fork: Move thread info gfp flags to header
[deliverable/linux.git] / kernel / fork.c
1 /*
2 * linux/kernel/fork.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * 'fork.c' contains the help-routines for the 'fork' system call
9 * (see also entry.S and others).
10 * Fork is rather simple, once you get the hang of it, but the memory
11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12 */
13
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/mempolicy.h>
22 #include <linux/sem.h>
23 #include <linux/file.h>
24 #include <linux/fdtable.h>
25 #include <linux/iocontext.h>
26 #include <linux/key.h>
27 #include <linux/binfmts.h>
28 #include <linux/mman.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/fs.h>
31 #include <linux/nsproxy.h>
32 #include <linux/capability.h>
33 #include <linux/cpu.h>
34 #include <linux/cgroup.h>
35 #include <linux/security.h>
36 #include <linux/hugetlb.h>
37 #include <linux/swap.h>
38 #include <linux/syscalls.h>
39 #include <linux/jiffies.h>
40 #include <linux/futex.h>
41 #include <linux/compat.h>
42 #include <linux/kthread.h>
43 #include <linux/task_io_accounting_ops.h>
44 #include <linux/rcupdate.h>
45 #include <linux/ptrace.h>
46 #include <linux/mount.h>
47 #include <linux/audit.h>
48 #include <linux/memcontrol.h>
49 #include <linux/ftrace.h>
50 #include <linux/profile.h>
51 #include <linux/rmap.h>
52 #include <linux/ksm.h>
53 #include <linux/acct.h>
54 #include <linux/tsacct_kern.h>
55 #include <linux/cn_proc.h>
56 #include <linux/freezer.h>
57 #include <linux/delayacct.h>
58 #include <linux/taskstats_kern.h>
59 #include <linux/random.h>
60 #include <linux/tty.h>
61 #include <linux/blkdev.h>
62 #include <linux/fs_struct.h>
63 #include <linux/magic.h>
64 #include <linux/perf_event.h>
65 #include <linux/posix-timers.h>
66 #include <linux/user-return-notifier.h>
67 #include <linux/oom.h>
68 #include <linux/khugepaged.h>
69 #include <linux/signalfd.h>
70
71 #include <asm/pgtable.h>
72 #include <asm/pgalloc.h>
73 #include <asm/uaccess.h>
74 #include <asm/mmu_context.h>
75 #include <asm/cacheflush.h>
76 #include <asm/tlbflush.h>
77
78 #include <trace/events/sched.h>
79
80 #define CREATE_TRACE_POINTS
81 #include <trace/events/task.h>
82
83 /*
84 * Protected counters by write_lock_irq(&tasklist_lock)
85 */
86 unsigned long total_forks; /* Handle normal Linux uptimes. */
87 int nr_threads; /* The idle threads do not count.. */
88
89 int max_threads; /* tunable limit on nr_threads */
90
91 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
92
93 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
94
95 #ifdef CONFIG_PROVE_RCU
96 int lockdep_tasklist_lock_is_held(void)
97 {
98 return lockdep_is_held(&tasklist_lock);
99 }
100 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
101 #endif /* #ifdef CONFIG_PROVE_RCU */
102
103 int nr_processes(void)
104 {
105 int cpu;
106 int total = 0;
107
108 for_each_possible_cpu(cpu)
109 total += per_cpu(process_counts, cpu);
110
111 return total;
112 }
113
114 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
115 # define alloc_task_struct_node(node) \
116 kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node)
117 # define free_task_struct(tsk) \
118 kmem_cache_free(task_struct_cachep, (tsk))
119 static struct kmem_cache *task_struct_cachep;
120 #endif
121
122 #ifndef __HAVE_ARCH_THREAD_INFO_ALLOCATOR
123 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
124 int node)
125 {
126 struct page *page = alloc_pages_node(node, THREADINFO_GFP,
127 THREAD_SIZE_ORDER);
128
129 return page ? page_address(page) : NULL;
130 }
131
132 static inline void free_thread_info(struct thread_info *ti)
133 {
134 free_pages((unsigned long)ti, THREAD_SIZE_ORDER);
135 }
136 #endif
137
138 /* SLAB cache for signal_struct structures (tsk->signal) */
139 static struct kmem_cache *signal_cachep;
140
141 /* SLAB cache for sighand_struct structures (tsk->sighand) */
142 struct kmem_cache *sighand_cachep;
143
144 /* SLAB cache for files_struct structures (tsk->files) */
145 struct kmem_cache *files_cachep;
146
147 /* SLAB cache for fs_struct structures (tsk->fs) */
148 struct kmem_cache *fs_cachep;
149
150 /* SLAB cache for vm_area_struct structures */
151 struct kmem_cache *vm_area_cachep;
152
153 /* SLAB cache for mm_struct structures (tsk->mm) */
154 static struct kmem_cache *mm_cachep;
155
156 static void account_kernel_stack(struct thread_info *ti, int account)
157 {
158 struct zone *zone = page_zone(virt_to_page(ti));
159
160 mod_zone_page_state(zone, NR_KERNEL_STACK, account);
161 }
162
163 void free_task(struct task_struct *tsk)
164 {
165 account_kernel_stack(tsk->stack, -1);
166 free_thread_info(tsk->stack);
167 rt_mutex_debug_task_free(tsk);
168 ftrace_graph_exit_task(tsk);
169 free_task_struct(tsk);
170 }
171 EXPORT_SYMBOL(free_task);
172
173 static inline void free_signal_struct(struct signal_struct *sig)
174 {
175 taskstats_tgid_free(sig);
176 sched_autogroup_exit(sig);
177 kmem_cache_free(signal_cachep, sig);
178 }
179
180 static inline void put_signal_struct(struct signal_struct *sig)
181 {
182 if (atomic_dec_and_test(&sig->sigcnt))
183 free_signal_struct(sig);
184 }
185
186 void __put_task_struct(struct task_struct *tsk)
187 {
188 WARN_ON(!tsk->exit_state);
189 WARN_ON(atomic_read(&tsk->usage));
190 WARN_ON(tsk == current);
191
192 security_task_free(tsk);
193 exit_creds(tsk);
194 delayacct_tsk_free(tsk);
195 put_signal_struct(tsk->signal);
196
197 if (!profile_handoff_task(tsk))
198 free_task(tsk);
199 }
200 EXPORT_SYMBOL_GPL(__put_task_struct);
201
202 void __init __weak arch_task_cache_init(void) { }
203
204 void __init fork_init(unsigned long mempages)
205 {
206 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
207 #ifndef ARCH_MIN_TASKALIGN
208 #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
209 #endif
210 /* create a slab on which task_structs can be allocated */
211 task_struct_cachep =
212 kmem_cache_create("task_struct", sizeof(struct task_struct),
213 ARCH_MIN_TASKALIGN, SLAB_PANIC | SLAB_NOTRACK, NULL);
214 #endif
215
216 /* do the arch specific task caches init */
217 arch_task_cache_init();
218
219 /*
220 * The default maximum number of threads is set to a safe
221 * value: the thread structures can take up at most half
222 * of memory.
