[PATCH] split linux/file.h
[deliverable/linux.git] / kernel / fork.c
1 /*
2 * linux/kernel/fork.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * 'fork.c' contains the help-routines for the 'fork' system call
9 * (see also entry.S and others).
10 * Fork is rather simple, once you get the hang of it, but the memory
11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12 */
13
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/mnt_namespace.h>
21 #include <linux/personality.h>
22 #include <linux/mempolicy.h>
23 #include <linux/sem.h>
24 #include <linux/file.h>
25 #include <linux/fdtable.h>
26 #include <linux/key.h>
27 #include <linux/binfmts.h>
28 #include <linux/mman.h>
29 #include <linux/fs.h>
30 #include <linux/nsproxy.h>
31 #include <linux/capability.h>
32 #include <linux/cpu.h>
33 #include <linux/cgroup.h>
34 #include <linux/security.h>
35 #include <linux/swap.h>
36 #include <linux/syscalls.h>
37 #include <linux/jiffies.h>
38 #include <linux/futex.h>
39 #include <linux/task_io_accounting_ops.h>
40 #include <linux/rcupdate.h>
41 #include <linux/ptrace.h>
42 #include <linux/mount.h>
43 #include <linux/audit.h>
44 #include <linux/memcontrol.h>
45 #include <linux/profile.h>
46 #include <linux/rmap.h>
47 #include <linux/acct.h>
48 #include <linux/tsacct_kern.h>
49 #include <linux/cn_proc.h>
50 #include <linux/freezer.h>
51 #include <linux/delayacct.h>
52 #include <linux/taskstats_kern.h>
53 #include <linux/random.h>
54 #include <linux/tty.h>
55 #include <linux/proc_fs.h>
56 #include <linux/blkdev.h>
57
58 #include <asm/pgtable.h>
59 #include <asm/pgalloc.h>
60 #include <asm/uaccess.h>
61 #include <asm/mmu_context.h>
62 #include <asm/cacheflush.h>
63 #include <asm/tlbflush.h>
64
65 /*
66 * Protected counters by write_lock_irq(&tasklist_lock)
67 */
68 unsigned long total_forks; /* Handle normal Linux uptimes. */
69 int nr_threads; /* The idle threads do not count.. */
70
71 int max_threads; /* tunable limit on nr_threads */
72
73 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
74
75 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
76
77 int nr_processes(void)
78 {
79 int cpu;
80 int total = 0;
81
82 for_each_online_cpu(cpu)
83 total += per_cpu(process_counts, cpu);
84
85 return total;
86 }
87
88 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
89 # define alloc_task_struct() kmem_cache_alloc(task_struct_cachep, GFP_KERNEL)
90 # define free_task_struct(tsk) kmem_cache_free(task_struct_cachep, (tsk))
91 static struct kmem_cache *task_struct_cachep;
92 #endif
93
94 /* SLAB cache for signal_struct structures (tsk->signal) */
95 static struct kmem_cache *signal_cachep;
96
97 /* SLAB cache for sighand_struct structures (tsk->sighand) */
98 struct kmem_cache *sighand_cachep;
99
100 /* SLAB cache for files_struct structures (tsk->files) */
101 struct kmem_cache *files_cachep;
102
103 /* SLAB cache for fs_struct structures (tsk->fs) */
104 struct kmem_cache *fs_cachep;
105
106 /* SLAB cache for vm_area_struct structures */
107 struct kmem_cache *vm_area_cachep;
108
109 /* SLAB cache for mm_struct structures (tsk->mm) */
110 static struct kmem_cache *mm_cachep;
111
112 void free_task(struct task_struct *tsk)
113 {
114 prop_local_destroy_single(&tsk->dirties);
115 free_thread_info(tsk->stack);
116 rt_mutex_debug_task_free(tsk);
117 free_task_struct(tsk);
118 }
119 EXPORT_SYMBOL(free_task);
120
121 void __put_task_struct(struct task_struct *tsk)
122 {
123 WARN_ON(!tsk->exit_state);
124 WARN_ON(atomic_read(&tsk->usage));
125 WARN_ON(tsk == current);
126
127 security_task_free(tsk);
128 free_uid(tsk->user);
129 put_group_info(tsk->group_info);
130 delayacct_tsk_free(tsk);
131
132 if (!profile_handoff_task(tsk))
133 free_task(tsk);
134 }
135
136 /*
137 * macro override instead of weak attribute alias, to workaround
138 * gcc 4.1.0 and 4.1.1 bugs with weak attribute and empty functions.
139 */
140 #ifndef arch_task_cache_init
141 #define arch_task_cache_init()
142 #endif
143
144 void __init fork_init(unsigned long mempages)
145 {
146 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
147 #ifndef ARCH_MIN_TASKALIGN
148 #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
149 #endif
150 /* create a slab on which task_structs can be allocated */
151 task_struct_cachep =
152 kmem_cache_create("task_struct", sizeof(struct task_struct),
153 ARCH_MIN_TASKALIGN, SLAB_PANIC, NULL);
154 #endif
155
156 /* do the arch specific task caches init */
157 arch_task_cache_init();
158
159 /*
160 * The default maximum number of threads is set to a safe
161 * value: the thread structures can take up at most half
162 * of memory.
163 */
164 max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
165
166 /*
167 * we need to allow at least 20 threads to boot a system
168 */
169 if(max_threads < 20)
170 max_threads = 20;
171
172 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
173 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
174 init_task.signal->rlim[RLIMIT_SIGPENDING] =
175 init_task.signal->rlim[RLIMIT_NPROC];
176 }
177
178 int __attribute__((weak)) arch_dup_task_struct(struct task_struct *dst,
179 struct task_struct *src)
180 {
181 *dst = *src;
182 return 0;
183 }
184
185 static struct task_struct *dup_task_struct(struct task_struct *orig)
186 {
187 struct task_struct *tsk;
188 struct thread_info *ti;
189 int err;
190
191 prepare_to_copy(orig);
192
193 tsk = alloc_task_struct();
194 if (!tsk)
195 return NULL;
196
197 ti = alloc_thread_info(tsk);
198 if (!ti) {
199 free_task_struct(tsk);
200 return NULL;
201 }
202
203 err = arch_dup_task_struct(tsk, orig);
204 if (err)
205 goto out;
206
207 tsk->stack = ti;
208
209 err = prop_local_init_single(&tsk->dirties);
210 if (err)
211 goto out;
212
213 setup_thread_stack(tsk, orig);
214
215 #ifdef CONFIG_CC_STACKPROTECTOR
216 tsk->stack_canary = get_random_int();
217 #endif
218
219 /* One for us, one for whoever does the "release_task()" (usually parent) */
220 atomic_set(&tsk->usage,2);
221 atomic_set(&tsk->fs_excl, 0);
222 #ifdef CONFIG_BLK_DEV_IO_TRACE
223 tsk->btrace_seq = 0;
224 #endif
225 tsk->splice_pipe = NULL;
226 return tsk;
227
228 out:
229 free_thread_info(ti);
230 free_task_struct(tsk);
231 return NULL;
232 }
233
234 #ifdef CONFIG_MMU
235 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
236 {
237 struct vm_area_struct *mpnt, *tmp, **pprev;
238 struct rb_node **rb_link, *rb_parent;
239 int retval;
240 unsigned long charge;
241 struct mempolicy *pol;
242
243 down_write(&oldmm->mmap_sem);
244 flush_cache_dup_mm(oldmm);
245 /*
246 * Not linked in yet - no deadlock potential:
247 */
248 down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
249
250 mm->locked_vm = 0;
251 mm->mmap = NULL;
252 mm->mmap_cache = NULL;
253 mm->free_area_cache = oldmm->mmap_base;
254 mm->cached_hole_size = ~0UL;
255 mm->map_count = 0;
256 cpus_clear(mm->cpu_vm_mask);
257 mm->mm_rb = RB_ROOT;
258 rb_link = &mm->mm_rb.rb_node;
259 rb_parent = NULL;
260 pprev = &mm->mmap;
261
262 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
263 struct file *file;
264
265 if (mpnt->vm_flags & VM_DONTCOPY) {
266 long pages = vma_pages(mpnt);
267 mm->total_vm -= pages;
268 vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
269 -pages);
270 continue;
271 }
272 charge = 0;
273 if (mpnt->vm_flags & VM_ACCOUNT) {
274 unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
275 if (security_vm_enough_memory(len))
276 goto fail_nomem;
277 charge = len;
278 }
279 tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
280 if (!tmp)
281 goto fail_nomem;
282 *tmp = *mpnt;
283 pol = mpol_dup(vma_policy(mpnt));
284 retval = PTR_ERR(pol);
285 if (IS_ERR(pol))
286 goto fail_nomem_policy;
287 vma_set_policy(tmp, pol);
288 tmp->vm_flags &= ~VM_LOCKED;
289 tmp->vm_mm = mm;
290 tmp->vm_next = NULL;
291 anon_vma_link(tmp);
292 file = tmp->vm_file;
293 if (file) {
294 struct inode *inode = file->f_path.dentry->d_inode;
295 get_file(file);
296 if (tmp->vm_flags & VM_DENYWRITE)
297 atomic_dec(&inode->i_writecount);
298
299 /* insert tmp into the share list, just after mpnt */
300 spin_lock(&file->f_mapping->i_mmap_lock);
301 tmp->vm_truncate_count = mpnt->vm_truncate_count;
302 flush_dcache_mmap_lock(file->f_mapping);
303 vma_prio_tree_add(tmp, mpnt);
304 flush_dcache_mmap_unlock(file->f_mapping);
305 spin_unlock(&file->f_mapping->i_mmap_lock);
306 }
307
308 /*
309 * Link in the new vma and copy the page table entries.
