rtc: document the sysfs interface
[deliverable/linux.git] / kernel / fork.c
1 /*
2 * linux/kernel/fork.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * 'fork.c' contains the help-routines for the 'fork' system call
9 * (see also entry.S and others).
10 * Fork is rather simple, once you get the hang of it, but the memory
11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12 */
13
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/mempolicy.h>
22 #include <linux/sem.h>
23 #include <linux/file.h>
24 #include <linux/fdtable.h>
25 #include <linux/iocontext.h>
26 #include <linux/key.h>
27 #include <linux/binfmts.h>
28 #include <linux/mman.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/fs.h>
31 #include <linux/nsproxy.h>
32 #include <linux/capability.h>
33 #include <linux/cpu.h>
34 #include <linux/cgroup.h>
35 #include <linux/security.h>
36 #include <linux/hugetlb.h>
37 #include <linux/swap.h>
38 #include <linux/syscalls.h>
39 #include <linux/jiffies.h>
40 #include <linux/tracehook.h>
41 #include <linux/futex.h>
42 #include <linux/compat.h>
43 #include <linux/task_io_accounting_ops.h>
44 #include <linux/rcupdate.h>
45 #include <linux/ptrace.h>
46 #include <linux/mount.h>
47 #include <linux/audit.h>
48 #include <linux/memcontrol.h>
49 #include <linux/ftrace.h>
50 #include <linux/profile.h>
51 #include <linux/rmap.h>
52 #include <linux/ksm.h>
53 #include <linux/acct.h>
54 #include <linux/tsacct_kern.h>
55 #include <linux/cn_proc.h>
56 #include <linux/freezer.h>
57 #include <linux/delayacct.h>
58 #include <linux/taskstats_kern.h>
59 #include <linux/random.h>
60 #include <linux/tty.h>
61 #include <linux/proc_fs.h>
62 #include <linux/blkdev.h>
63 #include <linux/fs_struct.h>
64 #include <linux/magic.h>
65 #include <linux/perf_event.h>
66
67 #include <asm/pgtable.h>
68 #include <asm/pgalloc.h>
69 #include <asm/uaccess.h>
70 #include <asm/mmu_context.h>
71 #include <asm/cacheflush.h>
72 #include <asm/tlbflush.h>
73
74 #include <trace/events/sched.h>
75
76 /*
77 * Protected counters by write_lock_irq(&tasklist_lock)
78 */
79 unsigned long total_forks; /* Handle normal Linux uptimes. */
80 int nr_threads; /* The idle threads do not count.. */
81
82 int max_threads; /* tunable limit on nr_threads */
83
84 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
85
86 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
87
88 int nr_processes(void)
89 {
90 int cpu;
91 int total = 0;
92
93 for_each_online_cpu(cpu)
94 total += per_cpu(process_counts, cpu);
95
96 return total;
97 }
98
99 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
100 # define alloc_task_struct() kmem_cache_alloc(task_struct_cachep, GFP_KERNEL)
101 # define free_task_struct(tsk) kmem_cache_free(task_struct_cachep, (tsk))
102 static struct kmem_cache *task_struct_cachep;
103 #endif
104
105 #ifndef __HAVE_ARCH_THREAD_INFO_ALLOCATOR
106 static inline struct thread_info *alloc_thread_info(struct task_struct *tsk)
107 {
108 #ifdef CONFIG_DEBUG_STACK_USAGE
109 gfp_t mask = GFP_KERNEL | __GFP_ZERO;
110 #else
111 gfp_t mask = GFP_KERNEL;
112 #endif
113 return (struct thread_info *)__get_free_pages(mask, THREAD_SIZE_ORDER);
114 }
115
116 static inline void free_thread_info(struct thread_info *ti)
117 {
118 free_pages((unsigned long)ti, THREAD_SIZE_ORDER);
119 }
120 #endif
121
122 /* SLAB cache for signal_struct structures (tsk->signal) */
123 static struct kmem_cache *signal_cachep;
124
125 /* SLAB cache for sighand_struct structures (tsk->sighand) */
126 struct kmem_cache *sighand_cachep;
127
128 /* SLAB cache for files_struct structures (tsk->files) */
129 struct kmem_cache *files_cachep;
130
131 /* SLAB cache for fs_struct structures (tsk->fs) */
132 struct kmem_cache *fs_cachep;
133
134 /* SLAB cache for vm_area_struct structures */
135 struct kmem_cache *vm_area_cachep;
136
137 /* SLAB cache for mm_struct structures (tsk->mm) */
138 static struct kmem_cache *mm_cachep;
139
140 static void account_kernel_stack(struct thread_info *ti, int account)
141 {
142 struct zone *zone = page_zone(virt_to_page(ti));
143
144 mod_zone_page_state(zone, NR_KERNEL_STACK, account);
145 }
146
147 void free_task(struct task_struct *tsk)
148 {
149 prop_local_destroy_single(&tsk->dirties);
150 account_kernel_stack(tsk->stack, -1);
151 free_thread_info(tsk->stack);
152 rt_mutex_debug_task_free(tsk);
153 ftrace_graph_exit_task(tsk);
154 free_task_struct(tsk);
155 }
156 EXPORT_SYMBOL(free_task);
157
158 void __put_task_struct(struct task_struct *tsk)
159 {
160 WARN_ON(!tsk->exit_state);
161 WARN_ON(atomic_read(&tsk->usage));
162 WARN_ON(tsk == current);
163
164 exit_creds(tsk);
165 delayacct_tsk_free(tsk);
166
167 if (!profile_handoff_task(tsk))
168 free_task(tsk);
169 }
170
171 /*
172 * macro override instead of weak attribute alias, to workaround
173 * gcc 4.1.0 and 4.1.1 bugs with weak attribute and empty functions.
174 */
175 #ifndef arch_task_cache_init
176 #define arch_task_cache_init()
177 #endif
178
179 void __init fork_init(unsigned long mempages)
180 {
181 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
182 #ifndef ARCH_MIN_TASKALIGN
183 #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
184 #endif
185 /* create a slab on which task_structs can be allocated */
186 task_struct_cachep =
187 kmem_cache_create("task_struct", sizeof(struct task_struct),
188 ARCH_MIN_TASKALIGN, SLAB_PANIC | SLAB_NOTRACK, NULL);
189 #endif
190
191 /* do the arch specific task caches init */
192 arch_task_cache_init();
193
194 /*
195 * The default maximum number of threads is set to a safe
196 * value: the thread structures can take up at most half
197 * of memory.
