cgroup: cgroup_subsys->fork() should be called after the task is added to css_set
[deliverable/linux.git] / kernel / fork.c
1 /*
2 * linux/kernel/fork.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * 'fork.c' contains the help-routines for the 'fork' system call
9 * (see also entry.S and others).
10 * Fork is rather simple, once you get the hang of it, but the memory
11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12 */
13
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/mempolicy.h>
22 #include <linux/sem.h>
23 #include <linux/file.h>
24 #include <linux/fdtable.h>
25 #include <linux/iocontext.h>
26 #include <linux/key.h>
27 #include <linux/binfmts.h>
28 #include <linux/mman.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/fs.h>
31 #include <linux/nsproxy.h>
32 #include <linux/capability.h>
33 #include <linux/cpu.h>
34 #include <linux/cgroup.h>
35 #include <linux/security.h>
36 #include <linux/hugetlb.h>
37 #include <linux/seccomp.h>
38 #include <linux/swap.h>
39 #include <linux/syscalls.h>
40 #include <linux/jiffies.h>
41 #include <linux/futex.h>
42 #include <linux/compat.h>
43 #include <linux/kthread.h>
44 #include <linux/task_io_accounting_ops.h>
45 #include <linux/rcupdate.h>
46 #include <linux/ptrace.h>
47 #include <linux/mount.h>
48 #include <linux/audit.h>
49 #include <linux/memcontrol.h>
50 #include <linux/ftrace.h>
51 #include <linux/proc_fs.h>
52 #include <linux/profile.h>
53 #include <linux/rmap.h>
54 #include <linux/ksm.h>
55 #include <linux/acct.h>
56 #include <linux/tsacct_kern.h>
57 #include <linux/cn_proc.h>
58 #include <linux/freezer.h>
59 #include <linux/delayacct.h>
60 #include <linux/taskstats_kern.h>
61 #include <linux/random.h>
62 #include <linux/tty.h>
63 #include <linux/blkdev.h>
64 #include <linux/fs_struct.h>
65 #include <linux/magic.h>
66 #include <linux/perf_event.h>
67 #include <linux/posix-timers.h>
68 #include <linux/user-return-notifier.h>
69 #include <linux/oom.h>
70 #include <linux/khugepaged.h>
71 #include <linux/signalfd.h>
72 #include <linux/uprobes.h>
73
74 #include <asm/pgtable.h>
75 #include <asm/pgalloc.h>
76 #include <asm/uaccess.h>
77 #include <asm/mmu_context.h>
78 #include <asm/cacheflush.h>
79 #include <asm/tlbflush.h>
80
81 #include <trace/events/sched.h>
82
83 #define CREATE_TRACE_POINTS
84 #include <trace/events/task.h>
85
86 /*
87 * Protected counters by write_lock_irq(&tasklist_lock)
88 */
89 unsigned long total_forks; /* Handle normal Linux uptimes. */
90 int nr_threads; /* The idle threads do not count.. */
91
92 int max_threads; /* tunable limit on nr_threads */
93
94 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
95
96 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
97
98 #ifdef CONFIG_PROVE_RCU
99 int lockdep_tasklist_lock_is_held(void)
100 {
101 return lockdep_is_held(&tasklist_lock);
102 }
103 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
104 #endif /* #ifdef CONFIG_PROVE_RCU */
105
106 int nr_processes(void)
107 {
108 int cpu;
109 int total = 0;
110
111 for_each_possible_cpu(cpu)
112 total += per_cpu(process_counts, cpu);
113
114 return total;
115 }
116
117 void __weak arch_release_task_struct(struct task_struct *tsk)
118 {
119 }
120
121 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
122 static struct kmem_cache *task_struct_cachep;
123
124 static inline struct task_struct *alloc_task_struct_node(int node)
125 {
126 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
127 }
128
129 static inline void free_task_struct(struct task_struct *tsk)
130 {
131 kmem_cache_free(task_struct_cachep, tsk);
132 }
133 #endif
134
135 void __weak arch_release_thread_info(struct thread_info *ti)
136 {
137 }
138
139 #ifndef CONFIG_ARCH_THREAD_INFO_ALLOCATOR
140
141 /*
142 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
143 * kmemcache based allocator.
144 */
145 # if THREAD_SIZE >= PAGE_SIZE
146 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
147 int node)
148 {
149 struct page *page = alloc_pages_node(node, THREADINFO_GFP,
150 THREAD_SIZE_ORDER);
151
152 return page ? page_address(page) : NULL;
153 }
154
155 static inline void free_thread_info(struct thread_info *ti)
156 {
157 free_pages((unsigned long)ti, THREAD_SIZE_ORDER);
158 }
159 # else
160 static struct kmem_cache *thread_info_cache;
161
162 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
163 int node)
164 {
165 return kmem_cache_alloc_node(thread_info_cache, THREADINFO_GFP, node);
166 }
167
168 static void free_thread_info(struct thread_info *ti)
169 {
170 kmem_cache_free(thread_info_cache, ti);
171 }
172
173 void thread_info_cache_init(void)
174 {
175 thread_info_cache = kmem_cache_create("thread_info", THREAD_SIZE,
176 THREAD_SIZE, 0, NULL);
177 BUG_ON(thread_info_cache == NULL);
178 }
179 # endif
180 #endif
181
182 /* SLAB cache for signal_struct structures (tsk->signal) */
183 static struct kmem_cache *signal_cachep;
184
185 /* SLAB cache for sighand_struct structures (tsk->sighand) */
186 struct kmem_cache *sighand_cachep;
187
188 /* SLAB cache for files_struct structures (tsk->files) */
189 struct kmem_cache *files_cachep;
190
191 /* SLAB cache for fs_struct structures (tsk->fs) */
192 struct kmem_cache *fs_cachep;
193
194 /* SLAB cache for vm_area_struct structures */
195 struct kmem_cache *vm_area_cachep;
196
197 /* SLAB cache for mm_struct structures (tsk->mm) */
198 static struct kmem_cache *mm_cachep;
199
200 static void account_kernel_stack(struct thread_info *ti, int account)
201 {
202 struct zone *zone = page_zone(virt_to_page(ti));
203
204 mod_zone_page_state(zone, NR_KERNEL_STACK, account);
205 }
206
207 void free_task(struct task_struct *tsk)
208 {
209 account_kernel_stack(tsk->stack, -1);
210 arch_release_thread_info(tsk->stack);
211 free_thread_info(tsk->stack);
212 rt_mutex_debug_task_free(tsk);
213 ftrace_graph_exit_task(tsk);
214 put_seccomp_filter(tsk);
215 arch_release_task_struct(tsk);
216 free_task_struct(tsk);
217 }
218 EXPORT_SYMBOL(free_task);
219
220 static inline void free_signal_struct(struct signal_struct *sig)
221 {
222 taskstats_tgid_free(sig);
223 sched_autogroup_exit(sig);
224 kmem_cache_free(signal_cachep, sig);
225 }
226
227 static inline void put_signal_struct(struct signal_struct *sig)
228 {
229 if (atomic_dec_and_test(&sig->sigcnt))
230 free_signal_struct(sig);
231 }
232
233 void __put_task_struct(struct task_struct *tsk)
234 {
235 WARN_ON(!tsk->exit_state);
236 WARN_ON(atomic_read(&tsk->usage));
237 WARN_ON(tsk == current);
238
239 security_task_free(tsk);
240 exit_creds(tsk);
241 delayacct_tsk_free(tsk);
242 put_signal_struct(tsk->signal);
243
244 if (!profile_handoff_task(tsk))
245 free_task(tsk);
246 }
247 EXPORT_SYMBOL_GPL(__put_task_struct);
248
249 void __init __weak arch_task_cache_init(void) { }
250
251 void __init fork_init(unsigned long mempages)
252 {
253 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
254 #ifndef ARCH_MIN_TASKALIGN
255 #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
256 #endif
257 /* create a slab on which task_structs can be allocated */
258 task_struct_cachep =
259 kmem_cache_create("task_struct", sizeof(struct task_struct),
260 ARCH_MIN_TASKALIGN, SLAB_PANIC | SLAB_NOTRACK, NULL);
261 #endif
262
263 /* do the arch specific task caches init */
264 arch_task_cache_init();
265
266 /*
267 * The default maximum number of threads is set to a safe
268 * value: the thread structures can take up at most half
269 * of memory.
