user *child_tidptr)
1528 {
1529 struct task_struct *p;
1530 int trace = 0;
1531 long nr;
1532
1533 /*
1534 * Do some preliminary argument and permissions checking before we
1535 * actually start allocating stuff
1536 */
1537 if (clone_flags & CLONE_NEWUSER) {
1538 if (clone_flags & CLONE_THREAD)
1539 return -EINVAL;
1540 /* hopefully this check will go away when userns support is
1541 * complete
1542 */
1543 if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SETUID) ||
1544 !capable(CAP_SETGID))
1545 return -EPERM;
1546 }
1547
1548 /*
1549 * Determine whether and which event to report to ptracer. When
1550 * called from kernel_thread or CLONE_UNTRACED is explicitly
1551 * requested, no event is reported; otherwise, report if the event
1552 * for the type of forking is enabled.
1553 */
1554 if (likely(user_mode(regs)) && !(clone_flags & CLONE_UNTRACED)) {
1555 if (clone_flags & CLONE_VFORK)
1556 trace = PTRACE_EVENT_VFORK;
1557 else if ((clone_flags & CSIGNAL) != SIGCHLD)
1558 trace = PTRACE_EVENT_CLONE;
1559 else
1560 trace = PTRACE_EVENT_FORK;
1561
1562 if (likely(!ptrace_event_enabled(current, trace)))
1563 trace = 0;
1564 }
1565
1566 p = copy_process(clone_flags, stack_start, regs, stack_size,
1567 child_tidptr, NULL, trace);
1568 /*
1569 * Do this prior waking up the new thread - the thread pointer
1570 * might get invalid after that point, if the thread exits quickly.
1571 */
1572 if (!IS_ERR(p)) {
1573 struct completion vfork;
1574
1575 trace_sched_process_fork(current, p);
1576
1577 nr = task_pid_vnr(p);
1578
1579 if (clone_flags & CLONE_PARENT_SETTID)
1580 put_user(nr, parent_tidptr);
1581
1582 if (clone_flags & CLONE_VFORK) {
1583 p->vfork_done = &vfork;
1584 init_completion(&vfork);
1585 get_task_struct(p);
1586 }
1587
1588 wake_up_new_task(p);
1589
1590 /* forking complete and child started to run, tell ptracer */
1591 if (unlikely(trace))
1592 ptrace_event(trace, nr);
1593
1594 if (clone_flags & CLONE_VFORK) {
1595 if (!wait_for_vfork_done(p, &vfork))
1596 ptrace_event(PTRACE_EVENT_VFORK_DONE, nr);
1597 }
1598 } else {
1599 nr = PTR_ERR(p);
1600 }
1601 return nr;
1602 }
1603
1604 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1605 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1606 #endif
1607
1608 static void sighand_ctor(void *data)
1609 {
1610 struct sighand_struct *sighand = data;
1611
1612 spin_lock_init(&sighand->siglock);
1613 init_waitqueue_head(&sighand->signalfd_wqh);
1614 }
1615
1616 void __init proc_caches_init(void)
1617 {
1618 sighand_cachep = kmem_cache_create("sighand_cache",
1619 sizeof(struct sighand_struct), 0,
1620 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
1621 SLAB_NOTRACK, sighand_ctor);
1622 signal_cachep = kmem_cache_create("signal_cache",
1623 sizeof(struct signal_struct), 0,
1624 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1625 files_cachep = kmem_cache_create("files_cache",
1626 sizeof(struct files_struct), 0,
1627 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1628 fs_cachep = kmem_cache_create("fs_cache",
1629 sizeof(struct fs_struct), 0,
1630 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1631 /*
1632 * FIXME! The "sizeof(struct mm_struct)" currently includes the
1633 * whole struct cpumask for the OFFSTACK case. We could change
1634 * this to *only* allocate as much of it as required by the
1635 * maximum number of CPU's we can ever have. The cpumask_allocation
1636 * is at the end of the structure, exactly for that reason.
1637 */
1638 mm_cachep = kmem_cache_create("mm_struct",
1639 sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1640 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1641 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC);
1642 mmap_init();
1643 nsproxy_cache_init();
1644 }
1645
1646 /*
1647 * Check constraints on flags passed to the unshare system call.
1648 */
1649 static int check_unshare_flags(unsigned long unshare_flags)
1650 {
1651 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1652 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1653 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET))
1654 return -EINVAL;
1655 /*
1656 * Not implemented, but pretend it works if there is nothing to
1657 * unshare. Note that unsharing CLONE_THREAD or CLONE_SIGHAND
1658 * needs to unshare vm.
