Merge branch 'mce-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/bp/bp
[deliverable/linux.git] / kernel / fork.c
1 /*
2 * linux/kernel/fork.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * 'fork.c' contains the help-routines for the 'fork' system call
9 * (see also entry.S and others).
10 * Fork is rather simple, once you get the hang of it, but the memory
11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12 */
13
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/mempolicy.h>
22 #include <linux/sem.h>
23 #include <linux/file.h>
24 #include <linux/fdtable.h>
25 #include <linux/iocontext.h>
26 #include <linux/key.h>
27 #include <linux/binfmts.h>
28 #include <linux/mman.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/fs.h>
31 #include <linux/nsproxy.h>
32 #include <linux/capability.h>
33 #include <linux/cpu.h>
34 #include <linux/cgroup.h>
35 #include <linux/security.h>
36 #include <linux/hugetlb.h>
37 #include <linux/swap.h>
38 #include <linux/syscalls.h>
39 #include <linux/jiffies.h>
40 #include <linux/tracehook.h>
41 #include <linux/futex.h>
42 #include <linux/compat.h>
43 #include <linux/task_io_accounting_ops.h>
44 #include <linux/rcupdate.h>
45 #include <linux/ptrace.h>
46 #include <linux/mount.h>
47 #include <linux/audit.h>
48 #include <linux/memcontrol.h>
49 #include <linux/ftrace.h>
50 #include <linux/profile.h>
51 #include <linux/rmap.h>
52 #include <linux/ksm.h>
53 #include <linux/acct.h>
54 #include <linux/tsacct_kern.h>
55 #include <linux/cn_proc.h>
56 #include <linux/freezer.h>
57 #include <linux/delayacct.h>
58 #include <linux/taskstats_kern.h>
59 #include <linux/random.h>
60 #include <linux/tty.h>
61 #include <linux/proc_fs.h>
62 #include <linux/blkdev.h>
63 #include <linux/fs_struct.h>
64 #include <linux/magic.h>
65 #include <linux/perf_event.h>
66 #include <linux/posix-timers.h>
67 #include <linux/user-return-notifier.h>
68 #include <linux/oom.h>
69
70 #include <asm/pgtable.h>
71 #include <asm/pgalloc.h>
72 #include <asm/uaccess.h>
73 #include <asm/mmu_context.h>
74 #include <asm/cacheflush.h>
75 #include <asm/tlbflush.h>
76
77 #include <trace/events/sched.h>
78
79 /*
80 * Protected counters by write_lock_irq(&tasklist_lock)
81 */
82 unsigned long total_forks; /* Handle normal Linux uptimes. */
83 int nr_threads; /* The idle threads do not count.. */
84
85 int max_threads; /* tunable limit on nr_threads */
86
87 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
88
89 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
90
91 #ifdef CONFIG_PROVE_RCU
92 int lockdep_tasklist_lock_is_held(void)
93 {
94 return lockdep_is_held(&tasklist_lock);
95 }
96 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
97 #endif /* #ifdef CONFIG_PROVE_RCU */
98
99 int nr_processes(void)
100 {
101 int cpu;
102 int total = 0;
103
104 for_each_possible_cpu(cpu)
105 total += per_cpu(process_counts, cpu);
106
107 return total;
108 }
109
110 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
111 # define alloc_task_struct() kmem_cache_alloc(task_struct_cachep, GFP_KERNEL)
112 # define free_task_struct(tsk) kmem_cache_free(task_struct_cachep, (tsk))
113 static struct kmem_cache *task_struct_cachep;
114 #endif
115
116 #ifndef __HAVE_ARCH_THREAD_INFO_ALLOCATOR
117 static inline struct thread_info *alloc_thread_info(struct task_struct *tsk)
118 {
119 #ifdef CONFIG_DEBUG_STACK_USAGE
120 gfp_t mask = GFP_KERNEL | __GFP_ZERO;
121 #else
122 gfp_t mask = GFP_KERNEL;
123 #endif
124 return (struct thread_info *)__get_free_pages(mask, THREAD_SIZE_ORDER);
125 }
126
127 static inline void free_thread_info(struct thread_info *ti)
128 {
129 free_pages((unsigned long)ti, THREAD_SIZE_ORDER);
130 }
131 #endif
132
133 /* SLAB cache for signal_struct structures (tsk->signal) */
134 static struct kmem_cache *signal_cachep;
135
136 /* SLAB cache for sighand_struct structures (tsk->sighand) */
137 struct kmem_cache *sighand_cachep;
138
139 /* SLAB cache for files_struct structures (tsk->files) */
140 struct kmem_cache *files_cachep;
141
142 /* SLAB cache for fs_struct structures (tsk->fs) */
143 struct kmem_cache *fs_cachep;
144
145 /* SLAB cache for vm_area_struct structures */
146 struct kmem_cache *vm_area_cachep;
147
148 /* SLAB cache for mm_struct structures (tsk->mm) */
149 static struct kmem_cache *mm_cachep;
150
151 static void account_kernel_stack(struct thread_info *ti, int account)
152 {
153 struct zone *zone = page_zone(virt_to_page(ti));
154
155 mod_zone_page_state(zone, NR_KERNEL_STACK, account);
156 }
157
158 void free_task(struct task_struct *tsk)
159 {
160 prop_local_destroy_single(&tsk->dirties);
161 account_kernel_stack(tsk->stack, -1);
162 free_thread_info(tsk->stack);
163 rt_mutex_debug_task_free(tsk);
164 ftrace_graph_exit_task(tsk);
165 free_task_struct(tsk);
166 }
167 EXPORT_SYMBOL(free_task);
168
169 static inline void free_signal_struct(struct signal_struct *sig)
170 {
171 taskstats_tgid_free(sig);
172 kmem_cache_free(signal_cachep, sig);
173 }
174
175 static inline void put_signal_struct(struct signal_struct *sig)
176 {
177 if (atomic_dec_and_test(&sig->sigcnt)) {
178 sched_autogroup_exit(sig);
179 free_signal_struct(sig);
180 }
181 }
182
183 void __put_task_struct(struct task_struct *tsk)
184 {
185 WARN_ON(!tsk->exit_state);
186 WARN_ON(atomic_read(&tsk->usage));
187 WARN_ON(tsk == current);
188
189 exit_creds(tsk);
190 delayacct_tsk_free(tsk);
191 put_signal_struct(tsk->signal);
192
193 if (!profile_handoff_task(tsk))
194 free_task(tsk);
195 }
196
197 /*
198 * macro override instead of weak attribute alias, to workaround
199 * gcc 4.1.0 and 4.1.1 bugs with weak attribute and empty functions.
200 */
201 #ifndef arch_task_cache_init
202 #define arch_task_cache_init()
203 #endif
204
205 void __init fork_init(unsigned long mempages)
206 {
207 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
208 #ifndef ARCH_MIN_TASKALIGN
209 #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
210 #endif
211 /* create a slab on which task_structs can be allocated */
212 task_struct_cachep =
213 kmem_cache_create("task_struct", sizeof(struct task_struct),
214 ARCH_MIN_TASKALIGN, SLAB_PANIC | SLAB_NOTRACK, NULL);
215 #endif
216
217 /* do the arch specific task caches init */
218 arch_task_cache_init();
219
220 /*
221 * The default maximum number of threads is set to a safe
222 * value: the thread structures can take up at most half
223 * of memory.