310 */
311 *pprev = tmp;
312 pprev = &tmp->vm_next;
313
314 __vma_link_rb(mm, tmp, rb_link, rb_parent);
315 rb_link = &tmp->vm_rb.rb_right;
316 rb_parent = &tmp->vm_rb;
317
318 mm->map_count++;
319 retval = copy_page_range(mm, oldmm, mpnt);
320
321 if (tmp->vm_ops && tmp->vm_ops->open)
322 tmp->vm_ops->open(tmp);
323
324 if (retval)
325 goto out;
326 }
327 /* a new mm has just been created */
328 arch_dup_mmap(oldmm, mm);
329 retval = 0;
330 out:
331 up_write(&mm->mmap_sem);
332 flush_tlb_mm(oldmm);
333 up_write(&oldmm->mmap_sem);
334 return retval;
335 fail_nomem_policy:
336 kmem_cache_free(vm_area_cachep, tmp);
337 fail_nomem:
338 retval = -ENOMEM;
339 vm_unacct_memory(charge);
340 goto out;
341 }
342
343 static inline int mm_alloc_pgd(struct mm_struct * mm)
344 {
345 mm->pgd = pgd_alloc(mm);
346 if (unlikely(!mm->pgd))
347 return -ENOMEM;
348 return 0;
349 }
350
351 static inline void mm_free_pgd(struct mm_struct * mm)
352 {
353 pgd_free(mm, mm->pgd);
354 }
355 #else
356 #define dup_mmap(mm, oldmm) (0)
357 #define mm_alloc_pgd(mm) (0)
358 #define mm_free_pgd(mm)
359 #endif /* CONFIG_MMU */
360
361 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
362
363 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
364 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
365
366 #include <linux/init_task.h>
367
368 static struct mm_struct * mm_init(struct mm_struct * mm, struct task_struct *p)
369 {
370 atomic_set(&mm->mm_users, 1);
371 atomic_set(&mm->mm_count, 1);
372 init_rwsem(&mm->mmap_sem);
373 INIT_LIST_HEAD(&mm->mmlist);
374 mm->flags = (current->mm) ? current->mm->flags
375 : MMF_DUMP_FILTER_DEFAULT;
376 mm->core_waiters = 0;
377 mm->nr_ptes = 0;
378 set_mm_counter(mm, file_rss, 0);
379 set_mm_counter(mm, anon_rss, 0);
380 spin_lock_init(&mm->page_table_lock);
381 rwlock_init(&mm->ioctx_list_lock);
382 mm->ioctx_list = NULL;
383 mm->free_area_cache = TASK_UNMAPPED_BASE;
384 mm->cached_hole_size = ~0UL;
385 mm_init_owner(mm, p);
386
387 if (likely(!mm_alloc_pgd(mm))) {
388 mm->def_flags = 0;
389 return mm;
390 }
391
392 free_mm(mm);
393 return NULL;
394 }
395
396 /*
397 * Allocate and initialize an mm_struct.
398 */
399 struct mm_struct * mm_alloc(void)
400 {
401 struct mm_struct * mm;
402
403 mm = allocate_mm();
404 if (mm) {
405 memset(mm, 0, sizeof(*mm));
406 mm = mm_init(mm, current);
407 }
408 return mm;
409 }
410
411 /*
412 * Called when the last reference to the mm
413 * is dropped: either by a lazy thread or by
414 * mmput. Free the page directory and the mm.
415 */
416 void __mmdrop(struct mm_struct *mm)
417 {
418 BUG_ON(mm == &init_mm);
419 mm_free_pgd(mm);
420 destroy_context(mm);
421 free_mm(mm);
422 }
423 EXPORT_SYMBOL_GPL(__mmdrop);
424
425 /*
426 * Decrement the use count and release all resources for an mm.
427 */
428 void mmput(struct mm_struct *mm)
429 {
430 might_sleep();
431
432 if (atomic_dec_and_test(&mm->mm_users)) {
433 exit_aio(mm);
434 exit_mmap(mm);
435 set_mm_exe_file(mm, NULL);
436 if (!list_empty(&mm->mmlist)) {
437 spin_lock(&mmlist_lock);
438 list_del(&mm->mmlist);
439 spin_unlock(&mmlist_lock);
440 }
441 put_swap_token(mm);
442 mmdrop(mm);
443 }
444 }
445 EXPORT_SYMBOL_GPL(mmput);
446
447 /**
448 * get_task_mm - acquire a reference to the task's mm
449 *
450 * Returns %NULL if the task has no mm. Checks PF_BORROWED_MM (meaning
451 * this kernel workthread has transiently adopted a user mm with use_mm,
452 * to do its AIO) is not set and if so returns a reference to it, after
453 * bumping up the use count. User must release the mm via mmput()
454 * after use. Typically used by /proc and ptrace.
455 */
456 struct mm_struct *get_task_mm(struct task_struct *task)
457 {
458 struct mm_struct *mm;
459
460 task_lock(task);
461 mm = task->mm;
462 if (mm) {
463 if (task->flags & PF_BORROWED_MM)
464 mm = NULL;
465 else
466 atomic_inc(&mm->mm_users);
467 }
468 task_unlock(task);
469 return mm;
470 }
471 EXPORT_SYMBOL_GPL(get_task_mm);
472
473 /* Please note the differences between mmput and mm_release.
474 * mmput is called whenever we stop holding onto a mm_struct,
475 * error success whatever.
476 *
477 * mm_release is called after a mm_struct has been removed
478 * from the current process.
