a79b36e2e912089a4d2bf2dd7393667cbcfd2f16
[deliverable/linux.git] / kernel / fork.c
1 /*
2 * linux/kernel/fork.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * 'fork.c' contains the help-routines for the 'fork' system call
9 * (see also entry.S and others).
10 * Fork is rather simple, once you get the hang of it, but the memory
11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12 */
13
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/mempolicy.h>
22 #include <linux/sem.h>
23 #include <linux/file.h>
24 #include <linux/fdtable.h>
25 #include <linux/iocontext.h>
26 #include <linux/key.h>
27 #include <linux/binfmts.h>
28 #include <linux/mman.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/fs.h>
31 #include <linux/nsproxy.h>
32 #include <linux/capability.h>
33 #include <linux/cpu.h>
34 #include <linux/cgroup.h>
35 #include <linux/security.h>
36 #include <linux/hugetlb.h>
37 #include <linux/swap.h>
38 #include <linux/syscalls.h>
39 #include <linux/jiffies.h>
40 #include <linux/futex.h>
41 #include <linux/compat.h>
42 #include <linux/kthread.h>
43 #include <linux/task_io_accounting_ops.h>
44 #include <linux/rcupdate.h>
45 #include <linux/ptrace.h>
46 #include <linux/mount.h>
47 #include <linux/audit.h>
48 #include <linux/memcontrol.h>
49 #include <linux/ftrace.h>
50 #include <linux/profile.h>
51 #include <linux/rmap.h>
52 #include <linux/ksm.h>
53 #include <linux/acct.h>
54 #include <linux/tsacct_kern.h>
55 #include <linux/cn_proc.h>
56 #include <linux/freezer.h>
57 #include <linux/delayacct.h>
58 #include <linux/taskstats_kern.h>
59 #include <linux/random.h>
60 #include <linux/tty.h>
61 #include <linux/blkdev.h>
62 #include <linux/fs_struct.h>
63 #include <linux/magic.h>
64 #include <linux/perf_event.h>
65 #include <linux/posix-timers.h>
66 #include <linux/user-return-notifier.h>
67 #include <linux/oom.h>
68 #include <linux/khugepaged.h>
69 #include <linux/signalfd.h>
70
71 #include <asm/pgtable.h>
72 #include <asm/pgalloc.h>
73 #include <asm/uaccess.h>
74 #include <asm/mmu_context.h>
75 #include <asm/cacheflush.h>
76 #include <asm/tlbflush.h>
77
78 #include <trace/events/sched.h>
79
80 #define CREATE_TRACE_POINTS
81 #include <trace/events/task.h>
82
83 /*
84 * Protected counters by write_lock_irq(&tasklist_lock)
85 */
86 unsigned long total_forks; /* Handle normal Linux uptimes. */
87 int nr_threads; /* The idle threads do not count.. */
88
89 int max_threads; /* tunable limit on nr_threads */
90
91 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
92
93 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
94
95 #ifdef CONFIG_PROVE_RCU
96 int lockdep_tasklist_lock_is_held(void)
97 {
98 return lockdep_is_held(&tasklist_lock);
99 }
100 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
101 #endif /* #ifdef CONFIG_PROVE_RCU */
102
103 int nr_processes(void)
104 {
105 int cpu;
106 int total = 0;
107
108 for_each_possible_cpu(cpu)
109 total += per_cpu(process_counts, cpu);
110
111 return total;
112 }
113
114 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
115 # define alloc_task_struct_node(node) \
116 kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node)
117 # define free_task_struct(tsk) \
118 kmem_cache_free(task_struct_cachep, (tsk))
119 static struct kmem_cache *task_struct_cachep;
120 #endif
121
122 #ifndef __HAVE_ARCH_THREAD_INFO_ALLOCATOR
123 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
124 int node)
125 {
126 #ifdef CONFIG_DEBUG_STACK_USAGE
127 gfp_t mask = GFP_KERNEL | __GFP_ZERO;
128 #else
129 gfp_t mask = GFP_KERNEL;
130 #endif
131 struct page *page = alloc_pages_node(node, mask, THREAD_SIZE_ORDER);
132
133 return page ? page_address(page) : NULL;
134 }
135
136 static inline void free_thread_info(struct thread_info *ti)
137 {
138 free_pages((unsigned long)ti, THREAD_SIZE_ORDER);
139 }
140 #endif
141
142 /* SLAB cache for signal_struct structures (tsk->signal) */
143 static struct kmem_cache *signal_cachep;
144
145 /* SLAB cache for sighand_struct structures (tsk->sighand) */
146 struct kmem_cache *sighand_cachep;
147
148 /* SLAB cache for files_struct structures (tsk->files) */
149 struct kmem_cache *files_cachep;
150
151 /* SLAB cache for fs_struct structures (tsk->fs) */
152 struct kmem_cache *fs_cachep;
153
154 /* SLAB cache for vm_area_struct structures */
155 struct kmem_cache *vm_area_cachep;
156
157 /* SLAB cache for mm_struct structures (tsk->mm) */
158 static struct kmem_cache *mm_cachep;
159
160 static void account_kernel_stack(struct thread_info *ti, int account)
161 {
162 struct zone *zone = page_zone(virt_to_page(ti));
163
164 mod_zone_page_state(zone, NR_KERNEL_STACK, account);
165 }
166
167 void free_task(struct task_struct *tsk)
168 {
169 account_kernel_stack(tsk->stack, -1);
170 free_thread_info(tsk->stack);
171 rt_mutex_debug_task_free(tsk);
172 ftrace_graph_exit_task(tsk);
173 free_task_struct(tsk);
174 }
175 EXPORT_SYMBOL(free_task);
176
177 static inline void free_signal_struct(struct signal_struct *sig)
178 {
179 taskstats_tgid_free(sig);
180 sched_autogroup_exit(sig);
181 kmem_cache_free(signal_cachep, sig);
182 }
183
184 static inline void put_signal_struct(struct signal_struct *sig)
185 {
186 if (atomic_dec_and_test(&sig->sigcnt))
187 free_signal_struct(sig);
188 }
189
190 void __put_task_struct(struct task_struct *tsk)
191 {
192 WARN_ON(!tsk->exit_state);
193 WARN_ON(atomic_read(&tsk->usage));
194 WARN_ON(tsk == current);
195
196 security_task_free(tsk);
197 exit_creds(tsk);
198 delayacct_tsk_free(tsk);
199 put_signal_struct(tsk->signal);
200
201 if (!profile_handoff_task(tsk))
202 free_task(tsk);
203 }
204 EXPORT_SYMBOL_GPL(__put_task_struct);
205
206 void __init __weak arch_task_cache_init(void) { }
207
208 void __init fork_init(unsigned long mempages)
209 {
210 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
211 #ifndef ARCH_MIN_TASKALIGN
212 #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
213 #endif
214 /* create a slab on which task_structs can be allocated */
215 task_struct_cachep =
216 kmem_cache_create("task_struct", sizeof(struct task_struct),
217 ARCH_MIN_TASKALIGN, SLAB_PANIC | SLAB_NOTRACK, NULL);
218 #endif
219
220 /* do the arch specific task caches init */
221 arch_task_cache_init();
222
223 /*
224 * The default maximum number of threads is set to a safe
225 * value: the thread structures can take up at most half
226 * of memory.