270 */
271 max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
272
273 /*
274 * we need to allow at least 20 threads to boot a system
275 */
276 if (max_threads < 20)
277 max_threads = 20;
278
279 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
280 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
281 init_task.signal->rlim[RLIMIT_SIGPENDING] =
282 init_task.signal->rlim[RLIMIT_NPROC];
283 }
284
285 int __attribute__((weak)) arch_dup_task_struct(struct task_struct *dst,
286 struct task_struct *src)
287 {
288 *dst = *src;
289 return 0;
290 }
291
292 static struct task_struct *dup_task_struct(struct task_struct *orig)
293 {
294 struct task_struct *tsk;
295 struct thread_info *ti;
296 unsigned long *stackend;
297 int node = tsk_fork_get_node(orig);
298 int err;
299
300 tsk = alloc_task_struct_node(node);
301 if (!tsk)
302 return NULL;
303
304 ti = alloc_thread_info_node(tsk, node);
305 if (!ti)
306 goto free_tsk;
307
308 err = arch_dup_task_struct(tsk, orig);
309 if (err)
310 goto free_ti;
311
312 tsk->stack = ti;
313
314 setup_thread_stack(tsk, orig);
315 clear_user_return_notifier(tsk);
316 clear_tsk_need_resched(tsk);
317 stackend = end_of_stack(tsk);
318 *stackend = STACK_END_MAGIC; /* for overflow detection */
319
320 #ifdef CONFIG_CC_STACKPROTECTOR
321 tsk->stack_canary = get_random_int();
322 #endif
323
324 /*
325 * One for us, one for whoever does the "release_task()" (usually
326 * parent)
327 */
328 atomic_set(&tsk->usage, 2);
329 #ifdef CONFIG_BLK_DEV_IO_TRACE
330 tsk->btrace_seq = 0;
331 #endif
332 tsk->splice_pipe = NULL;
333 tsk->task_frag.page = NULL;
334
335 account_kernel_stack(ti, 1);
336
337 return tsk;
338
339 free_ti:
340 free_thread_info(ti);
341 free_tsk:
342 free_task_struct(tsk);
343 return NULL;
344 }
345
346 #ifdef CONFIG_MMU
347 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
348 {
349 struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
350 struct rb_node **rb_link, *rb_parent;
351 int retval;
352 unsigned long charge;
353 struct mempolicy *pol;
354
355 down_write(&oldmm->mmap_sem);
356 flush_cache_dup_mm(oldmm);
357 uprobe_dup_mmap(oldmm, mm);
358 /*
359 * Not linked in yet - no deadlock potential:
360 */
361 down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
362
363 mm->locked_vm = 0;
364 mm->mmap = NULL;
365 mm->mmap_cache = NULL;
366 mm->free_area_cache = oldmm->mmap_base;
367 mm->cached_hole_size = ~0UL;
368 mm->map_count = 0;
369 cpumask_clear(mm_cpumask(mm));
370 mm->mm_rb = RB_ROOT;
371 rb_link = &mm->mm_rb.rb_node;
372 rb_parent = NULL;
373 pprev = &mm->mmap;
374 retval = ksm_fork(mm, oldmm);
375 if (retval)
376 goto out;
377 retval = khugepaged_fork(mm, oldmm);
378 if (retval)
379 goto out;
380
381 prev = NULL;
382 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
383 struct file *file;
384
385 if (mpnt->vm_flags & VM_DONTCOPY) {
386 vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
387 -vma_pages(mpnt));
388 continue;
389 }
390 charge = 0;
391 if (mpnt->vm_flags & VM_ACCOUNT) {
392 unsigned long len = vma_pages(mpnt);
393
394 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
395 goto fail_nomem;
396 charge = len;
397 }
398 tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
399 if (!tmp)
400 goto fail_nomem;
401 *tmp = *mpnt;
402 INIT_LIST_HEAD(&tmp->anon_vma_chain);
403 pol = mpol_dup(vma_policy(mpnt));
404 retval = PTR_ERR(pol);
405 if (IS_ERR(pol))
406 goto fail_nomem_policy;
407 vma_set_policy(tmp, pol);
408 tmp->vm_mm = mm;
409 if (anon_vma_fork(tmp, mpnt))
410 goto fail_nomem_anon_vma_fork;
411 tmp->vm_flags &= ~VM_LOCKED;
412 tmp->vm_next = tmp->vm_prev = NULL;
413 file = tmp->vm_file;
414 if (file) {
415 struct inode *inode = file->f_path.dentry->d_inode;
416 struct address_space *mapping = file->f_mapping;
417
418 get_file(file);
419 if (tmp->vm_flags & VM_DENYWRITE)
420 atomic_dec(&inode->i_writecount);
421 mutex_lock(&mapping->i_mmap_mutex);
422 if (tmp->vm_flags & VM_SHARED)
423 mapping->i_mmap_writable++;
424 flush_dcache_mmap_lock(mapping);
425 /* insert tmp into the share list, just after mpnt */
426 if (unlikely(tmp->vm_flags & VM_NONLINEAR))
427 vma_nonlinear_insert(tmp,
428 &mapping->i_mmap_nonlinear);
429 else
430 vma_interval_tree_insert_after(tmp, mpnt,
431 &mapping->i_mmap);
432 flush_dcache_mmap_unlock(mapping);
433 mutex_unlock(&mapping->i_mmap_mutex);
434 }
435
436 /*
437 * Clear hugetlb-related page reserves for children. This only
438 * affects MAP_PRIVATE mappings. Faults generated by the child
439 * are not guaranteed to succeed, even if read-only
440 */
441 if (is_vm_hugetlb_page(tmp))
442 reset_vma_resv_huge_pages(tmp);
443
444 /*
445 * Link in the new vma and copy the page table entries.
