Merge branch 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[deliverable/linux.git] / kernel / fork.c
1 /*
2 * linux/kernel/fork.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * 'fork.c' contains the help-routines for the 'fork' system call
9 * (see also entry.S and others).
10 * Fork is rather simple, once you get the hang of it, but the memory
11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12 */
13
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/mempolicy.h>
22 #include <linux/sem.h>
23 #include <linux/file.h>
24 #include <linux/fdtable.h>
25 #include <linux/iocontext.h>
26 #include <linux/key.h>
27 #include <linux/binfmts.h>
28 #include <linux/mman.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/fs.h>
31 #include <linux/nsproxy.h>
32 #include <linux/capability.h>
33 #include <linux/cpu.h>
34 #include <linux/cgroup.h>
35 #include <linux/security.h>
36 #include <linux/hugetlb.h>
37 #include <linux/swap.h>
38 #include <linux/syscalls.h>
39 #include <linux/jiffies.h>
40 #include <linux/futex.h>
41 #include <linux/compat.h>
42 #include <linux/kthread.h>
43 #include <linux/task_io_accounting_ops.h>
44 #include <linux/rcupdate.h>
45 #include <linux/ptrace.h>
46 #include <linux/mount.h>
47 #include <linux/audit.h>
48 #include <linux/memcontrol.h>
49 #include <linux/ftrace.h>
50 #include <linux/profile.h>
51 #include <linux/rmap.h>
52 #include <linux/ksm.h>
53 #include <linux/acct.h>
54 #include <linux/tsacct_kern.h>
55 #include <linux/cn_proc.h>
56 #include <linux/freezer.h>
57 #include <linux/delayacct.h>
58 #include <linux/taskstats_kern.h>
59 #include <linux/random.h>
60 #include <linux/tty.h>
61 #include <linux/blkdev.h>
62 #include <linux/fs_struct.h>
63 #include <linux/magic.h>
64 #include <linux/perf_event.h>
65 #include <linux/posix-timers.h>
66 #include <linux/user-return-notifier.h>
67 #include <linux/oom.h>
68 #include <linux/khugepaged.h>
69 #include <linux/signalfd.h>
70
71 #include <asm/pgtable.h>
72 #include <asm/pgalloc.h>
73 #include <asm/uaccess.h>
74 #include <asm/mmu_context.h>
75 #include <asm/cacheflush.h>
76 #include <asm/tlbflush.h>
77
78 #include <trace/events/sched.h>
79
80 #define CREATE_TRACE_POINTS
81 #include <trace/events/task.h>
82
83 /*
84 * Protected counters by write_lock_irq(&tasklist_lock)
85 */
86 unsigned long total_forks; /* Handle normal Linux uptimes. */
87 int nr_threads; /* The idle threads do not count.. */
88
89 int max_threads; /* tunable limit on nr_threads */
90
91 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
92
93 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
94
95 #ifdef CONFIG_PROVE_RCU
96 int lockdep_tasklist_lock_is_held(void)
97 {
98 return lockdep_is_held(&tasklist_lock);
99 }
100 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
101 #endif /* #ifdef CONFIG_PROVE_RCU */
102
103 int nr_processes(void)
104 {
105 int cpu;
106 int total = 0;
107
108 for_each_possible_cpu(cpu)
109 total += per_cpu(process_counts, cpu);
110
111 return total;
112 }
113
114 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
115 # define alloc_task_struct_node(node) \
116 kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node)
117 # define free_task_struct(tsk) \
118 kmem_cache_free(task_struct_cachep, (tsk))
119 static struct kmem_cache *task_struct_cachep;
120 #endif
121
122 #ifndef __HAVE_ARCH_THREAD_INFO_ALLOCATOR
123 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
124 int node)
125 {
126 #ifdef CONFIG_DEBUG_STACK_USAGE
127 gfp_t mask = GFP_KERNEL | __GFP_ZERO;
128 #else
129 gfp_t mask = GFP_KERNEL;
130 #endif
131 struct page *page = alloc_pages_node(node, mask, THREAD_SIZE_ORDER);
132
133 return page ? page_address(page) : NULL;
134 }
135
136 static inline void free_thread_info(struct thread_info *ti)
137 {
138 free_pages((unsigned long)ti, THREAD_SIZE_ORDER);
139 }
140 #endif
141
142 /* SLAB cache for signal_struct structures (tsk->signal) */
143 static struct kmem_cache *signal_cachep;
144
145 /* SLAB cache for sighand_struct structures (tsk->sighand) */
146 struct kmem_cache *sighand_cachep;
147
148 /* SLAB cache for files_struct structures (tsk->files) */
149 struct kmem_cache *files_cachep;
150
151 /* SLAB cache for fs_struct structures (tsk->fs) */
152 struct kmem_cache *fs_cachep;
153
154 /* SLAB cache for vm_area_struct structures */
155 struct kmem_cache *vm_area_cachep;
156
157 /* SLAB cache for mm_struct structures (tsk->mm) */
158 static struct kmem_cache *mm_cachep;
159
160 static void account_kernel_stack(struct thread_info *ti, int account)
161 {
162 struct zone *zone = page_zone(virt_to_page(ti));
163
164 mod_zone_page_state(zone, NR_KERNEL_STACK, account);
165 }
166
167 void free_task(struct task_struct *tsk)
168 {
169 account_kernel_stack(tsk->stack, -1);
170 free_thread_info(tsk->stack);
171 rt_mutex_debug_task_free(tsk);
172 ftrace_graph_exit_task(tsk);
173 free_task_struct(tsk);
174 }
175 EXPORT_SYMBOL(free_task);
176
177 static inline void free_signal_struct(struct signal_struct *sig)
178 {
179 taskstats_tgid_free(sig);
180 sched_autogroup_exit(sig);
181 kmem_cache_free(signal_cachep, sig);
182 }
183
184 static inline void put_signal_struct(struct signal_struct *sig)
185 {
186 if (atomic_dec_and_test(&sig->sigcnt))
187 free_signal_struct(sig);
188 }
189
190 void __put_task_struct(struct task_struct *tsk)
191 {
192 WARN_ON(!tsk->exit_state);
193 WARN_ON(atomic_read(&tsk->usage));
194 WARN_ON(tsk == current);
195
196 security_task_free(tsk);
197 exit_creds(tsk);
198 delayacct_tsk_free(tsk);
199 put_signal_struct(tsk->signal);
200
201 if (!profile_handoff_task(tsk))
202 free_task(tsk);
203 }
204 EXPORT_SYMBOL_GPL(__put_task_struct);
205
206 /*
207 * macro override instead of weak attribute alias, to workaround
208 * gcc 4.1.0 and 4.1.1 bugs with weak attribute and empty functions.
209 */
210 #ifndef arch_task_cache_init
211 #define arch_task_cache_init()
212 #endif
213
214 void __init fork_init(unsigned long mempages)
215 {
216 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
217 #ifndef ARCH_MIN_TASKALIGN
218 #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
219 #endif
220 /* create a slab on which task_structs can be allocated */
221 task_struct_cachep =
222 kmem_cache_create("task_struct", sizeof(struct task_struct),
223 ARCH_MIN_TASKALIGN, SLAB_PANIC | SLAB_NOTRACK, NULL);
224 #endif
225
226 /* do the arch specific task caches init */
227 arch_task_cache_init();
228
229 /*
230 * The default maximum number of threads is set to a safe
231 * value: the thread structures can take up at most half
232 * of memory.