227 */
228 max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
229
230 /*
231 * we need to allow at least 20 threads to boot a system
232 */
233 if (max_threads < 20)
234 max_threads = 20;
235
236 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
237 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
238 init_task.signal->rlim[RLIMIT_SIGPENDING] =
239 init_task.signal->rlim[RLIMIT_NPROC];
240 }
241
242 int __attribute__((weak)) arch_dup_task_struct(struct task_struct *dst,
243 struct task_struct *src)
244 {
245 *dst = *src;
246 return 0;
247 }
248
249 static struct task_struct *dup_task_struct(struct task_struct *orig)
250 {
251 struct task_struct *tsk;
252 struct thread_info *ti;
253 unsigned long *stackend;
254 int node = tsk_fork_get_node(orig);
255 int err;
256
257 prepare_to_copy(orig);
258
259 tsk = alloc_task_struct_node(node);
260 if (!tsk)
261 return NULL;
262
263 ti = alloc_thread_info_node(tsk, node);
264 if (!ti) {
265 free_task_struct(tsk);
266 return NULL;
267 }
268
269 err = arch_dup_task_struct(tsk, orig);
270 if (err)
271 goto out;
272
273 tsk->stack = ti;
274
275 setup_thread_stack(tsk, orig);
276 clear_user_return_notifier(tsk);
277 clear_tsk_need_resched(tsk);
278 stackend = end_of_stack(tsk);
279 *stackend = STACK_END_MAGIC; /* for overflow detection */
280
281 #ifdef CONFIG_CC_STACKPROTECTOR
282 tsk->stack_canary = get_random_int();
283 #endif
284
285 /*
286 * One for us, one for whoever does the "release_task()" (usually
287 * parent)
288 */
289 atomic_set(&tsk->usage, 2);
290 #ifdef CONFIG_BLK_DEV_IO_TRACE
291 tsk->btrace_seq = 0;
292 #endif
293 tsk->splice_pipe = NULL;
294
295 account_kernel_stack(ti, 1);
296
297 return tsk;
298
299 out:
300 free_thread_info(ti);
301 free_task_struct(tsk);
302 return NULL;
303 }
304
305 #ifdef CONFIG_MMU
306 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
307 {
308 struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
309 struct rb_node **rb_link, *rb_parent;
310 int retval;
311 unsigned long charge;
312 struct mempolicy *pol;
313
314 down_write(&oldmm->mmap_sem);
315 flush_cache_dup_mm(oldmm);
316 /*
317 * Not linked in yet - no deadlock potential:
318 */
319 down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
320
321 mm->locked_vm = 0;
322 mm->mmap = NULL;
323 mm->mmap_cache = NULL;
324 mm->free_area_cache = oldmm->mmap_base;
325 mm->cached_hole_size = ~0UL;
326 mm->map_count = 0;
327 cpumask_clear(mm_cpumask(mm));
328 mm->mm_rb = RB_ROOT;
329 rb_link = &mm->mm_rb.rb_node;
330 rb_parent = NULL;
331 pprev = &mm->mmap;
332 retval = ksm_fork(mm, oldmm);
333 if (retval)
334 goto out;
335 retval = khugepaged_fork(mm, oldmm);
336 if (retval)
337 goto out;
338
339 prev = NULL;
340 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
341 struct file *file;
342
343 if (mpnt->vm_flags & VM_DONTCOPY) {
344 long pages = vma_pages(mpnt);
345 mm->total_vm -= pages;
346 vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
347 -pages);
348 continue;
349 }
350 charge = 0;
351 if (mpnt->vm_flags & VM_ACCOUNT) {
352 unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
353 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
354 goto fail_nomem;
355 charge = len;
356 }
357 tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
358 if (!tmp)
359 goto fail_nomem;
360 *tmp = *mpnt;
361 INIT_LIST_HEAD(&tmp->anon_vma_chain);
362 pol = mpol_dup(vma_policy(mpnt));
363 retval = PTR_ERR(pol);
364 if (IS_ERR(pol))
365 goto fail_nomem_policy;
366 vma_set_policy(tmp, pol);
367 tmp->vm_mm = mm;
368 if (anon_vma_fork(tmp, mpnt))
369 goto fail_nomem_anon_vma_fork;
370 tmp->vm_flags &= ~VM_LOCKED;
371 tmp->vm_next = tmp->vm_prev = NULL;
372 file = tmp->vm_file;
373 if (file) {
374 struct inode *inode = file->f_path.dentry->d_inode;
375 struct address_space *mapping = file->f_mapping;
376
377 get_file(file);
378 if (tmp->vm_flags & VM_DENYWRITE)
379 atomic_dec(&inode->i_writecount);
380 mutex_lock(&mapping->i_mmap_mutex);
381 if (tmp->vm_flags & VM_SHARED)
382 mapping->i_mmap_writable++;
383 flush_dcache_mmap_lock(mapping);
384 /* insert tmp into the share list, just after mpnt */
385 vma_prio_tree_add(tmp, mpnt);
386 flush_dcache_mmap_unlock(mapping);
387 mutex_unlock(&mapping->i_mmap_mutex);
388 }
389
390 /*
391 * Clear hugetlb-related page reserves for children. This only
392 * affects MAP_PRIVATE mappings. Faults generated by the child
393 * are not guaranteed to succeed, even if read-only
394 */
395 if (is_vm_hugetlb_page(tmp))
396 reset_vma_resv_huge_pages(tmp);
397
398 /*
399 * Link in the new vma and copy the page table entries.
400 */
401 *pprev = tmp;
402 pprev = &tmp->vm_next;
403 tmp->vm_prev = prev;
404 prev = tmp;
405
406 __vma_link_rb(mm, tmp, rb_link, rb_parent);
407 rb_link = &tmp->vm_rb.rb_right;
408 rb_parent = &tmp->vm_rb;
409
410 mm->map_count++;
411 retval = copy_page_range(mm, oldmm, mpnt);
412
413 if (tmp->vm_ops && tmp->vm_ops->open)
414 tmp->vm_ops->open(tmp);
415
416 if (retval)
417 goto out;
418 }
419 /* a new mm has just been created */
420 arch_dup_mmap(oldmm, mm);
421 retval = 0;
422 out:
423 up_write(&mm->mmap_sem);
424 flush_tlb_mm(oldmm);
425 up_write(&oldmm->mmap_sem);
426 return retval;
427 fail_nomem_anon_vma_fork:
428 mpol_put(pol);
429 fail_nomem_policy:
430 kmem_cache_free(vm_area_cachep, tmp);
431 fail_nomem:
432 retval = -ENOMEM;
433 vm_unacct_memory(charge);
434 goto out;
435 }
436
437 static inline int mm_alloc_pgd(struct mm_struct *mm)
438 {
439 mm->pgd = pgd_alloc(mm);
440 if (unlikely(!mm->pgd))
441 return -ENOMEM;
442 return 0;
443 }
444
445 static inline void mm_free_pgd(struct mm_struct *mm)
446 {
447 pgd_free(mm, mm->pgd);
448 }
449 #else
450 #define dup_mmap(mm, oldmm) (0)
451 #define mm_alloc_pgd(mm) (0)
452 #define mm_free_pgd(mm)
453 #endif /* CONFIG_MMU */
454
455 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
456
457 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
458 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
459
460 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
461
462 static int __init coredump_filter_setup(char *s)
463 {
464 default_dump_filter =
465 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
466 MMF_DUMP_FILTER_MASK;
467 return 1;
468 }
469
470 __setup("coredump_filter=", coredump_filter_setup);
471
472 #include <linux/init_task.h>
473
474 static void mm_init_aio(struct mm_struct *mm)
475 {
476 #ifdef CONFIG_AIO
477 spin_lock_init(&mm->ioctx_lock);
478 INIT_HLIST_HEAD(&mm->ioctx_list);
479 #endif
480 }
481
482 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p)
483 {
484 atomic_set(&mm->mm_users, 1);
485 atomic_set(&mm->mm_count, 1);
486 init_rwsem(&mm->mmap_sem);
487 INIT_LIST_HEAD(&mm->mmlist);
488 mm->flags = (current->mm) ?