446 */
447 *pprev = tmp;
448 pprev = &tmp->vm_next;
449 tmp->vm_prev = prev;
450 prev = tmp;
451
452 __vma_link_rb(mm, tmp, rb_link, rb_parent);
453 rb_link = &tmp->vm_rb.rb_right;
454 rb_parent = &tmp->vm_rb;
455
456 mm->map_count++;
457 retval = copy_page_range(mm, oldmm, mpnt);
458
459 if (tmp->vm_ops && tmp->vm_ops->open)
460 tmp->vm_ops->open(tmp);
461
462 if (retval)
463 goto out;
464 }
465 /* a new mm has just been created */
466 arch_dup_mmap(oldmm, mm);
467 retval = 0;
468 out:
469 up_write(&mm->mmap_sem);
470 flush_tlb_mm(oldmm);
471 up_write(&oldmm->mmap_sem);
472 return retval;
473 fail_nomem_anon_vma_fork:
474 mpol_put(pol);
475 fail_nomem_policy:
476 kmem_cache_free(vm_area_cachep, tmp);
477 fail_nomem:
478 retval = -ENOMEM;
479 vm_unacct_memory(charge);
480 goto out;
481 }
482
483 static inline int mm_alloc_pgd(struct mm_struct *mm)
484 {
485 mm->pgd = pgd_alloc(mm);
486 if (unlikely(!mm->pgd))
487 return -ENOMEM;
488 return 0;
489 }
490
491 static inline void mm_free_pgd(struct mm_struct *mm)
492 {
493 pgd_free(mm, mm->pgd);
494 }
495 #else
496 #define dup_mmap(mm, oldmm) (0)
497 #define mm_alloc_pgd(mm) (0)
498 #define mm_free_pgd(mm)
499 #endif /* CONFIG_MMU */
500
501 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
502
503 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
504 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
505
506 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
507
508 static int __init coredump_filter_setup(char *s)
509 {
510 default_dump_filter =
511 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
512 MMF_DUMP_FILTER_MASK;
513 return 1;
514 }
515
516 __setup("coredump_filter=", coredump_filter_setup);
517
518 #include <linux/init_task.h>
519
520 static void mm_init_aio(struct mm_struct *mm)
521 {
522 #ifdef CONFIG_AIO
523 spin_lock_init(&mm->ioctx_lock);
524 INIT_HLIST_HEAD(&mm->ioctx_list);
525 #endif
526 }
527
528 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p)
529 {
530 atomic_set(&mm->mm_users, 1);
531 atomic_set(&mm->mm_count, 1);
532 init_rwsem(&mm->mmap_sem);
533 INIT_LIST_HEAD(&mm->mmlist);
534 mm->flags = (current->mm) ?
535 (current->mm->flags & MMF_INIT_MASK) : default_dump_filter;
536 mm->core_state = NULL;
537 mm->nr_ptes = 0;
538 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
539 spin_lock_init(&mm->page_table_lock);
540 mm->free_area_cache = TASK_UNMAPPED_BASE;
541 mm->cached_hole_size = ~0UL;
542 mm_init_aio(mm);
543 mm_init_owner(mm, p);
544
545 if (likely(!mm_alloc_pgd(mm))) {
546 mm->def_flags = 0;
547 mmu_notifier_mm_init(mm);
548 return mm;
549 }
550
551 free_mm(mm);
552 return NULL;
553 }
554
555 static void check_mm(struct mm_struct *mm)
556 {
557 int i;
558
559 for (i = 0; i < NR_MM_COUNTERS; i++) {
560 long x = atomic_long_read(&mm->rss_stat.count[i]);
561
562 if (unlikely(x))
563 printk(KERN_ALERT "BUG: Bad rss-counter state "
564 "mm:%p idx:%d val:%ld\n", mm, i, x);
565 }
566
567 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
568 VM_BUG_ON(mm->pmd_huge_pte);
569 #endif
570 }
571
572 /*
573 * Allocate and initialize an mm_struct.
574 */
575 struct mm_struct *mm_alloc(void)
576 {
577 struct mm_struct *mm;
578
579 mm = allocate_mm();
580 if (!mm)
581 return NULL;
582
583 memset(mm, 0, sizeof(*mm));
584 mm_init_cpumask(mm);
585 return mm_init(mm, current);
586 }
587
588 /*
589 * Called when the last reference to the mm
590 * is dropped: either by a lazy thread or by
591 * mmput. Free the page directory and the mm.
592 */
593 void __mmdrop(struct mm_struct *mm)
594 {
595 BUG_ON(mm == &init_mm);
596 mm_free_pgd(mm);
597 destroy_context(mm);
598 mmu_notifier_mm_destroy(mm);
599 check_mm(mm);
600 free_mm(mm);
601 }
602 EXPORT_SYMBOL_GPL(__mmdrop);
603
604 /*
605 * Decrement the use count and release all resources for an mm.
606 */
607 void mmput(struct mm_struct *mm)
608 {
609 might_sleep();
610
611 if (atomic_dec_and_test(&mm->mm_users)) {
612 uprobe_clear_state(mm);
613 exit_aio(mm);
614 ksm_exit(mm);
615 khugepaged_exit(mm); /* must run before exit_mmap */
616 exit_mmap(mm);
617 set_mm_exe_file(mm, NULL);
618 if (!list_empty(&mm->mmlist)) {
619 spin_lock(&mmlist_lock);
620 list_del(&mm->mmlist);
621 spin_unlock(&mmlist_lock);
622 }
623 if (mm->binfmt)
624 module_put(mm->binfmt->module);
625 mmdrop(mm);
626 }
627 }
628 EXPORT_SYMBOL_GPL(mmput);
629
630 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
631 {
632 if (new_exe_file)
633 get_file(new_exe_file);
634 if (mm->exe_file)
635 fput(mm->exe_file);
636 mm->exe_file = new_exe_file;
637 }
638
639 struct file *get_mm_exe_file(struct mm_struct *mm)
640 {
641 struct file *exe_file;
642
643 /* We need mmap_sem to protect against races with removal of exe_file */
644 down_read(&mm->mmap_sem);
645 exe_file = mm->exe_file;
646 if (exe_file)
647 get_file(exe_file);
648 up_read(&mm->mmap_sem);
649 return exe_file;
650 }
651
652 static void dup_mm_exe_file(struct mm_struct *oldmm, struct mm_struct *newmm)
653 {
654 /* It's safe to write the exe_file pointer without exe_file_lock because
655 * this is called during fork when the task is not yet in /proc */
656 newmm->exe_file = get_mm_exe_file(oldmm);
657 }
658
659 /**
660 * get_task_mm - acquire a reference to the task's mm
661 *
662 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
663 * this kernel workthread has transiently adopted a user mm with use_mm,
664 * to do its AIO) is not set and if so returns a reference to it, after
665 * bumping up the use count. User must release the mm via mmput()
666 * after use. Typically used by /proc and ptrace.
667 */
668 struct mm_struct *get_task_mm(struct task_struct *task)
669 {
670 struct mm_struct *mm;
671
672 task_lock(task);
673 mm = task->mm;
674 if (mm) {
675 if (task->flags & PF_KTHREAD)
676 mm = NULL;
677 else
678 atomic_inc(&mm->mm_users);
679 }
680 task_unlock(task);
681 return mm;
682 }
683 EXPORT_SYMBOL_GPL(get_task_mm);
684
685 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
686 {
687 struct mm_struct *mm;
688 int err;
689
690 err = mutex_lock_killable(&task->signal->cred_guard_mutex);
691 if (err)
692 return ERR_PTR(err);
693
694 mm = get_task_mm(task);
695 if (mm && mm != current->mm &&
696 !ptrace_may_access(task, mode)) {
697 mmput(mm);
698 mm = ERR_PTR(-EACCES);
699 }
700 mutex_unlock(&task->signal->cred_guard_mutex);
701
702 return mm;
703 }
704
705 static void complete_vfork_done(struct task_struct *tsk)
706 {
707 struct completion *vfork;
708
709 task_lock(tsk);
710 vfork = tsk->vfork_done;
711 if (likely(vfork)) {
712 tsk->vfork_done = NULL;
713 complete(vfork);
714 }
715 task_unlock(tsk);
716 }
717
718 static int wait_for_vfork_done(struct task_struct *child,
719 struct completion *vfork)
720 {
721 int killed;
722
723 freezer_do_not_count();
724 killed = wait_for_completion_killable(vfork);
725 freezer_count();
726
727 if (killed) {
728 task_lock(child);
729 child->vfork_done = NULL;
730 task_unlock(child);
731 }
732
733 put_task_struct(child);
734 return killed;
735 }
736
737 /* Please note the differences between mmput and mm_release.