223 */
224 max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
225
226 /*
227 * we need to allow at least 20 threads to boot a system
228 */
229 if (max_threads < 20)
230 max_threads = 20;
231
232 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
233 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
234 init_task.signal->rlim[RLIMIT_SIGPENDING] =
235 init_task.signal->rlim[RLIMIT_NPROC];
236 }
237
238 int __attribute__((weak)) arch_dup_task_struct(struct task_struct *dst,
239 struct task_struct *src)
240 {
241 *dst = *src;
242 return 0;
243 }
244
245 static struct task_struct *dup_task_struct(struct task_struct *orig)
246 {
247 struct task_struct *tsk;
248 struct thread_info *ti;
249 unsigned long *stackend;
250 int node = tsk_fork_get_node(orig);
251 int err;
252
253 prepare_to_copy(orig);
254
255 tsk = alloc_task_struct_node(node);
256 if (!tsk)
257 return NULL;
258
259 ti = alloc_thread_info_node(tsk, node);
260 if (!ti) {
261 free_task_struct(tsk);
262 return NULL;
263 }
264
265 err = arch_dup_task_struct(tsk, orig);
266 if (err)
267 goto out;
268
269 tsk->stack = ti;
270
271 setup_thread_stack(tsk, orig);
272 clear_user_return_notifier(tsk);
273 clear_tsk_need_resched(tsk);
274 stackend = end_of_stack(tsk);
275 *stackend = STACK_END_MAGIC; /* for overflow detection */
276
277 #ifdef CONFIG_CC_STACKPROTECTOR
278 tsk->stack_canary = get_random_int();
279 #endif
280
281 /*
282 * One for us, one for whoever does the "release_task()" (usually
283 * parent)
284 */
285 atomic_set(&tsk->usage, 2);
286 #ifdef CONFIG_BLK_DEV_IO_TRACE
287 tsk->btrace_seq = 0;
288 #endif
289 tsk->splice_pipe = NULL;
290
291 account_kernel_stack(ti, 1);
292
293 return tsk;
294
295 out:
296 free_thread_info(ti);
297 free_task_struct(tsk);
298 return NULL;
299 }
300
301 #ifdef CONFIG_MMU
302 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
303 {
304 struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
305 struct rb_node **rb_link, *rb_parent;
306 int retval;
307 unsigned long charge;
308 struct mempolicy *pol;
309
310 down_write(&oldmm->mmap_sem);
311 flush_cache_dup_mm(oldmm);
312 /*
313 * Not linked in yet - no deadlock potential:
314 */
315 down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
316
317 mm->locked_vm = 0;
318 mm->mmap = NULL;
319 mm->mmap_cache = NULL;
320 mm->free_area_cache = oldmm->mmap_base;
321 mm->cached_hole_size = ~0UL;
322 mm->map_count = 0;
323 cpumask_clear(mm_cpumask(mm));
324 mm->mm_rb = RB_ROOT;
325 rb_link = &mm->mm_rb.rb_node;
326 rb_parent = NULL;
327 pprev = &mm->mmap;
328 retval = ksm_fork(mm, oldmm);
329 if (retval)
330 goto out;
331 retval = khugepaged_fork(mm, oldmm);
332 if (retval)
333 goto out;
334
335 prev = NULL;
336 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
337 struct file *file;
338
339 if (mpnt->vm_flags & VM_DONTCOPY) {
340 long pages = vma_pages(mpnt);
341 mm->total_vm -= pages;
342 vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
343 -pages);
344 continue;
345 }
346 charge = 0;
347 if (mpnt->vm_flags & VM_ACCOUNT) {
348 unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
349 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
350 goto fail_nomem;
351 charge = len;
352 }
353 tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
354 if (!tmp)
355 goto fail_nomem;
356 *tmp = *mpnt;
357 INIT_LIST_HEAD(&tmp->anon_vma_chain);
358 pol = mpol_dup(vma_policy(mpnt));
359 retval = PTR_ERR(pol);
360 if (IS_ERR(pol))
361 goto fail_nomem_policy;
362 vma_set_policy(tmp, pol);
363 tmp->vm_mm = mm;
364 if (anon_vma_fork(tmp, mpnt))
365 goto fail_nomem_anon_vma_fork;
366 tmp->vm_flags &= ~VM_LOCKED;
367 tmp->vm_next = tmp->vm_prev = NULL;
368 file = tmp->vm_file;
369 if (file) {
370 struct inode *inode = file->f_path.dentry->d_inode;
371 struct address_space *mapping = file->f_mapping;
372
373 get_file(file);
374 if (tmp->vm_flags & VM_DENYWRITE)
375 atomic_dec(&inode->i_writecount);
376 mutex_lock(&mapping->i_mmap_mutex);
377 if (tmp->vm_flags & VM_SHARED)
378 mapping->i_mmap_writable++;
379 flush_dcache_mmap_lock(mapping);
380 /* insert tmp into the share list, just after mpnt */
381 vma_prio_tree_add(tmp, mpnt);
382 flush_dcache_mmap_unlock(mapping);
383 mutex_unlock(&mapping->i_mmap_mutex);
384 }
385
386 /*
387 * Clear hugetlb-related page reserves for children. This only
388 * affects MAP_PRIVATE mappings. Faults generated by the child
389 * are not guaranteed to succeed, even if read-only
390 */
391 if (is_vm_hugetlb_page(tmp))
392 reset_vma_resv_huge_pages(tmp);
393
394 /*
395 * Link in the new vma and copy the page table entries.
396 */
397 *pprev = tmp;
398 pprev = &tmp->vm_next;
399 tmp->vm_prev = prev;
400 prev = tmp;
401
402 __vma_link_rb(mm, tmp, rb_link, rb_parent);
403 rb_link = &tmp->vm_rb.rb_right;
404 rb_parent = &tmp->vm_rb;
405
406 mm->map_count++;
407 retval = copy_page_range(mm, oldmm, mpnt);
408
409 if (tmp->vm_ops && tmp->vm_ops->open)
410 tmp->vm_ops->open(tmp);
411
412 if (retval)
413 goto out;
414 }
415 /* a new mm has just been created */
416 arch_dup_mmap(oldmm, mm);
417 retval = 0;
418 out:
419 up_write(&mm->mmap_sem);
420 flush_tlb_mm(oldmm);
421 up_write(&oldmm->mmap_sem);
422 return retval;
423 fail_nomem_anon_vma_fork:
424 mpol_put(pol);
425 fail_nomem_policy:
426 kmem_cache_free(vm_area_cachep, tmp);
427 fail_nomem:
428 retval = -ENOMEM;
429 vm_unacct_memory(charge);
430 goto out;
431 }
432
433 static inline int mm_alloc_pgd(struct mm_struct *mm)
434 {
435 mm->pgd = pgd_alloc(mm);
436 if (unlikely(!mm->pgd))
437 return -ENOMEM;
438 return 0;
439 }
440
441 static inline void mm_free_pgd(struct mm_struct *mm)
442 {
443 pgd_free(mm, mm->pgd);
444 }
445 #else
446 #define dup_mmap(mm, oldmm) (0)
447 #define mm_alloc_pgd(mm) (0)
448 #define mm_free_pgd(mm)
449 #endif /* CONFIG_MMU */
450
451 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
452
453 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
454 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
455
456 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
457
458 static int __init coredump_filter_setup(char *s)
459 {
460 default_dump_filter =
461 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
462 MMF_DUMP_FILTER_MASK;
463 return 1;
464 }
465
466 __setup("coredump_filter=", coredump_filter_setup);
467
468 #include <linux/init_task.h>
469
470 static void mm_init_aio(struct mm_struct *mm)
471 {
472 #ifdef CONFIG_AIO
473 spin_lock_init(&mm->ioctx_lock);
474 INIT_HLIST_HEAD(&mm->ioctx_list);
475 #endif
476 }
477
478 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p)
479 {
480 atomic_set(&mm->mm_users, 1);
481 atomic_set(&mm->mm_count, 1);
482 init_rwsem(&mm->mmap_sem);
483 INIT_LIST_HEAD(&mm->mmlist);
484 mm->flags = (current->mm) ?