479 *
480 * This difference is important for error handling, when we
481 * only half set up a mm_struct for a new process and need to restore
482 * the old one. Because we mmput the new mm_struct before
483 * restoring the old one. . .
484 * Eric Biederman 10 January 1998
485 */
486 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
487 {
488 struct completion *vfork_done = tsk->vfork_done;
489
490 /* Get rid of any cached register state */
491 deactivate_mm(tsk, mm);
492
493 /* notify parent sleeping on vfork() */
494 if (vfork_done) {
495 tsk->vfork_done = NULL;
496 complete(vfork_done);
497 }
498
499 /*
500 * If we're exiting normally, clear a user-space tid field if
501 * requested. We leave this alone when dying by signal, to leave
502 * the value intact in a core dump, and to save the unnecessary
503 * trouble otherwise. Userland only wants this done for a sys_exit.
504 */
505 if (tsk->clear_child_tid
506 && !(tsk->flags & PF_SIGNALED)
507 && atomic_read(&mm->mm_users) > 1) {
508 u32 __user * tidptr = tsk->clear_child_tid;
509 tsk->clear_child_tid = NULL;
510
511 /*
512 * We don't check the error code - if userspace has
513 * not set up a proper pointer then tough luck.
514 */
515 put_user(0, tidptr);
516 sys_futex(tidptr, FUTEX_WAKE, 1, NULL, NULL, 0);
517 }
518 }
519
520 /*
521 * Allocate a new mm structure and copy contents from the
522 * mm structure of the passed in task structure.
523 */
524 struct mm_struct *dup_mm(struct task_struct *tsk)
525 {
526 struct mm_struct *mm, *oldmm = current->mm;
527 int err;
528
529 if (!oldmm)
530 return NULL;
531
532 mm = allocate_mm();
533 if (!mm)
534 goto fail_nomem;
535
536 memcpy(mm, oldmm, sizeof(*mm));
537
538 /* Initializing for Swap token stuff */
539 mm->token_priority = 0;
540 mm->last_interval = 0;
541
542 if (!mm_init(mm, tsk))
543 goto fail_nomem;
544
545 if (init_new_context(tsk, mm))
546 goto fail_nocontext;
547
548 dup_mm_exe_file(oldmm, mm);
549
550 err = dup_mmap(mm, oldmm);
551 if (err)
552 goto free_pt;
553
554 mm->hiwater_rss = get_mm_rss(mm);
555 mm->hiwater_vm = mm->total_vm;
556
557 return mm;
558
559 free_pt:
560 mmput(mm);
561
562 fail_nomem:
563 return NULL;
564
565 fail_nocontext:
566 /*
567 * If init_new_context() failed, we cannot use mmput() to free the mm
568 * because it calls destroy_context()
569 */
570 mm_free_pgd(mm);
571 free_mm(mm);
572 return NULL;
573 }
574
575 static int copy_mm(unsigned long clone_flags, struct task_struct * tsk)
576 {
577 struct mm_struct * mm, *oldmm;
578 int retval;
579
580 tsk->min_flt = tsk->maj_flt = 0;
581 tsk->nvcsw = tsk->nivcsw = 0;
582
583 tsk->mm = NULL;
584 tsk->active_mm = NULL;
585
586 /*
587 * Are we cloning a kernel thread?
588 *
589 * We need to steal a active VM for that..
590 */
591 oldmm = current->mm;
592 if (!oldmm)
593 return 0;
594
595 if (clone_flags & CLONE_VM) {
596 atomic_inc(&oldmm->mm_users);
597 mm = oldmm;
598 goto good_mm;
599 }
600
601 retval = -ENOMEM;
602 mm = dup_mm(tsk);
603 if (!mm)
604 goto fail_nomem;
605
606 good_mm:
607 /* Initializing for Swap token stuff */
608 mm->token_priority = 0;
609 mm->last_interval = 0;
610
611 tsk->mm = mm;
612 tsk->active_mm = mm;
613 return 0;
614
615 fail_nomem:
616 return retval;
617 }
618
619 static struct fs_struct *__copy_fs_struct(struct fs_struct *old)
620 {
621 struct fs_struct *fs = kmem_cache_alloc(fs_cachep, GFP_KERNEL);
622 /* We don't need to lock fs - think why ;-) */
623 if (fs) {
624 atomic_set(&fs->count, 1);
625 rwlock_init(&fs->lock);
626 fs->umask = old->umask;
627 read_lock(&old->lock);
628 fs->root = old->root;
629 path_get(&old->root);
630 fs->pwd = old->pwd;
631 path_get(&old->pwd);
632 if (old->altroot.dentry) {
633 fs->altroot = old->altroot;
634 path_get(&old->altroot);
635 } else {
636 fs->altroot.mnt = NULL;
637 fs->altroot.dentry = NULL;
638 }
639 read_unlock(&old->lock);
640 }
641 return fs;
642 }
643
644 struct fs_struct *copy_fs_struct(struct fs_struct *old)
645 {
646 return __copy_fs_struct(old);
647 }
648
649 EXPORT_SYMBOL_GPL(copy_fs_struct);
650
651 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
652 {
653 if (clone_flags & CLONE_FS) {
654 atomic_inc(&current->fs->count);
655 return 0;
656 }
657 tsk->fs = __copy_fs_struct(current->fs);
658 if (!tsk->fs)
659 return -ENOMEM;
660 return 0;
661 }
662
663 static int count_open_files(struct fdtable *fdt)
664 {
665 int size = fdt->max_fds;
666 int i;
667
668 /* Find the last open fd */
669 for (i = size/(8*sizeof(long)); i > 0; ) {
670 if (fdt->open_fds->fds_bits[--i])
671 break;
672 }
673 i = (i+1) * 8 * sizeof(long);
674 return i;
675 }
676
677 static struct files_struct *alloc_files(void)
678 {
679 struct files_struct *newf;
680 struct fdtable *fdt;
681
682 newf = kmem_cache_alloc(files_cachep, GFP_KERNEL);
683 if (!newf)
684 goto out;
685
686 atomic_set(&newf->count, 1);
687
688 spin_lock_init(&newf->file_lock);
689 newf->next_fd = 0;
690 fdt = &newf->fdtab;
691 fdt->max_fds = NR_OPEN_DEFAULT;
692 fdt->close_on_exec = (fd_set *)&newf->close_on_exec_init;
693 fdt->open_fds = (fd_set *)&newf->open_fds_init;
694 fdt->fd = &newf->fd_array[0];
695 INIT_RCU_HEAD(&fdt->rcu);
696 fdt->next = NULL;
697 rcu_assign_pointer(newf->fdt, fdt);
698 out:
699 return newf;
700 }
701
702 /*
703 * Allocate a new files structure and copy contents from the
704 * passed in files structure.
705 * errorp will be valid only when the returned files_struct is NULL.
706 */
707 static struct files_struct *dup_fd(struct files_struct *oldf, int *errorp)
708 {
709 struct files_struct *newf;
710 struct file **old_fds, **new_fds;
711 int open_files, size, i;
712 struct fdtable *old_fdt, *new_fdt;
713
714 *errorp = -ENOMEM;
715 newf = alloc_files();
716 if (!newf)
717 goto out;
718
719 spin_lock(&oldf->file_lock);
720 old_fdt = files_fdtable(oldf);
721 new_fdt = files_fdtable(newf);
722 open_files = count_open_files(old_fdt);
723
724 /*
725 * Check whether we need to allocate a larger fd array and fd set.
726 * Note: we're not a clone task, so the open count won't change.