738 * mmput is called whenever we stop holding onto a mm_struct,
739 * error success whatever.
740 *
741 * mm_release is called after a mm_struct has been removed
742 * from the current process.
743 *
744 * This difference is important for error handling, when we
745 * only half set up a mm_struct for a new process and need to restore
746 * the old one. Because we mmput the new mm_struct before
747 * restoring the old one. . .
748 * Eric Biederman 10 January 1998
749 */
750 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
751 {
752 /* Get rid of any futexes when releasing the mm */
753 #ifdef CONFIG_FUTEX
754 if (unlikely(tsk->robust_list)) {
755 exit_robust_list(tsk);
756 tsk->robust_list = NULL;
757 }
758 #ifdef CONFIG_COMPAT
759 if (unlikely(tsk->compat_robust_list)) {
760 compat_exit_robust_list(tsk);
761 tsk->compat_robust_list = NULL;
762 }
763 #endif
764 if (unlikely(!list_empty(&tsk->pi_state_list)))
765 exit_pi_state_list(tsk);
766 #endif
767
768 uprobe_free_utask(tsk);
769
770 /* Get rid of any cached register state */
771 deactivate_mm(tsk, mm);
772
773 /*
774 * If we're exiting normally, clear a user-space tid field if
775 * requested. We leave this alone when dying by signal, to leave
776 * the value intact in a core dump, and to save the unnecessary
777 * trouble, say, a killed vfork parent shouldn't touch this mm.
778 * Userland only wants this done for a sys_exit.
779 */
780 if (tsk->clear_child_tid) {
781 if (!(tsk->flags & PF_SIGNALED) &&
782 atomic_read(&mm->mm_users) > 1) {
783 /*
784 * We don't check the error code - if userspace has
785 * not set up a proper pointer then tough luck.
786 */
787 put_user(0, tsk->clear_child_tid);
788 sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
789 1, NULL, NULL, 0);
790 }
791 tsk->clear_child_tid = NULL;
792 }
793
794 /*
795 * All done, finally we can wake up parent and return this mm to him.
796 * Also kthread_stop() uses this completion for synchronization.
797 */
798 if (tsk->vfork_done)
799 complete_vfork_done(tsk);
800 }
801
802 /*
803 * Allocate a new mm structure and copy contents from the
804 * mm structure of the passed in task structure.
805 */
806 struct mm_struct *dup_mm(struct task_struct *tsk)
807 {
808 struct mm_struct *mm, *oldmm = current->mm;
809 int err;
810
811 if (!oldmm)
812 return NULL;
813
814 mm = allocate_mm();
815 if (!mm)
816 goto fail_nomem;
817
818 memcpy(mm, oldmm, sizeof(*mm));
819 mm_init_cpumask(mm);
820
821 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
822 mm->pmd_huge_pte = NULL;
823 #endif
824 if (!mm_init(mm, tsk))
825 goto fail_nomem;
826
827 if (init_new_context(tsk, mm))
828 goto fail_nocontext;
829
830 dup_mm_exe_file(oldmm, mm);
831
832 err = dup_mmap(mm, oldmm);
833 if (err)
834 goto free_pt;
835
836 mm->hiwater_rss = get_mm_rss(mm);
837 mm->hiwater_vm = mm->total_vm;
838
839 if (mm->binfmt && !try_module_get(mm->binfmt->module))
840 goto free_pt;
841
842 return mm;
843
844 free_pt:
845 /* don't put binfmt in mmput, we haven't got module yet */
846 mm->binfmt = NULL;
847 mmput(mm);
848
849 fail_nomem:
850 return NULL;
851
852 fail_nocontext:
853 /*
854 * If init_new_context() failed, we cannot use mmput() to free the mm
855 * because it calls destroy_context()
856 */
857 mm_free_pgd(mm);
858 free_mm(mm);
859 return NULL;
860 }
861
862 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
863 {
864 struct mm_struct *mm, *oldmm;
865 int retval;
866
867 tsk->min_flt = tsk->maj_flt = 0;
868 tsk->nvcsw = tsk->nivcsw = 0;
869 #ifdef CONFIG_DETECT_HUNG_TASK
870 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
871 #endif
872
873 tsk->mm = NULL;
874 tsk->active_mm = NULL;
875
876 /*
877 * Are we cloning a kernel thread?
878 *
879 * We need to steal a active VM for that..
880 */
881 oldmm = current->mm;
882 if (!oldmm)
883 return 0;
884
885 if (clone_flags & CLONE_VM) {
886 atomic_inc(&oldmm->mm_users);
887 mm = oldmm;
888 goto good_mm;
889 }
890
891 retval = -ENOMEM;
892 mm = dup_mm(tsk);
893 if (!mm)
894 goto fail_nomem;
895
896 good_mm:
897 tsk->mm = mm;
898 tsk->active_mm = mm;
899 return 0;
900
901 fail_nomem:
902 return retval;
903 }
904
905 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
906 {
907 struct fs_struct *fs = current->fs;
908 if (clone_flags & CLONE_FS) {
909 /* tsk->fs is already what we want */
910 spin_lock(&fs->lock);
911 if (fs->in_exec) {
912 spin_unlock(&fs->lock);
913 return -EAGAIN;
914 }
915 fs->users++;
916 spin_unlock(&fs->lock);
917 return 0;
918 }
919 tsk->fs = copy_fs_struct(fs);
920 if (!tsk->fs)
921 return -ENOMEM;
922 return 0;
923 }
924
925 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
926 {
927 struct files_struct *oldf, *newf;
928 int error = 0;
929
930 /*
931 * A background process may not have any files ...
932 */
933 oldf = current->files;
934 if (!oldf)
935 goto out;
936
937 if (clone_flags & CLONE_FILES) {
938 atomic_inc(&oldf->count);
939 goto out;
940 }
941
942 newf = dup_fd(oldf, &error);
943 if (!newf)
944 goto out;
945
946 tsk->files = newf;
947 error = 0;
948 out:
949 return error;
950 }
951
952 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
953 {
954 #ifdef CONFIG_BLOCK
955 struct io_context *ioc = current->io_context;
956 struct io_context *new_ioc;
957
958 if (!ioc)
959 return 0;
960 /*
961 * Share io context with parent, if CLONE_IO is set
962 */
963 if (clone_flags & CLONE_IO) {
964 ioc_task_link(ioc);
965 tsk->io_context = ioc;
966 } else if (ioprio_valid(ioc->ioprio)) {
967 new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
968 if (unlikely(!new_ioc))
969 return -ENOMEM;
970
971 new_ioc->ioprio = ioc->ioprio;
972 put_io_context(new_ioc);
973 }
974 #endif
975 return 0;
976 }
977
978 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
979 {
980 struct sighand_struct *sig;
981
982 if (clone_flags & CLONE_SIGHAND) {
983 atomic_inc(&current->sighand->count);
984 return 0;
985 }
986 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
987 rcu_assign_pointer(tsk->sighand, sig);
988 if (!sig)
989 return -ENOMEM;
990 atomic_set(&sig->count, 1);
991 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
992 return 0;
993 }
994
995 void __cleanup_sighand(struct sighand_struct *sighand)
996 {
997 if (atomic_dec_and_test(&sighand->count)) {
998 signalfd_cleanup(sighand);
999 kmem_cache_free(sighand_cachep, sighand);
1000 }
1001 }
1002
1003
1004 /*
1005 * Initialize POSIX timer handling for a thread group.