485 (current->mm->flags & MMF_INIT_MASK) : default_dump_filter;
486 mm->core_state = NULL;
487 mm->nr_ptes = 0;
488 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
489 spin_lock_init(&mm->page_table_lock);
490 mm->free_area_cache = TASK_UNMAPPED_BASE;
491 mm->cached_hole_size = ~0UL;
492 mm_init_aio(mm);
493 mm_init_owner(mm, p);
494
495 if (likely(!mm_alloc_pgd(mm))) {
496 mm->def_flags = 0;
497 mmu_notifier_mm_init(mm);
498 return mm;
499 }
500
501 free_mm(mm);
502 return NULL;
503 }
504
505 static void check_mm(struct mm_struct *mm)
506 {
507 int i;
508
509 for (i = 0; i < NR_MM_COUNTERS; i++) {
510 long x = atomic_long_read(&mm->rss_stat.count[i]);
511
512 if (unlikely(x))
513 printk(KERN_ALERT "BUG: Bad rss-counter state "
514 "mm:%p idx:%d val:%ld\n", mm, i, x);
515 }
516
517 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
518 VM_BUG_ON(mm->pmd_huge_pte);
519 #endif
520 }
521
522 /*
523 * Allocate and initialize an mm_struct.
524 */
525 struct mm_struct *mm_alloc(void)
526 {
527 struct mm_struct *mm;
528
529 mm = allocate_mm();
530 if (!mm)
531 return NULL;
532
533 memset(mm, 0, sizeof(*mm));
534 mm_init_cpumask(mm);
535 return mm_init(mm, current);
536 }
537
538 /*
539 * Called when the last reference to the mm
540 * is dropped: either by a lazy thread or by
541 * mmput. Free the page directory and the mm.
542 */
543 void __mmdrop(struct mm_struct *mm)
544 {
545 BUG_ON(mm == &init_mm);
546 mm_free_pgd(mm);
547 destroy_context(mm);
548 mmu_notifier_mm_destroy(mm);
549 check_mm(mm);
550 free_mm(mm);
551 }
552 EXPORT_SYMBOL_GPL(__mmdrop);
553
554 /*
555 * Decrement the use count and release all resources for an mm.
556 */
557 void mmput(struct mm_struct *mm)
558 {
559 might_sleep();
560
561 if (atomic_dec_and_test(&mm->mm_users)) {
562 exit_aio(mm);
563 ksm_exit(mm);
564 khugepaged_exit(mm); /* must run before exit_mmap */
565 exit_mmap(mm);
566 set_mm_exe_file(mm, NULL);
567 if (!list_empty(&mm->mmlist)) {
568 spin_lock(&mmlist_lock);
569 list_del(&mm->mmlist);
570 spin_unlock(&mmlist_lock);
571 }
572 put_swap_token(mm);
573 if (mm->binfmt)
574 module_put(mm->binfmt->module);
575 mmdrop(mm);
576 }
577 }
578 EXPORT_SYMBOL_GPL(mmput);
579
580 /*
581 * We added or removed a vma mapping the executable. The vmas are only mapped
582 * during exec and are not mapped with the mmap system call.
583 * Callers must hold down_write() on the mm's mmap_sem for these
584 */
585 void added_exe_file_vma(struct mm_struct *mm)
586 {
587 mm->num_exe_file_vmas++;
588 }
589
590 void removed_exe_file_vma(struct mm_struct *mm)
591 {
592 mm->num_exe_file_vmas--;
593 if ((mm->num_exe_file_vmas == 0) && mm->exe_file) {
594 fput(mm->exe_file);
595 mm->exe_file = NULL;
596 }
597
598 }
599
600 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
601 {
602 if (new_exe_file)
603 get_file(new_exe_file);
604 if (mm->exe_file)
605 fput(mm->exe_file);
606 mm->exe_file = new_exe_file;
607 mm->num_exe_file_vmas = 0;
608 }
609
610 struct file *get_mm_exe_file(struct mm_struct *mm)
611 {
612 struct file *exe_file;
613
614 /* We need mmap_sem to protect against races with removal of
615 * VM_EXECUTABLE vmas */
616 down_read(&mm->mmap_sem);
617 exe_file = mm->exe_file;
618 if (exe_file)
619 get_file(exe_file);
620 up_read(&mm->mmap_sem);
621 return exe_file;
622 }
623
624 static void dup_mm_exe_file(struct mm_struct *oldmm, struct mm_struct *newmm)
625 {
626 /* It's safe to write the exe_file pointer without exe_file_lock because
627 * this is called during fork when the task is not yet in /proc */
628 newmm->exe_file = get_mm_exe_file(oldmm);
629 }
630
631 /**
632 * get_task_mm - acquire a reference to the task's mm
633 *
634 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
635 * this kernel workthread has transiently adopted a user mm with use_mm,
636 * to do its AIO) is not set and if so returns a reference to it, after
637 * bumping up the use count. User must release the mm via mmput()
638 * after use. Typically used by /proc and ptrace.
639 */
640 struct mm_struct *get_task_mm(struct task_struct *task)
641 {
642 struct mm_struct *mm;
643
644 task_lock(task);
645 mm = task->mm;
646 if (mm) {
647 if (task->flags & PF_KTHREAD)
648 mm = NULL;
649 else
650 atomic_inc(&mm->mm_users);
651 }
652 task_unlock(task);
653 return mm;
654 }
655 EXPORT_SYMBOL_GPL(get_task_mm);
656
657 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
658 {
659 struct mm_struct *mm;
660 int err;
661
662 err = mutex_lock_killable(&task->signal->cred_guard_mutex);
663 if (err)
664 return ERR_PTR(err);
665
666 mm = get_task_mm(task);
667 if (mm && mm != current->mm &&
668 !ptrace_may_access(task, mode)) {
669 mmput(mm);
670 mm = ERR_PTR(-EACCES);
671 }
672 mutex_unlock(&task->signal->cred_guard_mutex);
673
674 return mm;
675 }
676
677 static void complete_vfork_done(struct task_struct *tsk)
678 {
679 struct completion *vfork;
680
681 task_lock(tsk);
682 vfork = tsk->vfork_done;
683 if (likely(vfork)) {
684 tsk->vfork_done = NULL;
685 complete(vfork);
686 }
687 task_unlock(tsk);
688 }
689
690 static int wait_for_vfork_done(struct task_struct *child,
691 struct completion *vfork)
692 {
693 int killed;
694
695 freezer_do_not_count();
696 killed = wait_for_completion_killable(vfork);
697 freezer_count();
698
699 if (killed) {
700 task_lock(child);
701 child->vfork_done = NULL;
702 task_unlock(child);
703 }
704
705 put_task_struct(child);
706 return killed;
707 }
708
709 /* Please note the differences between mmput and mm_release.