198 */
199 max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
200
201 /*
202 * we need to allow at least 20 threads to boot a system
203 */
204 if(max_threads < 20)
205 max_threads = 20;
206
207 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
208 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
209 init_task.signal->rlim[RLIMIT_SIGPENDING] =
210 init_task.signal->rlim[RLIMIT_NPROC];
211 }
212
213 int __attribute__((weak)) arch_dup_task_struct(struct task_struct *dst,
214 struct task_struct *src)
215 {
216 *dst = *src;
217 return 0;
218 }
219
220 static struct task_struct *dup_task_struct(struct task_struct *orig)
221 {
222 struct task_struct *tsk;
223 struct thread_info *ti;
224 unsigned long *stackend;
225
226 int err;
227
228 prepare_to_copy(orig);
229
230 tsk = alloc_task_struct();
231 if (!tsk)
232 return NULL;
233
234 ti = alloc_thread_info(tsk);
235 if (!ti) {
236 free_task_struct(tsk);
237 return NULL;
238 }
239
240 err = arch_dup_task_struct(tsk, orig);
241 if (err)
242 goto out;
243
244 tsk->stack = ti;
245
246 err = prop_local_init_single(&tsk->dirties);
247 if (err)
248 goto out;
249
250 setup_thread_stack(tsk, orig);
251 stackend = end_of_stack(tsk);
252 *stackend = STACK_END_MAGIC; /* for overflow detection */
253
254 #ifdef CONFIG_CC_STACKPROTECTOR
255 tsk->stack_canary = get_random_int();
256 #endif
257
258 /* One for us, one for whoever does the "release_task()" (usually parent) */
259 atomic_set(&tsk->usage,2);
260 atomic_set(&tsk->fs_excl, 0);
261 #ifdef CONFIG_BLK_DEV_IO_TRACE
262 tsk->btrace_seq = 0;
263 #endif
264 tsk->splice_pipe = NULL;
265
266 account_kernel_stack(ti, 1);
267
268 return tsk;
269
270 out:
271 free_thread_info(ti);
272 free_task_struct(tsk);
273 return NULL;
274 }
275
276 #ifdef CONFIG_MMU
277 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
278 {
279 struct vm_area_struct *mpnt, *tmp, **pprev;
280 struct rb_node **rb_link, *rb_parent;
281 int retval;
282 unsigned long charge;
283 struct mempolicy *pol;
284
285 down_write(&oldmm->mmap_sem);
286 flush_cache_dup_mm(oldmm);
287 /*
288 * Not linked in yet - no deadlock potential:
289 */
290 down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
291
292 mm->locked_vm = 0;
293 mm->mmap = NULL;
294 mm->mmap_cache = NULL;
295 mm->free_area_cache = oldmm->mmap_base;
296 mm->cached_hole_size = ~0UL;
297 mm->map_count = 0;
298 cpumask_clear(mm_cpumask(mm));
299 mm->mm_rb = RB_ROOT;
300 rb_link = &mm->mm_rb.rb_node;
301 rb_parent = NULL;
302 pprev = &mm->mmap;
303 retval = ksm_fork(mm, oldmm);
304 if (retval)
305 goto out;
306
307 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
308 struct file *file;
309
310 if (mpnt->vm_flags & VM_DONTCOPY) {
311 long pages = vma_pages(mpnt);
312 mm->total_vm -= pages;
313 vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
314 -pages);
315 continue;
316 }
317 charge = 0;
318 if (mpnt->vm_flags & VM_ACCOUNT) {
319 unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
320 if (security_vm_enough_memory(len))
321 goto fail_nomem;
322 charge = len;
323 }
324 tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
325 if (!tmp)
326 goto fail_nomem;
327 *tmp = *mpnt;
328 pol = mpol_dup(vma_policy(mpnt));
329 retval = PTR_ERR(pol);
330 if (IS_ERR(pol))
331 goto fail_nomem_policy;
332 vma_set_policy(tmp, pol);
333 tmp->vm_flags &= ~VM_LOCKED;
334 tmp->vm_mm = mm;
335 tmp->vm_next = NULL;
336 anon_vma_link(tmp);
337 file = tmp->vm_file;
338 if (file) {
339 struct inode *inode = file->f_path.dentry->d_inode;
340 struct address_space *mapping = file->f_mapping;
341
342 get_file(file);
343 if (tmp->vm_flags & VM_DENYWRITE)
344 atomic_dec(&inode->i_writecount);
345 spin_lock(&mapping->i_mmap_lock);
346 if (tmp->vm_flags & VM_SHARED)
347 mapping->i_mmap_writable++;
348 tmp->vm_truncate_count = mpnt->vm_truncate_count;
349 flush_dcache_mmap_lock(mapping);
350 /* insert tmp into the share list, just after mpnt */
351 vma_prio_tree_add(tmp, mpnt);
352 flush_dcache_mmap_unlock(mapping);
353 spin_unlock(&mapping->i_mmap_lock);
354 }
355
356 /*
357 * Clear hugetlb-related page reserves for children. This only
358 * affects MAP_PRIVATE mappings. Faults generated by the child
359 * are not guaranteed to succeed, even if read-only
360 */
361 if (is_vm_hugetlb_page(tmp))
362 reset_vma_resv_huge_pages(tmp);
363
364 /*
365 * Link in the new vma and copy the page table entries.
366 */
367 *pprev = tmp;
368 pprev = &tmp->vm_next;
369
370 __vma_link_rb(mm, tmp, rb_link, rb_parent);
371 rb_link = &tmp->vm_rb.rb_right;
372 rb_parent = &tmp->vm_rb;
373
374 mm->map_count++;
375 retval = copy_page_range(mm, oldmm, mpnt);
376
377 if (tmp->vm_ops && tmp->vm_ops->open)
378 tmp->vm_ops->open(tmp);
379
380 if (retval)
381 goto out;
382 }
383 /* a new mm has just been created */
384 arch_dup_mmap(oldmm, mm);
385 retval = 0;
386 out:
387 up_write(&mm->mmap_sem);
388 flush_tlb_mm(oldmm);
389 up_write(&oldmm->mmap_sem);
390 return retval;
391 fail_nomem_policy:
392 kmem_cache_free(vm_area_cachep, tmp);
393 fail_nomem:
394 retval = -ENOMEM;
395 vm_unacct_memory(charge);
396 goto out;
397 }
398
399 static inline int mm_alloc_pgd(struct mm_struct * mm)
400 {
401 mm->pgd = pgd_alloc(mm);
402 if (unlikely(!mm->pgd))
403 return -ENOMEM;
404 return 0;
405 }
406
407 static inline void mm_free_pgd(struct mm_struct * mm)
408 {
409 pgd_free(mm, mm->pgd);
410 }
411 #else
412 #define dup_mmap(mm, oldmm) (0)
413 #define mm_alloc_pgd(mm) (0)
414 #define mm_free_pgd(mm)
415 #endif /* CONFIG_MMU */
416
417 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
418
419 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
420 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
421
422 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
423
424 static int __init coredump_filter_setup(char *s)
425 {
426 default_dump_filter =
427 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
428 MMF_DUMP_FILTER_MASK;
429 return 1;
430 }
431
432 __setup("coredump_filter=", coredump_filter_setup);
433
434 #include <linux/init_task.h>
435
436 static struct mm_struct * mm_init(struct mm_struct * mm, struct task_struct *p)
437 {
438 atomic_set(&mm->mm_users, 1);
439 atomic_set(&mm->mm_count, 1);
440 init_rwsem(&mm->mmap_sem);
441 INIT_LIST_HEAD(&mm->mmlist);
442 mm->flags = (current->mm) ?