1006 */
1007 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1008 {
1009 unsigned long cpu_limit;
1010
1011 /* Thread group counters. */
1012 thread_group_cputime_init(sig);
1013
1014 cpu_limit = ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1015 if (cpu_limit != RLIM_INFINITY) {
1016 sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit);
1017 sig->cputimer.running = 1;
1018 }
1019
1020 /* The timer lists. */
1021 INIT_LIST_HEAD(&sig->cpu_timers[0]);
1022 INIT_LIST_HEAD(&sig->cpu_timers[1]);
1023 INIT_LIST_HEAD(&sig->cpu_timers[2]);
1024 }
1025
1026 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1027 {
1028 struct signal_struct *sig;
1029
1030 if (clone_flags & CLONE_THREAD)
1031 return 0;
1032
1033 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1034 tsk->signal = sig;
1035 if (!sig)
1036 return -ENOMEM;
1037
1038 sig->nr_threads = 1;
1039 atomic_set(&sig->live, 1);
1040 atomic_set(&sig->sigcnt, 1);
1041 init_waitqueue_head(&sig->wait_chldexit);
1042 if (clone_flags & CLONE_NEWPID)
1043 sig->flags |= SIGNAL_UNKILLABLE;
1044 sig->curr_target = tsk;
1045 init_sigpending(&sig->shared_pending);
1046 INIT_LIST_HEAD(&sig->posix_timers);
1047
1048 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1049 sig->real_timer.function = it_real_fn;
1050
1051 task_lock(current->group_leader);
1052 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1053 task_unlock(current->group_leader);
1054
1055 posix_cpu_timers_init_group(sig);
1056
1057 tty_audit_fork(sig);
1058 sched_autogroup_fork(sig);
1059
1060 #ifdef CONFIG_CGROUPS
1061 init_rwsem(&sig->group_rwsem);
1062 #endif
1063
1064 sig->oom_score_adj = current->signal->oom_score_adj;
1065 sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1066
1067 sig->has_child_subreaper = current->signal->has_child_subreaper ||
1068 current->signal->is_child_subreaper;
1069
1070 mutex_init(&sig->cred_guard_mutex);
1071
1072 return 0;
1073 }
1074
1075 static void copy_flags(unsigned long clone_flags, struct task_struct *p)
1076 {
1077 unsigned long new_flags = p->flags;
1078
1079 new_flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER);
1080 new_flags |= PF_FORKNOEXEC;
1081 p->flags = new_flags;
1082 }
1083
1084 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1085 {
1086 current->clear_child_tid = tidptr;
1087
1088 return task_pid_vnr(current);
1089 }
1090
1091 static void rt_mutex_init_task(struct task_struct *p)
1092 {
1093 raw_spin_lock_init(&p->pi_lock);
1094 #ifdef CONFIG_RT_MUTEXES
1095 plist_head_init(&p->pi_waiters);
1096 p->pi_blocked_on = NULL;
1097 #endif
1098 }
1099
1100 #ifdef CONFIG_MM_OWNER
1101 void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
1102 {
1103 mm->owner = p;
1104 }
1105 #endif /* CONFIG_MM_OWNER */
1106
1107 /*
1108 * Initialize POSIX timer handling for a single task.
1109 */
1110 static void posix_cpu_timers_init(struct task_struct *tsk)
1111 {
1112 tsk->cputime_expires.prof_exp = 0;
1113 tsk->cputime_expires.virt_exp = 0;
1114 tsk->cputime_expires.sched_exp = 0;
1115 INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1116 INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1117 INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1118 }
1119
1120 /*
1121 * This creates a new process as a copy of the old one,
1122 * but does not actually start it yet.
1123 *
1124 * It copies the registers, and all the appropriate
1125 * parts of the process environment (as per the clone
1126 * flags). The actual kick-off is left to the caller.
1127 */
1128 static struct task_struct *copy_process(unsigned long clone_flags,
1129 unsigned long stack_start,
1130 struct pt_regs *regs,
1131 unsigned long stack_size,
1132 int __user *child_tidptr,
1133 struct pid *pid,
1134 int trace)
1135 {
1136 int retval;
1137 struct task_struct *p;
1138
1139 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1140 return ERR_PTR(-EINVAL);
1141
1142 /*
1143 * Thread groups must share signals as well, and detached threads
1144 * can only be started up within the thread group.
1145 */
1146 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1147 return ERR_PTR(-EINVAL);
1148
1149 /*
1150 * Shared signal handlers imply shared VM. By way of the above,
1151 * thread groups also imply shared VM. Blocking this case allows
1152 * for various simplifications in other code.
1153 */
1154 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1155 return ERR_PTR(-EINVAL);
1156
1157 /*
1158 * Siblings of global init remain as zombies on exit since they are
1159 * not reaped by their parent (swapper). To solve this and to avoid
1160 * multi-rooted process trees, prevent global and container-inits
1161 * from creating siblings.
1162 */
1163 if ((clone_flags & CLONE_PARENT) &&
1164 current->signal->flags & SIGNAL_UNKILLABLE)
1165 return ERR_PTR(-EINVAL);
1166
1167 retval = security_task_create(clone_flags);
1168 if (retval)
1169 goto fork_out;
1170
1171 retval = -ENOMEM;
1172 p = dup_task_struct(current);
1173 if (!p)
1174 goto fork_out;
1175
1176 ftrace_graph_init_task(p);
1177 get_seccomp_filter(p);
1178
1179 rt_mutex_init_task(p);
1180
1181 #ifdef CONFIG_PROVE_LOCKING
1182 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1183 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1184 #endif
1185 retval = -EAGAIN;
1186 if (atomic_read(&p->real_cred->user->processes) >=
1187 task_rlimit(p, RLIMIT_NPROC)) {
1188 if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
1189 p->real_cred->user != INIT_USER)
1190 goto bad_fork_free;
1191 }
1192 current->flags &= ~PF_NPROC_EXCEEDED;
1193
1194 retval = copy_creds(p, clone_flags);
1195 if (retval < 0)
1196 goto bad_fork_free;
1197
1198 /*
1199 * If multiple threads are within copy_process(), then this check
1200 * triggers too late. This doesn't hurt, the check is only there
1201 * to stop root fork bombs.