224 */
225 max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
226
227 /*
228 * we need to allow at least 20 threads to boot a system
229 */
230 if(max_threads < 20)
231 max_threads = 20;
232
233 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
234 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
235 init_task.signal->rlim[RLIMIT_SIGPENDING] =
236 init_task.signal->rlim[RLIMIT_NPROC];
237 }
238
239 int __attribute__((weak)) arch_dup_task_struct(struct task_struct *dst,
240 struct task_struct *src)
241 {
242 *dst = *src;
243 return 0;
244 }
245
246 static struct task_struct *dup_task_struct(struct task_struct *orig)
247 {
248 struct task_struct *tsk;
249 struct thread_info *ti;
250 unsigned long *stackend;
251
252 int err;
253
254 prepare_to_copy(orig);
255
256 tsk = alloc_task_struct();
257 if (!tsk)
258 return NULL;
259
260 ti = alloc_thread_info(tsk);
261 if (!ti) {
262 free_task_struct(tsk);
263 return NULL;
264 }
265
266 err = arch_dup_task_struct(tsk, orig);
267 if (err)
268 goto out;
269
270 tsk->stack = ti;
271
272 err = prop_local_init_single(&tsk->dirties);
273 if (err)
274 goto out;
275
276 setup_thread_stack(tsk, orig);
277 clear_user_return_notifier(tsk);
278 clear_tsk_need_resched(tsk);
279 stackend = end_of_stack(tsk);
280 *stackend = STACK_END_MAGIC; /* for overflow detection */
281
282 #ifdef CONFIG_CC_STACKPROTECTOR
283 tsk->stack_canary = get_random_int();
284 #endif
285
286 /* One for us, one for whoever does the "release_task()" (usually parent) */
287 atomic_set(&tsk->usage,2);
288 atomic_set(&tsk->fs_excl, 0);
289 #ifdef CONFIG_BLK_DEV_IO_TRACE
290 tsk->btrace_seq = 0;
291 #endif
292 tsk->splice_pipe = NULL;
293
294 account_kernel_stack(ti, 1);
295
296 return tsk;
297
298 out:
299 free_thread_info(ti);
300 free_task_struct(tsk);
301 return NULL;
302 }
303
304 #ifdef CONFIG_MMU
305 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
306 {
307 struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
308 struct rb_node **rb_link, *rb_parent;
309 int retval;
310 unsigned long charge;
311 struct mempolicy *pol;
312
313 down_write(&oldmm->mmap_sem);
314 flush_cache_dup_mm(oldmm);
315 /*
316 * Not linked in yet - no deadlock potential:
317 */
318 down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
319
320 mm->locked_vm = 0;
321 mm->mmap = NULL;
322 mm->mmap_cache = NULL;
323 mm->free_area_cache = oldmm->mmap_base;
324 mm->cached_hole_size = ~0UL;
325 mm->map_count = 0;
326 cpumask_clear(mm_cpumask(mm));
327 mm->mm_rb = RB_ROOT;
328 rb_link = &mm->mm_rb.rb_node;
329 rb_parent = NULL;
330 pprev = &mm->mmap;
331 retval = ksm_fork(mm, oldmm);
332 if (retval)
333 goto out;
334
335 prev = NULL;
336 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
337 struct file *file;
338
339 if (mpnt->vm_flags & VM_DONTCOPY) {
340 long pages = vma_pages(mpnt);
341 mm->total_vm -= pages;
342 vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
343 -pages);
344 continue;
345 }
346 charge = 0;
347 if (mpnt->vm_flags & VM_ACCOUNT) {
348 unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
349 if (security_vm_enough_memory(len))
350 goto fail_nomem;
351 charge = len;
352 }
353 tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
354 if (!tmp)
355 goto fail_nomem;
356 *tmp = *mpnt;
357 INIT_LIST_HEAD(&tmp->anon_vma_chain);
358 pol = mpol_dup(vma_policy(mpnt));
359 retval = PTR_ERR(pol);
360 if (IS_ERR(pol))
361 goto fail_nomem_policy;
362 vma_set_policy(tmp, pol);
363 tmp->vm_mm = mm;
364 if (anon_vma_fork(tmp, mpnt))
365 goto fail_nomem_anon_vma_fork;
366 tmp->vm_flags &= ~VM_LOCKED;
367 tmp->vm_next = tmp->vm_prev = NULL;
368 file = tmp->vm_file;
369 if (file) {
370 struct inode *inode = file->f_path.dentry->d_inode;
371 struct address_space *mapping = file->f_mapping;
372
373 get_file(file);
374 if (tmp->vm_flags & VM_DENYWRITE)
375 atomic_dec(&inode->i_writecount);
376 spin_lock(&mapping->i_mmap_lock);
377 if (tmp->vm_flags & VM_SHARED)
378 mapping->i_mmap_writable++;
379 tmp->vm_truncate_count = mpnt->vm_truncate_count;
380 flush_dcache_mmap_lock(mapping);
381 /* insert tmp into the share list, just after mpnt */
382 vma_prio_tree_add(tmp, mpnt);
383 flush_dcache_mmap_unlock(mapping);
384 spin_unlock(&mapping->i_mmap_lock);
385 }
386
387 /*
388 * Clear hugetlb-related page reserves for children. This only
389 * affects MAP_PRIVATE mappings. Faults generated by the child
390 * are not guaranteed to succeed, even if read-only
391 */
392 if (is_vm_hugetlb_page(tmp))
393 reset_vma_resv_huge_pages(tmp);
394
395 /*
396 * Link in the new vma and copy the page table entries.
397 */
398 *pprev = tmp;
399 pprev = &tmp->vm_next;
400 tmp->vm_prev = prev;
401 prev = tmp;
402
403 __vma_link_rb(mm, tmp, rb_link, rb_parent);
404 rb_link = &tmp->vm_rb.rb_right;
405 rb_parent = &tmp->vm_rb;
406
407 mm->map_count++;
408 retval = copy_page_range(mm, oldmm, mpnt);
409
410 if (tmp->vm_ops && tmp->vm_ops->open)
411 tmp->vm_ops->open(tmp);
412
413 if (retval)
414 goto out;
415 }
416 /* a new mm has just been created */
417 arch_dup_mmap(oldmm, mm);
418 retval = 0;
419 out:
420 up_write(&mm->mmap_sem);
421 flush_tlb_mm(oldmm);
422 up_write(&oldmm->mmap_sem);
423 return retval;
424 fail_nomem_anon_vma_fork:
425 mpol_put(pol);
426 fail_nomem_policy:
427 kmem_cache_free(vm_area_cachep, tmp);
428 fail_nomem:
429 retval = -ENOMEM;
430 vm_unacct_memory(charge);
431 goto out;
432 }
433
434 static inline int mm_alloc_pgd(struct mm_struct * mm)
435 {
436 mm->pgd = pgd_alloc(mm);
437 if (unlikely(!mm->pgd))
438 return -ENOMEM;
439 return 0;
440 }
441
442 static inline void mm_free_pgd(struct mm_struct * mm)
443 {
444 pgd_free(mm, mm->pgd);
445 }
446 #else
447 #define dup_mmap(mm, oldmm) (0)
448 #define mm_alloc_pgd(mm) (0)
449 #define mm_free_pgd(mm)
450 #endif /* CONFIG_MMU */
451
452 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
453
454 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
455 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
456
457 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
458
459 static int __init coredump_filter_setup(char *s)
460 {
461 default_dump_filter =
462 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
463 MMF_DUMP_FILTER_MASK;
464 return 1;
465 }
466
467 __setup("coredump_filter=", coredump_filter_setup);
468
469 #include <linux/init_task.h>
470
471 static void mm_init_aio(struct mm_struct *mm)
472 {
473 #ifdef CONFIG_AIO
474 spin_lock_init(&mm->ioctx_lock);
475 INIT_HLIST_HEAD(&mm->ioctx_list);
476 #endif
477 }
478
479 static struct mm_struct * mm_init(struct mm_struct * mm, struct task_struct *p)
480 {
481 atomic_set(&mm->mm_users, 1);
482 atomic_set(&mm->mm_count, 1);
483 init_rwsem(&mm->mmap_sem);
484 INIT_LIST_HEAD(&mm->mmlist);
485 mm->flags = (current->mm) ?