443 (current->mm->flags & MMF_INIT_MASK) : default_dump_filter;
444 mm->core_state = NULL;
445 mm->nr_ptes = 0;
446 set_mm_counter(mm, file_rss, 0);
447 set_mm_counter(mm, anon_rss, 0);
448 spin_lock_init(&mm->page_table_lock);
449 spin_lock_init(&mm->ioctx_lock);
450 INIT_HLIST_HEAD(&mm->ioctx_list);
451 mm->free_area_cache = TASK_UNMAPPED_BASE;
452 mm->cached_hole_size = ~0UL;
453 mm_init_owner(mm, p);
454
455 if (likely(!mm_alloc_pgd(mm))) {
456 mm->def_flags = 0;
457 mmu_notifier_mm_init(mm);
458 return mm;
459 }
460
461 free_mm(mm);
462 return NULL;
463 }
464
465 /*
466 * Allocate and initialize an mm_struct.
467 */
468 struct mm_struct * mm_alloc(void)
469 {
470 struct mm_struct * mm;
471
472 mm = allocate_mm();
473 if (mm) {
474 memset(mm, 0, sizeof(*mm));
475 mm = mm_init(mm, current);
476 }
477 return mm;
478 }
479
480 /*
481 * Called when the last reference to the mm
482 * is dropped: either by a lazy thread or by
483 * mmput. Free the page directory and the mm.
484 */
485 void __mmdrop(struct mm_struct *mm)
486 {
487 BUG_ON(mm == &init_mm);
488 mm_free_pgd(mm);
489 destroy_context(mm);
490 mmu_notifier_mm_destroy(mm);
491 free_mm(mm);
492 }
493 EXPORT_SYMBOL_GPL(__mmdrop);
494
495 /*
496 * Decrement the use count and release all resources for an mm.
497 */
498 void mmput(struct mm_struct *mm)
499 {
500 might_sleep();
501
502 if (atomic_dec_and_test(&mm->mm_users)) {
503 exit_aio(mm);
504 ksm_exit(mm);
505 exit_mmap(mm);
506 set_mm_exe_file(mm, NULL);
507 if (!list_empty(&mm->mmlist)) {
508 spin_lock(&mmlist_lock);
509 list_del(&mm->mmlist);
510 spin_unlock(&mmlist_lock);
511 }
512 put_swap_token(mm);
513 mmdrop(mm);
514 }
515 }
516 EXPORT_SYMBOL_GPL(mmput);
517
518 /**
519 * get_task_mm - acquire a reference to the task's mm
520 *
521 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
522 * this kernel workthread has transiently adopted a user mm with use_mm,
523 * to do its AIO) is not set and if so returns a reference to it, after
524 * bumping up the use count. User must release the mm via mmput()
525 * after use. Typically used by /proc and ptrace.
526 */
527 struct mm_struct *get_task_mm(struct task_struct *task)
528 {
529 struct mm_struct *mm;
530
531 task_lock(task);
532 mm = task->mm;
533 if (mm) {
534 if (task->flags & PF_KTHREAD)
535 mm = NULL;
536 else
537 atomic_inc(&mm->mm_users);
538 }
539 task_unlock(task);
540 return mm;
541 }
542 EXPORT_SYMBOL_GPL(get_task_mm);
543
544 /* Please note the differences between mmput and mm_release.
545 * mmput is called whenever we stop holding onto a mm_struct,
546 * error success whatever.
547 *
548 * mm_release is called after a mm_struct has been removed
549 * from the current process.
550 *
551 * This difference is important for error handling, when we
552 * only half set up a mm_struct for a new process and need to restore
553 * the old one. Because we mmput the new mm_struct before
554 * restoring the old one. . .
555 * Eric Biederman 10 January 1998
556 */
557 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
558 {
559 struct completion *vfork_done = tsk->vfork_done;
560
561 /* Get rid of any futexes when releasing the mm */
562 #ifdef CONFIG_FUTEX
563 if (unlikely(tsk->robust_list))
564 exit_robust_list(tsk);
565 #ifdef CONFIG_COMPAT
566 if (unlikely(tsk->compat_robust_list))
567 compat_exit_robust_list(tsk);
568 #endif
569 #endif
570
571 /* Get rid of any cached register state */
572 deactivate_mm(tsk, mm);
573
574 /* notify parent sleeping on vfork() */
575 if (vfork_done) {
576 tsk->vfork_done = NULL;
577 complete(vfork_done);
578 }
579
580 /*
581 * If we're exiting normally, clear a user-space tid field if
582 * requested. We leave this alone when dying by signal, to leave
583 * the value intact in a core dump, and to save the unnecessary
584 * trouble otherwise. Userland only wants this done for a sys_exit.
585 */
586 if (tsk->clear_child_tid) {
587 if (!(tsk->flags & PF_SIGNALED) &&
588 atomic_read(&mm->mm_users) > 1) {
589 /*
590 * We don't check the error code - if userspace has
591 * not set up a proper pointer then tough luck.
592 */
593 put_user(0, tsk->clear_child_tid);
594 sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
595 1, NULL, NULL, 0);
596 }
597 tsk->clear_child_tid = NULL;
598 }
599 }
600
601 /*
602 * Allocate a new mm structure and copy contents from the
603 * mm structure of the passed in task structure.
604 */
605 struct mm_struct *dup_mm(struct task_struct *tsk)
606 {
607 struct mm_struct *mm, *oldmm = current->mm;
608 int err;
609
610 if (!oldmm)
611 return NULL;
612
613 mm = allocate_mm();
614 if (!mm)
615 goto fail_nomem;
616
617 memcpy(mm, oldmm, sizeof(*mm));
618
619 /* Initializing for Swap token stuff */
620 mm->token_priority = 0;
621 mm->last_interval = 0;
622
623 if (!mm_init(mm, tsk))
624 goto fail_nomem;
625
626 if (init_new_context(tsk, mm))
627 goto fail_nocontext;
628
629 dup_mm_exe_file(oldmm, mm);
630
631 err = dup_mmap(mm, oldmm);
632 if (err)
633 goto free_pt;
634
635 mm->hiwater_rss = get_mm_rss(mm);
636 mm->hiwater_vm = mm->total_vm;
637
638 return mm;
639
640 free_pt:
641 mmput(mm);
642
643 fail_nomem:
644 return NULL;
645
646 fail_nocontext:
647 /*
648 * If init_new_context() failed, we cannot use mmput() to free the mm
649 * because it calls destroy_context()
650 */
651 mm_free_pgd(mm);
652 free_mm(mm);
653 return NULL;
654 }
655
656 static int copy_mm(unsigned long clone_flags, struct task_struct * tsk)
657 {
658 struct mm_struct * mm, *oldmm;
659 int retval;
660
661 tsk->min_flt = tsk->maj_flt = 0;
662 tsk->nvcsw = tsk->nivcsw = 0;
663 #ifdef CONFIG_DETECT_HUNG_TASK
664 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
665 #endif
666
667 tsk->mm = NULL;
668 tsk->active_mm = NULL;
669
670 /*
671 * Are we cloning a kernel thread?
672 *
673 * We need to steal a active VM for that..