1202 */
1203 retval = -EAGAIN;
1204 if (nr_threads >= max_threads)
1205 goto bad_fork_cleanup_count;
1206
1207 if (!try_module_get(task_thread_info(p)->exec_domain->module))
1208 goto bad_fork_cleanup_count;
1209
1210 p->did_exec = 0;
1211 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
1212 copy_flags(clone_flags, p);
1213 INIT_LIST_HEAD(&p->children);
1214 INIT_LIST_HEAD(&p->sibling);
1215 rcu_copy_process(p);
1216 p->vfork_done = NULL;
1217 spin_lock_init(&p->alloc_lock);
1218
1219 init_sigpending(&p->pending);
1220
1221 p->utime = p->stime = p->gtime = 0;
1222 p->utimescaled = p->stimescaled = 0;
1223 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
1224 p->prev_utime = p->prev_stime = 0;
1225 #endif
1226 #if defined(SPLIT_RSS_COUNTING)
1227 memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1228 #endif
1229
1230 p->default_timer_slack_ns = current->timer_slack_ns;
1231
1232 task_io_accounting_init(&p->ioac);
1233 acct_clear_integrals(p);
1234
1235 posix_cpu_timers_init(p);
1236
1237 do_posix_clock_monotonic_gettime(&p->start_time);
1238 p->real_start_time = p->start_time;
1239 monotonic_to_bootbased(&p->real_start_time);
1240 p->io_context = NULL;
1241 p->audit_context = NULL;
1242 if (clone_flags & CLONE_THREAD)
1243 threadgroup_change_begin(current);
1244 cgroup_fork(p);
1245 #ifdef CONFIG_NUMA
1246 p->mempolicy = mpol_dup(p->mempolicy);
1247 if (IS_ERR(p->mempolicy)) {
1248 retval = PTR_ERR(p->mempolicy);
1249 p->mempolicy = NULL;
1250 goto bad_fork_cleanup_cgroup;
1251 }
1252 mpol_fix_fork_child_flag(p);
1253 #endif
1254 #ifdef CONFIG_CPUSETS
1255 p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1256 p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1257 seqcount_init(&p->mems_allowed_seq);
1258 #endif
1259 #ifdef CONFIG_TRACE_IRQFLAGS
1260 p->irq_events = 0;
1261 p->hardirqs_enabled = 0;
1262 p->hardirq_enable_ip = 0;
1263 p->hardirq_enable_event = 0;
1264 p->hardirq_disable_ip = _THIS_IP_;
1265 p->hardirq_disable_event = 0;
1266 p->softirqs_enabled = 1;
1267 p->softirq_enable_ip = _THIS_IP_;
1268 p->softirq_enable_event = 0;
1269 p->softirq_disable_ip = 0;
1270 p->softirq_disable_event = 0;
1271 p->hardirq_context = 0;
1272 p->softirq_context = 0;
1273 #endif
1274 #ifdef CONFIG_LOCKDEP
1275 p->lockdep_depth = 0; /* no locks held yet */
1276 p->curr_chain_key = 0;
1277 p->lockdep_recursion = 0;
1278 #endif
1279
1280 #ifdef CONFIG_DEBUG_MUTEXES
1281 p->blocked_on = NULL; /* not blocked yet */
1282 #endif
1283 #ifdef CONFIG_MEMCG
1284 p->memcg_batch.do_batch = 0;
1285 p->memcg_batch.memcg = NULL;
1286 #endif
1287
1288 /* Perform scheduler related setup. Assign this task to a CPU. */
1289 sched_fork(p);
1290
1291 retval = perf_event_init_task(p);
1292 if (retval)
1293 goto bad_fork_cleanup_policy;
1294 retval = audit_alloc(p);
1295 if (retval)
1296 goto bad_fork_cleanup_policy;
1297 /* copy all the process information */
1298 retval = copy_semundo(clone_flags, p);
1299 if (retval)
1300 goto bad_fork_cleanup_audit;
1301 retval = copy_files(clone_flags, p);
1302 if (retval)
1303 goto bad_fork_cleanup_semundo;
1304 retval = copy_fs(clone_flags, p);
1305 if (retval)
1306 goto bad_fork_cleanup_files;
1307 retval = copy_sighand(clone_flags, p);
1308 if (retval)
1309 goto bad_fork_cleanup_fs;
1310 retval = copy_signal(clone_flags, p);
1311 if (retval)
1312 goto bad_fork_cleanup_sighand;
1313 retval = copy_mm(clone_flags, p);
1314 if (retval)
1315 goto bad_fork_cleanup_signal;
1316 retval = copy_namespaces(clone_flags, p);
1317 if (retval)
1318 goto bad_fork_cleanup_mm;
1319 retval = copy_io(clone_flags, p);
1320 if (retval)
1321 goto bad_fork_cleanup_namespaces;
1322 retval = copy_thread(clone_flags, stack_start, stack_size, p, regs);
1323 if (retval)
1324 goto bad_fork_cleanup_io;
1325
1326 if (pid != &init_struct_pid) {
1327 retval = -ENOMEM;
1328 pid = alloc_pid(p->nsproxy->pid_ns);
1329 if (!pid)
1330 goto bad_fork_cleanup_io;
1331 }
1332
1333 p->pid = pid_nr(pid);
1334 p->tgid = p->pid;
1335 if (clone_flags & CLONE_THREAD)
1336 p->tgid = current->tgid;
1337
1338 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1339 /*
1340 * Clear TID on mm_release()?
1341 */
1342 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
1343 #ifdef CONFIG_BLOCK
1344 p->plug = NULL;
1345 #endif
1346 #ifdef CONFIG_FUTEX
1347 p->robust_list = NULL;
1348 #ifdef CONFIG_COMPAT
1349 p->compat_robust_list = NULL;
1350 #endif
1351 INIT_LIST_HEAD(&p->pi_state_list);
1352 p->pi_state_cache = NULL;
1353 #endif
1354 uprobe_copy_process(p);
1355 /*
1356 * sigaltstack should be cleared when sharing the same VM
1357 */
1358 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1359 p->sas_ss_sp = p->sas_ss_size = 0;
1360
1361 /*
1362 * Syscall tracing and stepping should be turned off in the
1363 * child regardless of CLONE_PTRACE.
1364 */
1365 user_disable_single_step(p);
1366 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1367 #ifdef TIF_SYSCALL_EMU
1368 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1369 #endif
1370 clear_all_latency_tracing(p);
1371
1372 /* ok, now we should be set up.. */
1373 if (clone_flags & CLONE_THREAD)
1374 p->exit_signal = -1;
1375 else if (clone_flags & CLONE_PARENT)
1376 p->exit_signal = current->group_leader->exit_signal;
1377 else
1378 p->exit_signal = (clone_flags & CSIGNAL);
1379
1380 p->pdeath_signal = 0;
1381 p->exit_state = 0;
1382
1383 p->nr_dirtied = 0;
1384 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
1385 p->dirty_paused_when = 0;
1386
1387 /*
1388 * Ok, make it visible to the rest of the system.
1389 * We dont wake it up yet.
1390 */
1391 p->group_leader = p;
1392 INIT_LIST_HEAD(&p->thread_group);
1393 p->task_works = NULL;
1394
1395 /* Need tasklist lock for parent etc handling! */
1396 write_lock_irq(&tasklist_lock);
1397
1398 /* CLONE_PARENT re-uses the old parent */
1399 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1400 p->real_parent = current->real_parent;
1401 p->parent_exec_id = current->parent_exec_id;
1402 } else {
1403 p->real_parent = current;
1404 p->parent_exec_id = current->self_exec_id;
1405 }
1406
1407 spin_lock(&current->sighand->siglock);
1408
1409 /*
1410 * Process group and session signals need to be delivered to just the
1411 * parent before the fork or both the parent and the child after the
1412 * fork. Restart if a signal comes in before we add the new process to
1413 * it's process group.