233 */
234 max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
235
236 /*
237 * we need to allow at least 20 threads to boot a system
238 */
239 if (max_threads < 20)
240 max_threads = 20;
241
242 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
243 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
244 init_task.signal->rlim[RLIMIT_SIGPENDING] =
245 init_task.signal->rlim[RLIMIT_NPROC];
246 }
247
248 int __attribute__((weak)) arch_dup_task_struct(struct task_struct *dst,
249 struct task_struct *src)
250 {
251 *dst = *src;
252 return 0;
253 }
254
255 static struct task_struct *dup_task_struct(struct task_struct *orig)
256 {
257 struct task_struct *tsk;
258 struct thread_info *ti;
259 unsigned long *stackend;
260 int node = tsk_fork_get_node(orig);
261 int err;
262
263 prepare_to_copy(orig);
264
265 tsk = alloc_task_struct_node(node);
266 if (!tsk)
267 return NULL;
268
269 ti = alloc_thread_info_node(tsk, node);
270 if (!ti) {
271 free_task_struct(tsk);
272 return NULL;
273 }
274
275 err = arch_dup_task_struct(tsk, orig);
276 if (err)
277 goto out;
278
279 tsk->stack = ti;
280
281 setup_thread_stack(tsk, orig);
282 clear_user_return_notifier(tsk);
283 clear_tsk_need_resched(tsk);
284 stackend = end_of_stack(tsk);
285 *stackend = STACK_END_MAGIC; /* for overflow detection */
286
287 #ifdef CONFIG_CC_STACKPROTECTOR
288 tsk->stack_canary = get_random_int();
289 #endif
290
291 /*
292 * One for us, one for whoever does the "release_task()" (usually
293 * parent)
294 */
295 atomic_set(&tsk->usage, 2);
296 #ifdef CONFIG_BLK_DEV_IO_TRACE
297 tsk->btrace_seq = 0;
298 #endif
299 tsk->splice_pipe = NULL;
300
301 account_kernel_stack(ti, 1);
302
303 return tsk;
304
305 out:
306 free_thread_info(ti);
307 free_task_struct(tsk);
308 return NULL;
309 }
310
311 #ifdef CONFIG_MMU
312 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
313 {
314 struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
315 struct rb_node **rb_link, *rb_parent;
316 int retval;
317 unsigned long charge;
318 struct mempolicy *pol;
319
320 down_write(&oldmm->mmap_sem);
321 flush_cache_dup_mm(oldmm);
322 /*
323 * Not linked in yet - no deadlock potential:
324 */
325 down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
326
327 mm->locked_vm = 0;
328 mm->mmap = NULL;
329 mm->mmap_cache = NULL;
330 mm->free_area_cache = oldmm->mmap_base;
331 mm->cached_hole_size = ~0UL;
332 mm->map_count = 0;
333 cpumask_clear(mm_cpumask(mm));
334 mm->mm_rb = RB_ROOT;
335 rb_link = &mm->mm_rb.rb_node;
336 rb_parent = NULL;
337 pprev = &mm->mmap;
338 retval = ksm_fork(mm, oldmm);
339 if (retval)
340 goto out;
341 retval = khugepaged_fork(mm, oldmm);
342 if (retval)
343 goto out;
344
345 prev = NULL;
346 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
347 struct file *file;
348
349 if (mpnt->vm_flags & VM_DONTCOPY) {
350 long pages = vma_pages(mpnt);
351 mm->total_vm -= pages;
352 vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
353 -pages);
354 continue;
355 }
356 charge = 0;
357 if (mpnt->vm_flags & VM_ACCOUNT) {
358 unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
359 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
360 goto fail_nomem;
361 charge = len;
362 }
363 tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
364 if (!tmp)
365 goto fail_nomem;
366 *tmp = *mpnt;
367 INIT_LIST_HEAD(&tmp->anon_vma_chain);
368 pol = mpol_dup(vma_policy(mpnt));
369 retval = PTR_ERR(pol);
370 if (IS_ERR(pol))
371 goto fail_nomem_policy;
372 vma_set_policy(tmp, pol);
373 tmp->vm_mm = mm;
374 if (anon_vma_fork(tmp, mpnt))
375 goto fail_nomem_anon_vma_fork;
376 tmp->vm_flags &= ~VM_LOCKED;
377 tmp->vm_next = tmp->vm_prev = NULL;
378 file = tmp->vm_file;
379 if (file) {
380 struct inode *inode = file->f_path.dentry->d_inode;
381 struct address_space *mapping = file->f_mapping;
382
383 get_file(file);
384 if (tmp->vm_flags & VM_DENYWRITE)
385 atomic_dec(&inode->i_writecount);
386 mutex_lock(&mapping->i_mmap_mutex);
387 if (tmp->vm_flags & VM_SHARED)
388 mapping->i_mmap_writable++;
389 flush_dcache_mmap_lock(mapping);
390 /* insert tmp into the share list, just after mpnt */
391 vma_prio_tree_add(tmp, mpnt);
392 flush_dcache_mmap_unlock(mapping);
393 mutex_unlock(&mapping->i_mmap_mutex);
394 }
395
396 /*
397 * Clear hugetlb-related page reserves for children. This only
398 * affects MAP_PRIVATE mappings. Faults generated by the child
399 * are not guaranteed to succeed, even if read-only
400 */
401 if (is_vm_hugetlb_page(tmp))
402 reset_vma_resv_huge_pages(tmp);
403
404 /*
405 * Link in the new vma and copy the page table entries.
406 */
407 *pprev = tmp;
408 pprev = &tmp->vm_next;
409 tmp->vm_prev = prev;
410 prev = tmp;
411
412 __vma_link_rb(mm, tmp, rb_link, rb_parent);
413 rb_link = &tmp->vm_rb.rb_right;
414 rb_parent = &tmp->vm_rb;
415
416 mm->map_count++;
417 retval = copy_page_range(mm, oldmm, mpnt);
418
419 if (tmp->vm_ops && tmp->vm_ops->open)
420 tmp->vm_ops->open(tmp);
421
422 if (retval)
423 goto out;
424 }
425 /* a new mm has just been created */
426 arch_dup_mmap(oldmm, mm);
427 retval = 0;
428 out:
429 up_write(&mm->mmap_sem);
430 flush_tlb_mm(oldmm);
431 up_write(&oldmm->mmap_sem);
432 return retval;
433 fail_nomem_anon_vma_fork:
434 mpol_put(pol);
435 fail_nomem_policy:
436 kmem_cache_free(vm_area_cachep, tmp);
437 fail_nomem:
438 retval = -ENOMEM;
439 vm_unacct_memory(charge);
440 goto out;
441 }
442
443 static inline int mm_alloc_pgd(struct mm_struct *mm)
444 {
445 mm->pgd = pgd_alloc(mm);
446 if (unlikely(!mm->pgd))
447 return -ENOMEM;
448 return 0;
449 }
450
451 static inline void mm_free_pgd(struct mm_struct *mm)
452 {
453 pgd_free(mm, mm->pgd);
454 }
455 #else
456 #define dup_mmap(mm, oldmm) (0)
457 #define mm_alloc_pgd(mm) (0)
458 #define mm_free_pgd(mm)
459 #endif /* CONFIG_MMU */
460
461 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
462
463 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
464 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
465
466 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
467
468 static int __init coredump_filter_setup(char *s)
469 {
470 default_dump_filter =
471 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
472 MMF_DUMP_FILTER_MASK;
473 return 1;
474 }
475
476 __setup("coredump_filter=", coredump_filter_setup);
477
478 #include <linux/init_task.h>
479
480 static void mm_init_aio(struct mm_struct *mm)
481 {
482 #ifdef CONFIG_AIO
483 spin_lock_init(&mm->ioctx_lock);
484 INIT_HLIST_HEAD(&mm->ioctx_list);
485 #endif
486 }
487
488 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p)
489 {
490 atomic_set(&mm->mm_users, 1);
491 atomic_set(&mm->mm_count, 1);
492 init_rwsem(&mm->mmap_sem);
493 INIT_LIST_HEAD(&mm->mmlist);
494 mm->flags = (current->mm) ?