674 */
675 oldmm = current->mm;
676 if (!oldmm)
677 return 0;
678
679 if (clone_flags & CLONE_VM) {
680 atomic_inc(&oldmm->mm_users);
681 mm = oldmm;
682 goto good_mm;
683 }
684
685 retval = -ENOMEM;
686 mm = dup_mm(tsk);
687 if (!mm)
688 goto fail_nomem;
689
690 good_mm:
691 /* Initializing for Swap token stuff */
692 mm->token_priority = 0;
693 mm->last_interval = 0;
694
695 tsk->mm = mm;
696 tsk->active_mm = mm;
697 return 0;
698
699 fail_nomem:
700 return retval;
701 }
702
703 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
704 {
705 struct fs_struct *fs = current->fs;
706 if (clone_flags & CLONE_FS) {
707 /* tsk->fs is already what we want */
708 write_lock(&fs->lock);
709 if (fs->in_exec) {
710 write_unlock(&fs->lock);
711 return -EAGAIN;
712 }
713 fs->users++;
714 write_unlock(&fs->lock);
715 return 0;
716 }
717 tsk->fs = copy_fs_struct(fs);
718 if (!tsk->fs)
719 return -ENOMEM;
720 return 0;
721 }
722
723 static int copy_files(unsigned long clone_flags, struct task_struct * tsk)
724 {
725 struct files_struct *oldf, *newf;
726 int error = 0;
727
728 /*
729 * A background process may not have any files ...
730 */
731 oldf = current->files;
732 if (!oldf)
733 goto out;
734
735 if (clone_flags & CLONE_FILES) {
736 atomic_inc(&oldf->count);
737 goto out;
738 }
739
740 newf = dup_fd(oldf, &error);
741 if (!newf)
742 goto out;
743
744 tsk->files = newf;
745 error = 0;
746 out:
747 return error;
748 }
749
750 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
751 {
752 #ifdef CONFIG_BLOCK
753 struct io_context *ioc = current->io_context;
754
755 if (!ioc)
756 return 0;
757 /*
758 * Share io context with parent, if CLONE_IO is set
759 */
760 if (clone_flags & CLONE_IO) {
761 tsk->io_context = ioc_task_link(ioc);
762 if (unlikely(!tsk->io_context))
763 return -ENOMEM;
764 } else if (ioprio_valid(ioc->ioprio)) {
765 tsk->io_context = alloc_io_context(GFP_KERNEL, -1);
766 if (unlikely(!tsk->io_context))
767 return -ENOMEM;
768
769 tsk->io_context->ioprio = ioc->ioprio;
770 }
771 #endif
772 return 0;
773 }
774
775 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
776 {
777 struct sighand_struct *sig;
778
779 if (clone_flags & CLONE_SIGHAND) {
780 atomic_inc(&current->sighand->count);
781 return 0;
782 }
783 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
784 rcu_assign_pointer(tsk->sighand, sig);
785 if (!sig)
786 return -ENOMEM;
787 atomic_set(&sig->count, 1);
788 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
789 return 0;
790 }
791
792 void __cleanup_sighand(struct sighand_struct *sighand)
793 {
794 if (atomic_dec_and_test(&sighand->count))
795 kmem_cache_free(sighand_cachep, sighand);
796 }
797
798
799 /*
800 * Initialize POSIX timer handling for a thread group.
801 */
802 static void posix_cpu_timers_init_group(struct signal_struct *sig)
803 {
804 /* Thread group counters. */
805 thread_group_cputime_init(sig);
806
807 /* Expiration times and increments. */
808 sig->it_virt_expires = cputime_zero;
809 sig->it_virt_incr = cputime_zero;
810 sig->it_prof_expires = cputime_zero;
811 sig->it_prof_incr = cputime_zero;
812
813 /* Cached expiration times. */
814 sig->cputime_expires.prof_exp = cputime_zero;
815 sig->cputime_expires.virt_exp = cputime_zero;
816 sig->cputime_expires.sched_exp = 0;
817
818 if (sig->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) {
819 sig->cputime_expires.prof_exp =
820 secs_to_cputime(sig->rlim[RLIMIT_CPU].rlim_cur);
821 sig->cputimer.running = 1;
822 }
823
824 /* The timer lists. */
825 INIT_LIST_HEAD(&sig->cpu_timers[0]);
826 INIT_LIST_HEAD(&sig->cpu_timers[1]);
827 INIT_LIST_HEAD(&sig->cpu_timers[2]);
828 }
829
830 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
831 {
832 struct signal_struct *sig;
833
834 if (clone_flags & CLONE_THREAD)
835 return 0;
836
837 sig = kmem_cache_alloc(signal_cachep, GFP_KERNEL);
838 tsk->signal = sig;
839 if (!sig)
840 return -ENOMEM;
841
842 atomic_set(&sig->count, 1);
843 atomic_set(&sig->live, 1);
844 init_waitqueue_head(&sig->wait_chldexit);
845 sig->flags = 0;
846 if (clone_flags & CLONE_NEWPID)
847 sig->flags |= SIGNAL_UNKILLABLE;
848 sig->group_exit_code = 0;
849 sig->group_exit_task = NULL;
850 sig->group_stop_count = 0;
851 sig->curr_target = tsk;
852 init_sigpending(&sig->shared_pending);
853 INIT_LIST_HEAD(&sig->posix_timers);
854
855 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
856 sig->it_real_incr.tv64 = 0;
857 sig->real_timer.function = it_real_fn;
858
859 sig->leader = 0; /* session leadership doesn't inherit */
860 sig->tty_old_pgrp = NULL;
861 sig->tty = NULL;
862
863 sig->utime = sig->stime = sig->cutime = sig->cstime = cputime_zero;
864 sig->gtime = cputime_zero;
865 sig->cgtime = cputime_zero;
866 sig->nvcsw = sig->nivcsw = sig->cnvcsw = sig->cnivcsw = 0;
867 sig->min_flt = sig->maj_flt = sig->cmin_flt = sig->cmaj_flt = 0;
868 sig->inblock = sig->oublock = sig->cinblock = sig->coublock = 0;
869 sig->maxrss = sig->cmaxrss = 0;
870 task_io_accounting_init(&sig->ioac);
871 sig->sum_sched_runtime = 0;
872 taskstats_tgid_init(sig);
873
874 task_lock(current->group_leader);
875 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
876 task_unlock(current->group_leader);
877
878 posix_cpu_timers_init_group(sig);
879
880 acct_init_pacct(&sig->pacct);
881
882 tty_audit_fork(sig);
883
884 sig->oom_adj = current->signal->oom_adj;
885
886 return 0;
887 }
888
889 void __cleanup_signal(struct signal_struct *sig)
890 {
891 thread_group_cputime_free(sig);
892 tty_kref_put(sig->tty);
893 kmem_cache_free(signal_cachep, sig);
894 }
895
896 static void copy_flags(unsigned long clone_flags, struct task_struct *p)
897 {
898 unsigned long new_flags = p->flags;
899
900 new_flags &= ~PF_SUPERPRIV;
901 new_flags |= PF_FORKNOEXEC;
902 new_flags |= PF_STARTING;
903 p->flags = new_flags;
904 clear_freeze_flag(p);
905 }
906
907 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
908 {
909 current->clear_child_tid = tidptr;
910
911 return task_pid_vnr(current);
912 }
913
914 static void rt_mutex_init_task(struct task_struct *p)
915 {
916 spin_lock_init(&p->pi_lock);
917 #ifdef CONFIG_RT_MUTEXES
918 plist_head_init(&p->pi_waiters, &p->pi_lock);
919 p->pi_blocked_on = NULL;
920 #endif
921 }
922
923 #ifdef CONFIG_MM_OWNER
924 void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
925 {
926 mm->owner = p;
927 }
928 #endif /* CONFIG_MM_OWNER */
929
930 /*
931 * Initialize POSIX timer handling for a single task.