710 * mmput is called whenever we stop holding onto a mm_struct,
711 * error success whatever.
712 *
713 * mm_release is called after a mm_struct has been removed
714 * from the current process.
715 *
716 * This difference is important for error handling, when we
717 * only half set up a mm_struct for a new process and need to restore
718 * the old one. Because we mmput the new mm_struct before
719 * restoring the old one. . .
720 * Eric Biederman 10 January 1998
721 */
722 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
723 {
724 /* Get rid of any futexes when releasing the mm */
725 #ifdef CONFIG_FUTEX
726 if (unlikely(tsk->robust_list)) {
727 exit_robust_list(tsk);
728 tsk->robust_list = NULL;
729 }
730 #ifdef CONFIG_COMPAT
731 if (unlikely(tsk->compat_robust_list)) {
732 compat_exit_robust_list(tsk);
733 tsk->compat_robust_list = NULL;
734 }
735 #endif
736 if (unlikely(!list_empty(&tsk->pi_state_list)))
737 exit_pi_state_list(tsk);
738 #endif
739
740 /* Get rid of any cached register state */
741 deactivate_mm(tsk, mm);
742
743 if (tsk->vfork_done)
744 complete_vfork_done(tsk);
745
746 /*
747 * If we're exiting normally, clear a user-space tid field if
748 * requested. We leave this alone when dying by signal, to leave
749 * the value intact in a core dump, and to save the unnecessary
750 * trouble, say, a killed vfork parent shouldn't touch this mm.
751 * Userland only wants this done for a sys_exit.
752 */
753 if (tsk->clear_child_tid) {
754 if (!(tsk->flags & PF_SIGNALED) &&
755 atomic_read(&mm->mm_users) > 1) {
756 /*
757 * We don't check the error code - if userspace has
758 * not set up a proper pointer then tough luck.
759 */
760 put_user(0, tsk->clear_child_tid);
761 sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
762 1, NULL, NULL, 0);
763 }
764 tsk->clear_child_tid = NULL;
765 }
766 }
767
768 /*
769 * Allocate a new mm structure and copy contents from the
770 * mm structure of the passed in task structure.
771 */
772 struct mm_struct *dup_mm(struct task_struct *tsk)
773 {
774 struct mm_struct *mm, *oldmm = current->mm;
775 int err;
776
777 if (!oldmm)
778 return NULL;
779
780 mm = allocate_mm();
781 if (!mm)
782 goto fail_nomem;
783
784 memcpy(mm, oldmm, sizeof(*mm));
785 mm_init_cpumask(mm);
786
787 /* Initializing for Swap token stuff */
788 mm->token_priority = 0;
789 mm->last_interval = 0;
790
791 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
792 mm->pmd_huge_pte = NULL;
793 #endif
794
795 if (!mm_init(mm, tsk))
796 goto fail_nomem;
797
798 if (init_new_context(tsk, mm))
799 goto fail_nocontext;
800
801 dup_mm_exe_file(oldmm, mm);
802
803 err = dup_mmap(mm, oldmm);
804 if (err)
805 goto free_pt;
806
807 mm->hiwater_rss = get_mm_rss(mm);
808 mm->hiwater_vm = mm->total_vm;
809
810 if (mm->binfmt && !try_module_get(mm->binfmt->module))
811 goto free_pt;
812
813 return mm;
814
815 free_pt:
816 /* don't put binfmt in mmput, we haven't got module yet */
817 mm->binfmt = NULL;
818 mmput(mm);
819
820 fail_nomem:
821 return NULL;
822
823 fail_nocontext:
824 /*
825 * If init_new_context() failed, we cannot use mmput() to free the mm
826 * because it calls destroy_context()
827 */
828 mm_free_pgd(mm);
829 free_mm(mm);
830 return NULL;
831 }
832
833 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
834 {
835 struct mm_struct *mm, *oldmm;
836 int retval;
837
838 tsk->min_flt = tsk->maj_flt = 0;
839 tsk->nvcsw = tsk->nivcsw = 0;
840 #ifdef CONFIG_DETECT_HUNG_TASK
841 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
842 #endif
843
844 tsk->mm = NULL;
845 tsk->active_mm = NULL;
846
847 /*
848 * Are we cloning a kernel thread?
849 *
850 * We need to steal a active VM for that..
851 */
852 oldmm = current->mm;
853 if (!oldmm)
854 return 0;
855
856 if (clone_flags & CLONE_VM) {
857 atomic_inc(&oldmm->mm_users);
858 mm = oldmm;
859 goto good_mm;
860 }
861
862 retval = -ENOMEM;
863 mm = dup_mm(tsk);
864 if (!mm)
865 goto fail_nomem;
866
867 good_mm:
868 /* Initializing for Swap token stuff */
869 mm->token_priority = 0;
870 mm->last_interval = 0;
871
872 tsk->mm = mm;
873 tsk->active_mm = mm;
874 return 0;
875
876 fail_nomem:
877 return retval;
878 }
879
880 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
881 {
882 struct fs_struct *fs = current->fs;
883 if (clone_flags & CLONE_FS) {
884 /* tsk->fs is already what we want */
885 spin_lock(&fs->lock);
886 if (fs->in_exec) {
887 spin_unlock(&fs->lock);
888 return -EAGAIN;
889 }
890 fs->users++;
891 spin_unlock(&fs->lock);
892 return 0;
893 }
894 tsk->fs = copy_fs_struct(fs);
895 if (!tsk->fs)
896 return -ENOMEM;
897 return 0;
898 }
899
900 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
901 {
902 struct files_struct *oldf, *newf;
903 int error = 0;
904
905 /*
906 * A background process may not have any files ...
907 */
908 oldf = current->files;
909 if (!oldf)
910 goto out;
911
912 if (clone_flags & CLONE_FILES) {
913 atomic_inc(&oldf->count);
914 goto out;
915 }
916
917 newf = dup_fd(oldf, &error);
918 if (!newf)
919 goto out;
920
921 tsk->files = newf;
922 error = 0;
923 out:
924 return error;
925 }
926
927 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
928 {
929 #ifdef CONFIG_BLOCK
930 struct io_context *ioc = current->io_context;
931 struct io_context *new_ioc;
932
933 if (!ioc)
934 return 0;
935 /*
936 * Share io context with parent, if CLONE_IO is set
937 */
938 if (clone_flags & CLONE_IO) {
939 tsk->io_context = ioc_task_link(ioc);
940 if (unlikely(!tsk->io_context))
941 return -ENOMEM;
942 } else if (ioprio_valid(ioc->ioprio)) {
943 new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
944 if (unlikely(!new_ioc))
945 return -ENOMEM;
946
947 new_ioc->ioprio = ioc->ioprio;
948 put_io_context(new_ioc);
949 }
950 #endif
951 return 0;
952 }
953
954 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
955 {
956 struct sighand_struct *sig;
957
958 if (clone_flags & CLONE_SIGHAND) {
959 atomic_inc(&current->sighand->count);
960 return 0;
961 }
962 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
963 rcu_assign_pointer(tsk->sighand, sig);
964 if (!sig)
965 return -ENOMEM;
966 atomic_set(&sig->count, 1);
967 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
968 return 0;
969 }
970
971 void __cleanup_sighand(struct sighand_struct *sighand)
972 {
973 if (atomic_dec_and_test(&sighand->count)) {
974 signalfd_cleanup(sighand);
975 kmem_cache_free(sighand_cachep, sighand);
976 }
977 }
978
979
980 /*
981 * Initialize POSIX timer handling for a thread group.