495 (current->mm->flags & MMF_INIT_MASK) : default_dump_filter;
496 mm->core_state = NULL;
497 mm->nr_ptes = 0;
498 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
499 spin_lock_init(&mm->page_table_lock);
500 mm->free_area_cache = TASK_UNMAPPED_BASE;
501 mm->cached_hole_size = ~0UL;
502 mm_init_aio(mm);
503 mm_init_owner(mm, p);
504
505 if (likely(!mm_alloc_pgd(mm))) {
506 mm->def_flags = 0;
507 mmu_notifier_mm_init(mm);
508 return mm;
509 }
510
511 free_mm(mm);
512 return NULL;
513 }
514
515 static void check_mm(struct mm_struct *mm)
516 {
517 int i;
518
519 for (i = 0; i < NR_MM_COUNTERS; i++) {
520 long x = atomic_long_read(&mm->rss_stat.count[i]);
521
522 if (unlikely(x))
523 printk(KERN_ALERT "BUG: Bad rss-counter state "
524 "mm:%p idx:%d val:%ld\n", mm, i, x);
525 }
526
527 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
528 VM_BUG_ON(mm->pmd_huge_pte);
529 #endif
530 }
531
532 /*
533 * Allocate and initialize an mm_struct.
534 */
535 struct mm_struct *mm_alloc(void)
536 {
537 struct mm_struct *mm;
538
539 mm = allocate_mm();
540 if (!mm)
541 return NULL;
542
543 memset(mm, 0, sizeof(*mm));
544 mm_init_cpumask(mm);
545 return mm_init(mm, current);
546 }
547
548 /*
549 * Called when the last reference to the mm
550 * is dropped: either by a lazy thread or by
551 * mmput. Free the page directory and the mm.
552 */
553 void __mmdrop(struct mm_struct *mm)
554 {
555 BUG_ON(mm == &init_mm);
556 mm_free_pgd(mm);
557 destroy_context(mm);
558 mmu_notifier_mm_destroy(mm);
559 check_mm(mm);
560 free_mm(mm);
561 }
562 EXPORT_SYMBOL_GPL(__mmdrop);
563
564 /*
565 * Decrement the use count and release all resources for an mm.
566 */
567 void mmput(struct mm_struct *mm)
568 {
569 might_sleep();
570
571 if (atomic_dec_and_test(&mm->mm_users)) {
572 exit_aio(mm);
573 ksm_exit(mm);
574 khugepaged_exit(mm); /* must run before exit_mmap */
575 exit_mmap(mm);
576 set_mm_exe_file(mm, NULL);
577 if (!list_empty(&mm->mmlist)) {
578 spin_lock(&mmlist_lock);
579 list_del(&mm->mmlist);
580 spin_unlock(&mmlist_lock);
581 }
582 put_swap_token(mm);
583 if (mm->binfmt)
584 module_put(mm->binfmt->module);
585 mmdrop(mm);
586 }
587 }
588 EXPORT_SYMBOL_GPL(mmput);
589
590 /*
591 * We added or removed a vma mapping the executable. The vmas are only mapped
592 * during exec and are not mapped with the mmap system call.
593 * Callers must hold down_write() on the mm's mmap_sem for these
594 */
595 void added_exe_file_vma(struct mm_struct *mm)
596 {
597 mm->num_exe_file_vmas++;
598 }
599
600 void removed_exe_file_vma(struct mm_struct *mm)
601 {
602 mm->num_exe_file_vmas--;
603 if ((mm->num_exe_file_vmas == 0) && mm->exe_file) {
604 fput(mm->exe_file);
605 mm->exe_file = NULL;
606 }
607
608 }
609
610 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
611 {
612 if (new_exe_file)
613 get_file(new_exe_file);
614 if (mm->exe_file)
615 fput(mm->exe_file);
616 mm->exe_file = new_exe_file;
617 mm->num_exe_file_vmas = 0;
618 }
619
620 struct file *get_mm_exe_file(struct mm_struct *mm)
621 {
622 struct file *exe_file;
623
624 /* We need mmap_sem to protect against races with removal of
625 * VM_EXECUTABLE vmas */
626 down_read(&mm->mmap_sem);
627 exe_file = mm->exe_file;
628 if (exe_file)
629 get_file(exe_file);
630 up_read(&mm->mmap_sem);
631 return exe_file;
632 }
633
634 static void dup_mm_exe_file(struct mm_struct *oldmm, struct mm_struct *newmm)
635 {
636 /* It's safe to write the exe_file pointer without exe_file_lock because
637 * this is called during fork when the task is not yet in /proc */
638 newmm->exe_file = get_mm_exe_file(oldmm);
639 }
640
641 /**
642 * get_task_mm - acquire a reference to the task's mm
643 *
644 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
645 * this kernel workthread has transiently adopted a user mm with use_mm,
646 * to do its AIO) is not set and if so returns a reference to it, after
647 * bumping up the use count. User must release the mm via mmput()
648 * after use. Typically used by /proc and ptrace.
649 */
650 struct mm_struct *get_task_mm(struct task_struct *task)
651 {
652 struct mm_struct *mm;
653
654 task_lock(task);
655 mm = task->mm;
656 if (mm) {
657 if (task->flags & PF_KTHREAD)
658 mm = NULL;
659 else
660 atomic_inc(&mm->mm_users);
661 }
662 task_unlock(task);
663 return mm;
664 }
665 EXPORT_SYMBOL_GPL(get_task_mm);
666
667 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
668 {
669 struct mm_struct *mm;
670 int err;
671
672 err = mutex_lock_killable(&task->signal->cred_guard_mutex);
673 if (err)
674 return ERR_PTR(err);
675
676 mm = get_task_mm(task);
677 if (mm && mm != current->mm &&
678 !ptrace_may_access(task, mode)) {
679 mmput(mm);
680 mm = ERR_PTR(-EACCES);
681 }
682 mutex_unlock(&task->signal->cred_guard_mutex);
683
684 return mm;
685 }
686
687 static void complete_vfork_done(struct task_struct *tsk)
688 {
689 struct completion *vfork;
690
691 task_lock(tsk);
692 vfork = tsk->vfork_done;
693 if (likely(vfork)) {
694 tsk->vfork_done = NULL;
695 complete(vfork);
696 }
697 task_unlock(tsk);
698 }
699
700 static int wait_for_vfork_done(struct task_struct *child,
701 struct completion *vfork)
702 {
703 int killed;
704
705 freezer_do_not_count();
706 killed = wait_for_completion_killable(vfork);
707 freezer_count();
708
709 if (killed) {
710 task_lock(child);
711 child->vfork_done = NULL;
712 task_unlock(child);
713 }
714
715 put_task_struct(child);
716 return killed;
717 }
718
719 /* Please note the differences between mmput and mm_release.