489 (current->mm->flags & MMF_INIT_MASK) : default_dump_filter;
490 mm->core_state = NULL;
491 mm->nr_ptes = 0;
492 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
493 spin_lock_init(&mm->page_table_lock);
494 mm->free_area_cache = TASK_UNMAPPED_BASE;
495 mm->cached_hole_size = ~0UL;
496 mm_init_aio(mm);
497 mm_init_owner(mm, p);
498
499 if (likely(!mm_alloc_pgd(mm))) {
500 mm->def_flags = 0;
501 mmu_notifier_mm_init(mm);
502 return mm;
503 }
504
505 free_mm(mm);
506 return NULL;
507 }
508
509 static void check_mm(struct mm_struct *mm)
510 {
511 int i;
512
513 for (i = 0; i < NR_MM_COUNTERS; i++) {
514 long x = atomic_long_read(&mm->rss_stat.count[i]);
515
516 if (unlikely(x))
517 printk(KERN_ALERT "BUG: Bad rss-counter state "
518 "mm:%p idx:%d val:%ld\n", mm, i, x);
519 }
520
521 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
522 VM_BUG_ON(mm->pmd_huge_pte);
523 #endif
524 }
525
526 /*
527 * Allocate and initialize an mm_struct.
528 */
529 struct mm_struct *mm_alloc(void)
530 {
531 struct mm_struct *mm;
532
533 mm = allocate_mm();
534 if (!mm)
535 return NULL;
536
537 memset(mm, 0, sizeof(*mm));
538 mm_init_cpumask(mm);
539 return mm_init(mm, current);
540 }
541
542 /*
543 * Called when the last reference to the mm
544 * is dropped: either by a lazy thread or by
545 * mmput. Free the page directory and the mm.
546 */
547 void __mmdrop(struct mm_struct *mm)
548 {
549 BUG_ON(mm == &init_mm);
550 mm_free_pgd(mm);
551 destroy_context(mm);
552 mmu_notifier_mm_destroy(mm);
553 check_mm(mm);
554 free_mm(mm);
555 }
556 EXPORT_SYMBOL_GPL(__mmdrop);
557
558 /*
559 * Decrement the use count and release all resources for an mm.
560 */
561 void mmput(struct mm_struct *mm)
562 {
563 might_sleep();
564
565 if (atomic_dec_and_test(&mm->mm_users)) {
566 exit_aio(mm);
567 ksm_exit(mm);
568 khugepaged_exit(mm); /* must run before exit_mmap */
569 exit_mmap(mm);
570 set_mm_exe_file(mm, NULL);
571 if (!list_empty(&mm->mmlist)) {
572 spin_lock(&mmlist_lock);
573 list_del(&mm->mmlist);
574 spin_unlock(&mmlist_lock);
575 }
576 put_swap_token(mm);
577 if (mm->binfmt)
578 module_put(mm->binfmt->module);
579 mmdrop(mm);
580 }
581 }
582 EXPORT_SYMBOL_GPL(mmput);
583
584 /*
585 * We added or removed a vma mapping the executable. The vmas are only mapped
586 * during exec and are not mapped with the mmap system call.
587 * Callers must hold down_write() on the mm's mmap_sem for these
588 */
589 void added_exe_file_vma(struct mm_struct *mm)
590 {
591 mm->num_exe_file_vmas++;
592 }
593
594 void removed_exe_file_vma(struct mm_struct *mm)
595 {
596 mm->num_exe_file_vmas--;
597 if ((mm->num_exe_file_vmas == 0) && mm->exe_file) {
598 fput(mm->exe_file);
599 mm->exe_file = NULL;
600 }
601
602 }
603
604 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
605 {
606 if (new_exe_file)
607 get_file(new_exe_file);
608 if (mm->exe_file)
609 fput(mm->exe_file);
610 mm->exe_file = new_exe_file;
611 mm->num_exe_file_vmas = 0;
612 }
613
614 struct file *get_mm_exe_file(struct mm_struct *mm)
615 {
616 struct file *exe_file;
617
618 /* We need mmap_sem to protect against races with removal of
619 * VM_EXECUTABLE vmas */
620 down_read(&mm->mmap_sem);
621 exe_file = mm->exe_file;
622 if (exe_file)
623 get_file(exe_file);
624 up_read(&mm->mmap_sem);
625 return exe_file;
626 }
627
628 static void dup_mm_exe_file(struct mm_struct *oldmm, struct mm_struct *newmm)
629 {
630 /* It's safe to write the exe_file pointer without exe_file_lock because
631 * this is called during fork when the task is not yet in /proc */
632 newmm->exe_file = get_mm_exe_file(oldmm);
633 }
634
635 /**
636 * get_task_mm - acquire a reference to the task's mm
637 *
638 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
639 * this kernel workthread has transiently adopted a user mm with use_mm,
640 * to do its AIO) is not set and if so returns a reference to it, after
641 * bumping up the use count. User must release the mm via mmput()
642 * after use. Typically used by /proc and ptrace.
643 */
644 struct mm_struct *get_task_mm(struct task_struct *task)
645 {
646 struct mm_struct *mm;
647
648 task_lock(task);
649 mm = task->mm;
650 if (mm) {
651 if (task->flags & PF_KTHREAD)
652 mm = NULL;
653 else
654 atomic_inc(&mm->mm_users);
655 }
656 task_unlock(task);
657 return mm;
658 }
659 EXPORT_SYMBOL_GPL(get_task_mm);
660
661 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
662 {
663 struct mm_struct *mm;
664 int err;
665
666 err = mutex_lock_killable(&task->signal->cred_guard_mutex);
667 if (err)
668 return ERR_PTR(err);
669
670 mm = get_task_mm(task);
671 if (mm && mm != current->mm &&
672 !ptrace_may_access(task, mode)) {
673 mmput(mm);
674 mm = ERR_PTR(-EACCES);
675 }
676 mutex_unlock(&task->signal->cred_guard_mutex);
677
678 return mm;
679 }
680
681 static void complete_vfork_done(struct task_struct *tsk)
682 {
683 struct completion *vfork;
684
685 task_lock(tsk);
686 vfork = tsk->vfork_done;
687 if (likely(vfork)) {
688 tsk->vfork_done = NULL;
689 complete(vfork);
690 }
691 task_unlock(tsk);
692 }
693
694 static int wait_for_vfork_done(struct task_struct *child,
695 struct completion *vfork)
696 {
697 int killed;
698
699 freezer_do_not_count();
700 killed = wait_for_completion_killable(vfork);
701 freezer_count();
702
703 if (killed) {
704 task_lock(child);
705 child->vfork_done = NULL;
706 task_unlock(child);
707 }
708
709 put_task_struct(child);
710 return killed;
711 }
712
713 /* Please note the differences between mmput and mm_release.
