Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jikos/hid
[deliverable/linux.git] / kernel / fork.c
1 /*
2 * linux/kernel/fork.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * 'fork.c' contains the help-routines for the 'fork' system call
9 * (see also entry.S and others).
10 * Fork is rather simple, once you get the hang of it, but the memory
11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12 */
13
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/mempolicy.h>
22 #include <linux/sem.h>
23 #include <linux/file.h>
24 #include <linux/fdtable.h>
25 #include <linux/iocontext.h>
26 #include <linux/key.h>
27 #include <linux/binfmts.h>
28 #include <linux/mman.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/fs.h>
31 #include <linux/nsproxy.h>
32 #include <linux/capability.h>
33 #include <linux/cpu.h>
34 #include <linux/cgroup.h>
35 #include <linux/security.h>
36 #include <linux/hugetlb.h>
37 #include <linux/seccomp.h>
38 #include <linux/swap.h>
39 #include <linux/syscalls.h>
40 #include <linux/jiffies.h>
41 #include <linux/futex.h>
42 #include <linux/compat.h>
43 #include <linux/kthread.h>
44 #include <linux/task_io_accounting_ops.h>
45 #include <linux/rcupdate.h>
46 #include <linux/ptrace.h>
47 #include <linux/mount.h>
48 #include <linux/audit.h>
49 #include <linux/memcontrol.h>
50 #include <linux/ftrace.h>
51 #include <linux/proc_fs.h>
52 #include <linux/profile.h>
53 #include <linux/rmap.h>
54 #include <linux/ksm.h>
55 #include <linux/acct.h>
56 #include <linux/tsacct_kern.h>
57 #include <linux/cn_proc.h>
58 #include <linux/freezer.h>
59 #include <linux/delayacct.h>
60 #include <linux/taskstats_kern.h>
61 #include <linux/random.h>
62 #include <linux/tty.h>
63 #include <linux/blkdev.h>
64 #include <linux/fs_struct.h>
65 #include <linux/magic.h>
66 #include <linux/perf_event.h>
67 #include <linux/posix-timers.h>
68 #include <linux/user-return-notifier.h>
69 #include <linux/oom.h>
70 #include <linux/khugepaged.h>
71 #include <linux/signalfd.h>
72 #include <linux/uprobes.h>
73
74 #include <asm/pgtable.h>
75 #include <asm/pgalloc.h>
76 #include <asm/uaccess.h>
77 #include <asm/mmu_context.h>
78 #include <asm/cacheflush.h>
79 #include <asm/tlbflush.h>
80
81 #include <trace/events/sched.h>
82
83 #define CREATE_TRACE_POINTS
84 #include <trace/events/task.h>
85
86 /*
87 * Protected counters by write_lock_irq(&tasklist_lock)
88 */
89 unsigned long total_forks; /* Handle normal Linux uptimes. */
90 int nr_threads; /* The idle threads do not count.. */
91
92 int max_threads; /* tunable limit on nr_threads */
93
94 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
95
96 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
97
98 #ifdef CONFIG_PROVE_RCU
99 int lockdep_tasklist_lock_is_held(void)
100 {
101 return lockdep_is_held(&tasklist_lock);
102 }
103 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
104 #endif /* #ifdef CONFIG_PROVE_RCU */
105
106 int nr_processes(void)
107 {
108 int cpu;
109 int total = 0;
110
111 for_each_possible_cpu(cpu)
112 total += per_cpu(process_counts, cpu);
113
114 return total;
115 }
116
117 void __weak arch_release_task_struct(struct task_struct *tsk)
118 {
119 }
120
121 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
122 static struct kmem_cache *task_struct_cachep;
123
124 static inline struct task_struct *alloc_task_struct_node(int node)
125 {
126 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
127 }
128
129 static inline void free_task_struct(struct task_struct *tsk)
130 {
131 kmem_cache_free(task_struct_cachep, tsk);
132 }
133 #endif
134
135 void __weak arch_release_thread_info(struct thread_info *ti)
136 {
137 }
138
139 #ifndef CONFIG_ARCH_THREAD_INFO_ALLOCATOR
140
141 /*
142 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
143 * kmemcache based allocator.
144 */
145 # if THREAD_SIZE >= PAGE_SIZE
146 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
147 int node)
148 {
149 struct page *page = alloc_pages_node(node, THREADINFO_GFP,
150 THREAD_SIZE_ORDER);
151
152 return page ? page_address(page) : NULL;
153 }
154
155 static inline void free_thread_info(struct thread_info *ti)
156 {
157 free_pages((unsigned long)ti, THREAD_SIZE_ORDER);
158 }
159 # else
160 static struct kmem_cache *thread_info_cache;
161
162 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
163 int node)
164 {
165 return kmem_cache_alloc_node(thread_info_cache, THREADINFO_GFP, node);
166 }
167
168 static void free_thread_info(struct thread_info *ti)
169 {
170 kmem_cache_free(thread_info_cache, ti);
171 }
172
173 void thread_info_cache_init(void)
174 {
175 thread_info_cache = kmem_cache_create("thread_info", THREAD_SIZE,
176 THREAD_SIZE, 0, NULL);
177 BUG_ON(thread_info_cache == NULL);
178 }
179 # endif
180 #endif
181
182 /* SLAB cache for signal_struct structures (tsk->signal) */
183 static struct kmem_cache *signal_cachep;
184
185 /* SLAB cache for sighand_struct structures (tsk->sighand) */
186 struct kmem_cache *sighand_cachep;
187
188 /* SLAB cache for files_struct structures (tsk->files) */
189 struct kmem_cache *files_cachep;
190
191 /* SLAB cache for fs_struct structures (tsk->fs) */
192 struct kmem_cache *fs_cachep;
193
194 /* SLAB cache for vm_area_struct structures */
195 struct kmem_cache *vm_area_cachep;
196
197 /* SLAB cache for mm_struct structures (tsk->mm) */
198 static struct kmem_cache *mm_cachep;
199
200 static void account_kernel_stack(struct thread_info *ti, int account)
201 {
202 struct zone *zone = page_zone(virt_to_page(ti));
203
204 mod_zone_page_state(zone, NR_KERNEL_STACK, account);
205 }
206
207 void free_task(struct task_struct *tsk)
208 {
209 account_kernel_stack(tsk->stack, -1);
210 arch_release_thread_info(tsk->stack);
211 free_thread_info(tsk->stack);
212 rt_mutex_debug_task_free(tsk);
213 ftrace_graph_exit_task(tsk);
214 put_seccomp_filter(tsk);
215 arch_release_task_struct(tsk);
216 free_task_struct(tsk);
217 }
218 EXPORT_SYMBOL(free_task);
219
220 static inline void free_signal_struct(struct signal_struct *sig)
221 {
222 taskstats_tgid_free(sig);
223 sched_autogroup_exit(sig);
224 kmem_cache_free(signal_cachep, sig);
225 }
226
227 static inline void put_signal_struct(struct signal_struct *sig)
228 {
229 if (atomic_dec_and_test(&sig->sigcnt))
230 free_signal_struct(sig);
231 }
232
233 void __put_task_struct(struct task_struct *tsk)
234 {
235 WARN_ON(!tsk->exit_state);
236 WARN_ON(atomic_read(&tsk->usage));
237 WARN_ON(tsk == current);
238
239 security_task_free(tsk);
240 exit_creds(tsk);
241 delayacct_tsk_free(tsk);
242 put_signal_struct(tsk->signal);
243
244 if (!profile_handoff_task(tsk))
245 free_task(tsk);
246 }
247 EXPORT_SYMBOL_GPL(__put_task_struct);
248
249 void __init __weak arch_task_cache_init(void) { }
250
251 void __init fork_init(unsigned long mempages)
252 {
253 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
254 #ifndef ARCH_MIN_TASKALIGN
255 #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
256 #endif
257 /* create a slab on which task_structs can be allocated */
258 task_struct_cachep =
259 kmem_cache_create("task_struct", sizeof(struct task_struct),
260 ARCH_MIN_TASKALIGN, SLAB_PANIC | SLAB_NOTRACK, NULL);
261 #endif
262
263 /* do the arch specific task caches init */
264 arch_task_cache_init();
265
266 /*
267 * The default maximum number of threads is set to a safe
268 * value: the thread structures can take up at most half
269 * of memory.