486 (current->mm->flags & MMF_INIT_MASK) : default_dump_filter;
487 mm->core_state = NULL;
488 mm->nr_ptes = 0;
489 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
490 spin_lock_init(&mm->page_table_lock);
491 mm->free_area_cache = TASK_UNMAPPED_BASE;
492 mm->cached_hole_size = ~0UL;
493 mm_init_aio(mm);
494 mm_init_owner(mm, p);
495 atomic_set(&mm->oom_disable_count, 0);
496
497 if (likely(!mm_alloc_pgd(mm))) {
498 mm->def_flags = 0;
499 mmu_notifier_mm_init(mm);
500 return mm;
501 }
502
503 free_mm(mm);
504 return NULL;
505 }
506
507 /*
508 * Allocate and initialize an mm_struct.
509 */
510 struct mm_struct * mm_alloc(void)
511 {
512 struct mm_struct * mm;
513
514 mm = allocate_mm();
515 if (mm) {
516 memset(mm, 0, sizeof(*mm));
517 mm = mm_init(mm, current);
518 }
519 return mm;
520 }
521
522 /*
523 * Called when the last reference to the mm
524 * is dropped: either by a lazy thread or by
525 * mmput. Free the page directory and the mm.
526 */
527 void __mmdrop(struct mm_struct *mm)
528 {
529 BUG_ON(mm == &init_mm);
530 mm_free_pgd(mm);
531 destroy_context(mm);
532 mmu_notifier_mm_destroy(mm);
533 free_mm(mm);
534 }
535 EXPORT_SYMBOL_GPL(__mmdrop);
536
537 /*
538 * Decrement the use count and release all resources for an mm.
539 */
540 void mmput(struct mm_struct *mm)
541 {
542 might_sleep();
543
544 if (atomic_dec_and_test(&mm->mm_users)) {
545 exit_aio(mm);
546 ksm_exit(mm);
547 exit_mmap(mm);
548 set_mm_exe_file(mm, NULL);
549 if (!list_empty(&mm->mmlist)) {
550 spin_lock(&mmlist_lock);
551 list_del(&mm->mmlist);
552 spin_unlock(&mmlist_lock);
553 }
554 put_swap_token(mm);
555 if (mm->binfmt)
556 module_put(mm->binfmt->module);
557 mmdrop(mm);
558 }
559 }
560 EXPORT_SYMBOL_GPL(mmput);
561
562 /**
563 * get_task_mm - acquire a reference to the task's mm
564 *
565 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
566 * this kernel workthread has transiently adopted a user mm with use_mm,
567 * to do its AIO) is not set and if so returns a reference to it, after
568 * bumping up the use count. User must release the mm via mmput()
569 * after use. Typically used by /proc and ptrace.
570 */
571 struct mm_struct *get_task_mm(struct task_struct *task)
572 {
573 struct mm_struct *mm;
574
575 task_lock(task);
576 mm = task->mm;
577 if (mm) {
578 if (task->flags & PF_KTHREAD)
579 mm = NULL;
580 else
581 atomic_inc(&mm->mm_users);
582 }
583 task_unlock(task);
584 return mm;
585 }
586 EXPORT_SYMBOL_GPL(get_task_mm);
587
588 /* Please note the differences between mmput and mm_release.
589 * mmput is called whenever we stop holding onto a mm_struct,
590 * error success whatever.
591 *
592 * mm_release is called after a mm_struct has been removed
593 * from the current process.
594 *
595 * This difference is important for error handling, when we
596 * only half set up a mm_struct for a new process and need to restore
597 * the old one. Because we mmput the new mm_struct before
598 * restoring the old one. . .
599 * Eric Biederman 10 January 1998
600 */
601 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
602 {
603 struct completion *vfork_done = tsk->vfork_done;
604
605 /* Get rid of any futexes when releasing the mm */
606 #ifdef CONFIG_FUTEX
607 if (unlikely(tsk->robust_list)) {
608 exit_robust_list(tsk);
609 tsk->robust_list = NULL;
610 }
611 #ifdef CONFIG_COMPAT
612 if (unlikely(tsk->compat_robust_list)) {
613 compat_exit_robust_list(tsk);
614 tsk->compat_robust_list = NULL;
615 }
616 #endif
617 if (unlikely(!list_empty(&tsk->pi_state_list)))
618 exit_pi_state_list(tsk);
619 #endif
620
621 /* Get rid of any cached register state */
622 deactivate_mm(tsk, mm);
623
624 /* notify parent sleeping on vfork() */
625 if (vfork_done) {
626 tsk->vfork_done = NULL;
627 complete(vfork_done);
628 }
629
630 /*
631 * If we're exiting normally, clear a user-space tid field if
632 * requested. We leave this alone when dying by signal, to leave
633 * the value intact in a core dump, and to save the unnecessary
634 * trouble otherwise. Userland only wants this done for a sys_exit.
635 */
636 if (tsk->clear_child_tid) {
637 if (!(tsk->flags & PF_SIGNALED) &&
638 atomic_read(&mm->mm_users) > 1) {
639 /*
640 * We don't check the error code - if userspace has
641 * not set up a proper pointer then tough luck.
642 */
643 put_user(0, tsk->clear_child_tid);
644 sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
645 1, NULL, NULL, 0);
646 }
647 tsk->clear_child_tid = NULL;
648 }
649 }
650
651 /*
652 * Allocate a new mm structure and copy contents from the
653 * mm structure of the passed in task structure.