714 * mmput is called whenever we stop holding onto a mm_struct,
715 * error success whatever.
716 *
717 * mm_release is called after a mm_struct has been removed
718 * from the current process.
719 *
720 * This difference is important for error handling, when we
721 * only half set up a mm_struct for a new process and need to restore
722 * the old one. Because we mmput the new mm_struct before
723 * restoring the old one. . .
724 * Eric Biederman 10 January 1998
725 */
726 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
727 {
728 /* Get rid of any futexes when releasing the mm */
729 #ifdef CONFIG_FUTEX
730 if (unlikely(tsk->robust_list)) {
731 exit_robust_list(tsk);
732 tsk->robust_list = NULL;
733 }
734 #ifdef CONFIG_COMPAT
735 if (unlikely(tsk->compat_robust_list)) {
736 compat_exit_robust_list(tsk);
737 tsk->compat_robust_list = NULL;
738 }
739 #endif
740 if (unlikely(!list_empty(&tsk->pi_state_list)))
741 exit_pi_state_list(tsk);
742 #endif
743
744 /* Get rid of any cached register state */
745 deactivate_mm(tsk, mm);
746
747 if (tsk->vfork_done)
748 complete_vfork_done(tsk);
749
750 /*
751 * If we're exiting normally, clear a user-space tid field if
752 * requested. We leave this alone when dying by signal, to leave
753 * the value intact in a core dump, and to save the unnecessary
754 * trouble, say, a killed vfork parent shouldn't touch this mm.
755 * Userland only wants this done for a sys_exit.
756 */
757 if (tsk->clear_child_tid) {
758 if (!(tsk->flags & PF_SIGNALED) &&
759 atomic_read(&mm->mm_users) > 1) {
760 /*
761 * We don't check the error code - if userspace has
762 * not set up a proper pointer then tough luck.
763 */
764 put_user(0, tsk->clear_child_tid);
765 sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
766 1, NULL, NULL, 0);
767 }
768 tsk->clear_child_tid = NULL;
769 }
770 }
771
772 /*
773 * Allocate a new mm structure and copy contents from the
774 * mm structure of the passed in task structure.
775 */
776 struct mm_struct *dup_mm(struct task_struct *tsk)
777 {
778 struct mm_struct *mm, *oldmm = current->mm;
779 int err;
780
781 if (!oldmm)
782 return NULL;
783
784 mm = allocate_mm();
785 if (!mm)
786 goto fail_nomem;
787
788 memcpy(mm, oldmm, sizeof(*mm));
789 mm_init_cpumask(mm);
790
791 /* Initializing for Swap token stuff */
792 mm->token_priority = 0;
793 mm->last_interval = 0;
794
795 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
796 mm->pmd_huge_pte = NULL;
797 #endif
798
799 if (!mm_init(mm, tsk))
800 goto fail_nomem;
801
802 if (init_new_context(tsk, mm))
803 goto fail_nocontext;
804
805 dup_mm_exe_file(oldmm, mm);
806
807 err = dup_mmap(mm, oldmm);
808 if (err)
809 goto free_pt;
810
811 mm->hiwater_rss = get_mm_rss(mm);
812 mm->hiwater_vm = mm->total_vm;
813
814 if (mm->binfmt && !try_module_get(mm->binfmt->module))
815 goto free_pt;
816
817 return mm;
818
819 free_pt:
820 /* don't put binfmt in mmput, we haven't got module yet */
821 mm->binfmt = NULL;
822 mmput(mm);
823
824 fail_nomem:
825 return NULL;
826
827 fail_nocontext:
828 /*
829 * If init_new_context() failed, we cannot use mmput() to free the mm
830 * because it calls destroy_context()
831 */
832 mm_free_pgd(mm);
833 free_mm(mm);
834 return NULL;
835 }
836
837 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
838 {
839 struct mm_struct *mm, *oldmm;
840 int retval;
841
842 tsk->min_flt = tsk->maj_flt = 0;
843 tsk->nvcsw = tsk->nivcsw = 0;
844 #ifdef CONFIG_DETECT_HUNG_TASK
845 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
846 #endif
847
848 tsk->mm = NULL;
849 tsk->active_mm = NULL;
850
851 /*
852 * Are we cloning a kernel thread?
853 *
854 * We need to steal a active VM for that..
855 */
856 oldmm = current->mm;
857 if (!oldmm)
858 return 0;
859
860 if (clone_flags & CLONE_VM) {
861 atomic_inc(&oldmm->mm_users);
862 mm = oldmm;
863 goto good_mm;
864 }
865
866 retval = -ENOMEM;
867 mm = dup_mm(tsk);
868 if (!mm)
869 goto fail_nomem;
870
871 good_mm:
872 /* Initializing for Swap token stuff */
873 mm->token_priority = 0;
874 mm->last_interval = 0;
875
876 tsk->mm = mm;
877 tsk->active_mm = mm;
878 return 0;
879
880 fail_nomem:
881 return retval;
882 }
883
884 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
885 {
886 struct fs_struct *fs = current->fs;
887 if (clone_flags & CLONE_FS) {
888 /* tsk->fs is already what we want */
889 spin_lock(&fs->lock);
890 if (fs->in_exec) {
891 spin_unlock(&fs->lock);
892 return -EAGAIN;
893 }
894 fs->users++;
895 spin_unlock(&fs->lock);
896 return 0;
897 }
898 tsk->fs = copy_fs_struct(fs);
899 if (!tsk->fs)
900 return -ENOMEM;
901 return 0;
902 }
903
904 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
905 {
906 struct files_struct *oldf, *newf;
907 int error = 0;
908
909 /*
910 * A background process may not have any files ...
911 */
912 oldf = current->files;
913 if (!oldf)
914 goto out;
915
916 if (clone_flags & CLONE_FILES) {
917 atomic_inc(&oldf->count);
918 goto out;
919 }
920
921 newf = dup_fd(oldf, &error);
922 if (!newf)
923 goto out;
924
925 tsk->files = newf;
926 error = 0;
927 out:
928 return error;
929 }
930
931 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
932 {
933 #ifdef CONFIG_BLOCK
934 struct io_context *ioc = current->io_context;
935 struct io_context *new_ioc;
936
937 if (!ioc)
938 return 0;
939 /*
940 * Share io context with parent, if CLONE_IO is set
941 */
942 if (clone_flags & CLONE_IO) {
943 tsk->io_context = ioc_task_link(ioc);
944 if (unlikely(!tsk->io_context))
945 return -ENOMEM;
946 } else if (ioprio_valid(ioc->ioprio)) {
947 new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
948 if (unlikely(!new_ioc))
949 return -ENOMEM;
950
951 new_ioc->ioprio = ioc->ioprio;
952 put_io_context(new_ioc);
953 }
954 #endif
955 return 0;
956 }
957
958 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
959 {
960 struct sighand_struct *sig;
961
962 if (clone_flags & CLONE_SIGHAND) {
963 atomic_inc(&current->sighand->count);
964 return 0;
965 }
966 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
967 rcu_assign_pointer(tsk->sighand, sig);
968 if (!sig)
969 return -ENOMEM;
970 atomic_set(&sig->count, 1);
971 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
972 return 0;
973 }
974
975 void __cleanup_sighand(struct sighand_struct *sighand)
976 {
977 if (atomic_dec_and_test(&sighand->count)) {
978 signalfd_cleanup(sighand);
979 kmem_cache_free(sighand_cachep, sighand);
980 }
981 }
982
983
984 /*
985 * Initialize POSIX timer handling for a thread group.