1414 * A fatal signal pending means that current will exit, so the new
1415 * thread can't slip out of an OOM kill (or normal SIGKILL).
1416 */
1417 recalc_sigpending();
1418 if (signal_pending(current)) {
1419 spin_unlock(&current->sighand->siglock);
1420 write_unlock_irq(&tasklist_lock);
1421 retval = -ERESTARTNOINTR;
1422 goto bad_fork_free_pid;
1423 }
1424
1425 if (clone_flags & CLONE_THREAD) {
1426 current->signal->nr_threads++;
1427 atomic_inc(&current->signal->live);
1428 atomic_inc(&current->signal->sigcnt);
1429 p->group_leader = current->group_leader;
1430 list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
1431 }
1432
1433 if (likely(p->pid)) {
1434 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
1435
1436 if (thread_group_leader(p)) {
1437 if (is_child_reaper(pid))
1438 p->nsproxy->pid_ns->child_reaper = p;
1439
1440 p->signal->leader_pid = pid;
1441 p->signal->tty = tty_kref_get(current->signal->tty);
1442 attach_pid(p, PIDTYPE_PGID, task_pgrp(current));
1443 attach_pid(p, PIDTYPE_SID, task_session(current));
1444 list_add_tail(&p->sibling, &p->real_parent->children);
1445 list_add_tail_rcu(&p->tasks, &init_task.tasks);
1446 __this_cpu_inc(process_counts);
1447 }
1448 attach_pid(p, PIDTYPE_PID, pid);
1449 nr_threads++;
1450 }
1451
1452 total_forks++;
1453 spin_unlock(&current->sighand->siglock);
1454 write_unlock_irq(&tasklist_lock);
1455 proc_fork_connector(p);
1456 cgroup_post_fork(p);
1457 if (clone_flags & CLONE_THREAD)
1458 threadgroup_change_end(current);
1459 perf_event_fork(p);
1460
1461 trace_task_newtask(p, clone_flags);
1462
1463 return p;
1464
1465 bad_fork_free_pid:
1466 if (pid != &init_struct_pid)
1467 free_pid(pid);
1468 bad_fork_cleanup_io:
1469 if (p->io_context)
1470 exit_io_context(p);
1471 bad_fork_cleanup_namespaces:
1472 if (unlikely(clone_flags & CLONE_NEWPID))
1473 pid_ns_release_proc(p->nsproxy->pid_ns);
1474 exit_task_namespaces(p);
1475 bad_fork_cleanup_mm:
1476 if (p->mm)
1477 mmput(p->mm);
1478 bad_fork_cleanup_signal:
1479 if (!(clone_flags & CLONE_THREAD))
1480 free_signal_struct(p->signal);
1481 bad_fork_cleanup_sighand:
1482 __cleanup_sighand(p->sighand);
1483 bad_fork_cleanup_fs:
1484 exit_fs(p); /* blocking */
1485 bad_fork_cleanup_files:
1486 exit_files(p); /* blocking */
1487 bad_fork_cleanup_semundo:
1488 exit_sem(p);
1489 bad_fork_cleanup_audit:
1490 audit_free(p);
1491 bad_fork_cleanup_policy:
1492 perf_event_free_task(p);
1493 #ifdef CONFIG_NUMA
1494 mpol_put(p->mempolicy);
1495 bad_fork_cleanup_cgroup:
1496 #endif
1497 if (clone_flags & CLONE_THREAD)
1498 threadgroup_change_end(current);
1499 cgroup_exit(p, 0);
1500 delayacct_tsk_free(p);
1501 module_put(task_thread_info(p)->exec_domain->module);
1502 bad_fork_cleanup_count:
1503 atomic_dec(&p->cred->user->processes);
1504 exit_creds(p);
1505 bad_fork_free:
1506 free_task(p);
1507 fork_out:
1508 return ERR_PTR(retval);
1509 }
1510
1511 noinline struct pt_regs * __cpuinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
1512 {
1513 memset(regs, 0, sizeof(struct pt_regs));
1514 return regs;
1515 }
1516
1517 static inline void init_idle_pids(struct pid_link *links)
1518 {
1519 enum pid_type type;
1520
1521 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1522 INIT_HLIST_NODE(&links[type].node); /* not really needed */
1523 links[type].pid = &init_struct_pid;
1524 }
1525 }
1526
1527 struct task_struct * __cpuinit fork_idle(int cpu)
1528 {
1529 struct task_struct *task;
1530 struct pt_regs regs;
1531
1532 task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL,
1533 &init_struct_pid, 0);
1534 if (!IS_ERR(task)) {
1535 init_idle_pids(task->pids);
1536 init_idle(task, cpu);
1537 }
1538
1539 return task;
1540 }
1541
1542 /*
1543 * Ok, this is the main fork-routine.
1544 *
1545 * It copies the process, and if successful kick-starts
1546 * it and waits for it to finish using the VM if required.
1547 */
1548 long do_fork(unsigned long clone_flags,
1549 unsigned long stack_start,
1550 struct pt_regs *regs,
1551 unsigned long stack_size,
1552 int __user *parent_tidptr,
1553 int __user *child_tidptr)
1554 {
1555 struct task_struct *p;
1556 int trace = 0;
1557 long nr;
1558
1559 /*
1560 * Do some preliminary argument and permissions checking before we
1561 * actually start allocating stuff
1562 */
1563 if (clone_flags & CLONE_NEWUSER) {
1564 if (clone_flags & CLONE_THREAD)
1565 return -EINVAL;
1566 /* hopefully this check will go away when userns support is
1567 * complete
1568 */
1569 if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SETUID) ||
1570 !capable(CAP_SETGID))
1571 return -EPERM;
1572 }
1573
1574 /*
1575 * Determine whether and which event to report to ptracer. When
1576 * called from kernel_thread or CLONE_UNTRACED is explicitly
1577 * requested, no event is reported; otherwise, report if the event
1578 * for the type of forking is enabled.
1579 */
1580 if (!(clone_flags & CLONE_UNTRACED) && likely(user_mode(regs))) {
1581 if (clone_flags & CLONE_VFORK)
1582 trace = PTRACE_EVENT_VFORK;
1583 else if ((clone_flags & CSIGNAL) != SIGCHLD)
1584 trace = PTRACE_EVENT_CLONE;
1585 else
1586 trace = PTRACE_EVENT_FORK;
1587
1588 if (likely(!ptrace_event_enabled(current, trace)))
1589 trace = 0;
1590 }
1591
1592 p = copy_process(clone_flags, stack_start, regs, stack_size,
1593 child_tidptr, NULL, trace);
1594 /*
1595 * Do this prior waking up the new thread - the thread pointer
1596 * might get invalid after that point, if the thread exits quickly.
1597 */
1598 if (!IS_ERR(p)) {
1599 struct completion vfork;
1600
1601 trace_sched_process_fork(current, p);
1602
1603 nr = task_pid_vnr(p);
1604
1605 if (clone_flags & CLONE_PARENT_SETTID)
1606 put_user(nr, parent_tidptr);
1607
1608 if (clone_flags & CLONE_VFORK) {
1609 p->vfork_done = &vfork;
1610 init_completion(&vfork);
1611 get_task_struct(p);
1612 }
1613
1614 wake_up_new_task(p);
1615
1616 /* forking complete and child started to run, tell ptracer */
1617 if (unlikely(trace))
1618 ptrace_event(trace, nr);
1619
1620 if (clone_flags & CLONE_VFORK) {
1621 if (!wait_for_vfork_done(p, &vfork))
1622 ptrace_event(PTRACE_EVENT_VFORK_DONE, nr);
1623 }
1624 } else {
1625 nr = PTR_ERR(p);
1626 }
1627 return nr;
1628 }
1629
1630 #ifdef CONFIG_GENERIC_KERNEL_THREAD
1631 /*
1632 * Create a kernel thread.