270 */
271 max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
272
273 /*
274 * we need to allow at least 20 threads to boot a system
275 */
276 if (max_threads < 20)
277 max_threads = 20;
278
279 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
280 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
281 init_task.signal->rlim[RLIMIT_SIGPENDING] =
282 init_task.signal->rlim[RLIMIT_NPROC];
283 }
284
285 int __attribute__((weak)) arch_dup_task_struct(struct task_struct *dst,
286 struct task_struct *src)
287 {
288 *dst = *src;
289 return 0;
290 }
291
292 static struct task_struct *dup_task_struct(struct task_struct *orig)
293 {
294 struct task_struct *tsk;
295 struct thread_info *ti;
296 unsigned long *stackend;
297 int node = tsk_fork_get_node(orig);
298 int err;
299
300 tsk = alloc_task_struct_node(node);
301 if (!tsk)
302 return NULL;
303
304 ti = alloc_thread_info_node(tsk, node);
305 if (!ti)
306 goto free_tsk;
307
308 err = arch_dup_task_struct(tsk, orig);
309 if (err)
310 goto free_ti;
311
312 tsk->stack = ti;
313
314 setup_thread_stack(tsk, orig);
315 clear_user_return_notifier(tsk);
316 clear_tsk_need_resched(tsk);
317 stackend = end_of_stack(tsk);
318 *stackend = STACK_END_MAGIC; /* for overflow detection */
319
320 #ifdef CONFIG_CC_STACKPROTECTOR
321 tsk->stack_canary = get_random_int();
322 #endif
323
324 /*
325 * One for us, one for whoever does the "release_task()" (usually
326 * parent)
327 */
328 atomic_set(&tsk->usage, 2);
329 #ifdef CONFIG_BLK_DEV_IO_TRACE
330 tsk->btrace_seq = 0;
331 #endif
332 tsk->splice_pipe = NULL;
333 tsk->task_frag.page = NULL;
334
335 account_kernel_stack(ti, 1);
336
337 return tsk;
338
339 free_ti:
340 free_thread_info(ti);
341 free_tsk:
342 free_task_struct(tsk);
343 return NULL;
344 }
345
346 #ifdef CONFIG_MMU
347 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
348 {
349 struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
350 struct rb_node **rb_link, *rb_parent;
351 int retval;
352 unsigned long charge;
353 struct mempolicy *pol;
354
355 uprobe_start_dup_mmap();
356 down_write(&oldmm->mmap_sem);
357 flush_cache_dup_mm(oldmm);
358 uprobe_dup_mmap(oldmm, mm);
359 /*
360 * Not linked in yet - no deadlock potential:
361 */
362 down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
363
364 mm->locked_vm = 0;
365 mm->mmap = NULL;
366 mm->mmap_cache = NULL;
367 mm->free_area_cache = oldmm->mmap_base;
368 mm->cached_hole_size = ~0UL;
369 mm->map_count = 0;
370 cpumask_clear(mm_cpumask(mm));
371 mm->mm_rb = RB_ROOT;
372 rb_link = &mm->mm_rb.rb_node;
373 rb_parent = NULL;
374 pprev = &mm->mmap;
375 retval = ksm_fork(mm, oldmm);
376 if (retval)
377 goto out;
378 retval = khugepaged_fork(mm, oldmm);
379 if (retval)
380 goto out;
381
382 prev = NULL;
383 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
384 struct file *file;
385
386 if (mpnt->vm_flags & VM_DONTCOPY) {
387 vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
388 -vma_pages(mpnt));
389 continue;
390 }
391 charge = 0;
392 if (mpnt->vm_flags & VM_ACCOUNT) {
393 unsigned long len = vma_pages(mpnt);
394
395 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
396 goto fail_nomem;
397 charge = len;
398 }
399 tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
400 if (!tmp)
401 goto fail_nomem;
402 *tmp = *mpnt;
403 INIT_LIST_HEAD(&tmp->anon_vma_chain);
404 pol = mpol_dup(vma_policy(mpnt));
405 retval = PTR_ERR(pol);
406 if (IS_ERR(pol))
407 goto fail_nomem_policy;
408 vma_set_policy(tmp, pol);
409 tmp->vm_mm = mm;
410 if (anon_vma_fork(tmp, mpnt))
411 goto fail_nomem_anon_vma_fork;
412 tmp->vm_flags &= ~VM_LOCKED;
413 tmp->vm_next = tmp->vm_prev = NULL;
414 file = tmp->vm_file;
415 if (file) {
416 struct inode *inode = file->f_path.dentry->d_inode;
417 struct address_space *mapping = file->f_mapping;
418
419 get_file(file);
420 if (tmp->vm_flags & VM_DENYWRITE)
421 atomic_dec(&inode->i_writecount);
422 mutex_lock(&mapping->i_mmap_mutex);
423 if (tmp->vm_flags & VM_SHARED)
424 mapping->i_mmap_writable++;
425 flush_dcache_mmap_lock(mapping);
426 /* insert tmp into the share list, just after mpnt */
427 if (unlikely(tmp->vm_flags & VM_NONLINEAR))
428 vma_nonlinear_insert(tmp,
429 &mapping->i_mmap_nonlinear);
430 else
431 vma_interval_tree_insert_after(tmp, mpnt,
432 &mapping->i_mmap);
433 flush_dcache_mmap_unlock(mapping);
434 mutex_unlock(&mapping->i_mmap_mutex);
435 }
436
437 /*
438 * Clear hugetlb-related page reserves for children. This only
439 * affects MAP_PRIVATE mappings. Faults generated by the child
440 * are not guaranteed to succeed, even if read-only
441 */
442 if (is_vm_hugetlb_page(tmp))
443 reset_vma_resv_huge_pages(tmp);
444
445 /*
446 * Link in the new vma and copy the page table entries.