720 * mmput is called whenever we stop holding onto a mm_struct,
721 * error success whatever.
722 *
723 * mm_release is called after a mm_struct has been removed
724 * from the current process.
725 *
726 * This difference is important for error handling, when we
727 * only half set up a mm_struct for a new process and need to restore
728 * the old one. Because we mmput the new mm_struct before
729 * restoring the old one. . .
730 * Eric Biederman 10 January 1998
731 */
732 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
733 {
734 /* Get rid of any futexes when releasing the mm */
735 #ifdef CONFIG_FUTEX
736 if (unlikely(tsk->robust_list)) {
737 exit_robust_list(tsk);
738 tsk->robust_list = NULL;
739 }
740 #ifdef CONFIG_COMPAT
741 if (unlikely(tsk->compat_robust_list)) {
742 compat_exit_robust_list(tsk);
743 tsk->compat_robust_list = NULL;
744 }
745 #endif
746 if (unlikely(!list_empty(&tsk->pi_state_list)))
747 exit_pi_state_list(tsk);
748 #endif
749
750 /* Get rid of any cached register state */
751 deactivate_mm(tsk, mm);
752
753 if (tsk->vfork_done)
754 complete_vfork_done(tsk);
755
756 /*
757 * If we're exiting normally, clear a user-space tid field if
758 * requested. We leave this alone when dying by signal, to leave
759 * the value intact in a core dump, and to save the unnecessary
760 * trouble, say, a killed vfork parent shouldn't touch this mm.
761 * Userland only wants this done for a sys_exit.
762 */
763 if (tsk->clear_child_tid) {
764 if (!(tsk->flags & PF_SIGNALED) &&
765 atomic_read(&mm->mm_users) > 1) {
766 /*
767 * We don't check the error code - if userspace has
768 * not set up a proper pointer then tough luck.
769 */
770 put_user(0, tsk->clear_child_tid);
771 sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
772 1, NULL, NULL, 0);
773 }
774 tsk->clear_child_tid = NULL;
775 }
776 }
777
778 /*
779 * Allocate a new mm structure and copy contents from the
780 * mm structure of the passed in task structure.
781 */
782 struct mm_struct *dup_mm(struct task_struct *tsk)
783 {
784 struct mm_struct *mm, *oldmm = current->mm;
785 int err;
786
787 if (!oldmm)
788 return NULL;
789
790 mm = allocate_mm();
791 if (!mm)
792 goto fail_nomem;
793
794 memcpy(mm, oldmm, sizeof(*mm));
795 mm_init_cpumask(mm);
796
797 /* Initializing for Swap token stuff */
798 mm->token_priority = 0;
799 mm->last_interval = 0;
800
801 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
802 mm->pmd_huge_pte = NULL;
803 #endif
804
805 if (!mm_init(mm, tsk))
806 goto fail_nomem;
807
808 if (init_new_context(tsk, mm))
809 goto fail_nocontext;
810
811 dup_mm_exe_file(oldmm, mm);
812
813 err = dup_mmap(mm, oldmm);
814 if (err)
815 goto free_pt;
816
817 mm->hiwater_rss = get_mm_rss(mm);
818 mm->hiwater_vm = mm->total_vm;
819
820 if (mm->binfmt && !try_module_get(mm->binfmt->module))
821 goto free_pt;
822
823 return mm;
824
825 free_pt:
826 /* don't put binfmt in mmput, we haven't got module yet */
827 mm->binfmt = NULL;
828 mmput(mm);
829
830 fail_nomem:
831 return NULL;
832
833 fail_nocontext:
834 /*
835 * If init_new_context() failed, we cannot use mmput() to free the mm
836 * because it calls destroy_context()
837 */
838 mm_free_pgd(mm);
839 free_mm(mm);
840 return NULL;
841 }
842
843 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
844 {
845 struct mm_struct *mm, *oldmm;
846 int retval;
847
848 tsk->min_flt = tsk->maj_flt = 0;
849 tsk->nvcsw = tsk->nivcsw = 0;
850 #ifdef CONFIG_DETECT_HUNG_TASK
851 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
852 #endif
853
854 tsk->mm = NULL;
855 tsk->active_mm = NULL;
856
857 /*
858 * Are we cloning a kernel thread?
859 *
860 * We need to steal a active VM for that..
861 */
862 oldmm = current->mm;
863 if (!oldmm)
864 return 0;
865
866 if (clone_flags & CLONE_VM) {
867 atomic_inc(&oldmm->mm_users);
868 mm = oldmm;
869 goto good_mm;
870 }
871
872 retval = -ENOMEM;
873 mm = dup_mm(tsk);
874 if (!mm)
875 goto fail_nomem;
876
877 good_mm:
878 /* Initializing for Swap token stuff */
879 mm->token_priority = 0;
880 mm->last_interval = 0;
881
882 tsk->mm = mm;
883 tsk->active_mm = mm;
884 return 0;
885
886 fail_nomem:
887 return retval;
888 }
889
890 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
891 {
892 struct fs_struct *fs = current->fs;
893 if (clone_flags & CLONE_FS) {
894 /* tsk->fs is already what we want */
895 spin_lock(&fs->lock);
896 if (fs->in_exec) {
897 spin_unlock(&fs->lock);
898 return -EAGAIN;
899 }
900 fs->users++;
901 spin_unlock(&fs->lock);
902 return 0;
903 }
904 tsk->fs = copy_fs_struct(fs);
905 if (!tsk->fs)
906 return -ENOMEM;
907 return 0;
908 }
909
910 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
911 {
912 struct files_struct *oldf, *newf;
913 int error = 0;
914
915 /*
916 * A background process may not have any files ...
917 */
918 oldf = current->files;
919 if (!oldf)
920 goto out;
921
922 if (clone_flags & CLONE_FILES) {
923 atomic_inc(&oldf->count);
924 goto out;
925 }
926
927 newf = dup_fd(oldf, &error);
928 if (!newf)
929 goto out;
930
931 tsk->files = newf;
932 error = 0;
933 out:
934 return error;
935 }
936
937 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
938 {
939 #ifdef CONFIG_BLOCK
940 struct io_context *ioc = current->io_context;
941 struct io_context *new_ioc;
942
943 if (!ioc)
944 return 0;
945 /*
946 * Share io context with parent, if CLONE_IO is set
947 */
948 if (clone_flags & CLONE_IO) {
949 tsk->io_context = ioc_task_link(ioc);
950 if (unlikely(!tsk->io_context))
951 return -ENOMEM;
952 } else if (ioprio_valid(ioc->ioprio)) {
953 new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
954 if (unlikely(!new_ioc))
955 return -ENOMEM;
956
957 new_ioc->ioprio = ioc->ioprio;
958 put_io_context(new_ioc);
959 }
960 #endif
961 return 0;
962 }
963
964 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
965 {
966 struct sighand_struct *sig;
967
968 if (clone_flags & CLONE_SIGHAND) {
969 atomic_inc(&current->sighand->count);
970 return 0;
971 }
972 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
973 rcu_assign_pointer(tsk->sighand, sig);
974 if (!sig)
975 return -ENOMEM;
976 atomic_set(&sig->count, 1);
977 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
978 return 0;
979 }
980
981 void __cleanup_sighand(struct sighand_struct *sighand)
982 {
983 if (atomic_dec_and_test(&sighand->count)) {
984 signalfd_cleanup(sighand);
985 kmem_cache_free(sighand_cachep, sighand);
986 }
987 }
988
989
990 /*
991 * Initialize POSIX timer handling for a thread group.