986 */
987 static void posix_cpu_timers_init_group(struct signal_struct *sig)
988 {
989 unsigned long cpu_limit;
990
991 /* Thread group counters. */
992 thread_group_cputime_init(sig);
993
994 cpu_limit = ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
995 if (cpu_limit != RLIM_INFINITY) {
996 sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit);
997 sig->cputimer.running = 1;
998 }
999
1000 /* The timer lists. */
1001 INIT_LIST_HEAD(&sig->cpu_timers[0]);
1002 INIT_LIST_HEAD(&sig->cpu_timers[1]);
1003 INIT_LIST_HEAD(&sig->cpu_timers[2]);
1004 }
1005
1006 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1007 {
1008 struct signal_struct *sig;
1009
1010 if (clone_flags & CLONE_THREAD)
1011 return 0;
1012
1013 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1014 tsk->signal = sig;
1015 if (!sig)
1016 return -ENOMEM;
1017
1018 sig->nr_threads = 1;
1019 atomic_set(&sig->live, 1);
1020 atomic_set(&sig->sigcnt, 1);
1021 init_waitqueue_head(&sig->wait_chldexit);
1022 if (clone_flags & CLONE_NEWPID)
1023 sig->flags |= SIGNAL_UNKILLABLE;
1024 sig->curr_target = tsk;
1025 init_sigpending(&sig->shared_pending);
1026 INIT_LIST_HEAD(&sig->posix_timers);
1027
1028 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1029 sig->real_timer.function = it_real_fn;
1030
1031 task_lock(current->group_leader);
1032 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1033 task_unlock(current->group_leader);
1034
1035 posix_cpu_timers_init_group(sig);
1036
1037 tty_audit_fork(sig);
1038 sched_autogroup_fork(sig);
1039
1040 #ifdef CONFIG_CGROUPS
1041 init_rwsem(&sig->group_rwsem);
1042 #endif
1043
1044 sig->oom_adj = current->signal->oom_adj;
1045 sig->oom_score_adj = current->signal->oom_score_adj;
1046 sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1047
1048 sig->has_child_subreaper = current->signal->has_child_subreaper ||
1049 current->signal->is_child_subreaper;
1050
1051 mutex_init(&sig->cred_guard_mutex);
1052
1053 return 0;
1054 }
1055
1056 static void copy_flags(unsigned long clone_flags, struct task_struct *p)
1057 {
1058 unsigned long new_flags = p->flags;
1059
1060 new_flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER);
1061 new_flags |= PF_FORKNOEXEC;
1062 p->flags = new_flags;
1063 }
1064
1065 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1066 {
1067 current->clear_child_tid = tidptr;
1068
1069 return task_pid_vnr(current);
1070 }
1071
1072 static void rt_mutex_init_task(struct task_struct *p)
1073 {
1074 raw_spin_lock_init(&p->pi_lock);
1075 #ifdef CONFIG_RT_MUTEXES
1076 plist_head_init(&p->pi_waiters);
1077 p->pi_blocked_on = NULL;
1078 #endif
1079 }
1080
1081 #ifdef CONFIG_MM_OWNER
1082 void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
1083 {
1084 mm->owner = p;
1085 }
1086 #endif /* CONFIG_MM_OWNER */
1087
1088 /*
1089 * Initialize POSIX timer handling for a single task.
1090 */
1091 static void posix_cpu_timers_init(struct task_struct *tsk)
1092 {
1093 tsk->cputime_expires.prof_exp = 0;
1094 tsk->cputime_expires.virt_exp = 0;
1095 tsk->cputime_expires.sched_exp = 0;
1096 INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1097 INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1098 INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1099 }
1100
1101 /*
1102 * This creates a new process as a copy of the old one,
1103 * but does not actually start it yet.
1104 *
1105 * It copies the registers, and all the appropriate
1106 * parts of the process environment (as per the clone
1107 * flags). The actual kick-off is left to the caller.
1108 */
1109 static struct task_struct *copy_process(unsigned long clone_flags,
1110 unsigned long stack_start,
1111 struct pt_regs *regs,
1112 unsigned long stack_size,
1113 int __user *child_tidptr,
1114 struct pid *pid,
1115 int trace)
1116 {
1117 int retval;
1118 struct task_struct *p;
1119 int cgroup_callbacks_done = 0;
1120
1121 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1122 return ERR_PTR(-EINVAL);
1123
1124 /*
1125 * Thread groups must share signals as well, and detached threads
1126 * can only be started up within the thread group.
1127 */
1128 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1129 return ERR_PTR(-EINVAL);
1130
1131 /*
1132 * Shared signal handlers imply shared VM. By way of the above,
1133 * thread groups also imply shared VM. Blocking this case allows
1134 * for various simplifications in other code.
1135 */
1136 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1137 return ERR_PTR(-EINVAL);
1138
1139 /*
1140 * Siblings of global init remain as zombies on exit since they are
1141 * not reaped by their parent (swapper). To solve this and to avoid
1142 * multi-rooted process trees, prevent global and container-inits
1143 * from creating siblings.
1144 */
1145 if ((clone_flags & CLONE_PARENT) &&
1146 current->signal->flags & SIGNAL_UNKILLABLE)
1147 return ERR_PTR(-EINVAL);
1148
1149 retval = security_task_create(clone_flags);
1150 if (retval)
1151 goto fork_out;
1152
1153 retval = -ENOMEM;
1154 p = dup_task_struct(current);
1155 if (!p)
1156 goto fork_out;
1157
1158 ftrace_graph_init_task(p);
1159
1160 rt_mutex_init_task(p);
1161
1162 #ifdef CONFIG_PROVE_LOCKING
1163 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1164 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1165 #endif
1166 retval = -EAGAIN;
1167 if (atomic_read(&p->real_cred->user->processes) >=
1168 task_rlimit(p, RLIMIT_NPROC)) {
1169 if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
1170 p->real_cred->user != INIT_USER)
1171 goto bad_fork_free;
1172 }
1173 current->flags &= ~PF_NPROC_EXCEEDED;
1174
1175 retval = copy_creds(p, clone_flags);
1176 if (retval < 0)
1177 goto bad_fork_free;
1178
1179 /*
1180 * If multiple threads are within copy_process(), then this check
1181 * triggers too late. This doesn't hurt, the check is only there
1182 * to stop root fork bombs.