447 */
448 *pprev = tmp;
449 pprev = &tmp->vm_next;
450 tmp->vm_prev = prev;
451 prev = tmp;
452
453 __vma_link_rb(mm, tmp, rb_link, rb_parent);
454 rb_link = &tmp->vm_rb.rb_right;
455 rb_parent = &tmp->vm_rb;
456
457 mm->map_count++;
458 retval = copy_page_range(mm, oldmm, mpnt);
459
460 if (tmp->vm_ops && tmp->vm_ops->open)
461 tmp->vm_ops->open(tmp);
462
463 if (retval)
464 goto out;
465 }
466 /* a new mm has just been created */
467 arch_dup_mmap(oldmm, mm);
468 retval = 0;
469 out:
470 up_write(&mm->mmap_sem);
471 flush_tlb_mm(oldmm);
472 up_write(&oldmm->mmap_sem);
473 uprobe_end_dup_mmap();
474 return retval;
475 fail_nomem_anon_vma_fork:
476 mpol_put(pol);
477 fail_nomem_policy:
478 kmem_cache_free(vm_area_cachep, tmp);
479 fail_nomem:
480 retval = -ENOMEM;
481 vm_unacct_memory(charge);
482 goto out;
483 }
484
485 static inline int mm_alloc_pgd(struct mm_struct *mm)
486 {
487 mm->pgd = pgd_alloc(mm);
488 if (unlikely(!mm->pgd))
489 return -ENOMEM;
490 return 0;
491 }
492
493 static inline void mm_free_pgd(struct mm_struct *mm)
494 {
495 pgd_free(mm, mm->pgd);
496 }
497 #else
498 #define dup_mmap(mm, oldmm) (0)
499 #define mm_alloc_pgd(mm) (0)
500 #define mm_free_pgd(mm)
501 #endif /* CONFIG_MMU */
502
503 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
504
505 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
506 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
507
508 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
509
510 static int __init coredump_filter_setup(char *s)
511 {
512 default_dump_filter =
513 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
514 MMF_DUMP_FILTER_MASK;
515 return 1;
516 }
517
518 __setup("coredump_filter=", coredump_filter_setup);
519
520 #include <linux/init_task.h>
521
522 static void mm_init_aio(struct mm_struct *mm)
523 {
524 #ifdef CONFIG_AIO
525 spin_lock_init(&mm->ioctx_lock);
526 INIT_HLIST_HEAD(&mm->ioctx_list);
527 #endif
528 }
529
530 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p)
531 {
532 atomic_set(&mm->mm_users, 1);
533 atomic_set(&mm->mm_count, 1);
534 init_rwsem(&mm->mmap_sem);
535 INIT_LIST_HEAD(&mm->mmlist);
536 mm->flags = (current->mm) ?
537 (current->mm->flags & MMF_INIT_MASK) : default_dump_filter;
538 mm->core_state = NULL;
539 mm->nr_ptes = 0;
540 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
541 spin_lock_init(&mm->page_table_lock);
542 mm->free_area_cache = TASK_UNMAPPED_BASE;
543 mm->cached_hole_size = ~0UL;
544 mm_init_aio(mm);
545 mm_init_owner(mm, p);
546
547 if (likely(!mm_alloc_pgd(mm))) {
548 mm->def_flags = 0;
549 mmu_notifier_mm_init(mm);
550 return mm;
551 }
552
553 free_mm(mm);
554 return NULL;
555 }
556
557 static void check_mm(struct mm_struct *mm)
558 {
559 int i;
560
561 for (i = 0; i < NR_MM_COUNTERS; i++) {
562 long x = atomic_long_read(&mm->rss_stat.count[i]);
563
564 if (unlikely(x))
565 printk(KERN_ALERT "BUG: Bad rss-counter state "
566 "mm:%p idx:%d val:%ld\n", mm, i, x);
567 }
568
569 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
570 VM_BUG_ON(mm->pmd_huge_pte);
571 #endif
572 }
573
574 /*
575 * Allocate and initialize an mm_struct.
576 */
577 struct mm_struct *mm_alloc(void)
578 {
579 struct mm_struct *mm;
580
581 mm = allocate_mm();
582 if (!mm)
583 return NULL;
584
585 memset(mm, 0, sizeof(*mm));
586 mm_init_cpumask(mm);
587 return mm_init(mm, current);
588 }
589
590 /*
591 * Called when the last reference to the mm
592 * is dropped: either by a lazy thread or by
593 * mmput. Free the page directory and the mm.
594 */
595 void __mmdrop(struct mm_struct *mm)
596 {
597 BUG_ON(mm == &init_mm);
598 mm_free_pgd(mm);
599 destroy_context(mm);
600 mmu_notifier_mm_destroy(mm);
601 check_mm(mm);
602 free_mm(mm);
603 }
604 EXPORT_SYMBOL_GPL(__mmdrop);
605
606 /*
607 * Decrement the use count and release all resources for an mm.
608 */
609 void mmput(struct mm_struct *mm)
610 {
611 might_sleep();
612
613 if (atomic_dec_and_test(&mm->mm_users)) {
614 uprobe_clear_state(mm);
615 exit_aio(mm);
616 ksm_exit(mm);
617 khugepaged_exit(mm); /* must run before exit_mmap */
618 exit_mmap(mm);
619 set_mm_exe_file(mm, NULL);
620 if (!list_empty(&mm->mmlist)) {
621 spin_lock(&mmlist_lock);
622 list_del(&mm->mmlist);
623 spin_unlock(&mmlist_lock);
624 }
625 if (mm->binfmt)
626 module_put(mm->binfmt->module);
627 mmdrop(mm);
628 }
629 }
630 EXPORT_SYMBOL_GPL(mmput);
631
632 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
633 {
634 if (new_exe_file)
635 get_file(new_exe_file);
636 if (mm->exe_file)
637 fput(mm->exe_file);
638 mm->exe_file = new_exe_file;
639 }
640
641 struct file *get_mm_exe_file(struct mm_struct *mm)
642 {
643 struct file *exe_file;
644
645 /* We need mmap_sem to protect against races with removal of exe_file */
646 down_read(&mm->mmap_sem);
647 exe_file = mm->exe_file;
648 if (exe_file)
649 get_file(exe_file);
650 up_read(&mm->mmap_sem);
651 return exe_file;
652 }
653
654 static void dup_mm_exe_file(struct mm_struct *oldmm, struct mm_struct *newmm)
655 {
656 /* It's safe to write the exe_file pointer without exe_file_lock because
657 * this is called during fork when the task is not yet in /proc */
658 newmm->exe_file = get_mm_exe_file(oldmm);
659 }
660
661 /**
662 * get_task_mm - acquire a reference to the task's mm
663 *
664 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
665 * this kernel workthread has transiently adopted a user mm with use_mm,
666 * to do its AIO) is not set and if so returns a reference to it, after
667 * bumping up the use count. User must release the mm via mmput()
668 * after use. Typically used by /proc and ptrace.
669 */
670 struct mm_struct *get_task_mm(struct task_struct *task)
671 {
672 struct mm_struct *mm;
673
674 task_lock(task);
675 mm = task->mm;
676 if (mm) {
677 if (task->flags & PF_KTHREAD)
678 mm = NULL;
679 else
680 atomic_inc(&mm->mm_users);
681 }
682 task_unlock(task);
683 return mm;
684 }
685 EXPORT_SYMBOL_GPL(get_task_mm);
686
687 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
688 {
689 struct mm_struct *mm;
690 int err;
691
692 err = mutex_lock_killable(&task->signal->cred_guard_mutex);
693 if (err)
694 return ERR_PTR(err);
695
696 mm = get_task_mm(task);
697 if (mm && mm != current->mm &&
698 !ptrace_may_access(task, mode)) {
699 mmput(mm);
700 mm = ERR_PTR(-EACCES);
701 }
702 mutex_unlock(&task->signal->cred_guard_mutex);
703
704 return mm;
705 }
706
707 static void complete_vfork_done(struct task_struct *tsk)
708 {
709 struct completion *vfork;
710
711 task_lock(tsk);
712 vfork = tsk->vfork_done;
713 if (likely(vfork)) {
714 tsk->vfork_done = NULL;
715 complete(vfork);
716 }
717 task_unlock(tsk);
718 }
719
720 static int wait_for_vfork_done(struct task_struct *child,
721 struct completion *vfork)
722 {
723 int killed;
724
725 freezer_do_not_count();
726 killed = wait_for_completion_killable(vfork);
727 freezer_count();
728
729 if (killed) {
730 task_lock(child);
731 child->vfork_done = NULL;
732 task_unlock(child);
733 }
734
735 put_task_struct(child);
736 return killed;
737 }
738
739 /* Please note the differences between mmput and mm_release.