727 */
728 if (open_files > new_fdt->max_fds) {
729 new_fdt->max_fds = 0;
730 spin_unlock(&oldf->file_lock);
731 spin_lock(&newf->file_lock);
732 *errorp = expand_files(newf, open_files-1);
733 spin_unlock(&newf->file_lock);
734 if (*errorp < 0)
735 goto out_release;
736 new_fdt = files_fdtable(newf);
737 /*
738 * Reacquire the oldf lock and a pointer to its fd table
739 * who knows it may have a new bigger fd table. We need
740 * the latest pointer.
741 */
742 spin_lock(&oldf->file_lock);
743 old_fdt = files_fdtable(oldf);
744 }
745
746 old_fds = old_fdt->fd;
747 new_fds = new_fdt->fd;
748
749 memcpy(new_fdt->open_fds->fds_bits,
750 old_fdt->open_fds->fds_bits, open_files/8);
751 memcpy(new_fdt->close_on_exec->fds_bits,
752 old_fdt->close_on_exec->fds_bits, open_files/8);
753
754 for (i = open_files; i != 0; i--) {
755 struct file *f = *old_fds++;
756 if (f) {
757 get_file(f);
758 } else {
759 /*
760 * The fd may be claimed in the fd bitmap but not yet
761 * instantiated in the files array if a sibling thread
762 * is partway through open(). So make sure that this
763 * fd is available to the new process.
764 */
765 FD_CLR(open_files - i, new_fdt->open_fds);
766 }
767 rcu_assign_pointer(*new_fds++, f);
768 }
769 spin_unlock(&oldf->file_lock);
770
771 /* compute the remainder to be cleared */
772 size = (new_fdt->max_fds - open_files) * sizeof(struct file *);
773
774 /* This is long word aligned thus could use a optimized version */
775 memset(new_fds, 0, size);
776
777 if (new_fdt->max_fds > open_files) {
778 int left = (new_fdt->max_fds-open_files)/8;
779 int start = open_files / (8 * sizeof(unsigned long));
780
781 memset(&new_fdt->open_fds->fds_bits[start], 0, left);
782 memset(&new_fdt->close_on_exec->fds_bits[start], 0, left);
783 }
784
785 return newf;
786
787 out_release:
788 kmem_cache_free(files_cachep, newf);
789 out:
790 return NULL;
791 }
792
793 static int copy_files(unsigned long clone_flags, struct task_struct * tsk)
794 {
795 struct files_struct *oldf, *newf;
796 int error = 0;
797
798 /*
799 * A background process may not have any files ...
800 */
801 oldf = current->files;
802 if (!oldf)
803 goto out;
804
805 if (clone_flags & CLONE_FILES) {
806 atomic_inc(&oldf->count);
807 goto out;
808 }
809
810 newf = dup_fd(oldf, &error);
811 if (!newf)
812 goto out;
813
814 tsk->files = newf;
815 error = 0;
816 out:
817 return error;
818 }
819
820 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
821 {
822 #ifdef CONFIG_BLOCK
823 struct io_context *ioc = current->io_context;
824
825 if (!ioc)
826 return 0;
827 /*
828 * Share io context with parent, if CLONE_IO is set
829 */
830 if (clone_flags & CLONE_IO) {
831 tsk->io_context = ioc_task_link(ioc);
832 if (unlikely(!tsk->io_context))
833 return -ENOMEM;
834 } else if (ioprio_valid(ioc->ioprio)) {
835 tsk->io_context = alloc_io_context(GFP_KERNEL, -1);
836 if (unlikely(!tsk->io_context))
837 return -ENOMEM;
838
839 tsk->io_context->ioprio = ioc->ioprio;
840 }
841 #endif
842 return 0;
843 }
844
845 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
846 {
847 struct sighand_struct *sig;
848
849 if (clone_flags & (CLONE_SIGHAND | CLONE_THREAD)) {
850 atomic_inc(&current->sighand->count);
851 return 0;
852 }
853 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
854 rcu_assign_pointer(tsk->sighand, sig);
855 if (!sig)
856 return -ENOMEM;
857 atomic_set(&sig->count, 1);
858 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
859 return 0;
860 }
861
862 void __cleanup_sighand(struct sighand_struct *sighand)
863 {
864 if (atomic_dec_and_test(&sighand->count))
865 kmem_cache_free(sighand_cachep, sighand);
866 }
867
868 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
869 {
870 struct signal_struct *sig;
871 int ret;
872
873 if (clone_flags & CLONE_THREAD) {
874 atomic_inc(&current->signal->count);
875 atomic_inc(&current->signal->live);
876 return 0;
877 }
878 sig = kmem_cache_alloc(signal_cachep, GFP_KERNEL);
879 tsk->signal = sig;
880 if (!sig)
881 return -ENOMEM;
882
883 ret = copy_thread_group_keys(tsk);
884 if (ret < 0) {
885 kmem_cache_free(signal_cachep, sig);
886 return ret;
887 }
888
889 atomic_set(&sig->count, 1);
890 atomic_set(&sig->live, 1);
891 init_waitqueue_head(&sig->wait_chldexit);
892 sig->flags = 0;
893 sig->group_exit_code = 0;
894 sig->group_exit_task = NULL;
895 sig->group_stop_count = 0;
896 sig->curr_target = tsk;
897 init_sigpending(&sig->shared_pending);
898 INIT_LIST_HEAD(&sig->posix_timers);
899
900 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
901 sig->it_real_incr.tv64 = 0;
902 sig->real_timer.function = it_real_fn;
903
904 sig->it_virt_expires = cputime_zero;
905 sig->it_virt_incr = cputime_zero;
906 sig->it_prof_expires = cputime_zero;
907 sig->it_prof_incr = cputime_zero;
908
909 sig->leader = 0; /* session leadership doesn't inherit */
910 sig->tty_old_pgrp = NULL;
911
912 sig->utime = sig->stime = sig->cutime = sig->cstime = cputime_zero;
913 sig->gtime = cputime_zero;
914 sig->cgtime = cputime_zero;
915 sig->nvcsw = sig->nivcsw = sig->cnvcsw = sig->cnivcsw = 0;
916 sig->min_flt = sig->maj_flt = sig->cmin_flt = sig->cmaj_flt = 0;
917 sig->inblock = sig->oublock = sig->cinblock = sig->coublock = 0;
918 sig->sum_sched_runtime = 0;
919 INIT_LIST_HEAD(&sig->cpu_timers[0]);
920 INIT_LIST_HEAD(&sig->cpu_timers[1]);
921 INIT_LIST_HEAD(&sig->cpu_timers[2]);
922 taskstats_tgid_init(sig);
923
924 task_lock(current->group_leader);
925 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
926 task_unlock(current->group_leader);
927
928 if (sig->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) {
929 /*
930 * New sole thread in the process gets an expiry time
931 * of the whole CPU time limit.
932 */
933 tsk->it_prof_expires =
934 secs_to_cputime(sig->rlim[RLIMIT_CPU].rlim_cur);
935 }
936 acct_init_pacct(&sig->pacct);
937
938 tty_audit_fork(sig);
939
940 return 0;
941 }
942
943 void __cleanup_signal(struct signal_struct *sig)
944 {
945 exit_thread_group_keys(sig);
946 kmem_cache_free(signal_cachep, sig);
947 }
948
949 static void cleanup_signal(struct task_struct *tsk)
950 {
951 struct signal_struct *sig = tsk->signal;
952
953 atomic_dec(&sig->live);
954
955 if (atomic_dec_and_test(&sig->count))
956 __cleanup_signal(sig);
957 }
958
959 static void copy_flags(unsigned long clone_flags, struct task_struct *p)
960 {
961 unsigned long new_flags = p->flags;
962
963 new_flags &= ~PF_SUPERPRIV;
964 new_flags |= PF_FORKNOEXEC;
965 if (!(clone_flags & CLONE_PTRACE))
966 p->ptrace = 0;
967 p->flags = new_flags;
968 clear_freeze_flag(p);
969 }
970
971 asmlinkage long sys_set_tid_address(int __user *tidptr)
972 {
973 current->clear_child_tid = tidptr;
974
975 return task_pid_vnr(current);
976 }
977
978 static void rt_mutex_init_task(struct task_struct *p)
979 {
980 spin_lock_init(&p->pi_lock);
981 #ifdef CONFIG_RT_MUTEXES
982 plist_head_init(&p->pi_waiters, &p->pi_lock);
983 p->pi_blocked_on = NULL;
984 #endif
985 }
986
987 #ifdef CONFIG_MM_OWNER
988 void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
989 {
990 mm->owner = p;
991 }
992 #endif /* CONFIG_MM_OWNER */
993
994 /*
995 * This creates a new process as a copy of the old one,
996 * but does not actually start it yet.