1183 */
1184 retval = -EAGAIN;
1185 if (nr_threads >= max_threads)
1186 goto bad_fork_cleanup_count;
1187
1188 if (!try_module_get(task_thread_info(p)->exec_domain->module))
1189 goto bad_fork_cleanup_count;
1190
1191 p->did_exec = 0;
1192 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
1193 copy_flags(clone_flags, p);
1194 INIT_LIST_HEAD(&p->children);
1195 INIT_LIST_HEAD(&p->sibling);
1196 rcu_copy_process(p);
1197 p->vfork_done = NULL;
1198 spin_lock_init(&p->alloc_lock);
1199
1200 init_sigpending(&p->pending);
1201
1202 p->utime = p->stime = p->gtime = 0;
1203 p->utimescaled = p->stimescaled = 0;
1204 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
1205 p->prev_utime = p->prev_stime = 0;
1206 #endif
1207 #if defined(SPLIT_RSS_COUNTING)
1208 memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1209 #endif
1210
1211 p->default_timer_slack_ns = current->timer_slack_ns;
1212
1213 task_io_accounting_init(&p->ioac);
1214 acct_clear_integrals(p);
1215
1216 posix_cpu_timers_init(p);
1217
1218 do_posix_clock_monotonic_gettime(&p->start_time);
1219 p->real_start_time = p->start_time;
1220 monotonic_to_bootbased(&p->real_start_time);
1221 p->io_context = NULL;
1222 p->audit_context = NULL;
1223 if (clone_flags & CLONE_THREAD)
1224 threadgroup_change_begin(current);
1225 cgroup_fork(p);
1226 #ifdef CONFIG_NUMA
1227 p->mempolicy = mpol_dup(p->mempolicy);
1228 if (IS_ERR(p->mempolicy)) {
1229 retval = PTR_ERR(p->mempolicy);
1230 p->mempolicy = NULL;
1231 goto bad_fork_cleanup_cgroup;
1232 }
1233 mpol_fix_fork_child_flag(p);
1234 #endif
1235 #ifdef CONFIG_CPUSETS
1236 p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1237 p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1238 seqcount_init(&p->mems_allowed_seq);
1239 #endif
1240 #ifdef CONFIG_TRACE_IRQFLAGS
1241 p->irq_events = 0;
1242 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1243 p->hardirqs_enabled = 1;
1244 #else
1245 p->hardirqs_enabled = 0;
1246 #endif
1247 p->hardirq_enable_ip = 0;
1248 p->hardirq_enable_event = 0;
1249 p->hardirq_disable_ip = _THIS_IP_;
1250 p->hardirq_disable_event = 0;
1251 p->softirqs_enabled = 1;
1252 p->softirq_enable_ip = _THIS_IP_;
1253 p->softirq_enable_event = 0;
1254 p->softirq_disable_ip = 0;
1255 p->softirq_disable_event = 0;
1256 p->hardirq_context = 0;
1257 p->softirq_context = 0;
1258 #endif
1259 #ifdef CONFIG_LOCKDEP
1260 p->lockdep_depth = 0; /* no locks held yet */
1261 p->curr_chain_key = 0;
1262 p->lockdep_recursion = 0;
1263 #endif
1264
1265 #ifdef CONFIG_DEBUG_MUTEXES
1266 p->blocked_on = NULL; /* not blocked yet */
1267 #endif
1268 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
1269 p->memcg_batch.do_batch = 0;
1270 p->memcg_batch.memcg = NULL;
1271 #endif
1272
1273 /* Perform scheduler related setup. Assign this task to a CPU. */
1274 sched_fork(p);
1275
1276 retval = perf_event_init_task(p);
1277 if (retval)
1278 goto bad_fork_cleanup_policy;
1279 retval = audit_alloc(p);
1280 if (retval)
1281 goto bad_fork_cleanup_policy;
1282 /* copy all the process information */
1283 retval = copy_semundo(clone_flags, p);
1284 if (retval)
1285 goto bad_fork_cleanup_audit;
1286 retval = copy_files(clone_flags, p);
1287 if (retval)
1288 goto bad_fork_cleanup_semundo;
1289 retval = copy_fs(clone_flags, p);
1290 if (retval)
1291 goto bad_fork_cleanup_files;
1292 retval = copy_sighand(clone_flags, p);
1293 if (retval)
1294 goto bad_fork_cleanup_fs;
1295 retval = copy_signal(clone_flags, p);
1296 if (retval)
1297 goto bad_fork_cleanup_sighand;
1298 retval = copy_mm(clone_flags, p);
1299 if (retval)
1300 goto bad_fork_cleanup_signal;
1301 retval = copy_namespaces(clone_flags, p);
1302 if (retval)
1303 goto bad_fork_cleanup_mm;
1304 retval = copy_io(clone_flags, p);
1305 if (retval)
1306 goto bad_fork_cleanup_namespaces;
1307 retval = copy_thread(clone_flags, stack_start, stack_size, p, regs);
1308 if (retval)
1309 goto bad_fork_cleanup_io;
1310
1311 if (pid != &init_struct_pid) {
1312 retval = -ENOMEM;
1313 pid = alloc_pid(p->nsproxy->pid_ns);
1314 if (!pid)
1315 goto bad_fork_cleanup_io;
1316 }
1317
1318 p->pid = pid_nr(pid);
1319 p->tgid = p->pid;
1320 if (clone_flags & CLONE_THREAD)
1321 p->tgid = current->tgid;
1322
1323 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1324 /*
1325 * Clear TID on mm_release()?
1326 */
1327 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
1328 #ifdef CONFIG_BLOCK
1329 p->plug = NULL;
1330 #endif
1331 #ifdef CONFIG_FUTEX
1332 p->robust_list = NULL;
1333 #ifdef CONFIG_COMPAT
1334 p->compat_robust_list = NULL;
1335 #endif
1336 INIT_LIST_HEAD(&p->pi_state_list);
1337 p->pi_state_cache = NULL;
1338 #endif
1339 /*
1340 * sigaltstack should be cleared when sharing the same VM
1341 */
1342 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1343 p->sas_ss_sp = p->sas_ss_size = 0;
1344
1345 /*
1346 * Syscall tracing and stepping should be turned off in the
1347 * child regardless of CLONE_PTRACE.
1348 */
1349 user_disable_single_step(p);
1350 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1351 #ifdef TIF_SYSCALL_EMU
1352 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1353 #endif
1354 clear_all_latency_tracing(p);
1355
1356 /* ok, now we should be set up.. */
1357 if (clone_flags & CLONE_THREAD)
1358 p->exit_signal = -1;
1359 else if (clone_flags & CLONE_PARENT)
1360 p->exit_signal = current->group_leader->exit_signal;
1361 else
1362 p->exit_signal = (clone_flags & CSIGNAL);
1363
1364 p->pdeath_signal = 0;
1365 p->exit_state = 0;
1366
1367 p->nr_dirtied = 0;
1368 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
1369 p->dirty_paused_when = 0;
1370
1371 /*
1372 * Ok, make it visible to the rest of the system.
1373 * We dont wake it up yet.
1374 */
1375 p->group_leader = p;
1376 INIT_LIST_HEAD(&p->thread_group);
1377
1378 /* Now that the task is set up, run cgroup callbacks if
1379 * necessary. We need to run them before the task is visible
1380 * on the tasklist. */
1381 cgroup_fork_callbacks(p);
1382 cgroup_callbacks_done = 1;
1383
1384 /* Need tasklist lock for parent etc handling! */
1385 write_lock_irq(&tasklist_lock);
1386
1387 /* CLONE_PARENT re-uses the old parent */
1388 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1389 p->real_parent = current->real_parent;
1390 p->parent_exec_id = current->parent_exec_id;
1391 } else {
1392 p->real_parent = current;
1393 p->parent_exec_id = current->self_exec_id;
1394 }
1395
1396 spin_lock(&current->sighand->siglock);
1397
1398 /*
1399 * Process group and session signals need to be delivered to just the
1400 * parent before the fork or both the parent and the child after the
1401 * fork. Restart if a signal comes in before we add the new process to
1402 * it's process group.