1633 */
1634 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
1635 {
1636 return do_fork(flags|CLONE_VM|CLONE_UNTRACED, (unsigned long)fn, NULL,
1637 (unsigned long)arg, NULL, NULL);
1638 }
1639 #endif
1640
1641 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1642 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1643 #endif
1644
1645 static void sighand_ctor(void *data)
1646 {
1647 struct sighand_struct *sighand = data;
1648
1649 spin_lock_init(&sighand->siglock);
1650 init_waitqueue_head(&sighand->signalfd_wqh);
1651 }
1652
1653 void __init proc_caches_init(void)
1654 {
1655 sighand_cachep = kmem_cache_create("sighand_cache",
1656 sizeof(struct sighand_struct), 0,
1657 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
1658 SLAB_NOTRACK, sighand_ctor);
1659 signal_cachep = kmem_cache_create("signal_cache",
1660 sizeof(struct signal_struct), 0,
1661 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1662 files_cachep = kmem_cache_create("files_cache",
1663 sizeof(struct files_struct), 0,
1664 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1665 fs_cachep = kmem_cache_create("fs_cache",
1666 sizeof(struct fs_struct), 0,
1667 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1668 /*
1669 * FIXME! The "sizeof(struct mm_struct)" currently includes the
1670 * whole struct cpumask for the OFFSTACK case. We could change
1671 * this to *only* allocate as much of it as required by the
1672 * maximum number of CPU's we can ever have. The cpumask_allocation
1673 * is at the end of the structure, exactly for that reason.
1674 */
1675 mm_cachep = kmem_cache_create("mm_struct",
1676 sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1677 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1678 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC);
1679 mmap_init();
1680 nsproxy_cache_init();
1681 }
1682
1683 /*
1684 * Check constraints on flags passed to the unshare system call.
1685 */
1686 static int check_unshare_flags(unsigned long unshare_flags)
1687 {
1688 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1689 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1690 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET))
1691 return -EINVAL;
1692 /*
1693 * Not implemented, but pretend it works if there is nothing to
1694 * unshare. Note that unsharing CLONE_THREAD or CLONE_SIGHAND
1695 * needs to unshare vm.
1696 */
1697 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
1698 /* FIXME: get_task_mm() increments ->mm_users */
1699 if (atomic_read(&current->mm->mm_users) > 1)
1700 return -EINVAL;
1701 }
1702
1703 return 0;
1704 }
1705
1706 /*
1707 * Unshare the filesystem structure if it is being shared
1708 */
1709 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1710 {
1711 struct fs_struct *fs = current->fs;
1712
1713 if (!(unshare_flags & CLONE_FS) || !fs)
1714 return 0;
1715
1716 /* don't need lock here; in the worst case we'll do useless copy */
1717 if (fs->users == 1)
1718 return 0;
1719
1720 *new_fsp = copy_fs_struct(fs);
1721 if (!*new_fsp)
1722 return -ENOMEM;
1723
1724 return 0;
1725 }
1726
1727 /*
1728 * Unshare file descriptor table if it is being shared
1729 */
1730 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1731 {
1732 struct files_struct *fd = current->files;
1733 int error = 0;
1734
1735 if ((unshare_flags & CLONE_FILES) &&
1736 (fd && atomic_read(&fd->count) > 1)) {
1737 *new_fdp = dup_fd(fd, &error);
1738 if (!*new_fdp)
1739 return error;
1740 }
1741
1742 return 0;
1743 }
1744
1745 /*
1746 * unshare allows a process to 'unshare' part of the process
1747 * context which was originally shared using clone. copy_*
1748 * functions used by do_fork() cannot be used here directly
1749 * because they modify an inactive task_struct that is being
1750 * constructed. Here we are modifying the current, active,
1751 * task_struct.
1752 */
1753 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
1754 {
1755 struct fs_struct *fs, *new_fs = NULL;
1756 struct files_struct *fd, *new_fd = NULL;
1757 struct nsproxy *new_nsproxy = NULL;
1758 int do_sysvsem = 0;
1759 int err;
1760
1761 err = check_unshare_flags(unshare_flags);
1762 if (err)
1763 goto bad_unshare_out;
1764
1765 /*
1766 * If unsharing namespace, must also unshare filesystem information.
1767 */
1768 if (unshare_flags & CLONE_NEWNS)
1769 unshare_flags |= CLONE_FS;
1770 /*
1771 * CLONE_NEWIPC must also detach from the undolist: after switching
1772 * to a new ipc namespace, the semaphore arrays from the old
1773 * namespace are unreachable.
1774 */
1775 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
1776 do_sysvsem = 1;
1777 err = unshare_fs(unshare_flags, &new_fs);
1778 if (err)
1779 goto bad_unshare_out;
1780 err = unshare_fd(unshare_flags, &new_fd);
1781 if (err)
1782 goto bad_unshare_cleanup_fs;
1783 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy, new_fs);
1784 if (err)
1785 goto bad_unshare_cleanup_fd;
1786
1787 if (new_fs || new_fd || do_sysvsem || new_nsproxy) {
1788 if (do_sysvsem) {
1789 /*
1790 * CLONE_SYSVSEM is equivalent to sys_exit().
1791 */
1792 exit_sem(current);
1793 }
1794
1795 if (new_nsproxy) {
1796 switch_task_namespaces(current, new_nsproxy);
1797 new_nsproxy = NULL;
1798 }
1799
1800 task_lock(current);
1801
1802 if (new_fs) {
1803 fs = current->fs;
1804 spin_lock(&fs->lock);
1805 current->fs = new_fs;
1806 if (--fs->users)
1807 new_fs = NULL;
1808 else
1809 new_fs = fs;
1810 spin_unlock(&fs->lock);
1811 }
1812
1813 if (new_fd) {
1814 fd = current->files;
1815 current->files = new_fd;
1816 new_fd = fd;
1817 }
1818
1819 task_unlock(current);
1820 }
1821
1822 if (new_nsproxy)
1823 put_nsproxy(new_nsproxy);
1824
1825 bad_unshare_cleanup_fd:
1826 if (new_fd)
1827 put_files_struct(new_fd);
1828
1829 bad_unshare_cleanup_fs:
1830 if (new_fs)
1831 free_fs_struct(new_fs);
1832
1833 bad_unshare_out:
1834 return err;
1835 }
1836
1837 /*
1838 * Helper to unshare the files of the current task.
1839 * We don't want to expose copy_files internals to
1840 * the exec layer of the kernel.
1841 */
1842
1843 int unshare_files(struct files_struct **displaced)
1844 {
1845 struct task_struct *task = current;
1846 struct files_struct *copy = NULL;
1847 int error;
1848
1849 error = unshare_fd(CLONE_FILES, &copy);
1850 if (error || !copy) {
1851 *displaced = NULL;
1852 return error;
1853 }
1854 *displaced = task->files;
1855 task_lock(task);
1856 task->files = copy;
1857 task_unlock(task);
1858 return 0;
1859 }
This page took 0.084844 seconds and 5 git commands to generate.