997 *
998 * It copies the registers, and all the appropriate
999 * parts of the process environment (as per the clone
1000 * flags). The actual kick-off is left to the caller.
1001 */
1002 static struct task_struct *copy_process(unsigned long clone_flags,
1003 unsigned long stack_start,
1004 struct pt_regs *regs,
1005 unsigned long stack_size,
1006 int __user *child_tidptr,
1007 struct pid *pid)
1008 {
1009 int retval;
1010 struct task_struct *p;
1011 int cgroup_callbacks_done = 0;
1012
1013 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1014 return ERR_PTR(-EINVAL);
1015
1016 /*
1017 * Thread groups must share signals as well, and detached threads
1018 * can only be started up within the thread group.
1019 */
1020 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1021 return ERR_PTR(-EINVAL);
1022
1023 /*
1024 * Shared signal handlers imply shared VM. By way of the above,
1025 * thread groups also imply shared VM. Blocking this case allows
1026 * for various simplifications in other code.
1027 */
1028 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1029 return ERR_PTR(-EINVAL);
1030
1031 retval = security_task_create(clone_flags);
1032 if (retval)
1033 goto fork_out;
1034
1035 retval = -ENOMEM;
1036 p = dup_task_struct(current);
1037 if (!p)
1038 goto fork_out;
1039
1040 rt_mutex_init_task(p);
1041
1042 #ifdef CONFIG_TRACE_IRQFLAGS
1043 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1044 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1045 #endif
1046 retval = -EAGAIN;
1047 if (atomic_read(&p->user->processes) >=
1048 p->signal->rlim[RLIMIT_NPROC].rlim_cur) {
1049 if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
1050 p->user != current->nsproxy->user_ns->root_user)
1051 goto bad_fork_free;
1052 }
1053
1054 atomic_inc(&p->user->__count);
1055 atomic_inc(&p->user->processes);
1056 get_group_info(p->group_info);
1057
1058 /*
1059 * If multiple threads are within copy_process(), then this check
1060 * triggers too late. This doesn't hurt, the check is only there
1061 * to stop root fork bombs.
1062 */
1063 if (nr_threads >= max_threads)
1064 goto bad_fork_cleanup_count;
1065
1066 if (!try_module_get(task_thread_info(p)->exec_domain->module))
1067 goto bad_fork_cleanup_count;
1068
1069 if (p->binfmt && !try_module_get(p->binfmt->module))
1070 goto bad_fork_cleanup_put_domain;
1071
1072 p->did_exec = 0;
1073 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
1074 copy_flags(clone_flags, p);
1075 INIT_LIST_HEAD(&p->children);
1076 INIT_LIST_HEAD(&p->sibling);
1077 #ifdef CONFIG_PREEMPT_RCU
1078 p->rcu_read_lock_nesting = 0;
1079 p->rcu_flipctr_idx = 0;
1080 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1081 p->vfork_done = NULL;
1082 spin_lock_init(&p->alloc_lock);
1083
1084 clear_tsk_thread_flag(p, TIF_SIGPENDING);
1085 init_sigpending(&p->pending);
1086
1087 p->utime = cputime_zero;
1088 p->stime = cputime_zero;
1089 p->gtime = cputime_zero;
1090 p->utimescaled = cputime_zero;
1091 p->stimescaled = cputime_zero;
1092 p->prev_utime = cputime_zero;
1093 p->prev_stime = cputime_zero;
1094
1095 #ifdef CONFIG_DETECT_SOFTLOCKUP
1096 p->last_switch_count = 0;
1097 p->last_switch_timestamp = 0;
1098 #endif
1099
1100 #ifdef CONFIG_TASK_XACCT
1101 p->rchar = 0; /* I/O counter: bytes read */
1102 p->wchar = 0; /* I/O counter: bytes written */
1103 p->syscr = 0; /* I/O counter: read syscalls */
1104 p->syscw = 0; /* I/O counter: write syscalls */
1105 #endif
1106 task_io_accounting_init(p);
1107 acct_clear_integrals(p);
1108
1109 p->it_virt_expires = cputime_zero;
1110 p->it_prof_expires = cputime_zero;
1111 p->it_sched_expires = 0;
1112 INIT_LIST_HEAD(&p->cpu_timers[0]);
1113 INIT_LIST_HEAD(&p->cpu_timers[1]);
1114 INIT_LIST_HEAD(&p->cpu_timers[2]);
1115
1116 p->lock_depth = -1; /* -1 = no lock */
1117 do_posix_clock_monotonic_gettime(&p->start_time);
1118 p->real_start_time = p->start_time;
1119 monotonic_to_bootbased(&p->real_start_time);
1120 #ifdef CONFIG_SECURITY
1121 p->security = NULL;
1122 #endif
1123 p->cap_bset = current->cap_bset;
1124 p->io_context = NULL;
1125 p->audit_context = NULL;
1126 cgroup_fork(p);
1127 #ifdef CONFIG_NUMA
1128 p->mempolicy = mpol_dup(p->mempolicy);
1129 if (IS_ERR(p->mempolicy)) {
1130 retval = PTR_ERR(p->mempolicy);
1131 p->mempolicy = NULL;
1132 goto bad_fork_cleanup_cgroup;
1133 }
1134 mpol_fix_fork_child_flag(p);
1135 #endif
1136 #ifdef CONFIG_TRACE_IRQFLAGS
1137 p->irq_events = 0;
1138 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1139 p->hardirqs_enabled = 1;
1140 #else
1141 p->hardirqs_enabled = 0;
1142 #endif
1143 p->hardirq_enable_ip = 0;
1144 p->hardirq_enable_event = 0;
1145 p->hardirq_disable_ip = _THIS_IP_;
1146 p->hardirq_disable_event = 0;
1147 p->softirqs_enabled = 1;
1148 p->softirq_enable_ip = _THIS_IP_;
1149 p->softirq_enable_event = 0;
1150 p->softirq_disable_ip = 0;
1151 p->softirq_disable_event = 0;
1152 p->hardirq_context = 0;
1153 p->softirq_context = 0;
1154 #endif
1155 #ifdef CONFIG_LOCKDEP
1156 p->lockdep_depth = 0; /* no locks held yet */
1157 p->curr_chain_key = 0;
1158 p->lockdep_recursion = 0;
1159 #endif
1160
1161 #ifdef CONFIG_DEBUG_MUTEXES
1162 p->blocked_on = NULL; /* not blocked yet */
1163 #endif
1164
1165 /* Perform scheduler related setup. Assign this task to a CPU. */
1166 sched_fork(p, clone_flags);
1167
1168 if ((retval = security_task_alloc(p)))
1169 goto bad_fork_cleanup_policy;
1170 if ((retval = audit_alloc(p)))
1171 goto bad_fork_cleanup_security;
1172 /* copy all the process information */
1173 if ((retval = copy_semundo(clone_flags, p)))
1174 goto bad_fork_cleanup_audit;
1175 if ((retval = copy_files(clone_flags, p)))
1176 goto bad_fork_cleanup_semundo;
1177 if ((retval = copy_fs(clone_flags, p)))
1178 goto bad_fork_cleanup_files;
1179 if ((retval = copy_sighand(clone_flags, p)))
1180 goto bad_fork_cleanup_fs;
1181 if ((retval = copy_signal(clone_flags, p)))
1182 goto bad_fork_cleanup_sighand;
1183 if ((retval = copy_mm(clone_flags, p)))
1184 goto bad_fork_cleanup_signal;
1185 if ((retval = copy_keys(clone_flags, p)))
1186 goto bad_fork_cleanup_mm;
1187 if ((retval = copy_namespaces(clone_flags, p)))
1188 goto bad_fork_cleanup_keys;
1189 if ((retval = copy_io(clone_flags, p)))
1190 goto bad_fork_cleanup_namespaces;
1191 retval = copy_thread(0, clone_flags, stack_start, stack_size, p, regs);
1192 if (retval)
1193 goto bad_fork_cleanup_io;
1194
1195 if (pid != &init_struct_pid) {
1196 retval = -ENOMEM;
1197 pid = alloc_pid(task_active_pid_ns(p));
1198 if (!pid)
1199 goto bad_fork_cleanup_io;
1200
1201 if (clone_flags & CLONE_NEWPID) {
1202 retval = pid_ns_prepare_proc(task_active_pid_ns(p));
1203 if (retval < 0)
1204 goto bad_fork_free_pid;
1205 }
1206 }
1207
1208 p->pid = pid_nr(pid);
1209 p->tgid = p->pid;
1210 if (clone_flags & CLONE_THREAD)
1211 p->tgid = current->tgid;
1212
1213 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1214 /*
1215 * Clear TID on mm_release()?