654 */
655 struct mm_struct *dup_mm(struct task_struct *tsk)
656 {
657 struct mm_struct *mm, *oldmm = current->mm;
658 int err;
659
660 if (!oldmm)
661 return NULL;
662
663 mm = allocate_mm();
664 if (!mm)
665 goto fail_nomem;
666
667 memcpy(mm, oldmm, sizeof(*mm));
668
669 /* Initializing for Swap token stuff */
670 mm->token_priority = 0;
671 mm->last_interval = 0;
672
673 if (!mm_init(mm, tsk))
674 goto fail_nomem;
675
676 if (init_new_context(tsk, mm))
677 goto fail_nocontext;
678
679 dup_mm_exe_file(oldmm, mm);
680
681 err = dup_mmap(mm, oldmm);
682 if (err)
683 goto free_pt;
684
685 mm->hiwater_rss = get_mm_rss(mm);
686 mm->hiwater_vm = mm->total_vm;
687
688 if (mm->binfmt && !try_module_get(mm->binfmt->module))
689 goto free_pt;
690
691 return mm;
692
693 free_pt:
694 /* don't put binfmt in mmput, we haven't got module yet */
695 mm->binfmt = NULL;
696 mmput(mm);
697
698 fail_nomem:
699 return NULL;
700
701 fail_nocontext:
702 /*
703 * If init_new_context() failed, we cannot use mmput() to free the mm
704 * because it calls destroy_context()
705 */
706 mm_free_pgd(mm);
707 free_mm(mm);
708 return NULL;
709 }
710
711 static int copy_mm(unsigned long clone_flags, struct task_struct * tsk)
712 {
713 struct mm_struct * mm, *oldmm;
714 int retval;
715
716 tsk->min_flt = tsk->maj_flt = 0;
717 tsk->nvcsw = tsk->nivcsw = 0;
718 #ifdef CONFIG_DETECT_HUNG_TASK
719 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
720 #endif
721
722 tsk->mm = NULL;
723 tsk->active_mm = NULL;
724
725 /*
726 * Are we cloning a kernel thread?
727 *
728 * We need to steal a active VM for that..
729 */
730 oldmm = current->mm;
731 if (!oldmm)
732 return 0;
733
734 if (clone_flags & CLONE_VM) {
735 atomic_inc(&oldmm->mm_users);
736 mm = oldmm;
737 goto good_mm;
738 }
739
740 retval = -ENOMEM;
741 mm = dup_mm(tsk);
742 if (!mm)
743 goto fail_nomem;
744
745 good_mm:
746 /* Initializing for Swap token stuff */
747 mm->token_priority = 0;
748 mm->last_interval = 0;
749 if (tsk->signal->oom_score_adj == OOM_SCORE_ADJ_MIN)
750 atomic_inc(&mm->oom_disable_count);
751
752 tsk->mm = mm;
753 tsk->active_mm = mm;
754 return 0;
755
756 fail_nomem:
757 return retval;
758 }
759
760 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
761 {
762 struct fs_struct *fs = current->fs;
763 if (clone_flags & CLONE_FS) {
764 /* tsk->fs is already what we want */
765 spin_lock(&fs->lock);
766 if (fs->in_exec) {
767 spin_unlock(&fs->lock);
768 return -EAGAIN;
769 }
770 fs->users++;
771 spin_unlock(&fs->lock);
772 return 0;
773 }
774 tsk->fs = copy_fs_struct(fs);
775 if (!tsk->fs)
776 return -ENOMEM;
777 return 0;
778 }
779
780 static int copy_files(unsigned long clone_flags, struct task_struct * tsk)
781 {
782 struct files_struct *oldf, *newf;
783 int error = 0;
784
785 /*
786 * A background process may not have any files ...
787 */
788 oldf = current->files;
789 if (!oldf)
790 goto out;
791
792 if (clone_flags & CLONE_FILES) {
793 atomic_inc(&oldf->count);
794 goto out;
795 }
796
797 newf = dup_fd(oldf, &error);
798 if (!newf)
799 goto out;
800
801 tsk->files = newf;
802 error = 0;
803 out:
804 return error;
805 }
806
807 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
808 {
809 #ifdef CONFIG_BLOCK
810 struct io_context *ioc = current->io_context;
811
812 if (!ioc)
813 return 0;
814 /*
815 * Share io context with parent, if CLONE_IO is set
816 */
817 if (clone_flags & CLONE_IO) {
818 tsk->io_context = ioc_task_link(ioc);
819 if (unlikely(!tsk->io_context))
820 return -ENOMEM;
821 } else if (ioprio_valid(ioc->ioprio)) {
822 tsk->io_context = alloc_io_context(GFP_KERNEL, -1);
823 if (unlikely(!tsk->io_context))
824 return -ENOMEM;
825
826 tsk->io_context->ioprio = ioc->ioprio;
827 }
828 #endif
829 return 0;
830 }
831
832 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
833 {
834 struct sighand_struct *sig;
835
836 if (clone_flags & CLONE_SIGHAND) {
837 atomic_inc(&current->sighand->count);
838 return 0;
839 }
840 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
841 rcu_assign_pointer(tsk->sighand, sig);
842 if (!sig)
843 return -ENOMEM;
844 atomic_set(&sig->count, 1);
845 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
846 return 0;
847 }
848
849 void __cleanup_sighand(struct sighand_struct *sighand)
850 {
851 if (atomic_dec_and_test(&sighand->count))
852 kmem_cache_free(sighand_cachep, sighand);
853 }
854
855
856 /*
857 * Initialize POSIX timer handling for a thread group.
858 */
859 static void posix_cpu_timers_init_group(struct signal_struct *sig)
860 {
861 unsigned long cpu_limit;
862
863 /* Thread group counters. */
864 thread_group_cputime_init(sig);
865
866 cpu_limit = ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
867 if (cpu_limit != RLIM_INFINITY) {
868 sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit);
869 sig->cputimer.running = 1;
870 }
871
872 /* The timer lists. */
873 INIT_LIST_HEAD(&sig->cpu_timers[0]);
874 INIT_LIST_HEAD(&sig->cpu_timers[1]);
875 INIT_LIST_HEAD(&sig->cpu_timers[2]);
876 }
877
878 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
879 {
880 struct signal_struct *sig;
881
882 if (clone_flags & CLONE_THREAD)
883 return 0;
884
885 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
886 tsk->signal = sig;
887 if (!sig)
888 return -ENOMEM;
889
890 sig->nr_threads = 1;
891 atomic_set(&sig->live, 1);
892 atomic_set(&sig->sigcnt, 1);
893 init_waitqueue_head(&sig->wait_chldexit);
894 if (clone_flags & CLONE_NEWPID)
895 sig->flags |= SIGNAL_UNKILLABLE;
896 sig->curr_target = tsk;
897 init_sigpending(&sig->shared_pending);
898 INIT_LIST_HEAD(&sig->posix_timers);
899
900 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
901 sig->real_timer.function = it_real_fn;
902
903 task_lock(current->group_leader);
904 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
905 task_unlock(current->group_leader);
906
907 posix_cpu_timers_init_group(sig);
908
909 tty_audit_fork(sig);
910 sched_autogroup_fork(sig);
911
912 sig->oom_adj = current->signal->oom_adj;
913 sig->oom_score_adj = current->signal->oom_score_adj;
914
915 mutex_init(&sig->cred_guard_mutex);
916
917 return 0;
918 }
919
920 static void copy_flags(unsigned long clone_flags, struct task_struct *p)
921 {
922 unsigned long new_flags = p->flags;
923
924 new_flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER);
925 new_flags |= PF_FORKNOEXEC;
926 new_flags |= PF_STARTING;
927 p->flags = new_flags;
928 clear_freeze_flag(p);
929 }
930
931 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
932 {
933 current->clear_child_tid = tidptr;
934
935 return task_pid_vnr(current);
936 }
937
938 static void rt_mutex_init_task(struct task_struct *p)
939 {
940 raw_spin_lock_init(&p->pi_lock);
941 #ifdef CONFIG_RT_MUTEXES
942 plist_head_init_raw(&p->pi_waiters, &p->pi_lock);
943 p->pi_blocked_on = NULL;
944 #endif
945 }
946
947 #ifdef CONFIG_MM_OWNER
948 void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
949 {
950 mm->owner = p;
951 }
952 #endif /* CONFIG_MM_OWNER */
953
954 /*
955 * Initialize POSIX timer handling for a single task.