932 */
933 static void posix_cpu_timers_init(struct task_struct *tsk)
934 {
935 tsk->cputime_expires.prof_exp = cputime_zero;
936 tsk->cputime_expires.virt_exp = cputime_zero;
937 tsk->cputime_expires.sched_exp = 0;
938 INIT_LIST_HEAD(&tsk->cpu_timers[0]);
939 INIT_LIST_HEAD(&tsk->cpu_timers[1]);
940 INIT_LIST_HEAD(&tsk->cpu_timers[2]);
941 }
942
943 /*
944 * This creates a new process as a copy of the old one,
945 * but does not actually start it yet.
946 *
947 * It copies the registers, and all the appropriate
948 * parts of the process environment (as per the clone
949 * flags). The actual kick-off is left to the caller.
950 */
951 static struct task_struct *copy_process(unsigned long clone_flags,
952 unsigned long stack_start,
953 struct pt_regs *regs,
954 unsigned long stack_size,
955 int __user *child_tidptr,
956 struct pid *pid,
957 int trace)
958 {
959 int retval;
960 struct task_struct *p;
961 int cgroup_callbacks_done = 0;
962
963 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
964 return ERR_PTR(-EINVAL);
965
966 /*
967 * Thread groups must share signals as well, and detached threads
968 * can only be started up within the thread group.
969 */
970 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
971 return ERR_PTR(-EINVAL);
972
973 /*
974 * Shared signal handlers imply shared VM. By way of the above,
975 * thread groups also imply shared VM. Blocking this case allows
976 * for various simplifications in other code.
977 */
978 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
979 return ERR_PTR(-EINVAL);
980
981 retval = security_task_create(clone_flags);
982 if (retval)
983 goto fork_out;
984
985 retval = -ENOMEM;
986 p = dup_task_struct(current);
987 if (!p)
988 goto fork_out;
989
990 ftrace_graph_init_task(p);
991
992 rt_mutex_init_task(p);
993
994 #ifdef CONFIG_PROVE_LOCKING
995 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
996 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
997 #endif
998 retval = -EAGAIN;
999 if (atomic_read(&p->real_cred->user->processes) >=
1000 p->signal->rlim[RLIMIT_NPROC].rlim_cur) {
1001 if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
1002 p->real_cred->user != INIT_USER)
1003 goto bad_fork_free;
1004 }
1005
1006 retval = copy_creds(p, clone_flags);
1007 if (retval < 0)
1008 goto bad_fork_free;
1009
1010 /*
1011 * If multiple threads are within copy_process(), then this check
1012 * triggers too late. This doesn't hurt, the check is only there
1013 * to stop root fork bombs.
1014 */
1015 retval = -EAGAIN;
1016 if (nr_threads >= max_threads)
1017 goto bad_fork_cleanup_count;
1018
1019 if (!try_module_get(task_thread_info(p)->exec_domain->module))
1020 goto bad_fork_cleanup_count;
1021
1022 if (p->binfmt && !try_module_get(p->binfmt->module))
1023 goto bad_fork_cleanup_put_domain;
1024
1025 p->did_exec = 0;
1026 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
1027 copy_flags(clone_flags, p);
1028 INIT_LIST_HEAD(&p->children);
1029 INIT_LIST_HEAD(&p->sibling);
1030 rcu_copy_process(p);
1031 p->vfork_done = NULL;
1032 spin_lock_init(&p->alloc_lock);
1033
1034 init_sigpending(&p->pending);
1035
1036 p->utime = cputime_zero;
1037 p->stime = cputime_zero;
1038 p->gtime = cputime_zero;
1039 p->utimescaled = cputime_zero;
1040 p->stimescaled = cputime_zero;
1041 p->prev_utime = cputime_zero;
1042 p->prev_stime = cputime_zero;
1043
1044 p->default_timer_slack_ns = current->timer_slack_ns;
1045
1046 task_io_accounting_init(&p->ioac);
1047 acct_clear_integrals(p);
1048
1049 posix_cpu_timers_init(p);
1050
1051 p->lock_depth = -1; /* -1 = no lock */
1052 do_posix_clock_monotonic_gettime(&p->start_time);
1053 p->real_start_time = p->start_time;
1054 monotonic_to_bootbased(&p->real_start_time);
1055 p->io_context = NULL;
1056 p->audit_context = NULL;
1057 cgroup_fork(p);
1058 #ifdef CONFIG_NUMA
1059 p->mempolicy = mpol_dup(p->mempolicy);
1060 if (IS_ERR(p->mempolicy)) {
1061 retval = PTR_ERR(p->mempolicy);
1062 p->mempolicy = NULL;
1063 goto bad_fork_cleanup_cgroup;
1064 }
1065 mpol_fix_fork_child_flag(p);
1066 #endif
1067 #ifdef CONFIG_TRACE_IRQFLAGS
1068 p->irq_events = 0;
1069 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1070 p->hardirqs_enabled = 1;
1071 #else
1072 p->hardirqs_enabled = 0;
1073 #endif
1074 p->hardirq_enable_ip = 0;
1075 p->hardirq_enable_event = 0;
1076 p->hardirq_disable_ip = _THIS_IP_;
1077 p->hardirq_disable_event = 0;
1078 p->softirqs_enabled = 1;
1079 p->softirq_enable_ip = _THIS_IP_;
1080 p->softirq_enable_event = 0;
1081 p->softirq_disable_ip = 0;
1082 p->softirq_disable_event = 0;
1083 p->hardirq_context = 0;
1084 p->softirq_context = 0;
1085 #endif
1086 #ifdef CONFIG_LOCKDEP
1087 p->lockdep_depth = 0; /* no locks held yet */
1088 p->curr_chain_key = 0;
1089 p->lockdep_recursion = 0;
1090 #endif
1091
1092 #ifdef CONFIG_DEBUG_MUTEXES
1093 p->blocked_on = NULL; /* not blocked yet */
1094 #endif
1095
1096 p->bts = NULL;
1097
1098 p->stack_start = stack_start;
1099
1100 /* Perform scheduler related setup. Assign this task to a CPU. */
1101 sched_fork(p, clone_flags);
1102
1103 retval = perf_event_init_task(p);
1104 if (retval)
1105 goto bad_fork_cleanup_policy;
1106
1107 if ((retval = audit_alloc(p)))
1108 goto bad_fork_cleanup_policy;
1109 /* copy all the process information */
1110 if ((retval = copy_semundo(clone_flags, p)))
1111 goto bad_fork_cleanup_audit;
1112 if ((retval = copy_files(clone_flags, p)))
1113 goto bad_fork_cleanup_semundo;
1114 if ((retval = copy_fs(clone_flags, p)))
1115 goto bad_fork_cleanup_files;
1116 if ((retval = copy_sighand(clone_flags, p)))
1117 goto bad_fork_cleanup_fs;
1118 if ((retval = copy_signal(clone_flags, p)))
1119 goto bad_fork_cleanup_sighand;
1120 if ((retval = copy_mm(clone_flags, p)))
1121 goto bad_fork_cleanup_signal;
1122 if ((retval = copy_namespaces(clone_flags, p)))
1123 goto bad_fork_cleanup_mm;
1124 if ((retval = copy_io(clone_flags, p)))
1125 goto bad_fork_cleanup_namespaces;
1126 retval = copy_thread(clone_flags, stack_start, stack_size, p, regs);
1127 if (retval)
1128 goto bad_fork_cleanup_io;
1129
1130 if (pid != &init_struct_pid) {
1131 retval = -ENOMEM;
1132 pid = alloc_pid(p->nsproxy->pid_ns);
1133 if (!pid)
1134 goto bad_fork_cleanup_io;
1135
1136 if (clone_flags & CLONE_NEWPID) {
1137 retval = pid_ns_prepare_proc(p->nsproxy->pid_ns);
1138 if (retval < 0)
1139 goto bad_fork_free_pid;
1140 }
1141 }
1142
1143 p->pid = pid_nr(pid);
1144 p->tgid = p->pid;
1145 if (clone_flags & CLONE_THREAD)
1146 p->tgid = current->tgid;
1147
1148 if (current->nsproxy != p->nsproxy) {
1149 retval = ns_cgroup_clone(p, pid);
1150 if (retval)
1151 goto bad_fork_free_pid;
1152 }
1153
1154 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1155 /*
1156 * Clear TID on mm_release()?