1216 */
1217 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr: NULL;
1218 #ifdef CONFIG_FUTEX
1219 p->robust_list = NULL;
1220 #ifdef CONFIG_COMPAT
1221 p->compat_robust_list = NULL;
1222 #endif
1223 INIT_LIST_HEAD(&p->pi_state_list);
1224 p->pi_state_cache = NULL;
1225 #endif
1226 /*
1227 * sigaltstack should be cleared when sharing the same VM
1228 */
1229 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1230 p->sas_ss_sp = p->sas_ss_size = 0;
1231
1232 /*
1233 * Syscall tracing should be turned off in the child regardless
1234 * of CLONE_PTRACE.
1235 */
1236 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1237 #ifdef TIF_SYSCALL_EMU
1238 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1239 #endif
1240 clear_all_latency_tracing(p);
1241
1242 /* Our parent execution domain becomes current domain
1243 These must match for thread signalling to apply */
1244 p->parent_exec_id = p->self_exec_id;
1245
1246 /* ok, now we should be set up.. */
1247 p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL);
1248 p->pdeath_signal = 0;
1249 p->exit_state = 0;
1250
1251 /*
1252 * Ok, make it visible to the rest of the system.
1253 * We dont wake it up yet.
1254 */
1255 p->group_leader = p;
1256 INIT_LIST_HEAD(&p->thread_group);
1257 INIT_LIST_HEAD(&p->ptrace_children);
1258 INIT_LIST_HEAD(&p->ptrace_list);
1259
1260 /* Now that the task is set up, run cgroup callbacks if
1261 * necessary. We need to run them before the task is visible
1262 * on the tasklist. */
1263 cgroup_fork_callbacks(p);
1264 cgroup_callbacks_done = 1;
1265
1266 /* Need tasklist lock for parent etc handling! */
1267 write_lock_irq(&tasklist_lock);
1268
1269 /*
1270 * The task hasn't been attached yet, so its cpus_allowed mask will
1271 * not be changed, nor will its assigned CPU.
1272 *
1273 * The cpus_allowed mask of the parent may have changed after it was
1274 * copied first time - so re-copy it here, then check the child's CPU
1275 * to ensure it is on a valid CPU (and if not, just force it back to
1276 * parent's CPU). This avoids alot of nasty races.
1277 */
1278 p->cpus_allowed = current->cpus_allowed;
1279 p->rt.nr_cpus_allowed = current->rt.nr_cpus_allowed;
1280 if (unlikely(!cpu_isset(task_cpu(p), p->cpus_allowed) ||
1281 !cpu_online(task_cpu(p))))
1282 set_task_cpu(p, smp_processor_id());
1283
1284 /* CLONE_PARENT re-uses the old parent */
1285 if (clone_flags & (CLONE_PARENT|CLONE_THREAD))
1286 p->real_parent = current->real_parent;
1287 else
1288 p->real_parent = current;
1289 p->parent = p->real_parent;
1290
1291 spin_lock(&current->sighand->siglock);
1292
1293 /*
1294 * Process group and session signals need to be delivered to just the
1295 * parent before the fork or both the parent and the child after the
1296 * fork. Restart if a signal comes in before we add the new process to
1297 * it's process group.
1298 * A fatal signal pending means that current will exit, so the new
1299 * thread can't slip out of an OOM kill (or normal SIGKILL).
1300 */
1301 recalc_sigpending();
1302 if (signal_pending(current)) {
1303 spin_unlock(&current->sighand->siglock);
1304 write_unlock_irq(&tasklist_lock);
1305 retval = -ERESTARTNOINTR;
1306 goto bad_fork_free_pid;
1307 }
1308
1309 if (clone_flags & CLONE_THREAD) {
1310 p->group_leader = current->group_leader;
1311 list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
1312
1313 if (!cputime_eq(current->signal->it_virt_expires,
1314 cputime_zero) ||
1315 !cputime_eq(current->signal->it_prof_expires,
1316 cputime_zero) ||
1317 current->signal->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY ||
1318 !list_empty(&current->signal->cpu_timers[0]) ||
1319 !list_empty(&current->signal->cpu_timers[1]) ||
1320 !list_empty(&current->signal->cpu_timers[2])) {
1321 /*
1322 * Have child wake up on its first tick to check
1323 * for process CPU timers.