1403 * A fatal signal pending means that current will exit, so the new
1404 * thread can't slip out of an OOM kill (or normal SIGKILL).
1405 */
1406 recalc_sigpending();
1407 if (signal_pending(current)) {
1408 spin_unlock(&current->sighand->siglock);
1409 write_unlock_irq(&tasklist_lock);
1410 retval = -ERESTARTNOINTR;
1411 goto bad_fork_free_pid;
1412 }
1413
1414 if (clone_flags & CLONE_THREAD) {
1415 current->signal->nr_threads++;
1416 atomic_inc(&current->signal->live);
1417 atomic_inc(&current->signal->sigcnt);
1418 p->group_leader = current->group_leader;
1419 list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
1420 }
1421
1422 if (likely(p->pid)) {
1423 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
1424
1425 if (thread_group_leader(p)) {
1426 if (is_child_reaper(pid))
1427 p->nsproxy->pid_ns->child_reaper = p;
1428
1429 p->signal->leader_pid = pid;
1430 p->signal->tty = tty_kref_get(current->signal->tty);
1431 attach_pid(p, PIDTYPE_PGID, task_pgrp(current));
1432 attach_pid(p, PIDTYPE_SID, task_session(current));
1433 list_add_tail(&p->sibling, &p->real_parent->children);
1434 list_add_tail_rcu(&p->tasks, &init_task.tasks);
1435 __this_cpu_inc(process_counts);
1436 }
1437 attach_pid(p, PIDTYPE_PID, pid);
1438 nr_threads++;
1439 }
1440
1441 total_forks++;
1442 spin_unlock(&current->sighand->siglock);
1443 write_unlock_irq(&tasklist_lock);
1444 proc_fork_connector(p);
1445 cgroup_post_fork(p);
1446 if (clone_flags & CLONE_THREAD)
1447 threadgroup_change_end(current);
1448 perf_event_fork(p);
1449
1450 trace_task_newtask(p, clone_flags);
1451
1452 return p;
1453
1454 bad_fork_free_pid:
1455 if (pid != &init_struct_pid)
1456 free_pid(pid);
1457 bad_fork_cleanup_io:
1458 if (p->io_context)
1459 exit_io_context(p);
1460 bad_fork_cleanup_namespaces:
1461 exit_task_namespaces(p);
1462 bad_fork_cleanup_mm:
1463 if (p->mm)
1464 mmput(p->mm);
1465 bad_fork_cleanup_signal:
1466 if (!(clone_flags & CLONE_THREAD))
1467 free_signal_struct(p->signal);
1468 bad_fork_cleanup_sighand:
1469 __cleanup_sighand(p->sighand);
1470 bad_fork_cleanup_fs:
1471 exit_fs(p); /* blocking */
1472 bad_fork_cleanup_files:
1473 exit_files(p); /* blocking */
1474 bad_fork_cleanup_semundo:
1475 exit_sem(p);
1476 bad_fork_cleanup_audit:
1477 audit_free(p);
1478 bad_fork_cleanup_policy:
1479 perf_event_free_task(p);
1480 #ifdef CONFIG_NUMA
1481 mpol_put(p->mempolicy);
1482 bad_fork_cleanup_cgroup:
1483 #endif
1484 if (clone_flags & CLONE_THREAD)
1485 threadgroup_change_end(current);
1486 cgroup_exit(p, cgroup_callbacks_done);
1487 delayacct_tsk_free(p);
1488 module_put(task_thread_info(p)->exec_domain->module);
1489 bad_fork_cleanup_count:
1490 atomic_dec(&p->cred->user->processes);
1491 exit_creds(p);
1492 bad_fork_free:
1493 free_task(p);
1494 fork_out:
1495 return ERR_PTR(retval);
1496 }
1497
1498 noinline struct pt_regs * __cpuinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
1499 {
1500 memset(regs, 0, sizeof(struct pt_regs));
1501 return regs;
1502 }
1503
1504 static inline void init_idle_pids(struct pid_link *links)
1505 {
1506 enum pid_type type;
1507
1508 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1509 INIT_HLIST_NODE(&links[type].node); /* not really needed */
1510 links[type].pid = &init_struct_pid;
1511 }
1512 }
1513
1514 struct task_struct * __cpuinit fork_idle(int cpu)
1515 {
1516 struct task_struct *task;
1517 struct pt_regs regs;
1518
1519 task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL,
1520 &init_struct_pid, 0);
1521 if (!IS_ERR(task)) {
1522 init_idle_pids(task->pids);
1523 init_idle(task, cpu);
1524 }
1525
1526 return task;
1527 }
1528
1529 /*
1530 * Ok, this is the main fork-routine.
1531 *
1532 * It copies the process, and if successful kick-starts
1533 * it and waits for it to finish using the VM if required.
1534 */
1535 long do_fork(unsigned long clone_flags,
1536 unsigned long stack_start,
1537 struct pt_regs *regs,
1538 unsigned long stack_size,
1539 int __user *parent_tidptr,
1540 int __user *child_tidptr)
1541 {
1542 struct task_struct *p;
1543 int trace = 0;
1544 long nr;
1545
1546 /*
1547 * Do some preliminary argument and permissions checking before we
1548 * actually start allocating stuff
1549 */
1550 if (clone_flags & CLONE_NEWUSER) {
1551 if (clone_flags & CLONE_THREAD)
1552 return -EINVAL;
1553 /* hopefully this check will go away when userns support is
1554 * complete
1555 */
1556 if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SETUID) ||
1557 !capable(CAP_SETGID))
1558 return -EPERM;
1559 }
1560
1561 /*
1562 * Determine whether and which event to report to ptracer. When
1563 * called from kernel_thread or CLONE_UNTRACED is explicitly
1564 * requested, no event is reported; otherwise, report if the event
1565 * for the type of forking is enabled.
1566 */
1567 if (likely(user_mode(regs)) && !(clone_flags & CLONE_UNTRACED)) {
1568 if (clone_flags & CLONE_VFORK)
1569 trace = PTRACE_EVENT_VFORK;
1570 else if ((clone_flags & CSIGNAL) != SIGCHLD)
1571 trace = PTRACE_EVENT_CLONE;
1572 else
1573 trace = PTRACE_EVENT_FORK;
1574
1575 if (likely(!ptrace_event_enabled(current, trace)))
1576 trace = 0;
1577 }
1578
1579 p = copy_process(clone_flags, stack_start, regs, stack_size,
1580 child_tidptr, NULL, trace);
1581 /*
1582 * Do this prior waking up the new thread - the thread pointer
1583 * might get invalid after that point, if the thread exits quickly.