956 */
957 static void posix_cpu_timers_init(struct task_struct *tsk)
958 {
959 tsk->cputime_expires.prof_exp = cputime_zero;
960 tsk->cputime_expires.virt_exp = cputime_zero;
961 tsk->cputime_expires.sched_exp = 0;
962 INIT_LIST_HEAD(&tsk->cpu_timers[0]);
963 INIT_LIST_HEAD(&tsk->cpu_timers[1]);
964 INIT_LIST_HEAD(&tsk->cpu_timers[2]);
965 }
966
967 /*
968 * This creates a new process as a copy of the old one,
969 * but does not actually start it yet.
970 *
971 * It copies the registers, and all the appropriate
972 * parts of the process environment (as per the clone
973 * flags). The actual kick-off is left to the caller.
974 */
975 static struct task_struct *copy_process(unsigned long clone_flags,
976 unsigned long stack_start,
977 struct pt_regs *regs,
978 unsigned long stack_size,
979 int __user *child_tidptr,
980 struct pid *pid,
981 int trace)
982 {
983 int retval;
984 struct task_struct *p;
985 int cgroup_callbacks_done = 0;
986
987 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
988 return ERR_PTR(-EINVAL);
989
990 /*
991 * Thread groups must share signals as well, and detached threads
992 * can only be started up within the thread group.
993 */
994 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
995 return ERR_PTR(-EINVAL);
996
997 /*
998 * Shared signal handlers imply shared VM. By way of the above,
999 * thread groups also imply shared VM. Blocking this case allows
1000 * for various simplifications in other code.
1001 */
1002 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1003 return ERR_PTR(-EINVAL);
1004
1005 /*
1006 * Siblings of global init remain as zombies on exit since they are
1007 * not reaped by their parent (swapper). To solve this and to avoid
1008 * multi-rooted process trees, prevent global and container-inits
1009 * from creating siblings.
1010 */
1011 if ((clone_flags & CLONE_PARENT) &&
1012 current->signal->flags & SIGNAL_UNKILLABLE)
1013 return ERR_PTR(-EINVAL);
1014
1015 retval = security_task_create(clone_flags);
1016 if (retval)
1017 goto fork_out;
1018
1019 retval = -ENOMEM;
1020 p = dup_task_struct(current);
1021 if (!p)
1022 goto fork_out;
1023
1024 ftrace_graph_init_task(p);
1025
1026 rt_mutex_init_task(p);
1027
1028 #ifdef CONFIG_PROVE_LOCKING
1029 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1030 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1031 #endif
1032 retval = -EAGAIN;
1033 if (atomic_read(&p->real_cred->user->processes) >=
1034 task_rlimit(p, RLIMIT_NPROC)) {
1035 if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
1036 p->real_cred->user != INIT_USER)
1037 goto bad_fork_free;
1038 }
1039
1040 retval = copy_creds(p, clone_flags);
1041 if (retval < 0)
1042 goto bad_fork_free;
1043
1044 /*
1045 * If multiple threads are within copy_process(), then this check
1046 * triggers too late. This doesn't hurt, the check is only there
1047 * to stop root fork bombs.
1048 */
1049 retval = -EAGAIN;
1050 if (nr_threads >= max_threads)
1051 goto bad_fork_cleanup_count;
1052
1053 if (!try_module_get(task_thread_info(p)->exec_domain->module))
1054 goto bad_fork_cleanup_count;
1055
1056 p->did_exec = 0;
1057 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
1058 copy_flags(clone_flags, p);
1059 INIT_LIST_HEAD(&p->children);
1060 INIT_LIST_HEAD(&p->sibling);
1061 rcu_copy_process(p);
1062 p->vfork_done = NULL;
1063 spin_lock_init(&p->alloc_lock);
1064
1065 init_sigpending(&p->pending);
1066
1067 p->utime = cputime_zero;
1068 p->stime = cputime_zero;
1069 p->gtime = cputime_zero;
1070 p->utimescaled = cputime_zero;
1071 p->stimescaled = cputime_zero;
1072 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
1073 p->prev_utime = cputime_zero;
1074 p->prev_stime = cputime_zero;
1075 #endif
1076 #if defined(SPLIT_RSS_COUNTING)
1077 memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1078 #endif
1079
1080 p->default_timer_slack_ns = current->timer_slack_ns;
1081
1082 task_io_accounting_init(&p->ioac);
1083 acct_clear_integrals(p);
1084
1085 posix_cpu_timers_init(p);
1086
1087 p->lock_depth = -1; /* -1 = no lock */
1088 do_posix_clock_monotonic_gettime(&p->start_time);
1089 p->real_start_time = p->start_time;
1090 monotonic_to_bootbased(&p->real_start_time);
1091 p->io_context = NULL;
1092 p->audit_context = NULL;
1093 cgroup_fork(p);
1094 #ifdef CONFIG_NUMA
1095 p->mempolicy = mpol_dup(p->mempolicy);
1096 if (IS_ERR(p->mempolicy)) {
1097 retval = PTR_ERR(p->mempolicy);
1098 p->mempolicy = NULL;
1099 goto bad_fork_cleanup_cgroup;
1100 }
1101 mpol_fix_fork_child_flag(p);
1102 #endif
1103 #ifdef CONFIG_TRACE_IRQFLAGS
1104 p->irq_events = 0;
1105 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1106 p->hardirqs_enabled = 1;
1107 #else
1108 p->hardirqs_enabled = 0;
1109 #endif
1110 p->hardirq_enable_ip = 0;
1111 p->hardirq_enable_event = 0;
1112 p->hardirq_disable_ip = _THIS_IP_;
1113 p->hardirq_disable_event = 0;
1114 p->softirqs_enabled = 1;
1115 p->softirq_enable_ip = _THIS_IP_;
1116 p->softirq_enable_event = 0;
1117 p->softirq_disable_ip = 0;
1118 p->softirq_disable_event = 0;
1119 p->hardirq_context = 0;
1120 p->softirq_context = 0;
1121 #endif
1122 #ifdef CONFIG_LOCKDEP
1123 p->lockdep_depth = 0; /* no locks held yet */
1124 p->curr_chain_key = 0;
1125 p->lockdep_recursion = 0;
1126 #endif
1127
1128 #ifdef CONFIG_DEBUG_MUTEXES
1129 p->blocked_on = NULL; /* not blocked yet */
1130 #endif
1131 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
1132 p->memcg_batch.do_batch = 0;
1133 p->memcg_batch.memcg = NULL;
1134 #endif
1135
1136 /* Perform scheduler related setup. Assign this task to a CPU. */
1137 sched_fork(p, clone_flags);
1138
1139 retval = perf_event_init_task(p);
1140 if (retval)
1141 goto bad_fork_cleanup_policy;
1142
1143 if ((retval = audit_alloc(p)))
1144 goto bad_fork_cleanup_policy;
1145 /* copy all the process information */
1146 if ((retval = copy_semundo(clone_flags, p)))
1147 goto bad_fork_cleanup_audit;
1148 if ((retval = copy_files(clone_flags, p)))
1149 goto bad_fork_cleanup_semundo;
1150 if ((retval = copy_fs(clone_flags, p)))
1151 goto bad_fork_cleanup_files;
1152 if ((retval = copy_sighand(clone_flags, p)))
1153 goto bad_fork_cleanup_fs;
1154 if ((retval = copy_signal(clone_flags, p)))
1155 goto bad_fork_cleanup_sighand;
1156 if ((retval = copy_mm(clone_flags, p)))
1157 goto bad_fork_cleanup_signal;
1158 if ((retval = copy_namespaces(clone_flags, p)))
1159 goto bad_fork_cleanup_mm;
1160 if ((retval = copy_io(clone_flags, p)))
1161 goto bad_fork_cleanup_namespaces;
1162 retval = copy_thread(clone_flags, stack_start, stack_size, p, regs);
1163 if (retval)
1164 goto bad_fork_cleanup_io;
1165
1166 if (pid != &init_struct_pid) {
1167 retval = -ENOMEM;
1168 pid = alloc_pid(p->nsproxy->pid_ns);
1169 if (!pid)
1170 goto bad_fork_cleanup_io;
1171
1172 if (clone_flags & CLONE_NEWPID) {
1173 retval = pid_ns_prepare_proc(p->nsproxy->pid_ns);
1174 if (retval < 0)
1175 goto bad_fork_free_pid;
1176 }
1177 }
1178
1179 p->pid = pid_nr(pid);
1180 p->tgid = p->pid;
1181 if (clone_flags & CLONE_THREAD)
1182 p->tgid = current->tgid;
1183
1184 if (current->nsproxy != p->nsproxy) {
1185 retval = ns_cgroup_clone(p, pid);
1186 if (retval)
1187 goto bad_fork_free_pid;
1188 }
1189
1190 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1191 /*
1192 * Clear TID on mm_release()?