992 */
993 static void posix_cpu_timers_init_group(struct signal_struct *sig)
994 {
995 unsigned long cpu_limit;
996
997 /* Thread group counters. */
998 thread_group_cputime_init(sig);
999
1000 cpu_limit = ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1001 if (cpu_limit != RLIM_INFINITY) {
1002 sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit);
1003 sig->cputimer.running = 1;
1004 }
1005
1006 /* The timer lists. */
1007 INIT_LIST_HEAD(&sig->cpu_timers[0]);
1008 INIT_LIST_HEAD(&sig->cpu_timers[1]);
1009 INIT_LIST_HEAD(&sig->cpu_timers[2]);
1010 }
1011
1012 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1013 {
1014 struct signal_struct *sig;
1015
1016 if (clone_flags & CLONE_THREAD)
1017 return 0;
1018
1019 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1020 tsk->signal = sig;
1021 if (!sig)
1022 return -ENOMEM;
1023
1024 sig->nr_threads = 1;
1025 atomic_set(&sig->live, 1);
1026 atomic_set(&sig->sigcnt, 1);
1027 init_waitqueue_head(&sig->wait_chldexit);
1028 if (clone_flags & CLONE_NEWPID)
1029 sig->flags |= SIGNAL_UNKILLABLE;
1030 sig->curr_target = tsk;
1031 init_sigpending(&sig->shared_pending);
1032 INIT_LIST_HEAD(&sig->posix_timers);
1033
1034 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1035 sig->real_timer.function = it_real_fn;
1036
1037 task_lock(current->group_leader);
1038 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1039 task_unlock(current->group_leader);
1040
1041 posix_cpu_timers_init_group(sig);
1042
1043 tty_audit_fork(sig);
1044 sched_autogroup_fork(sig);
1045
1046 #ifdef CONFIG_CGROUPS
1047 init_rwsem(&sig->group_rwsem);
1048 #endif
1049
1050 sig->oom_adj = current->signal->oom_adj;
1051 sig->oom_score_adj = current->signal->oom_score_adj;
1052 sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1053
1054 mutex_init(&sig->cred_guard_mutex);
1055
1056 return 0;
1057 }
1058
1059 static void copy_flags(unsigned long clone_flags, struct task_struct *p)
1060 {
1061 unsigned long new_flags = p->flags;
1062
1063 new_flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER);
1064 new_flags |= PF_FORKNOEXEC;
1065 p->flags = new_flags;
1066 }
1067
1068 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1069 {
1070 current->clear_child_tid = tidptr;
1071
1072 return task_pid_vnr(current);
1073 }
1074
1075 static void rt_mutex_init_task(struct task_struct *p)
1076 {
1077 raw_spin_lock_init(&p->pi_lock);
1078 #ifdef CONFIG_RT_MUTEXES
1079 plist_head_init(&p->pi_waiters);
1080 p->pi_blocked_on = NULL;
1081 #endif
1082 }
1083
1084 #ifdef CONFIG_MM_OWNER
1085 void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
1086 {
1087 mm->owner = p;
1088 }
1089 #endif /* CONFIG_MM_OWNER */
1090
1091 /*
1092 * Initialize POSIX timer handling for a single task.
1093 */
1094 static void posix_cpu_timers_init(struct task_struct *tsk)
1095 {
1096 tsk->cputime_expires.prof_exp = 0;
1097 tsk->cputime_expires.virt_exp = 0;
1098 tsk->cputime_expires.sched_exp = 0;
1099 INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1100 INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1101 INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1102 }
1103
1104 /*
1105 * This creates a new process as a copy of the old one,
1106 * but does not actually start it yet.
1107 *
1108 * It copies the registers, and all the appropriate
1109 * parts of the process environment (as per the clone
1110 * flags). The actual kick-off is left to the caller.
1111 */
1112 static struct task_struct *copy_process(unsigned long clone_flags,
1113 unsigned long stack_start,
1114 struct pt_regs *regs,
1115 unsigned long stack_size,
1116 int __user *child_tidptr,
1117 struct pid *pid,
1118 int trace)
1119 {
1120 int retval;
1121 struct task_struct *p;
1122 int cgroup_callbacks_done = 0;
1123
1124 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1125 return ERR_PTR(-EINVAL);
1126
1127 /*
1128 * Thread groups must share signals as well, and detached threads
1129 * can only be started up within the thread group.
1130 */
1131 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1132 return ERR_PTR(-EINVAL);
1133
1134 /*
1135 * Shared signal handlers imply shared VM. By way of the above,
1136 * thread groups also imply shared VM. Blocking this case allows
1137 * for various simplifications in other code.
1138 */
1139 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1140 return ERR_PTR(-EINVAL);
1141
1142 /*
1143 * Siblings of global init remain as zombies on exit since they are
1144 * not reaped by their parent (swapper). To solve this and to avoid
1145 * multi-rooted process trees, prevent global and container-inits
1146 * from creating siblings.
1147 */
1148 if ((clone_flags & CLONE_PARENT) &&
1149 current->signal->flags & SIGNAL_UNKILLABLE)
1150 return ERR_PTR(-EINVAL);
1151
1152 retval = security_task_create(clone_flags);
1153 if (retval)
1154 goto fork_out;
1155
1156 retval = -ENOMEM;
1157 p = dup_task_struct(current);
1158 if (!p)
1159 goto fork_out;
1160
1161 ftrace_graph_init_task(p);
1162
1163 rt_mutex_init_task(p);
1164
1165 #ifdef CONFIG_PROVE_LOCKING
1166 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1167 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1168 #endif
1169 retval = -EAGAIN;
1170 if (atomic_read(&p->real_cred->user->processes) >=
1171 task_rlimit(p, RLIMIT_NPROC)) {
1172 if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
1173 p->real_cred->user != INIT_USER)
1174 goto bad_fork_free;
1175 }
1176 current->flags &= ~PF_NPROC_EXCEEDED;
1177
1178 retval = copy_creds(p, clone_flags);
1179 if (retval < 0)
1180 goto bad_fork_free;
1181
1182 /*
1183 * If multiple threads are within copy_process(), then this check
1184 * triggers too late. This doesn't hurt, the check is only there
1185 * to stop root fork bombs.