982 */
983 static void posix_cpu_timers_init_group(struct signal_struct *sig)
984 {
985 unsigned long cpu_limit;
986
987 /* Thread group counters. */
988 thread_group_cputime_init(sig);
989
990 cpu_limit = ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
991 if (cpu_limit != RLIM_INFINITY) {
992 sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit);
993 sig->cputimer.running = 1;
994 }
995
996 /* The timer lists. */
997 INIT_LIST_HEAD(&sig->cpu_timers[0]);
998 INIT_LIST_HEAD(&sig->cpu_timers[1]);
999 INIT_LIST_HEAD(&sig->cpu_timers[2]);
1000 }
1001
1002 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1003 {
1004 struct signal_struct *sig;
1005
1006 if (clone_flags & CLONE_THREAD)
1007 return 0;
1008
1009 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1010 tsk->signal = sig;
1011 if (!sig)
1012 return -ENOMEM;
1013
1014 sig->nr_threads = 1;
1015 atomic_set(&sig->live, 1);
1016 atomic_set(&sig->sigcnt, 1);
1017 init_waitqueue_head(&sig->wait_chldexit);
1018 if (clone_flags & CLONE_NEWPID)
1019 sig->flags |= SIGNAL_UNKILLABLE;
1020 sig->curr_target = tsk;
1021 init_sigpending(&sig->shared_pending);
1022 INIT_LIST_HEAD(&sig->posix_timers);
1023
1024 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1025 sig->real_timer.function = it_real_fn;
1026
1027 task_lock(current->group_leader);
1028 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1029 task_unlock(current->group_leader);
1030
1031 posix_cpu_timers_init_group(sig);
1032
1033 tty_audit_fork(sig);
1034 sched_autogroup_fork(sig);
1035
1036 #ifdef CONFIG_CGROUPS
1037 init_rwsem(&sig->group_rwsem);
1038 #endif
1039
1040 sig->oom_adj = current->signal->oom_adj;
1041 sig->oom_score_adj = current->signal->oom_score_adj;
1042 sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1043
1044 sig->has_child_subreaper = current->signal->has_child_subreaper ||
1045 current->signal->is_child_subreaper;
1046
1047 mutex_init(&sig->cred_guard_mutex);
1048
1049 return 0;
1050 }
1051
1052 static void copy_flags(unsigned long clone_flags, struct task_struct *p)
1053 {
1054 unsigned long new_flags = p->flags;
1055
1056 new_flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER);
1057 new_flags |= PF_FORKNOEXEC;
1058 p->flags = new_flags;
1059 }
1060
1061 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1062 {
1063 current->clear_child_tid = tidptr;
1064
1065 return task_pid_vnr(current);
1066 }
1067
1068 static void rt_mutex_init_task(struct task_struct *p)
1069 {
1070 raw_spin_lock_init(&p->pi_lock);
1071 #ifdef CONFIG_RT_MUTEXES
1072 plist_head_init(&p->pi_waiters);
1073 p->pi_blocked_on = NULL;
1074 #endif
1075 }
1076
1077 #ifdef CONFIG_MM_OWNER
1078 void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
1079 {
1080 mm->owner = p;
1081 }
1082 #endif /* CONFIG_MM_OWNER */
1083
1084 /*
1085 * Initialize POSIX timer handling for a single task.
1086 */
1087 static void posix_cpu_timers_init(struct task_struct *tsk)
1088 {
1089 tsk->cputime_expires.prof_exp = 0;
1090 tsk->cputime_expires.virt_exp = 0;
1091 tsk->cputime_expires.sched_exp = 0;
1092 INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1093 INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1094 INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1095 }
1096
1097 /*
1098 * This creates a new process as a copy of the old one,
1099 * but does not actually start it yet.
1100 *
1101 * It copies the registers, and all the appropriate
1102 * parts of the process environment (as per the clone
1103 * flags). The actual kick-off is left to the caller.
1104 */
1105 static struct task_struct *copy_process(unsigned long clone_flags,
1106 unsigned long stack_start,
1107 struct pt_regs *regs,
1108 unsigned long stack_size,
1109 int __user *child_tidptr,
1110 struct pid *pid,
1111 int trace)
1112 {
1113 int retval;
1114 struct task_struct *p;
1115 int cgroup_callbacks_done = 0;
1116
1117 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1118 return ERR_PTR(-EINVAL);
1119
1120 /*
1121 * Thread groups must share signals as well, and detached threads
1122 * can only be started up within the thread group.
1123 */
1124 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1125 return ERR_PTR(-EINVAL);
1126
1127 /*
1128 * Shared signal handlers imply shared VM. By way of the above,
1129 * thread groups also imply shared VM. Blocking this case allows
1130 * for various simplifications in other code.
1131 */
1132 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1133 return ERR_PTR(-EINVAL);
1134
1135 /*
1136 * Siblings of global init remain as zombies on exit since they are
1137 * not reaped by their parent (swapper). To solve this and to avoid
1138 * multi-rooted process trees, prevent global and container-inits
1139 * from creating siblings.
1140 */
1141 if ((clone_flags & CLONE_PARENT) &&
1142 current->signal->flags & SIGNAL_UNKILLABLE)
1143 return ERR_PTR(-EINVAL);
1144
1145 retval = security_task_create(clone_flags);
1146 if (retval)
1147 goto fork_out;
1148
1149 retval = -ENOMEM;
1150 p = dup_task_struct(current);
1151 if (!p)
1152 goto fork_out;
1153
1154 ftrace_graph_init_task(p);
1155
1156 rt_mutex_init_task(p);
1157
1158 #ifdef CONFIG_PROVE_LOCKING
1159 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1160 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1161 #endif
1162 retval = -EAGAIN;
1163 if (atomic_read(&p->real_cred->user->processes) >=
1164 task_rlimit(p, RLIMIT_NPROC)) {
1165 if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
1166 p->real_cred->user != INIT_USER)
1167 goto bad_fork_free;
1168 }
1169 current->flags &= ~PF_NPROC_EXCEEDED;
1170
1171 retval = copy_creds(p, clone_flags);
1172 if (retval < 0)
1173 goto bad_fork_free;
1174
1175 /*
1176 * If multiple threads are within copy_process(), then this check
1177 * triggers too late. This doesn't hurt, the check is only there
1178 * to stop root fork bombs.