1193 */
1194 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr: NULL;
1195 #ifdef CONFIG_FUTEX
1196 p->robust_list = NULL;
1197 #ifdef CONFIG_COMPAT
1198 p->compat_robust_list = NULL;
1199 #endif
1200 INIT_LIST_HEAD(&p->pi_state_list);
1201 p->pi_state_cache = NULL;
1202 #endif
1203 /*
1204 * sigaltstack should be cleared when sharing the same VM
1205 */
1206 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1207 p->sas_ss_sp = p->sas_ss_size = 0;
1208
1209 /*
1210 * Syscall tracing and stepping should be turned off in the
1211 * child regardless of CLONE_PTRACE.
1212 */
1213 user_disable_single_step(p);
1214 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1215 #ifdef TIF_SYSCALL_EMU
1216 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1217 #endif
1218 clear_all_latency_tracing(p);
1219
1220 /* ok, now we should be set up.. */
1221 p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL);
1222 p->pdeath_signal = 0;
1223 p->exit_state = 0;
1224
1225 /*
1226 * Ok, make it visible to the rest of the system.
1227 * We dont wake it up yet.
1228 */
1229 p->group_leader = p;
1230 INIT_LIST_HEAD(&p->thread_group);
1231
1232 /* Now that the task is set up, run cgroup callbacks if
1233 * necessary. We need to run them before the task is visible
1234 * on the tasklist. */
1235 cgroup_fork_callbacks(p);
1236 cgroup_callbacks_done = 1;
1237
1238 /* Need tasklist lock for parent etc handling! */
1239 write_lock_irq(&tasklist_lock);
1240
1241 /* CLONE_PARENT re-uses the old parent */
1242 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1243 p->real_parent = current->real_parent;
1244 p->parent_exec_id = current->parent_exec_id;
1245 } else {
1246 p->real_parent = current;
1247 p->parent_exec_id = current->self_exec_id;
1248 }
1249
1250 spin_lock(&current->sighand->siglock);
1251
1252 /*
1253 * Process group and session signals need to be delivered to just the
1254 * parent before the fork or both the parent and the child after the
1255 * fork. Restart if a signal comes in before we add the new process to
1256 * it's process group.
1257 * A fatal signal pending means that current will exit, so the new
1258 * thread can't slip out of an OOM kill (or normal SIGKILL).
1259 */
1260 recalc_sigpending();
1261 if (signal_pending(current)) {
1262 spin_unlock(&current->sighand->siglock);
1263 write_unlock_irq(&tasklist_lock);
1264 retval = -ERESTARTNOINTR;
1265 goto bad_fork_free_pid;
1266 }
1267
1268 if (clone_flags & CLONE_THREAD) {
1269 current->signal->nr_threads++;
1270 atomic_inc(&current->signal->live);
1271 atomic_inc(&current->signal->sigcnt);
1272 p->group_leader = current->group_leader;
1273 list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
1274 }
1275
1276 if (likely(p->pid)) {
1277 tracehook_finish_clone(p, clone_flags, trace);
1278
1279 if (thread_group_leader(p)) {
1280 if (clone_flags & CLONE_NEWPID)
1281 p->nsproxy->pid_ns->child_reaper = p;
1282
1283 p->signal->leader_pid = pid;
1284 p->signal->tty = tty_kref_get(current->signal->tty);
1285 attach_pid(p, PIDTYPE_PGID, task_pgrp(current));
1286 attach_pid(p, PIDTYPE_SID, task_session(current));
1287 list_add_tail(&p->sibling, &p->real_parent->children);
1288 list_add_tail_rcu(&p->tasks, &init_task.tasks);
1289 __get_cpu_var(process_counts)++;
1290 }
1291 attach_pid(p, PIDTYPE_PID, pid);
1292 nr_threads++;
1293 }
1294
1295 total_forks++;
1296 spin_unlock(&current->sighand->siglock);
1297 write_unlock_irq(&tasklist_lock);
1298 proc_fork_connector(p);
1299 cgroup_post_fork(p);
1300 perf_event_fork(p);
1301 return p;
1302
1303 bad_fork_free_pid:
1304 if (pid != &init_struct_pid)
1305 free_pid(pid);
1306 bad_fork_cleanup_io:
1307 if (p->io_context)
1308 exit_io_context(p);
1309 bad_fork_cleanup_namespaces:
1310 exit_task_namespaces(p);
1311 bad_fork_cleanup_mm:
1312 if (p->mm) {
1313 task_lock(p);
1314 if (p->signal->oom_score_adj == OOM_SCORE_ADJ_MIN)
1315 atomic_dec(&p->mm->oom_disable_count);
1316 task_unlock(p);
1317 mmput(p->mm);
1318 }
1319 bad_fork_cleanup_signal:
1320 if (!(clone_flags & CLONE_THREAD))
1321 put_signal_struct(p->signal);
1322 bad_fork_cleanup_sighand:
1323 __cleanup_sighand(p->sighand);
1324 bad_fork_cleanup_fs:
1325 exit_fs(p); /* blocking */
1326 bad_fork_cleanup_files:
1327 exit_files(p); /* blocking */
1328 bad_fork_cleanup_semundo:
1329 exit_sem(p);
1330 bad_fork_cleanup_audit:
1331 audit_free(p);
1332 bad_fork_cleanup_policy:
1333 perf_event_free_task(p);
1334 #ifdef CONFIG_NUMA
1335 mpol_put(p->mempolicy);
1336 bad_fork_cleanup_cgroup:
1337 #endif
1338 cgroup_exit(p, cgroup_callbacks_done);
1339 delayacct_tsk_free(p);
1340 module_put(task_thread_info(p)->exec_domain->module);
1341 bad_fork_cleanup_count:
1342 atomic_dec(&p->cred->user->processes);
1343 exit_creds(p);
1344 bad_fork_free:
1345 free_task(p);
1346 fork_out:
1347 return ERR_PTR(retval);
1348 }
1349
1350 noinline struct pt_regs * __cpuinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
1351 {
1352 memset(regs, 0, sizeof(struct pt_regs));
1353 return regs;
1354 }
1355
1356 static inline void init_idle_pids(struct pid_link *links)
1357 {
1358 enum pid_type type;
1359
1360 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1361 INIT_HLIST_NODE(&links[type].node); /* not really needed */
1362 links[type].pid = &init_struct_pid;
1363 }
1364 }
1365
1366 struct task_struct * __cpuinit fork_idle(int cpu)
1367 {
1368 struct task_struct *task;
1369 struct pt_regs regs;
1370
1371 task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL,
1372 &init_struct_pid, 0);
1373 if (!IS_ERR(task)) {
1374 init_idle_pids(task->pids);
1375 init_idle(task, cpu);
1376 }
1377
1378 return task;
1379 }
1380
1381 /*
1382 * Ok, this is the main fork-routine.