740 * mmput is called whenever we stop holding onto a mm_struct,
741 * error success whatever.
742 *
743 * mm_release is called after a mm_struct has been removed
744 * from the current process.
745 *
746 * This difference is important for error handling, when we
747 * only half set up a mm_struct for a new process and need to restore
748 * the old one. Because we mmput the new mm_struct before
749 * restoring the old one. . .
750 * Eric Biederman 10 January 1998
751 */
752 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
753 {
754 /* Get rid of any futexes when releasing the mm */
755 #ifdef CONFIG_FUTEX
756 if (unlikely(tsk->robust_list)) {
757 exit_robust_list(tsk);
758 tsk->robust_list = NULL;
759 }
760 #ifdef CONFIG_COMPAT
761 if (unlikely(tsk->compat_robust_list)) {
762 compat_exit_robust_list(tsk);
763 tsk->compat_robust_list = NULL;
764 }
765 #endif
766 if (unlikely(!list_empty(&tsk->pi_state_list)))
767 exit_pi_state_list(tsk);
768 #endif
769
770 uprobe_free_utask(tsk);
771
772 /* Get rid of any cached register state */
773 deactivate_mm(tsk, mm);
774
775 /*
776 * If we're exiting normally, clear a user-space tid field if
777 * requested. We leave this alone when dying by signal, to leave
778 * the value intact in a core dump, and to save the unnecessary
779 * trouble, say, a killed vfork parent shouldn't touch this mm.
780 * Userland only wants this done for a sys_exit.
781 */
782 if (tsk->clear_child_tid) {
783 if (!(tsk->flags & PF_SIGNALED) &&
784 atomic_read(&mm->mm_users) > 1) {
785 /*
786 * We don't check the error code - if userspace has
787 * not set up a proper pointer then tough luck.
788 */
789 put_user(0, tsk->clear_child_tid);
790 sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
791 1, NULL, NULL, 0);
792 }
793 tsk->clear_child_tid = NULL;
794 }
795
796 /*
797 * All done, finally we can wake up parent and return this mm to him.
798 * Also kthread_stop() uses this completion for synchronization.
799 */
800 if (tsk->vfork_done)
801 complete_vfork_done(tsk);
802 }
803
804 /*
805 * Allocate a new mm structure and copy contents from the
806 * mm structure of the passed in task structure.
807 */
808 struct mm_struct *dup_mm(struct task_struct *tsk)
809 {
810 struct mm_struct *mm, *oldmm = current->mm;
811 int err;
812
813 if (!oldmm)
814 return NULL;
815
816 mm = allocate_mm();
817 if (!mm)
818 goto fail_nomem;
819
820 memcpy(mm, oldmm, sizeof(*mm));
821 mm_init_cpumask(mm);
822
823 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
824 mm->pmd_huge_pte = NULL;
825 #endif
826 if (!mm_init(mm, tsk))
827 goto fail_nomem;
828
829 if (init_new_context(tsk, mm))
830 goto fail_nocontext;
831
832 dup_mm_exe_file(oldmm, mm);
833
834 err = dup_mmap(mm, oldmm);
835 if (err)
836 goto free_pt;
837
838 mm->hiwater_rss = get_mm_rss(mm);
839 mm->hiwater_vm = mm->total_vm;
840
841 if (mm->binfmt && !try_module_get(mm->binfmt->module))
842 goto free_pt;
843
844 return mm;
845
846 free_pt:
847 /* don't put binfmt in mmput, we haven't got module yet */
848 mm->binfmt = NULL;
849 mmput(mm);
850
851 fail_nomem:
852 return NULL;
853
854 fail_nocontext:
855 /*
856 * If init_new_context() failed, we cannot use mmput() to free the mm
857 * because it calls destroy_context()
858 */
859 mm_free_pgd(mm);
860 free_mm(mm);
861 return NULL;
862 }
863
864 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
865 {
866 struct mm_struct *mm, *oldmm;
867 int retval;
868
869 tsk->min_flt = tsk->maj_flt = 0;
870 tsk->nvcsw = tsk->nivcsw = 0;
871 #ifdef CONFIG_DETECT_HUNG_TASK
872 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
873 #endif
874
875 tsk->mm = NULL;
876 tsk->active_mm = NULL;
877
878 /*
879 * Are we cloning a kernel thread?
880 *
881 * We need to steal a active VM for that..
882 */
883 oldmm = current->mm;
884 if (!oldmm)
885 return 0;
886
887 if (clone_flags & CLONE_VM) {
888 atomic_inc(&oldmm->mm_users);
889 mm = oldmm;
890 goto good_mm;
891 }
892
893 retval = -ENOMEM;
894 mm = dup_mm(tsk);
895 if (!mm)
896 goto fail_nomem;
897
898 good_mm:
899 tsk->mm = mm;
900 tsk->active_mm = mm;
901 return 0;
902
903 fail_nomem:
904 return retval;
905 }
906
907 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
908 {
909 struct fs_struct *fs = current->fs;
910 if (clone_flags & CLONE_FS) {
911 /* tsk->fs is already what we want */
912 spin_lock(&fs->lock);
913 if (fs->in_exec) {
914 spin_unlock(&fs->lock);
915 return -EAGAIN;
916 }
917 fs->users++;
918 spin_unlock(&fs->lock);
919 return 0;
920 }
921 tsk->fs = copy_fs_struct(fs);
922 if (!tsk->fs)
923 return -ENOMEM;
924 return 0;
925 }
926
927 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
928 {
929 struct files_struct *oldf, *newf;
930 int error = 0;
931
932 /*
933 * A background process may not have any files ...
934 */
935 oldf = current->files;
936 if (!oldf)
937 goto out;
938
939 if (clone_flags & CLONE_FILES) {
940 atomic_inc(&oldf->count);
941 goto out;
942 }
943
944 newf = dup_fd(oldf, &error);
945 if (!newf)
946 goto out;
947
948 tsk->files = newf;
949 error = 0;
950 out:
951 return error;
952 }
953
954 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
955 {
956 #ifdef CONFIG_BLOCK
957 struct io_context *ioc = current->io_context;
958 struct io_context *new_ioc;
959
960 if (!ioc)
961 return 0;
962 /*
963 * Share io context with parent, if CLONE_IO is set
964 */
965 if (clone_flags & CLONE_IO) {
966 ioc_task_link(ioc);
967 tsk->io_context = ioc;
968 } else if (ioprio_valid(ioc->ioprio)) {
969 new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
970 if (unlikely(!new_ioc))
971 return -ENOMEM;
972
973 new_ioc->ioprio = ioc->ioprio;
974 put_io_context(new_ioc);
975 }
976 #endif
977 return 0;
978 }
979
980 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
981 {
982 struct sighand_struct *sig;
983
984 if (clone_flags & CLONE_SIGHAND) {
985 atomic_inc(&current->sighand->count);
986 return 0;
987 }
988 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
989 rcu_assign_pointer(tsk->sighand, sig);
990 if (!sig)
991 return -ENOMEM;
992 atomic_set(&sig->count, 1);
993 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
994 return 0;
995 }
996
997 void __cleanup_sighand(struct sighand_struct *sighand)
998 {
999 if (atomic_dec_and_test(&sighand->count)) {
1000 signalfd_cleanup(sighand);
1001 kmem_cache_free(sighand_cachep, sighand);
1002 }
1003 }
1004
1005
1006 /*
1007 * Initialize POSIX timer handling for a thread group.