1179 */
1180 retval = -EAGAIN;
1181 if (nr_threads >= max_threads)
1182 goto bad_fork_cleanup_count;
1183
1184 if (!try_module_get(task_thread_info(p)->exec_domain->module))
1185 goto bad_fork_cleanup_count;
1186
1187 p->did_exec = 0;
1188 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
1189 copy_flags(clone_flags, p);
1190 INIT_LIST_HEAD(&p->children);
1191 INIT_LIST_HEAD(&p->sibling);
1192 rcu_copy_process(p);
1193 p->vfork_done = NULL;
1194 spin_lock_init(&p->alloc_lock);
1195
1196 init_sigpending(&p->pending);
1197
1198 p->utime = p->stime = p->gtime = 0;
1199 p->utimescaled = p->stimescaled = 0;
1200 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
1201 p->prev_utime = p->prev_stime = 0;
1202 #endif
1203 #if defined(SPLIT_RSS_COUNTING)
1204 memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1205 #endif
1206
1207 p->default_timer_slack_ns = current->timer_slack_ns;
1208
1209 task_io_accounting_init(&p->ioac);
1210 acct_clear_integrals(p);
1211
1212 posix_cpu_timers_init(p);
1213
1214 do_posix_clock_monotonic_gettime(&p->start_time);
1215 p->real_start_time = p->start_time;
1216 monotonic_to_bootbased(&p->real_start_time);
1217 p->io_context = NULL;
1218 p->audit_context = NULL;
1219 if (clone_flags & CLONE_THREAD)
1220 threadgroup_change_begin(current);
1221 cgroup_fork(p);
1222 #ifdef CONFIG_NUMA
1223 p->mempolicy = mpol_dup(p->mempolicy);
1224 if (IS_ERR(p->mempolicy)) {
1225 retval = PTR_ERR(p->mempolicy);
1226 p->mempolicy = NULL;
1227 goto bad_fork_cleanup_cgroup;
1228 }
1229 mpol_fix_fork_child_flag(p);
1230 #endif
1231 #ifdef CONFIG_CPUSETS
1232 p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1233 p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1234 seqcount_init(&p->mems_allowed_seq);
1235 #endif
1236 #ifdef CONFIG_TRACE_IRQFLAGS
1237 p->irq_events = 0;
1238 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1239 p->hardirqs_enabled = 1;
1240 #else
1241 p->hardirqs_enabled = 0;
1242 #endif
1243 p->hardirq_enable_ip = 0;
1244 p->hardirq_enable_event = 0;
1245 p->hardirq_disable_ip = _THIS_IP_;
1246 p->hardirq_disable_event = 0;
1247 p->softirqs_enabled = 1;
1248 p->softirq_enable_ip = _THIS_IP_;
1249 p->softirq_enable_event = 0;
1250 p->softirq_disable_ip = 0;
1251 p->softirq_disable_event = 0;
1252 p->hardirq_context = 0;
1253 p->softirq_context = 0;
1254 #endif
1255 #ifdef CONFIG_LOCKDEP
1256 p->lockdep_depth = 0; /* no locks held yet */
1257 p->curr_chain_key = 0;
1258 p->lockdep_recursion = 0;
1259 #endif
1260
1261 #ifdef CONFIG_DEBUG_MUTEXES
1262 p->blocked_on = NULL; /* not blocked yet */
1263 #endif
1264 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
1265 p->memcg_batch.do_batch = 0;
1266 p->memcg_batch.memcg = NULL;
1267 #endif
1268
1269 /* Perform scheduler related setup. Assign this task to a CPU. */
1270 sched_fork(p);
1271
1272 retval = perf_event_init_task(p);
1273 if (retval)
1274 goto bad_fork_cleanup_policy;
1275 retval = audit_alloc(p);
1276 if (retval)
1277 goto bad_fork_cleanup_policy;
1278 /* copy all the process information */
1279 retval = copy_semundo(clone_flags, p);
1280 if (retval)
1281 goto bad_fork_cleanup_audit;
1282 retval = copy_files(clone_flags, p);
1283 if (retval)
1284 goto bad_fork_cleanup_semundo;
1285 retval = copy_fs(clone_flags, p);
1286 if (retval)
1287 goto bad_fork_cleanup_files;
1288 retval = copy_sighand(clone_flags, p);
1289 if (retval)
1290 goto bad_fork_cleanup_fs;
1291 retval = copy_signal(clone_flags, p);
1292 if (retval)
1293 goto bad_fork_cleanup_sighand;
1294 retval = copy_mm(clone_flags, p);
1295 if (retval)
1296 goto bad_fork_cleanup_signal;
1297 retval = copy_namespaces(clone_flags, p);
1298 if (retval)
1299 goto bad_fork_cleanup_mm;
1300 retval = copy_io(clone_flags, p);
1301 if (retval)
1302 goto bad_fork_cleanup_namespaces;
1303 retval = copy_thread(clone_flags, stack_start, stack_size, p, regs);
1304 if (retval)
1305 goto bad_fork_cleanup_io;
1306
1307 if (pid != &init_struct_pid) {
1308 retval = -ENOMEM;
1309 pid = alloc_pid(p->nsproxy->pid_ns);
1310 if (!pid)
1311 goto bad_fork_cleanup_io;
1312 }
1313
1314 p->pid = pid_nr(pid);
1315 p->tgid = p->pid;
1316 if (clone_flags & CLONE_THREAD)
1317 p->tgid = current->tgid;
1318
1319 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1320 /*
1321 * Clear TID on mm_release()?
1322 */
1323 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
1324 #ifdef CONFIG_BLOCK
1325 p->plug = NULL;
1326 #endif
1327 #ifdef CONFIG_FUTEX
1328 p->robust_list = NULL;
1329 #ifdef CONFIG_COMPAT
1330 p->compat_robust_list = NULL;
1331 #endif
1332 INIT_LIST_HEAD(&p->pi_state_list);
1333 p->pi_state_cache = NULL;
1334 #endif
1335 /*
1336 * sigaltstack should be cleared when sharing the same VM
1337 */
1338 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1339 p->sas_ss_sp = p->sas_ss_size = 0;
1340
1341 /*
1342 * Syscall tracing and stepping should be turned off in the
1343 * child regardless of CLONE_PTRACE.
1344 */
1345 user_disable_single_step(p);
1346 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1347 #ifdef TIF_SYSCALL_EMU
1348 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1349 #endif
1350 clear_all_latency_tracing(p);
1351
1352 /* ok, now we should be set up.. */
1353 if (clone_flags & CLONE_THREAD)
1354 p->exit_signal = -1;
1355 else if (clone_flags & CLONE_PARENT)
1356 p->exit_signal = current->group_leader->exit_signal;
1357 else
1358 p->exit_signal = (clone_flags & CSIGNAL);
1359
1360 p->pdeath_signal = 0;
1361 p->exit_state = 0;
1362
1363 p->nr_dirtied = 0;
1364 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
1365 p->dirty_paused_when = 0;
1366
1367 /*
1368 * Ok, make it visible to the rest of the system.
1369 * We dont wake it up yet.
1370 */
1371 p->group_leader = p;
1372 INIT_LIST_HEAD(&p->thread_group);
1373
1374 /* Now that the task is set up, run cgroup callbacks if
1375 * necessary. We need to run them before the task is visible
1376 * on the tasklist. */
1377 cgroup_fork_callbacks(p);
1378 cgroup_callbacks_done = 1;
1379
1380 /* Need tasklist lock for parent etc handling! */
1381 write_lock_irq(&tasklist_lock);
1382
1383 /* CLONE_PARENT re-uses the old parent */
1384 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1385 p->real_parent = current->real_parent;
1386 p->parent_exec_id = current->parent_exec_id;
1387 } else {
1388 p->real_parent = current;
1389 p->parent_exec_id = current->self_exec_id;
1390 }
1391
1392 spin_lock(&current->sighand->siglock);
1393
1394 /*
1395 * Process group and session signals need to be delivered to just the
1396 * parent before the fork or both the parent and the child after the
1397 * fork. Restart if a signal comes in before we add the new process to
1398 * it's process group.