1324 */
1325 p->it_prof_expires = jiffies_to_cputime(1);
1326 }
1327 }
1328
1329 if (likely(p->pid)) {
1330 add_parent(p);
1331 if (unlikely(p->ptrace & PT_PTRACED))
1332 __ptrace_link(p, current->parent);
1333
1334 if (thread_group_leader(p)) {
1335 if (clone_flags & CLONE_NEWPID)
1336 p->nsproxy->pid_ns->child_reaper = p;
1337
1338 p->signal->leader_pid = pid;
1339 p->signal->tty = current->signal->tty;
1340 set_task_pgrp(p, task_pgrp_nr(current));
1341 set_task_session(p, task_session_nr(current));
1342 attach_pid(p, PIDTYPE_PGID, task_pgrp(current));
1343 attach_pid(p, PIDTYPE_SID, task_session(current));
1344 list_add_tail_rcu(&p->tasks, &init_task.tasks);
1345 __get_cpu_var(process_counts)++;
1346 }
1347 attach_pid(p, PIDTYPE_PID, pid);
1348 nr_threads++;
1349 }
1350
1351 total_forks++;
1352 spin_unlock(&current->sighand->siglock);
1353 write_unlock_irq(&tasklist_lock);
1354 proc_fork_connector(p);
1355 cgroup_post_fork(p);
1356 return p;
1357
1358 bad_fork_free_pid:
1359 if (pid != &init_struct_pid)
1360 free_pid(pid);
1361 bad_fork_cleanup_io:
1362 put_io_context(p->io_context);
1363 bad_fork_cleanup_namespaces:
1364 exit_task_namespaces(p);
1365 bad_fork_cleanup_keys:
1366 exit_keys(p);
1367 bad_fork_cleanup_mm:
1368 if (p->mm)
1369 mmput(p->mm);
1370 bad_fork_cleanup_signal:
1371 cleanup_signal(p);
1372 bad_fork_cleanup_sighand:
1373 __cleanup_sighand(p->sighand);
1374 bad_fork_cleanup_fs:
1375 exit_fs(p); /* blocking */
1376 bad_fork_cleanup_files:
1377 exit_files(p); /* blocking */
1378 bad_fork_cleanup_semundo:
1379 exit_sem(p);
1380 bad_fork_cleanup_audit:
1381 audit_free(p);
1382 bad_fork_cleanup_security:
1383 security_task_free(p);
1384 bad_fork_cleanup_policy:
1385 #ifdef CONFIG_NUMA
1386 mpol_put(p->mempolicy);
1387 bad_fork_cleanup_cgroup:
1388 #endif
1389 cgroup_exit(p, cgroup_callbacks_done);
1390 delayacct_tsk_free(p);
1391 if (p->binfmt)
1392 module_put(p->binfmt->module);
1393 bad_fork_cleanup_put_domain:
1394 module_put(task_thread_info(p)->exec_domain->module);
1395 bad_fork_cleanup_count:
1396 put_group_info(p->group_info);
1397 atomic_dec(&p->user->processes);
1398 free_uid(p->user);
1399 bad_fork_free:
1400 free_task(p);
1401 fork_out:
1402 return ERR_PTR(retval);
1403 }
1404
1405 noinline struct pt_regs * __cpuinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
1406 {
1407 memset(regs, 0, sizeof(struct pt_regs));
1408 return regs;
1409 }
1410
1411 struct task_struct * __cpuinit fork_idle(int cpu)
1412 {
1413 struct task_struct *task;
1414 struct pt_regs regs;
1415
1416 task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL,
1417 &init_struct_pid);
1418 if (!IS_ERR(task))
1419 init_idle(task, cpu);
1420
1421 return task;
1422 }
1423
1424 static int fork_traceflag(unsigned clone_flags)
1425 {
1426 if (clone_flags & CLONE_UNTRACED)
1427 return 0;
1428 else if (clone_flags & CLONE_VFORK) {
1429 if (current->ptrace & PT_TRACE_VFORK)
1430 return PTRACE_EVENT_VFORK;
1431 } else if ((clone_flags & CSIGNAL) != SIGCHLD) {
1432 if (current->ptrace & PT_TRACE_CLONE)
1433 return PTRACE_EVENT_CLONE;
1434 } else if (current->ptrace & PT_TRACE_FORK)
1435 return PTRACE_EVENT_FORK;
1436
1437 return 0;
1438 }
1439
1440 /*
1441 * Ok, this is the main fork-routine.
1442 *
1443 * It copies the process, and if successful kick-starts
1444 * it and waits for it to finish using the VM if required.
1445 */
1446 long do_fork(unsigned long clone_flags,
1447 unsigned long stack_start,
1448 struct pt_regs *regs,
1449 unsigned long stack_size,
1450 int __user *parent_tidptr,
1451 int __user *child_tidptr)
1452 {
1453 struct task_struct *p;
1454 int trace = 0;
1455 long nr;
1456
1457 /*
1458 * We hope to recycle these flags after 2.6.26
1459 */
1460 if (unlikely(clone_flags & CLONE_STOPPED)) {
1461 static int __read_mostly count = 100;
1462
1463 if (count > 0 && printk_ratelimit()) {
1464 char comm[TASK_COMM_LEN];
1465
1466 count--;
1467 printk(KERN_INFO "fork(): process `%s' used deprecated "
1468 "clone flags 0x%lx\n",
1469 get_task_comm(comm, current),
1470 clone_flags & CLONE_STOPPED);
1471 }
1472 }
1473
1474 if (unlikely(current->ptrace)) {
1475 trace = fork_traceflag (clone_flags);
1476 if (trace)
1477 clone_flags |= CLONE_PTRACE;
1478 }
1479
1480 p = copy_process(clone_flags, stack_start, regs, stack_size,
1481 child_tidptr, NULL);
1482 /*
1483 * Do this prior waking up the new thread - the thread pointer
1484 * might get invalid after that point, if the thread exits quickly.
1485 */
1486 if (!IS_ERR(p)) {
1487 struct completion vfork;
1488
1489 nr = task_pid_vnr(p);
1490
1491 if (clone_flags & CLONE_PARENT_SETTID)
1492 put_user(nr, parent_tidptr);
1493
1494 if (clone_flags & CLONE_VFORK) {
1495 p->vfork_done = &vfork;
1496 init_completion(&vfork);
1497 }
1498
1499 if ((p->ptrace & PT_PTRACED) || (clone_flags & CLONE_STOPPED)) {
1500 /*
1501 * We'll start up with an immediate SIGSTOP.
1502 */
1503 sigaddset(&p->pending.signal, SIGSTOP);
1504 set_tsk_thread_flag(p, TIF_SIGPENDING);
1505 }
1506
1507 if (!(clone_flags & CLONE_STOPPED))
1508 wake_up_new_task(p, clone_flags);
1509 else
1510 __set_task_state(p, TASK_STOPPED);
1511
1512 if (unlikely (trace)) {
1513 current->ptrace_message = nr;
1514 ptrace_notify ((trace << 8) | SIGTRAP);
1515 }
1516
1517 if (clone_flags & CLONE_VFORK) {
1518 freezer_do_not_count();
1519 wait_for_completion(&vfork);
1520 freezer_count();
1521 if (unlikely (current->ptrace & PT_TRACE_VFORK_DONE)) {
1522 current->ptrace_message = nr;
1523 ptrace_notify ((PTRACE_EVENT_VFORK_DONE << 8) | SIGTRAP);
1524 }
1525 }
1526 } else {
1527 nr = PTR_ERR(p);
1528 }
1529 return nr;
1530 }
1531
1532 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1533 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1534 #endif
1535
1536 static void sighand_ctor(struct kmem_cache *cachep, void *data)
1537 {
1538 struct sighand_struct *sighand = data;
1539
1540 spin_lock_init(&sighand->siglock);
1541 init_waitqueue_head(&sighand->signalfd_wqh);
1542 }
1543
1544 void __init proc_caches_init(void)
1545 {
1546 sighand_cachep = kmem_cache_create("sighand_cache",
1547 sizeof(struct sighand_struct), 0,
1548 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU,
1549 sighand_ctor);
1550 signal_cachep = kmem_cache_create("signal_cache",
1551 sizeof(struct signal_struct), 0,
1552 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1553 files_cachep = kmem_cache_create("files_cache",
1554 sizeof(struct files_struct), 0,
1555 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1556 fs_cachep = kmem_cache_create("fs_cache",
1557 sizeof(struct fs_struct), 0,
1558 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1559 vm_area_cachep = kmem_cache_create("vm_area_struct",
1560 sizeof(struct vm_area_struct), 0,
1561 SLAB_PANIC, NULL);
1562 mm_cachep = kmem_cache_create("mm_struct",
1563 sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1564 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1565 }
1566
1567 /*
1568 * Check constraints on flags passed to the unshare system call and
1569 * force unsharing of additional process context as appropriate.
1570 */
1571 static void check_unshare_flags(unsigned long *flags_ptr)
1572 {
1573 /*
1574 * If unsharing a thread from a thread group, must also
1575 * unshare vm.