1008 */
1009 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1010 {
1011 unsigned long cpu_limit;
1012
1013 /* Thread group counters. */
1014 thread_group_cputime_init(sig);
1015
1016 cpu_limit = ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1017 if (cpu_limit != RLIM_INFINITY) {
1018 sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit);
1019 sig->cputimer.running = 1;
1020 }
1021
1022 /* The timer lists. */
1023 INIT_LIST_HEAD(&sig->cpu_timers[0]);
1024 INIT_LIST_HEAD(&sig->cpu_timers[1]);
1025 INIT_LIST_HEAD(&sig->cpu_timers[2]);
1026 }
1027
1028 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1029 {
1030 struct signal_struct *sig;
1031
1032 if (clone_flags & CLONE_THREAD)
1033 return 0;
1034
1035 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1036 tsk->signal = sig;
1037 if (!sig)
1038 return -ENOMEM;
1039
1040 sig->nr_threads = 1;
1041 atomic_set(&sig->live, 1);
1042 atomic_set(&sig->sigcnt, 1);
1043 init_waitqueue_head(&sig->wait_chldexit);
1044 if (clone_flags & CLONE_NEWPID)
1045 sig->flags |= SIGNAL_UNKILLABLE;
1046 sig->curr_target = tsk;
1047 init_sigpending(&sig->shared_pending);
1048 INIT_LIST_HEAD(&sig->posix_timers);
1049
1050 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1051 sig->real_timer.function = it_real_fn;
1052
1053 task_lock(current->group_leader);
1054 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1055 task_unlock(current->group_leader);
1056
1057 posix_cpu_timers_init_group(sig);
1058
1059 tty_audit_fork(sig);
1060 sched_autogroup_fork(sig);
1061
1062 #ifdef CONFIG_CGROUPS
1063 init_rwsem(&sig->group_rwsem);
1064 #endif
1065
1066 sig->oom_score_adj = current->signal->oom_score_adj;
1067 sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1068
1069 sig->has_child_subreaper = current->signal->has_child_subreaper ||
1070 current->signal->is_child_subreaper;
1071
1072 mutex_init(&sig->cred_guard_mutex);
1073
1074 return 0;
1075 }
1076
1077 static void copy_flags(unsigned long clone_flags, struct task_struct *p)
1078 {
1079 unsigned long new_flags = p->flags;
1080
1081 new_flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER);
1082 new_flags |= PF_FORKNOEXEC;
1083 p->flags = new_flags;
1084 }
1085
1086 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1087 {
1088 current->clear_child_tid = tidptr;
1089
1090 return task_pid_vnr(current);
1091 }
1092
1093 static void rt_mutex_init_task(struct task_struct *p)
1094 {
1095 raw_spin_lock_init(&p->pi_lock);
1096 #ifdef CONFIG_RT_MUTEXES
1097 plist_head_init(&p->pi_waiters);
1098 p->pi_blocked_on = NULL;
1099 #endif
1100 }
1101
1102 #ifdef CONFIG_MM_OWNER
1103 void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
1104 {
1105 mm->owner = p;
1106 }
1107 #endif /* CONFIG_MM_OWNER */
1108
1109 /*
1110 * Initialize POSIX timer handling for a single task.
1111 */
1112 static void posix_cpu_timers_init(struct task_struct *tsk)
1113 {
1114 tsk->cputime_expires.prof_exp = 0;
1115 tsk->cputime_expires.virt_exp = 0;
1116 tsk->cputime_expires.sched_exp = 0;
1117 INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1118 INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1119 INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1120 }
1121
1122 /*
1123 * This creates a new process as a copy of the old one,
1124 * but does not actually start it yet.
1125 *
1126 * It copies the registers, and all the appropriate
1127 * parts of the process environment (as per the clone
1128 * flags). The actual kick-off is left to the caller.
1129 */
1130 static struct task_struct *copy_process(unsigned long clone_flags,
1131 unsigned long stack_start,
1132 unsigned long stack_size,
1133 int __user *child_tidptr,
1134 struct pid *pid,
1135 int trace)
1136 {
1137 int retval;
1138 struct task_struct *p;
1139
1140 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1141 return ERR_PTR(-EINVAL);
1142
1143 /*
1144 * Thread groups must share signals as well, and detached threads
1145 * can only be started up within the thread group.
1146 */
1147 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1148 return ERR_PTR(-EINVAL);
1149
1150 /*
1151 * Shared signal handlers imply shared VM. By way of the above,
1152 * thread groups also imply shared VM. Blocking this case allows
1153 * for various simplifications in other code.
1154 */
1155 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1156 return ERR_PTR(-EINVAL);
1157
1158 /*
1159 * Siblings of global init remain as zombies on exit since they are
1160 * not reaped by their parent (swapper). To solve this and to avoid
1161 * multi-rooted process trees, prevent global and container-inits
1162 * from creating siblings.
1163 */
1164 if ((clone_flags & CLONE_PARENT) &&
1165 current->signal->flags & SIGNAL_UNKILLABLE)
1166 return ERR_PTR(-EINVAL);
1167
1168 retval = security_task_create(clone_flags);
1169 if (retval)
1170 goto fork_out;
1171
1172 retval = -ENOMEM;
1173 p = dup_task_struct(current);
1174 if (!p)
1175 goto fork_out;
1176
1177 ftrace_graph_init_task(p);
1178 get_seccomp_filter(p);
1179
1180 rt_mutex_init_task(p);
1181
1182 #ifdef CONFIG_PROVE_LOCKING
1183 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1184 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1185 #endif
1186 retval = -EAGAIN;
1187 if (atomic_read(&p->real_cred->user->processes) >=
1188 task_rlimit(p, RLIMIT_NPROC)) {
1189 if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
1190 p->real_cred->user != INIT_USER)
1191 goto bad_fork_free;
1192 }
1193 current->flags &= ~PF_NPROC_EXCEEDED;
1194
1195 retval = copy_creds(p, clone_flags);
1196 if (retval < 0)
1197 goto bad_fork_free;
1198
1199 /*
1200 * If multiple threads are within copy_process(), then this check
1201 * triggers too late. This doesn't hurt, the check is only there
1202 * to stop root fork bombs.