1399 * A fatal signal pending means that current will exit, so the new
1400 * thread can't slip out of an OOM kill (or normal SIGKILL).
1401 */
1402 recalc_sigpending();
1403 if (signal_pending(current)) {
1404 spin_unlock(&current->sighand->siglock);
1405 write_unlock_irq(&tasklist_lock);
1406 retval = -ERESTARTNOINTR;
1407 goto bad_fork_free_pid;
1408 }
1409
1410 if (clone_flags & CLONE_THREAD) {
1411 current->signal->nr_threads++;
1412 atomic_inc(&current->signal->live);
1413 atomic_inc(&current->signal->sigcnt);
1414 p->group_leader = current->group_leader;
1415 list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
1416 }
1417
1418 if (likely(p->pid)) {
1419 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
1420
1421 if (thread_group_leader(p)) {
1422 if (is_child_reaper(pid))
1423 p->nsproxy->pid_ns->child_reaper = p;
1424
1425 p->signal->leader_pid = pid;
1426 p->signal->tty = tty_kref_get(current->signal->tty);
1427 attach_pid(p, PIDTYPE_PGID, task_pgrp(current));
1428 attach_pid(p, PIDTYPE_SID, task_session(current));
1429 list_add_tail(&p->sibling, &p->real_parent->children);
1430 list_add_tail_rcu(&p->tasks, &init_task.tasks);
1431 __this_cpu_inc(process_counts);
1432 }
1433 attach_pid(p, PIDTYPE_PID, pid);
1434 nr_threads++;
1435 }
1436
1437 total_forks++;
1438 spin_unlock(&current->sighand->siglock);
1439 write_unlock_irq(&tasklist_lock);
1440 proc_fork_connector(p);
1441 cgroup_post_fork(p);
1442 if (clone_flags & CLONE_THREAD)
1443 threadgroup_change_end(current);
1444 perf_event_fork(p);
1445
1446 trace_task_newtask(p, clone_flags);
1447
1448 return p;
1449
1450 bad_fork_free_pid:
1451 if (pid != &init_struct_pid)
1452 free_pid(pid);
1453 bad_fork_cleanup_io:
1454 if (p->io_context)
1455 exit_io_context(p);
1456 bad_fork_cleanup_namespaces:
1457 exit_task_namespaces(p);
1458 bad_fork_cleanup_mm:
1459 if (p->mm)
1460 mmput(p->mm);
1461 bad_fork_cleanup_signal:
1462 if (!(clone_flags & CLONE_THREAD))
1463 free_signal_struct(p->signal);
1464 bad_fork_cleanup_sighand:
1465 __cleanup_sighand(p->sighand);
1466 bad_fork_cleanup_fs:
1467 exit_fs(p); /* blocking */
1468 bad_fork_cleanup_files:
1469 exit_files(p); /* blocking */
1470 bad_fork_cleanup_semundo:
1471 exit_sem(p);
1472 bad_fork_cleanup_audit:
1473 audit_free(p);
1474 bad_fork_cleanup_policy:
1475 perf_event_free_task(p);
1476 #ifdef CONFIG_NUMA
1477 mpol_put(p->mempolicy);
1478 bad_fork_cleanup_cgroup:
1479 #endif
1480 if (clone_flags & CLONE_THREAD)
1481 threadgroup_change_end(current);
1482 cgroup_exit(p, cgroup_callbacks_done);
1483 delayacct_tsk_free(p);
1484 module_put(task_thread_info(p)->exec_domain->module);
1485 bad_fork_cleanup_count:
1486 atomic_dec(&p->cred->user->processes);
1487 exit_creds(p);
1488 bad_fork_free:
1489 free_task(p);
1490 fork_out:
1491 return ERR_PTR(retval);
1492 }
1493
1494 noinline struct pt_regs * __cpuinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
1495 {
1496 memset(regs, 0, sizeof(struct pt_regs));
1497 return regs;
1498 }
1499
1500 static inline void init_idle_pids(struct pid_link *links)
1501 {
1502 enum pid_type type;
1503
1504 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1505 INIT_HLIST_NODE(&links[type].node); /* not really needed */
1506 links[type].pid = &init_struct_pid;
1507 }
1508 }
1509
1510 struct task_struct * __cpuinit fork_idle(int cpu)
1511 {
1512 struct task_struct *task;
1513 struct pt_regs regs;
1514
1515 task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL,
1516 &init_struct_pid, 0);
1517 if (!IS_ERR(task)) {
1518 init_idle_pids(task->pids);
1519 init_idle(task, cpu);
1520 }
1521
1522 return task;
1523 }
1524
1525 /*
1526 * Ok, this is the main fork-routine.
1527 *
1528 * It copies the process, and if successful kick-starts
1529 * it and waits for it to finish using the VM if required.
1530 */
1531 long do_fork(unsigned long clone_flags,
1532 unsigned long stack_start,
1533 struct pt_regs *regs,
1534 unsigned long stack_size,
1535 int __user *parent_tidptr,
1536 int __user *child_tidptr)
1537 {
1538 struct task_struct *p;
1539 int trace = 0;
1540 long nr;
1541
1542 /*
1543 * Do some preliminary argument and permissions checking before we
1544 * actually start allocating stuff
1545 */
1546 if (clone_flags & CLONE_NEWUSER) {
1547 if (clone_flags & CLONE_THREAD)
1548 return -EINVAL;
1549 /* hopefully this check will go away when userns support is
1550 * complete
1551 */
1552 if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SETUID) ||
1553 !capable(CAP_SETGID))
1554 return -EPERM;
1555 }
1556
1557 /*
1558 * Determine whether and which event to report to ptracer. When
1559 * called from kernel_thread or CLONE_UNTRACED is explicitly
1560 * requested, no event is reported; otherwise, report if the event
1561 * for the type of forking is enabled.
1562 */
1563 if (likely(user_mode(regs)) && !(clone_flags & CLONE_UNTRACED)) {
1564 if (clone_flags & CLONE_VFORK)
1565 trace = PTRACE_EVENT_VFORK;
1566 else if ((clone_flags & CSIGNAL) != SIGCHLD)
1567 trace = PTRACE_EVENT_CLONE;
1568 else
1569 trace = PTRACE_EVENT_FORK;
1570
1571 if (likely(!ptrace_event_enabled(current, trace)))
1572 trace = 0;
1573 }
1574
1575 p = copy_process(clone_flags, stack_start, regs, stack_size,
1576 child_tidptr, NULL, trace);
1577 /*
1578 * Do this prior waking up the new thread - the thread pointer
1579 * might get invalid after that point, if the thread exits quickly.