1383 *
1384 * It copies the process, and if successful kick-starts
1385 * it and waits for it to finish using the VM if required.
1386 */
1387 long do_fork(unsigned long clone_flags,
1388 unsigned long stack_start,
1389 struct pt_regs *regs,
1390 unsigned long stack_size,
1391 int __user *parent_tidptr,
1392 int __user *child_tidptr)
1393 {
1394 struct task_struct *p;
1395 int trace = 0;
1396 long nr;
1397
1398 /*
1399 * Do some preliminary argument and permissions checking before we
1400 * actually start allocating stuff
1401 */
1402 if (clone_flags & CLONE_NEWUSER) {
1403 if (clone_flags & CLONE_THREAD)
1404 return -EINVAL;
1405 /* hopefully this check will go away when userns support is
1406 * complete
1407 */
1408 if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SETUID) ||
1409 !capable(CAP_SETGID))
1410 return -EPERM;
1411 }
1412
1413 /*
1414 * We hope to recycle these flags after 2.6.26
1415 */
1416 if (unlikely(clone_flags & CLONE_STOPPED)) {
1417 static int __read_mostly count = 100;
1418
1419 if (count > 0 && printk_ratelimit()) {
1420 char comm[TASK_COMM_LEN];
1421
1422 count--;
1423 printk(KERN_INFO "fork(): process `%s' used deprecated "
1424 "clone flags 0x%lx\n",
1425 get_task_comm(comm, current),
1426 clone_flags & CLONE_STOPPED);
1427 }
1428 }
1429
1430 /*
1431 * When called from kernel_thread, don't do user tracing stuff.
1432 */
1433 if (likely(user_mode(regs)))
1434 trace = tracehook_prepare_clone(clone_flags);
1435
1436 p = copy_process(clone_flags, stack_start, regs, stack_size,
1437 child_tidptr, NULL, trace);
1438 /*
1439 * Do this prior waking up the new thread - the thread pointer
1440 * might get invalid after that point, if the thread exits quickly.
1441 */
1442 if (!IS_ERR(p)) {
1443 struct completion vfork;
1444
1445 trace_sched_process_fork(current, p);
1446
1447 nr = task_pid_vnr(p);
1448
1449 if (clone_flags & CLONE_PARENT_SETTID)
1450 put_user(nr, parent_tidptr);
1451
1452 if (clone_flags & CLONE_VFORK) {
1453 p->vfork_done = &vfork;
1454 init_completion(&vfork);
1455 }
1456
1457 audit_finish_fork(p);
1458 tracehook_report_clone(regs, clone_flags, nr, p);
1459
1460 /*
1461 * We set PF_STARTING at creation in case tracing wants to
1462 * use this to distinguish a fully live task from one that
1463 * hasn't gotten to tracehook_report_clone() yet. Now we
1464 * clear it and set the child going.
1465 */
1466 p->flags &= ~PF_STARTING;
1467
1468 if (unlikely(clone_flags & CLONE_STOPPED)) {
1469 /*
1470 * We'll start up with an immediate SIGSTOP.
1471 */
1472 sigaddset(&p->pending.signal, SIGSTOP);
1473 set_tsk_thread_flag(p, TIF_SIGPENDING);
1474 __set_task_state(p, TASK_STOPPED);
1475 } else {
1476 wake_up_new_task(p, clone_flags);
1477 }
1478
1479 tracehook_report_clone_complete(trace, regs,
1480 clone_flags, nr, p);
1481
1482 if (clone_flags & CLONE_VFORK) {
1483 freezer_do_not_count();
1484 wait_for_completion(&vfork);
1485 freezer_count();
1486 tracehook_report_vfork_done(p, nr);
1487 }
1488 } else {
1489 nr = PTR_ERR(p);
1490 }
1491 return nr;
1492 }
1493
1494 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1495 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1496 #endif
1497
1498 static void sighand_ctor(void *data)
1499 {
1500 struct sighand_struct *sighand = data;
1501
1502 spin_lock_init(&sighand->siglock);
1503 init_waitqueue_head(&sighand->signalfd_wqh);
1504 }
1505
1506 void __init proc_caches_init(void)
1507 {
1508 sighand_cachep = kmem_cache_create("sighand_cache",
1509 sizeof(struct sighand_struct), 0,
1510 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
1511 SLAB_NOTRACK, sighand_ctor);
1512 signal_cachep = kmem_cache_create("signal_cache",
1513 sizeof(struct signal_struct), 0,
1514 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1515 files_cachep = kmem_cache_create("files_cache",
1516 sizeof(struct files_struct), 0,
1517 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1518 fs_cachep = kmem_cache_create("fs_cache",
1519 sizeof(struct fs_struct), 0,
1520 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1521 mm_cachep = kmem_cache_create("mm_struct",
1522 sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1523 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1524 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC);
1525 mmap_init();
1526 }
1527
1528 /*
1529 * Check constraints on flags passed to the unshare system call and
1530 * force unsharing of additional process context as appropriate.
1531 */
1532 static void check_unshare_flags(unsigned long *flags_ptr)
1533 {
1534 /*
1535 * If unsharing a thread from a thread group, must also
1536 * unshare vm.
1537 */
1538 if (*flags_ptr & CLONE_THREAD)
1539 *flags_ptr |= CLONE_VM;
1540
1541 /*
1542 * If unsharing vm, must also unshare signal handlers.
1543 */
1544 if (*flags_ptr & CLONE_VM)
1545 *flags_ptr |= CLONE_SIGHAND;
1546
1547 /*
1548 * If unsharing namespace, must also unshare filesystem information.