1659 */
1660 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
1661 /* FIXME: get_task_mm() increments ->mm_users */
1662 if (atomic_read(&current->mm->mm_users) > 1)
1663 return -EINVAL;
1664 }
1665
1666 return 0;
1667 }
1668
1669 /*
1670 * Unshare the filesystem structure if it is being shared
1671 */
1672 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1673 {
1674 struct fs_struct *fs = current->fs;
1675
1676 if (!(unshare_flags & CLONE_FS) || !fs)
1677 return 0;
1678
1679 /* don't need lock here; in the worst case we'll do useless copy */
1680 if (fs->users == 1)
1681 return 0;
1682
1683 *new_fsp = copy_fs_struct(fs);
1684 if (!*new_fsp)
1685 return -ENOMEM;
1686
1687 return 0;
1688 }
1689
1690 /*
1691 * Unshare file descriptor table if it is being shared
1692 */
1693 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1694 {
1695 struct files_struct *fd = current->files;
1696 int error = 0;
1697
1698 if ((unshare_flags & CLONE_FILES) &&
1699 (fd && atomic_read(&fd->count) > 1)) {
1700 *new_fdp = dup_fd(fd, &error);
1701 if (!*new_fdp)
1702 return error;
1703 }
1704
1705 return 0;
1706 }
1707
1708 /*
1709 * unshare allows a process to 'unshare' part of the process
1710 * context which was originally shared using clone. copy_*
1711 * functions used by do_fork() cannot be used here directly
1712 * because they modify an inactive task_struct that is being
1713 * constructed. Here we are modifying the current, active,
1714 * task_struct.
1715 */
1716 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
1717 {
1718 struct fs_struct *fs, *new_fs = NULL;
1719 struct files_struct *fd, *new_fd = NULL;
1720 struct nsproxy *new_nsproxy = NULL;
1721 int do_sysvsem = 0;
1722 int err;
1723
1724 err = check_unshare_flags(unshare_flags);
1725 if (err)
1726 goto bad_unshare_out;
1727
1728 /*
1729 * If unsharing namespace, must also unshare filesystem information.
1730 */
1731 if (unshare_flags & CLONE_NEWNS)
1732 unshare_flags |= CLONE_FS;
1733 /*
1734 * CLONE_NEWIPC must also detach from the undolist: after switching
1735 * to a new ipc namespace, the semaphore arrays from the old
1736 * namespace are unreachable.
1737 */
1738 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
1739 do_sysvsem = 1;
1740 err = unshare_fs(unshare_flags, &new_fs);
1741 if (err)
1742 goto bad_unshare_out;
1743 err = unshare_fd(unshare_flags, &new_fd);
1744 if (err)
1745 goto bad_unshare_cleanup_fs;
1746 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy, new_fs);
1747 if (err)
1748 goto bad_unshare_cleanup_fd;
1749
1750 if (new_fs || new_fd || do_sysvsem || new_nsproxy) {
1751 if (do_sysvsem) {
1752 /*
1753 * CLONE_SYSVSEM is equivalent to sys_exit().
1754 */
1755 exit_sem(current);
1756 }
1757
1758 if (new_nsproxy) {
1759 switch_task_namespaces(current, new_nsproxy);
1760 new_nsproxy = NULL;
1761 }
1762
1763 task_lock(current);
1764
1765 if (new_fs) {
1766 fs = current->fs;
1767 spin_lock(&fs->lock);
1768 current->fs = new_fs;
1769 if (--fs->users)
1770 new_fs = NULL;
1771 else
1772 new_fs = fs;
1773 spin_unlock(&fs->lock);
1774 }
1775
1776 if (new_fd) {
1777 fd = current->files;
1778 current->files = new_fd;
1779 new_fd = fd;
1780 }
1781
1782 task_unlock(current);
1783 }
1784
1785 if (new_nsproxy)
1786 put_nsproxy(new_nsproxy);
1787
1788 bad_unshare_cleanup_fd:
1789 if (new_fd)
1790 put_files_struct(new_fd);
1791
1792 bad_unshare_cleanup_fs:
1793 if (new_fs)
1794 free_fs_struct(new_fs);
1795
1796 bad_unshare_out:
1797 return err;
1798 }
1799
1800 /*
1801 * Helper to unshare the files of the current task.
1802 * We don't want to expose copy_files internals to
1803 * the exec layer of the kernel.
1804 */
1805
1806 int unshare_files(struct files_struct **displaced)
1807 {
1808 struct task_struct *task = current;
1809 struct files_struct *copy = NULL;
1810 int error;
1811
1812 error = unshare_fd(CLONE_FILES, &copy);
1813 if (error || !copy) {
1814 *displaced = NULL;
1815 return error;
1816 }
1817 *displaced = task->files;
1818 task_lock(task);
1819 task->files = copy;
1820 task_unlock(task);
1821 return 0;
1822 }
This page took 0.070636 seconds and 5 git commands to generate.