1203 */
1204 retval = -EAGAIN;
1205 if (nr_threads >= max_threads)
1206 goto bad_fork_cleanup_count;
1207
1208 if (!try_module_get(task_thread_info(p)->exec_domain->module))
1209 goto bad_fork_cleanup_count;
1210
1211 p->did_exec = 0;
1212 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
1213 copy_flags(clone_flags, p);
1214 INIT_LIST_HEAD(&p->children);
1215 INIT_LIST_HEAD(&p->sibling);
1216 rcu_copy_process(p);
1217 p->vfork_done = NULL;
1218 spin_lock_init(&p->alloc_lock);
1219
1220 init_sigpending(&p->pending);
1221
1222 p->utime = p->stime = p->gtime = 0;
1223 p->utimescaled = p->stimescaled = 0;
1224 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
1225 p->prev_cputime.utime = p->prev_cputime.stime = 0;
1226 #endif
1227 #if defined(SPLIT_RSS_COUNTING)
1228 memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1229 #endif
1230
1231 p->default_timer_slack_ns = current->timer_slack_ns;
1232
1233 task_io_accounting_init(&p->ioac);
1234 acct_clear_integrals(p);
1235
1236 posix_cpu_timers_init(p);
1237
1238 do_posix_clock_monotonic_gettime(&p->start_time);
1239 p->real_start_time = p->start_time;
1240 monotonic_to_bootbased(&p->real_start_time);
1241 p->io_context = NULL;
1242 p->audit_context = NULL;
1243 if (clone_flags & CLONE_THREAD)
1244 threadgroup_change_begin(current);
1245 cgroup_fork(p);
1246 #ifdef CONFIG_NUMA
1247 p->mempolicy = mpol_dup(p->mempolicy);
1248 if (IS_ERR(p->mempolicy)) {
1249 retval = PTR_ERR(p->mempolicy);
1250 p->mempolicy = NULL;
1251 goto bad_fork_cleanup_cgroup;
1252 }
1253 mpol_fix_fork_child_flag(p);
1254 #endif
1255 #ifdef CONFIG_CPUSETS
1256 p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1257 p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1258 seqcount_init(&p->mems_allowed_seq);
1259 #endif
1260 #ifdef CONFIG_TRACE_IRQFLAGS
1261 p->irq_events = 0;
1262 p->hardirqs_enabled = 0;
1263 p->hardirq_enable_ip = 0;
1264 p->hardirq_enable_event = 0;
1265 p->hardirq_disable_ip = _THIS_IP_;
1266 p->hardirq_disable_event = 0;
1267 p->softirqs_enabled = 1;
1268 p->softirq_enable_ip = _THIS_IP_;
1269 p->softirq_enable_event = 0;
1270 p->softirq_disable_ip = 0;
1271 p->softirq_disable_event = 0;
1272 p->hardirq_context = 0;
1273 p->softirq_context = 0;
1274 #endif
1275 #ifdef CONFIG_LOCKDEP
1276 p->lockdep_depth = 0; /* no locks held yet */
1277 p->curr_chain_key = 0;
1278 p->lockdep_recursion = 0;
1279 #endif
1280
1281 #ifdef CONFIG_DEBUG_MUTEXES
1282 p->blocked_on = NULL; /* not blocked yet */
1283 #endif
1284 #ifdef CONFIG_MEMCG
1285 p->memcg_batch.do_batch = 0;
1286 p->memcg_batch.memcg = NULL;
1287 #endif
1288
1289 /* Perform scheduler related setup. Assign this task to a CPU. */
1290 sched_fork(p);
1291
1292 retval = perf_event_init_task(p);
1293 if (retval)
1294 goto bad_fork_cleanup_policy;
1295 retval = audit_alloc(p);
1296 if (retval)
1297 goto bad_fork_cleanup_policy;
1298 /* copy all the process information */
1299 retval = copy_semundo(clone_flags, p);
1300 if (retval)
1301 goto bad_fork_cleanup_audit;
1302 retval = copy_files(clone_flags, p);
1303 if (retval)
1304 goto bad_fork_cleanup_semundo;
1305 retval = copy_fs(clone_flags, p);
1306 if (retval)
1307 goto bad_fork_cleanup_files;
1308 retval = copy_sighand(clone_flags, p);
1309 if (retval)
1310 goto bad_fork_cleanup_fs;
1311 retval = copy_signal(clone_flags, p);
1312 if (retval)
1313 goto bad_fork_cleanup_sighand;
1314 retval = copy_mm(clone_flags, p);
1315 if (retval)
1316 goto bad_fork_cleanup_signal;
1317 retval = copy_namespaces(clone_flags, p);
1318 if (retval)
1319 goto bad_fork_cleanup_mm;
1320 retval = copy_io(clone_flags, p);
1321 if (retval)
1322 goto bad_fork_cleanup_namespaces;
1323 retval = copy_thread(clone_flags, stack_start, stack_size, p);
1324 if (retval)
1325 goto bad_fork_cleanup_io;
1326
1327 if (pid != &init_struct_pid) {
1328 retval = -ENOMEM;
1329 pid = alloc_pid(p->nsproxy->pid_ns);
1330 if (!pid)
1331 goto bad_fork_cleanup_io;
1332 }
1333
1334 p->pid = pid_nr(pid);
1335 p->tgid = p->pid;
1336 if (clone_flags & CLONE_THREAD)
1337 p->tgid = current->tgid;
1338
1339 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1340 /*
1341 * Clear TID on mm_release()?
1342 */
1343 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
1344 #ifdef CONFIG_BLOCK
1345 p->plug = NULL;
1346 #endif
1347 #ifdef CONFIG_FUTEX
1348 p->robust_list = NULL;
1349 #ifdef CONFIG_COMPAT
1350 p->compat_robust_list = NULL;
1351 #endif
1352 INIT_LIST_HEAD(&p->pi_state_list);
1353 p->pi_state_cache = NULL;
1354 #endif
1355 uprobe_copy_process(p);
1356 /*
1357 * sigaltstack should be cleared when sharing the same VM
1358 */
1359 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1360 p->sas_ss_sp = p->sas_ss_size = 0;
1361
1362 /*
1363 * Syscall tracing and stepping should be turned off in the
1364 * child regardless of CLONE_PTRACE.
1365 */
1366 user_disable_single_step(p);
1367 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1368 #ifdef TIF_SYSCALL_EMU
1369 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1370 #endif
1371 clear_all_latency_tracing(p);
1372
1373 /* ok, now we should be set up.. */
1374 if (clone_flags & CLONE_THREAD)
1375 p->exit_signal = -1;
1376 else if (clone_flags & CLONE_PARENT)
1377 p->exit_signal = current->group_leader->exit_signal;
1378 else
1379 p->exit_signal = (clone_flags & CSIGNAL);
1380
1381 p->pdeath_signal = 0;
1382 p->exit_state = 0;
1383
1384 p->nr_dirtied = 0;
1385 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
1386 p->dirty_paused_when = 0;
1387
1388 /*
1389 * Ok, make it visible to the rest of the system.
1390 * We dont wake it up yet.
1391 */
1392 p->group_leader = p;
1393 INIT_LIST_HEAD(&p->thread_group);
1394 p->task_works = NULL;
1395
1396 /* Need tasklist lock for parent etc handling! */
1397 write_lock_irq(&tasklist_lock);
1398
1399 /* CLONE_PARENT re-uses the old parent */
1400 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1401 p->real_parent = current->real_parent;
1402 p->parent_exec_id = current->parent_exec_id;
1403 } else {
1404 p->real_parent = current;
1405 p->parent_exec_id = current->self_exec_id;
1406 }
1407
1408 spin_lock(&current->sighand->siglock);
1409
1410 /*
1411 * Process group and session signals need to be delivered to just the
1412 * parent before the fork or both the parent and the child after the
1413 * fork. Restart if a signal comes in before we add the new process to
1414 * it's process group.
1415 * A fatal signal pending means that current will exit, so the new
1416 * thread can't slip out of an OOM kill (or normal SIGKILL).