1576 */
1577 if (*flags_ptr & CLONE_THREAD)
1578 *flags_ptr |= CLONE_VM;
1579
1580 /*
1581 * If unsharing vm, must also unshare signal handlers.
1582 */
1583 if (*flags_ptr & CLONE_VM)
1584 *flags_ptr |= CLONE_SIGHAND;
1585
1586 /*
1587 * If unsharing signal handlers and the task was created
1588 * using CLONE_THREAD, then must unshare the thread
1589 */
1590 if ((*flags_ptr & CLONE_SIGHAND) &&
1591 (atomic_read(&current->signal->count) > 1))
1592 *flags_ptr |= CLONE_THREAD;
1593
1594 /*
1595 * If unsharing namespace, must also unshare filesystem information.
1596 */
1597 if (*flags_ptr & CLONE_NEWNS)
1598 *flags_ptr |= CLONE_FS;
1599 }
1600
1601 /*
1602 * Unsharing of tasks created with CLONE_THREAD is not supported yet
1603 */
1604 static int unshare_thread(unsigned long unshare_flags)
1605 {
1606 if (unshare_flags & CLONE_THREAD)
1607 return -EINVAL;
1608
1609 return 0;
1610 }
1611
1612 /*
1613 * Unshare the filesystem structure if it is being shared
1614 */
1615 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1616 {
1617 struct fs_struct *fs = current->fs;
1618
1619 if ((unshare_flags & CLONE_FS) &&
1620 (fs && atomic_read(&fs->count) > 1)) {
1621 *new_fsp = __copy_fs_struct(current->fs);
1622 if (!*new_fsp)
1623 return -ENOMEM;
1624 }
1625
1626 return 0;
1627 }
1628
1629 /*
1630 * Unsharing of sighand is not supported yet
1631 */
1632 static int unshare_sighand(unsigned long unshare_flags, struct sighand_struct **new_sighp)
1633 {
1634 struct sighand_struct *sigh = current->sighand;
1635
1636 if ((unshare_flags & CLONE_SIGHAND) && atomic_read(&sigh->count) > 1)
1637 return -EINVAL;
1638 else
1639 return 0;
1640 }
1641
1642 /*
1643 * Unshare vm if it is being shared
1644 */
1645 static int unshare_vm(unsigned long unshare_flags, struct mm_struct **new_mmp)
1646 {
1647 struct mm_struct *mm = current->mm;
1648
1649 if ((unshare_flags & CLONE_VM) &&
1650 (mm && atomic_read(&mm->mm_users) > 1)) {
1651 return -EINVAL;
1652 }
1653
1654 return 0;
1655 }
1656
1657 /*
1658 * Unshare file descriptor table if it is being shared
1659 */
1660 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1661 {
1662 struct files_struct *fd = current->files;
1663 int error = 0;
1664
1665 if ((unshare_flags & CLONE_FILES) &&
1666 (fd && atomic_read(&fd->count) > 1)) {
1667 *new_fdp = dup_fd(fd, &error);
1668 if (!*new_fdp)
1669 return error;
1670 }
1671
1672 return 0;
1673 }
1674
1675 /*
1676 * unshare allows a process to 'unshare' part of the process
1677 * context which was originally shared using clone. copy_*
1678 * functions used by do_fork() cannot be used here directly
1679 * because they modify an inactive task_struct that is being
1680 * constructed. Here we are modifying the current, active,
1681 * task_struct.
1682 */
1683 asmlinkage long sys_unshare(unsigned long unshare_flags)
1684 {
1685 int err = 0;
1686 struct fs_struct *fs, *new_fs = NULL;
1687 struct sighand_struct *new_sigh = NULL;
1688 struct mm_struct *mm, *new_mm = NULL, *active_mm = NULL;
1689 struct files_struct *fd, *new_fd = NULL;
1690 struct nsproxy *new_nsproxy = NULL;
1691 int do_sysvsem = 0;
1692
1693 check_unshare_flags(&unshare_flags);
1694
1695 /* Return -EINVAL for all unsupported flags */
1696 err = -EINVAL;
1697 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1698 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1699 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWUSER|
1700 CLONE_NEWNET))
1701 goto bad_unshare_out;
1702
1703 /*
1704 * CLONE_NEWIPC must also detach from the undolist: after switching
1705 * to a new ipc namespace, the semaphore arrays from the old
1706 * namespace are unreachable.
1707 */
1708 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
1709 do_sysvsem = 1;
1710 if ((err = unshare_thread(unshare_flags)))
1711 goto bad_unshare_out;
1712 if ((err = unshare_fs(unshare_flags, &new_fs)))
1713 goto bad_unshare_cleanup_thread;
1714 if ((err = unshare_sighand(unshare_flags, &new_sigh)))
1715 goto bad_unshare_cleanup_fs;
1716 if ((err = unshare_vm(unshare_flags, &new_mm)))
1717 goto bad_unshare_cleanup_sigh;
1718 if ((err = unshare_fd(unshare_flags, &new_fd)))
1719 goto bad_unshare_cleanup_vm;
1720 if ((err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
1721 new_fs)))
1722 goto bad_unshare_cleanup_fd;
1723
1724 if (new_fs || new_mm || new_fd || do_sysvsem || new_nsproxy) {
1725 if (do_sysvsem) {
1726 /*
1727 * CLONE_SYSVSEM is equivalent to sys_exit().
1728 */
1729 exit_sem(current);
1730 }
1731
1732 if (new_nsproxy) {
1733 switch_task_namespaces(current, new_nsproxy);
1734 new_nsproxy = NULL;
1735 }
1736
1737 task_lock(current);
1738
1739 if (new_fs) {
1740 fs = current->fs;
1741 current->fs = new_fs;
1742 new_fs = fs;
1743 }
1744
1745 if (new_mm) {
1746 mm = current->mm;
1747 active_mm = current->active_mm;
1748 current->mm = new_mm;
1749 current->active_mm = new_mm;
1750 activate_mm(active_mm, new_mm);
1751 new_mm = mm;
1752 }
1753
1754 if (new_fd) {
1755 fd = current->files;
1756 current->files = new_fd;
1757 new_fd = fd;
1758 }
1759
1760 task_unlock(current);
1761 }
1762
1763 if (new_nsproxy)
1764 put_nsproxy(new_nsproxy);
1765
1766 bad_unshare_cleanup_fd:
1767 if (new_fd)
1768 put_files_struct(new_fd);
1769
1770 bad_unshare_cleanup_vm:
1771 if (new_mm)
1772 mmput(new_mm);
1773
1774 bad_unshare_cleanup_sigh:
1775 if (new_sigh)
1776 if (atomic_dec_and_test(&new_sigh->count))
1777 kmem_cache_free(sighand_cachep, new_sigh);
1778
1779 bad_unshare_cleanup_fs:
1780 if (new_fs)
1781 put_fs_struct(new_fs);
1782
1783 bad_unshare_cleanup_thread:
1784 bad_unshare_out:
1785 return err;
1786 }
1787
1788 /*
1789 * Helper to unshare the files of the current task.
1790 * We don't want to expose copy_files internals to
1791 * the exec layer of the kernel.
1792 */
1793
1794 int unshare_files(struct files_struct **displaced)
1795 {
1796 struct task_struct *task = current;
1797 struct files_struct *copy = NULL;
1798 int error;
1799
1800 error = unshare_fd(CLONE_FILES, &copy);
1801 if (error || !copy) {
1802 *displaced = NULL;
1803 return error;
1804 }
1805 *displaced = task->files;
1806 task_lock(task);
1807 task->files = copy;
1808 task_unlock(task);
1809 return 0;
1810 }
This page took 0.08046 seconds and 5 git commands to generate.