1584 */
1585 if (!IS_ERR(p)) {
1586 struct completion vfork;
1587
1588 trace_sched_process_fork(current, p);
1589
1590 nr = task_pid_vnr(p);
1591
1592 if (clone_flags & CLONE_PARENT_SETTID)
1593 put_user(nr, parent_tidptr);
1594
1595 if (clone_flags & CLONE_VFORK) {
1596 p->vfork_done = &vfork;
1597 init_completion(&vfork);
1598 get_task_struct(p);
1599 }
1600
1601 wake_up_new_task(p);
1602
1603 /* forking complete and child started to run, tell ptracer */
1604 if (unlikely(trace))
1605 ptrace_event(trace, nr);
1606
1607 if (clone_flags & CLONE_VFORK) {
1608 if (!wait_for_vfork_done(p, &vfork))
1609 ptrace_event(PTRACE_EVENT_VFORK_DONE, nr);
1610 }
1611 } else {
1612 nr = PTR_ERR(p);
1613 }
1614 return nr;
1615 }
1616
1617 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1618 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1619 #endif
1620
1621 static void sighand_ctor(void *data)
1622 {
1623 struct sighand_struct *sighand = data;
1624
1625 spin_lock_init(&sighand->siglock);
1626 init_waitqueue_head(&sighand->signalfd_wqh);
1627 }
1628
1629 void __init proc_caches_init(void)
1630 {
1631 sighand_cachep = kmem_cache_create("sighand_cache",
1632 sizeof(struct sighand_struct), 0,
1633 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
1634 SLAB_NOTRACK, sighand_ctor);
1635 signal_cachep = kmem_cache_create("signal_cache",
1636 sizeof(struct signal_struct), 0,
1637 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1638 files_cachep = kmem_cache_create("files_cache",
1639 sizeof(struct files_struct), 0,
1640 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1641 fs_cachep = kmem_cache_create("fs_cache",
1642 sizeof(struct fs_struct), 0,
1643 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1644 /*
1645 * FIXME! The "sizeof(struct mm_struct)" currently includes the
1646 * whole struct cpumask for the OFFSTACK case. We could change
1647 * this to *only* allocate as much of it as required by the
1648 * maximum number of CPU's we can ever have. The cpumask_allocation
1649 * is at the end of the structure, exactly for that reason.
1650 */
1651 mm_cachep = kmem_cache_create("mm_struct",
1652 sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1653 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1654 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC);
1655 mmap_init();
1656 nsproxy_cache_init();
1657 }
1658
1659 /*
1660 * Check constraints on flags passed to the unshare system call.
1661 */
1662 static int check_unshare_flags(unsigned long unshare_flags)
1663 {
1664 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1665 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1666 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET))
1667 return -EINVAL;
1668 /*
1669 * Not implemented, but pretend it works if there is nothing to
1670 * unshare. Note that unsharing CLONE_THREAD or CLONE_SIGHAND
1671 * needs to unshare vm.
1672 */
1673 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
1674 /* FIXME: get_task_mm() increments ->mm_users */
1675 if (atomic_read(&current->mm->mm_users) > 1)
1676 return -EINVAL;
1677 }
1678
1679 return 0;
1680 }
1681
1682 /*
1683 * Unshare the filesystem structure if it is being shared
1684 */
1685 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1686 {
1687 struct fs_struct *fs = current->fs;
1688
1689 if (!(unshare_flags & CLONE_FS) || !fs)
1690 return 0;
1691
1692 /* don't need lock here; in the worst case we'll do useless copy */
1693 if (fs->users == 1)
1694 return 0;
1695
1696 *new_fsp = copy_fs_struct(fs);
1697 if (!*new_fsp)
1698 return -ENOMEM;
1699
1700 return 0;
1701 }
1702
1703 /*
1704 * Unshare file descriptor table if it is being shared
1705 */
1706 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1707 {
1708 struct files_struct *fd = current->files;
1709 int error = 0;
1710
1711 if ((unshare_flags & CLONE_FILES) &&
1712 (fd && atomic_read(&fd->count) > 1)) {
1713 *new_fdp = dup_fd(fd, &error);
1714 if (!*new_fdp)
1715 return error;
1716 }
1717
1718 return 0;
1719 }
1720
1721 /*
1722 * unshare allows a process to 'unshare' part of the process
1723 * context which was originally shared using clone. copy_*
1724 * functions used by do_fork() cannot be used here directly
1725 * because they modify an inactive task_struct that is being
1726 * constructed. Here we are modifying the current, active,
1727 * task_struct.
1728 */
1729 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
1730 {
1731 struct fs_struct *fs, *new_fs = NULL;
1732 struct files_struct *fd, *new_fd = NULL;
1733 struct nsproxy *new_nsproxy = NULL;
1734 int do_sysvsem = 0;
1735 int err;
1736
1737 err = check_unshare_flags(unshare_flags);
1738 if (err)
1739 goto bad_unshare_out;
1740
1741 /*
1742 * If unsharing namespace, must also unshare filesystem information.
1743 */
1744 if (unshare_flags & CLONE_NEWNS)
1745 unshare_flags |= CLONE_FS;
1746 /*
1747 * CLONE_NEWIPC must also detach from the undolist: after switching
1748 * to a new ipc namespace, the semaphore arrays from the old
1749 * namespace are unreachable.
1750 */
1751 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
1752 do_sysvsem = 1;
1753 err = unshare_fs(unshare_flags, &new_fs);
1754 if (err)
1755 goto bad_unshare_out;
1756 err = unshare_fd(unshare_flags, &new_fd);
1757 if (err)
1758 goto bad_unshare_cleanup_fs;
1759 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy, new_fs);
1760 if (err)
1761 goto bad_unshare_cleanup_fd;
1762
1763 if (new_fs || new_fd || do_sysvsem || new_nsproxy) {
1764 if (do_sysvsem) {
1765 /*
1766 * CLONE_SYSVSEM is equivalent to sys_exit().
1767 */
1768 exit_sem(current);
1769 }
1770
1771 if (new_nsproxy) {
1772 switch_task_namespaces(current, new_nsproxy);
1773 new_nsproxy = NULL;
1774 }
1775
1776 task_lock(current);
1777
1778 if (new_fs) {
1779 fs = current->fs;
1780 spin_lock(&fs->lock);
1781 current->fs = new_fs;
1782 if (--fs->users)
1783 new_fs = NULL;
1784 else
1785 new_fs = fs;
1786 spin_unlock(&fs->lock);
1787 }
1788
1789 if (new_fd) {
1790 fd = current->files;
1791 current->files = new_fd;
1792 new_fd = fd;
1793 }
1794
1795 task_unlock(current);
1796 }
1797
1798 if (new_nsproxy)
1799 put_nsproxy(new_nsproxy);
1800
1801 bad_unshare_cleanup_fd:
1802 if (new_fd)
1803 put_files_struct(new_fd);
1804
1805 bad_unshare_cleanup_fs:
1806 if (new_fs)
1807 free_fs_struct(new_fs);
1808
1809 bad_unshare_out:
1810 return err;
1811 }
1812
1813 /*
1814 * Helper to unshare the files of the current task.
1815 * We don't want to expose copy_files internals to
1816 * the exec layer of the kernel.
1817 */
1818
1819 int unshare_files(struct files_struct **displaced)
1820 {
1821 struct task_struct *task = current;
1822 struct files_struct *copy = NULL;
1823 int error;
1824
1825 error = unshare_fd(CLONE_FILES, &copy);
1826 if (error || !copy) {
1827 *displaced = NULL;
1828 return error;
1829 }
1830 *displaced = task->files;
1831 task_lock(task);
1832 task->files = copy;
1833 task_unlock(task);
1834 return 0;
1835 }
This page took 0.114511 seconds and 4 git commands to generate.