1417 */
1418 recalc_sigpending();
1419 if (signal_pending(current)) {
1420 spin_unlock(&current->sighand->siglock);
1421 write_unlock_irq(&tasklist_lock);
1422 retval = -ERESTARTNOINTR;
1423 goto bad_fork_free_pid;
1424 }
1425
1426 if (clone_flags & CLONE_THREAD) {
1427 current->signal->nr_threads++;
1428 atomic_inc(&current->signal->live);
1429 atomic_inc(&current->signal->sigcnt);
1430 p->group_leader = current->group_leader;
1431 list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
1432 }
1433
1434 if (likely(p->pid)) {
1435 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
1436
1437 if (thread_group_leader(p)) {
1438 if (is_child_reaper(pid))
1439 p->nsproxy->pid_ns->child_reaper = p;
1440
1441 p->signal->leader_pid = pid;
1442 p->signal->tty = tty_kref_get(current->signal->tty);
1443 attach_pid(p, PIDTYPE_PGID, task_pgrp(current));
1444 attach_pid(p, PIDTYPE_SID, task_session(current));
1445 list_add_tail(&p->sibling, &p->real_parent->children);
1446 list_add_tail_rcu(&p->tasks, &init_task.tasks);
1447 __this_cpu_inc(process_counts);
1448 }
1449 attach_pid(p, PIDTYPE_PID, pid);
1450 nr_threads++;
1451 }
1452
1453 total_forks++;
1454 spin_unlock(&current->sighand->siglock);
1455 write_unlock_irq(&tasklist_lock);
1456 proc_fork_connector(p);
1457 cgroup_post_fork(p);
1458 if (clone_flags & CLONE_THREAD)
1459 threadgroup_change_end(current);
1460 perf_event_fork(p);
1461
1462 trace_task_newtask(p, clone_flags);
1463
1464 return p;
1465
1466 bad_fork_free_pid:
1467 if (pid != &init_struct_pid)
1468 free_pid(pid);
1469 bad_fork_cleanup_io:
1470 if (p->io_context)
1471 exit_io_context(p);
1472 bad_fork_cleanup_namespaces:
1473 if (unlikely(clone_flags & CLONE_NEWPID))
1474 pid_ns_release_proc(p->nsproxy->pid_ns);
1475 exit_task_namespaces(p);
1476 bad_fork_cleanup_mm:
1477 if (p->mm)
1478 mmput(p->mm);
1479 bad_fork_cleanup_signal:
1480 if (!(clone_flags & CLONE_THREAD))
1481 free_signal_struct(p->signal);
1482 bad_fork_cleanup_sighand:
1483 __cleanup_sighand(p->sighand);
1484 bad_fork_cleanup_fs:
1485 exit_fs(p); /* blocking */
1486 bad_fork_cleanup_files:
1487 exit_files(p); /* blocking */
1488 bad_fork_cleanup_semundo:
1489 exit_sem(p);
1490 bad_fork_cleanup_audit:
1491 audit_free(p);
1492 bad_fork_cleanup_policy:
1493 perf_event_free_task(p);
1494 #ifdef CONFIG_NUMA
1495 mpol_put(p->mempolicy);
1496 bad_fork_cleanup_cgroup:
1497 #endif
1498 if (clone_flags & CLONE_THREAD)
1499 threadgroup_change_end(current);
1500 cgroup_exit(p, 0);
1501 delayacct_tsk_free(p);
1502 module_put(task_thread_info(p)->exec_domain->module);
1503 bad_fork_cleanup_count:
1504 atomic_dec(&p->cred->user->processes);
1505 exit_creds(p);
1506 bad_fork_free:
1507 free_task(p);
1508 fork_out:
1509 return ERR_PTR(retval);
1510 }
1511
1512 static inline void init_idle_pids(struct pid_link *links)
1513 {
1514 enum pid_type type;
1515
1516 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1517 INIT_HLIST_NODE(&links[type].node); /* not really needed */
1518 links[type].pid = &init_struct_pid;
1519 }
1520 }
1521
1522 struct task_struct * __cpuinit fork_idle(int cpu)
1523 {
1524 struct task_struct *task;
1525 task = copy_process(CLONE_VM, 0, 0, NULL, &init_struct_pid, 0);
1526 if (!IS_ERR(task)) {
1527 init_idle_pids(task->pids);
1528 init_idle(task, cpu);
1529 }
1530
1531 return task;
1532 }
1533
1534 /*
1535 * Ok, this is the main fork-routine.
1536 *
1537 * It copies the process, and if successful kick-starts
1538 * it and waits for it to finish using the VM if required.
1539 */
1540 long do_fork(unsigned long clone_flags,
1541 unsigned long stack_start,
1542 unsigned long stack_size,
1543 int __user *parent_tidptr,
1544 int __user *child_tidptr)
1545 {
1546 struct task_struct *p;
1547 int trace = 0;
1548 long nr;
1549
1550 /*
1551 * Do some preliminary argument and permissions checking before we
1552 * actually start allocating stuff
1553 */
1554 if (clone_flags & CLONE_NEWUSER) {
1555 if (clone_flags & CLONE_THREAD)
1556 return -EINVAL;
1557 /* hopefully this check will go away when userns support is
1558 * complete
1559 */
1560 if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SETUID) ||
1561 !capable(CAP_SETGID))
1562 return -EPERM;
1563 }
1564
1565 /*
1566 * Determine whether and which event to report to ptracer. When
1567 * called from kernel_thread or CLONE_UNTRACED is explicitly
1568 * requested, no event is reported; otherwise, report if the event
1569 * for the type of forking is enabled.
1570 */
1571 if (!(clone_flags & CLONE_UNTRACED)) {
1572 if (clone_flags & CLONE_VFORK)
1573 trace = PTRACE_EVENT_VFORK;
1574 else if ((clone_flags & CSIGNAL) != SIGCHLD)
1575 trace = PTRACE_EVENT_CLONE;
1576 else
1577 trace = PTRACE_EVENT_FORK;
1578
1579 if (likely(!ptrace_event_enabled(current, trace)))
1580 trace = 0;
1581 }
1582
1583 p = copy_process(clone_flags, stack_start, stack_size,
1584 child_tidptr, NULL, trace);
1585 /*
1586 * Do this prior waking up the new thread - the thread pointer
1587 * might get invalid after that point, if the thread exits quickly.
1588 */
1589 if (!IS_ERR(p)) {
1590 struct completion vfork;
1591
1592 trace_sched_process_fork(current, p);
1593
1594 nr = task_pid_vnr(p);
1595
1596 if (clone_flags & CLONE_PARENT_SETTID)
1597 put_user(nr, parent_tidptr);
1598
1599 if (clone_flags & CLONE_VFORK) {
1600 p->vfork_done = &vfork;
1601 init_completion(&vfork);
1602 get_task_struct(p);
1603 }
1604
1605 wake_up_new_task(p);
1606
1607 /* forking complete and child started to run, tell ptracer */
1608 if (unlikely(trace))
1609 ptrace_event(trace, nr);
1610
1611 if (clone_flags & CLONE_VFORK) {
1612 if (!wait_for_vfork_done(p, &vfork))
1613 ptrace_event(PTRACE_EVENT_VFORK_DONE, nr);
1614 }
1615 } else {
1616 nr = PTR_ERR(p);
1617 }
1618 return nr;
1619 }
1620
1621 #ifdef CONFIG_GENERIC_KERNEL_THREAD
1622 /*
1623 * Create a kernel thread.