1157 */
1158 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr: NULL;
1159 #ifdef CONFIG_FUTEX
1160 p->robust_list = NULL;
1161 #ifdef CONFIG_COMPAT
1162 p->compat_robust_list = NULL;
1163 #endif
1164 INIT_LIST_HEAD(&p->pi_state_list);
1165 p->pi_state_cache = NULL;
1166 #endif
1167 /*
1168 * sigaltstack should be cleared when sharing the same VM
1169 */
1170 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1171 p->sas_ss_sp = p->sas_ss_size = 0;
1172
1173 /*
1174 * Syscall tracing should be turned off in the child regardless
1175 * of CLONE_PTRACE.
1176 */
1177 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1178 #ifdef TIF_SYSCALL_EMU
1179 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1180 #endif
1181 clear_all_latency_tracing(p);
1182
1183 /* ok, now we should be set up.. */
1184 p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL);
1185 p->pdeath_signal = 0;
1186 p->exit_state = 0;
1187
1188 /*
1189 * Ok, make it visible to the rest of the system.
1190 * We dont wake it up yet.
1191 */
1192 p->group_leader = p;
1193 INIT_LIST_HEAD(&p->thread_group);
1194
1195 /* Now that the task is set up, run cgroup callbacks if
1196 * necessary. We need to run them before the task is visible
1197 * on the tasklist. */
1198 cgroup_fork_callbacks(p);
1199 cgroup_callbacks_done = 1;
1200
1201 /* Need tasklist lock for parent etc handling! */
1202 write_lock_irq(&tasklist_lock);
1203
1204 /*
1205 * The task hasn't been attached yet, so its cpus_allowed mask will
1206 * not be changed, nor will its assigned CPU.
1207 *
1208 * The cpus_allowed mask of the parent may have changed after it was
1209 * copied first time - so re-copy it here, then check the child's CPU
1210 * to ensure it is on a valid CPU (and if not, just force it back to
1211 * parent's CPU). This avoids alot of nasty races.
1212 */
1213 p->cpus_allowed = current->cpus_allowed;
1214 p->rt.nr_cpus_allowed = current->rt.nr_cpus_allowed;
1215 if (unlikely(!cpu_isset(task_cpu(p), p->cpus_allowed) ||
1216 !cpu_online(task_cpu(p))))
1217 set_task_cpu(p, smp_processor_id());
1218
1219 /* CLONE_PARENT re-uses the old parent */
1220 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1221 p->real_parent = current->real_parent;
1222 p->parent_exec_id = current->parent_exec_id;
1223 } else {
1224 p->real_parent = current;
1225 p->parent_exec_id = current->self_exec_id;
1226 }
1227
1228 spin_lock(&current->sighand->siglock);
1229
1230 /*
1231 * Process group and session signals need to be delivered to just the
1232 * parent before the fork or both the parent and the child after the
1233 * fork. Restart if a signal comes in before we add the new process to
1234 * it's process group.
1235 * A fatal signal pending means that current will exit, so the new
1236 * thread can't slip out of an OOM kill (or normal SIGKILL).
1237 */
1238 recalc_sigpending();
1239 if (signal_pending(current)) {
1240 spin_unlock(&current->sighand->siglock);
1241 write_unlock_irq(&tasklist_lock);
1242 retval = -ERESTARTNOINTR;
1243 goto bad_fork_free_pid;
1244 }
1245
1246 if (clone_flags & CLONE_THREAD) {
1247 atomic_inc(&current->signal->count);
1248 atomic_inc(&current->signal->live);
1249 p->group_leader = current->group_leader;
1250 list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
1251 }
1252
1253 if (likely(p->pid)) {
1254 list_add_tail(&p->sibling, &p->real_parent->children);
1255 tracehook_finish_clone(p, clone_flags, trace);
1256
1257 if (thread_group_leader(p)) {
1258 if (clone_flags & CLONE_NEWPID)
1259 p->nsproxy->pid_ns->child_reaper = p;
1260
1261 p->signal->leader_pid = pid;
1262 tty_kref_put(p->signal->tty);
1263 p->signal->tty = tty_kref_get(current->signal->tty);
1264 attach_pid(p, PIDTYPE_PGID, task_pgrp(current));
1265 attach_pid(p, PIDTYPE_SID, task_session(current));
1266 list_add_tail_rcu(&p->tasks, &init_task.tasks);
1267 __get_cpu_var(process_counts)++;
1268 }
1269 attach_pid(p, PIDTYPE_PID, pid);
1270 nr_threads++;
1271 }
1272
1273 total_forks++;
1274 spin_unlock(&current->sighand->siglock);
1275 write_unlock_irq(&tasklist_lock);
1276 proc_fork_connector(p);
1277 cgroup_post_fork(p);
1278 perf_event_fork(p);
1279 return p;
1280
1281 bad_fork_free_pid:
1282 if (pid != &init_struct_pid)
1283 free_pid(pid);
1284 bad_fork_cleanup_io:
1285 put_io_context(p->io_context);
1286 bad_fork_cleanup_namespaces:
1287 exit_task_namespaces(p);
1288 bad_fork_cleanup_mm:
1289 if (p->mm)
1290 mmput(p->mm);
1291 bad_fork_cleanup_signal:
1292 if (!(clone_flags & CLONE_THREAD))
1293 __cleanup_signal(p->signal);
1294 bad_fork_cleanup_sighand:
1295 __cleanup_sighand(p->sighand);
1296 bad_fork_cleanup_fs:
1297 exit_fs(p); /* blocking */
1298 bad_fork_cleanup_files:
1299 exit_files(p); /* blocking */
1300 bad_fork_cleanup_semundo:
1301 exit_sem(p);
1302 bad_fork_cleanup_audit:
1303 audit_free(p);
1304 bad_fork_cleanup_policy:
1305 perf_event_free_task(p);
1306 #ifdef CONFIG_NUMA
1307 mpol_put(p->mempolicy);
1308 bad_fork_cleanup_cgroup:
1309 #endif
1310 cgroup_exit(p, cgroup_callbacks_done);
1311 delayacct_tsk_free(p);
1312 if (p->binfmt)
1313 module_put(p->binfmt->module);
1314 bad_fork_cleanup_put_domain:
1315 module_put(task_thread_info(p)->exec_domain->module);
1316 bad_fork_cleanup_count:
1317 atomic_dec(&p->cred->user->processes);
1318 exit_creds(p);
1319 bad_fork_free:
1320 free_task(p);
1321 fork_out:
1322 return ERR_PTR(retval);
1323 }
1324
1325 noinline struct pt_regs * __cpuinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
1326 {
1327 memset(regs, 0, sizeof(struct pt_regs));
1328 return regs;
1329 }
1330
1331 struct task_struct * __cpuinit fork_idle(int cpu)
1332 {
1333 struct task_struct *task;
1334 struct pt_regs regs;
1335
1336 task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL,
1337 &init_struct_pid, 0);
1338 if (!IS_ERR(task))
1339 init_idle(task, cpu);
1340
1341 return task;
1342 }
1343
1344 /*
1345 * Ok, this is the main fork-routine.