1186 */
1187 retval = -EAGAIN;
1188 if (nr_threads >= max_threads)
1189 goto bad_fork_cleanup_count;
1190
1191 if (!try_module_get(task_thread_info(p)->exec_domain->module))
1192 goto bad_fork_cleanup_count;
1193
1194 p->did_exec = 0;
1195 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
1196 copy_flags(clone_flags, p);
1197 INIT_LIST_HEAD(&p->children);
1198 INIT_LIST_HEAD(&p->sibling);
1199 rcu_copy_process(p);
1200 p->vfork_done = NULL;
1201 spin_lock_init(&p->alloc_lock);
1202
1203 init_sigpending(&p->pending);
1204
1205 p->utime = p->stime = p->gtime = 0;
1206 p->utimescaled = p->stimescaled = 0;
1207 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
1208 p->prev_utime = p->prev_stime = 0;
1209 #endif
1210 #if defined(SPLIT_RSS_COUNTING)
1211 memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1212 #endif
1213
1214 p->default_timer_slack_ns = current->timer_slack_ns;
1215
1216 task_io_accounting_init(&p->ioac);
1217 acct_clear_integrals(p);
1218
1219 posix_cpu_timers_init(p);
1220
1221 do_posix_clock_monotonic_gettime(&p->start_time);
1222 p->real_start_time = p->start_time;
1223 monotonic_to_bootbased(&p->real_start_time);
1224 p->io_context = NULL;
1225 p->audit_context = NULL;
1226 if (clone_flags & CLONE_THREAD)
1227 threadgroup_change_begin(current);
1228 cgroup_fork(p);
1229 #ifdef CONFIG_NUMA
1230 p->mempolicy = mpol_dup(p->mempolicy);
1231 if (IS_ERR(p->mempolicy)) {
1232 retval = PTR_ERR(p->mempolicy);
1233 p->mempolicy = NULL;
1234 goto bad_fork_cleanup_cgroup;
1235 }
1236 mpol_fix_fork_child_flag(p);
1237 #endif
1238 #ifdef CONFIG_CPUSETS
1239 p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1240 p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1241 seqcount_init(&p->mems_allowed_seq);
1242 #endif
1243 #ifdef CONFIG_TRACE_IRQFLAGS
1244 p->irq_events = 0;
1245 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1246 p->hardirqs_enabled = 1;
1247 #else
1248 p->hardirqs_enabled = 0;
1249 #endif
1250 p->hardirq_enable_ip = 0;
1251 p->hardirq_enable_event = 0;
1252 p->hardirq_disable_ip = _THIS_IP_;
1253 p->hardirq_disable_event = 0;
1254 p->softirqs_enabled = 1;
1255 p->softirq_enable_ip = _THIS_IP_;
1256 p->softirq_enable_event = 0;
1257 p->softirq_disable_ip = 0;
1258 p->softirq_disable_event = 0;
1259 p->hardirq_context = 0;
1260 p->softirq_context = 0;
1261 #endif
1262 #ifdef CONFIG_LOCKDEP
1263 p->lockdep_depth = 0; /* no locks held yet */
1264 p->curr_chain_key = 0;
1265 p->lockdep_recursion = 0;
1266 #endif
1267
1268 #ifdef CONFIG_DEBUG_MUTEXES
1269 p->blocked_on = NULL; /* not blocked yet */
1270 #endif
1271 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
1272 p->memcg_batch.do_batch = 0;
1273 p->memcg_batch.memcg = NULL;
1274 #endif
1275
1276 /* Perform scheduler related setup. Assign this task to a CPU. */
1277 sched_fork(p);
1278
1279 retval = perf_event_init_task(p);
1280 if (retval)
1281 goto bad_fork_cleanup_policy;
1282 retval = audit_alloc(p);
1283 if (retval)
1284 goto bad_fork_cleanup_policy;
1285 /* copy all the process information */
1286 retval = copy_semundo(clone_flags, p);
1287 if (retval)
1288 goto bad_fork_cleanup_audit;
1289 retval = copy_files(clone_flags, p);
1290 if (retval)
1291 goto bad_fork_cleanup_semundo;
1292 retval = copy_fs(clone_flags, p);
1293 if (retval)
1294 goto bad_fork_cleanup_files;
1295 retval = copy_sighand(clone_flags, p);
1296 if (retval)
1297 goto bad_fork_cleanup_fs;
1298 retval = copy_signal(clone_flags, p);
1299 if (retval)
1300 goto bad_fork_cleanup_sighand;
1301 retval = copy_mm(clone_flags, p);
1302 if (retval)
1303 goto bad_fork_cleanup_signal;
1304 retval = copy_namespaces(clone_flags, p);
1305 if (retval)
1306 goto bad_fork_cleanup_mm;
1307 retval = copy_io(clone_flags, p);
1308 if (retval)
1309 goto bad_fork_cleanup_namespaces;
1310 retval = copy_thread(clone_flags, stack_start, stack_size, p, regs);
1311 if (retval)
1312 goto bad_fork_cleanup_io;
1313
1314 if (pid != &init_struct_pid) {
1315 retval = -ENOMEM;
1316 pid = alloc_pid(p->nsproxy->pid_ns);
1317 if (!pid)
1318 goto bad_fork_cleanup_io;
1319 }
1320
1321 p->pid = pid_nr(pid);
1322 p->tgid = p->pid;
1323 if (clone_flags & CLONE_THREAD)
1324 p->tgid = current->tgid;
1325
1326 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1327 /*
1328 * Clear TID on mm_release()?
1329 */
1330 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
1331 #ifdef CONFIG_BLOCK
1332 p->plug = NULL;
1333 #endif
1334 #ifdef CONFIG_FUTEX
1335 p->robust_list = NULL;
1336 #ifdef CONFIG_COMPAT
1337 p->compat_robust_list = NULL;
1338 #endif
1339 INIT_LIST_HEAD(&p->pi_state_list);
1340 p->pi_state_cache = NULL;
1341 #endif
1342 /*
1343 * sigaltstack should be cleared when sharing the same VM
1344 */
1345 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1346 p->sas_ss_sp = p->sas_ss_size = 0;
1347
1348 /*
1349 * Syscall tracing and stepping should be turned off in the
1350 * child regardless of CLONE_PTRACE.
1351 */
1352 user_disable_single_step(p);
1353 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1354 #ifdef TIF_SYSCALL_EMU
1355 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1356 #endif
1357 clear_all_latency_tracing(p);
1358
1359 /* ok, now we should be set up.. */
1360 if (clone_flags & CLONE_THREAD)
1361 p->exit_signal = -1;
1362 else if (clone_flags & CLONE_PARENT)
1363 p->exit_signal = current->group_leader->exit_signal;
1364 else
1365 p->exit_signal = (clone_flags & CSIGNAL);
1366
1367 p->pdeath_signal = 0;
1368 p->exit_state = 0;
1369
1370 p->nr_dirtied = 0;
1371 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
1372 p->dirty_paused_when = 0;
1373
1374 /*
1375 * Ok, make it visible to the rest of the system.
1376 * We dont wake it up yet.
1377 */
1378 p->group_leader = p;
1379 INIT_LIST_HEAD(&p->thread_group);
1380
1381 /* Now that the task is set up, run cgroup callbacks if
1382 * necessary. We need to run them before the task is visible
1383 * on the tasklist. */
1384 cgroup_fork_callbacks(p);
1385 cgroup_callbacks_done = 1;
1386
1387 /* Need tasklist lock for parent etc handling! */
1388 write_lock_irq(&tasklist_lock);
1389
1390 /* CLONE_PARENT re-uses the old parent */
1391 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1392 p->real_parent = current->real_parent;
1393 p->parent_exec_id = current->parent_exec_id;
1394 } else {
1395 p->real_parent = current;
1396 p->parent_exec_id = current->self_exec_id;
1397 }
1398
1399 spin_lock(&current->sighand->siglock);
1400
1401 /*
1402 * Process group and session signals need to be delivered to just the
1403 * parent before the fork or both the parent and the child after the
1404 * fork. Restart if a signal comes in before we add the new process to
1405 * it's process group.