1624 */
1625 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
1626 {
1627 return do_fork(flags|CLONE_VM|CLONE_UNTRACED, (unsigned long)fn,
1628 (unsigned long)arg, NULL, NULL);
1629 }
1630 #endif
1631
1632 #ifdef __ARCH_WANT_SYS_FORK
1633 SYSCALL_DEFINE0(fork)
1634 {
1635 #ifdef CONFIG_MMU
1636 return do_fork(SIGCHLD, 0, 0, NULL, NULL);
1637 #else
1638 /* can not support in nommu mode */
1639 return(-EINVAL);
1640 #endif
1641 }
1642 #endif
1643
1644 #ifdef __ARCH_WANT_SYS_VFORK
1645 SYSCALL_DEFINE0(vfork)
1646 {
1647 return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, 0,
1648 0, NULL, NULL);
1649 }
1650 #endif
1651
1652 #ifdef __ARCH_WANT_SYS_CLONE
1653 #ifdef CONFIG_CLONE_BACKWARDS
1654 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
1655 int __user *, parent_tidptr,
1656 int, tls_val,
1657 int __user *, child_tidptr)
1658 #elif defined(CONFIG_CLONE_BACKWARDS2)
1659 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
1660 int __user *, parent_tidptr,
1661 int __user *, child_tidptr,
1662 int, tls_val)
1663 #else
1664 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
1665 int __user *, parent_tidptr,
1666 int __user *, child_tidptr,
1667 int, tls_val)
1668 #endif
1669 {
1670 return do_fork(clone_flags, newsp, 0,
1671 parent_tidptr, child_tidptr);
1672 }
1673 #endif
1674
1675 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1676 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1677 #endif
1678
1679 static void sighand_ctor(void *data)
1680 {
1681 struct sighand_struct *sighand = data;
1682
1683 spin_lock_init(&sighand->siglock);
1684 init_waitqueue_head(&sighand->signalfd_wqh);
1685 }
1686
1687 void __init proc_caches_init(void)
1688 {
1689 sighand_cachep = kmem_cache_create("sighand_cache",
1690 sizeof(struct sighand_struct), 0,
1691 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
1692 SLAB_NOTRACK, sighand_ctor);
1693 signal_cachep = kmem_cache_create("signal_cache",
1694 sizeof(struct signal_struct), 0,
1695 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1696 files_cachep = kmem_cache_create("files_cache",
1697 sizeof(struct files_struct), 0,
1698 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1699 fs_cachep = kmem_cache_create("fs_cache",
1700 sizeof(struct fs_struct), 0,
1701 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1702 /*
1703 * FIXME! The "sizeof(struct mm_struct)" currently includes the
1704 * whole struct cpumask for the OFFSTACK case. We could change
1705 * this to *only* allocate as much of it as required by the
1706 * maximum number of CPU's we can ever have. The cpumask_allocation
1707 * is at the end of the structure, exactly for that reason.
1708 */
1709 mm_cachep = kmem_cache_create("mm_struct",
1710 sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1711 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1712 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC);
1713 mmap_init();
1714 nsproxy_cache_init();
1715 }
1716
1717 /*
1718 * Check constraints on flags passed to the unshare system call.
1719 */
1720 static int check_unshare_flags(unsigned long unshare_flags)
1721 {
1722 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1723 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1724 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET))
1725 return -EINVAL;
1726 /*
1727 * Not implemented, but pretend it works if there is nothing to
1728 * unshare. Note that unsharing CLONE_THREAD or CLONE_SIGHAND
1729 * needs to unshare vm.
1730 */
1731 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
1732 /* FIXME: get_task_mm() increments ->mm_users */
1733 if (atomic_read(&current->mm->mm_users) > 1)
1734 return -EINVAL;
1735 }
1736
1737 return 0;
1738 }
1739
1740 /*
1741 * Unshare the filesystem structure if it is being shared
1742 */
1743 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1744 {
1745 struct fs_struct *fs = current->fs;
1746
1747 if (!(unshare_flags & CLONE_FS) || !fs)
1748 return 0;
1749
1750 /* don't need lock here; in the worst case we'll do useless copy */
1751 if (fs->users == 1)
1752 return 0;
1753
1754 *new_fsp = copy_fs_struct(fs);
1755 if (!*new_fsp)
1756 return -ENOMEM;
1757
1758 return 0;
1759 }
1760
1761 /*
1762 * Unshare file descriptor table if it is being shared
1763 */
1764 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1765 {
1766 struct files_struct *fd = current->files;
1767 int error = 0;
1768
1769 if ((unshare_flags & CLONE_FILES) &&
1770 (fd && atomic_read(&fd->count) > 1)) {
1771 *new_fdp = dup_fd(fd, &error);
1772 if (!*new_fdp)
1773 return error;
1774 }
1775
1776 return 0;
1777 }
1778
1779 /*
1780 * unshare allows a process to 'unshare' part of the process
1781 * context which was originally shared using clone. copy_*
1782 * functions used by do_fork() cannot be used here directly
1783 * because they modify an inactive task_struct that is being
1784 * constructed. Here we are modifying the current, active,
1785 * task_struct.
1786 */
1787 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
1788 {
1789 struct fs_struct *fs, *new_fs = NULL;
1790 struct files_struct *fd, *new_fd = NULL;
1791 struct nsproxy *new_nsproxy = NULL;
1792 int do_sysvsem = 0;
1793 int err;
1794
1795 err = check_unshare_flags(unshare_flags);
1796 if (err)
1797 goto bad_unshare_out;
1798
1799 /*
1800 * If unsharing namespace, must also unshare filesystem information.
1801 */
1802 if (unshare_flags & CLONE_NEWNS)
1803 unshare_flags |= CLONE_FS;
1804 /*
1805 * CLONE_NEWIPC must also detach from the undolist: after switching
1806 * to a new ipc namespace, the semaphore arrays from the old
1807 * namespace are unreachable.
1808 */
1809 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
1810 do_sysvsem = 1;
1811 err = unshare_fs(unshare_flags, &new_fs);
1812 if (err)
1813 goto bad_unshare_out;
1814 err = unshare_fd(unshare_flags, &new_fd);
1815 if (err)
1816 goto bad_unshare_cleanup_fs;
1817 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy, new_fs);
1818 if (err)
1819 goto bad_unshare_cleanup_fd;
1820
1821 if (new_fs || new_fd || do_sysvsem || new_nsproxy) {
1822 if (do_sysvsem) {
1823 /*
1824 * CLONE_SYSVSEM is equivalent to sys_exit().
1825 */
1826 exit_sem(current);
1827 }
1828
1829 if (new_nsproxy) {
1830 switch_task_namespaces(current, new_nsproxy);
1831 new_nsproxy = NULL;
1832 }
1833
1834 task_lock(current);
1835
1836 if (new_fs) {
1837 fs = current->fs;
1838 spin_lock(&fs->lock);
1839 current->fs = new_fs;
1840 if (--fs->users)
1841 new_fs = NULL;
1842 else
1843 new_fs = fs;
1844 spin_unlock(&fs->lock);
1845 }
1846
1847 if (new_fd) {
1848 fd = current->files;
1849 current->files = new_fd;
1850 new_fd = fd;
1851 }
1852
1853 task_unlock(current);
1854 }
1855
1856 if (new_nsproxy)
1857 put_nsproxy(new_nsproxy);
1858
1859 bad_unshare_cleanup_fd:
1860 if (new_fd)
1861 put_files_struct(new_fd);
1862
1863 bad_unshare_cleanup_fs:
1864 if (new_fs)
1865 free_fs_struct(new_fs);
1866
1867 bad_unshare_out:
1868 return err;
1869 }
1870
1871 /*
1872 * Helper to unshare the files of the current task.
1873 * We don't want to expose copy_files internals to
1874 * the exec layer of the kernel.
1875 */
1876
1877 int unshare_files(struct files_struct **displaced)
1878 {
1879 struct task_struct *task = current;
1880 struct files_struct *copy = NULL;
1881 int error;
1882
1883 error = unshare_fd(CLONE_FILES, &copy);
1884 if (error || !copy) {
1885 *displaced = NULL;
1886 return error;
1887 }
1888 *displaced = task->files;
1889 task_lock(task);
1890 task->files = copy;
1891 task_unlock(task);
1892 return 0;
1893 }
This page took 0.108884 seconds and 5 git commands to generate.