1346 *
1347 * It copies the process, and if successful kick-starts
1348 * it and waits for it to finish using the VM if required.
1349 */
1350 long do_fork(unsigned long clone_flags,
1351 unsigned long stack_start,
1352 struct pt_regs *regs,
1353 unsigned long stack_size,
1354 int __user *parent_tidptr,
1355 int __user *child_tidptr)
1356 {
1357 struct task_struct *p;
1358 int trace = 0;
1359 long nr;
1360
1361 /*
1362 * Do some preliminary argument and permissions checking before we
1363 * actually start allocating stuff
1364 */
1365 if (clone_flags & CLONE_NEWUSER) {
1366 if (clone_flags & CLONE_THREAD)
1367 return -EINVAL;
1368 /* hopefully this check will go away when userns support is
1369 * complete
1370 */
1371 if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SETUID) ||
1372 !capable(CAP_SETGID))
1373 return -EPERM;
1374 }
1375
1376 /*
1377 * We hope to recycle these flags after 2.6.26
1378 */
1379 if (unlikely(clone_flags & CLONE_STOPPED)) {
1380 static int __read_mostly count = 100;
1381
1382 if (count > 0 && printk_ratelimit()) {
1383 char comm[TASK_COMM_LEN];
1384
1385 count--;
1386 printk(KERN_INFO "fork(): process `%s' used deprecated "
1387 "clone flags 0x%lx\n",
1388 get_task_comm(comm, current),
1389 clone_flags & CLONE_STOPPED);
1390 }
1391 }
1392
1393 /*
1394 * When called from kernel_thread, don't do user tracing stuff.
1395 */
1396 if (likely(user_mode(regs)))
1397 trace = tracehook_prepare_clone(clone_flags);
1398
1399 p = copy_process(clone_flags, stack_start, regs, stack_size,
1400 child_tidptr, NULL, trace);
1401 /*
1402 * Do this prior waking up the new thread - the thread pointer
1403 * might get invalid after that point, if the thread exits quickly.
1404 */
1405 if (!IS_ERR(p)) {
1406 struct completion vfork;
1407
1408 trace_sched_process_fork(current, p);
1409
1410 nr = task_pid_vnr(p);
1411
1412 if (clone_flags & CLONE_PARENT_SETTID)
1413 put_user(nr, parent_tidptr);
1414
1415 if (clone_flags & CLONE_VFORK) {
1416 p->vfork_done = &vfork;
1417 init_completion(&vfork);
1418 }
1419
1420 audit_finish_fork(p);
1421 tracehook_report_clone(regs, clone_flags, nr, p);
1422
1423 /*
1424 * We set PF_STARTING at creation in case tracing wants to
1425 * use this to distinguish a fully live task from one that
1426 * hasn't gotten to tracehook_report_clone() yet. Now we
1427 * clear it and set the child going.
1428 */
1429 p->flags &= ~PF_STARTING;
1430
1431 if (unlikely(clone_flags & CLONE_STOPPED)) {
1432 /*
1433 * We'll start up with an immediate SIGSTOP.
1434 */
1435 sigaddset(&p->pending.signal, SIGSTOP);
1436 set_tsk_thread_flag(p, TIF_SIGPENDING);
1437 __set_task_state(p, TASK_STOPPED);
1438 } else {
1439 wake_up_new_task(p, clone_flags);
1440 }
1441
1442 tracehook_report_clone_complete(trace, regs,
1443 clone_flags, nr, p);
1444
1445 if (clone_flags & CLONE_VFORK) {
1446 freezer_do_not_count();
1447 wait_for_completion(&vfork);
1448 freezer_count();
1449 tracehook_report_vfork_done(p, nr);
1450 }
1451 } else {
1452 nr = PTR_ERR(p);
1453 }
1454 return nr;
1455 }
1456
1457 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1458 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1459 #endif
1460
1461 static void sighand_ctor(void *data)
1462 {
1463 struct sighand_struct *sighand = data;
1464
1465 spin_lock_init(&sighand->siglock);
1466 init_waitqueue_head(&sighand->signalfd_wqh);
1467 }
1468
1469 void __init proc_caches_init(void)
1470 {
1471 sighand_cachep = kmem_cache_create("sighand_cache",
1472 sizeof(struct sighand_struct), 0,
1473 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
1474 SLAB_NOTRACK, sighand_ctor);
1475 signal_cachep = kmem_cache_create("signal_cache",
1476 sizeof(struct signal_struct), 0,
1477 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1478 files_cachep = kmem_cache_create("files_cache",
1479 sizeof(struct files_struct), 0,
1480 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1481 fs_cachep = kmem_cache_create("fs_cache",
1482 sizeof(struct fs_struct), 0,
1483 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1484 mm_cachep = kmem_cache_create("mm_struct",
1485 sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1486 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1487 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC);
1488 mmap_init();
1489 }
1490
1491 /*
1492 * Check constraints on flags passed to the unshare system call and
1493 * force unsharing of additional process context as appropriate.
1494 */
1495 static void check_unshare_flags(unsigned long *flags_ptr)
1496 {
1497 /*
1498 * If unsharing a thread from a thread group, must also
1499 * unshare vm.
1500 */
1501 if (*flags_ptr & CLONE_THREAD)
1502 *flags_ptr |= CLONE_VM;
1503
1504 /*
1505 * If unsharing vm, must also unshare signal handlers.
1506 */
1507 if (*flags_ptr & CLONE_VM)
1508 *flags_ptr |= CLONE_SIGHAND;
1509
1510 /*
1511 * If unsharing signal handlers and the task was created
1512 * using CLONE_THREAD, then must unshare the thread
1513 */
1514 if ((*flags_ptr & CLONE_SIGHAND) &&
1515 (atomic_read(&current->signal->count) > 1))
1516 *flags_ptr |= CLONE_THREAD;
1517
1518 /*
1519 * If unsharing namespace, must also unshare filesystem information.