1406 * A fatal signal pending means that current will exit, so the new
1407 * thread can't slip out of an OOM kill (or normal SIGKILL).
1408 */
1409 recalc_sigpending();
1410 if (signal_pending(current)) {
1411 spin_unlock(&current->sighand->siglock);
1412 write_unlock_irq(&tasklist_lock);
1413 retval = -ERESTARTNOINTR;
1414 goto bad_fork_free_pid;
1415 }
1416
1417 if (clone_flags & CLONE_THREAD) {
1418 current->signal->nr_threads++;
1419 atomic_inc(&current->signal->live);
1420 atomic_inc(&current->signal->sigcnt);
1421 p->group_leader = current->group_leader;
1422 list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
1423 }
1424
1425 if (likely(p->pid)) {
1426 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
1427
1428 if (thread_group_leader(p)) {
1429 if (is_child_reaper(pid))
1430 p->nsproxy->pid_ns->child_reaper = p;
1431
1432 p->signal->leader_pid = pid;
1433 p->signal->tty = tty_kref_get(current->signal->tty);
1434 attach_pid(p, PIDTYPE_PGID, task_pgrp(current));
1435 attach_pid(p, PIDTYPE_SID, task_session(current));
1436 list_add_tail(&p->sibling, &p->real_parent->children);
1437 list_add_tail_rcu(&p->tasks, &init_task.tasks);
1438 __this_cpu_inc(process_counts);
1439 }
1440 attach_pid(p, PIDTYPE_PID, pid);
1441 nr_threads++;
1442 }
1443
1444 total_forks++;
1445 spin_unlock(&current->sighand->siglock);
1446 write_unlock_irq(&tasklist_lock);
1447 proc_fork_connector(p);
1448 cgroup_post_fork(p);
1449 if (clone_flags & CLONE_THREAD)
1450 threadgroup_change_end(current);
1451 perf_event_fork(p);
1452
1453 trace_task_newtask(p, clone_flags);
1454
1455 return p;
1456
1457 bad_fork_free_pid:
1458 if (pid != &init_struct_pid)
1459 free_pid(pid);
1460 bad_fork_cleanup_io:
1461 if (p->io_context)
1462 exit_io_context(p);
1463 bad_fork_cleanup_namespaces:
1464 exit_task_namespaces(p);
1465 bad_fork_cleanup_mm:
1466 if (p->mm)
1467 mmput(p->mm);
1468 bad_fork_cleanup_signal:
1469 if (!(clone_flags & CLONE_THREAD))
1470 free_signal_struct(p->signal);
1471 bad_fork_cleanup_sighand:
1472 __cleanup_sighand(p->sighand);
1473 bad_fork_cleanup_fs:
1474 exit_fs(p); /* blocking */
1475 bad_fork_cleanup_files:
1476 exit_files(p); /* blocking */
1477 bad_fork_cleanup_semundo:
1478 exit_sem(p);
1479 bad_fork_cleanup_audit:
1480 audit_free(p);
1481 bad_fork_cleanup_policy:
1482 perf_event_free_task(p);
1483 #ifdef CONFIG_NUMA
1484 mpol_put(p->mempolicy);
1485 bad_fork_cleanup_cgroup:
1486 #endif
1487 if (clone_flags & CLONE_THREAD)
1488 threadgroup_change_end(current);
1489 cgroup_exit(p, cgroup_callbacks_done);
1490 delayacct_tsk_free(p);
1491 module_put(task_thread_info(p)->exec_domain->module);
1492 bad_fork_cleanup_count:
1493 atomic_dec(&p->cred->user->processes);
1494 exit_creds(p);
1495 bad_fork_free:
1496 free_task(p);
1497 fork_out:
1498 return ERR_PTR(retval);
1499 }
1500
1501 noinline struct pt_regs * __cpuinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
1502 {
1503 memset(regs, 0, sizeof(struct pt_regs));
1504 return regs;
1505 }
1506
1507 static inline void init_idle_pids(struct pid_link *links)
1508 {
1509 enum pid_type type;
1510
1511 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1512 INIT_HLIST_NODE(&links[type].node); /* not really needed */
1513 links[type].pid = &init_struct_pid;
1514 }
1515 }
1516
1517 struct task_struct * __cpuinit fork_idle(int cpu)
1518 {
1519 struct task_struct *task;
1520 struct pt_regs regs;
1521
1522 task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL,
1523 &init_struct_pid, 0);
1524 if (!IS_ERR(task)) {
1525 init_idle_pids(task->pids);
1526 init_idle(task, cpu);
1527 }
1528
1529 return task;
1530 }
1531
1532 /*
1533 * Ok, this is the main fork-routine.
1534 *
1535 * It copies the process, and if successful kick-starts
1536 * it and waits for it to finish using the VM if required.
1537 */
1538 long do_fork(unsigned long clone_flags,
1539 unsigned long stack_start,
1540 struct pt_regs *regs,
1541 unsigned long stack_size,
1542 int __user *parent_tidptr,
1543 int __user *child_tidptr)
1544 {
1545 struct task_struct *p;
1546 int trace = 0;
1547 long nr;
1548
1549 /*
1550 * Do some preliminary argument and permissions checking before we
1551 * actually start allocating stuff
1552 */
1553 if (clone_flags & CLONE_NEWUSER) {
1554 if (clone_flags & CLONE_THREAD)
1555 return -EINVAL;
1556 /* hopefully this check will go away when userns support is
1557 * complete
1558 */
1559 if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SETUID) ||
1560 !capable(CAP_SETGID))
1561 return -EPERM;
1562 }
1563
1564 /*
1565 * Determine whether and which event to report to ptracer. When
1566 * called from kernel_thread or CLONE_UNTRACED is explicitly
1567 * requested, no event is reported; otherwise, report if the event
1568 * for the type of forking is enabled.
1569 */
1570 if (likely(user_mode(regs)) && !(clone_flags & CLONE_UNTRACED)) {
1571 if (clone_flags & CLONE_VFORK)
1572 trace = PTRACE_EVENT_VFORK;
1573 else if ((clone_flags & CSIGNAL) != SIGCHLD)
1574 trace = PTRACE_EVENT_CLONE;
1575 else
1576 trace = PTRACE_EVENT_FORK;
1577
1578 if (likely(!ptrace_event_enabled(current, trace)))
1579 trace = 0;
1580 }
1581
1582 p = copy_process(clone_flags, stack_start, regs, stack_size,
1583 child_tidptr, NULL, trace);
1584 /*
1585 * Do this prior waking up the new thread - the thread pointer
1586 * might get invalid after that point, if the thread exits quickly.