1580 */
1581 if (!IS_ERR(p)) {
1582 struct completion vfork;
1583
1584 trace_sched_process_fork(current, p);
1585
1586 nr = task_pid_vnr(p);
1587
1588 if (clone_flags & CLONE_PARENT_SETTID)
1589 put_user(nr, parent_tidptr);
1590
1591 if (clone_flags & CLONE_VFORK) {
1592 p->vfork_done = &vfork;
1593 init_completion(&vfork);
1594 get_task_struct(p);
1595 }
1596
1597 wake_up_new_task(p);
1598
1599 /* forking complete and child started to run, tell ptracer */
1600 if (unlikely(trace))
1601 ptrace_event(trace, nr);
1602
1603 if (clone_flags & CLONE_VFORK) {
1604 if (!wait_for_vfork_done(p, &vfork))
1605 ptrace_event(PTRACE_EVENT_VFORK_DONE, nr);
1606 }
1607 } else {
1608 nr = PTR_ERR(p);
1609 }
1610 return nr;
1611 }
1612
1613 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1614 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1615 #endif
1616
1617 static void sighand_ctor(void *data)
1618 {
1619 struct sighand_struct *sighand = data;
1620
1621 spin_lock_init(&sighand->siglock);
1622 init_waitqueue_head(&sighand->signalfd_wqh);
1623 }
1624
1625 void __init proc_caches_init(void)
1626 {
1627 sighand_cachep = kmem_cache_create("sighand_cache",
1628 sizeof(struct sighand_struct), 0,
1629 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
1630 SLAB_NOTRACK, sighand_ctor);
1631 signal_cachep = kmem_cache_create("signal_cache",
1632 sizeof(struct signal_struct), 0,
1633 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1634 files_cachep = kmem_cache_create("files_cache",
1635 sizeof(struct files_struct), 0,
1636 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1637 fs_cachep = kmem_cache_create("fs_cache",
1638 sizeof(struct fs_struct), 0,
1639 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1640 /*
1641 * FIXME! The "sizeof(struct mm_struct)" currently includes the
1642 * whole struct cpumask for the OFFSTACK case. We could change
1643 * this to *only* allocate as much of it as required by the
1644 * maximum number of CPU's we can ever have. The cpumask_allocation
1645 * is at the end of the structure, exactly for that reason.
1646 */
1647 mm_cachep = kmem_cache_create("mm_struct",
1648 sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1649 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1650 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC);
1651 mmap_init();
1652 nsproxy_cache_init();
1653 }
1654
1655 /*
1656 * Check constraints on flags passed to the unshare system call.
1657 */
1658 static int check_unshare_flags(unsigned long unshare_flags)
1659 {
1660 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1661 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1662 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET))
1663 return -EINVAL;
1664 /*
1665 * Not implemented, but pretend it works if there is nothing to
1666 * unshare. Note that unsharing CLONE_THREAD or CLONE_SIGHAND
1667 * needs to unshare vm.
1668 */
1669 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
1670 /* FIXME: get_task_mm() increments ->mm_users */
1671 if (atomic_read(&current->mm->mm_users) > 1)
1672 return -EINVAL;
1673 }
1674
1675 return 0;
1676 }
1677
1678 /*
1679 * Unshare the filesystem structure if it is being shared
1680 */
1681 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1682 {
1683 struct fs_struct *fs = current->fs;
1684
1685 if (!(unshare_flags & CLONE_FS) || !fs)
1686 return 0;
1687
1688 /* don't need lock here; in the worst case we'll do useless copy */
1689 if (fs->users == 1)
1690 return 0;
1691
1692 *new_fsp = copy_fs_struct(fs);
1693 if (!*new_fsp)
1694 return -ENOMEM;
1695
1696 return 0;
1697 }
1698
1699 /*
1700 * Unshare file descriptor table if it is being shared
1701 */
1702 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1703 {
1704 struct files_struct *fd = current->files;
1705 int error = 0;
1706
1707 if ((unshare_flags & CLONE_FILES) &&
1708 (fd && atomic_read(&fd->count) > 1)) {
1709 *new_fdp = dup_fd(fd, &error);
1710 if (!*new_fdp)
1711 return error;
1712 }
1713
1714 return 0;
1715 }
1716
1717 /*
1718 * unshare allows a process to 'unshare' part of the process
1719 * context which was originally shared using clone. copy_*
1720 * functions used by do_fork() cannot be used here directly
1721 * because they modify an inactive task_struct that is being
1722 * constructed. Here we are modifying the current, active,
1723 * task_struct.
1724 */
1725 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
1726 {
1727 struct fs_struct *fs, *new_fs = NULL;
1728 struct files_struct *fd, *new_fd = NULL;
1729 struct nsproxy *new_nsproxy = NULL;
1730 int do_sysvsem = 0;
1731 int err;
1732
1733 err = check_unshare_flags(unshare_flags);
1734 if (err)
1735 goto bad_unshare_out;
1736
1737 /*
1738 * If unsharing namespace, must also unshare filesystem information.
1739 */
1740 if (unshare_flags & CLONE_NEWNS)
1741 unshare_flags |= CLONE_FS;
1742 /*
1743 * CLONE_NEWIPC must also detach from the undolist: after switching
1744 * to a new ipc namespace, the semaphore arrays from the old
1745 * namespace are unreachable.
1746 */
1747 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
1748 do_sysvsem = 1;
1749 err = unshare_fs(unshare_flags, &new_fs);
1750 if (err)
1751 goto bad_unshare_out;
1752 err = unshare_fd(unshare_flags, &new_fd);
1753 if (err)
1754 goto bad_unshare_cleanup_fs;
1755 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy, new_fs);
1756 if (err)
1757 goto bad_unshare_cleanup_fd;
1758
1759 if (new_fs || new_fd || do_sysvsem || new_nsproxy) {
1760 if (do_sysvsem) {
1761 /*
1762 * CLONE_SYSVSEM is equivalent to sys_exit().
1763 */
1764 exit_sem(current);
1765 }
1766
1767 if (new_nsproxy) {
1768 switch_task_namespaces(current, new_nsproxy);
1769 new_nsproxy = NULL;
1770 }
1771
1772 task_lock(current);
1773
1774 if (new_fs) {
1775 fs = current->fs;
1776 spin_lock(&fs->lock);
1777 current->fs = new_fs;
1778 if (--fs->users)
1779 new_fs = NULL;
1780 else
1781 new_fs = fs;
1782 spin_unlock(&fs->lock);
1783 }
1784
1785 if (new_fd) {
1786 fd = current->files;
1787 current->files = new_fd;
1788 new_fd = fd;
1789 }
1790
1791 task_unlock(current);
1792 }
1793
1794 if (new_nsproxy)
1795 put_nsproxy(new_nsproxy);
1796
1797 bad_unshare_cleanup_fd:
1798 if (new_fd)
1799 put_files_struct(new_fd);
1800
1801 bad_unshare_cleanup_fs:
1802 if (new_fs)
1803 free_fs_struct(new_fs);
1804
1805 bad_unshare_out:
1806 return err;
1807 }
1808
1809 /*
1810 * Helper to unshare the files of the current task.
1811 * We don't want to expose copy_files internals to
1812 * the exec layer of the kernel.
1813 */
1814
1815 int unshare_files(struct files_struct **displaced)
1816 {
1817 struct task_struct *task = current;
1818 struct files_struct *copy = NULL;
1819 int error;
1820
1821 error = unshare_fd(CLONE_FILES, &copy);
1822 if (error || !copy) {
1823 *displaced = NULL;
1824 return error;
1825 }
1826 *displaced = task->files;
1827 task_lock(task);
1828 task->files = copy;
1829 task_unlock(task);
1830 return 0;
1831 }
This page took 0.102338 seconds and 5 git commands to generate.