1520 */
1521 if (*flags_ptr & CLONE_NEWNS)
1522 *flags_ptr |= CLONE_FS;
1523 }
1524
1525 /*
1526 * Unsharing of tasks created with CLONE_THREAD is not supported yet
1527 */
1528 static int unshare_thread(unsigned long unshare_flags)
1529 {
1530 if (unshare_flags & CLONE_THREAD)
1531 return -EINVAL;
1532
1533 return 0;
1534 }
1535
1536 /*
1537 * Unshare the filesystem structure if it is being shared
1538 */
1539 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1540 {
1541 struct fs_struct *fs = current->fs;
1542
1543 if (!(unshare_flags & CLONE_FS) || !fs)
1544 return 0;
1545
1546 /* don't need lock here; in the worst case we'll do useless copy */
1547 if (fs->users == 1)
1548 return 0;
1549
1550 *new_fsp = copy_fs_struct(fs);
1551 if (!*new_fsp)
1552 return -ENOMEM;
1553
1554 return 0;
1555 }
1556
1557 /*
1558 * Unsharing of sighand is not supported yet
1559 */
1560 static int unshare_sighand(unsigned long unshare_flags, struct sighand_struct **new_sighp)
1561 {
1562 struct sighand_struct *sigh = current->sighand;
1563
1564 if ((unshare_flags & CLONE_SIGHAND) && atomic_read(&sigh->count) > 1)
1565 return -EINVAL;
1566 else
1567 return 0;
1568 }
1569
1570 /*
1571 * Unshare vm if it is being shared
1572 */
1573 static int unshare_vm(unsigned long unshare_flags, struct mm_struct **new_mmp)
1574 {
1575 struct mm_struct *mm = current->mm;
1576
1577 if ((unshare_flags & CLONE_VM) &&
1578 (mm && atomic_read(&mm->mm_users) > 1)) {
1579 return -EINVAL;
1580 }
1581
1582 return 0;
1583 }
1584
1585 /*
1586 * Unshare file descriptor table if it is being shared
1587 */
1588 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1589 {
1590 struct files_struct *fd = current->files;
1591 int error = 0;
1592
1593 if ((unshare_flags & CLONE_FILES) &&
1594 (fd && atomic_read(&fd->count) > 1)) {
1595 *new_fdp = dup_fd(fd, &error);
1596 if (!*new_fdp)
1597 return error;
1598 }
1599
1600 return 0;
1601 }
1602
1603 /*
1604 * unshare allows a process to 'unshare' part of the process
1605 * context which was originally shared using clone. copy_*
1606 * functions used by do_fork() cannot be used here directly
1607 * because they modify an inactive task_struct that is being
1608 * constructed. Here we are modifying the current, active,
1609 * task_struct.
1610 */
1611 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
1612 {
1613 int err = 0;
1614 struct fs_struct *fs, *new_fs = NULL;
1615 struct sighand_struct *new_sigh = NULL;
1616 struct mm_struct *mm, *new_mm = NULL, *active_mm = NULL;
1617 struct files_struct *fd, *new_fd = NULL;
1618 struct nsproxy *new_nsproxy = NULL;
1619 int do_sysvsem = 0;
1620
1621 check_unshare_flags(&unshare_flags);
1622
1623 /* Return -EINVAL for all unsupported flags */
1624 err = -EINVAL;
1625 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1626 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1627 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET))
1628 goto bad_unshare_out;
1629
1630 /*
1631 * CLONE_NEWIPC must also detach from the undolist: after switching
1632 * to a new ipc namespace, the semaphore arrays from the old
1633 * namespace are unreachable.
1634 */
1635 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
1636 do_sysvsem = 1;
1637 if ((err = unshare_thread(unshare_flags)))
1638 goto bad_unshare_out;
1639 if ((err = unshare_fs(unshare_flags, &new_fs)))
1640 goto bad_unshare_cleanup_thread;
1641 if ((err = unshare_sighand(unshare_flags, &new_sigh)))
1642 goto bad_unshare_cleanup_fs;
1643 if ((err = unshare_vm(unshare_flags, &new_mm)))
1644 goto bad_unshare_cleanup_sigh;
1645 if ((err = unshare_fd(unshare_flags, &new_fd)))
1646 goto bad_unshare_cleanup_vm;
1647 if ((err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
1648 new_fs)))
1649 goto bad_unshare_cleanup_fd;
1650
1651 if (new_fs || new_mm || new_fd || do_sysvsem || new_nsproxy) {
1652 if (do_sysvsem) {
1653 /*
1654 * CLONE_SYSVSEM is equivalent to sys_exit().
1655 */
1656 exit_sem(current);
1657 }
1658
1659 if (new_nsproxy) {
1660 switch_task_namespaces(current, new_nsproxy);
1661 new_nsproxy = NULL;
1662 }
1663
1664 task_lock(current);
1665
1666 if (new_fs) {
1667 fs = current->fs;
1668 write_lock(&fs->lock);
1669 current->fs = new_fs;
1670 if (--fs->users)
1671 new_fs = NULL;
1672 else
1673 new_fs = fs;
1674 write_unlock(&fs->lock);
1675 }
1676
1677 if (new_mm) {
1678 mm = current->mm;
1679 active_mm = current->active_mm;
1680 current->mm = new_mm;
1681 current->active_mm = new_mm;
1682 activate_mm(active_mm, new_mm);
1683 new_mm = mm;
1684 }
1685
1686 if (new_fd) {
1687 fd = current->files;
1688 current->files = new_fd;
1689 new_fd = fd;
1690 }
1691
1692 task_unlock(current);
1693 }
1694
1695 if (new_nsproxy)
1696 put_nsproxy(new_nsproxy);
1697
1698 bad_unshare_cleanup_fd:
1699 if (new_fd)
1700 put_files_struct(new_fd);
1701
1702 bad_unshare_cleanup_vm:
1703 if (new_mm)
1704 mmput(new_mm);
1705
1706 bad_unshare_cleanup_sigh:
1707 if (new_sigh)
1708 if (atomic_dec_and_test(&new_sigh->count))
1709 kmem_cache_free(sighand_cachep, new_sigh);
1710
1711 bad_unshare_cleanup_fs:
1712 if (new_fs)
1713 free_fs_struct(new_fs);
1714
1715 bad_unshare_cleanup_thread:
1716 bad_unshare_out:
1717 return err;
1718 }
1719
1720 /*
1721 * Helper to unshare the files of the current task.
1722 * We don't want to expose copy_files internals to
1723 * the exec layer of the kernel.
1724 */
1725
1726 int unshare_files(struct files_struct **displaced)
1727 {
1728 struct task_struct *task = current;
1729 struct files_struct *copy = NULL;
1730 int error;
1731
1732 error = unshare_fd(CLONE_FILES, &copy);
1733 if (error || !copy) {
1734 *displaced = NULL;
1735 return error;
1736 }
1737 *displaced = task->files;
1738 task_lock(task);
1739 task->files = copy;
1740 task_unlock(task);
1741 return 0;
1742 }
This page took 0.112384 seconds and 5 git commands to generate.