1587 */
1588 if (!IS_ERR(p)) {
1589 struct completion vfork;
1590
1591 trace_sched_process_fork(current, p);
1592
1593 nr = task_pid_vnr(p);
1594
1595 if (clone_flags & CLONE_PARENT_SETTID)
1596 put_user(nr, parent_tidptr);
1597
1598 if (clone_flags & CLONE_VFORK) {
1599 p->vfork_done = &vfork;
1600 init_completion(&vfork);
1601 get_task_struct(p);
1602 }
1603
1604 wake_up_new_task(p);
1605
1606 /* forking complete and child started to run, tell ptracer */
1607 if (unlikely(trace))
1608 ptrace_event(trace, nr);
1609
1610 if (clone_flags & CLONE_VFORK) {
1611 if (!wait_for_vfork_done(p, &vfork))
1612 ptrace_event(PTRACE_EVENT_VFORK_DONE, nr);
1613 }
1614 } else {
1615 nr = PTR_ERR(p);
1616 }
1617 return nr;
1618 }
1619
1620 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1621 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1622 #endif
1623
1624 static void sighand_ctor(void *data)
1625 {
1626 struct sighand_struct *sighand = data;
1627
1628 spin_lock_init(&sighand->siglock);
1629 init_waitqueue_head(&sighand->signalfd_wqh);
1630 }
1631
1632 void __init proc_caches_init(void)
1633 {
1634 sighand_cachep = kmem_cache_create("sighand_cache",
1635 sizeof(struct sighand_struct), 0,
1636 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
1637 SLAB_NOTRACK, sighand_ctor);
1638 signal_cachep = kmem_cache_create("signal_cache",
1639 sizeof(struct signal_struct), 0,
1640 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1641 files_cachep = kmem_cache_create("files_cache",
1642 sizeof(struct files_struct), 0,
1643 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1644 fs_cachep = kmem_cache_create("fs_cache",
1645 sizeof(struct fs_struct), 0,
1646 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1647 /*
1648 * FIXME! The "sizeof(struct mm_struct)" currently includes the
1649 * whole struct cpumask for the OFFSTACK case. We could change
1650 * this to *only* allocate as much of it as required by the
1651 * maximum number of CPU's we can ever have. The cpumask_allocation
1652 * is at the end of the structure, exactly for that reason.
1653 */
1654 mm_cachep = kmem_cache_create("mm_struct",
1655 sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1656 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1657 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC);
1658 mmap_init();
1659 nsproxy_cache_init();
1660 }
1661
1662 /*
1663 * Check constraints on flags passed to the unshare system call.
1664 */
1665 static int check_unshare_flags(unsigned long unshare_flags)
1666 {
1667 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1668 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1669 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET))
1670 return -EINVAL;
1671 /*
1672 * Not implemented, but pretend it works if there is nothing to
1673 * unshare. Note that unsharing CLONE_THREAD or CLONE_SIGHAND
1674 * needs to unshare vm.
1675 */
1676 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
1677 /* FIXME: get_task_mm() increments ->mm_users */
1678 if (atomic_read(&current->mm->mm_users) > 1)
1679 return -EINVAL;
1680 }
1681
1682 return 0;
1683 }
1684
1685 /*
1686 * Unshare the filesystem structure if it is being shared
1687 */
1688 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1689 {
1690 struct fs_struct *fs = current->fs;
1691
1692 if (!(unshare_flags & CLONE_FS) || !fs)
1693 return 0;
1694
1695 /* don't need lock here; in the worst case we'll do useless copy */
1696 if (fs->users == 1)
1697 return 0;
1698
1699 *new_fsp = copy_fs_struct(fs);
1700 if (!*new_fsp)
1701 return -ENOMEM;
1702
1703 return 0;
1704 }
1705
1706 /*
1707 * Unshare file descriptor table if it is being shared
1708 */
1709 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1710 {
1711 struct files_struct *fd = current->files;
1712 int error = 0;
1713
1714 if ((unshare_flags & CLONE_FILES) &&
1715 (fd && atomic_read(&fd->count) > 1)) {
1716 *new_fdp = dup_fd(fd, &error);
1717 if (!*new_fdp)
1718 return error;
1719 }
1720
1721 return 0;
1722 }
1723
1724 /*
1725 * unshare allows a process to 'unshare' part of the process
1726 * context which was originally shared using clone. copy_*
1727 * functions used by do_fork() cannot be used here directly
1728 * because they modify an inactive task_struct that is being
1729 * constructed. Here we are modifying the current, active,
1730 * task_struct.
1731 */
1732 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
1733 {
1734 struct fs_struct *fs, *new_fs = NULL;
1735 struct files_struct *fd, *new_fd = NULL;
1736 struct nsproxy *new_nsproxy = NULL;
1737 int do_sysvsem = 0;
1738 int err;
1739
1740 err = check_unshare_flags(unshare_flags);
1741 if (err)
1742 goto bad_unshare_out;
1743
1744 /*
1745 * If unsharing namespace, must also unshare filesystem information.
1746 */
1747 if (unshare_flags & CLONE_NEWNS)
1748 unshare_flags |= CLONE_FS;
1749 /*
1750 * CLONE_NEWIPC must also detach from the undolist: after switching
1751 * to a new ipc namespace, the semaphore arrays from the old
1752 * namespace are unreachable.
1753 */
1754 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
1755 do_sysvsem = 1;
1756 err = unshare_fs(unshare_flags, &new_fs);
1757 if (err)
1758 goto bad_unshare_out;
1759 err = unshare_fd(unshare_flags, &new_fd);
1760 if (err)
1761 goto bad_unshare_cleanup_fs;
1762 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy, new_fs);
1763 if (err)
1764 goto bad_unshare_cleanup_fd;
1765
1766 if (new_fs || new_fd || do_sysvsem || new_nsproxy) {
1767 if (do_sysvsem) {
1768 /*
1769 * CLONE_SYSVSEM is equivalent to sys_exit().
1770 */
1771 exit_sem(current);
1772 }
1773
1774 if (new_nsproxy) {
1775 switch_task_namespaces(current, new_nsproxy);
1776 new_nsproxy = NULL;
1777 }
1778
1779 task_lock(current);
1780
1781 if (new_fs) {
1782 fs = current->fs;
1783 spin_lock(&fs->lock);
1784 current->fs = new_fs;
1785 if (--fs->users)
1786 new_fs = NULL;
1787 else
1788 new_fs = fs;
1789 spin_unlock(&fs->lock);
1790 }
1791
1792 if (new_fd) {
1793 fd = current->files;
1794 current->files = new_fd;
1795 new_fd = fd;
1796 }
1797
1798 task_unlock(current);
1799 }
1800
1801 if (new_nsproxy)
1802 put_nsproxy(new_nsproxy);
1803
1804 bad_unshare_cleanup_fd:
1805 if (new_fd)
1806 put_files_struct(new_fd);
1807
1808 bad_unshare_cleanup_fs:
1809 if (new_fs)
1810 free_fs_struct(new_fs);
1811
1812 bad_unshare_out:
1813 return err;
1814 }
1815
1816 /*
1817 * Helper to unshare the files of the current task.
1818 * We don't want to expose copy_files internals to
1819 * the exec layer of the kernel.
1820 */
1821
1822 int unshare_files(struct files_struct **displaced)
1823 {
1824 struct task_struct *task = current;
1825 struct files_struct *copy = NULL;
1826 int error;
1827
1828 error = unshare_fd(CLONE_FILES, &copy);
1829 if (error || !copy) {
1830 *displaced = NULL;
1831 return error;
1832 }
1833 *displaced = task->files;
1834 task_lock(task);
1835 task->files = copy;
1836 task_unlock(task);
1837 return 0;
1838 }
This page took 0.122298 seconds and 5 git commands to generate.