1549 */
1550 if (*flags_ptr & CLONE_NEWNS)
1551 *flags_ptr |= CLONE_FS;
1552 }
1553
1554 /*
1555 * Unsharing of tasks created with CLONE_THREAD is not supported yet
1556 */
1557 static int unshare_thread(unsigned long unshare_flags)
1558 {
1559 if (unshare_flags & CLONE_THREAD)
1560 return -EINVAL;
1561
1562 return 0;
1563 }
1564
1565 /*
1566 * Unshare the filesystem structure if it is being shared
1567 */
1568 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1569 {
1570 struct fs_struct *fs = current->fs;
1571
1572 if (!(unshare_flags & CLONE_FS) || !fs)
1573 return 0;
1574
1575 /* don't need lock here; in the worst case we'll do useless copy */
1576 if (fs->users == 1)
1577 return 0;
1578
1579 *new_fsp = copy_fs_struct(fs);
1580 if (!*new_fsp)
1581 return -ENOMEM;
1582
1583 return 0;
1584 }
1585
1586 /*
1587 * Unsharing of sighand is not supported yet
1588 */
1589 static int unshare_sighand(unsigned long unshare_flags, struct sighand_struct **new_sighp)
1590 {
1591 struct sighand_struct *sigh = current->sighand;
1592
1593 if ((unshare_flags & CLONE_SIGHAND) && atomic_read(&sigh->count) > 1)
1594 return -EINVAL;
1595 else
1596 return 0;
1597 }
1598
1599 /*
1600 * Unshare vm if it is being shared
1601 */
1602 static int unshare_vm(unsigned long unshare_flags, struct mm_struct **new_mmp)
1603 {
1604 struct mm_struct *mm = current->mm;
1605
1606 if ((unshare_flags & CLONE_VM) &&
1607 (mm && atomic_read(&mm->mm_users) > 1)) {
1608 return -EINVAL;
1609 }
1610
1611 return 0;
1612 }
1613
1614 /*
1615 * Unshare file descriptor table if it is being shared
1616 */
1617 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1618 {
1619 struct files_struct *fd = current->files;
1620 int error = 0;
1621
1622 if ((unshare_flags & CLONE_FILES) &&
1623 (fd && atomic_read(&fd->count) > 1)) {
1624 *new_fdp = dup_fd(fd, &error);
1625 if (!*new_fdp)
1626 return error;
1627 }
1628
1629 return 0;
1630 }
1631
1632 /*
1633 * unshare allows a process to 'unshare' part of the process
1634 * context which was originally shared using clone. copy_*
1635 * functions used by do_fork() cannot be used here directly
1636 * because they modify an inactive task_struct that is being
1637 * constructed. Here we are modifying the current, active,
1638 * task_struct.
1639 */
1640 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
1641 {
1642 int err = 0;
1643 struct fs_struct *fs, *new_fs = NULL;
1644 struct sighand_struct *new_sigh = NULL;
1645 struct mm_struct *mm, *new_mm = NULL, *active_mm = NULL;
1646 struct files_struct *fd, *new_fd = NULL;
1647 struct nsproxy *new_nsproxy = NULL;
1648 int do_sysvsem = 0;
1649
1650 check_unshare_flags(&unshare_flags);
1651
1652 /* Return -EINVAL for all unsupported flags */
1653 err = -EINVAL;
1654 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1655 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1656 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET))
1657 goto bad_unshare_out;
1658
1659 /*
1660 * CLONE_NEWIPC must also detach from the undolist: after switching
1661 * to a new ipc namespace, the semaphore arrays from the old
1662 * namespace are unreachable.
1663 */
1664 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
1665 do_sysvsem = 1;
1666 if ((err = unshare_thread(unshare_flags)))
1667 goto bad_unshare_out;
1668 if ((err = unshare_fs(unshare_flags, &new_fs)))
1669 goto bad_unshare_cleanup_thread;
1670 if ((err = unshare_sighand(unshare_flags, &new_sigh)))
1671 goto bad_unshare_cleanup_fs;
1672 if ((err = unshare_vm(unshare_flags, &new_mm)))
1673 goto bad_unshare_cleanup_sigh;
1674 if ((err = unshare_fd(unshare_flags, &new_fd)))
1675 goto bad_unshare_cleanup_vm;
1676 if ((err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
1677 new_fs)))
1678 goto bad_unshare_cleanup_fd;
1679
1680 if (new_fs || new_mm || new_fd || do_sysvsem || new_nsproxy) {
1681 if (do_sysvsem) {
1682 /*
1683 * CLONE_SYSVSEM is equivalent to sys_exit().
1684 */
1685 exit_sem(current);
1686 }
1687
1688 if (new_nsproxy) {
1689 switch_task_namespaces(current, new_nsproxy);
1690 new_nsproxy = NULL;
1691 }
1692
1693 task_lock(current);
1694
1695 if (new_fs) {
1696 fs = current->fs;
1697 spin_lock(&fs->lock);
1698 current->fs = new_fs;
1699 if (--fs->users)
1700 new_fs = NULL;
1701 else
1702 new_fs = fs;
1703 spin_unlock(&fs->lock);
1704 }
1705
1706 if (new_mm) {
1707 mm = current->mm;
1708 active_mm = current->active_mm;
1709 current->mm = new_mm;
1710 current->active_mm = new_mm;
1711 if (current->signal->oom_score_adj == OOM_SCORE_ADJ_MIN) {
1712 atomic_dec(&mm->oom_disable_count);
1713 atomic_inc(&new_mm->oom_disable_count);
1714 }
1715 activate_mm(active_mm, new_mm);
1716 new_mm = mm;
1717 }
1718
1719 if (new_fd) {
1720 fd = current->files;
1721 current->files = new_fd;
1722 new_fd = fd;
1723 }
1724
1725 task_unlock(current);
1726 }
1727
1728 if (new_nsproxy)
1729 put_nsproxy(new_nsproxy);
1730
1731 bad_unshare_cleanup_fd:
1732 if (new_fd)
1733 put_files_struct(new_fd);
1734
1735 bad_unshare_cleanup_vm:
1736 if (new_mm)
1737 mmput(new_mm);
1738
1739 bad_unshare_cleanup_sigh:
1740 if (new_sigh)
1741 if (atomic_dec_and_test(&new_sigh->count))
1742 kmem_cache_free(sighand_cachep, new_sigh);
1743
1744 bad_unshare_cleanup_fs:
1745 if (new_fs)
1746 free_fs_struct(new_fs);
1747
1748 bad_unshare_cleanup_thread:
1749 bad_unshare_out:
1750 return err;
1751 }
1752
1753 /*
1754 * Helper to unshare the files of the current task.
1755 * We don't want to expose copy_files internals to
1756 * the exec layer of the kernel.
1757 */
1758
1759 int unshare_files(struct files_struct **displaced)
1760 {
1761 struct task_struct *task = current;
1762 struct files_struct *copy = NULL;
1763 int error;
1764
1765 error = unshare_fd(CLONE_FILES, &copy);
1766 if (error || !copy) {
1767 *displaced = NULL;
1768 return error;
1769 }
1770 *displaced = task->files;
1771 task_lock(task);
1772 task->files = copy;
1773 task_unlock(task);
1774 return 0;
1775 }
This page took 0.06974 seconds and 5 git commands to generate.